
CommandTalk:  A Spoken-Language  Interface 
for Batt lef ie ld S imulat ions  

R .  C .  M o o r e ,  J .  D o w d i n g ,  H .  B r a t t ,  J .  M .  G a w r o n ,  Y .  G o r f u ,  a n d  A .  C h e y e r  

SRI  I n t e r n a t i o n a l  

333 R a v e n s w o o d  Ave. 

Menlo  Park ,  CA 94025 

{bmoore, dowding, harry, gawron, gorfu, cheyer}@ai.sri.com 

A b s t r a c t  

CommandTalk is a spoken-language inter- 
face to battlefield simulations that allows 
the use of ordinary spoken English to cre- 
ate forces and control measures, assign 
missions to forces, modify missions dur- 
ing execution, and control simulation sys- 
tem functions. CommandTalk combines a 
number of separate components integrated 
through the use of the Open Agent Ar- 
chitecture, including the Nuance speech 
recognition system, the Gemini natural- 
language parsing and interpretation sys- 
tem, a contextual-interpretation modhle, a 
"push-to-talk" agent, the ModSAF battle- 
field simulator, and "Start-It" (a graph- 
ical processing-spawning agent). Com- 
mandTalk is installed at a number of Gov- 
ernment and contractor sites, including 
NRaD and the Marine Corps Air Ground 
Combat Center. It is currently being 
extended to provide exercise-time control 
of all simulated U.S. forces in DARPA's 
STOW 97 demonstration. 

1 O v e r v i e w  

CommandTalk is a spoken-language interface to syn- 
thetic forces in entity-based battlefield simulations. 
The principal goal of CommandTalk is to let com- 
manders interact with simulated forces by voice in a 
manner as similar as possible to the way they way 
they would command actual forces. CommandTalk 
currently interfaces to the ModSAF battlefield sim- 
ulator and allows the use of ordinary English com- 
mands to 

• Create forces and control measures (points and 
lines) 

• Assign missions to forces 

• Modify missions during execution 

• Control ModSAF system functions, such as the 
map display 

As an example, the following sequence of com- 
mands can be used to initialize a simple simulation 
in ModSAF and begin its execution: 

Create an M1 platoon designated Charlie 4 
5. 

Put Checkpoint 1 at 937 965. 

Create a point called Checkpoint 2 at 930 
960. 

Objective Alpha is 92 96. 

Charlie 4 5, at my command, advance in a 
column to Checkpoint 1. 

Next, proceed to Checkpoint 2. 

Then assault Objective Alpha. 

Charlie 4 5, move out. 

With the simulation under way, the user can exer- 
cise direct control over the simulated forces by giving 
commands such as the following for immediate exe- 
cution: 

Charlie 4 5, speed up. 

Change formation to echelon right. 

Get in a line. 

Withdraw to Checkpoint 2. 

Examples of voice commands for controlling Mod- 
SAF system functions include the following: 

Show contour lines. 

Center on M1 platoon. 

Zoom in closer. 

Pan west 500 meters. 

Center north of Checkpoint 2. 



CommandTalk was initially developed for Leath- 
erNet, a simulation and training system for the Ma- 
rine Corps developed under direction of the Naval 
Command, Control and Ocean Surveillance Cen- 
ter, RDT&E Division (NRaD). In addition to Com- 
mandTalk, LeatherNet includes 

• MCSF, a version of ModSAF customized for the 
Marine Corps 

• CommandVu, a synthetic, data-enhanced envi- 
ronment with 3-D representation of MCSF be- 
haviors and display of commander decision aids 

• Terrain Evaluation Module (TEM), a system for 
line-of-sight and weapons coverage analysis 

LeatherNet is intended to be used both as a train- 
ing system for the Marine Corps and as the Marine 
Corps component of DARPA's Synthetic Theater of 
War (STOW) program. LeatherNet is currently in- 
stalled at the Marine Corps Air Ground Combat 
Center (MCAGCC), at Twentynine Palms, Califor- 
nia. 

A single CommandTalk interacts directly with 
only one ModSAF process. ModSAF, however, cre- 
ates distributed simulations that can include mul- 
tiple graphical user interface (GUI) processes and 
multiple simulator processes, plus other applica- 
tions such as CommandVu, communicating over a 
network through Distributed Interactive Simulation 
(DIS) and Persistent Object (PO) protocols. This 
architecture lets CommandTalk interact indirectly 
with all these components. Thus, a user can control 
a simulation using CommandTalk while viewing it 
in 3-D via CommandVu, without having to be aware 
of the ModSAF processes that mediate between the 
spoken commands and their results as seen in the 
3-D display. 

2 A r c h i t e c t u r e  

CommandTalk combines a number of separate com- 
ponents, developed independently, some of which are 
implemented in C and others in Prolog. These com- 
ponents are integrated through the use of the Open 
Agent Architecture (OAA) (Cohen et al., 1994). 
OAA makes use of a facilitator agent that plans and 
coordinates interactions among agents during dis- 
tributed computation. Other processes are encapsu- 
lated as agents that register with the facilitator the 
types of messages they can respond to. An agent 
posts a message in an Interagent Communication 
Language (ICL) to the facilitator, which dispatches 
the message to the agents that have registered their 
ability to handle messages of that type. This medi- 
ated communication makes it possible to "hot-swap" 
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or restart individual agents without restarting the 
whole system. The ICL communications mechanism 
is built on top of TCP/IP,  so an OAA-based system 
can be distributed across both local- and wide-area 
networks based on Internet technology. OAA also 
provides an agent library to simplify turning inde- 
pendent components into agents. The agent library 
supplies common functionality to agents in multiple 
languages for multiple platforms, managing network 
communication, ICL parsing, trigger and monitor 
handling, and distributed message primitives. 

CommandTalk is implemented as a set of agents 
communicating as described above. The principal 
agents used in CommandTalk are 

• Speech recognition 

• Natural language 

• Contextual interpretation 

• Push to talk 

• ModSAF 

• Start-It 

2.1 Speech  Recogn i t i on  

The speech recognition (SR) agent consists of a thin 
agent layer on top of the Nuance (formerly Corona) 
speech recognition system. Nuance is a commercial 
speech recognition product based on technology de- 
veloped by SRI International. The recognizer listens 
on the audio port of the computer on which it is run- 
ning, and produces its best hypothesis as to what 
string of words was spoken. The SR agent accepts 
messages that tell it to start and stop listening and 
to change grammars, and generates messages that it 
has stopped listening and messages containing the 
hypothesized word string. 

The Nuance recognizer is customized in two ways 
for use in CommandTalk. First, we have replaced 
the narrow-band (8-bit, 8-kHz sampled) acoustic 
models included with the Nuance recognizer and de- 
signed for telephone applications, with wide-band 
(16-bit, 16-kHz sampled) acoustic models that take 
advantage of the higher-quality audio available on 
computer workstations. Second, any practical ap- 
plication of speech recognition technology requires a 
vocabulary and grammar tailored to the particular 
application, since for high accuracy the recognizer 
must be restricted as to what sequences of words it 
will consider. To produce the recognition vocabulary 
and grammar for CommandTalk, we have imple- 
mented an algorithm that extracts these from the vo- 
cabulary and grammar specifications for the natural- 
language component of CommandTalk. This eases 



development by automatically keeping the language 
that  can be recognized and the language that  can be 
parsed in sync; that  is, it guarantees that  every word 
string that  can be parsed by the natural-language 
component is a potential recognition hypothesis, and 
vice versa. This module that  generates the recog- 
nition grammar for CommandTalk is described in 
Section 3. 

2.2 N a t u r a l  L a n g u a g e  

The natural-language (NL) agent consists of a thin 
agent layer on top of Gemini (Dowding et al., 1993, 
1994), a natural-language parsing and semantic in- 
terpretat ion system based on unification grammar. 
"Unification grammar" means that  grammatical cat- 
egories incorporate features that  can be assigned 
values; so that  when grammatical category expres- 
sions are matched in the course of parsing or se- 
mantic interpretation, the information contained in 
the features is combined, and if the feature values 
are incompatible the match fails. Gemini applies 
a set of syntactic and semantic grammar rules to 
a word string using a bot tom-up parser to gener- 
ate a logical form, a structured representation of the 
context-independent meaning of the string. The NL 
agent accepts messages containing word strings to 
be parsed and interpreted, and generates messages 
containing logical forms or, if no meaning represen- 
tation can be found, error messages to be displayed 
to the user. 

Gemini is a research system that  has been devel- 
oped over several years, and includes an extensive 
grammar of general English. For CommandTalk, 
however, we have developed an application-specific 
grammar, which gives us a number of advantages. 
First, because it does not include rules for En- 
glish expressions not relevant to the application, the 
grammar runs faster and finds few grammatical am- 
biguities. Second, because the semantic rules are 
tailored to the application, the logical forms they 
generate require less subsequent processing to pro- 
duce commands to the application system. Finally, 
by restricting the form of the CommandTalk gram- 
mar, we are able to automatically extract  the gram- 
mar that  guides the speech recognizer. 

The Nuance recognizer, like all other practical rec- 
ognizers, requires a grammar that  defines a finite- 
state language model. The Gemini grammar formal- 
ism, on the other hand, is able to define grammars of 
much greater computational complexity. For Com- 
mandTalk, extraction of the recognition grammar is 
made possible by restricting the Gemini syntactic 
rules to a finite-state backbone with finitely valued 
features. It should be noted that ,  although we are 
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not using the full power of the Gemini grammar for- 
malism, we still gain considerable benefit from Gem- 
ini because the feature constraints let us write the 
grammar much more compactly, Gemini's morphol- 
ogy component simplifies maintaining the vocabu- 
lary, and Gemini's unification-based semantic rules 
let us specify the translation from word strings into 
logical forms easily and systematically. 

2.3 C o n t e x t u a l  I n t e r p r e t a t i o n  

The contextual-interpretation (CI) agent accepts a 
logical form from the NL agent, and produces one 
or more commands to ModSAF. Since a logical form 
encodes only information that  is directly expressed 
in the utterance, the CI agent often must apply 
contextual information to produce a complete inter- 
pretation. Sources of this information can include 
linguistic context, situational context, and defaults. 
Since ModSAF itself is the source of situational in- 
formation about the simulation, the interaction be- 
tween the CI agent and ModSAF is not a simple 
one-direction pipeline. Often, there will be a series 
of queries to ModSAF about the current state of the 
simulation before the ModSAF command or com- 
mands that  represent the final interpretation of an 
utterance are produced. 

Some of the problems which must be solved by the 
CI agent are 

• Noun phrase resolution 

• Predicate resolution 

• Temporal resolution 

• Vagueness resolution 

2.3 .1  N o u n  P h r a s e  R e s o l u t i o n  

A noun phrase denoting an object in the simula- 
tion must be resolved to the unique ModSAF identi- 
fier for that  object. "M1 platoon," "tank platoon," 
or "Charlie 4 5" could all refer to the same entity in 
the simulation. To keep the CI informed about the 
objects in the simulation and their properties, the 
ModSAF agent notifies the CI agent whenever an 
object is created, modified, or destroyed. Since the 
CI agent is immediately notified whenever the user 
creates an object through the ModSAF GUI, the 
CI can note the salience of such objects, and make 
them available for pronominal reference (just as ob- 
jects created by speech are), leading to smoother 
interoperation between speech and the GUI. 

2.3 .2  P r e d i c a t e  r e s o l u t i o n  

While users employ generic verbs like move, at- 
tack, and assault to give verbal commands, the cor- 
responding ModSAF tasks often differ depending on 



the units involved. The ModSAF movement  task 
for a tank  platoon is different from the one for an 
infantry platoon or the one for a t ank  company. Sim- 
ilarly, the paramete r  value indicating a column for- 
mat ion for tanks is different from the one indicating 
a column formation for infantry, and the parame-  
ter tha t  controls the speed of vehicles has a differ- 
ent name than  the one tha t  controls the speed of 
infantry. All these differences need to be taken into 
account when generating the ModSAF command  for 
something like "Advance in a column to Checkpoint 
1 at 10 kph," depending on what  type of unit is be- 
ing given the command.  

2 .3 .3  T e m p o r a l  resolut ion 
The CI agent needs to determine when a com- 

mand  is given to a unit should be carried out. The  
command  may be par t  of a mission to be carried 
out later, or it may  be an order to be carried out 
immediately. If  the latter,  it may  be a permanent  
change to the current mission, or merely a tempo-  
rary  interruption of the current task in the mission, 
which should be resumed when the interrupting task 
is completed. The CI agent decides these questions 
based on a combination of phrasing and context.  
Sometimes, explicit indicators may  be given as to 
when the command is to be carried out, such as a 
specific time, or after a given duration of t ime has 
elapsed, or on the commander ' s  order. 

2.3.4 Vagueness  resolut ion 
Sometimes a verbal command does not include all 

the information required by the simulation. The  CI 
agent a t t empts  to fill in this missing information by 
using a combination of linguistic and situational con- 
text,  plus defaults. For instance, if no unit is explic- 
itly addressed by a command,  it is assumed tha t  
the addressee is the unit to whom the last verbal 
command  was given. The ModSAF "occupy posi- 
tion" and "at tack by fire" tasks require tha t  a line 
be given as a bat t le  position, but  users often give 
just  a point location for the position of the unit. In 
such cases, the CI agent calls ModSAF to construct  
a line through the point, and uses tha t  line for the 
bat t le  position. 

2.4 P u s h  to  T a l k  

The push-to-talk (PTT)  agent manages  the interac- 
tions with the user. I t  provides a long narrow win- 
dow running across the top of the sc reen- - the  only 
visible indication tha t  a ModSAF is CommandTalk-  
enabled. This window contains a microphone icon 
tha t  indicates the s tate  of CommandTalk  (ready, lis- 
tening, or busy), an area for the most recent rec- 
ognized string to be printed, and an area for text  
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messages from the system to appear  (confirmation 
messages and error messages). 

This agent provides two mechanisms for the user 
to initiate a spoken command.  A push-to-talk but- 
ton at tached to the serial port  of the computer  can 
be pushed down to signal the computer  to s tar t  lis- 
tening and released to indicate tha t  the ut terance 
is finished (push-and-hold-to-talk).  The  second op- 
tion is to click on the microphone icon with the left 
mouse but ton to signal the computer  to s tar t  listen- 
ing (click-to-talk). With  click-to-talk, the system 
listens for speech until a sufficiently long pause is 
detected. The length of t ime to wait is a paramete r  
tha t  can be set in the recognizer. The push-and- 
hold method generally seems more satisfactory for a 
number  of reasons: Push-and-hold leads to faster re- 
sponse because the system does not have to wait to 
hear whether the user is done speaking, click-to-talk 
tends to cut off users who pause in the middle of an 
ut terance to figure out what  to say next, and push- 
and-hold seems natural  to mil i tary users because it 
works like a tactical field radio. 

The P T T  agent issues messages to the SR agent 
to s tar t  and stop listening. It  accepts messages from 
the SR agent containing the words tha t  were recog- 
nized, messages tha t  the user has s topped speaking 
(for click-to-talk), and messages, from any agent, 
tha t  contain confirmation or error messages to be 
displayed to the user. 

2.5 M o d S A F  

The ModSAF agent consists of a thin layer on top 
of ModSAF. I t  sends messages tha t  keep the CI 
agent informed of the current s tate  of the simulation 
and executes commands  tha t  it receives from the CI 
agent. Generally, these commands  access functions 
tha t  are also available using the GUI,  but  not always. 
For example,  it is possible with CommandTalk  to tell 
ModSAF to center its map  display on a point tha t  is 
not currently visible. This cannot  be done with the 
GUI, because there is no way to select a point tha t  is 
not currently displayed on the map.  The set of mes- 
sages tha t  the ModSAF agent responds to is defined 
by the ModSAF Agent Layer Language (MALL). 

2.6 Start-It 

Star t - I t  is a graphical processing-spawning agent 
tha t  helps control the large number  of processes 
tha t  make up the CommandTalk  system. I t  pro- 
vides a mouse-and-menu interface to configure and 
s tar t  other processes. While it is part icularly use- 
ful for s tar t ing agent processes, it can also be used 
to s tar t  nonagent processes such as additional Mod- 
SAF simulators and interfaces, CommandVu,  and 



the LeatherNet  sound server. 
include the following: 

Features of Star t - I t  

• It  makes it easy to assign processes to machines 
distributed over a network. 

• I t  reports  process status (not running, initializ- 
ing, running, or dead). 

• I t  makes it easy to set command line arguments  
and maintain consistent command line argu- 
ments across processes. 

• The Star t - I t  configuration is data-driven, so it 
is easy to add processes and command  line ar- 
guments, or change default values. 

• An automat ic  restar t  feature keeps agents run- 
ning in case of machine failure or process death. 

3 Gemin i - to -Nuance  Grammar 
Compiler  

The SR agent requires a g rammar  to tell the rec- 
ognizer what  sequences of words are possible in a 
particular application, and the NL agent requires a 
g rammar  to specify the translation of word strings 
into logical forms. For optimal  performance,  these 
two grammars  should, as nearly as possible, ac- 
cept exactly the same word sequences. In gen- 
eral, we would like the recognizer to accept all word 
sequences that  can be interpreted, and any over- 
generation by the recognition g rammar  increases the 
likelihood of recognition errors without providing 
any additional functionality. In order to keep these 
two grammars  synchronized, we have implemented 
a compiler that  derives the recognition g r ammar  au- 
tomatical ly from the NL grammar .  

To derive a recognition g rammar  with coverage 
equivalent to the NL grammar ,  we must  restrict the 
form of the NL grammar .  Like virtually all practical 
speech recognizers, the Nuance recognizer requires a 
finite-state grammar ,  while the Gemini parser ac- 
cepts g rammars  tha t  have a context-free backbone, 
plus unification-based feature constraints tha t  give 
Gemini g rammars  the power of an arbi t rary  Turing 
machine. To make it possible to derive an equiv- 
alent finite-state grammar ,  we restrict the Gemini 
g rammars  used as input to our Gemini- to-Nuance 
compiler as follows: 

• All features in the Gemini g rammar  tha t  are 
compiled into the recognition g rammar  must  al- 
low only a finite number  of values. This means 
tha t  no feature values are structures tha t  can 
grow arbitrari ly large. 
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• The Gemini g r ammar  must  not contain any in- 
direct recursion. Tha t  is, no rule subsets are al- 
lowed with pat terns  such as A --+ B C ,  C --+ AD.  

• Immediate ly  recursive rules are allowed, but 
only if the recursive category is leftmost or 
r ightmost in the list of daughters,  so that  there 
is no form of center embedding. Tha t  is, A --+ 
A B  and A -~ C A  are allowed (even simultane- 
ously), but not A --+ C A B .  

There are many  possible formats for specifying a 
finite-state grammar ,  and the one used by the Nu- 
ance recognition system specifies a single definition 
for each atomic nonterminal  symbol as a regular ex- 
pression over vocabulary words and other nontermi- 
nals, such tha t  there is no direct or indirect recursion 
in the set of definitions. To transform a restricted 
Gemini g rammar  into this format,  we first trans- 
form the Gemini rules over categories with feature 
constraints into rules over atomic symbols, and we 
then transform these rules into a set of definitions in 
terms of regular expressions. 

3.1 Generating Atomic Categories 

Given the restriction tha t  all features must  allow 
only a finite number of values, it would be trivial to 
t ransform all unification rules into rules over atomic 
categories by generating all possible full feature in- 
stantiations of every rule, and making up an atomic 
name for each combination of category and feature 
values tha t  occur in these fully-instantiated rules. 
This would, however, increase the total  number of 
rules to a size tha t  would be too large to deal with. 
We therefore instantiate the rules in a more careful 
way tha t  avoids unnecessarily instantiat ing features 
and prunes out useless rules. 

The set of atomic categories is defined by consid- 
ering, for each daughter  category of each rule, all 
instantiations of just  the subset of features on the 
daughter  that  are constrained by the rule. Thus, 
if there is a rule that  does not constrain a feature 
on a particular daughter  category, an atomic cate- 
gory will be created for tha t  daughter  tha t  is under- 
specified for the value of tha t  feature. A prime ex- 
ample of this in the CommandTalk  g rammar  is the 
rule 

coordinate_hums : [] -+ 
digit:f] digit:f] digit:f] digit:f] 

which says that a set of coordinate numbers can be a 
sequence of four digits. In the CommandTalk  gram- 
mar  the digit category has features (singular vs. plu- 
ral, zero vs. nonzero, etc.) tha t  would generate at 



least 60 combinations if all instantiat ions were con- 
sidered. So, if we naively generated all possible com- 
plete instantiations of this rule, we would get at least 
604 rules. Even worse, we need other rules to per- 
mit up to eight digits to form a set of coordinate 
numbers, which would give rise to 60 s rules. Since 
the original rule, however, puts no constraints on 
any of the features of the digit category, by gener- 
ating an atomic category that  is under-specified for 
all features, we only need a single rule in the derived 
grammar. 

From the set of atomic categories defined in this 
way, we generate all rules consistent with the origi- 
nal Gemini rules, except that  for daughters that  have 
unconstrained features, we use only the correspond- 
ing under-specified categories. We then iteratively 
remove all rules that  cannot participate in a com- 
plete parse of an utterance, either because they con- 
tain daughter categories that  cannot be expanded 
into any sequence of words, given the particular lex- 
icon we have, or because they have a mother  cate- 
gory that  cannot be reached from the top category 
of the grammar. 

3.2 Compiling Rules to Regular 
Expressions 

Once we have transformed the Gemini unification 
grammar into an equivalent grammar over atomic 
nonterminals, we then rewrite the grammar as a set 
of definitions of the nonterminals as regular expres- 
sions. For the nonterminals that  have no recursive 
rules, we simply collect all the rules with the same 
left-hand side and create a single rule by forming the 
disjunction of all the right-hand sides. For example, 
if the only rules for the nonterminal A are 

A -* B C  
A - * D E  

then the regular expression defining A would be 
[(BC)(DE)]. In the Nuance regular expression no- 
tation, "( )" indicates a sequence and "[ ]" indicates 
a set of disjunctive alternatives. 

For nonterminals with recursive rules, we elimi- 
nate the recursion by introducing regular expressions 
using the Kleene star operator.  For each recursive 
nonterminal A, we divide the rules defining A into 
right-recursive, left-recursive, and nonrecursive sub- 
sets. For the right-recursive subset, we form the dis- 
junction of the expressions that  occur to the left of 
A. That  is, for the rules 

A -* B A  
A - * C A  

we generate [BC]. Call this expression LEFT-A. For 
the left-recursive subset, we form the disjunction of 

the expressions that  occur to the right of A, which 
we may call RIGHT-A. Finally, we form the disjunc- 
tion of all the right-hand sides of the nonrecursive 
rules, which we may call NON-REC-A. The com- 
plete regular expression defining A is then 

(*LEFT-A NON-REC-A *RIGHT-A) 

In the Nuance regular expression notation, the 
Kleene star operator "*" precedes the i terated ex- 
pression, rather than following it as in most nota- 
tions for regular expressions. Thus, . X  means that  
a sequence of zero or more instances of Z may occur. 

As an example, suppose the rules defining the non- 
terminal A are 

A -* B A  
A -* C D A  
A - *  E 
A -* FG 
A -* A H  

The corresponding regular expression defining A 
would be 

(*[B(CD)] [E(FG)] *H) 

This completes the transformation of a Gemini 
grammar with finitely-valued categories and a finite- 
state backbone into a Nuance regular expression 
grammar.  However, as one final optimization, we 
look for special cases where we can use the "Kleene 
plus" operator,  which indicates one or more in- 
stances of an expression in sequence, and which is 
handled more efficiently by the Nuance recognizer 
than equivalent expressions using Kleene star. We 
simply look for sequences" of the form (*X X)  or 
(X *X), and replace them with + X .  

4 D e v e l o p m e n t  H i s t o r y  

Work on CommandTalk began with SRI's initial 
receipt of MCSF on February 16, 1995. The 
first demonstrat ion of spoken commands to simu- 
lated forces in MCSF was given three weeks later 
on March 7; an initial version the CommandTalk 
prototype was installed at the Marine Corps Air 
Ground Combat Center (MCAGCC) on May 1; and 
a demonstrat ion of CommandTalk was given to Gen- 
eral Palm, the Commanding Officer of MCAGCC, 
on May 16. 

Enhanced versions of the system were demon- 
strated at DARPA's Software and Intelligent Sys- 
tems Symposium in August 1995, and evaluated in 
the STOW ED-1 milestone test in October 1995. In 
the evaluation of ED-1 performance, CommandTalk 
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was given the highest grade of any Marine Corps por- 
tion of the exercise. In addition to these milestones, 
CommandTalk has been included in demonstrations 
of LeatherNet to numerous VIPs including General 
C. C. Krulak, Commandant of the Marine Corps; 
General J. H. Binford Peay, Commander in Chief US 
Central Command; Secretary of the Navy J. H. Dal- 
ton; and Secretary of Defense William Perry. 

CommandTalk is currently being extended to pro- 
vide exercise-time control of all simulated U.S. forces 
in DARPA's STOW 97 Advanced Concept Technol- 
ogy Demonstration. 

5 Availability 

CommandTalk executables for Sun SPARC/SunOS 
and SGI MIPS/IRIX platforms are available at 
no cost to US Government users under Restricted 
Rights. Contractors may obtain CommandTalk in 
executable form exclusively for use on US Gov- 
ernment projects under license from SRI. Dis- 
tribution of CommandTalk for Government pur- 
poses is handled by NRaD (POC: Brenda Gill- 
crist, bwgill@nosc.mil). Other inquiries about Com- 
mandTalk, including licensing, should be directed to 
SRI (POC: Robert Moore, bmoore@ai.sri.com). 
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