
Thistle and Interarbora

Jo Calder
University of Edinburgh
Division of Informatics

Language Technology Group
2 Buccleuch Place

Edinburgh Scotland EH8 9LW
J.Calder@ed.ac.uk

Abstract
We present a system for manipulating a wide class of
linguistic diagrams, which is configurable and extensi-
ble, and allows deployment as a web-delivered system.
A major theme of this work is the transfer of the devices
of formal grammar into the analysis and construction of
diagrams.

1 Introduction
Diagrams play a crucial role in (computational) linguis-
tics, in presenting analyses and characterizing fragments
of theories. This role has not to date been adequately
supported by programs for the creation, maintenance and
delivery of diagrams. We conjecture that this has to do
with three main factors. First, in a changing field, obso-
lescence may be a concern. Second, it may be difficult
to see how to provide a uniform interface to an appropri-
ately wide range of kinds of diagrams. Third, integration
with delivery systems may be difficult to achieve. We ar-
gue below that the design of the Thistle diagram editor
provides mechanisms for obviating each of these prob-
lems. We start with a brief description of the design of
the editor, stressing design decisions that avoid the prob-
lems just mentioned. We then turn briefly to some im-
plementation details, before describing and exemplifying
the classes of diagrams which have been developed so
far. We end with a discussion of current and future direc-
tions for this work. All of the examples can be accessed
on-line1.

Some of our practical considerations are worth empha-
sising. First, we aim for typographic quality as close
as possible to standard print presentations of the dia-
grams in use. The diagrams shown in this paper are pre-
sented using the PostScript generated by Thistle. They
have essentially the same form as delivered by a web
browser. Second, the system should be lightweight in
several senses. It should be usable without specialist
knowledge of the diagrams in question. The user inter-
face should be simple. It should be deployable with min-
imal assumptions about the hosting environment. These
considerations mean that other programs for manipulat-
ing diagrams, such as more general purpose graph edi-

1http://www.ltg.ed.ac.uk/software/thistle

tors (for example daVinci2, DiaGen (Viehstaedt and Mi-
nas 1995) or VGJ3) are generally unsuitable, as are more
complex tools for data annotation, such as the MATE
workbench (Dybkjærat al 2000). Such systems may of
course be able to present more complex diagrams than
Thistle, or offer alternative functionality.

Crucial to the simplicity of Thistle is the assumption
that many diagram classes of interest can be character-
ized using only context free methods. As we will demon-
strate below, this assumption is consistent with a usefully
wide range of classes. We first discuss motivation for the
design of Thistle, and describe the grammars that charac-
terize classes of diagram. We then discuss briefly some
example classes and the Interarbora service. After giv-
ing details of the current implementation and recent en-
hancements, we describe the settings in which these tools
have been exploited. Finally, we describe our current
work, and possible strategies for usefully broadening the
kinds of diagram that Thistle can describe.

2 Design

Thistle is a parameterizable diagram editor. A class of di-
agrams is selected by providing Thistle with a grammar
which characterizes the diagrams of interest. The gram-
mar describes the hierarchical structure of diagrams, and
provides information about layout.

Grammars for diagram classes utilize a particular form
of context free grammar, in which there are two kinds
of statement. In the first, the left hand side of a rule
names a particular type of diagram, and its rewrite de-
scribes the abstract structure and concrete layout of a di-
agram type. In the second, the rewrite is a set of names
of other diagram types, representing a disjunctive choice
between the latter. Left hand sides are required to be
unique throughout. (It is straightforward to show that
any context free grammar can be encoded in this form.)
Figure 1 shows a fragment of the grammar used to gen-
erate the diagram in Figure 2. This fragment can be used
to analyse that part of the diagram expressing the value
of the featureCONTENT.

2http://www.informatik.uni-bremen.de/daVinci/
3http://www.eng.auburn.edu/csse/research/researchgroups/

graphdrawing/graphdrawing.html

diagram_spec(plain_avm,
bracket([delimiter(square)],

vbox(var(avpairs, [avm_line]))))

diagram_union(avm_line,
[avpair, path_value])

diagram_spec(avpair,
array_element([align(baseline)],

[var(attribute, attribute),
var(value, value)]))

diagram_spec(attribute,
smallcaps(var(name, Text)))

Figure 1: A simplified fragment from the grammar used to generate the diagram in Figure 2

LOCAL

CAT
HEAD

rltvzr
MOD N’ []TO-BIND|REL { }1 :

INDEX 1

RESTR 3

SUBCAT 7 NP []INHER|REL { }1 , VP fin, SUBCAT 7 LOC 4 : 5

CONTENT
INDEX 1

RESTR { }5 U 3

NONLOCAL
TO-BIND|SLASH { }4

INHER|SLASH { }4

Figure 2: A diagram, reproduced using Thistle, from Pollard and Sag (1994).

The first and third statements here express the hierar-
chical structure of and layout of attribute-value matrices.
One can gloss the first as: “A diagram of typeplain avm
consists of any number of diagrams of typeavm line .4

The subdiagrams are arranged vertically and enclosed by
a pair of square brackets.” In other words,var elements
stand for a variable subpart of a diagram and indicate the
type of diagram that can appear at that location. Note
that such elements also assign a label to each variable
subpart. The second statement above indicates that a di-
agram of typeavm line can be realized as either of the
named types. The fourth statement indicates how dia-
gram types may introduce sequences of characters.

This form of CFG leads directly to a user interface
based on top-down rewriting,5 where a rule of the first
kind is invoked, leading to choices in the diagrams intro-
duced as subparts, and so on. In practical terms, then,
given a class of diagrams, a particular instance may be

4The square brackets in[avm line] are anad hocway of express-
ing the Kleene star.

5Other ways of constructing a diagram are possible, as discussed in
§5 below.

constructed by selecting a location in a diagram, and
choosing among the possible types of diagram for that
location. What the user sees on the surface is a WYSI-
WYG presentation of the consequences of the particular
arrangements of diagram types.

These aspects of the design address at once problems
of obsolescence and of providing a uniform user inter-
face. In order to provide a new class of diagram, one
has only to construct a grammar for that class, provid-
ing the class is amenable to context free treatment (see
§6 below). We make use of existing standards in tack-
ling the problem of integrating with other systems. Any
instance of the editor may be used via a web browser,
so that local installation of software is not essential.
The graphical presentation of a diagram may be saved
in PostScript, while the logical content of a diagram is
stored as SGML.6 The precise format of a diagram’s log-
ical content exploits the fact that each variable subpart of
a diagram is assigned a unique name.

In addition to the construction of static diagrams, This-

6See also §6 below.

tle may also be used to construct step-time sequences of
diagrams. A ‘diagram player’ can be used to step through
(or jump between) diagrams in the sequence. One exam-
ple shows the states visited by a top-down backtracking
parser, on some input and with respect to a given gram-
mar.

3 Example diagram classes
There is a wide range of diagram classes currently avail-
able, ranging from an essentially complete treatment of
the diagrams in Pollard and Sag (1994) (Figure 2), and
in Kamp and Reyle (1993) (Figure 3), to small but useful
classes for diagrams from particular areas of linguistics,
such as metrical trees and categorial derivations. There
are also a number of generic diagram classes such as
trees with unlimited or fixed branching.

x y

Jones()x

Ulysses()y

x owns y

x fascinates y

Figure 3: A diagram based on Kamp and Reyle 1993

4 Interarbora
Interarbora7 is an internet based service allowing the
construction and display of tree diagrams via Web
browsers. The user supplies a tree specification as a la-
belled bracketted string, which is then analysed to pro-
duce a specification of a Thistle diagram for a simple
diagram class. This information is then passed back to
the Web browser, which computes a Thistle diagram for
display.

The analyser for bracketted strings attempts to be quite
liberal. One target format that we handle successfully
is that of the Penn Treebank8. Figure 3 shows a sim-
ple example from Interarbora. As with the other dia-
grams in this paper, this example is formatted here using
Postscript generated by Interarbora. There is no discern-
able difference between this presentation and that deliv-
ered by a web browser. Interarbora is described in more
detail by Calder (2000).

5 Current status
The system described above is fully implemented and is
available at no charge for non-commercial purposes. As

7http://www.ltg.ed.ac.uk/˜jo/interarbora/
8http://www.cis.upenn.edu/ treebank/home.html

S

NP

PN

Hank

VP

V1

chased

NP

PN

Frank

Comments: Hank chasing Frank

Figure 4: An example tree from Interarbora

our implementation platform is Java, there are relatively
few portability issues.9 In addition to the mode of op-
eration described above, where a user selects a location
in a diagram and chooses a type for that location, we
have also investigated modes which are not strictly top-
down. Such modes are essential in tasks such as annota-
tion, where one has, for example, a given string or text
to mark up. In this case, one is interested in adding to
the (possibly minimal) existing structure, and this cannot
be straightforwardly done under a pure top-down model.
Consequently, we have added a range of operations over
diagrams, including:

split a sequence of characters is replaced by two (or
more) of its subsequences with appropriate struc-
tural adjustments

join the inverse of split

demote a diagram is adjoined into the diagram at the
current location

promote the diagram at the current location replaces its
mother.

There are a number of interesting points to these op-
erations. First, the possibility of such operations is in
general determined through grammatical inference. So it
is not possible to split a sequence of characters in a lo-
cation where only one such sequence is allowed by the
grammar. Second, thedemoteoperation is the exact ana-
log of adjunction in Tree Adjoining Grammars (see e.g.
Joshiet al, 1991). A demote operation is only allowed
if the type of diagram at the current location is permit-
ted within some other diagram typet and the typet is
also permissible at the current location in structure. In
general, having selected a location for a demote opera-
tion, there may be several ways of executing the oper-
ation. For example, the user may be asked to choose
which daughter in a finite branching local tree should re-
ceive the diagram at the currently selected location. Fi-
nally, these operations are not grammar specific, so that

9Our implementation predates later versions of Java which provide
a tree abstraction, and so our current implementation does not make
use of this facility.

the same kinds of operations are available, whether one
is dealing with corpus annotation tools or an editor for
HPSG diagrams.

6 Current use and on-going and future
work

The system is in use in the support of teaching in a vari-
ety of settings. Coxet alresults about the effectiveness of
Thistle in teaching concepts to do with phrase structure
and category membership. Understanding of these con-
cepts seems to have been improved simply by viewing a
video capture of trees being editing. Interarbora is used
at several institutions in junior level courses. We have
used Thistle as a front end to a variety of rule formats,
including those for the tokenization tool TTT (Groveret
al 2000). The diagram player has been used for the visu-
alization of the results of corpus searches inGSEARCH10

and of dialogue states, in concert with software devel-
oped in theTRINDI project11.

On-going support work includes changing the per-
sistence format of diagrams from SGML to XML, and
bringing diagram classes within the same format. There
are a large number of minor improvements we intend to
make, including generalizing the Web interfaces so that
diagram classes and persistence formats may be supplied
by the user.

Our current research has a number of aspects. The lim-
itation to context free diagram classes simplifies many
aspects of implementation, most notably in the area of
layout. On the other hand, many diagram classes re-
quire greater than context free power for their adequate
description. Important classes include state transition di-
agrams, systemic functional networks and autosegmental
diagrams. We are looking at compromises which will al-
low the construction and display of such diagrams while
avoiding difficult layout problems.

Another area in which the context free assumption
is being examined has to do with diagrams where con-
straints such as equality are required to hold within a di-
agram. An example of this is the notion of proper bind-
ing in Discourse Representation Theory — a variable oc-
curring as an argument must be appropriately introduced
(andvice versa). A further example is the enforcement of
appropriateness conditions within a typed feature frame-
work. Strictly speaking, this case doesn’t violate our
context free assumption, but encoding such conditions
in a context free way is cumbersome. In these cases,
we are interested in looking at ways of further constrain-
ing the content of diagrams. One possibility, which sits
happily enough with Thistle’s background of formal lan-
guage theory, is to exploit the notion ofpath, a sequence
of variable-type pairs. Any Thistle diagram corresponds
to a set of such paths, and, because these are generated
by a context free grammar, the language of such paths

10http://www.hcrc.ed.ac.uk/gsearch/
11http://www.ling.gu.se/research/projects/trindi/trindikit.html

is regular. We could enforce appropriateness in a typed
feature setting, for example, by expressing further reg-
ular constraints over paths. Using greater than regular
power would result in diagrams whose structure was no
longer context free.

Other possibilities include looking at logics to express
constraints over diagrams. We can view the set of paths
as a model of some logical theory. As our diagrams are
necessarily finite, this means that logical frameworks of
considerable power could be invoked.

One further element of our work examines ways of
providing programmatic control of diagrams, with appli-
cations in interactive diagram design, where a cooperat-
ing program may fill in details which are logically im-
plied, and debugging of complex representations.

7 Conclusions

We have seen above that Thistle provides a flexible,
lightweight interface to a wide variety of diagram types.
Furthermore, it can be used for the delivery of diagrams
(and sequences of diagrams) in a variety of settings. The
Interarbora service provides a way of allowing visualiza-
tion of tree structures suitable for a wide variety of users.

References
Calder, J. (2000) Interarbora and Thistle: Delivering lin-

guistic structure via the Internet, inProceedings of the
Second Language Resources and Evaluation Confer-
ence, 31 May–2 June 2000, Athens, Greece.

Cox, R., McKendree, J., Tobin, R., Lee, J. & Mayes,
T. (1999) Vicarious learning from dialogue and dis-
course: A controlled comparison.Instructional Sci-
ence27, pp431–458.

Dybkjær, L., Møller, M. B., Bernsen, N. O., Grosse, M.,
Olsen, M. and Schiffrin, A. (2000) Annotating Com-
munication Problems Using the MATE Workbench, in
Proceedings of the Second Language Resources and
Evaluation Conference, 31 May–2 June 2000, Athens,
Greece.

Grover, C., Matheson, C., Mikheev, A. and Moens, M.,
(2000) LT TTT - A Flexible Tokenisation Tool, in
Proceedings of the Second Language Resources and
Evaluation Conference, 31 May–2 June 2000, Athens,
Greece.

Joshi, A. K., Vijay-Shanker, K. and Weir, D. J. (1991)
The convergence of mildly context-sensitive grammat-
ical formalisms. In P. Sells, S. M. Shieber and T. Wa-
sow (eds.)Foundational Issues in Natural Language
Processing. MIT Press: Cambridge, MA.

Kamp, H & Reyle, U. (1993).From Discourse to Logic,
Kluwer Academic: Dordrecht and London.

Pollard, C.& Sag, I.A. (1994).Head-Driven Phrase
Structure Grammar. CSLI: Stanford and University of
Chicago Press: Chicago and London.

Viehstaedt, G. & Minas, M. (1995). Generating editors
for direct manipulation of diagrams. In B. Blumenthal,
J. Gornostaev & C. Unger, editors,Proc. 5th Inter-
national Conference on Human-Computer Interaction
(EWHCI’95), Moscow, Russia, LNCS 1015, pp17–
25. Springer-Verlag.

