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Abstract

Statistical significance testing of differences in
values of metrics like recall, precision and bal-
anced F-score is a necessary part of empirical
natural language processing. Unfortunately, we
find in a set of experiments that many com-
monly used tests often underestimate the signif-
icance and so are less likely to detect differences
that exist between different techniques. This
underestimation comes from an independence
assumption that is often violated. We point out
some useful tests that do not make this assump-
tion, including computationally-intensive ran-
domization tests.

1 Introduction

In empirical natural language processing, one
is often testing whether some new technique
produces improved results (as measured by one
or more metrics) on some test data set when
compared to some current (baseline) technique.
When the results are better with the new tech-
nique, a question arises as to whether these re-
sult differences are due to the new technique
actually being better or just due to chance. Un-
fortunately, one usually cannot directly answer
the question “what is the probability that the
new technique is better given the results on the
test data set”:

P(new technique is better | test set results)

But with statistics, one can answer the follow-
ing proxy question: if the new technique was ac-
tually no different than the old technique (the
∗ This paper reports on work performed at the MITRE
Corporation under the support of the MITRE Sponsored
Research Program. Warren Greiff, Lynette Hirschman,
Christine Doran, John Henderson, Kenneth Church, Ted
Dunning, Wessel Kraaij, Mitch Marcus and an anony-
mous reviewer provided helpful suggestions. Copyright
c©2000 The MITRE Corporation. All rights reserved.

null hypothesis), what is the probability that
the results on the test set would be at least this
skewed in the new technique’s favor (Box et al.,
1978, Sec. 2.3)? That is, what is

P(test set results at least this skewed
in the new technique’s favor
| new technique is no different than the old)

If the probability is small enough (5% often is
used as the threshold), then one will reject the
null hypothesis and say that the differences in
the results are “statistically significant” at that
threshold level.

This paper examines some of the possible
methods for trying to detect statistically signif-
icant differences in three commonly used met-
rics: recall, precision and balanced F-score.
Many of these methods are found to be problem-
atic in a set of experiments that are performed.
These methods have a tendency to underesti-
mate the significance of the results, which tends
to make one believe that some new technique is
no better than the current technique even when
it is.

This underestimate comes from these meth-
ods assuming that the techniques being com-
pared produce independent results when in our
experiments, the techniques being compared
tend to produce positively correlated results.

To handle this problem, we point out some
statistical tests, like the matched-pair t, sign
and Wilcoxon tests (Harnett, 1982, Sec. 8.7 and
15.5), which do not make this assumption. One
can use these tests on the recall metric, but the
precision and balanced F-score metric have too
complex a form for these tests. For such com-
plex metrics, we use a compute-intensive ran-
domization test (Cohen, 1995, Sec. 5.3), which
also avoids this independence assumption.



The next section describes many of the stan-
dard tests used and their problem of assuming
certain forms of independence. The first subsec-
tion describes tests where this assumption ap-
pears in estimating the standard deviation of
the difference between the techniques’ results.
The second subsection describes using contin-
gency tables and the χ2 test. Following this is a
section on methods that do not make this inde-
pendence assumption. Subsections in turn de-
scribe some analytical tests, how they can apply
to recall but not precision or the F-score, and
how to use randomization tests to test preci-
sion and F-score. We conclude with a discussion
of dependencies within a test set’s instances, a
topic that we have yet to deal with.

2 Tests that assume independence
between compared results

2.1 Finding and using the variance of a
result difference

For each metric, after determining how well a
new and current technique performs on some
test set according to that metric, one takes the
difference between those results and asks “is
that difference significant?”

A way to test this is to expect no difference in
the results (the null hypothesis) and to ask, as-
suming this expectation, how unusual are these
results? One way to answer this question is to
assume that the difference has a normal or t dis-
tribution (Box et al., 1978, Sec. 2.4). Then one
calculates the following:

(d − E[d])/sd = d/sd (1)

where d = x1 − x2 is the difference found be-
tween x1 and x2, the results for the new and
current techniques, respectively. E[d] is the ex-
pected difference (which is 0 under the null hy-
pothesis) and sd is an estimate of the standard
deviation of d. Standard deviation is the square
root of the variance, a measure of how much a
random variable is expected to vary. The results
of equation 1 are compared to tables (c.f. in Box
et al. (1978, Appendix)) to find out what the
chances are of equaling or exceeding the equa-
tion 1 results if the null hypothesis were true.
The larger the equation 1 results, the more un-
usual it would be under the null hypothesis.

A complication of using equation 1 is that
one usually does not have sd, but only s1 and

s2, where s1 is the estimate for x1’s standard
deviation and similarly for s2. How does one
get the former from the latter? It turns out
that (Box et al., 1978, Ch. 3)

σ2
d = σ2

1 + σ2
2 − 2ρ12σ1σ2

where σi is the true standard deviation (instead
of the estimate si) and ρ12 is the correlation
coefficient between x1 and x2. Analogously, it
turns out that

s2
d = s2

1 + s2
2 − 2r12s1s2 (2)

where r12 is an estimate for ρ12. So not only
does σd (and sd) depend on the properties of
x1 and x2 in isolation, it also depends on how
x1 and x2 interact, as measured by ρ12 (and
r12). When x1 and x2 are independent, ρ12 =
0, and then σd =

√
σ2

1 + σ2
2 and analogously,

sd =
√

s2
1 + s2

2. When ρ12 is positive, x1 and
x2 are positively correlated: a rise in x1 or x2

tends to be accompanied by a rise in the other
result. When ρ12 is negative, x1 and x2 are
negatively correlated: a rise in x1 or x2 tends
to be accompanied by a decline in the other
result. −1 ≤ ρ12 ≤ 1 (Larsen and Marx, 1986,
Sec. 10.2).

The assumption of independence is often used
in formulas to determine the statistical signifi-
cance of the difference d = x1 − x2. But how
accurate is this assumption? One might expect
some positive correlation from both results com-
ing from the same test set. One may also expect
some positive correlation when either both tech-
niques are just variations of each other1 or both
techniques are trained on the same set of train-
ing data (and so are missing the same examples
relative to the test set).

This assumption was tested during some
experiments for finding grammatical relations
(subject, object, various types of modifiers,
etc.). The metric used was the fraction of the
relations of interest in the test set that were re-
called (found) by some technique. The relations
of interest were various subsets of the 748 rela-
tion instances in that test set. An example sub-
set is all the modifier relations. Another subset
is just that of all the time modifier relations.

1These variations are often designed to usually behave
in the same way and only differ in just a few cases.



First, two different techniques, one memory-
based and the other transformation-rule based,
were trained on the same training set, and then
both tested on that test set. Recall comparisons
were made for ten subsets of the relations and
the r12 was found for each comparison. From
Box et al. (1978, Ch. 3)

r12 =
∑
k

(y1k − y1)(y2k − y2)/(s1s2(n − 1))

where yik = 1 if the ith technique recalls the
kth relation and = 0 if not. n is the number
of relations in the subset. yi and si are mean
and standard deviation estimates (based on the
yik’s), respectively, for the ith technique.

For the ten subsets, only one comparison had
a r12 close to 0 (It was -0.05). The other nine
comparisons had r12’s between 0.29 and 0.53.
The ten comparison median value was 0.38.

Next, the transformation-rule based tech-
nique was run with different sets of starting con-
ditions and/or different, but overlapping, sub-
sets of the training set. Recall comparisons were
made on the same test data set between the dif-
ferent variations. Many of the comparisons were
of how well two variations recalled a particular
subset of the relations. A total of 40 compar-
isons were made. The r12’s on all 40 were posi-
tive. 3 of the r12’s were in the 0.20-0.30 range.
24 of the r12’s were in the 0.50-0.79 range. 13
of the r12’s were in the 0.80-1.00 range.

So in our experiments, we were usually com-
paring positively correlated results. How much
error is introduced by assuming independence?
An easy-to-analyze case is when the stan-
dard deviations for the results being compared
are the same.2 Then equation 2 reduces to
sd = s

√
2(1 − r12), where s = s1 = s2. If one

assumes the results are independent (assume
r12 = 0), then sd = s

√
2. Call this value sd−ind.

As r12 increases in value, sd decreases:

r12 sd (sd−ind)/sd

0.38 0.787(sd−ind) 1.27
0.50 0.707(sd−ind) 1.41
0.80 0.447(sd−ind) 2.24

The rightmost column above indicates the mag-
nitude by which erroneously assuming indepen-

2This is actually roughly true in the comparisons
made, and is assumed to be true in many of the standard
tests for statistical significance.

dence (using sd−ind in place of sd) will increase
the standard deviation estimate. In equation 1,
sd forms the denominator of the ratio d/sd. So
erroneously assuming independence will mean
that the numerator d, the difference between the
two results, will need to increase by that same
factor in order for equation 1 to have the same
value as without the independence assumption.
Since the value of that equation indicates the
statistical significance of d, assuming indepen-
dence will mean that d will have to be larger
than without the assumption to achieve the
same apparent level of statistical significance.
From the table above, when r12 = 0.50, d will
need to be about 41% larger. Another way to
look at this is that assuming independence will
make the same value of d appear less statisti-
cally significant.

The common tests of statistical significance
use this assumption. The test known as the
t (Box et al., 1978, Sec. 4.1) or two-sample t
(Harnett, 1982, Sec. 8.7) test does. This test
uses equation 1 and then compares the resulting
value against the t distribution tables. This test
has a complicated form for sd because:

1. x1 and x2 can be based on differing num-
bers of samples. Call these numbers n1 and
n2 respectively.

2. In this test, the xi’s are each an ni sam-
ple average of another variable (call it yi).
This is important because the si’s in this
test are standard deviation estimates for
the yi’s, not the xi’s. The relationship be-
tween them is that si for yi is the same as
(
√

ni)si for xi.

3. The test itself assumes that y1 and y2 have
the same standard deviation (call this com-
mon value s). The denominator estimates
s using a weighted average of s1 and s2.
The weighting is based on n1 and n2.

From Harnett (1982, Sec. 8.7), the denominator

sd =

√√√√((n1 − 1)s2
1 + (n2 − 1)s2

2

n1 + n2 − 2

)(
n1 + n2

n1n2

)

When n1 = n2 (call this common value n), s1

and s2 will be given equal weight, and sd simpli-
fies to

√
(s2

1 + s2
2)/n. Making the substitution

described above of si
√

ni for si leads to an sd of



√
s2
1 + s2

2, the form we had earlier for using the
independence assumption.

Another test that both makes this assump-
tion and uses a form of equation 1 is a test for
binomial data (Harnett, 1982, Sec. 8.11) which
uses the “fact” that binomial distributions tend
to approximate normal distributions. In this
test, the xi’s being compared are the fraction
of the items of interest that are recovered by
the ith technique. In this test, the denomina-
tor sd of equation 1 also has a complicated form,
both due to the reasons mentioned for the t test
above and to the fact that with a binomial dis-
tribution, the standard deviation is a function
of the number of samples and the mean value.

2.2 Using contingency tables and χ2 to
test precision

A test that does not use equation 1 but still
makes an assumption of independence between
x1 and x2 is that of using contingency tables
with the chi-squared (χ2) distribution (Box et
al., 1978, Sec. 5.7). When the assumption is
valid, this test is good for comparing differences
in the precision metric. Precision is the fraction
of the items “found” by some technique that
are actually of interest. Precision = R/(R + S),
where R is the number of items that are of inter-
est and are Recalled (found) by the technique,
and S is the number of items that are found by
the technique that turn out to be Spurious (not
of interest). One can test whether the precision
results from two techniques are different by us-
ing a 2×2 contingency table to test whether the
ratio R/S is different for the two techniques.
One makes the latter test by seeing if the as-
sumption that the ratios for the two techniques
are the same (the null hypothesis) leads to a sta-
tistically significant result when using a χ2 dis-
tribution with one degree of freedom. A 2×2 ta-
ble has 4 cells. The top 2 cells are filled with the
R and S of one technique and the bottom 2 cells
get the R and S of the other technique. In this
test, the value in each cell is assumed to have a
Poisson distribution. When the cell values are
not too small, these Poisson distributions are
approximately Normal (Gaussian). As a result,
when the cell values are independent, summing
the normalized squares of the difference between
each cell and its expected value leads to a χ2

distribution (Box et al., 1978, Sec. 2.5-2.6).

How well does this test work in our experi-
ments? Precision is a non-linear function of two
random variables R and S, so we did not try to
estimate the correlation coefficient for precision.
However, we can easily estimate the correlation
coefficients for the R’s. They are the r12’s found
in section 2.1. As that section mentions, the
r12’s found are just about always positive. So
at least in our experiments, the R’s are not in-
dependent, but are positively correlated, which
violates the assumptions of the test.

An example of how this test behaves is the
following comparison of the precision of two dif-
ferent methods at finding the modifier relations
using the same training and test set. The corre-
lation coefficient estimate for R is 0.35 and the
data is

Method R S Precision
1 47 48 49%
2 25 14 64%

Placing the R and S values into a 2 × 2 table
leads to a χ2 value of 2.38.3 At 1 degree of
freedom, the χ2 tables indicate that if the null
hypothesis were true, there would be a 10% to
20% chance of producing a χ2 value at least this
large. So according to this test, this much of an
observed difference in precision would not be
unusual if no actual difference in the precision
exists between the two methods.

This test assumes independence between the
R values. When we use a 220 (=1048576) trial
approximate randomization test (section 3.3),
which makes no such assumptions, then we find
that this latter test indicates that under the
null hypothesis, there is less than a 4% chance
of producing a difference in precision results as
large as the one observed. So this latter test in-
dicates that this much of an observed difference
in precision would be unusual if no actual dif-
ference in the precision exists between the two
methods.

It should be mentioned that the manner of
testing here is slightly different than the man-
ner in the rest of this paper. The χ2 test looks
at the square of the difference of two results,
and rejects the null hypothesis (the compared
techniques are the same) when this square is

3We do not use Yate’s adjustment to compensate for
the numbers in the table being integers. Doing so would
have made the results even worse.



large, whether the largeness is caused by the
new technique producing a much better result
than the current technique or vice-versa. So
to be fair, we compared the χ2 results with a
two-sided version of the randomization test: es-
timate the likelihood that the observed magni-
tude of the result difference would be matched
or exceeded (regardless of which technique pro-
duced the better result) under the null hypoth-
esis. A one-sided version of the test, which is
comparable to what we use in the rest of the pa-
per, estimates the likelihood of a different out-
come under the null hypothesis: that of match-
ing or exceeding the difference of how much
better the new (possibly better) technique’s ob-
served result is than the current technique’s ob-
served result. In the above scenario, a one-sided
test produces a 3% figure instead of a 4% figure.

3 Tests without that independence
assumption

3.1 Tests for matched pairs

At this point, one may wonder if all statistical
tests make such an independence assumption.
The answer is no, but those tests that do not
measure how much two techniques interact do
need to make some assumption about that in-
teraction and typically, that assumption is inde-
pendence. Those tests that notice in some way
how much two techniques interact can use those
observations instead of relying on assumptions.

One way to measure how two techniques in-
teract is to compare how similarly the two tech-
niques react to various parts of the test set.
This is done in the matched-pair t test (Har-
nett, 1982, Sec. 8.7). This test finds the differ-
ence between how techniques 1 and 2 perform
on each test set sample. The t distribution and
a form of equation 1 are used. The null hypoth-
esis is still that the numerator d has a 0 mean,
but d is now the sum of these difference values
(divided by the number of samples), instead of
being x1 − x2. Similarly, the denominator sd is
now estimating the standard deviation of these
difference values, instead of being a function of
s1 and s2. This means for example, that even if
the values from techniques 1 and 2 vary on dif-
ferent test samples, sd will now be 0 if on each
test sample, technique 1 produces a value that is
the same constant amount more than the value
from technique 2.

Two other tests for comparing how two tech-
niques perform by comparing how well they
perform on each test sample are the sign and
Wilcoxon tests (Harnett, 1982, Sec. 15.5). Un-
like the matched-pair t test, neither of these two
tests assume that the sum of the differences has
a normal (Gaussian) distribution. The two tests
are so-called nonparametric tests, which do not
make assumptions about how the results are dis-
tributed (Harnett, 1982, Ch. 15).

The sign test is the simplier of the two. It uses
a binomial distribution to examine the number
of test samples where technique 1 performs bet-
ter than technique 2 versus the number where
the opposite occurs. The null hypothesis is that
the two techniques perform equally well.

Unlike the sign test, the Wilcoxon test also
uses information on how large a difference exists
between the two techniques’ results on each of
the test samples.

3.2 Using the tests for matched-pairs

All three of the matched-pair t, sign and
Wilcoxon tests can be applied to the recall met-
ric, which is the fraction of the items of interest
in the test set that a technique recalls (finds).
Each item of interest in the test data serves as
a test sample. We use the sign test because it
makes fewer assumptions than the matched-pair
t test and is simplier than the Wilcoxon test. In
addition, the fact that the sign test ignores the
size of the result difference on each test sample
does not matter here. With the recall metric,
each sample of interest is either found or not by
a technique. There are no intermediate values.

While the three tests described in section 3.1
can be used on the recall metric, they cannot be
straightforwardly used on either the precision or
balanced F-score metrics. This is because both
precision and F-score are more complicated non-
linear functions of random variables than recall.
In fact both can be thought of as non-linear
functions involving recall. As described in Sec-
tion 2.2, precision = R/(R + S), where R is the
number of items that are of interest that are re-
called by a technique and S is the number of
items (found by a technique) that are not of
interest. The balanced F-score = 2ab/(a + b),
where a is recall and b is precision.



3.3 Using randomization for precision
and F-score

A class of technique that can handle all kinds of
functions of random variables without the above
problems is the computationally-intensive ran-
domization tests (Noreen, 1989, Ch. 2) (Cohen,
1995, Sec. 5.3). These tests have previously
used on such functions during the “message un-
derstanding” (MUC) evaluations (Chinchor et
al., 1993). The randomization test we use is like
a randomization version of the paired sample
(matched-pair) t test (Cohen, 1995, Sec. 5.3.2).
This is a type of stratified shuffling (Noreen,
1989, Sec. 2.7). When comparing two tech-
niques, we gather-up all the responses (whether
actually of interest or not) produced by one
of the two techniques when examining the test
data, but not both techniques. Under the null
hypothesis, the two techniques are not really
different, so any response produced by one of
the techniques could have just as likely come
from the other. So we shuffle these responses,
reassign each response to one of the two tech-
niques (equally likely to either technique) and
see how likely such a shuffle produces a differ-
ence (new technique minus old technique) in the
metric(s) of interest (in our case, precision and
F-score) that is at least as large as the difference
observed when using the two techniques on the
test data.

n responses to shuffle and assign4 leads to
2n different ways to shuffle and assign those re-
sponses. So when n is small, one can try each
of the different shuffles once and produce an
exact randomization. When n gets large, the
number of different shuffles gets too large to be
exhaustively evaluated. Then one performs an
approximate randomization where each shuffle
is performed with random assignments.

For us, when n ≤ 20 (2n ≤ 1048576), we use
an exact randomization. For n > 20, we use an
approximate randomization with 1048576 shuf-
fles. Because an approximate randomization
uses random numbers, which both lead to oc-
casional unusual results and may involve using
a not-so-good pseudo-random number genera-
tor5, we perform the following checks:

4Note that responses produced by both or neither
techniques do not need to be shuffled and assigned.

5One example is the RANDU routine on the IBM360
(Forsythe et al., 1977, Sec. 10.1).

• We run the 1048576 shuffles a second time
and compare the two sets of results.

• We also use the same shuffles to calcu-
late the statistical significance for the recall
metric, and compare this significance value
with the significance value found for recall
analytically by the sign test.

An example of using randomization is to com-
pare two different methods on finding modifier
relations in the same test set. The results on
the test set are:

Method Recall Precision F-score
I 45.6% 49.5% 47.5%
II 24.3% 64.1% 35.2%

Two questions being tested are whether the ap-
parent improvement in recall and F-score from
using method I is significant. Also being tested
is whether the apparent improvement in preci-
sion from using method II is significant.

In this example, there are 103 relations that
should be found (are of interest). Of these, 19
are recalled by both methods, 28 are recalled
by method I but not II, and 6 are recalled by
II but not I. The correlation coefficient estimate
between the methods’ recalls is 0.35. In addi-
tion, 5 spurious (not of interest) relations are
found by both methods, with method I find-
ing an additional 43 spurious relationships (not
found by method II) and method II finding an
additional 9 relationships.

There are a total of 28+6+43+9=86 relations
that are found (whether of interest or not) by
one method, but not the other. This is too
many to perform an exact randomization, so
a 1048576 trial approximate randomization is
performed.

In 96 of these trials, method I’s recall
is greater than method II’s recall by at
least (45.6%−24.3%). Similarly, in 14794
of the trials, the F-score difference is at
least (47.5%−35.2%). In 25770 of the trials,
method II’s precision is greater than method I’s
precision by at least (64.1%−49.5%). From
(Noreen, 1989, Sec. 3A.3), the significance level
(probability under the null hypothesis) is at
most (nc + 1)/(nt + 1), where nc is the number
of trials that meet the criterion and nt is the
number of trials. So for recall, the significance
level is at most (96+1)/(1048576+1) =0.00009.



Similarly, for F-score, the significance level is at
most 0.014 and for precision, the level is at most
0.025. A second 1048576 trial produces similar
results, as does a sign test on recall. Thus, we
see that all three differences are statistically sig-
nificant.

4 The future: handling inter-sample
dependencies

An assumption made by all the methods men-
tioned in this paper is that the members of the
test set are all independent of one another. That
is, knowing how a method performs on one test
set sample should not give any information on
how that method performs on other test set
samples. This assumption is not always true.

Church and Mercer (1993) give some exam-
ples of dependence between test set instances
in natural language. One type of dependence
is that of a lexeme’s part of speech on the
parts of speech of neighboring lexemes (their
section 2.1). Similar is the concept of collo-
cation, where the probability of a lexeme’s ap-
pearance is influenced by the lexemes appearing
in nearby positions (their section 3). A type of
dependence that is less local is that often, a con-
tent word’s appearance in a piece of text greatly
increases the chances of that same word appear-
ing later in that piece of text (their section 2.3).

What are the effects when some dependency
exists? The expected (average) value of the in-
stance results will stay the same. However, the
chances of getting an unusual result can change.
As an example, take five flips of a fair coin.
When no dependencies exist between the flips,
the chances of the extreme result that all the
flips land on a particular side is fairly small
((1/2)5 = 1/32). When the flips are positively
correlated, these chances increase. When the
first flip lands on that side, the chances of the
other four flips doing the same are now each
greater than 1/2.

Since statistical significance testing involves
finding the chances of getting an unusual
(skewed) result under some null hypothesis, one
needs to determine those dependencies in order
to accurately determine those chances. Deter-
mining the effect of these dependencies is some-
thing that is yet to be done.

5 Conclusions

In empirical natural language processing, one
is often comparing differences in values of met-
rics like recall, precision and balanced F-score.
Many of the statistics tests commonly used to
make such comparisons assume the indepen-
dence between the results being compared. We
ran a set of natural language processing exper-
iments and found that this assumption is often
violated in such a way as to understate the sta-
tistical significance of the differences between
the results. We point out some analytical statis-
tics tests like matched-pair t, sign and Wilcoxon
tests, which do not make this assumption and
show that they can be used on a metric like
recall. For more complicated metrics like pre-
cision and balanced F-score, we use a compute-
intensive randomization test, which also avoids
this assumption. A next topic to address is that
of possible dependencies between test set sam-
ples.
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