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In this paper  we tackle sentence boundary disam- 
biguation through a part-of-speech (POS) tagging 
framework. We describe necessary changes in text 
tokenization and the implementat ion of a POS tag- 
ger and provide results of an evaluation of this sys- 
tem on two corpora. We also describe an exten- 
sion of the traditional POS tagging by combining 
it with the document-centered approach to proper 
name identification and abbreviation handling. This 
made the resulting system robust to domain and 
topic shifts. 

1 I n t r o d u c t i o n  

Sentence boundary disambiguation (SBD) is an im- 
portant  aspect in developing virtually any practi- 
cal text processing application - syntactic parsing, 
Information Extraction, Machine Translation, Text 
Alignment, Document Summarization,  etc. Seg- 
menting text into sentences in most  cases is a sim- 
ple m a t t e r -  a period, an exclamation mark  or a 
question mark  usually signal a sentence boundary. 
However, there are cases when a period denotes a 
decimal point or is a part  of an abbreviation and 
thus it does not signal a sentence break. Further- 
more, an abbreviation itself can be the last token 
in a sentence, in which case its period acts at the 
same time as part  of this abbreviation and as the 
end-of-sentence indicator (fullstop). 

The first large class of sentence boundary disam- 
biguators uses manually built rules which are usually 
encoded in terms of regular expression grammars  
supplemented with lists of abbreviations, common 
words, proper names, etc. For instance, the Alem- 
bic workbench (Aberdeen et al., 1995) contains a 
sentence splitting module which employs over 100 
regular-expression rules written in Flex. To put to- 
gether a few rules which do a job is fast and easy, but  
to develop a good rule-based system is quite a labour 
consuming enterprise. Another potential  shortcom- 
ing is that  such systems are usually closely tailored 
to a particular corpus and are not easily portable 
across domains. 

Automatically trainable software is generally seen 

as a way of producing systems quickly re-trainable 
for a new corpus, domain or even for another  lan- 
guage. Thus,  the second class of SBD systems em- 
ploys machine learning techniques such as decision 
tree classifiers (Riley, 1989), maximum entropy mod- 
eling (MAXTERMINATOR)  (Reynar and Ratna-  
parkhi, 1997), neural networks (SATZ) (Palmer and 
Hearst ,  1997), etc.. Machine learning systems treat  
the SBD task as a classification problem, using fea- 
tures such as word spelling, capitalization, suffix, 
word class, etc., found in the local context of poten- 
t im sentence breaking punctuation.  There  is, how- 
ever, one catch - all machine learning approaches to 
the SBD task known to us require labeled examples 
for training. This implies an investment in the an- 
notat ion phase. 

There  are two corpora normally used for evalua- 
tion and development in a number  of text  process- 
ing tasks and in the SBD task in particular: the 
Brown Corpus and the Wall Street Journal  (WSJ) 
corpus - both  par t  of the Penn Treebank (Mar- 
cus, Marcinkiewicz, and Santorini, 1993). Words 
in both  these corpora are annota ted  with part-of- 
speech (POS) information and the text  is split into 
documents,  paragraphs and sentences. This gives 
all necessary information for the development of 
an SBD system and its evaluation. State-of-the- 
art  machine-learning and rule-based SBD systems 
achieve the error rate of about  0.8-1.5% measured 
on the Brown Corpus and the WSJ.  The best per- 
formance on the WSJ was achieved by a combination 
of the SATZ system with the Alembic system - 0.5% 
error rate. The best performance on the Brown Cor- 
pus, 0.2% error rate, was reported by (Riley, 1989), 
who trained a decision tree classifier on a 25 million 
word corpus. 

1.1 W o r d - b a s e d  vs .  S y n t a c t i c  M e t h o d s  

The first source of ambiguity in end-of-sentence 
marking is introduced by abbreviations: if we know 
tha t  the word which precedes a period is n o t  an ab- 
breviation, then almost certainly this period denotes 
a sentence break. However, if this word is an ab- 
breviation, then it is not tha t  easy to make a clear 
decision. The second major  source of information 
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for approaching the SBD task comes from the word 
which follows the period or other sentence splitting 
punctuation. In general, when the following word 
is punctuation, number or a lowercased word - the 
abbreviation is not sentence terminal. When the fol- 
lowing word is capitalized the situation is less clear. 
If this word is a capitalized common word - this sig- 
nals start  of another sentence, but if this word is a 
proper name and the previous word is an abbrevia- 
tion, then the situation is truly ambiguous. 

Most of the existing SBD systems are word-based. 
They employ only lexical information (word capital- 
ization, spelling, suffix, etc.) to predict whether a 
capitalized word-token which follows a period is a 
proper name or is a common word. Usually this is 
implemented by applying the lexical lookup method 
where a word is assigned its category according to 
which word-list it belongs to. This, however, is 
clearly an oversimplification. For instance, the word 
"Black" is a frequent surname and at the same time 
it is a frequent common word, thus the lexical infor- 
mation is not very reliable in this case. But by em- 
ploying local context one can more robustly predict 
that  in the context "Black described.." this word 
acts as a proper name and in the context "Black 
umbrella.." this word acts as a common word. 

It is almost impossible to robustly estimate con- 
texts larger than single focal word using word-based 
methods - even bigrams of words are too sparse. For 
instance, there are more than 50,000 distinct words 
in the Brown Corpus, thus there are 250`0o0 poten- 
tial word bigrams, but only a tiny fraction of them 
can be observed in the corpus. This is why words 
are often grouped into semantic classes. This, how- 
ever, requires large manual effort, is not scalable and 
still covers only a fraction of the lexica. Syntactic 
context is much easier to est imate because the num- 
ber of syntactic categories is much smaller than the 
number of distinct words. 

A standard way to identify syntactic categories for 
word-tokens is part-of-speech (POS) tagging. There 
syntactic categories are represented as POS tags e.g. 
N N S  - plural noun, VBD - verb past form, J JR - com- 
parative adjective, etc. There exist several tag-sets 
which are currently in use - some of them reflect 
only the major  syntactic information such as part-  
of-speech, number, tense, etc., whereas others reflect 
more refined information such as verb subcategoriza- 
tion, distinction between mass and plural nouns, etc. 

Depending on the level of detail one tag-set can 
incorporate a few dozen tags where another can in- 
corporate a few hundred, but still such tags will be 
considerably less sparse than individual words. For 
instance, there are only about  40 POS tags in the 
Penn Treebank tag-set, therefore there are only 240 
potential POS bigrams. Of course, not every word 
combination and POS tag combination is possible, 

but  these numbers give a rough estimation of the 
magnitude of required data for observing necessary 
contexts for words and POS tags. This is why the 
"lexical lookup" method is the major  source of in- 
formation for word-based methods. 

The "lexical lookup" method for deciding whether 
a capitalized word in a position where capitalization 
is expected (e.g. after a fullstop) is a proper name or 
a common word gives about  an 87o error rate on the 
Brown Corpus. We developed and trained a POS 
tagger which reduced this error more than by h a l f -  
achieving just above a 3% error rate. On the WSJ 
corpus the POS tagging advantage was even greater: 
our tagger reduced the error rate from 1570 of the 
lexical lookup approach to 5%. This suggests that  
the error rate of a sentence splitter can be reduced 
proportionally by using the POS tagging method- 
ology to predict whether a capitalized word after a 
period is a proper name or a common word. 

1.2 T h e  S A T Z  S y s t e m  

(Palmer and Hearst,  1997) described an approach 
which recognized the potential of the local syntac- 
tic context for the SBD problem. Their, system, 
SATZ, used POS information for words in the lo- 
cal context of potential sentence splitting punctu- 
ation. However, what is interesting is that  they 
found difficulty in applying a standard POS tag- 
ging framework for determining POS information 
for the words: "However, requiring a single part-of- 
speech assignment for each word introduces a pro- 
cessing circularity: because most part-of-speech tag- 
gers require predetermined sentence boundaries, the 
boundary disambiguation must be done before tag- 
ging. But if the disambiguations done before tag- 
ging, no part-of-speech assignments are available for 
the boundary determination system". 

Instead, they applied a simplified method. The 
SATZ system mapped Penn Treebank POS tags into 
a set of 18 generic POS categories such as noun, ar- 
ticle, verb, proper noun, preposition, etc. Each word 
was replaced with a set of these generic categories 
that  it can take on. Such sets of generic syntac- 
tic categories for three tokens before and three to- 
kens after the period constituted a context which 
was then fed into two kinds of classifiers (decision 
trees and neural networks) to make the predictions. 

This system demonstrated reasonable accm'acy 
(1.0% error rate on the WSJ corpus) and also ex- 
hibited robustness and portabili ty when applied to 
other domains and languages. However, the N- 
grams of syntactic category sets have two important  
disadvantages in comparison to the traditional POS 
tagging which is usually largely based (directly or 
indirectly) on the N-grams of POS tags. First, syn- 
tactic category sets are much sparser than syntactic 
categories (POS tags) and, thus, require more data  
for training. Second, in the N-grams-only method 
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C='RB' A='N'>soon</W><W C='.'>.</W> <W A='Y' C='NNP'>Mr</W><W C='A'>.</W>... 

C='VBD'>said</W> <W C='NNP' A='Y'>Mr</W><W C='A'>.</W> <W C='NNP'>Brown</W>.,, 

C=','>,</W> <W C='NNP' A='Y'>Tex</W><W C='*'>.</W> <W C='DT'>The</W>... 

Figure h Example of tokenization and markup.  Text is tokenized into tokens represented as XML elements 
with attributes: A='Y' - abbreviation, A=' N'-  not abbreviation, C - part-of-speech tag at tr ibute,  C= ' .  ' 
fullstop, C='A'  - par t  of abbreviation, C = ' * '  - a fullstop and part  of abbreviat ion at the same time. 

no influence from the words outside the N-grams can 
be traced, thus, one has to adopt N-grams of suffi- 
cient length which in its turn leads either to sparse 
contexts or otherwise to sub-optimal discrimination. 
The SATZ system adopted N-grams of length six. 
In contrast to this, POS taggers can capture influ- 
ence of the words beyond an immediate N-gram and, 
thus, usually operate  with N-grams of length two (bi- 
grams) or three (three-grams). Furthermore,  in the 
POS tagging field there exist s tandard methods to 
cope with N-gram sparseness and unknown words. 
Also there have been developed methods for unsu- 
pervised training for some classes of POS taggers. 

1.3 T h i s  P a p e r  

In this paper  we report  on the integration of the 
sentence boundary  disambiguation functionality into 
the POS tagging framework. We show tha t  Sentence 
splitting can be handled during POS tagging and the 
above mentioned "circularity" can be tackled by us- 
ing a non-traditional tokenization and markup  con- 
ventions for the periods. We also investigate reduc- 
ing the importance of pre-existing abbreviation lists 
and describe guessing strategies for unknown abbre- 
viations. 

2 N e w  H a n d l i n g  o f  P e r i o d s  

In the traditional Treebank schema, abbreviations 
are tokenized together with their trailing periods 
and, thus, stand-alone periods unambiguously sig- 
nal end-of-sentence. For handling the SBD task we 
suggest tokenizing periods separately from their ab- 
breviations and treat ing a period as an ambiguous 
token which can be marked as a fullstop ( ' .  ' ), part-  
of-abbreviation ( '  A') or both ( '  * ' ) .  An example of 
such markup is displayed on Figure 1. Such markup 
allows us to t reat  the period similarly to all other 
words in the text: a word can potentially take on 
one of a several POS tags and the job of a tagger is 
to resolve this ambiguity. 

In our experiments we used the Brown Corpus and 
the Wall Street Journal corpus both taken from the 
Penn Treebank (Marcus, Marcinkiewicz, and San- 
torini, 1993). We converted both these corpora from 
the original format  to our XML format  (as displayed 
on Figure 1), split the final periods from the abbrevi- 
ations and assigned them with C= ' A ' and C= ' * ' tags 

according to whether or not the abbreviation was the 
last token in a sentence. There were also quite a few 
infelicities in the original tokenization and tagging 
of the Brown Corpus which we corrected by hand. 

Using such markup  it is straightforward to train 
a POS tagger which also disambiguates sentence 
boundaries. There  is, however, one difference in the 
implementat ion of such tagger. Normally, a POS 
tagger operates on a text-span which forms a sen- 
tence and this requires performing the SBD before 
tagging. However, we see no good reason why such a 
text-span should necessarily be a sentence, because 
almost all the taggers do not a t t empt  to parse a sen- 
tence and operate only in the local window of two 
to three tokens. 

The only reason why the taggers traditionally op- 
erate on the sentence level is because there exists a 
technical issue of handling long text  spans. Sentence 
length of 30-40 tokens seems to be a reasonable limit 
and, thus, having sentences pre-chunked before tag- 
ging simplifies life. This issue, however, can be also 
addressed by breaking the text  into short text-spans 
at positions where the previous tagging history does 
not affect current decisions. For instance, a bigram 
tagger operates within a window of two tokens, and 
thus a sequence of word-tokens can be terminated 
at an unambiguous word because this unambiguous 
word token will be the only history used in tagging 
of the next token. A tr igram tagger operates within 
a window of three tokens, and thus a sequence of 
word-tokens can be terminated when two unambigu- 
ous words follow each other. 

3 T a g g i n g  E x p e r i m e n t  

Using the modified t reebank we trained a tr i-gram 
POS tagger (Mikheev, 1997) based on a combination 
of Hidden Markov Models (HMM) and Maximum 
Entropy (ME) technologies. Words were clustered 
into ambiguity classes (Kupiec, 1992) according to 
sets of POS tags they can take on. This is a stan- 
dard technique tha t  was also adopted by the SATZ 
system 1. The tagger predictions were based on the 
ambiguity class of the current word together with 

1The SATZ system operated with a reduced set of 18 
generic categories instead of 40 POS tags of the Penn Tree- 
bank tag-set. 
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Table 1: POS Tagging on sentence splitting punctuation and ambiguously capitalized words 

Tagger Feature Set Error on Sentence Punct. 

Upper Bound 
POS Tagger 
POS Tagger Enhanced 

Brown Corpus 
0.01 
0.25% 
0.20% 

WSJ Corpus 
0.13 
O.39% 
0.31% 

POS Tagger /No  abbr. list 0.98% 1.95% 
POS Tagger E n h a n c e d / N o  abbr. list 0.65% 1.39% 

Error on Words in Mandatory Pos. 
Brown Corpus 

3.15% 
1.87% 

WSJ Corpu s 

4.72% 
3.22% 

3.19% 5.29% 
1.91% 3.28% 

the POS trigrams: hypothesized current POS tag 
and partially disambiguated POS tags of two previ- 
ous word-tokens. We also collected a list of abbrevi- 
ations as explained later in this paper and used the 
information about whether a word is an abbrevia- 
tion, ordinary word or potential abbreviation (i.e. a 
word which could not be robustly classified in the 
first two categories). This tagger employed Maxi- 
mum Entropy models for tag transition and emission 
estimates and Viterbi algorithm (Viterbi, 1967) for 
the optimal path search. 

Using the forward-backward algorithm (Baum, 
1972) we trained our tagger in the unsupervised 
mode i.e. without using the annotation available 
in the Brown Corpus and the WSJ. For evaluation 
purposes we trained our tagger on the Brown Cor- 
pus and applied it to the WSJ corpus and vice versa. 
We preferred this method to ten-fold cross-validation 
because this allowed us to produce only two tagging 
models instead of twenty and also this allowed us to 
test the tagger in harsher conditions when it is ap- 
plied to texts which are very distant from the ones 
it was trained on. 

In this research we concentrated on measuring the 
performance only on two categories of word-tokens: 
on periods and other sentence-ending punctuation 
and on word-tokens in mandatory positions. Manda- 
tory positions are positions which might require a 
word to be capitalized e.g. after a period, quotes, 
brackets, in all-capitalized titles, etc. At the evalua- 
tion we considered proper nouns (NNP), plural proper 
nouns (NNPS) and proper adjectives 2 (JJP) to signal 
a proper name, all all other categories were consid- 
ered to signal a common word or punctuation. We 
also did not consider as an error the mismatch be- 
tween "." and "*" categories because both of them 
signal that a period denotes the end of sentence and 
the difference between them is only whether this pe- 
riod follows an abbreviation or a regular word. 

In all our experiments we treated embedded sen- 
tence boundaries in the same way as normal sentence 
boundaries. The embedded sentence boundary oc- 
curs when there is a sentence inside a sentence. This 

2These are adjectives like "American" which are always 
written capitalized. We identified and marked them in the 
WSJ and Brown Corpus, 

can be a quoted direct speech sub-sentence inside a 
sentence, this can be a sub-sentence embedded in 
brackets, etc. We considered closing punctuation of 
such sentences equal to closing punctuation of ordi- 
nary sentences. 

There are two types of error the tagger can make 
when disambiguating sentence boundaries. The first 
one comes from errors made by the tagger in identi- 
fying proper names and abbreviations. The second 
one comes from the limitation of the POS tagging 
approach to the SBD task. This is when an abbrevi- 
ation is followed by a proper name: POS information 
normally is not sufficient to disambiguate such cases 
and the tagger opted to resolve all such cases as "not 
sentence boundary".  There are about 5-7% of such 
cases in the Brown Corpus and the WSJ and the 
majority of them, indeed, do not signal a sentence 
boundary. 

We can estimate the upper bound for our ap- 
proach by pretending that the tagger was able to 
identify all abbreviations and proper names with 
perfect accuracy. We can sinmlate this by using the 
information available in the treebank. It turned out 
that  the tagger marked all the cases when an ab- 
breviation is followed by a proper name, punctua- 
tion, non-capitalized word or a number as "not sen- 
tence boundary". All other periods were marked as 
sentence-terminal. This produced 0.01% error rate 
on the Brown Corpus and 0.13% error rate on the 
WSJ as displayed in the first row of Table 1. 

In practice, however, we cannot expect the tagger 
to be 100% correct and the second row of Table 1 dis- 
plays the actual results of applying our POS tagger 
to the Brown Corpus and tile WSJ. General tagging 
performance on both our corpora was a bit better 
than a 4% error rate which is in line with the stan- 
dard performance of POS taggers reported on these 
two corpora. On the capitalized words in manda- 
tory positions the tagger achieved a 3.1-4.7% error 
rate which is an improvement over the lexical lookup 
approach by 2-3 times. On the sentence breaking 
punctuation the tagger performed extremely well - 
an error rate of 0.39% on the WSJ and 0.25% on 
the Brown Corpus. If we compare these results with 
the upper bound we see that the errors made by the 
tagger on the capitalized words and abbreviations 
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instigated about a 0.25% error rate on the sentence 
boundaries. 

We also applied our tagger to single-case texts. 
We converted the WSJ and the Brown Corpus to 
upper-case only. In contrast to the mixed case texts 
where capitalization together with the syntactic in- 
formation provided very reliable evidence, syntactic 
information without capitalization is not sufficient 
to disambiguate sentence boundaries. For the ma- 
jority of POS tags there is no clear preference as to 
whether they are used as sentence start ing or sen- 
tence internal. To minimize the error rate on single 
case texts, our tagger adopted a s trategy to mark  all 
periods which follow al)breviations as "non-sentence 
boundaries". This gave a 1.98% error rate on the 
WSJ and a 0.51% error rate on the Brown Corpus. 
These results are in line with the results reported for 
the SATZ system on single case texts. 

4 E n h a n c e d  F e a t u r e  S e t  

(Mikheev, 1999) described a new approach to the 
disambiguation of capitalized words in manda tory  
positions. Unlike POS tagging, this approach 
does not use local syntactic context, but ra ther  it 
applies the so-called document-centered approach. 
The essence of the document-centered approach is 
to scan the entire document for the contexts where 
the words in question are used unambiguously. Such 
contexts give the grounds for resolving ambiguous 
contexts. 

For instance, for the disambiguation of capital- 
ized words in mandatory  positions the above rea- 
soning can be crudely summarized as follows: if we 
detect that  a word has been used capitalized in an 
unambiguous context (not in a manda tory  position), 
this increases the chances for this word to act as 
a proper name in mandatory  positions in the same 
document. And, conversely, if a word is seen only 
lowercased, this increases the chances to downcase it 
in mandatory  positions of the same document. By 
collecting sequences and unigrams of unambiguously 
capitalized and lowercased words in the document  
and imposing special ordering of their applications 
(Mikheev, 1999) reports that  the document-centered 
approach achieved a 0.4-0.7% error rate with cover- 
age of about  90% on the disambiguation of capital- 
ized words in mandatory  positions. 

We decided to combine this approach with our 
POS tagging system in the hope of achieving bet ter  
accuracy on capitalized words after the periods and 
therefore improving the accuracy of sentence split- 
ting. Although the document-centered approach to 
capitalized words proved to be more accurate than 
POS tagging, the two approaches are complimentary 
to each other since they use different types of infor- 
mation. Thus, the hybrid system can bring at least 
two advantages. First, unassigned by the document- 

centered approach 10% of the ambiguously capital- 
ized words can be assigned using a s tandard POS 
tagging method based on the local syntactic con- 
text. Second, the local context can correct some of 
the errors made by the document-centered approach. 
To implement this hybrid approach we incorporated 
the assignments made by the document-centered ap- 
proach to the words in mandatory  positions to our 
POS tagging model by simple linear interpolation. 

The third row of Table 1 displays the results of 
the application of the extended tagging model. We 
see an improvement on proper name recognition by 
about  1.5%: overall error rate of 1.87% on the Brown 
Corpus and overall error rate 3.22% on the WSJ.  
This in its turn allowed for bet ter  tagging of sen- 
tence boundaries : a 0.20% error rate on the Brown 
Corpus and a 0.31% error rate on the WSJ,  which 
corresponds to about  20% cut in the error rate in 
comparision to the s tandard POS tagging. 

5 Handling of Abbreviat ions 
Information about  whether a word is an abbrevia- 
tion or not is absolutely crucial for sentence splitting. 
Unfortunately, abbreviations do not form a closed 
set, i.e., one cannot list all possible abbreviations. 
I t  gets even worse - abbreviations can coincide with 
ordinary words, i.e., "in" can denote an abbrevia- 
tion for "inches", "no" can denote an abbreviation 
for "number",  "bus" can denote an abbreviation for 
"business", etc. 

Obviously, a practical sentence splitter which in 
our case is a POS tagger, requires a module that  can 
guess unknown abbreviations. First, such a module 
can apply a well-known heuristic that  single-word 
abbreviations are short and normally do not include 
vowels (Mr., Dr., kg.). Thus a word without vowels 
can be guessed to be an abbreviation unless it is writ- 
ten in all capital letters which can be an acronym 
(e.g. RPC).  A span of single letters, separated by 
periods forms an abbreviat ion too (e .g .Y.M.C.A.) .  
Other words shorter than four characters and un- 
known words shorter than five characters should be 
treated as potential abbreviations. Although these 
heuristics are accurate they manage to identify only 
about  60% of all abbreviations in the text  which 
translates at 40% error rate as shown in the first 
row of Table 2. 

These surface-guessing heuristics can be supple- 
mented with the document-centered approach (DCA) 
to abbreviation guessing, which we call Positional 
Guessing Strategy (PGS). Although a short word 
which is followed by a period can potentially be an 
abbreviation, the same word when occurring in the 
same document in a different context can be unam- 
biguously classified as an ordinary word if it is used 
without a trailing period, or it can be unambigu- 
ously classified as an abbreviation if it is used with a 
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Table 2: Error rate for different abbreviation identification methods 

Corpus 

surface guess 
surface guess and DCA 
surface guess and DCA and abbr. list 

trailing period and is followed by a lowercased word 
or a comma. This allows us to assign such words 
accordingly even in ambiguous contexts of the same 
document, i.e., when they are followed by a period. 

For instance, the word "Kong" followed by a pe- 
riod and then by a capitalized word cannot be safely 
classified as a regular word (non-abbreviation) and 
therefore it is a potential abbreviation. But if in the 
same document we detect a context "lived in Hong 
Kong in 1993" this indicates that "Kong" is nor- 
mally written without a trailing period and hence 
is not an abbreviation. Having established that, 
we can apply this findings to the non-evident con- 
texts and classify "Kong" as a regular word (non- 
abbreviation) throughout the document. However, 
if we detect a context such as "Kong., said" this in- 
dicates that in this document "'Kong" is normally 
written with a trailing period and hence is an ab- 
breviation. This gives us grounds to classify "Kong" 
as an abbreviation in all its occurrences within the 
same document. 

The positional guessing strategy relies on the 
assumption that there is a consistency of writing 
within the same document. Different authors can 
write "Mr" or "Dr" with or without trailing period 
but we assume that the same author (the author 
of a document) will write consistently. However, 
there can occur a situation when a potential abbre- 
viation is used as a regular word and as an abbre- 
viation within the same document. This is usually 
the case when an abbreviation coincides with a reg- 
ular word e.g. "Sun." (meaning Sunday) and "Sun" 
(the name of a newspaper). To tackle this prob- 
lem, our strategy is to collect not only unigrams of 
potential abbreviations in unambiguous contexts as 
explained earlier but also their bigrams with the pre- 
ceding word. Now the positional guessing strategy 
can assign ambiguous instances on the basis of the 
bigrams it collected from the document. 

For instance, if in a document the system found a 
context "vitamin C is" it stores the bigram "vitamin 
C" and the unigrarn "C" with the information that 
it is a regular word. If in the same document the 
system also detects a context "John C. later said" it 
stores the bigram "John C." and the unigram "C" 
with the information that it is an abbreviation. Here 
we have conflicting information for the word "C" - 
it was detected as acting as a regular word and as an 

abbreviation within the same document - so there is 
not enough information to resolve ambiguous cases 
purely using the unigram. However, some cases can 
be resolved on the basis of the bigrams e.g. the sys- 
tem will assign "C" as an abbreviation in an ambigu- 
ous context "... John C. Research ..." and it will 
assign "C" as a regular word (non-abbreviation) in 
an ambiguous context "... vitamin C. Research ..." 

When neither unigrams nor bigrams can help to 
resolve an ambiguous context for a potential abbre- 
viation, the system decides in favor of the more fre- 
quent category deduced from the current document 
for this potential abbreviation. Thus if the word 
"In" was detected as acting as a non-abbreviation 
(preposition) five times in the current document and 
two times as abbreviation (for the state Indiana), 
in a context where neither of the bigrams collected 
from the document can be applied, "In" is assigned 
as a regular word (non-abbreviation). The last re- 
sort strategy is to assign all non-resolved cases as 
non-abbreviations. 

Apart from the ability of finding abbreviations be- 
yond the scope of the surface guessing heuristics, the 
document-centered approach also allows for the clas- 
sification of some potential abbreviations as ordinary 
words, thus reducing the ambiguity for the sentence 
splitting module. The second row of Table 2 shows 
the results when we supplemented the surface guess- 
ing heuristics with the document-centered approach. 
This alone gave a huge improvement over the surface 
guessing heuristics. 

Using our abbreviation guessing module and an 
unlabeled corpus from New York Times 1996 of 
300,000 words, we compiled a list of 270 abbrevia- 
tions which we then used in our tagging experiments 
together with the guessing module. In this list we 
included abbreviations which were identified by our 
guesser and which had a frequency of five or greater. 
When we combined the guessing module together 
with the induced abbreviation list and applied it to 
the Brown Corpus and the WSJ we measured about 
1% error rate on the identification of abbreviation 
as can be seen in the third row of Table 2. 

We also tested our POS tagger and the extended 
tagging model in conjunction with the abbreviation 
guesser only, when the system was not equipped with 
the list of abbreviations. The error rate on capital- 
ized words went just a bit higher while the error 

269 



rate on the sentence boundaries increased by two- 
three times but still stayed reasonable. In terms 
of absolute numbers, the tagger achieved a 0.98% 
error rate on the Brown Corpus and a 1.95% er- 
ror rate on the WSJ when disarnbiguating sentence 
boundaries. The extended system without the ab- 
breviation list was about  30% more accurate and 
achieved a 0.65% error rate on sentence splitting on 
the Brown Corpus and 1.39% on the WSJ corpus as 
shown in the last row of Table 1. The larger im- 
pact on the WSJ corpus can be explained by the 
fact that  it has a higher proportion of abbreviations 
than the Brown Corpus. In the Brown Corpus, 8% 
of potential sentence boundaries come after abbre- 
viations. Tile WSJ is richer in abbreviations and 
17% of potential sentence boundaries come after ab- 
breviations. Thus, unidentified abbreviations had a 
higher impact on the error rate in the WSJ. 

6 C o n c l u s i o n  

In this paper  we presented an approach which treats  
the sentence boundary disambiguation problem as 
part  of POS tagging. In its "vanilla" version the sys- 
tem performed above the results recently quoted in 
the literature for the SBD task. When we combined 
the "vanilla" model with the document-centered ap- 
proach to proper name handling we measured about  
a 20% further improvement in the performance on 
sentence splitting and about  a 40% improvement on 
capitalized word assignment. 

POS tagging approach to sentence splitting pro- 
duces models which are highly portable across differ- 
ent corpora: POS categories are much more frequent 
than individual words and less affected by unseen 
words. This differentiates our approach from word- 
based sentence splitters. In contrast to (Palmer and 
Hearst, 1997), which also used POS categories as 
predictive features, we relied on a proper POS tag- 
ging technology, ra ther  than a shortcut to POS tag 
estimation. This ensured higher accuracy of the 
POS tagging method which cut the error rate of the 
SATZ system by 69%. On the other hand because of 
its simplicity the SATZ approach is probably easier 
to implement and faster to train than a POS tagger. 

On single-case texts  the syntactic approach did 
not show a considerable advantage to the word-based 
methods: all periods which followed abbreviations 
were assigned as "sentence internal" and the results 
achieved by our system on the single-case texts were 
in line with that  of the other systems. 

The abbreviation guessing module which com- 
bines the surface guessing heuristics with the doc- 
ument centered approach makes our system very ro- 
bust to new domains. The system demonstrated 
strong performance even without being equipped 
with a list of known abbreviations which, to our 
knowledge, none of previously described SBD sys- 

tems could achieve. 
Another important  advantage of our approach we 

see is that  it requires potentially a smaller amount 
of training da ta  and this training da ta  does not need 
to be labeled in any way. In training a conventional 
sentence splitter one usually collects periods with 
the surrounding context and these samples have to 
be manually labeled. In our case a POS tagging 
model is trained on all available words, so syntactic 
dependencies between words which can appear  in a 
local context of a period can be established from 
other parts  of the text. Our system does not require 
annota ted  da ta  for training and can be unsupervis- 
edly trained from raw texts of approximately 300,000 
words or more. 

There  are ways for further improvement  of the 
performance of our system by combining it with a 
word-based system which encodes specific behavior 
for individual words. This is similar to how the 
SATZ system was combined with the Alembic sys- 
tem. This addresses the l imitation of our syntactic 
approach in treat ing cases when an abbreviation is 
followed by a proper name always as "non sentence 
boundary" .  In fact we encoded one simple rule tha t  
an abbreviat ion which stands for an American state 
(e.g. Ala. or Kan.) always is sentence terminal if 
followed by a proper name. This reduced the error 
rate  on the WSJ from 0.31% to  0.25%. Another av- 
enue for further development is to extend the system 
to other languages. 
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