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Abstract 
This paper describes the approach followed 
in the development of the linguistic proces- 
sor of the continuous speech dialog system im- 
plemented at our labs. The application sce- 
nario (voice-based information retrieval ser- 
vice over the telephone) poses severe specifi- 
cations to the system: it has to be speaker- 
independent, to deal with noisy and corrupted 
speech, and to work in real time. To cope 
with these types of applications requires to 
improve both efficiency and accuracy. At 
present, the system accepts telephone-quality 
speech (utterances referring to an electronic 
mailbox access, recorded through a PABX) 
and, in the speaker-independent configuration, 
it correctly understands 72% of the utterances 
in about twice real time. Experimental results 
are discussed, as obtained from an implemen- 
tation of the system on a Sun SparcStation 1 
using the C language. 

1 I n t r o d u c t i o n  

We call continuous speech, as opposed to isolated- 
word speech, any utterance emitted without interposing 
pauses between words. This is the way humans natu- 
rally speak, but  to enable a machine to deal with this 
form of communication constitutes a difficult task be- 
cause, in addition to the usual speech processing and 
natural language issues, there is no hint on where the 
single words of the utterance begin and end. Given 
the current state-of-the-art, speech understanding pro- 
totypes concern the comprehension of utterances refer- 
ring to a well defined semantic domain on a dictionary 
of almost one thousand words. 

Our research group is interested in developing au- 
tomated voice-based information retrieval services over 
the telephone network. This has some precise impli- 
cations. First, we are committed to accept continuous- 
speech sentences expressed in relatively free syntax, oth- 
erwise the interaction with the service would be too 
unnatural.  Second, the service should be public and ac- 
cessible from every telephone; this means that  the un- 
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derstanding system has to be speaker independent and 
able to process noisy and distorted speech. Third, the 
response time must be confined within a few seconds; 
that  is, the system has to work in real time. 

The evolution of the research is gradual. In the 
present status of work the developed system is speaker 
independent and it is based on a telephone-line qual- 
ity speech (a telephone connected through a PABX). It 
has a vocabulary of 787 words and the processing time 
is less than 5 seconds (about twice real time). The sen- 
tence correct understanding rate is nearly 72%. The 
application task refers to voice access to an electronic 
mailbox. In its first version the system has been applied 
to access a geographical data  base, and is now adapted 
(with a slightly bigger vocabulary) to information re- 
trieval from a train timetable data  base. In the follow- 
ing we present a thorough description of the approach 
that  led to these results. Also, the latest developments 
of the system are discussed. We will focus here on the 
understanding subsystem. An account of the recogni- 
tion stage is given in [Fissore et ai. 1989] and in the 
references there reported, while the whole system is de- 
scribed in [Baggia et al. 1991c]. We will examine the 
role of the recognition and understanding modules, the 
technique used for language representation, the parsing 
control strategy, and finally experimental results will be 
discussed. 

2 Recognition and understanding 
activities 

Speech understanding requires the use of different pieces 
of knowledge. Consequently, it is not obvious a pri- 
ori what type of architecture will give the best results. 
Homogeneous, knowledge-based architectures date back 
to the late 1970s [Erman et ai. 1980] and spurred in- 
teresting research work in the subsequent years. How- 
ever, unified approaches contain a weakness: they have 
difficulty in coping with problems of different nature 
through specific, focused techniques. A division may be 
traced between lower-level processing of speech, mostly 
based on acoustical knowledge, and upper-level pro- 
cessing, mostly based on natural language knowledge. 
Therefore, a two-level architecture has been developed 
based on this idea [Fissore et ai. 1988]. The former 
stage, called recognition stage (Fig. la),  hypothesizes 
a set of words all over the utterance and feeds the lat- 
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Figure 1: System architecture (a). An example of word 
lattice (b). 

ter stage, or understanding stage, which completes the 
recognition activity by finding the most plausible word 
sequence and by understanding its meaning. In this 
way each level can focus on its own basic problems and 
develop specific techniques, still maintaining the advan- 
tage of the integration. 

Most of the approaches based on this idea (e.g. 
[Hayes et al. 1986]) are characterized by the use of 
knowledge engineering techniques at both levels, while 
our recognition stage is based on a probabilistic tech- 
nique, the hidden Markov models (HMM). The most 
recent research indicates that ,  as far as word recog- 
nition is concerned, the HMM give the best results 
[Lee 1990, Fissore et al. 1989]. 

The set of word hypotheses produced by the recogni- 
tion stage is called lattice (Fig. lb).  Every word hypoth- 
esis is characterized by the starting and ending points of 
the utterance portion in which it has been spotted, and 
its score, expressing its acoustic likelihood, i.e. a mea- 
sure of the probability for the word of having been ut- 
tered in that  position. Many more hypotheses than the 
actually uttered words are present in the lattice (there 
are about  30 times as many word hypotheses as there 
are words), and they are overlapping on one another. 
The aim of the understanding stage is then twofold: on 
one side it has to complete the recognition task by ex- 
tracting the correct word sequence out of the lattice; on 
the other it has to understand the sequence meaning. 
In practice these two activities are performed simulta- 
neously. The correct word sequence extracted by the 
understanding stage may be fed back to the recognizer 
(Fig. la)  for a post-processing phase called feedback ver- 
ification, described below, aimed at increasing the un- 

derstanding accuracy. 
The problem of analyzing lattices is considered from 

the natural language perspective: the goal is to develop 
techniques to process typed input and to extend them 
in order to process a "corrupted" form of input such 
as a lattice is. The understanding stage result called 
solution is a sequence of word hypotheses spanning the 
whole utterance time so that  1) the sentence is syntacti- 
cally correct and meaningful according to the linguistic 
knowledge of the understanding stage, and 2) it ha~ 
the best acoustical score among all of the possible se- 
quences that  satisfy point 1). The great problem is thai 
the search for a solution cannot be made exhaustively: 
since the lattice contains many incorrect word hypothe- 
ses, there would be far too many admissible word com- 
binations to examine. In addition there is the risk oJ 
incorrect understanding due to the possible selection o ~ 
even only one incorrect word hypothesis. Coping witt 
them imposes to carefully design linguistic knowledg~ 
representation methods and analysis control strategie., 
in order to gain in both efficiency and correct under. 
standing reliability. 

3 Language representation 
The task of the machine is to combine together adj& 
cent word hypotheses, so as to create phrase hypothese~ 
(PHs), which are consistent according to the languag, 
model. Such parsing process continues until the systerr 
reaches a solution. 

The choice of a suitable linguistic knowledge repre- 
sentation poses a dilemma. For the machine, to react 
real-time, the representation must above all be efficient 
that  is, it must require reasonable computational cos1 
and must keep low the number of PHs generated dur. 
ing parsing. On the other hand, for the developer o 
the system the representation must be easy to declare 
interpret, and maintain. Ease of maintenance suggests 
for example, that  it is preferable to keep syntax an( 
semantics separate as much as possible. 

The previous considerations suggest to adopt two rep. 
resentations, one suitable for the system developer, th, 
other for the machine [Poesio and Rullent 1987]. Th~ 
translation of the linguistic knowledge from the forme: 
representation (high-level representation) to the latte: 
one (low-level representation) is performed off-line b2 
a compiler (see Fig. 2). This approach also permit: 
to maintain separate high-level representations for syn 
tax and for semantics, choosing for each the formalism 
that  seem most suitable. For semantics the Casefram, 
formalism [Fillmore 1968] in the form of Conceptua 
Graphs [Sowa 1984] had been chosen, while for syn 
tax the Dependency Grammar  formalism [Hays 1964 
has been used. A Dependency Grammar  expresses th, 
syntactic structure of sentences through rules involvinl 
dependencies between morphological categories. Th, 
right-hand side of the rule contains one distinguishe~ 
terminal symbol called governor, while the other sym 
bols are called dependents. A mechanism has bee] 
added to the dependency rules to describe the morphc 
logical agreements between the governor and the depen 
dents. 
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3.1 T h e  c o m p i l e r  

Dependency grammars have been selected as a formal- 
ism for representing syntactic knowledge because they 
allow an easy integration with caseframes thanks to the 
similar notion of governor for the dependency rules and 
of header for the caseframes. 

The compiler operates off-line and generates internal 
structures, called Knowledge Sources (KSs) suitable to 
allow an efficient parsing strategy. The basic point is 
that  each KS is aimed at generating a certain class of 
constituents. Then each KS must combine the time 
adjacency knowledge, the syntactic, morphological and 
semantic knowledge that  it is necessary to handle a spe- 
cific class of phrases. 

As an example, Table lb  represents the dependency 
rules used to deal with the sentences of Table la. Note 
that  prepositions are never governors as they are usu- 
ally short and are likely to be missing from the lattice 
(see section 5). The star symbol in each rule represents 
the governor position. The associated rules for morpho- 
logical agreement checks are not reported for simplicity. 

(a) sent yesterday 
sent yesterday by John 

(b) rsl) verb = * adverb[adv-phrase] 
rs2) verb * adverb[adv-phrase] noun[by-phrase] 
rs3) noun = prep * 

Table 1: An example of phrases (a). The necessary 
dependency rules (b) 

For each dependency rule the compiler must find all 
the conceptual graphs that  can be associated to such 
rule and to use them to generate a KS. For this pur- 
pose, each dependency rule is augmented with informa- 
tion about grammatical relations, contained in square 
brakets in Table lb; a grammatical relation is associated 

SEND ~ . . _ ~  ( ~ ) _ ~  YESTERDAY 

Figure 3: Conceptual graphs 

to each dependent Di, accounting for the grammatical 
relation existing between the governor G and the lower- 
level constituent having Di as a governor. 

For example, the associated grammatical relations for 
rs2 could be adv-phrase for the first dependent and by- 
phrase for the second one. Additional mapping knowl- 
edge associates one or more conceptual graphs to each 
grammatical relation, so that  it is possible to find from 
the conceptual graphs the semantic constraints that the 
governor and the dependents of the rule have to fol- 
low. Referring to the conceptual graphs of Fig. 3, the 
conceptual relation agnt can be associated to by-phrase 
and the conceptual relation lime can be associated to 
adv-phrase. The semantic constraints derived from the 
conceptual graphs are: SEND for the "verb" governor, 
YESTERDAY for the "adverb" dependent and PERSON 
for the "noun" dependent of rule rs2. 

Each KS built by the compiler has one terminal slot 
called header, representing one single word, and other 
slots called fillers representing phrases, positionally re- 
flecting the symbols of the dependency rules from which 
the KS derives. The main bulk of knowledge embedded 
in a KS is a set of structures that  express constraints 
between the syntactic-semantic features of the header 
and those of the fillers. 

A first version of the compiler had the goal of enrich- 
ing the dependency rules with the semantic constraints 
derived from the concepual graphs. In this case the set 
of generated KS could be sketched as in Table 3, where 
row c4 can correspond, for instance, to the compilation 
of the dependency rule rs2. A total of 70 conceptual 
graphs and 373 syntactic rules is used in the system. 
These knowledge bases are able to treat  a large vari- 
ety of sentences, a sample of which is shown in Table 2 
(nearly literal English translation). 

Although the obtained efficiency was sufficiently 
good, a conceptual improvement to the compiler has 
been devised, as is described in the next subsection. 

3.2 Ef f ic ien t  r e p r e s e n t a t i o n  o f  l ingu is t i c  
constraints:  rule  fus ion  

One basic problem to move towards real-time operation 
is to define the kind of structures that can be build for 
representing PHs. Suppose a "classical" grammar like 
a context free grammar is used and that  we are trying 
to connect two words into a grammatical structure. In 
general, this can be done in several ways according to 
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I 'd like to know Thursday's fourth one. 
Did any mail come in September? 
Tell me the mails I received since two days ago. 
Got any mail last week? 
Read me Giorgio's first two messages. 
The third one. 
Did anyone write after last Friday? 
Make me a list of your mails. 
Send SIP's first one to Cselt. 
What messages did Luciano write me from 
December one to six? 
Tell me the senders of messages received 
from Milan. 
What are the mails received from Piero of 
Cselt after October seventeen. 

Table 2: A sample of task sentences 

different g rammar  rules. Since structures built with dif- 
ferent rules may connect with different word hypothe- 
ses, a new memory object is needed for every struc- 
ture. In the case of speech this leads to two undesirable 
consequences. First, a very large memory  size is re- 
quired, owing to the high number  of word combinations 
allowed by word lattices. Second, each of the structures 
will be separately selected and expanded, possibly with 
the same words, during the score-guided analysis, thus 
introducing redundant  work. Therefore, the compiler 
should generate a smaller number  of "compact" K S s ,  
still keeping the m a x i m u m  discrimination power. 

The goal of generating a small number of KSs is ac- 
complished through the fusion technique [Baggia et al. 
1991a]. Fusion aims at compact ing together KSs. KSs 

row position 
0 1 [ 2 

cl C A1 I 
c2 C B1 
c3 C A1 B1 
c4 C B1 A1 
c5 C A2 
c6 C A2 B1 
c7 C B1 A2 

Table 3: A sketchy representation of KSs 

may have constituents in different order or even a dif- 
ferent number  of constituents. Let us suppose we have 
a WH of class C and we want to connect it to other 
words tha t  can depend on it and that  are adjacent 
to the header on the right. Table 3 contains, for the 
header class C, a sketchy representation of the KSs in- 
volved (the rows in the table). The positions of the con- 
sti tuents are also shown. The zero position indicates the 
header while positions 1 and 2 indicate dependents on 
the right of the header. The numbers at tached to each 
class mean that  different constraints act on the corre- 
sponding constituent. Table 3 shows that  constituents 
of both classes A and B are involved. Let us focus on 

the class A case. 
As we want to find class A constituents, on the right 

of the header, four KSs are involved, corresponding to 
rows cl ,  c3, c5, and c6; the first two KSs propagate 
constraints (summarized by A1) tha t  will be considered 
by a proper KS of class A; the result is the generation of 
two couples of PHs (two generated by the A KS and two 
by the C KS). Two other couples of PHs are generated 
in a completely similar way by the KSs of row c5 and 
c6, the only difference being tha t  the KSs propagate 
different constraints. 

In the fusion case there is just  one KS for the seven 
different rows of Table 3. The C KS propagates the 
constraints for the A KS: it propagates  A I + A 2  and the 
t ime constraint tha t  the constituent must  be adjacent 
(on the right) to the header. Only one search into the 
lattice is performed by the A KS. Only a couple of PH 
is created for the rows cl ,  c3, c5, and c6 (one by the A 
KS and one by the C KS). 

The fusion technique is effective in reducing the num- 
ber of PHs to be generated and the parsing time. The 
results of the experiments are reported in Table 4. 

No.PHs generated 
Parsing t ime (s) 

No 
Fusion Fusion 

806 91 
1.56 0.38 

Table 4: The  effect of fusion 

The reduction of PtIs  would be of no use if it were 
balanced by an increased activity for checking and prop- 
agating constraints. So, for execution efficiency, bit 
coded representations are used for the propagation of 
constraints about  active rules, in a way similar to the 
propagat ion of morphological and semantic constraints. 
The  system runs on a Sun SparcStat ion 1 and is imple- 
mented using the C language, which furtherly increases 
speed. 

4 C o n t r o l  o f  p a r s i n g  a c t i v i t i e s  

The basic problem that  control is cMled to face is the 
width of the search space, due to the combined effect 
of the non-determinism of the language model and the 
uncertainty and redundancy of the input. Since an ex- 
haustive search is not feasible, scores are used to con- 
strain it along the most  promising directions just from 
the beginning: the analysis proceeds in cycles in a best- 
first perspective and at each cycle the parser processes 
the best-scored element produced so far. The score of a 
PH made up by a number  of word hypotheses is defined 
as the average of the scores of its component  words, 
weighted by their t ime durations. This  "length nor- 
malization" insures that ,  when we have to compare two 
PHs having different length, we do not privilege longer 
or shorter ones. 

The building of parse trees may  proceed through top- 
down or bottom-up steps. For instance, if the best- 
scored element selected in one cycle is a header word, a 
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top-down step consists in hypothesizing fillers and ver- 
ifying the presence in the lattice of words that  can sup- 
port them. Hypothesizing headers from already parsed 
fillers is an example of a bottom-up step. 

If all of the correct word hypotheses are well-scored, 
any parsing strategy works satisfactorily. However, of- 
ten a correct word happens to be badly recognized and 
hence receives a bad score, though the overall sentence 
score remains good. This can be due to a burst of noise, 
or to the fact that the word was badly uttered. Many 
incorrect words will be present in the lattice, scoring 
better than such word. Now, imagine a pure top-down 
parsing in the case where such a bad word is one of 
the headers. Prior to processing that  header, the parser 
will process all of the better-scored words that are them- 
selves headers. This may delay the finding of the correct 
solution beyond reasonable limits, or may favor the find- 
ing of a wrong solution in the meantime. Similar consid- 
erations hold in the ease of a pure bottom-up strategy. 

Such bottlenecks are avoided thanks to a strategy in 
which the good-scored words of the correct solution may 
hypothesize the few bad-scored ones in any case. This 
property implies that  the parser must be able to dynam- 
ically switch from top-down steps to bottom-up steps 
and vice versa, according to the characteristics of the 
element that  has been selected in that  cycle. Apart 
from avoiding bottlenecks, a control strategy that fol- 
lows this guideline has one important  characteristic: it 
is admissible, that  is the first-found solution is surely 
the best-scored one. 

This approach of exploiting only language constraints, 
if followed to its extremes, leads to an insufficient ex- 
ploitation of time adjacency, which is a different crite- 
rion for designing an efficient control strategy. Time 
adjacency is at the base of the so-called island-driven 
parsing approaches, which recently received renewed at- 
tention [Stock et al. 1989]. Here the idea is to select 
only fillers that  are temporally adjacent to the header, 
so that  we can limit the number of word hypotheses 
that can be extracted from the lattice (i.e. that  satisfy 
language and time adjacency constraints) and conse- 
quently the parse trees that  have to be generated. 

The parsing process proceeds through elementary ac- 
tivities, or operators, that  represent top-down steps 
(EXPAND and FILL operators) or bottom-up steps (Ac-  
TIVATE and PREDICT operators). The JOIN operator 
describes the activity in which a KS merges together 
parsing processes that  had evolved separately; this may 
correspond either to a bottom-up or to a top-down step. 

By suitably defining when and how the KSs apply 
the operators it is possible to trade off with the lan- 
guage constraint and the time adjacency criteria with 
the result of switching down admissibility by a little 
amount while simultaneously gain a consistent reduc- 
tion of the number of generated parse trees. The con- 
trol strategy that has been adopted, described in de- 
tail in [Giachin and Rullent 1990], accepts a limited risk 
of getting the wrong solution in the first place (about 
1.5%) but is balanced by a great speed-up in the parsing 
of a lattice. 

5 C o p i n g  w i t h  s p e c i a l  s p e e c h  p r o b l e m s  

The adjacency between consecutive word hypotheses is 
seldom perfect, being them affected by a certain amount 
of gap or overlap. This is due to the fact that the 
end of a word is slightly confused with the beginning 
of the consecutive word. The understanding level is tol- 
erant towards these phenomena and defines thresholds 
on maximum allowed gap or overlap between suppos- 
edly consecutive words. 

While coarticulation affects all words, it severely com- 
promises the recognition of what are currently called, 
with an admittedly imprecise term, function words. 
Function words, such as articles, prepositions, etc., are 
generally short and they tend to be uttered very im- 
precisely, so that  often they are not included in the lat- 
tice. Moreover, function words are often acoustically in- 
eluded in longer words. The parsing strategy then does 
not rely on function words [Giaehin and Rullent 1988]. 
The idea is that  KS slots corresponding to function 
words are divided into three categories, namely short, 
long, and unknown. Short words are never searched in 
the lattice, and a plaeeholder is put in the Phrase Hy- 
pothesis (PH) that  includes it. Long words are always 
searched, and failure is declared if no one is found. Un- 
known words are searched, but  a plaeeholder may be 
put in the PH if some conditions are met. In a first 
phase, the categorization of a KS slot was made on the 
basis of the morphological features of the correspond- 
ing function words and on their length (e.g., words with 
one or two phonemes were declared "short" and never 
searched). Subsequent experiments showed that,  un- 
expectedly, some very short words may be recognized 
with virtually no errors, while others, though longer, 
are much more difficult to recognize. Hence, better re- 
sults have been obtained when the categorization has 
been made on the basis of the phonetic features of the 
words rather than of the morphological ones. 

5.1 Feedback verification procedure  
Though skipping function words permits to successfully 
analyze sentences for which these words were not de- 
tected, it also implies that  the acoustic information of 
small portions of the waveform is not exploited, and 
this may lead the parser to find a wrong solution. 
Also, function words may be sometimes essential to cor- 
rectly understand the meaning of a sentence. In or- 
der to cope with these problems, a two-way interac- 
tion between the recognition module and the parser has 
been investigated, called feedback verification procedure 
[Baggia et aL 1991b]. According to this procedure, the 
parser, instead of stopping at the first solution, contin- 
ues to run until a predefined amount of resources is con- 
sumed. During this period many different solutions are 
found, possibly containing multiple possibilities in place 
of missing words. These solutions are then fed back to 
the recognizer which analyzes them sequentially. The 
recognizer task realigns the solutions against the acous- 
tic data  and attributes them a new likelihood score. Tile 
best-scored solution is then selected as the correct one. 

As a side effect, the best-matching candidate for func- 
tion words that  were missing in the lattice is also found. 
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Solut ion:  

CI-SONO MESSAGGI ?? ROSSl ?? VENTI I 

(ARE THERE MALLS ?? ROSSI ?? TWENTY) 

Figure 4: Function word detection during FVP 

The verification procedure creates the best conditions to 
find these words with good reliability: for each place- 
holder a very small number of candidates are proposed, 
and the previous and following words are usually nor- 
real reliable words. Hence the recognizer can detect the 
word with good accuracy. An example of a solution gen- 
erated by the parser for the utterance "Ci sono messaggi 
da Rossi il venti?" (literally: "There are mails from 
Rossi on twenty?") is shown in Fig. 4. The "??" sym- 
bol in the solution represents a possibly missing func- 
tion word ignored during parsing, that  is expanded into 
a set of candidates, according to the grammar, to be fed 
back to the recognizer. 

In addition to accurately finding function words, the 
verification procedure has the advantage that  the final 
scores assigned to solutions by the recognizer are more 
accurate than those assigned to them by the parser, 
because these scores have been computed on the same 
time interval after a global realignment of the sentences. 
Hence comparing the solutions on the basis of their 
score is a more reliable procedure. The drawback of the 
verification procedure is tha t  total  analysis times are 
slightly increased by the overload imposed to the recog- 
nizer and by the fact that  the parser must continue the 
analysis after the first solution is found. 

6 E x p e r i m e n t a l  r e s u l t s  

In order to evaluate the performance of a speech under- 
standing system it is necessary to define some metric. 
Unfortunately, metrics are still far from standards in 
this field. Let us briefly describe the measures used 
in our evaluation and shown in Table 5. Understood 
refers to the percentage of correctly understood sen- 
tences. We define that  a sentence has been understood if 
the word sequence selected by the parser and refined by 
the feedback verification procedure (if applied) is equal 
to the uttered sentence or differs from it only for short 
function words that  are not essential for understanding. 
The failure rate is the percentage of sentences for which 
no result has been obtained by the parser within the 
real-time imposed constraints. The misunderstood case 
arises when the selected solution is not the uttered one. 

Note that  failures and misunderstandings have not the 
same effect: in fact in the case of failure the system 
is aware of not having understood the question and in 
a dialogue system the failure can activate a recovery 
action. 

The parser has been implemented using the C lan- 
guage and presently runs on a Sun SparcStation 1. 
Experiments have been performed starting from 60C 
lattices produced by the recognition system from 60C 
different sentences uttered by 10 speakers and per- 
taining to the voice access to E-mail messages. The 
recognizer [Fissore et al. 1989] employs 305 context- 
dependent units, each of which is represented by a 3- 
state discrete density HMM. HMMs are trained with 
8800 sentences uttered by 110 speakers. The speech 
signal, recorded from a PABX, is low-pass filtered at 
kHz and sampled at 16 kHz. Features, computed every 
10 ms time frame, include 12 cepstrum and 12 delta, 
cepstrum coefficients, plus energy and delta-energy. 

Understood 
Failure 
Misunderstood 

base 
no ver. verify 
63.7% 69.2% 
4.4% 5.7% 
31.5% 25.2% 

+best  sent. 
no ver. verify 
65.7% 72.2% 
10.5% 11.3% 
23.8% 16.5% 

Table 5: Experimental results on 600 test sentences 

Table 5 reports the results for two kinds of config 
urations, each evaluated with the feedback verificatiol 
procedure disactivated (no vet.) or activated (verify) 
The first configuration is the baseline one, in which 
lattice is analyzed as described in the above sections 
In the second configuration, we add into the lattice th, 
best-scored sequence of words initially found by the rec 
ognizer as a side-effect of its analysis. This sequence 
though rarely correct, takes better  into account inter 
word coarticulation and hence may contribute to th, 
overall accuracy. In both configurations the maximur 
processing time is 5 seconds. 

7 C o n c l u s i o n s  

The effectiveness of a two-level architecture for con 
tinuous speech understanding has been demonstrate, 
through a working system tested on several hundre, 
sentences recorded through a PABX from 10 speaker., 
The implementation of the linguistic processor stresse 
the design of efficient ways of representing language con 
straints into knowledge sources through the procedur 
of fusion, and the development of efficient score guide, 
control algorithms to perform parsing. A verificatio: 
procedure permits to increase understanding accurac: 
by exploiting the capabilities of the recognition modul 
as a post-processor, able to acoustically reorder sen 
tences hypothesized by the linguistic processor and fin 
out words that  were skipped by the parser. Analysi 
times as low as about  twice real time are achieved on 
Sun SparcStation 1. 
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