
LFG Generation Produces Context-free Languages

Ronald M. Kaplan
Xerox Palo Alto Research Center

3333 Coyote Hill Road
Palo Alto, California 94304 USA

kaplan@parc.xerox.com

J�urgen Wedekind
Center for Language Technology

Njalsgade 80
2300 Copenhagen S, Denmark

juergen@cst.ku.dk

Abstract

This paper examines the generation problem for a
certain linguistically relevant subclass of LFG gram-
mars. Our main result is that the set of strings that
such a grammar relates to a particular f-structure
is a context-free language. This result obviously ex-
tends to other context-free based grammatical for-
malisms, such as PATR, and also to formalisms that
permit a context-free skeleton to be extracted (per-
haps some variants of HPSG). The proof is construc-
tive: from the given f-structure a particular context-
free grammar is created whose yield is the desired
set of strings. Many existing generation strategies
(top-down, bottom-up, head-driven) can be under-
stood as alternative ways of avoiding the creation of
useless context-free productions. Our result can be
established for the more general class of LFG gram-
mars, but that is beyond the scope of the present
paper.

1 Introduction and Preliminaries

This paper examines the generation problem for
a certain linguistically motivated subclass of LFG
grammars. Our main result is that the set of
strings that such a grammar relates to a particular
f-structure is a context-free language. This result ex-
tends easily to other context-free based grammatical
formalisms, such as PATR (Shieber et al. 1983), and
perhaps also to formalisms that permit a context-
free skeleton to be extracted from richer representa-
tions.
We begin with some background and formal de-

�nitions so that we can make the problem and its
solution explicit. An LFG grammar G assigns to ev-
ery string in its language at least one c-structure/f-
structure pair that are set in correspondence by a
piecewise function � (Kaplan 1995). The situation
can be characterized in terms of a derivation relation
�G, de�ned as follows:

(1) �G(s; c; �; f) i� G assigns to the string s a
c-structure c that piecewise-corresponds to
f-structure f via the function �.

The `piecewise-corresponds' notion means that �
maps individual nodes of a c-structure tree to units

of the f-structure. The arrangement of the four com-
ponents of an LFG representation is illustrated in
the diagram of Figure 1. This representation be-
longs to the �G relation for a grammar that includes
the annotated (nonterminal) rules in (2) and lexical
rules in (3).

(2) a. S ! NP VP
(" subj) =# "=#

(# case) = nom (" tense)

b. NP ! DET N
"=# "=#

c. VP ! V
"=#

(3) a. DET ! a
(" spec) = indef

(" num) = sg

b. N ! student
(" pred) = 0

student
0

(" num) = sg

(" spec)

c. V ! fell
(" pred) = 0

fallh(subj)i0

(" tense) = past

The c-structure in Figure 1 is derived by applying
a sequence of rules from (2) to rewrite the symbol
S, the grammar's start symbol, and then rewriting
the preterminal categories according to the lexical
rules. Lexical rules are just notational variants of
traditional LFG lexical entries.
The � correspondence and the f-structure in Fig-

ure 1 are associated with that c-structure because
the f-structure satis�es the �-instantiated descrip-
tion constructed from the annotated c-structure
derivation, and furthermore, it is a minimal model
for the set of instantiated descriptions collected from
all the nodes of the annotated c-structure. The �-
instantiated description for a local mother-daughters
con�guration justi�ed by a rule is created in the fol-
lowing way. First, all occurrences of the symbol " in
the functional annotations of the daughters are re-
placed by a variable standing for the f-structure unit
that � assigns to the mother node. Then for each of
the daughter categories, all occurrences of the sym-
bol # in its annotations are replaced by a variable

S

NP VP

DET N V

a student fell

�

2
6666664
subj

2
64
pred

0
student

0

num sg

spec indef

case nom

3
75

pred
0
fallh(subj)i0

tense past

3
7777775

Figure 1: Piecewise c- and f-structure correspondence.

standing for the � assignment of the daughter node.
Observe that all variables denote f-structure units in
the range of �, and that the # on a category and the "
on the daughters that further expand that category
are always instantiated with the same variable.
We now turn to the generation problem. A gener-

ator for G provides for any given f-structure F the
set of strings that are related to it by the gram-
mar:

(4) GenG(F) = fs j 9c; � s.t. hs; c; �; F i 2 �Gg.

Our main result is that for a certain subclass of LFG
grammars the set GenG(F) is a context-free lan-
guage. In the next section we prove that this is the
case by constructing a context-free grammar that ac-
cepts exactly this set of strings. Our proof depends
on the fact that the input F|and hence the range
of �|is fully speci�ed; Dymetman (1991), van No-
ord (1993), and Wedekind (1999) have shown that
the general problem of generating from an under-
speci�ed input is unsolvable. We return to this issue
at the end of the paper and observe that for cer-
tain limited forms of underspeci�cation the context-
free result can still be established. Our proof also
depends on the fact that, with minor exceptions,
the instantiated descriptions are idempotent: if p
is a particular instantiated proposition, then a de-
scription containing two occurrences of p is logically
equivalent to one containing just a single occurrence.
This means that descriptions can be collected by
the union operator for ordinary sets rather than by
multi-set union.

The standard LFG formalism includes a number
of notational conveniences that make it easy to ex-
press linguistic generalizations but which would add
complexity to our mathematical analysis. We make
a number of simplifying transformations, without
loss of generality. The LFG c-structure notation
allows the right-hand sides of rules to denote arbi-
trary regular languages, expressed by Boolean com-
binations of regular predicates (Kaplan 1995, Ka-
plan and Maxwell 1996). We assume that these
languages are normalized to standard regular ex-
pressions involving only concatenation, disjunction,
and Kleene-star, and then transform the grammar so
that the right sides of the productions denote only
�nite sequences of annotated categories. First, the
e�ects of any Kleene-stars are removed in the usual

way by the introduction of additional nonterminal
categories and the rules necessary to expand them
appropriately. Second, every category X with dis-
junctive annotations is replaced by a disjunction of
X's each associated with one of the alternatives of
the original disjunction. Finally, rules with disjunc-
tive right sides are replaced by sets of rules each
of which expands to one of the alternative right-
side category sequences. The result of these trans-
formations is a set of productions all of which are
in conventional context-free format and have no in-
ternal disjunctions and which together de�ne the
same string/f-structure mapping as a grammar en-
coded in the original, linguistically more expressive,
notation. The Kleene-star conversions produce c-
structures from which the original ones can be sys-
tematically recovered.

The full LFG formalism allows for grammars that
assign cyclic and otherwise linguistically unmoti-
vated structures to sentences. The context-free re-
sult can be established for these grammars, but the
argument would require a longer and more techni-
cal presentation than we can provide in this paper.
Thus, without loss of linguistic relevance, we concen-
trate here on a restricted class of LFG grammars,
those that assign acyclic f-structures to sentences.
For our purposes, then, an LFG grammar G is a
4-tuple hN;T; S; Ri where N is the set of nontermi-
nal categories, T is the set of terminal symbols (the
lexical items), S 2 N is the root category, and R is
the set of annotated productions. The context-free
skeletons of the rules are of the form X0 ! X1::Xn

or X ! a, with X1::Xn 2 N� and a 2 T . If the an-
notations of a nonterminal daughter establish a rela-
tionship between # and ", then # is either identi�ed
with ", the value of an attribute in " ((" �) =#), or
the member of a set in " (#2 (" �)), where � is a
possibly empty sequence of attributes.

2 A Context-free Grammar
for GenG(F)

An input structure F for generation is presented as
a hierarchical attribute-value matrix such as the one
in Figure 1, repeated here in (5).

(5)
2
6666664
subj

2
64
pred

0
student

0

num sg

spec indef

case nom

3
75

pred
0
fallh(subj)i0

tense past

3
7777775

An f-structure is an attribute-value structure where
the values are either subsidiary attribute-value ma-
trices, symbols, semantic forms, or sets of subsidiary
structures (not shown in this example).

(6) A structure g is contained in a structure f if
and only if:
g = f ,
f is a set and g is contained in an element of

f , or
f is an f-structure and g is contained in (fa)
for some attribute a.

In essence, g is contained in f if g can be located
in f by ignoring some enclosing superstructure. For
any f-structure f , the set of all units contained in f
is then de�ned as in (7).

(7) Units(f) = fg j g is contained in fg

Note that Units(f) is a �nite set for any f , and
Units(f) is the range of any � that �G associates
with a particular input F .
The c-structures and � correspondences for F are

the unknowns that must be discovered in the process
of generation so that the proper instantiated descrip-
tions can be constructed and evaluated. However,
since there is only a �nite number of possible terms
that can be used to designate the units of F , we can
produce a (�nite) superset of the proper instantiated
descriptions without knowing in advance the details
of either the c-structure or a particular �.
Let F be an f-structure that has m (m � 0) set

elements. We introduce m+ 1 distinct variables
v0; ::; vm which denote biuniquely the root unit of
F (v0) and each set element of F (vi, i > 0).1 We
consider the set of all designators of the form (vi �)
which are de�ned in F , where � is a (possibly empty)
sequence of attributes. The set of designators for a
particular unit corresponds, of course, to the set of
all possible f-structure paths from one of the vi roots
to that unit. Thus, the set of designators for all units
of F is �nite, since the number of units of F is �nite
and there are no cycles in F .
The set of variables that we will use to construct

the instantiated descriptions is the set V consisting
of all vt where t is a designator of the set just de-
�ned. If l is the maximal arity of the rules in G,
we will consider for the instantiation the set I con-
sisting of all sequences hvt0 ; vt1 ; ::; vtj i of variables of
V of length 1; ::; n+ 1, not containing any set ele-

1Multi-rooted structures would require a whole set of root

variables, similar to set elements.

ment variable vvi (i = 0; ::;m) more than once. On
the basis of this (�nite) set of sequences, we de�ne
a (partial) function ID which assigns to each rule
r 2 R and each sequence I 2 I that is appropriate
for r an instantiated description.
Let r be an n-ary LFG rule

X0 ! X1 :: Xn

S1 Sn

with annotated functional schemata S1:::Sn. A se-
quence of variables I 2 I is appropriate for r if
I = hvt0 ; vt1 ; ::; vtni is of length n+ 1 and

tj =

�
(vi �

0�) if t0 = (vi �
0) and (" �) =#2 Sj

a set element variable vj if #2 (" �) 2 Sj

for all j = 1; ::; n (�0 and � are (possibly empty) se-
quences of attributes). (Note that (" �) =# reduces
to "=# if � is empty.) If I is appropriate for r, then
ID(r; I), the instantiated description for r and I , is
de�ned as follows:

(8) ID(r; I) =

n[
j=1

Inst(Sj ; vt0 ; vtj),

where Inst(Sj ; vt0 ; vtj) is the instantiated descrip-
tion produced by substituting vt0 for all occurrences
of " in Sj and substituting vtj for all occurences of
in Sj .
If r is a lexical rule with a context-free skeleton of

the form X! a every sequence I = hvt0i of length 1
is appropriate for r and ID is de�ned by:

(9) ID(r; I) = Inst(S1; vt0).

The instantiation using appropriate sequences of
variables, although �nite, permits an e�ective dis-
crimination of the f-structure variables, since it pro-
vides di�erent variables for the #'s associated with
di�erent daughters that have di�erent function as-
signments (i.e., annotations of the form (" �) =#
and (" �0) =# with � 6= �0), but identi�es variables
where f-structure variables are identi�ed explicitly
("=#) or where the identity follows by uni�cation,
as in cases where the annotations of two di�erent
daughters contain the same function-assigning equa-
tion (" �) =#. Hence, we in fact have enough vari-
ables to make all the distinctions that could arise
from any c-structure and � correspondence for the
given f-structure.
The set of all possible instantiated descriptions is

large but �nite, since R and I are �nite. Thus, the
set IP(F) of all possible instantiated propositions
for G and F is also large but �nite.

(10) IP(F) =
S
Range(ID)

For the construction of the context-free grammar we
have to consider those subsets of IP(F) which have
F as their minimal model. This is the set D(F),
again �nite.

(11) D(F) is the set of all D � IP(F) such that
F is a minimal model for D.

We are now prepared to establish the main result of
this paper:

(12) Let G be an LFG grammar conforming to the
restrictions we have described. Then for any
f-structure F , the set GenG(F) is a context-
free language.

Proof: If F is incomplete or incoherent, then
GenG(F) is the empty context-free language. Let
G = hN;T; S; Ri be an LFG grammar. If D(F) is
empty, then GenG(F) is again the empty context-
free language. If D(F) is not empty, we construct a
context-free grammarGF = hNF ; TF ; SF ; RF i in the
following way.
The collection of nonterminals NF is the (�nite)

set fSF g [N � V � Pow (IP(F)), where SF is a new
root category. Categories in NF other than SF are
written X:v:D, where X is a category in N , v is con-
tained in V , and D is an instantiated description in
Pow (IP(F)). TF is the set T � f;g � f;g. The rules
RF are constructed from the annotated rules R of
G. We include all rules of the form:

(i) SF ! S:vv0:D, for every D 2 D(F)

(ii) X0:vt0:D0 ! X1:vt1:D1::Xn:vtn:Dn s.t.

(a) there is an r 2 R expanding X0 to X1::Xn,

(b) D0 = ID(r; hvt0 ; vt1 ; ::; vtni) [
n[
i=1

Di,

(c) if vvi 2 (vtj �) belongs to Dj then
vvi 6= vtk (k = 1; ::; n) and
:9Dh (h 6= j) s.t. vvi 2 (vth �0) 2 Dh,

2

(iii) X:vt:D ! a:;:; s.t.

(a) there is an r 2 R expanding X to a,

(b) D = ID(r; hvti).

We de�ne the projection Cat(x:y:z) = x for ev-
ery category in NF [TF and extend this function in
the natural way to strings of categories and sets of
strings of categories. Note that the set

Cat(L(GF)) = fs j 9w 2 L(GF) s.t. Cat(w) = sg

is context-free, since the set of context-free languages
is closed under homomorphisms such as Cat. We
show that the language Cat(L(GF)) = GenG(F).
We prove �rst that GenG(F) � Cat(L(GF)). Let

c be an annotated c-structure of a string s with f-
structure F in G. On the basis of c and F we con-
struct a derivation tree of a string s0 in GF with
Cat(s0) = s in two steps. In the �rst step we rela-
bel each terminal node with label a by a:;, the root
by S:vv0 , each node introducing a set element with
label X biuniquely by X:vvi , and each other node

2This condition captures LFG's special interpretation of

membership statements. The proper treatment of LFG's se-

mantic forms requires a similar condition.

labelled X by X:vt where t is a designator that is
constructable from the function-assigning equations
of the annotations along the path from the unique
root or set element to that node. On the basis of
this relabelled c-structure we construct a derivation
tree of s0 in GF bottom-up. We relabel each ter-
minal node with label a:; by a:;:; and each preter-
minal node with label X:vt by X:vt:D where D is
de�ned as in (iiib) with r expanding X in c to a. Sup-
pose we have constructed the subtrees dominated by
X1:vt1:D1::Xn:vtn:Dn, the corresponding subtrees in
c are derived with r expanding X0 to X1::Xn, and
the mother node is relabelled by X0:vt0 . We then
relabel this mother node by X0:vt0:D0 where D0 is
determined according to (iib). By induction on the
depth of the subtrees it is then easy to verify that
the instantiated description D of a subtree domi-
nated by X:vt:D is equivalent to the f-description of
the corresponding annotated subtree in c. Thus, F
must be a minimal model of the instantiated descrip-
tion of the root label S:vv0:DF , SF derives S:vv0:DF

in GF and Cat(s0) = s.
We now show that Cat(L(GF)) � GenG(F). Let

c00 be a derivation tree of s0 in GF with Cat(s0) = s
and suppose that the root (with label SF) expands
to S:vv0:DF . We construct a new derivation tree c0

that results from c00 by eliminating the root. We
then de�ne a function �0 such that for each nonter-
minal node � of c0: �0(�) = vt if � is labelled by
X:vt:D in c0. According to our rule construction it
can easily be seen by induction on the depth of the
subtrees that there must be an annotated c-structure
c of G with the same underlying tree structure as c0

such that for each node � labelled by x:y:D in c0:
(i) � is labelled by x in c,
(ii) D is identical with the description that results
from D�, the f-description of the sub-c-structure
dominated by � in c, by replacing each occurrence
of an f-structure variable `�(�)' (usually abbreviated
by f�) in D� by �

0(�). Since �(�) = �(�) follows for
two f-structure designators if �0(�) = �0(�), the f-
description of the whole c-structure must be equiva-
lent toDF and thus �G(s; c; �; F) where � = �0 � �V
and �V is the unique function that maps each vt to
the unit of F that is denoted by t. QED

3 An Example

As a simple illustration, we produce the context-
free grammar GF for the input (5) and the grammar
in (2,3) above. The only designator variables that
will yield useful rules are vv0 and v(v0 subj), in the
following abbreviated by v and vs. Consider �rst the
context-free rules that correspond to the rules that
generate NP's. If we choose the sequence I = hvsi,
the instantiated description for the determiner rule
in (3a) is (13).

(13) f(vs spec) = indef; (vs num) = sgg

Rule (14) is thus a production of GF .

(14) DET:vs :

�
(vs spec) = indef

(vs num) = sg

�
! a:;:;

Rule (15) is obtained from the N rule using the same
sequence.

(15) N:vs :

(
(vs pred) =

0
student

0

(vs num) = sg

(vs spec)

)
! student:;:;

For the NP rule and the sequence hvs; vs; vsi, both
daughter annotations instantiate to the trivial de-
scription vs = vs, and this can combine with many
daughter descriptions. Two of these are the basis for
the rules (16) and (17). The daughter categories of
rule (16) match the mother categories of rules (14)
and (15), and the three rules together can derive the
string a:;:; student:;:;. Rule (17), on the other
hand, is a legitimate rule but does not combine with
any others to produce a terminal string. It is a use-
less, albeit harmless, production; if desired, it can
be removed from the set of productions by standard
algorithms for context-free grammars.
If we continue along in this manner, we �nd that

the rules in (18,19,20) are the only other useful rules
that belong to GF .
The grammarGF also includes the following start-

ing rule:

(21) SF ! S:v:

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

(v subj) = vs
(vs case) = nom

v = v

(v tense)
vs = vs

(vs spec) = indef

(vs num) = sg

(vs pred) =
0
student

0

(vs spec)
(v pred) = 0

fallh(subj)i0

(v tense) = past

9>>>>>>>>>>>>>=
>>>>>>>>>>>>>;

This grammar provides one derivation for a sin-
gle string, a:;:; student:;:; fell:;:;. Applying Cat
to this string gives `a student fell', the only sen-
tence that this grammar associates with the input
f-structure.

4 Consequences and Observations

Our main result o�ers a new way to conceptualize
the problem of generation for LFG and other higher-
order context-free-based grammatical formalisms.
The proof of the theorem is constructive: it indicates
precisely how to build the grammar GF whose lan-
guage is the desired set of strings. Thus, the problem
of LFG generation is divided into two phases, con-
structing the context-free grammar GF , and then
using a standard context-free generation algorithm
to produce strings from it.
We can regard the �rst phase of LFG generation

as specializing the original LFG grammar to one that

only produces the given input f-structure. This spe-
cialization re�nes the context-free backbone of the
original grammar, but our theorem indicates that
the input f-structure provides enough information so
that, in e�ect, the metavariables in the functional
annotations can all be replaced by variables con-
tained in a �xed �nite set. Thus, in the LFG gen-
eration case the specialized grammar turns out to
be in a less powerful formal class than the original.
We can understand di�erent aspects of generation
as pertaining either to the way the grammar is con-
structed or to well-known properties of context-free
grammars and context-free generation.

It follows as an immediate corollary, for exam-
ple, that it is decidable whether the set GenG(F) is
empty, contains a �nite number of strings, or con-
tains an in�nite number of strings. This can be de-
termined by inspecting GF with standard context-
free tools, once it has been constructed. If the lan-
guage is in�nite, we can make use of the context-free
pumping lemma to identify a �nite number of short
strings from which all other strings can be produced
by repetition of subderivations. Wedekind (1995)
�rst established the decidability of LFG generation
and proved a pumping lemma for the generated
string set; our theorem provides alternative and very
direct proofs of these previously known results.

We also have an explanation for another ob-
servation of Wedekind (1995). Kaplan and Bres-
nan (1982) showed that the Nonbranching Domi-
nance Condition (sometimes called O�ine Parsabil-
ity) is a su�cient condition to guarantee decidabil-
ity of the membership problem. Wedekind noted,
however, that this condition is not necessary to de-
termine whether a given f-structure corresponds to
any strings. We now see more clearly why this is the
case: if there is a context-free derivation for a given
string that involves a nonbranching dominance cy-
cle, we know (from the pumping lemma) that there
is another derivation for that same string that has
no such cycle. Thus, the generated language is the
same whether or not derivations with nonbranching
dominance cycles are allowed.

There is a practical consequence to the two phases
of LFG generation. The grammar GF can be pro-
vided to a client as a �nite representation of the set
of perhaps in�nitely many strings that correspond
to the given f-structure, and the client can then con-
trol the process of enumerating individual strings.
The client may choose simply to produce the short-
est ones just by avoiding recursive category expan-
sions. Or the client may apply the technology of
stochastic context-free grammars to choose the most
probable sentence from the set of possibilities. The
client may also be interested in strings that meet
further conditions that the shortest or most proba-
ble strings fail to satisfy; in this case the client may

(16) NP:vs :

8>><
>>:

vs = vs
(vs spec) = indef

(vs num) = sg

(vs pred) =
0
student

0

(vs spec)

9>>=
>>; ! DET:vs :

�
(vs spec) = indef

(vs num) = sg

�
N:vs :

(
(vs pred) =

0
student

0

(vs num) = sg

(vs spec)

)

(17) NP:vs :fvs = vs; (vs num) = sgg ! DET:vs :f(vs num) = sgg N:vs :;

(18) V:v:

�
(v pred) = 0

fallh(subj)i0

(v tense) = past

�
! fell:;:;

(19) VP:v:

(
v = v

(v pred) = 0
fallh(subj)i0

(v tense) = past

)
! V:v:

�
(v pred) = 0

fallh(subj)i0

(v tense) = past

�

(20) S:v:

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

(v subj) = vs
(vs case) = nom

v = v

(v tense)
vs = vs

(vs spec) = indef

(vs num) = sg

(vs pred) =
0
student

0

(vs spec)
(v pred) = 0

fallh(subj)i0

(v tense) = past

9>>>>>>>>>>>>>=
>>>>>>>>>>>>>;

! NP:vs :

8>><
>>:

vs = vs
(vs spec) = indef

(vs num) = sg

(vs pred) =
0
student

0

(vs spec)

9>>=
>>; VP:v:

(
v = v

(v pred) = 0
fallh(subj)i0

(v tense) = past

)

apply the pumping lemma to systematically produce
longer strings for examination.

Our recipe for constructing GF may produce
many categories and expansion rules that cannot
play a role in any derivation, either because they
are inaccessible from the root symbol, they do not
lead to a terminal string, or because they involve in-
dividual descriptions that F does not satisfy. Hav-
ing constructed the grammar, we can again apply
standard context-free methods, this time to put the
grammar in a more optimal form by removing use-
less categories and productions. We can view sev-
eral di�erent generation algorithms as strategies for
avoiding the creation of useless categories in the �rst
place.

The most obvious optimization, of course, is to in-
crementally evaluate all the instantiated descriptions
and remove from consideration categories and rules
involving descriptions for which F is not a model.
A second strategy is to construct the grammar in
bottom-up fashion. We begin by comparing the ter-
minal rules of the LFG grammar with the features
of the input f-structure, and construct only the cor-
responding categories and rules that meet the crite-
ria in (iii) above. We then construct rules that can
derive the mother categories of those rules, and so
on. With this strategy we insure that every cate-
gory we construct can derive a terminal string, but
we have no guarantee that every bottom-up sequence
will reach the root symbol.

It is also appealing to construct the grammar by
means of a top-down process. If we start with an
agenda containing the root symbol, create rules only

to expand categories on the agenda, and place cate-
gories on the agenda whenever they appear for the
�rst time on the right side of a new rule, we get the
e�ect of a top-down exploration of the grammar. We
will only create categories and rules that are acces-
sible from the root symbol, but we may still produce
categories that derive no terminal string.

The top-down strategy may not provide e�ective
guidance, however, if the set D(F) contains many
alternative descriptions of F . But suppose we can
associate with every instantiated description D a
unique canonical description that has the same f-
structure as its minimal model, and suppose that we
then reformulate the grammar construction in terms
of such canonical descriptions. This can sharply re-
duce the size of the grammar we produce according
to any enumeration strategy, since it avoids rules
and categories that express only uninformative vari-
ation. It can particularly bene�t a top-down enu-
meration because the set D(F) will have at most
one canonical member. Presumably any practical
generation scheme will de�ne and operate on canon-
ical descriptions of some sort, but our context-free
result does not depend on whether or how such de-
scriptions might be speci�ed and manipulated.

Just as for context-free parsing, there are a num-
ber of mixed strategies that take top-down and
bottom-up information into account at the same
time. We can use a precomputed reachability ta-
ble to guide the process of top-down exploration,
for instance. Or we can simulate a left-corner enu-
meration of the search space, considering categories
that are reachable from a current goal category and

match the left corner of a possible rule. In general,
almost any of the traditional algorithms for process-
ing context-free grammars can be reformulated as
a strategy for avoiding the creation of useless cat-
egories and rules. Other enumeration strategies fo-
cus on the characteristics of the input f-structure. A
head-driven strategy (e.g. van Noord 1993) identi-
�es the lexical heads �rst, �nds the rules that ex-
pand them, and then uses information associated
with those heads, such as their grammatical function
assignments, to pick other categories to expand.

Our proof depends on the assumption that the in-
put F is fully speci�ed so that the set of possible
instantiations is �nite. Dymetman (1991), van No-
ord (1993), and Wedekind (1999) have shown that
it is in general undecidable whether or not there are
any strings associated with an f-structure that has
units in addition to those in the input. Indeed, our
proof of context-freeness does not go through if we
allow new units to be hypothesized arbitrarily, be-
yond the ones that appear in F ; if this is permitted,
we cannot establish a �nite bound on the number of
possible categories. This is unfortunate, since there
may be interesting practical situations in which it is
convenient to leave unspeci�ed the value of a par-
ticular feature. However, if there can be only a �-
nite number of possible values for an underspeci�ed
feature, the context-free result can still be estab-
lished. We create from F a set of alternative struc-
tures F1::Fn by �lling in all possible values of the
unspeci�ed features, and we produce the context-
free grammar corresponding to each of them. Since
a �nite union of context-free languages is context-
free, the set of strings generated from any of these
structures remains in that class.

A �nal comment about the generation problem for
other high-order grammatical formalisms. Our proof
depends on several features of LFG: the context-free
base, the piecewise correspondence of phrase struc-
ture and f-structure units, and the idempotency of
the functional description language. PATR shares
these properties, although the correspondence is im-
plicit in the mechanism and not rei�ed as a linguisti-
cally signi�cant concept. So, our proof can be used
to establish the context-free result for PATR. On
the other hand, it is not clear whether the string
set corresponding to an underlying HPSG structure
is context-free. HPSG (Pollard and Sag 1994) does
not make direct use of a context-free skeleton, and
operations other than concatenation may be used
to assemble a collection of substrings into an entire
sentence. We cannot extend our proof to HPSG un-
less the e�ect of these mechanisms can be reduced
to an equivalent characterization with a context-free
base. However, grammars written for the ALE sys-
tem's logic of typed feature structures (Carpenter
and Penn 1994) do have a context-free component

and therefore are amenable to the treatment we have
outlined.

Acknowledgments

We are indebted to John Maxwell, Hadar Shemtov,
Martin Kay, and Paula Newman for many fruit-
ful and insightful discussions of the LFG genera-
tion problem, and for criticisms and suggestions that
have helped to clarify many of the mathematical and
computational issues.

References

Carpenter, B. and G. Penn. 1994. ALE 2.0 User's
Guide. Technical report, Carnegie Mellon Univer-
sity, Pittsburgh, PA.

Dymetman, M. 1991. Inherently Reversible Gram-
mars, Logic Programming and Computability. In
Proceedings of the ACL Workshop: Reversible
Grammar in Natural Language Processing. Berke-
ley, CA, pages 20{30.

Kaplan, R. M. 1995. The Formal Architecture of
Lexical-Functional Grammar. In M. Dalrymple,
R. M. Kaplan, J. Maxwell, and A. Zaenen, edi-
tors, Formal Issues in Lexical-Functional Gram-
mar. CSLI Publications, Stanford, CA, pages 7{
27.

Kaplan, R. M. and J. Bresnan. 1982. Lexical-
Functional Grammar: A Formal System for
Grammatical Representation. In J. Bresnan, ed-
itor, The Mental Representation of Grammati-
cal Relations. MIT Press, Cambridge, MA, pages
173{281.

Kaplan, R. M. and J. Maxwell. 1996. LFG
Grammar Writer's Workbench. Technical re-
port, Xerox Palo Alto Research Center. At
http://ftp.parc.xerox.com/pub/lfg/lfgmanual.ps.

Pollard, C. and I. Sag. 1994. Head-Driven Phrase
Structure Grammar. The University of Chicago
Press, Chicago, IL.

Shieber, S., H. Uszkoreit, F. Pereira, J. Robinson,
and M. Tyson. 1983. The Formalism and Imple-
mentation of PATR-II. In B. Grosz and M. Stickel,
editors, Research on Interactive Acquisition and
Use of Knowledge. SRI Final Report 1894. SRI
International, Menlo Park, CA, pages 39{79.

van Noord, G. 1993. Reversibility in Natural Lan-
guage Processing. Ph.D. thesis, Rijksuniversiteit
Utrecht.

Wedekind, J. 1995. Some Remarks on the Decidabil-
ity of the Generation Problem in LFG- and PATR-
style Uni�cation Grammars. In Proceedings of the
7th Conference of the European Chapter of the As-
sociation for Computational Linguistics. Dublin,
pages 45{52.

Wedekind, J. 1999. Semantic-driven Generation
with LFG- and PATR-style Grammars. Compu-
tational Linguistics, 25(2): 277{281.

