
C A N O N I C A L R E P R E S E N T A T I O N I N N L P S Y S T E M DES I GN=
A C R I T I C A L E V A L U A T I O N

Kent Wittenburg and Jim Barnett
MCC

3500 West Balcones Center Drive
Austin, TX 78759

ABSTRACT

This paper is a critical evaluation of an approach to con-
trol in natural language processing systems which makes use
of canonical structures as a way of collapsing multiple
analyses in individual components. We give an overview
here of how the Lucy natural language interface system cur-
rently realizes this control model and then evaluate what we
take to be the strengths and weaknesses of such an approach.
In particular, we conclude that the use of canonical struc-
tures can restrain combinatorial explosion in the search, but
at the cost of breaking down the barriers between modules
and of letting processing concerns infect the declarative
representation of information.

1 I n t r o d u c t i o n

The traditional design for natural language processing
systems is one in which processing proceeds a sentence at a
time, with syntactic analysis feeding subsequent semantic
and discourse analysis in a "conduit" fashion, to borrow a
characterization used in a somewhat different setting by Ap-
pelt (1982). The basic advantages of this design stem from
the fact that it is inherently modular: control is simple,
modules can be developed and debugged independently. The
ma~n disadvantage from the processing point of view is that
the search can explode as each module detects ambiguities

that cannot be resolved until later. 12 Although well-known
alternatives to conduit models exist -- the most obvious being
the proposal to interleave syntax, semantics, and discourse
processing -- we sense that the simplicity and modularity of
some form of the conduit model continue to be the determin-
ing design factor in most applied natural language systems to
date, at least for those that can be said to have independent
modules to start with. In this paper we will discuss the pros
and cons of a design paradigm that stays within the basic
conduit model. It is a paradigm characterized by the at-
tempt to procrastinate the resolution of ambiguity by means
of representing families of analyses with canonical represen-
tations.

The discussion will appear as follows. In Section 2 we at-
tempt to define and justify the use of canonical represen-
tations, highlighting their appeal from a processing point of
view. We then give a brief overview of how this paradigm
has been applied in the natural language interface prototype

1For example, Martin, Church, and Patil (1981) mention
that their phrase structure grammar produced 958 parses for
the naturally occurring sentence In as much a8 allocating

costs i8 a tough job [would like to have the total co~ts

related to each product.

2Appelt (1982) mentions other problems with the conduit

model having to do with its inability to account for inter-
actions, .say, between linguistic choices and gestural ones in
language generation models.

called Lucy (Rich et al. 1987), Our main points appear in
Section 4, where we assess the consequences of these design
decisions for three of the Lucy system modules. The conclu-
sion at tempts to generalize from this experience. Our main
purpose here is thus to evaluate this general design paradigm
by presenting a case history of that design applied in a par-
ticular project.

2 C a n o n i c a l r e p r e s e n t a t i o n s

A frequent response to the problem of an explosion of
syntactic parses in natural language systems is to have the
parsing module assign canonical representations to families
of structures. Church (1980), Martin, Church, and Patil
(1981), Marcus, Hindle, and Fleck (1983), Pereira (1983), Pul-
man (1985), and Wittenburg (1987) have all advocated some
form of this idea, which has sometimes gone under the name
of pseudo-attachment. These canonical structures are un-
ambiguous from the point of view of the parser/grammar,
but have several different semantic translations when it
comes to intepretation. The advantage of this approach is
that the semantics module might be able to choose quickly
between the multiple translations, even though the syntax
could not choose between the parses. For example, instead of
enumerating all possible prepositional phrase attachments,
the grammar could force a consistent at tachment (either high
or low or perhaps a flat n-ary branching tree) and return
only a single purse for strings of multiple PPs. Semantic
processing could then expand the canonical structure and
consider the alternatives when it had the information neces-
sary to choose among them. Information that could help in
this delayed choice would be semantic translations of the
nouns and verbs that carry constraints on their possible
modifiers. We will take such examples in syntax and seman-
tics as paragon cases of the general design strategy that con-
cerns us.

Figures 1 and 2 present the paradigm in a more
schematic way. Figure 1 shows a search space that branches
three ways at the first two depths and two ways at depth
three. Imagine that that the search in Module 1 represents
the parsing of a particular sentence where two structures are
three-ways ambiguous, a third is two-ways ambiguous, and a
parse exists for each combination of the three. A semantics
component that took over in Module 2 would be faced with
translating an exponentially growing number of parses, in
this case 18. Underscores in Module 2 are intended to
represent ill-formedness from the perspective of this com-
ponent; thus Figure 1 indicates that only one of the 18 inputs
to Module 2 passes muster, i.e., only one of the parses is well-
formed from a semantic point of view.

If the grammar were changed by finding a single canoni-
cal representation for each of the structures that are am-
biguous in Figure 1, the search tree for the parsing of this
same sentence would be as shown in Figure 2.

Then, as the semantics module takes over, it would begin
enumerating the alternatives that each of these canonical
syntactic structures actually represents. As we indicate in
Figure 2, we assume that there is sufficient (semantic) infor-
mation available to immediately rule out unproductive
branches. In the ideal case, the combinatorics of Figure 1
may be completely circumvented, leaving the basic flow of
control intact.

2 5 3

success of canonical strategies will thus be determined by the
extent to which it is possible to 1) find well-motivated
representations that allow painless recovery of the alter-
natives, 2) choose the correct points to unpack the struc-
tures, and 3) do 1 and 2 without undue cost to the rest of the
system.

Module A

Module B

Figu re 1: Search in a conduit model

Module A

Module B

F i g u r e 2: S e a r c h in a c a n o n i c a l m o d e l

Note, however, that the canonical representation
paradigm as we have presented it does not reduce the size of
the overall search in the worst case. The eanonicalized nodes
in Module 1 of Figure 2 still have to be expanded in Module
2 -- the expansion has merely been delayed. But of course
semantic information still may not be able to rule out the
choices, and if not, the same combinatories in Module 1 of
Figure 1 would appear in Module 2 of Figure 2. Any gain in
efficiency will come solely from being able to prune the
search tree quickly because or the presence of information
that would not have been available at an earlier stage.. The

3 C a n o n i c a l s t r u c t u r e s in
L u c y

Lucy is a natural language interface prototype that has
been built by the Lingo group at MCC (Rich et al. 1987).
One of the alms has been to design an interface system that
is portable across applications, and thus strong modularity
has been one of the central design factors. Figure 3 shows
the basic system design; it is a classic conduit model where
control passes from syntax to semantics and thence to dis-
course and pragmatics.

Sentence

Parsing

$¢m~rff.lcs

$¢rrtanucs

x[/---7"
Discourse
processing

F i g u r e 3: T h e L u c y s y s t e m

In many cases Lucy's parser produces a single parse for
an input sentence. The resulting structural description is then
unpacked and disambiguated in the semantics module. As
Figure 3 shows, semantic processing in Lucy procedes in two
stages. In Stage 1, the semantic processing module rewrites
the parse output as a set of logical assertions. The predicates
in these assertions are English words, taken from the parse
tree, so that the output of this initial stage can be considered
to represvnt the uninterpreted predicational structure of the
sentence, which abstracts away from the meaning of in-

2 5 4

dividual words. 3 In Stage 2 Lucy uses a set of semantic
mapping rules to t ranslate the Stage 1 assertions into the
vocabulary of a knowledge base, and then considers the
various interpretat ions, letting through only those tha t are
semantically consistent, where consistency is defined in terms
of the knowledge base's class hierarchy. (This amounts to
checking for semantic subcategorization restrictions.) This in-
terpreted logical form is suitable input for discourse and
pragmatic processing, and, ult imately, for the backend
program.

The Lucy sys tem uses canonical s t ructures to deal with
the following types of ambiguity: semantic sense ambiguity,
idiom recognition, noun-noun bracketing, prepositional
phrase a t t achment , and quantifier scope assignment . We
summarize a few of these t r ea tments here. See Rich et al.
(1987) for more detail.

Lucy assigns the same syntactic analysis to the literal and

idiomatic readings of a sentence. 4 Thus the parser produces
a canonical representation for idioms tha t amounts to a full
s t ructural description for the literal reading of the sentence.
Then the Stage 1 procedure, which rewrites the parser ou tpu t
into logical assertions, uses an idiom dictionary to produce
separate sets of assertions for the idiomatic and literal read-
ings. Note tha t in this case the canonical s tructure mus t be
expanded quite soon. This is because it is impossible to begin
translat ing assertions into the language of the knowledge
base without knowing whether the translat ion is to be literal
and compositional or idiomatic and global. Fur thermore,
producing a logical form involves making a commi tmen t
about how many objects we are talking about, and the
idiomatic and literal readings may imply the existence of dif-

ferent numbers of referents. 5 Thus , though idioms can pass
through the syn tax untouched, they require an early commit-
ment in semantics.

In the case of noun compounds, the parser assigns a
canonical r ight-branching structure which Stage 1 processing
rewrites into a flat list of nouns. Stage 2 processing is then
free to assign to the compound any bracketing for which it

3The design of this level of Lucy is influenced by Hobbs
(1985), which advocates a level of "surfaey" logical form
with predicates close to actual English words and a s tructure
similar to the syntact ic s tructure of the sentence.

4At present, Lucy can treat strings of adjectives and
nouns as idioms, as well as verb/part icle and
verb/preposit ion compounds. We've done experimental work
tha t indicates tha t there is no problem in extending this
approach to handle full VP idioms, such as "kick the
bucket, = but this functionality is not yet part of the system.

5Lucy's logical form incorporates the notion of a dis-
course referent (see Kamp (1984), Helm (1982)), and the
creation of a discourse referent implies the possibility of
anaphoric reference (within the range of accessibility of the
referent.) Thus , when a noun phrase "a bucket" or Uthe
bucket = occurs, we normally can refer back to it with " i t ' ;
however, if we use the idiom "kick the bucket" to mean
"d ie ' , no such anaphora is possible. Hence idioms must be
detected before discourse referents are created. As noted in
footnote above, Lucy does not ye t deal with full VP idioms
like Wkick the bucket, = but awareness of the effect such
idioms would have on our discourse processing s trategy is an
additional a rgument for locating the idiom module relatively
early in post-syntactic processing.

can find an interpretation. The semant ic mapping rules con-
tain compounding entries for nouns, allowing separate
specifications for the semant ics of a noun as a head of a com-
pound and as a modifier. It is also possible for an entry to
specify tha t the "semantic head" of a compound should be
flipped (e.g., in the case of "a stone l ion ' , which is a stone
and not a lion.) In this case, the canonical s t ructure does not
have to be unpacked until a t ranslat ion for the const i tuent is
required.

In the case of prepositions, the parser a t taches them at
the highest point in the tree with an indication of their
domain, i.e., the subtree within which they can be at tached.
The high a t t achmen t is not altered in Stage 1. In Stage 2,
after the nouns and verbs have been translated, Lucy at-
t empts to a t tach prepositional phrases and other post-
modifiers, checking to see which translat ions are consistent
with which a t t achments . For example, in "I saw the boy on
Monday," the parser would a t tach "on Monday = high, as-
signing a s t ructure indicating tha t both "saw" and "boy"
were possible a t t achmen t sites. The lexical entry for "on"
would s tate tha t "(on x y)" can mean "(temporally-located-
in x y)" if x is an event and y a day. Lucy would then accept
"saw-on" as a reading, but not "boy-on" (assuming there is
no entry giving a reading for "(on x y)" where x is a person
and y a date.) In postponing PP a t t achmen t until the end of
the semantic translat ion routine, Lucy assumes tha t I) the
translat ions of the nouns and verbs are more likely to con-
strain the readings and a t t achmen t s of the prepositions than
vice-versa, and 2) tha t the resulting translat ion can be built
up piecemeal, with the t ranslat ions of the PPs "added in" to
the t ranslat ions of the nouns and verbs. One result of this
s t rategy is tha t verb/part icle and verb/preposit ion com-
pounds mus t be treated as idioms, since in these cases the
meaning is not cumulative. (It would be hard to assign in-
dependently motivated meanings to "look" and "up" tha t
would combine to give the meaning "look up" in "I looked
the word up . ')

Finally, Lucy, like most other sys tems, does not assign
quantifier scope either in the parse tree or in the first stages
of semantic processing; scope ass ignment is postponed until
the Stage 2 translation into the language of the knowledge

base is completed. 6

4 C o n s e q u e n c e s for t h e
m o d u l e s

The Lucy experiment has shown tha t it is possible to
push the technique of canonical representat ions quite far
indeed, thus maintaining the overall simplicity of a conduit
control model with a sentence as the basic unit of data.
However, the consequences for the knowledge sources in-
volved within each of the modules have been far-reaching.
We next review some of those consequences for the grammar ,
for the syntax-semant ics relations, and for those parts of
semantics proper having to do with sortal consistency of
terms in the knowledge base.

4 . 1 T h e g r a m m a r

For each of the phenomena discussed in the previous see-

6At present, Lucy uses no knowledge except tha t con-
tained in the class hierarchy. Such information is not useful
for determining quantifier scope, so Lucy gives a default
left-right assignment.

2 5 5

tion, the Lucy g r a m m a r (i.e., its syntactic lexicon and rule
base) was hand-tooled to pack a number of analyses into a
single canonical parse. The goal we had been aiming for, in
fact, was to return only a single parse for any given input
sentence. In some cases, the effects on the g r a m m a r were
relatively minor. Forcing high a t t achmen t of PPs , for ex-
ample, involved a slight augmenta t ion of syntact ic feature
s t ructures in the categories and rules such tha t low at tach-
ments led to feature clashes when the parser tried to incor-
porate such modified const i tuents into, say, a higher verb
phrase. Forcing r ight-branching analyses of noun-noun com-
pounds was comparable. However, where there were inter-
actions involving lexical ambigui ty, the canonicalization of
the g r a m m a r had far more radical effects. Interactions
among subcategorizat ion of potential p h r ~ a l verb heads and
ambiguity between prepositions and particles provides one
telling example. We give a brief history here of this case in
order to illustrate the kind of effects on declarative infor-
mation tha t canonicalization can lead to.

We began with the goal of finding a canonical form to
conflate s t ructures of the following sort since syn tax alone
would have insufficient information to force a choice between
them:

John looked lup the mounta in 1
John [looked up I the mounta in

W h a t should the canonical form be in such a case? One
could either analyze such sentences as an intransitive verb
followed by a PP or as a transit ive verb + particle combina-
tion. We chose the former since the PP reading seems to be
the one more generally available, whereas the presence of a
particle reading depended on there being an entry in our
idiom dictionary, which in Lucy is accessed only after the
parse is complete. The semantic mapping rules we produced
then had to create two logical forms from the one canonical
analysis; the first corresponded directly to the PP structure,
the other to the phrasal verb s t ructure, even though tha t lat-
ter s t ructure as such was not present in the syntax.

We explored several options for writing a g r ammar tha t
would produce a PP bracketing, and only this bracketing, in
such cases. The one we settled on led us to derivation trees

7
like the following:

7Lucy uses a form of categorial g r ammar in its syntactic
component. FaG and fa> s tand for backward function
application and forward function application, respectively.
Funct ion application is the basic binary reduction rule in the
g rammar . It applies a functor category, such as a verb
which is looking for some argument , to a category tha t can
satisfy an a rgument role. Pp-raising is a unary rule tha t
makes S-modifiers out of basic PPs and fin is the unary rule
tha t lifts VPs to the category for finite verbs, adding the
subject argument . See Wit tenburg (1986) for details of Lucy
style g rammars , Uszkoreit (1986), Ka r t t unen (1987), and
Zeevat, Klein, and Calder (1987) for related versions of
Categorial Unification Grammars .

S

S\S

............ pp-r~islng
S PP

............ fa< fa>

S\NP

.... fln

NP VP PP/NP NP

John looked up ~he mountaln

In order to be sure t ha t this was the ONLY parse given
by our g r a m m a r in such cases, we had to be sure tha t there
was no particle analysis for this same sentence. However, we
did of course have to allow particle-type bracketings when no
prepositional-type bracketing was available as, for instance,
in sentences like =John looked it up= or =John caught up'.
This we did by having prepositions, not verbs, always take
the NP as an argument if there was ~t preposition/particle
intervening between the verb and the NP and by having
verbs take the NP as an argument if there were no
preposition/particle intervening. Particles then took a com-
plete VP as a left argument. An input sentence such as
=John looked it up = thus produced the following unique
derivation, which was interpreted with the particle reading
only.

S

S\NP

................. fln

VP

.................. f~<
VP

. f a >

NP VP/NP NP VP\VP

John looked 1~ up

Now our analysis was complete. Our goals were ach-
ieved. But consider what the effects were on the g rammar .
In order to get an analysis for "John looked it up = we had to
assign a transit ive verb entry to "look °, even though it was
really only the two-word entry "look up = tha t was transitive,
not ' look" itself. In order to get an analysis for sentence.~
like "John caught up" we had to assign an intransit ive entry
to " c a u g h t ' , even though =caught u p ' , not = cau g h t ' , was
the actual intransitive form. Also, the analysis of verb par-
ticles failed to reflect the fact t ha t English particles do ap-
pear between verbs and verb objects--in this g r am m ar par-
ticles were specifically excluded from this position in order to
avoid particle/preposit ion ambiguities. So our entire motiva-
tion for grammat ica l analyses was now being driven by the
need to s t amp out al ternative derivations and no longer by
principled linguistic concerns. The casualties to the g rammar
included principled ass ignments of categories to words in the
lexicon, principled definitions of categories themselves, and
principled connections between syntact ic s t ructures and the
interpretat ions they were capable of producing.

Our example il lustrates how far things may go. This is
not to say, however, tha t any form of canonicalization in-
variably has such devas ta t ing consequences for the g rammar .
The effects of canonicalization of PP modifier a t t achments
seem to be relatively minor, for instance. As an anonymous
reviewer s ta ted so clearly, whether canonicalization is likely
to work or not depends on the locality of the phenomenon
the canonicalization is a t t empt ing to account for. The less
any other g rammat ica l processes are sensitive to the inter-

2 5 6

nals of a canonical representation, the better the prospects
for success. However, there are surprisingly few cases where
no other grammat ica l processes are affected. This same
reviewer mentioned an interesting example involving noun-
noun compounds. Structural ambiguity within noun-noun
compounds might seem to be one of the most promising
cases for canonicalization in English given tha t most gram-
matical processes are not sensitive to the internal s t ructure
of NPs. However, when the g r ammar includes generalized
conjunction, problems quickly surface. Consider an am-
biguous sequence such as "N1 and N2 N3 V ' . In order to
encompass such examples, the canonicalization of compounds
presumably needs to be extended so tha t only one of the two
obvious analyses will be parsed. But subject-verb agreement
will be affected by the choice of s tructure, and it seems dif-
ficult to see how any straightforward solution could account
for all cases of agreement and still return only a single parse.
Thus we see tha t the internal s t ructure of the NP does mat-
ter after all, since conjunction and percolation of agreement
features are affected. A t t emp t s to extend canonicalization to
cases in which even the most basic consti tuency is undeter-
mined seems even less likely to succeed. Examples such as
"look up the word" along with others such as "I want the
chicken to have lunch" share an uncertainty about what the
basic const i tuents in question really are.

4.2 S t a g e 1 s e m a n t i c s

The main consequence of canonicalization for Stage 1
semantic processing, which corresponds to the semantic
translat ion step, is an increase in complexity. In particular,
the domain of locality for t ranslat ions from syntactic struc-
tures to semantic forms is affected. An immediate con-
sequence is tha t the mapping from parse s t ructures to logical
assertions is less t ransparen t than tha t in approaches tha t
maintain a homomorphism between syn tax and semantics
such as Montague g r ammars and related phrase s t ructure
frameworks (e.g., Klein and Sag 1985). For eanonicalized
structures, the syntax-semant ics mapping cannot take place
in a local, compositional manner. We discuss PPs as an ex-
ample.

First, consider canonicalization of prepositional phrases in
their role as modifiers. In Lucy the syn tax at taches PPs high,
and Stage 1 processing produces special =Attach = assertions
tha t are interpreted in such a way as to ult imately produce
the set of possible a t t achments . Thus in the example "I saw
the man on a hill with a telescope" shown below, the syn tax
results in a representat ion indicating modifiers and their at-
t achment dom(ains). Stage 1 semantics processing produces
several basic assertions as well as one =Attach" assertion
whose a rguments consist of a list of (referents of) potential
a t t achmen t sites followed by a sequence of prepositional
phrases tha t are to be at tached.

Syntax:
[mod: [prep: with

pobJ: a telescope]
dom: [mod: [prep: on

pobJ: a hill]
dom: [subJ: I

pred: [verb: saw
obJ: the man]]33

Stage I semantics:
(I x l)
(man x2)
(see el x l x2)
(hill x3)
(telescope x4)
(Attach (el x2)(on argl x3)(wlth argl x4))

Note tha t the s tructure of the a t t achmen t assertion bears no
simple relation to the s t ructure of the syntact ic analysis.
Producing the semant ics assertions entails conducting a
search on the a t t achmen t domain, pulling out relevant sub-
parts, and reassembling them into a different form. The
translat ion process here is thus no longer a simple function of
the t ranslat ion of the PP and the t ranslat ion of the con-
s t i tuent tha t the PP at taches to.

When the canonicalization includes not only the collaps-
ing of a t t achmen t sites for PP modifiers but also s tructures
involving two-word verbs as discussed above, the complexity
of the translat ion step goes up again. In the case of "look up
the word ' , there is only one prepositional phrase to £t tach
and only one place to a t tach it, hut processing is complicated
by the fact tha t we mus t check for the particle reading of
"look up." Where there is such a reading, we mus t generate
a separate translation, with a branch in the subsequent
search, even though the verb and the preposition are not
parts of a single consti tuent , either in the syn tax or in the
rest of Stage 1 semantics . The meaning of the whole sen-
tence thus contains readings tha t are not (simple) functions
of the meaning of the const i tuents in the parse tree. A
similar problem would take place wherever prepositional
phrases could be taken as a rguments to a verb rather than as
modifiers of it. (See the discussion below of indirect objects
with "to" and " for ' .)

Additional complications for PPs arise in sentences with
"be" and a prepositional phrase. The natural semantics for
"John is next to Mary" would have "next to Mary" either as
a predicate of "John" or as an a rgument to "be. m In these
cases, the Lucy g r ammar still a t taches the PP high to the
pseudo-consti tuent "John i s ' . The Stage 1 routine then has
to detach the (first) PP from its position high in the tree and
move it down into the VP. The resulting translat ion can be
derived compositionally from the t ransformed parse tree, but
not from the original one. Thus , even in the seemingly
straightforward case of prepositional phrases, the relation be-
tween syntax and semant ics has become opaque, with the
readings often differing significantly from the "natural" in-
terpretat ions of the parse tree. One concrete result of this
complexity is tha t the Stage 1 routine in Lucy is procedurally
rather than declaratively stated. It is not a particularly
troublesome routine, but the complicated conditionalized
t ransformat ions it performs would be hard to express
declaratively.

4.3 S t a g e 2 s e m a n t i c s

Stage 2 semantics in Lucy represents the transit ion from
surface linguistic s tructure to a deeper, knowledge-based

2 5 7

form of representation. In syn tax and in Stage 1 semantic
representation the lexical i tems are English words. During
Stage 2 processing these are are t ranslated into the predi-
cates of a domain knowledge base. Thus , by the time Stage 2
processing is finished, all information about the surface lin-
guistic form is gone. However, aa a result of canonicalization,
the Stage 2 semantic module ends up doing (explicitly or
implicitly) the syntact ic processing tha t has been put off by
earlier components . Since the o , t p u t of Stage 2 semant ics is
supposed to represent the meaning of the sentence, modifier
a t t achmen t mus t be resolved. Consider the case of PP at-
t achmen t again. The part of the module tha t determines at-
t achmen t mus t know tha t crossed branches are not allowed;
tha t is, in a str ing like "I saw a man on the hill with a
te lescope ' , if "on a hill" modifies "saw" then "with a
telescope" cannot modify "a man." Thus , the Stage 2 com-
ponent mus t keep track of the interactions of the different
proposed a t t achments , and this involves knowledge of the
syntact ic tree s t ructure. Thus , information tha t properly
belongs in the syntact ic module ends up being duplicated in
the semantics . Fur thermore , if other modules, e.g. discourse,
need detailed syntact ic information, the semant ics com-
ponent will have to go back and update the syntact ic struc-
ture to reflect the ul t imate a t t a chmen t of the PPs.

In some cases, lexical information may also have to be
passed along fairly far into Stage 2 semantics . Consider the
case of the delayed a t t a chmen t of a PP tha t might be a
semantic indirect object (' I sent a letter to Mary" in the
sense equivalent to "I sent Mary a l e t t e r . ') The problem
here is t ha t some verbs (' s e n d ' , "give", etc.) take "to" as
an indirect object marker, while a smaller class of verbs
(' b u y ' , " f i nd ' , etc.) take "for" as a marker. The module
will need to know what the surface verb was to make the
a t t a chmen t properly (in order to avoid interpreting "for
John" as the recipient in "I sent it for J o h n ' , etc.) In
general, a t t a chmen t is often sensitive to the lexical i tems in-
volved, and delaying a t t a chmen t decisions entails importing
surface lexical, as well as syntactic, information into a part
of the sys tem tha t is more naturally thought of as operating
on ' pu re mean i ng ' plus world knowledge. In short , ups t ream
syntact ic information is contaminat ing downst ream semantic
processing.

Finally, even if we are willing to accept such distortions
in the semantics , there are cases involving "of" where late
a t t achmen t seems to be impossible. Normally, a phrase of
the form NP1 Prep NP2 denotes a subset of the denotat ion
of NP1 (e.g., a man in a sweater is a man and not a
sweater.) However, "a bottle of beer" is often taken to
denote the beer, rather than the bottle. For example, you can
pour, drink, or dilute a bottle of beer, though you can do
none of these things to a simple glass bottle. Therefore, if
semantic processing involves checking for sortal consistency
(subcategorization), as Stage 2 semant ics in Lucy does, either
PPs with "of" will have to be a t tached before
ve rb / a rgumen t pairs are checked for consistency, or seman-
tics will reject sentences tha t in fact have good readings. For
example, if "drink" subcategorizes for a liquid as its direct
object, and ' a bo t t l e ' denotes a piece of glass (of the right
size and shape, etc.), then "drink a bottle" will fail sortal
consistency checking, even though "drink a bottle of beer"
would succeed. We could say tha t "bottle" also denotes a
certain quant i ty of liquid, but by doing so we introduce ar-
tificial ambigui ty into the unambiguous sentence "I found a
bottle on the beach" (since one could certainly find a quan-

t i ty of liquid on a beach). 8 The best solution would be to
t reat "of" separately from other prepositions, determining

9
a t t achmen t earlier in the processing. However, the added
complication tha t such t r ea tmen t would entail reinforces the
point that , even in cases where canonicalization seems in-
nocuous to the syntax, the side-effects on semantic process-
ing can be significant.

Reflecting on the effect of canonicalization on semantic
processing, we see that , as remarked above in the discussion
of syntax, the locality of the construct ion in question is an
impor tan t factor. In the case of noun-noun compounding, it
happens tha t there are few interactions between the internal
s t ructure of the canonicalized construct ion and the rest of
the sentence. Accordingly, canonicalization of these struc-
tures provides a painless way of avoiding early branching in
the search. Preposit ional phrases, however, a l though they
show a high degree of locality in the syntax, are involved in
complex, non-local interactions in the semantics , with a cor-
responding complication of the processing. In such cases,
canonicalization can still be made to work, but only at a
price.

5 C o n c l u s i o n

We believe tha t the Lucy experiment with canonical
representat ions has generally succeeded in lowering the
amoun t of effort Lucy spends on search. The parser usually
returns a single analysis, instead of many, and the semantics
module usually succeeds in ruling out most of the possibilities
when they are finally unpacked. A further benefit is tha t
debugging some individual modules has been made easier.
We have found, in particular, t ha t debugging a g rammar
tha t typically produces only one or a very small number of
parses is much easier than when the g r a m m a r returns, say,
hundreds of parses for a given sentence.

But what of the hidden costs to the system? The course
of our research has caused us to step back and question the
whole idea of canonical s t ructures for two primary reasons:
first, canonical s t ructures tend to let declarative information
be far too influenced by processing concerns; second, modules
leak in such designs, essentially doing away with one of the
main a rgument s for such control models in the first place.

There are rather serious practical, as well as theoretical,
consequences when canonical forms make their way into the
g r ammar in the way discussed in Section 4.1. First is the
problem of lexical acquisition when lexical category assign-
ments become so off-beat. Second, with arcane relations be-
tween syntact ic ou tpu t and semantic result as discussed in
Section 4.2, it becomes difficult to see how such sys tems
could be easily used for other purposes than the specific ones
they have been writ ten for. For instance, it is hard to see
how multilingual sys tems could relate g r am m ars when in-
dividua[g r ammars have been so heavily influenced by the ac-
cidental vagaries of processing concerns in tha t language. It
is also hard to see how a generation sys tem could easily
make use of such g rammars , since the mapping rules will
tend to be complicated and fundamenta l ly unidirectional.

The moral to be drawn from the remarks in Section 4.3
seems to be tha t a canonical s t ructure model, at least in its
extreme form, does not permit us to mainta in the modularity
of a traditional conduit model. If we return to Figure 2
above, it is clear tha t when we finally begin enumerat ing the
branching tha t has simply been delayed in the canonical out-

8Furthermore, a lmost any physical object can serve as a
container: "We had lunch at the dump. I drunk a hubcap of
beer and ate a distributor cap of pate."

9There is some evidence for t reat ing "of" as a member of
a distinct syntact ic class. For one thing, "o f ' , unlike other
prepositions, cannot a t tach to sentences (though it can mark
an a rgument of the verb: "the time has come, the Walrus
said, to talk of many th ings . . . ')

2 5 8

put of module A, we will still have to use the information
tha t fundamental ly belongs in module A, even though we are
doing this processing in module B. The effect is tha t we will
require passing along information from box to box. Thus, we
end up doing interleaving whether we want to or not.

Al though these conclusions seem to be damning for the
general design philosophy, we should note tha t our a t t empts
at evaluation here are open to the criticism tha t a single case
history does not necessarily justify general conclusions about
a design philosophy. There is. always the possibility tha t the
design wasn ' t applied "right" in the case at hand. In par-
ticular, we should distinguish the proposal for hand-tooling
canonical representat ions into a g rammar as we have done in
Lucy from the proposal for automatical ly inferring higher
level generalizations from modules tha t themselves have still
been driven by principled linguistic concerns. The proposals
of Church and Patil (1982) fall more into this latter camp,
and it is a goal of the ongoing redesign efforts in Lucy to
incorporate some version of automatic generalization.

Despite the negatives, it is possible tha t for some NLP
applications the balance could still tip in favor of using
canonical representat ions for some limited set of s t ructures
such as noun compounding or PP modifier a t t achment . Ap-
plications tha t have no pretensions of being fully general or
easily extensible may be willing to pay the price tha t
canonicalization exacts in order to avoid a more complex
design and still achieve acceptable performance results. In
fact, we expect tha t the need for methods tha t incorporate
some form of delayed evaluation will continue to be pressing
in natural language analysis, and in view of the short supply
of such methods currently available, canonicalization may
continue to have its place in the near term. However, our
conclusion after two years of pursuing such techniques is tha t
conduit control models using canonical s t ructures ult imately
offer no real al ternative to more complex designs in which
control is interleaved among modules.

6 Acknowledgements

This paper reports on work undertaken by the Lingo
project at MCC in 1986 and 1987. Other members of Lingo
connected with this work include Elaine Rich, Joa
Schlossberg, Kelly Shuldberg, Carl Weir, Greg Whit temore,
and Dave Wroblewski. Elaine Rich, in particular, has con-
tributed much to the debates over issues discussed here and
has commented on earlier drafts. We'd like to acknowledge
Dave Wroblewski 's role in these areas also, as well as his es-
sential contributions to implementing Lucy. Finally, the
comments of an anonymous reviewer were very useful to us
in revising an earlier draft.

R E F E R E N C E S

Appelt, D. 1982. Planning Natural-Language Ut-
terances to Satisfy Multiple Goals. Technical
report no. 259, A.I. Center, SRI International.

Church, K., and R. Patil. 1982. Coping with Syntactic
Ambiguity or How to P u t the Block in the Box
on the Table. Journal of Computat ional Linguis-
tics 8:139-149.

Helm, I. 1982. The Semantics of Definite and Indefinite
Noun Phrases. Ph.D. dissertation, University of

Massachusset ts .

Hobbs, J. 1985. Ontological Promiscuity. In Proceed-
ings of the 23rd Annual Meeting of the Associa-
tion for Computa t ional Linguistics, pp. 61-69.

Kamp. H. 1984. A Theory of T ru th and Semantic
Representat ion. In Groenendijk et al. (eds),
Tru th , Interpretation, and Information, pp. 1-41.
Foris.

Kar t tunen , L. 1987. Radical Lexicalism. To appear in
M. Baltin and A. Kroch (eds), New Conceptions
of Phrase Structure, MIT Press.

Klein, E., and I. Sag. 1985. Type-driven Translat ion.
Linguistics and Philosophy 8:163-201.

Marcus, M., D. Hindle, and M. Fleck. 1983. D-Theory:
Talking about Talking about Trees. In Proceed-
ings of the 21st Annual Meeting of the Associa-
tion for Computa t ional Linguistics, pp. 129-136.

Martin, W., K. Church, and R. Patti. 1981. Preliminary
Analysis of a Breadth-Firs t Parsing Algorithm:
Theoretical and Experimental Results, technical
report no. MIT/LCS/TR-261 , Massachuset t s In-
s t i tute of Technology.

Pereira, F. 1983. Logic for Natura l Language Analysis.
Technical report no. 275, A.I. Center, SRI Inter-
national.

Pu lman , S. G. 1983. Generalized Phrase Structure
Grammar , Earley 's Algorithm, and the minimisa-
tion of Recursion. In K. Sparck Jones and
Y. Wilks (eds), Automat ic Natural Language
Parsing, pp. 117-131. Halsted.

Rich, E., J. Barnet t , K. Wit tenburg, and
D. Wroblewski. 1987. Ambigui ty Procrast ination.
In Proceedings of A.A.AI-87, pp. 571-576.

Uszkoreit, H. 1986. Categorial Unification Grammars .
In Proceedings of Coling 1986, pp. 187-194.

Wit tenburg, K. 1986. Natural Language Parsing with
Combinatory Categorial G r a m m a r s in a Graph-
Unification-Based Formalism. Ph.D. disser-
tation, University of Texas at Austin.

Wit tenburg, K. 1987. Extraposit ion from NP as
Anaphora. In G. Huck and A. Ojeda (eds), Syn-
tax and Semantics, Volume 20: Discontinuous
Constituencies, pp. 427-444. Academic.

Zeevat, H., E. Klein, and J. Calder. 1986. Unification
Categorial Grammar . In Edinburgh Working
Papers in Cognitive Science, Volume 1,
Categorial Grammar , Unification Grammar , and
Parsing. Centre for Cognitive Science, pp.
195-222. University of Edinburgh.

2 5 9

