
Real-time linguistic analysis for continuous speech understanding*

P a o l o B a g g i a E l i s a b e t t a G e r b i n o E g i d i o G i a c h i n C l a u d i o R u l l e n t

CSELT - Centro Studi e Laboratori Telecomunicazioni
Via Reiss Romoli, 274 - 10148 Torino, I taly

Abstract
This paper describes the approach followed
in the development of the linguistic proces-
sor of the continuous speech dialog system im-
plemented at our labs. The application sce-
nario (voice-based information retrieval ser-
vice over the telephone) poses severe specifi-
cations to the system: it has to be speaker-
independent, to deal with noisy and corrupted
speech, and to work in real time. To cope
with these types of applications requires to
improve both efficiency and accuracy. At
present, the system accepts telephone-quality
speech (utterances referring to an electronic
mailbox access, recorded through a PABX)
and, in the speaker-independent configuration,
it correctly understands 72% of the utterances
in about twice real time. Experimental results
are discussed, as obtained from an implemen-
tation of the system on a Sun SparcStation 1
using the C language.

1 I n t r o d u c t i o n

We call continuous speech, as opposed to isolated-
word speech, any utterance emitted without interposing
pauses between words. This is the way humans natu-
rally speak, but to enable a machine to deal with this
form of communication constitutes a difficult task be-
cause, in addition to the usual speech processing and
natural language issues, there is no hint on where the
single words of the utterance begin and end. Given
the current state-of-the-art, speech understanding pro-
totypes concern the comprehension of utterances refer-
ring to a well defined semantic domain on a dictionary
of almost one thousand words.

Our research group is interested in developing au-
tomated voice-based information retrieval services over
the telephone network. This has some precise impli-
cations. First, we are committed to accept continuous-
speech sentences expressed in relatively free syntax, oth-
erwise the interaction with the service would be too
unnatural. Second, the service should be public and ac-
cessible from every telephone; this means that the un-

*This research has been partially supported by EEC ES-
PRIT project no. 2218 SUNDIAL.

derstanding system has to be speaker independent and
able to process noisy and distorted speech. Third, the
response time must be confined within a few seconds;
that is, the system has to work in real time.

The evolution of the research is gradual. In the
present status of work the developed system is speaker
independent and it is based on a telephone-line qual-
ity speech (a telephone connected through a PABX). It
has a vocabulary of 787 words and the processing time
is less than 5 seconds (about twice real time). The sen-
tence correct understanding rate is nearly 72%. The
application task refers to voice access to an electronic
mailbox. In its first version the system has been applied
to access a geographical data base, and is now adapted
(with a slightly bigger vocabulary) to information re-
trieval from a train timetable data base. In the follow-
ing we present a thorough description of the approach
that led to these results. Also, the latest developments
of the system are discussed. We will focus here on the
understanding subsystem. An account of the recogni-
tion stage is given in [Fissore et ai. 1989] and in the
references there reported, while the whole system is de-
scribed in [Baggia et al. 1991c]. We will examine the
role of the recognition and understanding modules, the
technique used for language representation, the parsing
control strategy, and finally experimental results will be
discussed.

2 Recognition and understanding
activities

Speech understanding requires the use of different pieces
of knowledge. Consequently, it is not obvious a pri-
ori what type of architecture will give the best results.
Homogeneous, knowledge-based architectures date back
to the late 1970s [Erman et ai. 1980] and spurred in-
teresting research work in the subsequent years. How-
ever, unified approaches contain a weakness: they have
difficulty in coping with problems of different nature
through specific, focused techniques. A division may be
traced between lower-level processing of speech, mostly
based on acoustical knowledge, and upper-level pro-
cessing, mostly based on natural language knowledge.
Therefore, a two-level architecture has been developed
based on this idea [Fissore et ai. 1988]. The former
stage, called recognition stage (Fig. la), hypothesizes
a set of words all over the utterance and feeds the lat-

33

word
l a t t i ce

utterancel I .] - I o r = = ~ , n L.

feedback I
ver i f i ca t ion

1.G

S i

0.5.

;core

ut terance
NATURAL I meaning

LANGUAGE I =
UNDERSTANDING I

®

Q
ieri

(y e s t e r d a y)

spedito
. i '

J (sent) R o b e r t o
(Robert) I

m e s s a g g i o
I

(message)

, d._~_a
I ; (by)

I I I I I= I I I I I t~ I I I t f l
Frame

Figure 1: System architecture (a). An example of word
lattice (b).

ter stage, or understanding stage, which completes the
recognition activity by finding the most plausible word
sequence and by understanding its meaning. In this
way each level can focus on its own basic problems and
develop specific techniques, still maintaining the advan-
tage of the integration.

Most of the approaches based on this idea (e.g.
[Hayes et al. 1986]) are characterized by the use of
knowledge engineering techniques at both levels, while
our recognition stage is based on a probabilistic tech-
nique, the hidden Markov models (HMM). The most
recent research indicates that , as far as word recog-
nition is concerned, the HMM give the best results
[Lee 1990, Fissore et al. 1989].

The set of word hypotheses produced by the recogni-
tion stage is called lattice (Fig. lb). Every word hypoth-
esis is characterized by the starting and ending points of
the utterance portion in which it has been spotted, and
its score, expressing its acoustic likelihood, i.e. a mea-
sure of the probability for the word of having been ut-
tered in that position. Many more hypotheses than the
actually uttered words are present in the lattice (there
are about 30 times as many word hypotheses as there
are words), and they are overlapping on one another.
The aim of the understanding stage is then twofold: on
one side it has to complete the recognition task by ex-
tracting the correct word sequence out of the lattice; on
the other it has to understand the sequence meaning.
In practice these two activities are performed simulta-
neously. The correct word sequence extracted by the
understanding stage may be fed back to the recognizer
(Fig. la) for a post-processing phase called feedback ver-
ification, described below, aimed at increasing the un-

derstanding accuracy.
The problem of analyzing lattices is considered from

the natural language perspective: the goal is to develop
techniques to process typed input and to extend them
in order to process a "corrupted" form of input such
as a lattice is. The understanding stage result called
solution is a sequence of word hypotheses spanning the
whole utterance time so that 1) the sentence is syntacti-
cally correct and meaningful according to the linguistic
knowledge of the understanding stage, and 2) it ha~
the best acoustical score among all of the possible se-
quences that satisfy point 1). The great problem is thai
the search for a solution cannot be made exhaustively:
since the lattice contains many incorrect word hypothe-
ses, there would be far too many admissible word com-
binations to examine. In addition there is the risk oJ
incorrect understanding due to the possible selection o ~
even only one incorrect word hypothesis. Coping witt
them imposes to carefully design linguistic knowledg~
representation methods and analysis control strategie.,
in order to gain in both efficiency and correct under.
standing reliability.

3 Language representation
The task of the machine is to combine together adj&
cent word hypotheses, so as to create phrase hypothese~
(PHs), which are consistent according to the languag,
model. Such parsing process continues until the systerr
reaches a solution.

The choice of a suitable linguistic knowledge repre-
sentation poses a dilemma. For the machine, to react
real-time, the representation must above all be efficient
that is, it must require reasonable computational cos1
and must keep low the number of PHs generated dur.
ing parsing. On the other hand, for the developer o
the system the representation must be easy to declare
interpret, and maintain. Ease of maintenance suggests
for example, that it is preferable to keep syntax an(
semantics separate as much as possible.

The previous considerations suggest to adopt two rep.
resentations, one suitable for the system developer, th,
other for the machine [Poesio and Rullent 1987]. Th~
translation of the linguistic knowledge from the forme:
representation (high-level representation) to the latte:
one (low-level representation) is performed off-line b2
a compiler (see Fig. 2). This approach also permit:
to maintain separate high-level representations for syn
tax and for semantics, choosing for each the formalism
that seem most suitable. For semantics the Casefram,
formalism [Fillmore 1968] in the form of Conceptua
Graphs [Sowa 1984] had been chosen, while for syn
tax the Dependency Grammar formalism [Hays 1964
has been used. A Dependency Grammar expresses th,
syntactic structure of sentences through rules involvinl
dependencies between morphological categories. Th,
right-hand side of the rule contains one distinguishe~
terminal symbol called governor, while the other sym
bols are called dependents. A mechanism has bee]
added to the dependency rules to describe the morphc
logical agreements between the governor and the depen
dents.

34

Ca~frames

--,,. /
I Compiler

Figure 2: Language representation

3.1 T h e c o m p i l e r

Dependency grammars have been selected as a formal-
ism for representing syntactic knowledge because they
allow an easy integration with caseframes thanks to the
similar notion of governor for the dependency rules and
of header for the caseframes.

The compiler operates off-line and generates internal
structures, called Knowledge Sources (KSs) suitable to
allow an efficient parsing strategy. The basic point is
that each KS is aimed at generating a certain class of
constituents. Then each KS must combine the time
adjacency knowledge, the syntactic, morphological and
semantic knowledge that it is necessary to handle a spe-
cific class of phrases.

As an example, Table lb represents the dependency
rules used to deal with the sentences of Table la. Note
that prepositions are never governors as they are usu-
ally short and are likely to be missing from the lattice
(see section 5). The star symbol in each rule represents
the governor position. The associated rules for morpho-
logical agreement checks are not reported for simplicity.

(a) sent yesterday
sent yesterday by John

(b) rsl) verb = * adverb[adv-phrase]
rs2) verb * adverb[adv-phrase] noun[by-phrase]
rs3) noun = prep *

Table 1: An example of phrases (a). The necessary
dependency rules (b)

For each dependency rule the compiler must find all
the conceptual graphs that can be associated to such
rule and to use them to generate a KS. For this pur-
pose, each dependency rule is augmented with informa-
tion about grammatical relations, contained in square
brakets in Table lb; a grammatical relation is associated

SEND ~ . . _ ~ (~) _ ~ YESTERDAY

Figure 3: Conceptual graphs

to each dependent Di, accounting for the grammatical
relation existing between the governor G and the lower-
level constituent having Di as a governor.

For example, the associated grammatical relations for
rs2 could be adv-phrase for the first dependent and by-
phrase for the second one. Additional mapping knowl-
edge associates one or more conceptual graphs to each
grammatical relation, so that it is possible to find from
the conceptual graphs the semantic constraints that the
governor and the dependents of the rule have to fol-
low. Referring to the conceptual graphs of Fig. 3, the
conceptual relation agnt can be associated to by-phrase
and the conceptual relation lime can be associated to
adv-phrase. The semantic constraints derived from the
conceptual graphs are: SEND for the "verb" governor,
YESTERDAY for the "adverb" dependent and PERSON
for the "noun" dependent of rule rs2.

Each KS built by the compiler has one terminal slot
called header, representing one single word, and other
slots called fillers representing phrases, positionally re-
flecting the symbols of the dependency rules from which
the KS derives. The main bulk of knowledge embedded
in a KS is a set of structures that express constraints
between the syntactic-semantic features of the header
and those of the fillers.

A first version of the compiler had the goal of enrich-
ing the dependency rules with the semantic constraints
derived from the concepual graphs. In this case the set
of generated KS could be sketched as in Table 3, where
row c4 can correspond, for instance, to the compilation
of the dependency rule rs2. A total of 70 conceptual
graphs and 373 syntactic rules is used in the system.
These knowledge bases are able to treat a large vari-
ety of sentences, a sample of which is shown in Table 2
(nearly literal English translation).

Although the obtained efficiency was sufficiently
good, a conceptual improvement to the compiler has
been devised, as is described in the next subsection.

3.2 Ef f ic ien t r e p r e s e n t a t i o n o f l ingu is t i c
constraints: rule fus ion

One basic problem to move towards real-time operation
is to define the kind of structures that can be build for
representing PHs. Suppose a "classical" grammar like
a context free grammar is used and that we are trying
to connect two words into a grammatical structure. In
general, this can be done in several ways according to

35

I 'd like to know Thursday's fourth one.
Did any mail come in September?
Tell me the mails I received since two days ago.
Got any mail last week?
Read me Giorgio's first two messages.
The third one.
Did anyone write after last Friday?
Make me a list of your mails.
Send SIP's first one to Cselt.
What messages did Luciano write me from
December one to six?
Tell me the senders of messages received
from Milan.
What are the mails received from Piero of
Cselt after October seventeen.

Table 2: A sample of task sentences

different g rammar rules. Since structures built with dif-
ferent rules may connect with different word hypothe-
ses, a new memory object is needed for every struc-
ture. In the case of speech this leads to two undesirable
consequences. First, a very large memory size is re-
quired, owing to the high number of word combinations
allowed by word lattices. Second, each of the structures
will be separately selected and expanded, possibly with
the same words, during the score-guided analysis, thus
introducing redundant work. Therefore, the compiler
should generate a smaller number of "compact" K S s ,
still keeping the m a x i m u m discrimination power.

The goal of generating a small number of KSs is ac-
complished through the fusion technique [Baggia et al.
1991a]. Fusion aims at compact ing together KSs. KSs

row position
0 1 [2

cl C A1 I
c2 C B1
c3 C A1 B1
c4 C B1 A1
c5 C A2
c6 C A2 B1
c7 C B1 A2

Table 3: A sketchy representation of KSs

may have constituents in different order or even a dif-
ferent number of constituents. Let us suppose we have
a WH of class C and we want to connect it to other
words tha t can depend on it and that are adjacent
to the header on the right. Table 3 contains, for the
header class C, a sketchy representation of the KSs in-
volved (the rows in the table). The positions of the con-
sti tuents are also shown. The zero position indicates the
header while positions 1 and 2 indicate dependents on
the right of the header. The numbers at tached to each
class mean that different constraints act on the corre-
sponding constituent. Table 3 shows that constituents
of both classes A and B are involved. Let us focus on

the class A case.
As we want to find class A constituents, on the right

of the header, four KSs are involved, corresponding to
rows cl , c3, c5, and c6; the first two KSs propagate
constraints (summarized by A1) tha t will be considered
by a proper KS of class A; the result is the generation of
two couples of PHs (two generated by the A KS and two
by the C KS). Two other couples of PHs are generated
in a completely similar way by the KSs of row c5 and
c6, the only difference being tha t the KSs propagate
different constraints.

In the fusion case there is just one KS for the seven
different rows of Table 3. The C KS propagates the
constraints for the A KS: it propagates A I + A 2 and the
t ime constraint tha t the constituent must be adjacent
(on the right) to the header. Only one search into the
lattice is performed by the A KS. Only a couple of PH
is created for the rows cl , c3, c5, and c6 (one by the A
KS and one by the C KS).

The fusion technique is effective in reducing the num-
ber of PHs to be generated and the parsing time. The
results of the experiments are reported in Table 4.

No.PHs generated
Parsing t ime (s)

No
Fusion Fusion

806 91
1.56 0.38

Table 4: The effect of fusion

The reduction of PtIs would be of no use if it were
balanced by an increased activity for checking and prop-
agating constraints. So, for execution efficiency, bit
coded representations are used for the propagation of
constraints about active rules, in a way similar to the
propagat ion of morphological and semantic constraints.
The system runs on a Sun SparcStat ion 1 and is imple-
mented using the C language, which furtherly increases
speed.

4 C o n t r o l o f p a r s i n g a c t i v i t i e s

The basic problem that control is cMled to face is the
width of the search space, due to the combined effect
of the non-determinism of the language model and the
uncertainty and redundancy of the input. Since an ex-
haustive search is not feasible, scores are used to con-
strain it along the most promising directions just from
the beginning: the analysis proceeds in cycles in a best-
first perspective and at each cycle the parser processes
the best-scored element produced so far. The score of a
PH made up by a number of word hypotheses is defined
as the average of the scores of its component words,
weighted by their t ime durations. This "length nor-
malization" insures that , when we have to compare two
PHs having different length, we do not privilege longer
or shorter ones.

The building of parse trees may proceed through top-
down or bottom-up steps. For instance, if the best-
scored element selected in one cycle is a header word, a

36

top-down step consists in hypothesizing fillers and ver-
ifying the presence in the lattice of words that can sup-
port them. Hypothesizing headers from already parsed
fillers is an example of a bottom-up step.

If all of the correct word hypotheses are well-scored,
any parsing strategy works satisfactorily. However, of-
ten a correct word happens to be badly recognized and
hence receives a bad score, though the overall sentence
score remains good. This can be due to a burst of noise,
or to the fact that the word was badly uttered. Many
incorrect words will be present in the lattice, scoring
better than such word. Now, imagine a pure top-down
parsing in the case where such a bad word is one of
the headers. Prior to processing that header, the parser
will process all of the better-scored words that are them-
selves headers. This may delay the finding of the correct
solution beyond reasonable limits, or may favor the find-
ing of a wrong solution in the meantime. Similar consid-
erations hold in the ease of a pure bottom-up strategy.

Such bottlenecks are avoided thanks to a strategy in
which the good-scored words of the correct solution may
hypothesize the few bad-scored ones in any case. This
property implies that the parser must be able to dynam-
ically switch from top-down steps to bottom-up steps
and vice versa, according to the characteristics of the
element that has been selected in that cycle. Apart
from avoiding bottlenecks, a control strategy that fol-
lows this guideline has one important characteristic: it
is admissible, that is the first-found solution is surely
the best-scored one.

This approach of exploiting only language constraints,
if followed to its extremes, leads to an insufficient ex-
ploitation of time adjacency, which is a different crite-
rion for designing an efficient control strategy. Time
adjacency is at the base of the so-called island-driven
parsing approaches, which recently received renewed at-
tention [Stock et al. 1989]. Here the idea is to select
only fillers that are temporally adjacent to the header,
so that we can limit the number of word hypotheses
that can be extracted from the lattice (i.e. that satisfy
language and time adjacency constraints) and conse-
quently the parse trees that have to be generated.

The parsing process proceeds through elementary ac-
tivities, or operators, that represent top-down steps
(EXPAND and FILL operators) or bottom-up steps (Ac-
TIVATE and PREDICT operators). The JOIN operator
describes the activity in which a KS merges together
parsing processes that had evolved separately; this may
correspond either to a bottom-up or to a top-down step.

By suitably defining when and how the KSs apply
the operators it is possible to trade off with the lan-
guage constraint and the time adjacency criteria with
the result of switching down admissibility by a little
amount while simultaneously gain a consistent reduc-
tion of the number of generated parse trees. The con-
trol strategy that has been adopted, described in de-
tail in [Giachin and Rullent 1990], accepts a limited risk
of getting the wrong solution in the first place (about
1.5%) but is balanced by a great speed-up in the parsing
of a lattice.

5 C o p i n g w i t h s p e c i a l s p e e c h p r o b l e m s

The adjacency between consecutive word hypotheses is
seldom perfect, being them affected by a certain amount
of gap or overlap. This is due to the fact that the
end of a word is slightly confused with the beginning
of the consecutive word. The understanding level is tol-
erant towards these phenomena and defines thresholds
on maximum allowed gap or overlap between suppos-
edly consecutive words.

While coarticulation affects all words, it severely com-
promises the recognition of what are currently called,
with an admittedly imprecise term, function words.
Function words, such as articles, prepositions, etc., are
generally short and they tend to be uttered very im-
precisely, so that often they are not included in the lat-
tice. Moreover, function words are often acoustically in-
eluded in longer words. The parsing strategy then does
not rely on function words [Giaehin and Rullent 1988].
The idea is that KS slots corresponding to function
words are divided into three categories, namely short,
long, and unknown. Short words are never searched in
the lattice, and a plaeeholder is put in the Phrase Hy-
pothesis (PH) that includes it. Long words are always
searched, and failure is declared if no one is found. Un-
known words are searched, but a plaeeholder may be
put in the PH if some conditions are met. In a first
phase, the categorization of a KS slot was made on the
basis of the morphological features of the correspond-
ing function words and on their length (e.g., words with
one or two phonemes were declared "short" and never
searched). Subsequent experiments showed that, un-
expectedly, some very short words may be recognized
with virtually no errors, while others, though longer,
are much more difficult to recognize. Hence, better re-
sults have been obtained when the categorization has
been made on the basis of the phonetic features of the
words rather than of the morphological ones.

5.1 Feedback verification procedure
Though skipping function words permits to successfully
analyze sentences for which these words were not de-
tected, it also implies that the acoustic information of
small portions of the waveform is not exploited, and
this may lead the parser to find a wrong solution.
Also, function words may be sometimes essential to cor-
rectly understand the meaning of a sentence. In or-
der to cope with these problems, a two-way interac-
tion between the recognition module and the parser has
been investigated, called feedback verification procedure
[Baggia et aL 1991b]. According to this procedure, the
parser, instead of stopping at the first solution, contin-
ues to run until a predefined amount of resources is con-
sumed. During this period many different solutions are
found, possibly containing multiple possibilities in place
of missing words. These solutions are then fed back to
the recognizer which analyzes them sequentially. The
recognizer task realigns the solutions against the acous-
tic data and attributes them a new likelihood score. Tile
best-scored solution is then selected as the correct one.

As a side effect, the best-matching candidate for func-
tion words that were missing in the lattice is also found.

37

Solut ion:

CI-SONO MESSAGGI ?? ROSSl ?? VENTI I

(ARE THERE MALLS ?? ROSSI ?? TWENTY)

Figure 4: Function word detection during FVP

The verification procedure creates the best conditions to
find these words with good reliability: for each place-
holder a very small number of candidates are proposed,
and the previous and following words are usually nor-
real reliable words. Hence the recognizer can detect the
word with good accuracy. An example of a solution gen-
erated by the parser for the utterance "Ci sono messaggi
da Rossi il venti?" (literally: "There are mails from
Rossi on twenty?") is shown in Fig. 4. The "??" sym-
bol in the solution represents a possibly missing func-
tion word ignored during parsing, that is expanded into
a set of candidates, according to the grammar, to be fed
back to the recognizer.

In addition to accurately finding function words, the
verification procedure has the advantage that the final
scores assigned to solutions by the recognizer are more
accurate than those assigned to them by the parser,
because these scores have been computed on the same
time interval after a global realignment of the sentences.
Hence comparing the solutions on the basis of their
score is a more reliable procedure. The drawback of the
verification procedure is tha t total analysis times are
slightly increased by the overload imposed to the recog-
nizer and by the fact that the parser must continue the
analysis after the first solution is found.

6 E x p e r i m e n t a l r e s u l t s

In order to evaluate the performance of a speech under-
standing system it is necessary to define some metric.
Unfortunately, metrics are still far from standards in
this field. Let us briefly describe the measures used
in our evaluation and shown in Table 5. Understood
refers to the percentage of correctly understood sen-
tences. We define that a sentence has been understood if
the word sequence selected by the parser and refined by
the feedback verification procedure (if applied) is equal
to the uttered sentence or differs from it only for short
function words that are not essential for understanding.
The failure rate is the percentage of sentences for which
no result has been obtained by the parser within the
real-time imposed constraints. The misunderstood case
arises when the selected solution is not the uttered one.

Note that failures and misunderstandings have not the
same effect: in fact in the case of failure the system
is aware of not having understood the question and in
a dialogue system the failure can activate a recovery
action.

The parser has been implemented using the C lan-
guage and presently runs on a Sun SparcStation 1.
Experiments have been performed starting from 60C
lattices produced by the recognition system from 60C
different sentences uttered by 10 speakers and per-
taining to the voice access to E-mail messages. The
recognizer [Fissore et al. 1989] employs 305 context-
dependent units, each of which is represented by a 3-
state discrete density HMM. HMMs are trained with
8800 sentences uttered by 110 speakers. The speech
signal, recorded from a PABX, is low-pass filtered at
kHz and sampled at 16 kHz. Features, computed every
10 ms time frame, include 12 cepstrum and 12 delta,
cepstrum coefficients, plus energy and delta-energy.

Understood
Failure
Misunderstood

base
no ver. verify
63.7% 69.2%
4.4% 5.7%
31.5% 25.2%

+best sent.
no ver. verify
65.7% 72.2%
10.5% 11.3%
23.8% 16.5%

Table 5: Experimental results on 600 test sentences

Table 5 reports the results for two kinds of config
urations, each evaluated with the feedback verificatiol
procedure disactivated (no vet.) or activated (verify)
The first configuration is the baseline one, in which
lattice is analyzed as described in the above sections
In the second configuration, we add into the lattice th,
best-scored sequence of words initially found by the rec
ognizer as a side-effect of its analysis. This sequence
though rarely correct, takes better into account inter
word coarticulation and hence may contribute to th,
overall accuracy. In both configurations the maximur
processing time is 5 seconds.

7 C o n c l u s i o n s

The effectiveness of a two-level architecture for con
tinuous speech understanding has been demonstrate,
through a working system tested on several hundre,
sentences recorded through a PABX from 10 speaker.,
The implementation of the linguistic processor stresse
the design of efficient ways of representing language con
straints into knowledge sources through the procedur
of fusion, and the development of efficient score guide,
control algorithms to perform parsing. A verificatio:
procedure permits to increase understanding accurac:
by exploiting the capabilities of the recognition modul
as a post-processor, able to acoustically reorder sen
tences hypothesized by the linguistic processor and fin
out words that were skipped by the parser. Analysi
times as low as about twice real time are achieved on
Sun SparcStation 1.

38

R e f e r e n c e s

[Baggia et al. 1991a] P. Baggia, E. Gerbino, E. Giachin,
and C. Rullent, "Efficient Representation of Linguis-
tic Knowledge for Continuous Speech Understanding",
Proc. 1JCA1 91, Sydney, Australia, August 1991.

[Baggia et al. 1991b] P. Baggia, L. Fissore, E. Gerbino, E.
Giachin, and C. Rullent, "Improving Speech Under-
standing Performance through Feedback Verification",
Proc. Eurospeech 91, Genova, Italy, September 1991.

[Baggia et al. 1991c] P. Baggia, A. Ciaramella, D. Clemen-
tino, L. Fissore, E. Gerbino, E. Giachin, G. Micca, L.
Nebbia, R. Pacifici, G. Pirani and C. Rullent, "A Man-
Machine Dialogue System for Speech Access to E-Mail
using Telephone: Implementation and First Results",
Proc. Eurospeech 91, Genova, Italy, September 1991.

[Erman et al. 1980] L. D. Erman, F. Hayes-Roth, V. R.
Lesser, and D. Raj Reddy, "The Hearsay-II Speech Un-
derstanding System: Integrating Knowledge to Resolve
Uncertainty", A CM Computing Survey 12, 1980.

[Fillmore 1968] C. J. Fillmore, "The Case for Case", in
Bach, Harris (eds.), Universals in Linguistic Theory,
Holt, Rinehart, and Winston, New York, 1968.

[Fissore et al. 1988] L. Fissore, E. Giachin, P. Laface, G.
Micca, R. Pieraccini, and C. Rullent, "Experimental Re-
suits on Large Vocabulary Continuous Speech Recogni-
tion and Understanding", Proc. ICASSP 88, New York,
1988.

[Fissore et al. 1989] L. Fissore, P. Laface, G. Micca, and
R. Pieraccini, "Lexical Access to Large Vocabularies
Speech Recognition", 1EEE Trans. ASSP, Vol. 37, no.
8, Aug. 1989.

[Giachin and Rullent 1988] E. Giachin and C. Rullent, "Ro-
bust Parsing of Severely Corrupted Spoken Utterances",
Proc. COLING-88, Budapest, 1988.

[Giachin and Rullent 1989] E. Giachin and C. Rullent, "A
Parallel Parser for Spoken Natural Language", Proc. 1J-
CA189, Detroit, August 1989.

[Giachin and Rullent 1990] E. Giachin and C. Rullent,
"Linguistic Processing in a Speech Understanding Sys-
tem", NATO Workshop on Speech Recognition and Un-
derstanding', Cetraro, Italy, July 1990, R. de Mori and
P. Laface, (eds.), Springer Verlag, 1991.

[Hayes et ai. 1986] P. J. Hayes, A. G. Hauptmann, J. G.
Carbonell, and M. Tomita, "Parsing Spoken Language:
a Semantic Caseframe Approach", Proc. COLING 86,
Bonn, 1986.

[Lee 1990] K.-F. Lee, "Context Dependent Phonetic Hid-
den Markov Models for Speaker Independent Continu-
ous Speech Recognition", 1EEE Trans ASSP, Vol. 38,
no. 4, April 1990.

[Hays 1964] D. G. Hays, "Dependency Theory: a Formalism
and Some Observations", Memorandum RM4087 P.R.,
The Rand Corporation, 1964.

[Poesio and Rullent 1987] M. Poesio and C. Rullent, "Mod-
ified Caseframe Parsing for Speech Understanding Sys-
tems", Proc. 1JCA187, Milano, 1987.

[Sowa 1984] J. F. Sowa, Conceptual Structures, Addison
Wesley, Reading (MA), 1984.

[Stock et al. 1989] O. Stock, R. Falcone, and P. Insinnamo,
"Bidirectional Charts: a Potential Technique for Pars-
ing Spoken Natural Language Sentences", Computer,
Speech, and Language, 3(3), 1989.

[Tomita and Carbonell 1987] M. Tomita and J. G. Carbo-
nell, "The Universal Parser Architecture for Knowledge-
Based Machine Translation", Proc. I JCAI 87, Milano,
1987.

[Woods 1985] W. A. Woods, "Language Processing for
Speech Understanding", in F. Fallside, W. A. Woods
(eds.), Computer Speech Processing, Prentice Hall Int.,
London, UK, 1985.

39

