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Abstract

We use seven machine learning algorithms for
one task: identifying base noun phrases. The
results have been processed by di�erent system
combination methods and all of these outper-
formed the best individual result. We have ap-
plied the seven learners with the best combina-
tor, a majority vote of the top �ve systems, to a
standard data set and managed to improve the
best published result for this data set.

1 Introduction

Van Halteren et al. (1998) and Brill and Wu
(1998) show that part-of-speech tagger perfor-
mance can be improved by combining di�erent
taggers. By using techniques such as majority
voting, errors made by the minority of the tag-
gers can be removed. Van Halteren et al. (1998)
report that the results of such a combined ap-
proach can improve upon the accuracy error of
the best individual system with as much as 19%.
The positive e�ect of system combination for
non-language processing tasks has been shown
in a large body of machine learning work.
In this paper we will use system combination

for identifying base noun phrases (baseNPs).
We will apply seven machine learning algo-
rithms to the same baseNP task. At two points
we will apply combination methods. We will
start with making the systems process �ve out-
put representations and combine the results by
choosing the majority of the output features.
Three of the seven systems use this approach.
After this we will make an overall combination
of the results of the seven systems. There we
will evaluate several system combination meth-

ods. The best performing method will be ap-
plied to a standard data set for baseNP identi-
�cation.

2 Methods and experiments

In this section we will describe our learning task:
recognizing base noun phrases. After this we
will describe the data representations we used
and the machine learning algorithms that we
will apply to the task. We will conclude with
an overview of the combination methods that
we will test.

2.1 Task description

Base noun phrases (baseNPs) are noun phrases
which do not contain another noun phrase. For
example, the sentence

In [ early trading ] in [ Hong Kong ]
[ Monday ] , [ gold ] was quoted at
[ $ 366.50 ] [ an ounce ] .

contains six baseNPs (marked as phrases be-
tween square brackets). The phrase $ 366.50
an ounce is a noun phrase as well. However, it
is not a baseNP since it contains two other noun
phrases. Two baseNP data sets have been put
forward by Ramshaw and Marcus (1995). The
main data set consist of four sections of the Wall
Street Journal (WSJ) part of the Penn Tree-
bank (Marcus et al., 1993) as training mate-
rial (sections 15-18, 211727 tokens) and one sec-
tion as test material (section 20, 47377 tokens)1.
The data contains words, their part-of-speech

1This Ramshaw and Marcus (1995) baseNP data set
is available via ftp://ftp.cis.upenn.edu/pub/chunker/



(POS) tags as computed by the Brill tagger and
their baseNP segmentation as derived from the
Treebank (with some modi�cations).
In the baseNP identi�cation task, perfor-

mance is measured with three rates. First,
with the percentage of detected noun phrases
that are correct (precision). Second, with the
percentage of noun phrases in the data that
were found by the classi�er (recall). And third,
with the F�=1 rate which is equal to (2*preci-
sion*recall)/(precision+recall). The latter rate
has been used as the target for optimization.

2.2 Data representation

In our example sentence in section 2.1, noun
phrases are represented by bracket structures.
It has been shown by Mu~noz et al. (1999)
that for baseNP recognition, the representa-
tion with brackets outperforms other data rep-
resentations. One classi�er can be trained to
recognize open brackets (O) and another can
handle close brackets (C). Their results can be
combined by making pairs of open and close
brackets with large probability scores. We have
used this bracket representation (O+C) as well.
However, we have not used the combination
strategy from Mu~noz et al. (1999) but in-
stead used the strategy outlined in Tjong Kim
Sang (2000): regard only the shortest possi-
ble phrases between candidate open and close
brackets as base noun phrases.
An alternative representation for baseNPs

has been put forward by Ramshaw and Mar-
cus (1995). They have de�ned baseNP recog-
nition as a tagging task: words can be inside a
baseNP (I) or outside a baseNP (O). In the case
that one baseNP immediately follows another
baseNP, the �rst word in the second baseNP
receives tag B. Example:

InO earlyI tradingI inO HongI KongI
MondayB ,O goldI wasO quotedO atO
$I 366.50I anB ounceI .O

This set of three tags is su�cient for encod-
ing baseNP structures since these structures are
nonrecursive and nonoverlapping.
Tjong Kim Sang (2000) outlines alternative

versions of this tagging representation. First,
the B tag can be used for the �rst word of ev-
ery baseNP (IOB2 representation). Second, in-
stead of the B tag an E tag can be used to

mark the last word of a baseNP immediately
before another baseNP (IOE1). And third, the
E tag can be used for every noun phrase �nal
word (IOE2). He used the Ramshaw and Mar-
cus (1995) representation as well (IOB1). We
will use these four tagging representations and
the O+C representation for the system-internal
combination experiments.

2.3 Machine learning algorithms

This section contains a brief description of the
seven machine learning algorithms that we will
apply to the baseNP identi�cation task: AL-
LiS, c5.0, IGTree, MaxEnt, MBL, MBSL and
SNoW.
ALLiS2 (Architecture for Learning Linguistic

Structures) is a learning system which uses the-
ory re�nement in order to learn non-recursive
NP and VP structures (D�ejean, 2000). ALLiS
generates a regular expression grammar which
describes the phrase structure (NP or VP). This
grammar is then used by the CASS parser (Ab-
ney, 1996). Following the principle of theory re-
�nement, the learning task is composed of two
steps. The �rst step is the generation of an
initial grammar. The generation of this gram-
mar uses the notion of default values and some
background knowledge which provides general
expectations concerning the inner structure of
NPs and VPs. This initial grammar provides
an incomplete and/or incorrect analysis of the
data. The second step is the re�nement of this
grammar. During this step, the validity of the
rules of the initial grammar is checked and the
rules are improved (re�ned) if necessary. This
re�nement relies on the use of two operations:
the contextualization (in which contexts such a
tag always belongs to the phrase) and lexical-
ization (use of information about the words and
not only about POS).
c5.03, a commercial version of c4.5 (Quin-

lan, 1993), performs top-down induction of de-
cision trees (tdidt). On the basis of an in-
stance base of examples, c5.0 constructs a deci-
sion tree which compresses the classi�cation in-
formation in the instance base by exploiting dif-
ferences in relative importance of di�erent fea-
tures. Instances are stored in the tree as paths

2A demo of the NP and VP chunker is available at
http://www.sfb441.unituebingen.de/~dejean/chunker.h
tml

3Available from http://www.rulequest.com



of connected nodes ending in leaves which con-
tain classi�cation information. Nodes are con-
nected via arcs denoting feature values. Feature
information gain (mutual information between
features and class) is used to determine the or-
der in which features are employed as tests at all
levels of the tree (Quinlan, 1993). With the full
input representation (words and POS tags), we
were not able to run complete experiments. We
therefore experimented only with the POS tags
(with a context of two left and right). We have
used the default parameter setting with decision
trees combined with value grouping.

We have used a nearest neighbor algorithm
(ib1-ig, here listed as MBL) and a decision tree
algorithm (IGTree) from the TiMBL learning
package (Daelemans et al., 1999b). Both algo-
rithms store the training data and classify new
items by choosing the most frequent classi�ca-
tion among training items which are closest to
this new item. Data items are represented as
sets of feature-value pairs. Each feature receives
a weight which is based on the amount of in-
formation which it provides for computing the
classi�cation of the items in the training data.
ib1-ig uses these weights for computing the dis-
tance between a pair of data items and IGTree
uses them for deciding which feature-value de-
cisions should be made in the top nodes of the
decision tree (Daelemans et al., 1999b). We
will use their default parameters except for the
ib1-ig parameter for the number of examined
nearest neighbors (k) which we have set to 3
(Daelemans et al., 1999a). The classi�ers use a
left and right context of four words and part-
of-speech tags. For the four IO representations
we have used a second processing stage which
used a smaller context but which included in-
formation about the IO tags predicted by the
�rst processing phase (Tjong Kim Sang, 2000).

When building a classi�er, one must gather
evidence for predicting the correct class of an
item from its context. The Maximum Entropy
(MaxEnt) framework is especially suited for
integrating evidence from various information
sources. Frequencies of evidence/class combi-
nations (called features) are extracted from a
sample corpus and considered to be properties
of the classi�cation process. Attention is con-
strained to models with these properties. The
MaxEnt principle now demands that among all

the probability distributions that obey these
constraints, the most uniform is chosen. Dur-
ing training, features are assigned weights in
such a way that, given the MaxEnt principle,
the training data is matched as well as possible.
During evaluation it is tested which features are
active (i.e. a feature is active when the context
meets the requirements given by the feature).
For every class the weights of the active fea-
tures are combined and the best scoring class
is chosen (Berger et al., 1996). For the classi-
�er built here the surrounding words, their POS
tags and baseNP tags predicted for the previous
words are used as evidence. A mixture of simple
features (consisting of one of the mentioned in-
formation sources) and complex features (com-
binations thereof) were used. The left context
never exceeded 3 words, the right context was
maximally 2 words. The model was calculated
using existing software (Dehaspe, 1997).

MBSL (Argamon et al., 1999) uses POS data
in order to identify baseNPs. Inference re-
lies on a memory which contains all the oc-
currences of POS sequences which appear in
the beginning, or the end, of a baseNP (in-
cluding complete phrases). These sequences
may include a few context tags, up to a pre-
speci�ed max context. During inference, MBSL
tries to 'tile' each POS string with parts of
noun-phrases from the memory. If the string
could be fully covered by the tiles, it becomes
part of a candidate list, ambiguities between
candidates are resolved by a constraint propa-
gation algorithm. Adding a context extends the
possibilities for tiling, thereby giving more op-
portunities to better candidates. The approach
of MBSL to the problem of identifying baseNPs
is sequence-based rather than word-based, that
is, decisions are taken per POS sequence, or per
candidate, but not for a single word. In addi-
tion, the tiling process gives no preference to
any direction in the sentence. The tiles may be
of any length, up to the maximal length of a
phrase in the training data, which gives MBSL
a generalization power that compensates for the
setup of using only POS tags. The results pre-
sented here were obtained by optimizing MBSL
parameters based on 5-fold CV on the training
data.

SNoW uses the Open/Close model, described
in Mu~noz et al. (1999). As is shown there, this



MBL MaxEnt IGTree
section 21 O C F�=1 O C F�=1 O C F�=1
IOB1 97.81% 97.97% 91.68 97.90% 98.11% 92.43 96.62% 96.89% 87.88
IOB2 97.63% 97.96% 91.79 97.81% 98.14% 92.14 97.27% 97.30% 90.03
IOE1 97.80% 97.92% 91.54 97.88% 98.12% 92.37 95.88% 96.01% 82.80
IOE2 97.72% 97.94% 92.06 97.84% 98.12% 92.13 97.19% 97.62% 89.98
O+C 97.72% 98.04% 92.03 97.82% 98.15% 92.26 96.89% 97.49% 89.37
Majority 98.04% 98.20% 92.82 97.94% 98.24% 92.60 97.70% 97.99% 91.92

Table 1: The e�ects of system-internal combination by using di�erent output representations. A
straight-forward majority vote of the output yields better bracket accuracies and F�=1 rates than
any included individual classi�er. The bracket accuracies in the columns O and C show what
percentage of words was correctly classi�ed as baseNP start, baseNP end or neither.

model produced better results than the other
paradigm evaluated there, the Inside/Outside
paradigm. The Open/Close model consists of
two SNoW predictors, one of which predicts the
beginning of baseNPs (Open predictor), and the
other predicts the end of the phrase (Close pre-
dictor). The Open predictor is learned using
SNoW (Carlson et al., 1999; Roth, 1998) as a
function of features that utilize words and POS
tags in the sentence and, given a new sentence,
will predict for each word whether it is the �rst
word in the phrase or not. For each Open, the
Close predictor is learned using SNoW as a func-
tion of features that utilize the words in the sen-
tence, the POS tags and the open prediction. It
will predict, for each word, whether it can be
the end of the phrase, given the previously pre-
dicted Open. Each pair of predicted Open and
Close forms a candidate of a baseNP. These can-
didates may conict due to overlapping; at this
stage, a graph-based constraint satisfaction al-
gorithm that uses the con�dence values SNoW
associates with its predictions is employed. This
algorithm ("the combinator") produces the list
of the �nal baseNPs for each sentence. Details
of SNoW, its application in shallow parsing and
the combinator's algorithm are in Mu~noz et al.
(1999).

2.4 Combination techniques

At two points in our noun phrase recognition
process we will use system combination. We will
start with system-internal combination: apply
the same learning algorithm to variants of the
task and combine the results. The approach
we have chosen here is the same as in Tjong

Kim Sang (2000): generate di�erent variants
of the task by using di�erent representations
of the output (IOB1, IOB2, IOE1, IOE2 and
O+C). The �ve outputs will converted to the
open bracket representation (O) and the close
bracket representation (C) and after this, the
most frequent of the �ve analyses of each word
will chosen (majority voting, see below). We
expect the systems which use this combination
phase to perform better than their individual
members (Tjong Kim Sang, 2000).

Our seven learners will generate di�erent clas-
si�cations of the training data and we need to
�nd out which combination techniques are most
appropriate. For the system-external combi-
nation experiment, we have evaluated di�erent
voting mechanisms, e�ectively the voting meth-
ods as described in Van Halteren et al. (1998).
In the �rst method each classi�cation receives
the same weight and the most frequent classi�-
cation is chosen (Majority). The second method
regards as the weight of each individual clas-
si�cation algorithm its accuracy on some part
of the data, the tuning data (TotPrecision).
The third voting method computes the preci-
sion of each assigned tag per classi�er and uses
this value as a weight for the classi�er in those
cases that it chooses the tag (TagPrecision).
The fourth method uses both the precision of
each assigned tag and the recall of the com-
peting tags (Precision-Recall). Finally, the �fth
method uses not only a weight for the current
classi�cation but it also computes weights for
other possible classi�cations. The other classi-
�cations are determined by examining the tun-



ing data and registering the correct values for
every pair of classi�er results (pair-wise voting,
see Van Halteren et al. (1998) for an elaborate
explanation).
Apart from these �ve voting methods we have

also processed the output streams with two clas-
si�ers: MBL and IGTree. This approach is
called classi�er stacking. Like Van Halteren et
al. (1998), we have used di�erent input ver-
sions: one containing only the classi�er output
and another containing both classi�er output
and a compressed representation of the data
item under consideration. For the latter pur-
pose we have used the part-of-speech tag of the
current word.

3 Results4

We want to �nd out whether system combi-
nation could improve performance of baseNP
recognition and, if this is the fact, we want to
select the best combination technique. For this
purpose we have performed an experiment with
sections 15-18 of the WSJ part of the Penn Tree-
bank as training data (211727 tokens) and sec-
tion 21 as test data (40039 tokens). Like the
data used by Ramshaw and Marcus (1995), this
data was retagged by the Brill tagger in order
to obtain realistic part-of-speech (POS) tags5.
The data was segmented into baseNP parts and
non-baseNP parts in a similar fashion as the
data used by Ramshaw and Marcus (1995). Of
the training data, only 90% was used for train-
ing. The remaining 10% was used as tuning
data for determining the weights of the combi-
nation techniques.
For three classi�ers (MBL, MaxEnt and

IGTree) we have used system-internal combi-
nation. These learning algorithms have pro-
cessed �ve di�erent representations of the out-
put (IOB1, IOB2, IOE1, IOE2 and O+C) and
the results have been combined with majority
voting. The test data results can be found in
Table 1. In all cases, the combined results were
better than that of the best included system.
The results of ALLiS, c5.0, MBSL and SNoW

have been converted to the O and the C repre-

4Detailed results of our experiments are available on
http://lcg-www.uia.ac.be/~erikt/npcombi/

5The retagging was necessary to assure that the per-
formance rates obtained here would be similar to rates
obtained for texts for which no Treebank POS tags are
available.

section 21 O C F�=1
Classi�er
ALLiS 97.87% 98.08% 92.15
c5.0 97.05% 97.76% 89.97
IGTree 97.70% 97.99% 91.92
MaxEnt 97.94% 98.24% 92.60
MBL 98.04% 98.20% 92.82
MBSL 97.27% 97.66% 90.71
SNoW 97.78% 97.68% 91.87
Simple Voting
Majority 98.08% 98.21% 92.95
TotPrecision 98.08% 98.21% 92.95
TagPrecision 98.08% 98.21% 92.95
Precision-Recall 98.08% 98.21% 92.95
Pairwise Voting
TagPair 98.13% 98.23% 93.07
Memory-Based

Tags 98.24% 98.35% 93.39
Tags + POS 98.14% 98.33% 93.24
Decision Trees

Tags 98.24% 98.35% 93.39
Tags + POS 98.13% 98.32% 93.21

Table 2: Bracket accuracies and F�=1 scores
for section WSJ 21 of the Penn Treebank with
seven individual classi�ers and combinations of
them. Each combination performs better than
its best individual member. The stacked classi-
�ers without context information perform best.

sentation. Together with the bracket represen-
tations of the other three techniques, this gave
us a total of seven O results and seven C results.
These two data streams have been combined
with the combination techniques described in
section 2.4. After this, we built baseNPs from
the O and C results of each combination tech-
nique, like described in section 2.2. The bracket
accuracies and the F�=1 scores for test data can
be found in Table 2.

All combinations improve the results of the
best individual classi�er. The best results were
obtained with a memory-based stacked classi-
�er. This is di�erent from the combination re-
sults presented in Van Halteren et al. (1998),
in which pairwise voting performed best. How-
ever, in their later work stacked classi�ers out-
perform voting methods as well (Van Halteren
et al., to appear).



section 20 accuracy precision recall F�=1
Best-�ve combination O:98.32% C:98.41% 94.18% 93.55% 93.86
Tjong Kim Sang (2000) O:98.10% C:98.29% 93.63% 92.89% 93.26
Mu~noz et al. (1999) O:98.1% C:98.2% 92.4% 93.1% 92.8
Ramshaw and Marcus (1995) IOB1:97.37% 91.80% 92.27% 92.03
Argamon et al. (1999) - 91.6% 91.6% 91.6

Table 3: The overall performance of the majority voting combination of our best �ve systems
(selected on tuning data performance) applied to the standard data set put forward by Ramshaw
and Marcus (1995) together with an overview of earlier work. The accuracy scores indicate how
often a word was classi�ed correctly with the representation used (O, C or IOB1). The combined
system outperforms all earlier reported results for this data set.

Based on an earlier combination study
(Tjong Kim Sang, 2000) we had expected the
voting methods to do better. We suspect that
their performance is below that of the stacked
classi�ers because the di�erence between the
best and the worst individual system is larger
than in our earlier study. We assume that the
voting methods might perform better if they
were only applied to the classi�ers that per-
form well on this task. In order to test this
hypothesis, we have repeated the combination
experiments with the best n classi�ers, where
n took values from 3 to 6 and the classi�ers
were ranked based on their performance on the
tuning data. The best performances were ob-
tained with �ve classi�ers: F�=1=93.44 for all
�ve voting methods with the best stacked classi-
�er reaching 93.24. With the top �ve classi�ers,
the voting methods outperform the best combi-
nation with seven systems6. Adding extra clas-
si�cation results to a good combination system
should not make overall performance worse so
it is clear that there is some room left for im-
provement of our combination algorithms.
We conclude that the best results in this

task can be obtained with the simplest voting
method, majority voting, applied to the best
�ve of our classi�ers. Our next task was to
apply the combination approach to a standard
data set so that we could compare our results
with other work. For this purpose we have used

6We are unaware of a good method for determining
the signi�cance of F�=1 di�erences but we assume that
this F�=1 di�erence is not signi�cant. However, we be-
lieve that the fact that more combination methods per-
form well, shows that it easier to get a good performance
out of the best �ve systems than with all seven.

the data put forward by Ramshaw and Marcus
(1995). Again, only 90% of the training data
was used for training while the remaining 10%
was reserved for ranking the classi�ers. The
seven learners were trained with the same pa-
rameters as in the previous experiment. Three
of the classi�ers (MBL, MaxEnt and IGTree)
used system-internal combination by processing
di�erent output representations.

The classi�er output was converted to the
O and the C representation. Based on the
tuning data performance, the classi�ers ALLiS,
igtree, MaxEnt, MBL and SNoW were se-
lected for being combined with majority vot-
ing. After this, the resulting O and C repre-
sentations were combined to baseNPs by using
the method described in section 2.2. The re-
sults can be found in Table 3. Our combined
system obtains an F�=1 score of 93.86 which
corresponds to an 8% error reduction compared
with the best published result for this data set
(93.26).

4 Concluding remarks

In this paper we have examined two methods for
combining the results of machine learning algo-
rithms for identifying base noun phrases. In the
�rst method, the learner processed di�erent out-
put data representations and the results were
combined by majority voting. This approach
yielded better results than the best included
classi�er. In the second combination approach
we have combined the results of seven learning
systems (ALLiS, c5.0, IGTree, MaxEnt, MBL,
MBSL and SNoW). Here we have tested dif-
ferent combination methods. Each combination



method outperformed the best individual learn-
ing algorithm and a majority vote of the top
�ve systems performed best. We have applied
this approach of system-internal and system-
external combination to a standard data set for
base noun phrase identi�cation and the perfor-
mance of our system was better than any other
published result for this data set.
Our study shows that the combination meth-

ods that we have tested are sensitive for the in-
clusion of classi�er results of poor quality. This
leaves room for improvement of our results by
evaluating other combinators. Another interest-
ing approach which might lead to a better per-
formance is taking into account more context
information, for example by combining com-
plete phrases instead of independent brackets.
It would also be worthwhile to evaluate using
more elaborate methods for building baseNPs
out of open and close bracket candidates.
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