
Automat i c Generat ion of On-Line D o c u m e n t a t i o n in the IDAS
Project*

Ehud Reiter, Chris Mellish, and John Levine
Department of Artificial Intelligence

University of Edinburgh
80 South Bridge

Edinburgh EH1 1HN BRITAIN
(e-mail: e.reiter@ed.ac.uk)

A b s t r a c t

The Intelligent Documentat ion Advisory Sys-
tem generates on-line documentat ion and help
messages from a domain knowledge base, using
natural- language (NL) generation techniques.
This paper gives an overview of IDAS, with par-
ticular emphasis on: (1) its architecture and the
types of questions it is capable of answering; (2)
its KR and NL generation systems, and lessons
we have learned in designing them; and (3) its
hypertext-like user interface, and the benefits
such an interface brings.

1 I n t r o d u c t i o n

The Intelligent Documentat ion Advisory System (IDAS)
project is a t tempt ing to use natural-language (NL) gen-
eration and hypertext technology to produce an on-line
documentat ion and help system that supports users of
complex machinery. In this paper we present an overview
of the most recent IDAS prototype developed at the Uni-
versity of Edinburgh, including descriptions of:

• IDAS's overall architecture, and particularly its
queslion space, i.e., the set of queries it is designed
to answer;

• IDAS's I (R and NL generation components, with
particular emphasis on lessons we have learned while
building them, and related design decisions;

• IDAS's hypertext-like user interface, and the oper-
ations it is intended to support .

IDAS is a collaborative effort between the University
of Edinburgh, Raeal Instruments Ltd., Racal Research

• The IDAS project is partially funded by UK SERC grant
GR/F/36750 and UI(DTI grant IED 4/1/1072, and we are
grateful to SERC and DTI for their support of this work. We
would also like to thank the IDAS industrial collaborators - -
Inference Europe, Ltd.; Racal Instruments, Ltd.; and Racal
Research, Ltd. - - for all the help they have given us in
performing this research. Thanks also to Robert Dale and
tile anonymous reviewers for their very helpful comments

Ltd., and Inference Europe Ltd. As this paper is written,
the project is about half-way through its 3-year lifespan.
Several prototypes have been built to date; this paper
describes the most recent one built at the University of
Edinburgh, which consists of about 5000 lines of Lisp
code. Work on IDAS continues as this paper is being
written, with current tasks including the expansion of
the existing domain knowledge base, and the integration
of the documentat ion software with the actual hardware
being documented. We have not yet carried out any
formal evaluations of IDAS, although we hope to arrange
such tests once the current expansion and integration
tasks are completed; the existing system has been shown
to many people informally, generally with quite favorable
reactions.

The initial IDAS system documents an ATE (Auto-
matic Test Equipment), a complex device made by Racal
Instruments for testing potentially faulty electronic de-
vices. The ATE contains an assortment of electronic
instruments, a switching system that connects these in-
s t ruments to a UUT (Unit Under Test), and a computer
which runs test programs tha t test the UUT with the in-
struments. Potential IDAS users include operators who
use the ATE to test UUTs; maintenance technicians who
look for faults in the ATE itself; and programmers who
create test programs. The current IDAS prototype is
designed to support operators and maintenance techni-
cians; support for programmers may be added later.

2 A r c h i t e c t u r e

A simplified version of IDAS's architecture is shown in
Figure 1. Textual output from test programs and other
ATE software is intercepted by the Listener, 1 which de-
tects mentions of ATE components and extracts infor-
mation about the user 's task (e.g., what test program
he is running). Mentioned components are added to the
discourse in-focus list, and are also made mousable in

1The Listener has not yet been implemented in the
prototype.

64

ATE
Test
Programs

" ex ual--, i tener__ W I itia, pointin
output . question space

|

I
I

e

I Discourse context I ~ NLG Content
,,. Task context .-~ ": Determination

"'.," KB info

IDAS KB, includes: I /o" "~[NLG Text
Domain knowledge '°° ""J¢'l Planning
Content-determ. rules ; oO° '
User-expertise models ~..'°
User-task models '
Grammar ,' - ~
Lexicon i

New point in
question space

Hypertext
Interface

~ SPL -.j NLG Surface Annotated
Realization text string

. ! . D A . s . s . . y . s t e m .

User

Figure 1: Simplified IDAS architecture

the output window; if the user clicks on one, he invokes
IDAS and the Listener creates an initial query about that
component, i.e., an initial point in question space (Sec-
tion 2.1). The question space point is given to IDAS's
NL generation system, which generates a response us-
ing three modules: content determination, which picks
relevant information out of the knowledge base to com-
municate to the user; text planning, which converts this
information into an expression in SPL, the ISI Sentence
Planning Language [Kasper, 1989]; and surface realiza-
tion, which produces a surface form, i.e., an annotated
text string.

The annotations consist of text-formatting commands
(e.g., Begin-New-Line) and hypertext specifications.
The annotated text string is given to the Hypertert In-
lcrface system, which presents it to the user in a hy-
pertext window; this window also includes buttons for
hyperschema follow-up questions (Section 4.1). If the
user clicks on a mouse-sensitive word or a button, the
point in question space that corresponds to this query
is passed to the NL generation system, and the process
iterates.

2.1 Q u e s t i o n Space

Question space is the set of queries that can be given
to IDAS's NL generation system; IDAS's hypertext sys-
tem can be viewed as a tool that enables a user to
move around question space until he finds a point that
gives him the information he is looking for. A point in
question-space is a tuple with five components:

• Basic-question: Currently includes What-is-it,
Where-is-it, What-is-its-purpose, What-are-its-
specifications, What-are-its-parts, What-is-it-
connected-to, How-do-I-perform-the-task. 2

• Component: the target of the question, e.g.,
P r i n t e r - 3 6 or C o m p u t e r - 3 ; components are usu-
ally physical ATE components, but can in some
cases be actions or other knowledge-base entities.

• Task: The user's task, e.g., Operations or Replace-
Part.

• User-Expertise: The user's expertise level, e.g.,
Novice or Skilled.

• Discourse-in.focus: The set of in-focus objects for
referring expression generation [Grosz and Sidner,
1986].

For example, the question space point (What-is-it,
D C - P o w e r - S u p p l y - 2 3 , Operations, Skilled, {VXI-
Chassis-36, DC-Power -Supp ly -23}) represents the
query "What is the DC Power Supply" when asked by
a user of Skilled expertise who is engaged in an Op-
erations task with the discourse context containing the
objects VXI .Chass i s -36 and D C - P o w e r - S u p p l y - 2 3 .
The NL Generation component would in this case pro-
duce the response

~How-do-l-perform-the-task is interpreted as How-do-I-
use-it for Operations tasks, How-do-I-replace-it for Replace-
Part tasks, etc.

65

"The DC power supply is a black Elgar AT-
8000 DC power supply."

Variations in the above tuple would be processed as
follows:

• C o m p o n e n t : If a different component had been
specified, IDAS would have generated another re-
sponse that communicated colour, manufacturer,
and model-number information, as specified by the
content-determination rule for What-is-it questions
asked during Operations tasks (Section 3.2). For
example, if the component had been P r i n t e r - 1 2 ,
the generated text would have been

"The printer is a white Epson LQ-1010
printer."

• Bas i c Ques t ion : A different response pattern (i.e.,
content-determination rule) would have been used
for a different basic question. For example, if the
basic question had been What-is-its-purpose, the re-
sponse would have been

"The DC power supply provides DC power
for the UUT."

• Task: A different response pattern would also have
been used if a different task had been specified. For
example, for the What-is-it question, if the user's
task had been Replace-Part instead of Operations,
colour would have been omitted but a part number
would have been included, e.g.,

"Tile DC power supply is an Elgar AT-
8000 DC power supply with part number
OPT-EP2."

• User -Exper t i se : Tile What-is-its-purpose response
would have been phrased differently if the user's
expertise level had been Novice instead of Skilled:
'unit under test' would have been used instead of
'UUT', 'power' instead o f 'DC power', and 'the black
power supply' instead of ' the DC power supply', giv-

ing:

"The black power supply provides power
for the unit under test."

• D i scourse - in - focus : The discourse-in-focus list does
not affect the above responses, but it would affect
the response to Where-is-it. The response to Where-
is-it under the original discourse-in-focus list would
have been:

"The DC power supply is below the VXI
chassis."

If the discourse-in-focus list had included Mains -
C o n t r o l - U n i t - 2 9 instead of VXI -Chas s i s -36 , the

location would have been given relative to the
mains-control-unit instead of the VXI-chassis, i.e.,
the text would have been:

"The DC power supply is above the mains
control unit."

Question space is quite large: the current prototype
has 40 components, 7 basic questions, 6 user-tasks, and
3 user-expertise models, so there are over 5000 points
in its question space even if variations in the discourse
context are ignored, a A more realistically sized system
would document several hundred components and prob-
ably would have additional user-task and user-expertise
models as well; its question space could therefore easily
contain several hundred thousand points. Many point.,
in question space represent queries that produce the
same text (e.g., responses to Where-is-it do not depend
on the user's task); even if only 10% of the points ir
question space produce distinct responses, however, this
still means that a realistically-sized IDAS system must
be able to generate tens of thousands of different re-
sponses. The justification for using natural languag~
generation in IDAS is that it would be difficult to entel
20,000 different canned text responses for 200,000 differ-
ent queries, and almost impossible to maintain this doe.
umentation database as new ATE configurations wer~
announced; using NL generation from a domain knowl.
edge base accompanied by explicit task, expertise, an(
discourse models makes it feasible to supply appropriaU
answers for this multitude of possible queries.

3 K R a n d N L G

The fundamental purpose of IDAS's knowledge repre.
sentation (KR) and natural-language generation (NLG
components is to represent domain information in a mot,
efficient form than thousands of canned text responses
For example, a component 's model number will typicall2
appear in at least 30 different query responses (i.e., ques.
tion space points); representing it in the knowledge bas,
and using NLG to produce text from the knowledge bas,
allows the documenter to enter (and update) this infor
mation only once, instead of 30 times.

Many of the theoretically interesting aspects of IDAS'
KR and NLG systems are discussed elsewhere, e.g., [Re
iter and Mellish, 1992; Reiter and Dale, 1992]. Here, w,
present a brief overview of the KR and NLG systems
and then discuss three design decisions that we mad
during the course of development: allowing canned tex
and other 'cheats'; generating short and focused replies

3The prototype's knowledge base is not complete; cur
rently only about 2/3 of tile potential queries can b
answered.

66

and stressing authorabil i ty instead of deep reasoning in
content-determination. These decisions were not part
of the original IDAS design, but rather were made as
a result of experience in developing prototypes and in-
teracting with our industrial collaborators; hence, they
are 'lessons' we have learned that may be of interest
to other researchers and developers working on similar
applications-oriented projects.

3.1 K n o w l e d g e R e p r e s e n t a t i o n

The IDAS knowledge-representation system uses a KL-
ONE type taxonomy [Brachman and Schmolze, 1985] to
represent domain entities (e.g., companies, ATE com-
ponents, user actions) and linguistic knowledge (gram-
matical units, lexieal definitions, etc.). The knowledge-
base is supported by a KL-ONE-like automatic classi-
tier; a superclass-to-subclass at t r ibute inheritance sys-
tem, based on Touretzky 's minimal inferential distance
principle [Touretzky, 1986]; and a graphical browse/edit
tool. We currently use a small demonstration knowl-
edge base that contains about 200 classes that represent
domain entities (e.g., the company Raea l , the compo-
nent C o u n t e r - t i m e r , and the user-action Clean) , and
50 roles that represent domain attr ibutes (e.g., colour
and manufac tu re r) . The knowledge-base will, of course,
need to be substantially enlarged before it is of much use
to real users.

The knowledge-base also contains user-expertise and
user-task models. The user-expertise models overlay the
class taxonomy, and specify what words a user knows
and what primitive actions he can execute; they are in
some ways similar to the user-models used in the FN

system [Reiter, 1990]. The task models do not con-
tain any structure themselves, but affect which content-
determination rule is chosen (Section 3.2), and hence the
system's decision as to what information the response
should communicate to the user. The current proto-
type contains 3 user-expertise models and 6 task models.
More expertise and task models will probably be added
with time, but we expect our final system to have at
most tens of such models, not hundreds; our objective
is provide expertise and task models that are a reason-
able fit to most circumstances, not to be able to cover
all possible users performing all possible actions.

An authoring tool for the knowledge base is currently
being developed by one of our industrial collaborators.
Such a tool, which we hope will be directly usable by
technical authors and domain experts, is of course vital
to the ul t imate success of the project.

3.2 Natura l Language Genera t ion

Natural-language generation is performed in IDAS in
three stages:

Content Determination: The basic-question, compo-
nent, and user-task components of the question-
space tuple are used to pick a content-determination
rule, which specifies which information from the do-
main knowledge base should be communicated to
the user.

Text Planning: The KB information is turned into an
SPL term, in a process which is sensitive to the user-
expertise and discourse components of the question-
space tuple. This process involves, for example,
generating referring expressions and choosing open-
class lexical items.

Surface Realization: The SPL term is converted into a
surface form, i.e., a set of words with formatt ing and
hypertext annotations. Except for its hypertext-
related abilities, the IDAS surface-generation sys-
tem has a similar functionality to a subset of
the PENMAN system [Penman Natural Language
Group, 1989].

IDAS's NL generation system is only designed to be
able to generate small pieces of text (a few sentences,
a paragraph at most). This is because IDAS's hyper-
text system should enable users to dynamically select
the paragraphs they wish to read, i.e., perform their own
high-level text planning [Levine el al., 1991], thereby
eliminating the need for the generation system to per-
form such planning.

3.3 D e s i g n D e c i s i o n s

3.3.1 C a n n e d T e x t a n d o t h e r C h e a t s

We decided fairly early on not to put a great deal
of effort into 'proper ly ' handling rarely-occurring spe-
cial cases, but instead to support canned text and other
'cheats ' as a way of handling these cases. If a particular
response is difficult for our KB system to represent or our
generation system to generate, we simply enter canned
text for this response, or (preferably) generate as much
of the response as possible with straightforward applica-
tions of our knowledge-based techniques, and then add
canned text annotat ions to convey things it would be
difficult to generate.

For example, one instructional action in the knowledge
base is "mount the ITA against the test head with the
four lugs of the ITA resting in the four hooked recepta-
cles of the test head". This is currently represented as a
M o u n t action where the aetee is the I T A , the location
is the T e s t - h e a d , and the m a n n e r is the canned text.

67

"with the four lugs of the ITA resting in the

four hooked receptacles of the test head". The

system could be augmented to 'properly ' represent this
manner modifier, but we felt development efforts could
more productively be spent elsewhere, and hence have
left this modifier as canned text. Since IDAS's domain
KB is only used for generating text and does not have
to support general domain reasoning, the decision on
whcn to use canned text can be made on such engineer-
ing grounds.

We believe that 'cheating' in this and other manners
(e.g., by only supporting a small number of user task
and expertise models) is unavoidable, given our goal of
building a usable NL generation system with non-trivial
domain coverage. As in so many other fields, there is
something like a 90%-10% law in operation; properly
handling the 10% of special and unusual cases would
require 90% of the development effort. With current-
day NL generation technology, it is difficult enough to
do a good job on the 90% of common cases; spending
ten times this effort to handle the remaining 10% of un-
usual cases would not be justifiable, since we would get
a much better usability payoff by spending a fraction of
this effort in improving the handling of common cases.

3.3.2 S h o r t T a r g e t e d R e s p o n s e s

When the project started, our industrial collaborators
gave us an initial list of sample responses they wanted us
to try to generate. These responses were fairly general,
a.nd subsequent discussions revealed that using more
context-specific responses was preferable both for our
collaborators and for us. Our collaborators preferred
such responses because they were more likely to give
users the information they really needed, while we found
that the context-specific responses were in many ways
easier to generate than the original responses; this was
largely because they tended to have simpler linguistic
and rhetorical structures.

For example, the original human-generated response
for the query "What is the ARINC-429 Interface" was

"The ARINC-429 interface is a serial Avionics
bus interface for communicating with a UUT
fitted with this bus interface. ARINC 429 is
a single source, multi-sink unidirectional data
transmission standard. It is used to interface
digital avionics equipment in commercial appli-
cations, but is also seen in mili tary equipment
where there is a commonali ty with commercial
equipment."

In our current prototype, if this query was asked by a

user with a Skilled expertise level who was engaged in a
Replace-Part task, the response would be

"It is a Racal 10500-130 ARINC-429 interface
with part number RIL-523."

The second response is intended to inform the user of
the interface's manufacturer, model number, and part
number, since tha t presumably is the information some-
one performing a Replace-Part task most needs to know.
Hyper text follow-ups enable the user to get the location
of the ARINC-429 interface and a list of its subcompo-
nents; these also might be impor tant pieces of informa-
tion for a Replace-Part task.

The second response thus gives the user the informa-
tion he most needs to know to perform his task, and uses
hypertext follow-ups to enable him to obtain other pos-
sibly impor tant pieces of information; it does not give
him a general description of the ARINC standard, as
was present in the original human-generated response.
This information is not directly relevant to the Replace-
Par t task, and could be as much of a distraction as a
help to a maintenance technician; 4 it also would be dif-
ficult to represent and generate this text in the current
IDAS architecture, except as canned text (e.g., it is diffi-
cult to represent the concept of 'mil i tary equipment that
has a commonal i ty with civilian equipment ' in the IDAS
knowledge base).

Short, specific, and targeted responses were thus felt
to be both more useful and in many ways easier to gen-
erate. There is a danger tha t such responses might be
inappropriate, if one of the contextual factors (task, ex-
pertise, discourse) is incorrect. We will investigate this
in more detail when we perform user-evaluation trials;
our hope is that users will be able to use IDAS's hy-
pertext follow-up capabilities to obtain the information
they need if an inappropriate response is generated.

3.3.3 C o n t e n t D e t e r m i n a t i o n

IDAS uses a much simpler content-determination sys-
tem than other generation systems with somewhat sim-
ilar goals (e.g., C O M E T [McKeown et al., 1990] and
W I P [Wahlster et al., 1991]). Instead of using planning
[Moore and Paris, 1989] or schemas [McKeown, 1985]

to determine what to communicate, IDAS's content-
determination system is based on rules (created by do-
main experts) of the form 'if a user asks question Q about
a component of type C in the context of task T, he should
be told facts F' . 5 In other words, it is intended to sup-

4The author of the original human-generated response
agrees with this assessment.

5The rules are actually represented as KB classes with
appropriate basic-quest ion, c o m p o n e n t , and task role
fillers, and attached data that indicates the facts to be com-
municated; content-determination is done by classifying the
current question-space point into the rule taxonomy, and in-
heriting the attached data [Reiter and Mellish, 1992].

68

port easy authorability, instead of reasoning from basic
principles. We felt ' this was the most appropriate way
in which to achieve IDAS's goal of fairly broad, but not
necessarily deep, domain coverage.

One drawback of the lack of plan-based content-
determination is that IDAS can not in general answer
Why questions about its suggested actions, in the man-
ner described by [Moore and Swartout, 1990]. Indeed,
because IDAS does not have access to an underlying do-
main reasoning system (such as the EES system used
by Moore and Swartout), it can only respond to a Why
question if a 'purpose' plan for the relevant object or ac-
tion has been explicitly added to the knowledge base by
a domain expert.

4 H y p e r t e x t

4.1 H y p e r t e x t in I D A S

IDAS's hypertext interface allows users to issue new
queries by mouse-clicking on pieces of text. Hypertext
links are automatically added to referring expressions
and action descriptions; clicking on a referring expres-
sion pops up a menu of basic questions that can be asked
about the referred-to component in the current context,
while clicking on an action issues a request for IDAS to
explain this action in more detail (i.e., issues a How-do-
I-perform question for this action).

P~esponses can also contain hyperschema follow-
up buttons. These are specified by the content-
determination rules' (Section 3.3.3), i.e., by rules of the
form 'if a user asks question Q about a component of
type C in the context of task T, he should be given the
opportunity to ask follow-up question F'. These follow-
up questions were originally intended to implement a
variant of McKeown's schema system [MeKeown, 1985]
where the user, instead of the system, decided which
ATN arc to traverse; hence the name hyperschema. The
mechanism is quite general, however, and can be used to
add any useful follow-up question to a hypertext node.
The current IDAS system also adds a special M E N U
button to all nodes, which allows users to explicitly
modify their question-space coordinates in any way they
choose; this button is primarily a development aid, and
may not appear in the final system.

Users can utilize the hypertext interface for many pur-
poses, including:

• Elaboration: If a user wants further information
about an object or action mentioned in the text, he
can obtain it by clicking on the textual description
of that cntity.

• High-level text planning: Ilyt~erschemas and the
other follow-up mechanisnas allow users to dynam-

ically specify which paragraphs they are interested
in reading; this effectively means they can perform
their own high-level text planning (Section 3.2).

* Browsing: The hypertext interface provides some
support for general browsing, which may be neces-
sary if a user is not entirely sure which question he
should ask. We may add more support for browsing
in the future, such as a hypertext-based structural
browser similar to the one proposed for the IMAD
system [Hayes and Pepper, 1989].

IDAS's hypertext interface is in some ways similar to
the one presented by [Moore and Swartout, 1990], al-
though it has a broader scope; Moore and Swartout used
hypertext primarily to enable users to ask for clarifica-
tions of explanations, while IDAS uses hypertext as a
general input mechanism which users can use to pose
any question the system is capable of answering.

The current IDAS prototype does not do anything in-
teresting in modeling the discourse structure of hyper-
text dialogues; it simply assumes that each hypertext
node corresponds to a separate closed focus-space [Grosz
and Sidner, 1986], and hence that an object introduced
in one node cannot be referred to in another node unless
it is re-introduced. We suspect this may be an overly
conservative approach, and hope to do more research in
the future on the relationship between the focus spaces
of different hypertext nodes.

4.2 E x a m p l e

Figure 2 shows some example IDAS texts produced by
the various follow-up mechanisms. The initial query was
What-are-its-parts, asked about the complete ATE by a
Skilled expertise person performing an Operations task;
this produces the text shown in Response 1. The under-
lined part names (which are in fact referring expressions)
are all mousable, as is ATE in the title question and the
buttons on the bot tom line. Response 2 was produced
by clicking on t e s t head in Response 1, and selecting
What-is-it from a pop-up menu of basic questions; this
response was generated using the same user-task, user-
expertise, and discourse-in-focus question-space compo-
nents as Response 1. 6 The hyperschema follow-ups for
(What-is-it, ?Component, Operations) are (Where-is-
it, ?Component, Operations) and (How-do-I-perform-
the-task, ?Component, Operations), so WHERE and USE 7

follow-up buttons are added to the response, s The MENU

~As mentioned above, IDAS currently assumes that dis-
course focus-space changes within one hypertext node do not
have any effect on other nodes.

Zltow-do-I-use-it is the interpretation of Itow-do-l-
perform-the-ta~k under an Operations user-task

~Other questions, e.g., What-are-its-parts, C/Ill be asked
by clicking on t e s t head in the title question, alld selecting

69

Figure 2: Example IDAS Texts

button was described above; it allows the user to explic-
itly specify a new point in question space. Response 3
was obtained by clicking on WrlERE; it answers 'Where is
the test head'.

Response 4 comes from clicking on the USE button in
Response 2; 9 it is a response to 'How do I use the test
head'. In this response the underlined nouns t e s t head,
ITA mechanism, and ITA are all linked to pop-up menus
of basic questions abou t these components, while the
verbs un lock , mount, and lock are all linked to How-
do-I-perform queries for the relevant action. Clicking on
un lock produces Response 5, which presents a step-by-
step decomposit ion of the action of unlocking the ITA
mechanism. Response 6 was obtained by clicking on
l e v e r in Response 5, and selecting What-is-it from the
pop-up menu.

4.3 H y p e r t e x t vs N L U n d e r s t a n d i n g

From IDAS's perspective, hypertext is a technique for
enabling users to specify an input (i.e., a question-space
point) to the NL generation system. As such, it is natu-

ral to compare it to other input mechanisms, particularly
natural language text input. The advantages of hyper-
text over NL input systems include:

• Implementa t ion: A hypertext interface is easier to
implement than a NL input system; indeed, we have
found that generat ing hypertext is only marginally

from the pop-up menu.
9An identical response would have been obtained by

clicking on USE in Response 3, since Responses 2 and 3
have the same task, expertise, and discourse question-space
conlponents.

more difficult than generating conventional text (i
appropr ia te graphics support software is available)
Implement ing an NL input system, in contrast, is
major undertaking.

. Deict ic References: As [Moore and Swartout, 1990
point out, a hypertext interface makes many (al
though not all) kinds of references trivial for a user
he simply points to the phrase that describes th,
object or action he wants more information about
The user does not have to construct a complex re
ferring expression (e.g., "the board I was told to re
move in the second sentence"), and the system doe'.
not have to try to resolve such complex references.

• Transparency of Capabilities: NL understandinl
systems are in general only capable of answering
subset of the questions the user is able to pose, an(
the user may become confused if he is not aware o
the boundaries of this subset [Tennant et al., 1983]
This problem does not arise with hypertext, whet,

the user is only allowed to issue questions that th,
sys tem can answer.

Perhaps the pr imary disadvantage of hypertext sys
tems is their lack of flexibility; hypertext systems typi
cally limit the user to pointing to a single entity and ask
ing one of a small number of questions about it, while NI
input systems allow queries to be stated using the ful
power of English or other human languages. While thi
is a severe, perhaps crippling, drawback in many applica
tions, we believe it is less of a problem in IDAS, becaus,
IDAS is only capable of responding to a small numbe

70

of basic questions about entities in any case. Hypertext
clicking can in fact be used in IDAS to pose almost all
questions that IDAS is capable of answering; if the user
is allowed to use the M E N U button, then any answer-
able query can be issued through the hypertext inter-
face. Accordingly, IDAS does not currently include an
NL understanding component, and there are no plans for
adding one; we believe that hypertext mechanisms will
provide a sufficient query input mechanism for IDAS.

5 C o n c l u s i o n

The IDAS project is attempting to use natural-language
generation and hypertext technology to build a proto-
type of an on-line documentation and help system for
complex machinery. IDAS is based around the ideas of
(1) having a well-structured question space; (2) using
KR and NL generation systems that produce short tar-
geted responses and allow canned text to be used when
necessary; and (3) presenting users with a hypertext-like
interface that allows them to pose follow-up and elabo-
ration questions. Our hope is that this combination will
allow us to construct a system that demonstrates that
current-day natural-language generation technology can
be used to build a useful on-line documentation facility;
this, indeed, is the ultimate goal of the IDAS project.

R e f e r e n c e s

[Brachman and Schmolze, 1985] Ronald Brachman and
James Schmolze. An overview of the KL-ONE knowl-
edge representation system. Cognitive Science, 9:171-
210, 1985.

[Grosz and Sidner, 1986] Barbara Grosz and Candace
Sidner. Attention, intention, and the structure of dis-
course. Computational Linguistics, 12:175-206, 1986.

[Hayes and Pepper, 1989] Phil Hayes and Jeff Pepper.
Towards an integrated maintenance advisor. In Hy-
pertezt 1989 Proceedings, pages 119-127, Pittsburgh,
1989.

[Kasper, 1989] Robert Kasper. A flexible interface for
linking applications to Penman's sentence generator.
In Proceedings of the 1989 DARPA Speech and Natu-
ral Language Workshop, pages 153-158, Philadelphia,
1989.

[Levine et al., 1991] John Levine, Alison Cawsey, Chris
Mellish, Lawrence Poynter, Ehud Reiter, Paul Tyson,
and John Walker. IDAS: Combining hypertext and
natural language generation. In Proceedings of the
7'bird European Workshop on Natural Language Gen-
eration, pages 55-62, Innsbruck, Austria, 1991.

[McKeown et al., 1990] Kathleen McKeown, Michael
Elhadad, Yumiko Fukumoto, Jong Lim, Christine
Lombardi, Jacques Robin, and Frank Smadja. Nat-
ural language generation in COMET. In Robert Dale,
Chris Mellish, and Michael Zock, editors, Current Re-
search in Natural Language Generation, pages 103-
139. Academic Press, London, 1990.

[McKeown, 1985] Kathleen McKeown. Discourse strate-
gies for generating natural-language text. Artificial
Intelligence, 27:1-42, 1985.

[Moore and Paris, 1989] Johanna Moore and Cecile
Paris. Planning text for advisory dialogues. In Pro-
ceedings of the 27th Annual Meeting of the Association
for Computational Linguistics, pages 203-211, 1989.

[Moore and Swartout, 1990] Johanna Moore and
William Swartout. Pointing: A way toward explana-
tion dialogue. In Proceedings of the Eighth National
Conference on Artificial Intelligence, pages 457-464,
1990.

[Penman Natural Language Group, 1989] Penman Nat-
ural Language Group. The Penman user guide. Tech-
nical report, Information Sciences Institute, Marina
del Rey, CA 90292, 1989.

[Reiter and Dale, 1992] Ehud Reiter and Robert Dale.
A fast algorithm for the generation of referring ex-
pressions, 1992. Submitted to COLING-1992.

[Reiter and Mellish, 1992] Ehud Reiter and Chris Mel-
lish. Using classification to generate text, 1992. Sub-
mitted to ACL-1992.

[Reiter, 1990] Ehud Reiter. Generating descriptions
that exploit a user's domain knowledge. In Robert
Dale, Chris Mellish, and Michael Zock, editors, Cur-
rent Research in Natural Language Generation, pages
257-285. Academic Press, London, 1990.

[Tennant et al., 1983] Harry Tennant, Kenneth Ross,
Richard Saenz, Craig Thompson, and James Miller.
Menu-based natural language understanding. In Pro-
ceedings of the 21st Annual Meeting of the Association
for Computational Linguistics, pages 151-158, 1983.

[Touretzky, 1986] David Touretzky. The Mathematics of
Inheritance Systems. Morgan Kaufmann, Los Altos,
California, 1986.

[Wahlster el al., 1991] Wolfgang Wahlster, Elisabeth
Andre, Som Bandyopadhyay, Winfried Graf, and
Thomas Rist. WIP: The coordinated generation of
multimodal presentations from a common represen-
tation. In Oliverio Stock, John Slack, and Andrew
Ortony, editors, Computational Theories of Com.
munication and their Applications. Springer-Voting.
1991.

71

