
Robust Semantic Construction

Michael Schiehlen�

Institute for Computational Linguistics, University of Stuttgart,
Azenbergstr. 12, 70174 Stuttgart

mike@adler.ims.uni-stuttgart.de

1 Introduction

Recent years have seen a surge in interest for
robust �at analysis, i.e. NLP systems with fairly
limited supply of linguistic knowledge but with
vast coverage. The paper describes a module
that serves as a back-end to such �at analysis
methods and transforms their output into full
semantic representations as constructed by deep
analysis methods. In particular, the module has
been designed so as to process input from

� tree banks

� a statistic context-free parser trained on
these tree banks

� a �nite-state parser

� a traditional feature-structure parser

The semantic representations which the mod-
ule constructs are so-called Verbmobil Inter-
face Terms (VITs) (Bos et al., 1998), (building
on Reyle's Underspeci�ed Discourse Represen-
tation Structures (1993), see an example in Fig-
ure 1). Although in principle other representa-
tions could be constructed as well, VITs seem
to be a particularly good choice: They can be
implemented as sets of constraints so that se-
mantic construction (SC) reduces to collecting
the constraints and unifying some variables in
these constraints. Furthermore VITs are sup-
ported by an abstract data type (Dorna, 2000).

Several daunting problems had to be faced in
the design of the module.

� This work was funded by the German Federal Min-
istry of Education, Science, Research and Technology
(BMBF) in the framework of the Verbmobil Project un-
der Grant 01 IV 101 U. Many thanks are due to M. Emele
and the colleagues in Verbmobil.

decl()

det
y

y

next(y)

week(y)

into(e , y)

move(e, x) pron(x)

should(e1,)

so()

maybe()

Figure 1: VIT for So maybe we should move

into the next week.

Context-Free Input. The tree banks provid-
ing the input structures (which have been built
in the Verbmobil project) only encode context-
free trees to facilitate the training of a statisti-
cal parser. This means that non-local depen-
dencies are either left out (e.g. topicalization
in English) or treated by �attening out sub-
trees into rules (e.g. head-movement in Ger-
man). The latter strategy can create a vast
amount of rules: Since German head-movement
connects a clause-initial and a clause-�nal posi-
tion, every clause frame gives rise to a new rule.
To face this challenge some adjustments had to
be made:

(1) Predicate-argument structure is indispens-
able for SC but presupposes reconstruction of
long distance dependencies (�movement�). If
syntax cannot supply it, SC has to retrieve it
on its own (see Section 5.2).

(2) The sheer bulk of rules prohibits manual tag-
ging of syntactic rules with semantic rules. In-

stead, syntax has to provide pertinent informa-
tion in its rules so that SC can determine the
semantic operations required.

Robustness. Since the tree banks have been
constructed by hand, errors are prone to crop
up. Likewise, �at analysis methods cannot be
expected to deliver input of the same quality
as deep traditional parsers. Finally, grammars
and semantic formalism will often di�er in their
subcategorization assumptions: The verb move
e.g. subcategorizes for into in the tree bank (see
Figure 2) but not in the VIT formalism (see Fig-
ure 3).
To handle this problem, the syntax-semantics-
interface should be dismantled as far as possible:
Only the most indispensable information should
be taken over from syntax. By neglecting all the
rest the system stands a good chance of skipping
syntax errors. Furthermore in many cases deci-
sions made in syntax need to be overturned in
semantics (e.g. the complement/adjunct speci�-
cations). Important semantic information is of-
ten determined only in SC or in subsequent dis-
ambiguation modules that have access to larger
stores of context. This approach eases the bur-
den on syntactic analysis and potentially yields
more reliable results.

Diverse Input. A SC module should be able
to handle input from a variety of grammars and
convert it into an independent format of seman-
tic representation. Thus, a common syntax-
semantics-interface (or more precisely an inter-
face between syntax and SC) must be de�ned
onto which every type of input is mapped.

2 Design Principles

To cope with the problems mentioned, tradi-
tional SC techniques (Montague, 1973) (Pereira
and Shieber, 1987) (Bos et al., 1996) cannot
be used. Instead, the following ideas were ex-
ploited.

Modularity and Underspeci�cation. A
major problem in SC is the treatment of am-
biguity. Often the local rule context available in
SC does not give enough information to resolve
such ambiguities. In these cases, underspeci�-
cation should be used to defer the resolution of
choices. Thus, the described module builds a
lexically and scopally underspeci�ed represen-
tation. Subsequently the lexical ambiguities are
resolved by disambiguation modules.

.

.

HD
HD

COMP

HD

HDCOMP
ADJ

ADJ
SBJ

SPR
ADJ

HD
HD

HD COMP
COMP

HD

HD

RB RB PP MD VB IN DT JJ NN
weeknexttheintomoveshouldwemaybeSo

Figure 2: Example for an application tree.

Modularity and Syntax-Semantics-

Interface. To facilitate modularity a syntax-
semantics-interface is explicitly de�ned. The
input of every parser is mapped onto an
interface structure called application tree, see
Figure 2. In this way input from various sources
can be processed with a minimum of e�ort.

Semantic Database. Great emphasis is laid
on an external database of semantic predicates
(Heinecke and Worm, 1996). This database as-
sociates lemmas with predicate names, seman-
tic classes and subcategorization frames (see the
entry in Figure 3).

3 System Overview

The process of SC can be split into two phases
(see Figure 4). In the �rst phase an application
tree is traversed and simultaneously an under-
speci�ed semantic representation is built (com-
positional semantic construction, see section 5).
In the second phase the semantic representation
is partially disambiguated (see section 6). The
two phases are preceded by a step which me-
diates between the actual output of the syntax
and the syntax-semantics-interface.

4 Syntax-Semantics-Interface

Traditionally, the content of the syntax-
semantics-interface is somewhat contentious.
While syntax-oriented approaches try to inte-
grate a good part of SC already into the pars-
ing process (cf. the construction of f-structure
in LFG), other approaches put the main focus
on semantics (e.g. Montague Grammar). To
achieve a high degree of �exibility, a modular
SC system has to settle for the lowest common
denominator of all input sources. The follow-
ing information seems to be minimally required
from the syntax.

Lemma PredName SemClass SyntFrame Sort ArgSorts

move move v13 arg1:subj,arg3:obj move_sit agentive,entity

Figure 3: Entry in the semantic database.

context-free tree
#

preprocessing step
#

application tree
#

compositional
semantic construction

 semantic lexicon

#
semantic representation

#
noncompositional

semantic construction
 idiom lexicon

#
semantic representation

Figure 4: System overview.

(1) The parser should deliver a tree for the
parsed string which the SC system then can con-
vert into a hierarchical structure of semantic op-
erations (an application tree).
(2) Every word in the input string should be
syntactically classi�ed, i.e. assigned a syntac-
tic category or part of speech tag. We will as-
sume that the parser assigns every word exactly
one category. (Lexical underspeci�cation could
conceivably be used to deal with multiple cate-
gories.) Then morphological analysis (either in
syntax or SC) maps the word�category pair to a
morphological lemma and a set of morphologi-
cal features. SC records the features in the VIT
while it uses the lemma as a key to the seman-
tic lexicon. In case the lemma is unknown in
the semantic lexicon, the system uses the syn-
tactic category to automatically associate a new
predicate and semantic class with the lemma.
(3) Every rule used in the tree should specify for
each of the categories on its right-hand side ex-
actly one grammatical role (GR). If the grammar
does not do this, GRs must be determined in the
preprocessing step (e.g. determiners in NPs are
speci�ers). GRs are used to control the choice of
semantic operations. The set of GRs employed
is inspired by HPSG (Pollard and Sag, 1994):
Head, Complement, Adjunct, Conjunct, Speci-

det
y

y

next(y)

week(y)
should(e1,)

maybe()

into(? , y)

move(e, x) pron(x)

Figure 5: Operation of adjunction.

�er, Part of a Multi-Word Lexeme. The corre-
sponding semantic operations are Complemen-
tation, Adjunction, Coordination, Speci�cation,
and Predicate Formation. Except for Coordina-
tion and Predicate Formation all operations are
binary. A rule without a head is considered el-
liptical and an abstract predicate for the missing
head is inserted in semantics.

5 Compositional Semantic
Construction Process

Compositional SC follows the application tree
(the context-free backbone) and determines the
predicate-argument structure (the subcatego-
rization paths).

5.1 Semantic Construction on the

Constituent Structure

Figure 5 shows two adjunction operations: In
the �rst one, the intersective adjunct into the

next week is adjoined to move. In the second
one, maybe is adjoined to the clause. The pic-
ture makes clear what the data structure for
a partial result should look like: a set of con-
straints and some pointers to variables in these
constraints (e.g. the partial result for maybe
would be f maybe(l1; h1); l2 � h1; l1 2 l3 g

1

and hl2; l3i). Since only �nitely many pointers

1In a VIT, every predicate is referenced over a base
label (e.g. l1 for maybe). The constraint l2 � h1 says
that the box l2 is subordinated to box h1, while l1 2 l3

states that predicate l1 is in box l3.

are involved, they can be collected in a record.
All partial results are classi�ed into six seman-
tic types according to the pointers they allow
for: nhead (nominal head, for nouns), vhead
(verbal head, for verbs), adj (adjuncts2, for ad-
verbs, adjectives, subclauses, PPs, also preposi-
tions and subordinating conjunctions), ncomp

(nominal complements, for pronouns, NPs, also
determiners), vcomp (verbal complements, for
sentences and complement clauses, also sentence
moods and complementizers), cnj (for coordi-
nating conjunctions).
Semantic operations expect arguments of spe-
ci�c semantic types: Complementation com-
bines heads with complements, Adjunction com-
bines heads with adjuncts. Speci�cation con-
verts an incomplete ncomp (i.e. a determiner)
and a nhead into a complete ncomp. Coordi-
nation combines a cnj with a series of partial
results of equal type.
If a type clash occurs, a �type raising� opera-
tion is invoked. Such operations usually insert
speci�c abstract predicates that represent pho-
netically empty words or elided material still to
be retrieved by ellipsis resolution in a later step.
Figure 6 gives a concise description of these op-
erations3. Consider some type-raising examples:

(1) I will be here Monday.
udef (nhead ! ncomp)

unspec_mod (ncomp ! adj)

(2) I will come if necessary.
stat (adj ! vhead)

(3) Afternoon might work or early morning.
abstr_rel (ncomp ! vhead)

5.2 Semantic Construction on the
Predicate-Argument Structure

While the application tree (Figure 2) states that
the pronoun we is the subject of should, in the

2VITs provide a lexical underspeci�cation class for
intersective (e.g. into the next week and scopal adjuncts
(e.g. maybe). Thus, SC has to handle intersective and
scopal adjunction in parallel.

3In Figure 6 the following names are used for newly
inserted predicates: udef (null determiner), unspec_mod
(null preposition), stat (auxiliary verb be), abstr_nom
(nominal ellipsis), abstr_rel (verbal ellipsis), decl (declar-
ative sentence mood), poss (relation expressed by geni-
tive), def (de�nite quanti�er).

co
mp(

sta
t,)

ad
j(a

bs
tr_

rel
,)

nhead
adj(abstr_nom,)

com
p(decl,)

co
mp(

in_
or

de
r_

to,
)

ncomp

argX

arg
X

scop

adj(udef,)

comp(abstr_rel,)

spec(udef,)

com
p(abstr_nom

,)

adj(def,com
p(poss,))

spec(,abstr_nom
)

adj

cnj

vcompspec

comp(poss,)

comp(unspec_mod,)

comp(null_grad,)

vhead

Figure 6: Type-raising operations.

semantic representation (Figure 1) we is the sub-
ject of move. So in this case head and seman-
tic subject are not in the same local rule. To
retrace such non-local dependencies, a slash de-
vice is used to store the pertinent information
(the argument variable and the box label of the
head) and propagate it through the application
tree in search for a licenser. If a subcategorized
element occurs without a subcategorizing head
(as occurs often in fragmentary input), an ellip-
tical element is assumed:

(4) I mean if you! abstr_rel with subject you

6 Noncompositional Semantic
Construction

In noncompositional SC idioms are recognized
and a higher level of abstraction is achieved.
Technically, noncompositional SC is about
transforming VITs. Thus, for implementation
the VIT transfer package of Dorna and Emele
((1996)) is used. Linguistically, the component
performs the following tasks:

� recognition of multi-word lexemes that
are not designated as such by syntax
(e.g. greeting expressions good night, com-
paratives more comfortable)

� recognition and computation of clock times
(e.g. a quarter to ten) and date expressions

� recognition of titles (e.g. Frau Müller)

� partial disambiguation of sentence mood
(e.g. who did it is recognized as a question)

� distribution of conjoined material, if re-
quired by the level of abstraction aimed for

(e.g. clock times between a quarter to and

half past ten, date expressions Monday the
third and tenth)

� compositional morphology for German
(e.g. Stiftmuseum = museum with the
name Stift)

7 Summary

The paper has presented a module4 capable
of handling input from �at analysis methods
and transforming them into full-�edged seman-
tic representations. The module works robustly
and currently has a throughput of about 98%
on Verbmobil tree bank input (i.e. it gener-
ates 21,222 English and 26,789 German VITs.)
The remaining 2% are due to errors in the SC
module, errors in the tree bank, or coordination
problems between SC and tree bank.
Evaluation of the module is complicated by the
e�ort involved in manually constructing a siz-
able set of input structures and corresponding
semantic representations. Furthermore, the VIT
formalism has been in constant �ux over the
last years with the correct output representa-
tions changing almost monthly. It is, however,
envisaged to perform an evaluation once dust
has settled.
The approach described adds in two respects to
the robustness of the overall system. First, the
�at analysis parsers used are very robust as con-
cerns low-level inconsistencies such as agreement
failures or missing function words (prepositions,
determiners, complementizers, etc.). Second,
the data analysed in the Verbmobil tree banks
are exclusively spoken language. Hence, the tree
banks encode analyses for phenomena such as
fragmentary input, truncated or elliptical sen-
tences, etc. The described module gives seman-
tic analyses for all of these constructions. (Usu-
ally an abstract predicate is incorporated which
gives a hint to subsequent modules that aim to
piece together partial utterances.)
Another perspective of this work is that it pro-
vides a �rst step towards a real corpus seman-
tics by converting large sets of data into seman-
tic representations. Due to the abstraction they
embody, semantic representations are a valuable
tool for content queries to the processed corpora.
More immediately, the semantic representations

4More information can be found in Schiehlen (1999).

generated by the described module have been
used as test and training data for applications
requiring abstract input, such as transfer in ma-
chine translation and generation.

References

Johan Bos, Björn Gambäck, Christian Lieske,
Yoshiki Mori, Manfred Pinkal, and Karsten L.
Worm. 1996. Compositional Semantics in Verb-
mobil. In Proceedings of the 16th Interna-
tional Conference on Computational Linguistics
(COLING '96), Copenhagen, Denmark.
Johan Bos, Bianka Buschbeck-Wolf, Michael
Dorna, and C.J. Rupp. 1998. Managing infor-
mation at linguistic interfaces. In Proceedings
of the 17th International Conference on Com-
putational Linguistics (COLING '98), Montreal,
Canada.
Michael Dorna and Martin C. Emele. 1996.
Semantic-Based Transfer. In Proceedings of
the 16th International Conference on Computa-
tional Linguistics (COLING '96), Copenhagen,
Denmark.
Michael Dorna. 2000. A Library Package for
the Verbmobil Interface Term. Verbmobil Re-
port 238, Institut für maschinelle Sprachverar-
beitung.
Johannes Heinecke and Karsten Worm. 1996.
A Lexical Semantic Database for Verbmobil. In
Proceedings of the 4th International Conference
on Computational Linguistics (COMPLEX '96),
Budapest, Hungary.
Richard Montague. 1973. The Proper Treat-
ment of Quanti�cation. In Jaako Hintikka,
Julius Moravcsik, and Patrick Suppes, editors,
Approaches to Natural Language, pages 221�
242. Reidel, Dordrecht.
Fernando C.N. Pereira and Stuart M. Shieber.
1987. Prolog and Natural-Language Analysis.
CSLI Lecture Notes. Center for the Study of
Language and Information, Stanford, Califor-
nia.
Carl Pollard and Ivan Sag. 1994. Head-
Driven Phrase Structure Grammar. University
of Chicago Press, Chicago.
Uwe Reyle. 1993. Dealing with Ambiguities
by Underspeci�cation: Construction, Represen-
tation and Deduction. Journal of Semantics,
10(2):123�179.
Michael Schiehlen. 1999. Semantikkonstruktion.
Ph.D. thesis, Universität Stuttgart.

