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Abstract

In this paper, we describe a search procedure for sta-
tistical machine translation (MT) based on dynamic
programming (DP). Starting from a DP-based solu-
tion to the traveling salesman problem, we present
a novel technique to restrict the possible word re-
ordering between source and target language in or-
der to achieve an eÆcient search algorithm. A search
restriction especially useful for the translation di-
rection from German to English is presented. The
experimental tests are carried out on the Verbmo-
bil task (German-English, 8000-word vocabulary),
which is a limited-domain spoken-language task.

1 Introduction

The goal of machine translation is the translation
of a text given in some source language into a tar-
get language. We are given a source string fJ1 =
f1:::fj :::fJ of length J , which is to be translated into
a target string eI

1
= e1:::ei:::eI of length I . Among

all possible target strings, we will choose the string
with the highest probability:
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The argmax operation denotes the search problem,
i.e. the generation of the output sentence in the tar-
get language. Pr(eI1) is the language model of the
target language, whereas Pr(fJ

1
jeI
1
) is the transla-

tion model. Our approach uses word-to-word depen-
dencies between source and target words. The model
is often further restricted so that each source word
is assigned to exactly one target word (Brown et al.,
1993; Ney et al., 2000). These alignment models
are similar to the concept of hidden Markov models
(HMM) in speech recognition. The alignment map-
ping is j ! i = aj from source position j to target
position i = aj . The use of this alignment model
raises major problems if a source word has to be
aligned to several target words, e.g. when translat-
ing German compound nouns. A simple extension
will be used to handle this problem.

In Section 2, we briey review our approach to sta-
tistical machine translation. In Section 3, we in-
troduce our novel concept to word re-ordering and
a DP-based search, which is especially suitable for
the translation direction from German to English.
This approach is compared to another re-ordering
scheme presented in (Berger et al., 1996). In Sec-
tion 4, we present the performance measures used
and give translation results on the Verbmobil task.

2 Basic Approach

In this section, we briey review our translation ap-
proach. In Eq. (1), Pr(eI

1
) is the language model,

which is a trigram language model in this case. For
the translation model Pr(fJ1 je

I
1), we go on the as-

sumption that each source word is aligned to ex-
actly one target word. The alignment model uses
two kinds of parameters: alignment probabilities
p(aj jaj�1; I; J), where the probability of alignment
aj for position j depends on the previous alignment
position aj�1 (Ney et al., 2000) and lexicon proba-
bilities p(fj jeaj ). When aligning the words in par-
allel texts (for language pairs like Spanish-English,
French-English, Italian-German,...), we typically ob-
serve a strong localization e�ect. In many cases,
there is an even stronger restriction: over large por-
tions of the source string, the alignment is monotone.

2.1 Inverted Alignments

To explicitly handle the word re-ordering between
words in source and target language, we use the con-
cept of the so-called inverted alignments as given in
(Ney et al., 2000). An inverted alignment is de�ned
as follows:

inverted alignment: i! j = bi:

Target positions i are mapped to source positions bi.
What is important and is not expressed by the nota-
tion is the so-called coverage constraint: each source
position j should be `hit' exactly once by the path
of the inverted alignment bI

1
= b1:::bi:::bI . Using the

inverted alignments in the maximum approximation,



we obtain as search criterion:
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where the two products over i have been merged into
a single product over i. p(eije

i�1
i�2) is the trigram

language model probability. The inverted alignment
probability p(bijbi�1; I; J) and the lexicon probabil-
ity p(fbi jei) are obtained by relative frequency es-
timates from the Viterbi alignment path after the
�nal training iteration. The details are given in
(Och and Ney, 2000). The sentence length prob-
ability p(J jI) is omitted without any loss in per-
formance. For the inverted alignment probability
p(bijbi�1; I; J), we drop the dependence on the tar-
get sentence length I .

2.2 Word Joining

The baseline alignment model does not permit that a
source word is aligned to two or more target words,
e.g. for the translation direction from German to
English, the German compound noun 'Zahnarztter-
min' causes problems, because it must be translated
by the two target words dentist's appointment. We
use a solution to this problem similar to the one
presented in (Och et al., 1999), where target words
are joined during training. The word joining is done
on the basis of a likelihood criterion. An extended
lexicon model is de�ned, and its likelihood is com-
pared to a baseline lexicon model, which takes only
single-word dependencies into account. E.g. when
'Zahnarzttermin' is aligned to dentist's, the extended
lexicon model might learn that 'Zahnarzttermin' ac-
tually has to be aligned to both dentist's and ap-
pointment. In the following, we assume that this
word joining has been carried out.

3 DP Algorithm for Statistical
Machine Translation

In order to handle the necessary word re-ordering as
an optimization problem within our dynamic pro-
gramming approach, we describe a solution to the
traveling salesman problem (TSP) which is based
on dynamic programming (Held, Karp, 1962). The
traveling salesman problem is an optimization prob-
lem which is de�ned as follows: given are a set of
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Figure 1: Re-ordering for the German verbgroup.

cities S = s1; � � � ; sn and for each pair of cities si; sj
the cost dij > 0 for traveling from city si to city
sj . We are looking for the shortest tour visiting
all cities exactly once while starting and ending in
city s1. A straightforward way to �nd the short-
est tour is by trying all possible permutations of the
n cities. The resulting algorithm has a complexity
of O(n!). However, dynamic programming can be
used to �nd the shortest tour in exponential time,
namely in O(n2�2n), using the algorithm by Held and
Karp. The approach recursively evaluates a quantity
Q(C; j), where C is the set of already visited cities
and sj is the last visited city. Subsets C of increas-
ing cardinality c are processed. The algorithm works
due to the fact that not all permutations of cities
have to be considered explicitly. For a given partial
hypothesis (C; j), the order in which the cities in C
have been visited can be ignored (except j), only the
score for the best path reaching j has to be stored.
This algorithm can be applied to statistical machine
translation. Using the concept of inverted align-
ments, we explicitly take care of the coverage con-
straint by introducing a coverage set C of source sen-
tence positions that have been already processed.
The advantage is that we can recombine search hy-
potheses by dynamic programming. The cities of
the traveling salesman problem correspond to source



Table 1: DP algorithm for statistical machine translation.

input: source string f1:::fj :::fJ

initialization

for each cardinality c = 1; 2; � � � ; J do

for each pair (C; j), where j 2 C and jCj = c do

for each target word e 2 E

Qe0(e; C; j) = p(fj je) max
Æ;e00

j02Cnfjg

fp(jjj0; J) � p(Æ) � pÆ(eje0; e00) �Qe00(e
0; C n fjg; j0)g

words fj in the input string of length J . For the
�nal translation each source position is considered
exactly once. Subsets of partial hypotheses with
coverage sets C of increasing cardinality c are pro-
cessed. For a trigram language model, the partial
hypotheses are of the form (e0; e; C; j). e0; e are the
last two target words, C is a coverage set for the al-
ready covered source positions and j is the last posi-
tion visited. Each distance in the traveling salesman
problem now corresponds to the negative logarithm
of the product of the translation, alignment and lan-
guage model probabilities. The following auxiliary
quantity is de�ned:

Qe0(e; C; j) := probability of the best partial
hypothesis (ei1; b

i
1), where

C = fbkjk = 1; � � � ; ig, bi = j,
ei = e and ei�1 = e0.

The type of alignment we have considered so far re-
quires the same length for source and target sen-
tence, i.e. I = J . Evidently, this is an unrealistic
assumption, therefore we extend the concept of in-
verted alignments as follows: When adding a new
position to the coverage set C, we might generate ei-
ther Æ = 0 or Æ = 1 new target words. For Æ = 1, a
new target language word is generated using the tri-
gram language model p(eje0; e00). For Æ = 0, no new
target word is generated, while an additional source
sentence position is covered. A modi�ed language
model probability pÆ(eje0; e00) is de�ned as follows:

pÆ(eje
0; e00) =

�
1:0 if Æ = 0
p(eje0; e00) if Æ = 1

:

We associate a distribution p(Æ) with the two cases
Æ = 0 and Æ = 1 and set p(Æ = 1) = 0:7.
The above auxiliary quantity satis�es the following
recursive DP equation:

Qe0(e; C; j) =

Initial

Skip

Verb Final

1. In
2. diesem
3. Fall

4. mein

5. Kollege

6. kann

7.nicht
8. besuchen

9. Sie

10. am
11. vierten

12. Mai
13. .

Figure 2: Order in which source positions are visited
for the example given in Fig.1.
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o
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The DP equation is evaluated recursively for each
hypothesis (e0; e; C; j). The resulting algorithm is
depicted in Table 1. The complexity of the algorithm
is O(E3 � J2 � 2J), where E is the size of the target
language vocabulary.

3.1 Word Re-Ordering with Verbgroup
Restrictions: Quasi-monotone Search

The above search space is still too large to allow
the translation of a medium length input sentence.
On the other hand, only very restricted re-orderings
are necessary, e.g. for the translation direction from



Table 2: Coverage set hypothesis extensions for the IBM re-ordering.

No: Predecessor coverage set Successor coverage set
1 (f1; � � � ;mg n flg ; l0) ! (f1; � � � ;mg ; l)
2 (f1; � � � ;mg n fl; l1g ; l0) ! (f1; � � � ;mg n fl1g ; l)
3 (f1; � � � ;mg n fl; l1; l2g ; l0) ! (f1; � � � ;mg n fl1; l2g ; l)
4 (f1; � � � ;m� 1g n fl1; l2; l3g ; l0) ! (f1; � � � ;mg n fl1; l2; l3g ;m)

German to English the monotonicity constraint is
violated mainly with respect to the German verb-
group. In German, the verbgroup usually consists
of a left and a right verbal brace, whereas in En-
glish the words of the verbgroup usually form a se-
quence of consecutive words. Our new approach,
which is called quasi-monotone search, processes
the source sentence monotonically, while explicitly
taking into account the positions of the German
verbgroup.
A typical situation is shown in Figure 1. When
translating the sentence monotonically from left to
right, the translation of the German �nite verb
'kann', which is the left verbal brace in this case,
is postponed until the German noun phrase 'mein
Kollege' is translated, which is the subject of the
sentence. Then, the German in�nitive 'besuchen'
and the negation particle 'nicht' are translated. The
translation of one position in the source sentence
may be postponed for up to L = 3 source positions,
and the translation of up to two source positions
may be anticipated for at most R = 10 source posi-
tions. To formalize the approach, we introduce four
verbgroup states S:

� Initial (I): A contiguous, initial block of source
positions is covered.

� Skipped (K): The translation of up to one word
may be postponed .

� Verb (V): The translation of up to two words
may be anticipated.

� Final (F): The rest of the sentence is pro-
cessed monotonically taking account of the al-
ready covered positions.

While processing the source sentence monotonically,
the initial state I is entered whenever there are no
uncovered positions to the left of the rightmost cov-
ered position. The sequence of states needed to
carry out the word re-ordering example in Fig. 1
is given in Fig. 2. The 13 positions of the source
sentence are processed in the order shown. A posi-
tion is presented by the word at that position. Using
these states, we de�ne partial hypothesis extensions,
which are of the following type:

(S 0; C n fjg; j0)! (S; C; j);

Not only the coverage set C and the positions j; j0,
but also the verbgroup states S;S 0 are taken into ac-

count. To be short, we omit the target words e; e0 in
the formulation of the search hypotheses. There are
13 types of extensions needed to describe the verb-
group re-ordering. The details are given in (Till-
mann, 2000). For each extension a new position is
added to the coverage set. Covering the �rst un-
covered position in the source sentence, we use the
language model probability p(ej$; $). Here, $ is the
sentence boundary symbol, which is thought to be at
position 0 in the target sentence. The search starts
in the hypothesis (I; f;g; 0). f;g denotes the empty
set, where no source sentence position is covered.
The following recursive equation is evaluated:

Qe0(e;S; C; j) = (2)

= p(fj je) �max
Æ;e00

n
p(jjj0; J) � p(Æ) � pÆ(eje

0; e00) �

� max
(S0;j0)

(S0;Cnfjg;j0)!(S;C;j)

j02Cnfjg

Qe00(e
0;S 0; C n fjg; j0)

o
:

The search ends in the hypotheses (I; f1; � � � ; Jg; j).
f1; � � � ; Jg denotes a coverage set including all posi-
tions from the starting position 1 to position J and
j 2 fJ�L; � � � ; Jg. The �nal score is obtained from:

max
e;e0

j2fJ�L;���;Jg

p($je; e0) �Qe0(e; I; f1; � � � ; Jg; j);

where p($je; e0) denotes the trigram language model,
which predicts the sentence boundary $ at the end
of the target sentence. The complexity of the quasi-
monotone search is O(E3 �J �(R2+L �R)). The proof
is given in (Tillmann, 2000).

3.2 Re-ordering with IBM Style
Restrictions

We compare our new approach with the word re-
ordering used in the IBM translation approach
(Berger et al., 1996). A detailed description of the
search procedure used is given in this patent. Source
sentence words are aligned with hypothesized target
sentence words, where the choice of a new source
word, which has not been aligned with a target word
yet, is restricted1. A procedural de�nition to restrict

1In the approach described in (Berger et al., 1996), a mor-
phological analysis is carried out and word morphemes rather
than full-form words are used during the search. Here, we
process only full-form words within the translation procedure.



the number of permutations carried out for the word
re-ordering is given. During the search process, a
partial hypothesis is extended by choosing a source
sentence position, which has not been aligned with a
target sentence position yet. Only one of the �rst n
positions which are not already aligned in a partial
hypothesis may be chosen, where n is set to 4. The
restriction can be expressed in terms of the num-
ber of uncovered source sentence positions to the
left of the rightmost position m in the coverage set.
This number must be less than or equal to n � 1.
Otherwise for the predecessor search hypothesis, we
would have chosen a position that would not have
been among the �rst n uncovered positions.
Ignoring the identity of the target language words
e and e0, the possible partial hypothesis extensions
due to the IBM restrictions are shown in Table 2.
In general, m; l; l0 6= fl1; l2; l3g and in line umber 3
and 4, l0 must be chosen not to violate the above
re-ordering restriction. Note that in line 4 the last
visited position for the successor hypothesis must
be m. Otherwise , there will be four uncovered po-
sitions for the predecessor hypothesis violating the
restriction. A dynamic programming recursion sim-
ilar to the one in Eq. 2 is evaluated. In this case, we
have no �nite-state restrictions for the search space.
The search starts in hypothesis (f;g; 0) and ends in
the hypotheses (f1; � � � ; Jg; j), with j 2 f1; � � � ; Jg.
This approach leads to a search procedure with com-
plexity O(E3 � J4). The proof is given in (Tillmann,
2000).

4 Experimental Results

4.1 The Task and the Corpus

We have tested the translation system on the Verb-
mobil task (Wahlster 1993). The Verbmobil task is
an appointment scheduling task. Two subjects are
each given a calendar and they are asked to schedule
a meeting. The translation direction is from Ger-
man to English. A summary of the corpus used in
the experiments is given in Table 3. The perplexity
for the trigram language model used is 26:5. Al-
though the ultimate goal of the Verbmobil project
is the translation of spoken language, the input used
for the translation experiments reported on in this
paper is the (more or less) correct orthographic tran-
scription of the spoken sentences. Thus, the e�ects
of spontaneous speech are present in the corpus, e.g.
the syntactic structure of the sentence is rather less
restricted, however the e�ect of speech recognition
errors is not covered.
For the experiments, we use a simple preprocessing
step. German city names are replaced by category
markers. The translation search is carried out with
the category markers and the city names are resub-
stituted into the target sentence as a postprocessing
step.

Table 3: Training and test conditions for the Verb-
mobil task (*number of words without punctuation
marks).

German English

Training: Sentences 58 073
Words 519523 549921
Words* 418979 453632

Vocabulary Size 7939 4648
Singletons 3454 1699

Test-147: Sentences 147
Words 1 968 2 173
Perplexity { 26:5

Table 4: Multi-reference word error rate (mWER)
and subjective sentence error rate (SSER) for three
di�erent search procedures.

Search CPU time mWER SSER
Method [sec] [%] [%]

MonS 0:9 42:0 30:5
QmS 10:6 34:4 23:8
IbmS 28:6 38:2 26:2

4.2 Performance Measures

The following two error criteria are used in our ex-
periments:

� mWER: multi-reference WER:
We use the Levenshtein distance between the
automatic translation and several reference
translations as a measure of the translation er-
rors. On average, 6 reference translations per
automatic translation are available. The Lev-
enshtein distance between the automatic trans-
lation and each of the reference translations is
computed, and the minimum Levenshtein dis-
tance is taken. This measure has the advantage
of being completely automatic.

� SSER: subjective sentence error rate:
For a more detailed analysis, the translations
are judged by a human test person. For the er-
ror counts, a range from 0:0 to 1:0 is used. An
error count of 0:0 is assigned to a perfect trans-
lation, and an error count of 1:0 is assigned to
a semantically and syntactically wrong transla-
tion.

4.3 Translation Experiments

For the translation experiments, Eq. 2 is recursively
evaluated. We apply a beam search concept as in
speech recognition. However there is no global prun-
ing. Search hypotheses are processed separately ac-
cording to their coverage set C. The best scored



hypothesis for each coverage set is computed:

QBeam(C) = max
e;e0;S;j

Qe0(e;S; C; j)

The hypothesis (e0; e;S; C; j) is pruned if:

Qe0(e;S; C; j) < t0 �QBeam(C);

where t0 is a threshold to control the number of sur-
viving hypotheses. Additionally, for a given coverage
set, at most 250 di�erent hypotheses are kept dur-
ing the search process, and the number of di�erent
words to be hypothesized by a source word is lim-
ited. For each source word f , the list of its possible
translations e is sorted according to p(f je) � puni(e),
where puni(e) is the unigram probability of the En-
glish word e. It is suÆcient to consider only the best
50 words.
We show translation results for three approaches:
the monotone search (MonS), where no word re-
ordering is allowed (Tillmann, 1997), the quasi-
monotone search (QmS) as presented in this paper
and the IBM style (IbmS) search as described in
Section 3.2.
Table 4 shows translation results for the three ap-
proaches. The computing time is given in terms of
CPU time per sentence (on a 450-MHz Pentium-III-
PC). Here, the pruning threshold t0 = 10:0 is used.
Translation errors are reported in terms of multi-
reference word error rate (mWER) and subjective
sentence error rate (SSER). The monotone search
performs worst in terms of both error rates mWER
and SSER. The computing time is low, since no re-
ordering is carried out. The quasi-monotone search
performs best in terms of both error rates mWER
and SSER. Additionally, it works about 3 times as
fast as the IBM style search. For our demonstra-
tion system, we typically use the pruning threshold
t0 = 5:0 to speed up the search by a factor 5 while
allowing for a small degradation in translation accu-
racy.
The e�ect of the pruning threshold t0 is shown in
Table 5. The computing time, the number of search
errors, and the multi-reference WER (mWER) are
shown as a function of t0. The negative logarithm
of t0 is reported. The translation scores for the hy-
potheses generated with di�erent threshold values
t0 are compared to the translation scores obtained
with a conservatively large threshold t0 = 10:0 . For
each test series, we count the number of sentences
whose score is worse than the corresponding score of
the test series with the conservatively large thresh-
old t0 = 10:0, and this number is reported as the
number of search errors. Depending on the thresh-
old t0, the search algorithm may miss the globally
optimal path which typically results in additional
translation errors. Decreasing the threshold results
in higher mWER due to additional search errors.

Table 5: E�ect of the beam threshold on the number
of search errors (147 sentences).

Search t0 CPU time #search mWER
Method [sec] error [%]

QmS 0.0 0.07 108 42:6
1.0 0.13 85 37:8
2.5 0.35 44 36:6
5.0 1.92 4 34:6
10.0 10.6 0 34:5

IbmS 0.0 0.14 108 43:4
1.0 0.3 84 39:5
2.5 0.8 45 39:1
5.0 4.99 7 38:3
10.0 28.52 0 38:2

Table 6 shows example translations obtained by the
three di�erent approaches. Again, the monotone
search performs worst. In the second and third
translation examples, the IbmS word re-ordering
performs worse than the QmS word re-ordering,
since it can not take properly into account the word
re-ordering due to the German verbgroup. The
German �nite verbs 'bin' (second example) and
'k�onnten' (third example) are too far away from the
personal pronouns 'ich' and 'Sie' (6 respectively 5
source sentence positions). In the last example, the
less restrictive IbmS word re-ordering leads to a bet-
ter translation, although the QmS translation is still
acceptable.

5 Conclusion

In this paper, we have presented a new, eÆcient
DP-based search procedure for statistical machine
translation. The approach assumes that the word re-
ordering is restricted to a few positions in the source
sentence. The approach has been successfully tested
on the 8 000-word Verbmobil task. Future exten-
sions of the system might include: 1) An extended
translation model, where we use more context to pre-
dict a source word. 2) An improved language model,
which takes into account syntactic structure, e.g. to
ensure that a proper English verbgroup is generated.
3) A tight coupling with the speech recognizer out-
put.
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Table 6: Example Translations for the Verbmobil task.

Input: Ja , wunderbar . K�onnen wir machen .

MonS: Yes, wonderful. Can we do .
QmS: Yes, wonderful. We can do that .
IbmS: Yes, wonderful. We can do that .

Input: Das ist zu knapp , weil ich ab dem dritten in Kaiserslautern bin . Genaugenommen nur am dritten .
Wie w�are es denn am �ahm Samstag , dem zehnten Februar ?

MonS: That is too tight , because I from the third in Kaiserslautern . In fact only on the third .
How about �ahm Saturday , the tenth of February ?

QmS: That is too tight , because I am from the third in Kaiserslautern . In fact only on the third .
�Ahm how about Saturday , February the tenth ?

IbmS: That is too tight , from the third because I will be in Kaiserslautern . In fact only on the third .
�Ahm how about Saturday , February the tenth ?

Input: Wenn Sie dann noch den siebzehnten k�onnten , w�are das toll , ja .

MonS: If you then also the seventeenth could , would be the great , yes .
QmS: If you could then also the seventeenth , that would be great , yes .
IbmS: Then if you could even take seventeenth , that would be great , yes .

Input: Ja , das kommt mir sehr gelegen . Machen wir es dann am besten so .

MonS: Yes , that suits me perfectly . Do we should best like that .
QmS: Yes , that suits me �ne . We do it like that then best .
IbmS: Yes , that suits me �ne . We should best do it like that .
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