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1 Introduction

Analogies between strings of symbols, noted1

A : B = C : D, put four strings of symbols
into \proportions." They render an account
of, for instance, look : looked = walk : walked
or fable : fabulous = miracle : miraculous, on
the level of strings of symbols. They are not
intended to deal directly with, for instance,
bird : wings = �sh : �ns or work : worked =
go : went which suppose knowledge about the
world or the tongue (Ho�man 95). Analogies
may be read as equalities, as well as equations
to be solved, as in:

to look : I looked = to act : x ) x = I acted

The goal of this paper is to establish some
fundamental, common-sense hypotheses (ax-
ioms) about analogies in general; then to draw
from them basic results (theorems) on analogies
between strings of symbols in particular; so as
to propose a possible de�nition for languages
of analogical strings; and to prove that some
famous languages of particular interest to the
language processing community are very simple
languages in this respect. We further argue that
the fact that the property of bounded growth
is veri�ed by any such language is in favour of
modelling part of natural language using such
languages.
Our feeling is that analogy between strings of

symbols is an operation as fundamental as, e.g.,
addition is to natural numbers. However, to our
knowledge, letting aside the Copycat project
(Hofstadter et al. 94, Chap. 5{7, pp. 195{
318) which has no such goals and relies on dif-
ferent methods, no mathematical formalisation
has ever been proposed for analogies between
strings of symbols.

1In the sequel, A, B, C and D are variables denoting
objects.

2 General Properties of Analogy

We start with results which hold independently
of the set to which the terms of the analogy
belong.

2.1 Fundamental Hypotheses

In the Nicomachean Ethics (Book V), Aristotle
wrote:

For proportion is equality of ratios, and in-

volves four terms at least [. . . ] As the term

A, then, is to B, so will C be to D, and there-

fore, alternando, as A is to C, B will be to D.

[Translation by W. D. Ross]

As a consequence, we shall hypothesize the fol-
lowing property:

Axiom 1 (Exchange of the means)
A : B = C : D , A : C = B : D

Another equivalence is also used by Aristotle
in his Poetics. It is based on the symmetry of
the equality (the word \as," here): if we can say
that A is to B as C is to D, then we should also
be able to say that C is to D as A is to B.

Axiom 2 (Symmetry of equality)
A : B = C : D , C : D = A : B

2.2 Equivalent Forms of Analogy

By successive application of the previous hy-
potheses, we get eight equivalent forms of the
same analogy, listed hereafter in the alphabet
order of the term variables A, B, C and D.

Theorem 1 (Equivalent forms) The eight
following analogies are equivalent:



A : B = C : D (i)
A : C = B : D (ii)
B : A = D : C (iii) ( ii+vi+ii
B : D = A : C (iv) ( iii+ii
C : A = D : B (v) ( ii+iii
C : D = A : B (vi)
D : B = C : A (vii) ( ii+vi+iii
D : C = B : A (viii) ( iii+vi

Some interesting results may be obtained on
the number of di�erent possible analogy classes
given four objects. However, we shall leave
them aside for lack of space.

3 Analogy on Strings of Symbols

We shall now specialise on the case where the
members of the analogy being considered belong
to a set of strings of symbols. The structure of
strings implies new properties.

3.1 Examples

In order to support the next hypothesis we will
make on analogies on strings of symbols, let us
list a small number of analogies in English:

hypothesis : hypotheses = thesis : theses
leaf : leaves = calf : calves
give : gave = sing : sang
inexact : exact = incapable : capable

plus some true analogies but with no meaning
in language:

aa : aaaa = aaaa : aaaaaa 2

give : gave = bid : bad
walk : walked = go : goed 3

and some counter-examples (noted with 6=):

aaaa : bbbb 6= cccc : dddd 4

dfhka : bzvmbz 6= bzvmbz : dfhka

2This analogy holds independently of the truth (or
falsity of) aa : aaaa = aaaa : aaaaaaaa ( a2 : a4 =
a
4 : a8 ). In fact, hypothesising A : B = AA : BB for
any string A and B is incompatible with the Symbol in-
clusion axiom because the Equality of length sums on
a
n : am = a

2n : a2m would yield n + 2m = m + 2n, i.e
n =m, for any n, m 2 IN, which is absurd.

3Refrain from thinking in English, and recall that we
work on the sole level of symbols: i just became a, or ed
has just been added.

4In absence of any knowledge about the world. Here,
only the equality between symbols can be tested. Be-
cause the alphabetical order is not known, this analogy
cannot be veri�ed.

3.2 Symbol Inclusion

By inspection of the previous examples, one can
state that there is no solution to an analogy on
the strings of symbols A : B = C : x if some
symbols of A appear neither in B nor in C. The
contrapositive is that, for an analogy to hold,
any symbol of A has to appear in either B or
C . Noting by A the set of symbols contained
in A, we restate the previous observation as the
following hypothesis which will be used in Ap-
pendix in the proofs that some well-known lan-
guages are languages of analogical strings (The-
orems 5 and 6 of Section 5.1).

Axiom 3 (Symbol inclusion) Let V be an
alphabet. 8(A;B;C;D) 2 (V�)4;

A : B = C : D ) A � B [ C

For strings reduced to one symbol, this trivially
implies: a : b = b : a , a = b.
Incidently, applied on the eight equivalent

forms of an analogy, the Symbol inclusion ax-
iom implies eight inclusions, of which, only four
are distinct by commutativity of union. These
four inclusions imply, and are implied by, two
reciprocal inclusions:
8>>><
>>>:

A � B [ C
B � A [D
C � A [D
D � B [ C

,

�
A [D � B [ C
B [ C � A [D

so that, one can state:

Theorem 2
Let V be an alphabet. 8(A;B; C;D) 2 (V�)4;

A : B = C : D ) A [D = B [ C

3.3 Similarity Constraint

The Symbol inclusion axiom can be re�ned by
saying that, the sum of the similarities5 of A
with B and C must be greater than or equal to
its length: sim(A;B) + sim(A;C) � jAj
When the length of A is less than the sum of

the similarities, some symbols of A are common

5The similarity between two strings is de�ned
as the length of their longest common subsequence
(Hirschberg 75). A subsequence of a string is any not
necessarily connex sequence of symbols from that string
in the same order.



to all strings, A, B, and C in the same order,
and these symbols are necessarily present in D
in the same order also. We call (A;B;C;D)
the number of such symbols. As a result,
8(A;B;C;D) 2 (V�)4; A : B = C : D )
jAj = sim(A;B) + sim(A;C)� (A;B; C;D)

The Equivalent forms theorem yields:

jAj = sim(A;C) + sim(A;B)� (A;C;B;D)
jBj = sim(B;A) + sim(B;D) � (B;A;D;C)
jBj = sim(B;D) + sim(B;A) � (B;D;A;C)
jCj = sim(C;A) + sim(C;D)� (C;A;B;D)
jCj = sim(C;D) + sim(C;A)� (C;D;A;B)
jDj = sim(D;B) + sim(D;C)� (D;B;C;A)
jDj = sim(D;C) + sim(D;B)� (D;C;B;A)

Because all (:; :; :; :) are equal in all the
equalities above, and by the symmetry of sim-
ilarity, the substraction of pairs of lines yields
the following theorem, which is necessary for
the proof of our theorem on bounded growth
property (Theorem 7 of Section 5.2).

Theorem 3 (Similarity constraint)

Let V be an alphabet. 8(A;B;C;D) 2 (V�)4;
A : B = C : D )8>><

>>:

jAj � sim(A;B) = jC j � sim(C;D)
jBj � sim(B;D) = jAj � sim(A;C)
jCj � sim(C;A) = jDj � sim(D;B)
jDj � sim(D;C) = jBj � sim(B;A)

3.4 Equality of length sums

A remarkable theorem is easily derived from the
Similarity constraint theorem by addition and
substraction and by commutatitivity of similar-
ity.

Theorem 4 (Equality of length sums)

Let V be an alphabet. 8(A;B;C;D) 2 (V�)4;

A : B = C : D ) jAj+ jDj = jBj+ jCj

3.5 Disjoint Analogies

Another intuitive idea about analogies between
strings of symbols is that two analogies could
always be concatenated. Whether this is true
remains an open problem.
However, the previous intuition seems to hold

anyway when the two analogies to be concate-
nated do not have any symbol in common. We
call such analogies, disjoint analogies. The intu-
ition is that, disjoint analogies may be applied

one after another without any problem. But
concatenating in the same order is not the only
possibility.
One gets 24 = 16 analogies by enumerat-

ing all possibilities of exchanging or not ex-
changing the substrings indexed by 1 and 2
in A1A2 : B1B2 = C1C2 : D1D2. By number-
ing these 16 analogies using a binary notation
reecting the place where this exchange took
place, numbers which are binary complements
denote two equivalent analogies, of which one
may be eliminated from the list. We list here-
after those analogies with A1A2 as a �rst term.

(0000) A1A2 : B1B2 = C1C2 : D1D2

(0001) A1A2 : B1B2 = C2C1 : D2D1

(0010) A1A2 : B1B2 = C2C1 : D1D2

(0011) A1A2 : B1B2 = C2C1 : D2D1

(0100) A1A2 : B2B1 = C1C2 : D1D2

(0101) A1A2 : B2B1 = C1C2 : D2D1

(0110) A1A2 : B2B1 = C2C1 : D1D2

(0111) A1A2 : B2B1 = C2C1 : D2D1

The number of di�erent cases is further
reduced using (i) , (viii) of the Equiva-
lent forms: (0001) , (1000) , (0111)
and (0010) , (0100). The reduced set is:
f (0000); (0001); (0010); (0011); (0101); (0110) g.
Similarly, (i) , (ii) of the Equivalent forms

yields the equivalences: (0010) , (0100) and
(0011) , (0101). The reduced set becomes:
f (0000); (0001); (0011); (0110) g.
Of these four possible analogies, the second

one, (0001), where only one exchange is per-
formed, is not true in general. For instance,
ay : az = by : x is not acceptable when x =
zb. On the contrary, the three other possible
analogies meet intuition, so that the following
hypothesis may be laid.

Axiom 4 (Concatenation) Let V be an al-
phabet, and V1 � V, V2 � V, such that
V1 \ V2 = ;, 8(A1;B1; C1;D1) 2 (V1

�)4;

8(A2;B2; C2;D2) 2 (V2
�)4;

A1 : B1 = C1 : D1

A2 : B2 = C2 : D2

�
)8<

:
A1A2 : B1B2 = C1C2 : D1D2

A1A2 : B1B2 = C2C1 : D2D1

A1A2 : B2B1 = C2C1 : D1D2

This axiom will be used in Appendix in the
proof of Theorems 5 and 6 of Section 5.1.



4 Languages of analogical strings

4.1 Analogical Derivation

In order to show how some languages, i.e., some
sets of symbol strings, can be characterised by
a device based on analogy, we �rst introduce
analogical derivations. We intentionally use this
term to make a parallel with the vocabulary of
formal grammars.

De�nition 1 Let V be an alphabet. The ana-
logical derivation, noted �̀�

M
, modulo a setM�

V��V�, whose elements (v; v0) are noted v ! v0,
is de�ned in the following way:
8(w;w0) 2 V� � V�;

w �̀�
M

w0 , 9v ! v0 2 M = w : w' = v : v'

Although we use the notation ! for the ele-
ments of M, it is not to be interpreted in the
way it would be in classical rewriting systems.
This notation is just to make a parallel with
classical presentations of grammars, where the
elements of M are called rules. However, the
meaning here is di�erent. With standard rules,
w is exactly matched against v to produce, in
a second step, w0. Here, the result w0 depends
on the way v (not w) \matches" w and v0 at the
same time.

4.2 Derivational Systems

De�nition 2 A derivational system of analog-
ical strings is a triple G = (V ;A;M), where V
is a �nite alphabet, A � V� (�nite) is the set
of axioms, or, better, the set of attested strings,
andM� V��V� (�nite) is the set of rules, or,
better, the set of models.

4.3 Languages

De�nition 3 Let V be an alphabet. Let A � V�

and M� V� �V�, both �nite. The language of
analogical strings �(A;M) = < A; f �̀�

M
g >

is de�ned in the following way:

�(A;M) = A[f w0 2 V� = 9w 2 A = w
+

�̀�
M

w0 g

with
+

�̀�
M

, the transitive closure of the analogical
derivation �̀�

M
.

The previous de�nition conforms to the usual
presentation of formal languages. It aims at
the generation of a language. Thus, as usual,

standard structural induction is used to gener-
ate all of the members of a language of analog-
ical strings. Starting with the elements of A,
all possible analogies with the elements of M
as models are applied.
The reciprocal problem of generation is that

of recognition. With an analogical system, the
grammaticality of a given string, i.e., its mem-
bership in a language, is tested against the set
of attested strings of that language, after the re-
duction of that given string, by analogy, using
the set of models. For recognition, the strings
in the pairs of M are used in the reverse order
they appear inM, and the analogies are solved
in the other direction than for generation. This
is possible thanks to form (iii) of the Equivalent
forms theorem.
The \linguistic" interpretation of a language

of analogical strings �(A;M) is thus as follows:
A is the set of attested strings, i.e., the set of
strings against which any candidate element of
the language will be compared in �ne;M is the
set of paradigmatic models (declensions, con-
jugations, morphological derivations, syntactic
transformations, etc.), according to which any
candidate element of the language is reduced6

by analogy.

5 Some Properties

5.1 fan1a
n

2 : : : a
n

m
g and fambncmdng

In appendix, we give proofs that the follow-
ing famous regular, context-free and, context-
sensitive languages are all languages of analog-
ical strings:

fan =n � 1g = �(fag; fa! aag)
fanbn =n � 1g = �(fabg; fab! aabbg)

fanbncn =n � 1g = �(fabcg; fabc! aabbccg)

and that, more generally:

Theorem 5 fan1a
n

2 : : : a
n

m
= n � 1g =

�(fa1a2 : : : amg; f(a1a2 : : : am ! a21a
2
2 : : : a

2
m
)g)

In a similar way, by induction and use of the
Concatenation of disjoint analogies, it is easy to
prove that:

Theorem 6 fambncmdn = n � 1 ^m � 1g =
�(fabcdg; fabcd! abbcdd; abcd! aabccdg)

6The word reduce is taken to mean a reduction to a
normal form, not in the sense that the strings become
shorter.



This language is famous for being the basis
of two counter-examples against the context-
freeness of natural language: in the morphology
of Bambara (Culy 85), and in the syntax of the
Zurich dialect of Swiss German (Shieber 85).

5.2 Bounded Growth

Following the discussion about the non-context-
freeness of natural language, the family of for-
mal languages that can be used to formalise nat-
ural language has been thought to be necessar-
ily larger than the family of context-free lan-
guages, but it does not have to cover all context-
sensitive languages, as some context-sensitive
languages are obviously not relevant for nat-
ural languages. Mild context-sensitivity was
thus proposed by (Joshi 85) to characterise the
family of languages captured by tree-adjoining
grammars (larger than context-free, but strictly
smaller than context-sensitive).
However, this is a characterisation by a recog-

nition device, and some have proposed other
intrinsic characterisations. (Marcus & al. 96)
have been advocating that, the key point in
\mild context-sensitivity" is the property of
bounded growth: for each sentence in a lan-
guage, we can always �nd another sentence in
the same language whose length di�ers from the
length of the �rst sentence by at most a given
constant.

De�nition 4 (Bounded growth) A lan-
guage L has the bounded growth property if (and
only if) L is a singleton or 9k 2 IN =

8w 2 L; 9w0 2 Lnfwg =
���jw0j � jwj

��� � k

Now, it is easy to prove (see Appendix) that:

Theorem 7 Any language of analogical strings
veri�es the bounded growth property.

Consequently, a language like fa2
n

=n 2 INg is
not a language of analogical strings, as it does
not have the bounded growth property. Luckily
thus, some \unnatural" languages are out of the
reach of languages of analogical strings.

6 Conclusion

Only a small number of proposals have been
made for the modelisation of analogy, the rare
exceptions being (Itkonen & Haukioja 97) and,
out of linguistics, (Hofstadter et al. 94), maybe
because the dominant stream in linguistics for
years, the generative one, against works by
the founders of modern linguistics (e.g. (Saus-
sure 16, Part III, Chap. 4 & 5)), explicitly re-
butted analogy as a possible object of research
(see (Itkonen & Haukioja 97, 132 and 136), for
quotations from Chomsky) under the fallacious
pretext that blind application of analogy may
lead to falsity in logic and agrammaticality in
syntax. However, following recent results in ex-
perimental psychology and refutations of the in-
nateness hypothesis (Itkonen 94), analogy may
reasonably be argued to be a component in lan-
guage (of course, surely not the only one).
Having posited only four fundamental hy-

potheses on analogy, we have shown how to gen-
erate a family of formal languages, called lan-
guages of analogical strings. It is important to
note that analogical string grammars, like sim-
ple contextual grammars (Ilie 96), do not make
any use of non-terminals. Grammaticality is
simply tested against some attested strings, af-
ter reduction according to some models. The
approach by reduction to attested forms has al-
ready been advocated in natural language pro-
cessing (Sager 81).
The key language fanbmcndm=n � 1g against

the context-freeness hypothesis of natural lan-
guage is easily shown to be a language of ana-
logical strings. Also, all languages of analog-
ical strings possess the bounded growth prop-
erty, which attempts to capture mild context-
sensitivity, a notion introduced to cope with the
apparent power of human languages.
The fact that the regular language fang, the

context-free language fanbng, and the context-
sensitive language fanbncng are very similar lan-
guages of analogical strings shows that analogy
allows us \to get round" the Chomsky classi�-
cation.
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a : w1 = a : aa , w1 : a = aa : a ) w1 � a [ aa = fag
w1 : w2 = a : aa , w2 : w1 = aa : a ) w2 � w1 [ aa

...
...

...
wn : w = a : aa , w : wn = aa : a ) w � wn [ aa

Appendix

Theorems 5 and 6

Proof: for fan=n � 1g.
Completion: �(fag; fa ! aag) � fan=n �

1g. Recall that w is the set of di�erent symbols
in string w. Suppose that w 2 �(fag; fa !

aag). This is equivalent to: a
�

�̀� w. Hence,
there exists a sequence of strings w1, w2, . . . ,
wn such that the �rst column in the set of rela-
tions at the top of this page holds; the second
column is the equivalent form (iii); the third
column is the application of the Symbol inclu-
sion axiom. This last column implies: w � fag,
which means that w is of the type an (note that
there is no empty string here).
Consistence: fan=n � 1g � �(fag; fa !

aag). By induction on n, any string of the form
an is obtained by analogy with an element of
�(fag; fa ! aag). Base: fag � �(fag; fa !
aag) by the de�nition of a language of analogical
strings. Induction: suppose that an is a mem-
ber of �(fag; fa! aag). The solution x of the
analogy an : x = a : aa is an+1 2 fan=n � 1g.
QED.

Proof: for fanbn=n � 1g.
Completion: �(fabg; fab! aabbg) �

fanbn=n � 1g. A rationale similar to the one
above gives w 2 fanbn=n � 1g ) w � fa; bg.
By induction, by the Concatenation of disjoint
analogies, all a's are before the b's, hence w =
anbm with n necessarily equal to m.
Consistence: fanbn=n � 1g � �(fabg; fab !

aabbg). By induction on n. Base: ab 2
�(fabg; fab! aabbg) is true, by de�nition of a
language of analogical strings. Induction: sup-
pose that anbn is a member of �(fabg; fab !
aabbg). Because an : an�1 = aa : a and
bn : bn�1 = bb : b are true analogies, and by the
Concatenation of disjoint analogies axiom, the
solution x of the analogy anbn : x = ab : aabb
is an+1bn+1 2 fanbn=n � 1g. QED.

Proof: for fanbncn=n � 1g.
The proof is the same as for fanbn=n � 1g,

by decomposing

anbncn : an�1bn�1cn�1 = aabbcc : abc

into anbn : an�1bn�1 = aabb : ab and
cn : cn�1 = cc : c which both hold. QED.

Identical rationales prove Theorems 5 and 6.

Theorem 7

Proof: Let �(A;M) be a language of analog-
ical strings not reduced to a singleton. For a
given w in this language, either w is in A or
not. In the �rst case, as A is �nite, kA the

maximum over all
���jw0j � jwj

��� with w and w0 in

A, exists. In the case w is not in A, by def-
inition, there exists another element w0 in the
same language, and there exists v0 ! v 2 M
such that w' : w = v' : v . The Similarity con-
straint implies:

�
jw0j � sim(w0; w) = jv0j � sim(v0; v)
jwj � sim(w0; w) = jvj � sim(v0; v)

Because sim(w;w0) � min(jwj; jw0j) is al-

ways true:
���jw0j � jwj

��� = max(jwj; jw0j) �

min(jwj; jw0j) � max(jwj; jw0j) � sim(w;w0).
Thus: 8w 2 �(A;M); 9w0 2 �(A;M)nfwg =

���jw0j � jwj
��� � max(jw0j � sim(w;w0);

jwj � sim(w;w0))

� max(jv0j � sim(v; v0);

jvj � sim(v; v0))

By taking k the maximum over all v ! v0 ofM
and kA:

8w 2 �(A;M);9w0 2 �(A;M)nfwg =���jw0j � jwj
��� � k

QED.
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