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Abstract

Data-Oriented Parsing (dop) ranks among the best pars-

ing schemes, pairing state-of-the art parsing accuracy to

the psycholinguistic insight that larger chunks of syn-

tactic structures are relevant grammatical and proba-

bilistic units. Parsing with the dop-model, however,

seems to involve a lot of CPU cycles and a consider-

able amount of double work, brought on by the concept

of multiple derivations, which is necessary for probabilis-

tic processing, but which is not convincingly related to a

proper linguistic backbone. It is however possible to re-

interpret the dop-model as a pattern-matching model,

which tries to maximize the size of the substructures

that construct the parse, rather than the probability of

the parse. By emphasizing this memory-based aspect of

the dop-model, it is possible to do away with multiple

derivations, opening up possibilities for eÆcient Viterbi-

style optimizations, while still retaining acceptable pars-

ing accuracy through enhanced context-sensitivity.

1 Introduction

The machine learning paradigm of Memory-
Based Learning, based on the assumption that
new problems are solved by direct reference to
stored experiences of previously solved prob-
lems, has been successfully applied to a number
of linguistic phenomena, such as part-of-speech
tagging, NP-chunking and stress acquisition
(consult Daelemans (1999) for an overview).
To solve these particular problems, linguistic
information needed to trigger the correct dis-
ambiguation, is encoded in a linear feature
value representation and presented to a mem-
ory based learner, such as TiMBL (Daelemans
et al., 1999).
Yet, many of the intricacies of the domain of

syntax do not translate well to a linear repre-
sentation, so that established MBL-methods are
necessarily limited to low-level syntactic analy-
sis, like the aforementioned NP-chunking task.

Data Oriented Parsing (Bod, 1999), a state-
of-the art natural language parsing system,
translates very well to a Memory Based Learn-
ing context. This paper describes a re-
interpretation of the dop-model, in which the
pattern-matching aspects of the model are ex-
ploited, so that parses are analyzed by trying
to match a new analysis to the largest possible
substructures recorded in memory.
A short introduction to Data Oriented Pars-

ing will be presented in Section 2, followed by an
explanation of the term pattern-matching in the
context of this paper. Section 4 describes the
experimental setup and the corpus. The parsing
phase that precedes the disambiguation phase
will be outlined in Section 5 and a description
of the 3 disambiguating models, pcfg, pmpg
and the combined system pcfg+pmpg can be
found in Sections 6, 7 and 8.

2 Data Oriented Parsing

Data Oriented Parsing, originally conceived by
Remko Scha (Scha, 1990), has been successfully
applied to syntactic natural language parsing
by Rens Bod (1995), (1999). The aim of Data
Oriented Parsing (henceforth dop) is to develop
a performance model of natural language, that
models language use rather than some type of
competence. It adapts the psycholinguistic in-
sight that language users analyze sentences us-
ing previously registered constructions and that
not only rewrite rules, but complete substruc-
tures of any given depth can be linguistically
relevant units for parsing.

2.1 Architecture

The core of a dop-system is its treebank: an
annotated corpus is used to induce all substruc-
tures of arbitrary depth, together with their re-
spective probabilities, which is a expressed by
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Figure 1: Multiple Derivations

its frequency in the treebank relative to the
number of substructures with the same root-
node.
Figure 1 shows the combination operation

that is needed to form the correct parse tree
for the sentence Peter killed a raccoon. Given a
treebank of substructures, the system tries to
match the leftmost open node of a substruc-
ture that is consistent with the parse tree, with
the top-node of another substructure, consistent
with the parse tree.
Usually, di�erent combinations of substruc-

tures are possible, as is indicated in Figure
1: in the example at the left-hand side the
tree-structure can be built by combining an s-
structure with a speci�ed np and a fully speci-
�ed vp-structure. The right example shows an-
other possible combination, where a parse tree is
built by combining the minimal substructures.
Note that these are consistent with ordinary
rewrite-rules, such as s ! np vp.
One particular parse tree may thus consist of

several di�erent derivations. To �nd the prob-
ability of a derivation, we multiply the proba-
bilities of the substructures that were used to
form the derivation. To �nd the probability of
a parse, we must in principle sum the probabil-
ities of all its derivations.
It is computationally hardly tractable to con-

sider all derivations for each parse. Since
viterbi optimization only succeeds in �nding
the most probable derivation as opposed to the
most probable parse, the monte carlo al-
gorithm is introduced as a proper approxima-
tion that randomly generates a large number of
derivations. The most probable parse is consid-
ered to be the parse that is most often observed
in this derivation forest.

2.2 Experimental Results of dop

The basic dop-model, dop1, was tested on
a manually edited version of the ATIS-corpus
(Marcus, Santorini, and Marcinkiewicz, 1993).
The system was trained on 603 sentences (part-

of-speech tag sequences) and evaluated on a test
set of 75 sentences. Parse accuracy was used as
an evaluation metric, expressing the percentage
of sentences in the test set for which the parse
proposed by the system is completely identi-
cal to the one in the original corpus. Di�er-
ent experiments were conducted in which maxi-
mum substructure size was varied. With dop1-
limited to a substructure-size of 1 (equivalent
to a pcfg), parse accuracy is 47%. In the op-
timal dop-model, in which substructure-size is
not limited, a parse accuracy of 85% is ob-
tained.

2.3 Short Assessment of DOP

dop1 in its optimal form achieves a very high
parse accuarcy. The computational costs of the
system, however, are equally high. Bod (1995)
reported an average parse time of 3.5 hours per
sentence. Even though current parse time is
reported to be more reasonable, the optimal
dop algorithm in which no constrains are made
on the size of substructures, may not yet be
tractable for life-size corpora.
In a context-free grammar framework (con-

sistent with dop limited to a substructure-size
of 1), there is only one way a parse tree can
be formed (for example, the right hand side of
Figure 1), meaning that there is only one deriva-
tion for a given parse tree. This allows eÆcient
viterbi style optimization.
To encode context-sensitivity in the system,

dop is forced to introduce multiple derivations,
so that repeatedly the same parse tree needs to
be generated, bringing about a lot of computa-
tional overhead.
Even though the use of larger syntactic con-

texts is highly relevant from a psycholinguistic
point-of-view, there is no explicit preference be-
ing made for larger substructures in the dop

model. While the Monte Carlo optimization
scheme maximizes the probability of the deriva-
tions and seems to prefer derivations made up
of larger substructures, it may be interesting to



Disambiguator Parse Accuracy (/562) % F Parse Accuracy on parsable sentences (/456) %
pcfg 373 66.4 83.0 373 81.8
pmpg 327 58.2 75.1 327 71.7

pcfg+pmpg 402 71.5 85.2 402 88.2

Table 1: Experimental Results
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Figure 2: pcfg Error Analysis

see if we can make this assumption explicit.

3 Pattern-matching

When we look at natural language parsing from
a memory-based point of view, one might say
that a sentence is analyzed by looking up the
most similar structure for the di�erent analy-
ses of that sentence in memory. The parsing
system described in this paper tries to mimic
this behavior by interpreting the dop-model as
a memory-based model, in which analyses are
being matched with syntactic patterns recorded
in memory. Similarity between the proposed
analysis and the patterns in memory is com-
puted according to:

� the number of patterns needed to construct
a tree (to be minimized)

� the size of the patterns that are used to
construct a tree (to be maximized)

The nearest neighbor for a given analysis can
be de�ned as the derivation that shares the
largest amount of common nodes.

4 The experimental Setup

10-fold cross-validation was used to appropri-
ately evaluate the algorithms, as the dataset
(see Section 4.1) is rather small. Like dop1 the
system is trained and tested on part-of-speech

tag sequences. In a �rst phase, a simple bottom-
up chart parser, trained on the training parti-
tions, was used to generate parse forests for the
part-of-speech tag sequences of the test parti-
tion. Next, the parse forests were sent to the 3
algorithms (henceforth the disambiguators) to
order these parse forests, the �rst parse of the
ordered parse forest being the one proposed by
the disambiguator.
In this paper, 3 disambiguators are described:

� pcfg: simple Probabilistic Context-Free
Grammar

� pmpg: the dop approximation, Pattern-
Matching Probabilistic Grammar

� pcfg+pmpg: a combined system, inte-
grating pcfg and pmpg

The evaluation metric used is parse accuracy,
but also the typical parser evaluation metric F-
measure (precision/recall) is given as a means
of reference to other systems.

4.1 The Corpus

The experiments were conducted on an edited
version of the ATIS-II-corpus (Marcus, San-
torini, and Marcinkiewicz, 1993), which con-
sists of 578 sentences. Quite a lot of errors and
inconsistencies were found, but not corrected,
since we want our (probabilistic) system to be



able to deal with this kind of noise. Seman-
tically oriented ags like -tmp and -dir, most
often used in conjunction with pp, have been
removed, since there is no way of retrieving this
kind of semantic information from the part-of-
speech tags of the ATIS-corpus. Syntactic ags
like -sbj, on the other hand, have been main-
tained. Internal relations (denoted by numeric
ags) were removed and for practical reasons,
sentence-length was limited to 15 words max.
The edited corpus retained 562 sentences.

5 Parsing

As a �rst phase, a bottom-up chart parser
parsed the test set. This proved to be quite
problematic, since overall, 106 out of 562 sen-
tences (19%) could not be parsed, due to the
sparseness of the grammar, meaning that the
appropriate rewrite rule needed to construct the
correct parse tree for a sentence in the test set,
wasn't featured in the induced grammar. np-
annotation seemed to be the main cause for un-
parsability. An np like restriction code AP/57
is represented by the rewrite rule:

NP ! NN NN sym sym sym CD CD

Highly speci�c and at structures like these
are scarce and are usually not induced from the
training set when needed to parse the test set.
On-going research tries to implement gram-

matical smoothing as a solution to this problem,
but one might also consider generating parse
forests with an independent grammar, induced
from the entire corpus (training set+testset) or
a di�erent corpus. In both cases, however, we
would need to apply probabilistic smoothing to
be able to assign probabilities to unknown struc-
tures/rules. Neither grammatical, nor proba-
bilistic smoothing was implemented in the con-
text of the experiments, described in this paper.
The sparseness of the grammar proves to be

a serious bottleneck for parse accuracy, limiting
our disambiguators to a maximum parse accu-
racy of 81%.

6 pcfg-experiments

A pcfg constructs parse trees by using simple
rewrite-rules. The probability of a parse tree
can be computed by multiplying the probabili-
ties of the rewrite-rules that were used to con-
struct the parse. Note that a pcfg is identical

to dop1 when we limit the maximum substruc-
tures size to 1, only allowing derivations of the
type found at the right-hand side of Figure 1.

6.1 Experimental Results

The �rst line of Table 1 shows the results for the
pcfg-experiments: 66.4% parse accuracy is an
adequate result for this baseline model. We also
look at parse accuracy for parsable sentences
(an estimate of the parse accuracy we might
get if we had a more suited parse forest gener-
ator) and we notice that we are able to achieve
a 81.8% parse accuracy. This is already quite
high, but on examining the parsed data, serious
and fundamental limitations to the pcfg-model
can be observed

6.2 Error Analysis

Figure 2, displays the most common type of mis-
take made by pcfg's. The correct parse tree
could represent an analysis for the sentence:

I want a ight from Brussels to Toronto.

This example shows that a pcfg has a ten-
dency to prefer atter structures over embedded
structures. This is a trivial e�ect of the mathe-
matical formula used to compute the probabil-
ity of a parse-tree: embedded structure require
more rewrite rules, adding more factors to the
multiplication, which will almost inevitably re-
sult in a lower probability.
It is an unfortunate property of pcfg's that

the number of nodes in the parse tree is inversely
proportionate to its probability. One might be
inclined to normalize a parse tree's probability
relative to the number of nodes in the tree, but a
more linguistically sound alternative is at hand:
the enhancement of context sensitivity through
the use of larger syntactic context within parse
trees can make our disambiguator more robust.

7 pmpg-experiments

The Pattern-Matching Probabilistic Grammar
is a memory-based interpretation of a dop-
model, in which a sentence is analyzed by
matching the largest possible chunks of syn-
tactic structure on the sentence. To compile
parse trees into patterns, all substructures in
the training set are encoded by assigning them
speci�c indexes, np@345 e.g. denoting a fully
speci�ed np-structure. This approach was in-
spired by Goodman (1996), in which Goodman



unsuccessfully uses a system of indexed parse
trees to transform dop into an equivalent pcfg.
The system of indexing (which is detailed in De
Pauw (2000)) used in the experiments described
in this paper, is however speci�cally geared to-
wards encoding contextual information in parse
trees.
Given an indexed training set, indexes can

then be matched on a test set parse tree in a
bottom-up fashion. In the following example,
boxed nodes indicate nodes that have been re-
trieved from memory.
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In this example we can see that an np, con-
sisting of a fully speci�ed embedded np and
pp, has been completely retrieved from mem-
ory, meaning that the np in its entirety can
be observed in the training set. However, no
vp was found that consists of a vbp and that
particular np. Disambiguating with pmpg con-
sequently involves pruning all nodes retrieved
from memory:

S

NP-SBJ VP

vbp NP

Finally, the probability for this pruned parse
tree is computed in a pcfg-type manner, not
adding the retrieved nodes to the product:

P(parse) = P(s ! np-sbj vp) . P(vp ! vbp np)

7.1 Experimental Results

The results for the pmpg-experiments can be
found on the second line of Table 1. On some
partitions, pmpg performed insigni�cantly bet-
ter than pcfg, but Table 1 shows that the re-
sults for the context sensitive scheme are much
worse. 58.2% overall parse accuracy and 71.7%
parse accuracy on parsable sentences indicates
that pmpg is not a valid approximation of dop's
context-sensitivity.

7.2 Error Analysis

The dramatic drop in parsing accuracy calls for
an error analysis of the parsed data. Figure 3
is a prototypical mistake pmpg has made. The
correct analysis could represent a parse tree for
a sentence like:

What ights can I get from Brussels to Toronto.

The pmpg analysis would never have been
considered a likely candidate by a common
pcfg. This particular sentence in fact was ef-
fortlessly disambiguated by the pcfg . Yet
the fact that large chunks of tree-structure are
retrieved from memory, make it the preferred
parse for the pmpg. We notice for instance that
a large part of the sentence can be matched
on an sbar structure, which has no relevance
whatsoever.
Clearly, pmpg overestimates substructure

size as a feature for disambiguation. It's inter-
esting however to see that it is a working imple-
mentation of context sensitivity, eagerly match-
ing patterns from memory. At the same time, it
has lost track of common-sense pcfg tactics. It
is in the combination of the two that one may
�nd a decent disambiguator and accurate im-
plementation of context-sensitivity.

8 A Combined System (pmpg+pcfg)

Table 1 showed that 81.8% of the time, a pcfg
�nds the correct parse (for parsable sentences),
meaning that the correct parse is at the �rst
place in the ordered parse forest. 99% of the
time, the correct parse can be found among the
10 most probable parses in the ordered parse
forest. This opens up a myriad of possibili-
ties for optimization. One might for instance
use a best-�rst strategy to generate only the 10
best parses, signi�cantly reducing parse and dis-
ambiguation time. An optimized disambiguator
might therefore include a preparatory phase in
which a common-sense pcfg retains the most
probable parses, so that a more sophisticated
follow-up scheme need not bother with sense-
less analyses.
In our experiments, we combined the

common-sense logic of a pcfg and used its
output as the pmpg's input. This is a well-
established technique usually referred to as sys-
tem combination (see van Halteren, Zavrel, and
Daelemans (1998) for an application of this



technique to part-of-speech tagging):

sentences

pcfg

n most probable parses

pmpg

most probable parse

We are also presented with the possibility to
assign a weight to each algorithm's decision.
The probability of a parse can the be described
with the following formula:

P (parse) =

Q

i

P (rewrite-rule)i

(# non-indexed nodes)n

The weight of each algorithm's decision, as
well as the number of most probable parses that
are extrapolated for the pattern-matching algo-
rithm, are parameters to be optimized. Future
work will include evaluation on a validation set
to retrieve the optimal values for these param-
eters.

8.1 Results

The third line in Table 1 shows that the com-
bined system performs better than either one,
with a parse accuracy of 71.5% and close to 90%
parse accuracy on parsable sentences, which we
can consider an approximation of results re-
ported for dop1. Error analysis shows that
the combined system is indeed able to overcome
diÆculties of both algorithms. The example
in Figure 2 as well as the example in Figure
3 were disambiguated correctly using the com-
bined system

9 Future Research

Even though the pmpg shows a lot of promise
in its parse accuracy, the following extensions
need to be researched:

� Optimizing pmpg+pcfg for computa-
tional eÆciency: the graph in Section 8
shows a possible optimized parsing system,
in which a pre-processing pcfg generates
the n most likely candidates to be extrap-
olated for the actual disambiguator. Full
parse forests were generated for the exper-
iments described in this paper, so that the

eÆciency gain of such a system cannot be
properly estimated.

� pmpg+pcfg as an approximation needs to
be compared to actual dop, by having dop
parse the data used in this experiment, and
by having pmpg+pcfg parse the data used
in the experiments described in Bod (1999).

� The bottleneck of the sparse grammar
problem prevents us from fully exploiting
the disambiguating power of the pattern-
matching algorithm. The grael-system
(GRammar Adaptation, Evolution and
Learning) that is currently being devel-
oped, tries to address the problem of gram-
matical sparseness by using evolutionary
techniques to generate, optimize and com-
plement grammars.

10 Conclusions

Even though dop1 exhibits outstanding pars-
ing behavior, the eÆciency of the model is
rather problematic. The introduction of mul-
tiple derivations causes a considerable amount
of computational overhead. Neither is it clear
how the concept of multiple derivations trans-
lates to a psycholinguistic context: there is no
proof that language users consider di�erent in-
stantiations of the same parse, when deciding
on the correct analysis for a given sentence.
A pattern-matching scheme was presented

that tried to disambiguate parse forests by
trying to maximize the size of the substruc-
tures that can be retrieved from memory.
This straightforward memory-based interpreta-
tion yields sub-standard parsing accuracy. But
the combination of common-sense probabili-
ties and enhanced context-sensitivity provides
a workable parse forest disambiguator, indicat-
ing that language users might exert a complex
combination of memory-based recollection tech-
niques and stored statistical data to analyze ut-
terances.
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