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Abstract 

We present three systems for surface natural lan- 
guage generation that are trainable from annotated 
corpora. The first two systems, called NLG1 and 
NLG2, require a corpus marked only with domain- 
specific semantic attributes, while the last system, 
called NLG3, requires a corpus marked with both 
semantic attributes and syntactic dependency infor- 
mation. All systems attempt to produce a grammat- 
ical natural language phrase from a domain-specific 
semantic representation. NLG1 serves a baseline 
system and uses phrase frequencies to generate a 
whole phrase in one step, while NLG2 and NLG3 
use maximum entropy probability models to indi- 
vidually generate each word in the phrase. The sys- 
tems NLG2 and NLG3 learn to determine both the 
word choice and the word order of the phrase. We 
present experiments in which we generate phrases to 
describe flights in the air travel domain. 

1 I n t r o d u c t i o n  

This paper presents three trainable systems for sur- 
face natural language generation (NLG). Surface 
NLG, for our purposes, consists of generating a 
grammatical natural language phrase that expresses 
the meaning of an input semantic representation. 
The systems take a "corpus-based" or "machine- 
learning" approach to surface NLG, and learn to 
generate phrases from semantic input by statisti- 
cally analyzing examples of phrases and their cor- 
responding semantic representations. The determi- 
nation of the content in the semantic representation, 
or "deep" generation, is not discussed here. Instead, 
the systems assume that the input semantic repre- 
sentation is fixed and only deal with how to express 
it in natural language. 

This paper discusses previous approaches to sur- 
face NLG, and introduces three trainable systems 
for surface NLG, called NLG1, NLG2, and NLG3. 
Quantitative evaluation of experiments in the air 
travel domain will also be discussed. 

2 Previous Approaches 
Templates are the easiest way to implement surface 
NLG. A template for describing a flight noun 
phrase in the air travel domain might be f l i g h t  
departing from $city-fr at $time-dep and 
arriving in $city-to at $time-arr where the 
words starting with "$" are actually variables -- 
representing the departure city, and departure time, 
the arrival city, and the arrival time, respectively-- 
whose values will be extracted from the environment 
in which the template is used. The approach of 
writing individual templates is convenient, but may 
not scale to complex domains in which hundreds 
or thousands of templates would be necessary, and 
may have shortcomings in maintainability and text 
quality (e.g., see (Reiter, 1995) for a discussion). 

There are more sophisticated surface genera- 
tion packages, such as FUF/SURGE (Elhadad and 
Robin, 1996), KPML (Bateman, 1996), MUMBLE 
(Meteer et al., 1987), and RealPro (Lavoie and Ram- 
bow, 1997), which produce natural language text 
from an abstract semantic representation. These 
packages require linguistic sophistication in order to 
write the abstract semantic representation, but they 
are flexible because minor changes to the input can 
accomplish major changes to the generated text. 

The only trainable approaches (known to the au- 
thor) to surface generation are the purely statistical 
machine translation (MT) systems such as (Berger 
et al., 1996) and the corpus-based generation sys- 
tem described in (Langkilde and Knight, 1998). The 
MT systems of (Berger et al., 1996) learn to gen- 
erate text in the target language straight from the 
source language, without the aid of an explicit se- 
mantic representation. In contrast, (Langkilde and 
Knight, 1998) uses corpus-derived statistical knowl- 
edge to rank plausible hypotheses from a grammar- 
based surface generation component. 

3 T r a i n a b l e  S u r f a c e  N L G  

In trainable surface NLG, the goal is to learn the 
mapping from semantics to words that would other- 
wise need to be specified in a grammar or knowledge 
base. All systems in this paper use attribute-value 
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pairs as a semantic representation, which suffice as 
a representation for a limited domain like air travel. 
For example, the set of attribute-value pairs { $city- 
fr = New York City, $city-to = Seattle , $time-dep 
= 6 a.m., $date-dep = Wednesday } represent the 
meaning of the noun phrase % flight to Seattle that  
departs from New York City at 6 a.m. on Wednes- 
day". The goal, more specifically, is then to learn 
the optimal attribute ordering and lexical choice for 
the text to be generated from the attribute-value 
pairs. For example, the NLG system should auto- 
matically decide if the at tr ibute ordering in "flights 
to New York in the evening" is bet ter  or worse than 
the ordering in "flights in the evening to New York". 
Furthermore, it should automatically decide if the 
lexical choice in "flights departing to New York" is 
better or worse than the choice in "flights leaving to 
New York". The motivation for a trainable surface 
generator is to solve the above two problems in a 
way that  reflects the observed usage of language in 
a corpus, but  without the manual effort needed to 
construct a grammar or knowledge base. 

All the trainable NLG systems in this paper as- 
sume the existence of a large corpus of phrases in 
which the values of interest have been replaced with 
their corresponding attributes, or in other words, a 
corpus of generation templates. Figure 1 shows a 
sample of training data, where only words marked 
with a "$" are attributes. All of the NLG systems 
in this paper work in two steps as shown in Table 2. 
The systems NLG1, NLG2 and NLG3 all implement 
step 1; they produce a sequence of words intermixed 
with attributes, i.e., a template, from the the at- 
tributes alone. The values are ignored until step 2, 
when they replace their corresponding attributes in 
the phrase produced by step 1. 

3.1 N L G I :  t h e  base l ine  

The surface generation model NLG1 simply chooses 
the most frequent template in the training data  that  
corresponds to a given set of attributes. Its perfor- 
mance is intended to serve as a baseline result to the 
more sophisticated models discussed later. Specifi- 
cally, nlgl(A) returns the phrase that  corresponds 
to the at t r ibute set A: 

nlgl(A) = { argInaXphraseeTA[empty string] C(phrase, A) TATA = 

where TA are the phrases that  have occurred with 
A in the training data, and where C(phrase, A) is 
the training data  frequency of the natural language 
phrase phrase and the set of attributes A. NLG1 
will fail to generate anything if A is a novel combi- 
nation of attributes. 

3.2  N L G 2 :  n - g r a m  m o d e l  

The surface generation system NLG2 assumes that  
the best choice to express any given attribute-value 

set is the word sequence with the highest probabil- 
ity that  mentions all of the input attr ibutes exactly 
once. When generating a word, it uses local infor- 
mation, captured by word n-grams, together with 
certain non-local information, namely, the subset of 
the original attributes that  remain to be generated. 
The local and non-local information is integrated 
with use of features in a maximum entropy prob- 
ability model, and a highly pruned search procedure 
attempts to find the best scoring word sequence ac- 
cording to the model. 

3.2.1 P r o b a b i l i t y  M o d e l  
The probability model in NLG2 is a conditional dis- 
tribution over V U * s t o p , ,  where V is the genera- 
tion vocabulary and where . s t o p .  is a special "stop" 
symbol. The generation vocabulary V consists of all 
the words seen in the training data. The form of the 
maximum entropy probability model is identical to 
the one used in (Berger et al., 1996; Ratnaparkhi,  
1998): 

k f$(wi ,wi-1 ,wi-2,at~ri) 
Y I j = I  Otj 

p(wilwi-l, wi-2,attri) = 
Z ( W i - l ,  w i - 2 ,  a t t r i )  
k 

to t j = l  

where wi ranges over V t3 . s t o p .  and 
{wi-l ,wi-2,attri} is the history, where wi de- 
notes the ith word in the phrase, and attri denotes 
the attributes that  remain to be generated at posi- 
tion i in the phrase. The f j ,  where fj(a, b) E {0, 1}, 
are called features and capture any information 
in the history that  might be useful for estimating 
p(wi[wi-1, wi-2, attri). The features used in NLG2 
are described in the next section, and the feature 
weights a j ,  obtained from the Improved Iterative 
Scaling algorithm (Berger et al., 1996), are set to 
maximize the likelihood of the training data. The 
probability of the sequence W = wl . . .  wn, given 
the attribute set A, (and also given that  its length 
is n) is: 

Pr(W = wa. . .wnllen(W) = n,A) = 
n 

H p(wilwi_1, wi_2, attri ) 
i = l  

3.2.2 F e a t u r e  S e l e c t i o n  
The feature patterns,  used in NLG2 are shown in 
Table 3. The actual features are created by match- 
ing the patterns over the training data, e.g., an ac- 
tual feature derived from the word bi-gram template 
might be: 

1 if wi = from 

f ( w i ,  Wi--1, Wi--2, attr~) = and wi-t = f l i g h t  
and $ci ty  -- fz  E attri 

0 otherwise 
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flights on $air from $city-fr to $city-to the $time-depint of $date-dep 
Strip flights on $air from $city-fr to $city-to leaving after $time-depaft on $date-dep 
flights leaving from $city-fr going to $city-to after Stime-depaft on $date-dep 
flights leaving from $city-fr to $city-to the $time-depint of Sdate-dep 
$air flight $fltnum from $city-fr to $city-to on $date-dep 
$city-fr to $city-to $air flight Sfltnum on the $date-dep 
Strip flights from $city-fr to $city-to 

Input to Step 1: 
Output of Step 1: 

Table 1: Sample training data 

{ $city-fr, $city-to, $time-dep, $date-dep } 
'% flight to $city-to that departs from $city-fr at 
Stime-dep on $date-dep" 

Input to Step 2: 

Output of Step 2: 

"a flight to $city-to that departs from $city-fr at 
$time-dep on $date-dep", { $city-fr = New York 
City, $city-to = Seattle , $time-dep = 6 a.m., 
$date-dep = Wednesday } 
'% flight to Seattle that departs from New York 
City at 6 a.m. on Wednesday" 

Table 2: Two steps of NLG process 

Low frequency features involving word n-grams 
tend to be unreliable; the NLG2 system therefore 
only uses features which occur K times or more in 
the training data. 

3.2.3 Search Procedure  
The search procedure attempts to find a word se- 
quence wl . . .  wn of any length n ~ M for the input 
attribute set A such that 

1. wn is the stop symbol , s t o p ,  

2. All of the attributes in A are mentioned at least 
once 

3. All of the attributes in A are mentioned at most 
once 

and where M is an heuristically set maximum phrase 
length. 

The search is similar to a left-to-right breadth- 
first-search, except that only a fraction of the word 
sequences are considered. More specifically, the 
search procedure implements the recurrence: 

WN,1 = top(N, (wlw e V}) 

Wg,i+l = top(N, next(WN,i)) 

The set WN# is the top N scoring sequences of 
length i, and the expression next(WN,i) returns 
all sequences wl. . .Wi+l  such that w l . . .w i  E 
WN,i, and wi+l E V U . s top . .  The expression 
top(N, next(WN#)) finds the top N sequences in 
next(Wg,i).  During the search, any sequence that 
ends with , s t o p .  is removed and placed in the set 

of completed sequences. If N completed hypotheses 
are discovered, or if WN,M is computed, the search 
terminates. Any incomplete sequence which does 
not satisfy condition (3) is discarded and any com- 
plete sequence that does not satisfy condition (2) is 
also discarded. 

When the search terminates, there will be at most 
N completed sequences, of possibly differing lengths. 
Currently, there is no normalization for different 
lengths, i.e., all sequences of length n < M are 
equiprobable: 

Pr( len(W) = n) = -~ n < M 

= 0  n > M  

NLG2 chooses the best answer to express the at- 
tribute set A as follows: 

nlg2(A) = argmaXwew,,g 2 Pr( len(W)  = n) . 

Pr (Wl l en (W ) = n, A) 

where Wnt~2 are the completed word sequences that 
satisfy the conditions of the NLG2 search described 
above. 

3.3 NLG3: dependency  in fo rmat ion  
NLG3 addresses a shortcoming of NLG2, namely 
that the previous two words are not necessarily the 
best informants when predicting the next word. In- 
stead, NLG3 assumes that conditioning on syntacti- 
cally related words in the history will result on more 
accurate surface generation. The search procedure 
in NLG3 generates a syntactic dependency tree from 
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Description 
No Attributes remaining 
Word bi-gram with at tr ibute 
Word tri-gram with attribute 

Feature f (wi ,  Wi-1, Wi-2, attri) . . . .  
1 if wi =? and attri = {}, 0 otherwise 
1 if wi =?  and wi-1 =? and ? E attri, 0 otherwise 
1 if wi =? and wi-lwi-~ =?? and ? E attri, 0 otherwise 

Table 3: Features patterns for NLG2. Any occurrence of "?" will be instantiated with an actual value from 
training data. 

top-to-bottom instead of a word sequence from left- 
to-right, where each word is predicted in the context 
of its syntactically related parent, grandparent, and 
siblings. NLG3 requires a corpus that  has been an- 
notated with tree structure like the sample depen- 
dency tree shown in Figure 1. 

3.3.1 P r o b a b i l i t y  M o d e l  
The probability model for NLG3, shown in Figure 2, 
conditions on the parent, the two closest siblings, the 
direction of the child relative to the parent, and the 
attributes that  remain to be generated. 

Just  as in NLG2, p is a distribution over V t2 
. s t o p , ,  and the Improved Iterative Scaling algo- 
ri thm is used to find the feature weights a j .  The 
expression chi(w) denotes the ith closest child to 
the headword w, par(w) denotes the parent of the 
headword w, dir E { l e f t ,  r i g h t }  denotes the direc- 
tion of the child relative to the parent, and attrw,i 
denotes the attributes that  remain to be generated 
in the tree when headword w is predicting its i th 
child. For example, in Figure 1, if w ="flights", 
then Chl(W) ="evening" when generating the left 
children, and chl(w) ="from" when generating the 
right children. As shown in Figure 3, the proba- 
bility of a dependency tree that  expresses an at- 
tr ibute set A can be found by computing, for each 
word in the tree, the probability of generating its 
left children and then its right children. 1 In this 
formulation, the left children are generated inde- 
pendently from the right children. As in NLG2, 
NLG3 assumes the uniform distribution for the 
length probabilities P r ( #  of left children = n) and 
P r ( #  of right children = n) up to a certain maxi- 
mum length M '  = 10. 

3.3.2 F e a t u r e  Se l ec t i on  

The feature patterns for NLG3 are shown in Ta- 
ble 4. As before, the actual features are created by 
matching the patterns over the training data. The 
features in NLG3 have access to syntactic informa- 
tion whereas the features in NLG2 do not. Low fre- 
quency features involving word n - g r a m s  tend to be 
unreliable; the NLG3 system therefore only uses fea- 
tures which occur K times or more in the training 
data. Furthermore, if a feature derived from Table 4 
looks at a particular word chi(w) and attr ibute a, 
we only allow it if a has occurred as a descendent of 

1We use a d u m m y  ROOT node to generate the top most 
head word of the phrase 

chi(w) in some dependency tree in the training set. 
As an example, this condition allows features that  
look at chi(w) ="to"  and $city-toE attrw,i but dis- 
allows features that  look at ch~(w) ="to" and $city- 
frE attrw,i. 

3.4 S e a r c h  P r o c e d u r e  

The idea behind the search procedure for NLG3 is 
similar to the search procedure for NLG2, namely, to 
explore only a fraction of the possible trees by con- 
tinually sorting and advancing only the top N trees 
at any given point. However, the dependency trees 
are not built left-to-right like the word sequences in 
NLG2; instead they are built from the current head 
(which is initially the root node) in the following 
order: 

1. Predict the next left child (call it xt) 

2. If it is * s to p , ,  jump to (4) 

3. Recursively predict children of xt. Resume from 
(1) 

4. Predict the next right child (call it Xr) 

5. If it is *stop*,  we are done predicting children 
for the current head 

6. Recursively predict children ofxr .  Resume from 
(4) 

As before, any incomplete trees that  have generated 
a particular at tr ibute twice, as well as completed 
trees that have not generated a necessary at tr ibute 
are discarded by the search. The search terminates 
when either N complete trees or N trees of the max- 
imum length M are discovered. NLG3 chooses the 
best answer to express the at tr ibute set A as follows: 

nlga(A) = argmax Pr(TIA ) 
TET.Iga 

where Tntga are the completed dependency trees that  
satisfy the conditions of the NLG3 search described 
above. 

4 E x p e r i m e n t s  

The training and test sets used to evaluate NLG1, 
NLG2 and NLG3 were derived semi-automatically 
from a pre-existing annotated corpus of user queries 
in the air travel domain. The annotation scheme 
used a total of 26 attributes to represent flights. 
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flights 

e v e n ~ + )  
I I 

Chicago(+) afternoon(+) 
I 

the(-) 

Figure 1': Sample dependency tree for the phrase evening flights from Chicago in the afternoon. - and + 
signs indicate left or right child, respectively. 

I-Ik YJ (ch i [ t ° ) ' t o ' ch i - - l (~ ) ' ch i - -2 (~) 'Pa~(~) 'd t r ' a t t~o ,  i)  

p(chiCw)[w, chi- 1 (w), chi-2 (w), par (w), dir, attr~,i ) - ~"Jffi' ~ J 
- -  Z ( w , c h i _  1 ( w ) , c h i -  2 (w) ,par (w) ,d i~ ,a t t r t u , i )  

Z(w, ehi_l(w),chi_2(w),par(w),dir, attrw,4) = ~v,, l-[j=lk OL~/J(w"w'chi-l(*Z)'chl-2(w)'par(tv)'dir'att*'~'i) 
Figure 2: NLG3: Equations for the probability of the ith child of head word w, or chi(w) 

Pr(TIA) 

Prl¢lt(wlA) 

Prri~ht(w[A) 

= YI~eTPrl~ft(wlA)Prr~ght(wl A) 

---- P r (#  of left children = n) YL=ln p(chi(w)lw,chi-l(w),chi-2(w),par(w),dir = left,attr~,i) 

= Pr (~  of right children = n) rI~=l p(chi(w)lw, chi-1 (w), chi-2 (w),par(w), dir = right, attrw,~) 

Figure 3: NLG3: Equations for the probability of a dependency tree T 

Description 
Siblings 

Parent + sibling 

Parent + grandparent 

Feature f (chi(w), w, ch~_ 1 (w), chi_2 (w), par (w), dir, attrw,i) = . . .  
1 if chi(w) =? and ch i - l (w)  =? and chi-2(w) =? and dir =? and 
? E attrw,i, 0 otherwise 
1 if chi(w) =? and chi_t(w) =? and w =? and dir =? and ? E 
attrw,i, 0 otherwise 
1 i fchi(w) =? and w =? and par(w) =? and dir =? and ? • attrw,i, 
0 otherwise 

Table 4: Features patterns for NLG3. Any occurrence of "?" will be instantiated with an actual value from 
training data. 

System Parameters 

NLG1 
NLG2 N=IO,M=30,K=3 
NLG3 N=5,M=30,K=IO 

% Correct % OK % Bad % No output % error reduction 
from NLGI 

84.9 4.9 7.2 3.0 - 
88.2 4.7 6.4 0.7 22 
89.9 4.4 5.5 0.2 33 

Table 5: Weighted evaluation of trainable surface generation systems by judge A 

System Parameters % Correct % OK % Bad % No output % error reduction 
from NLG1 

NLG1 81.6 8.4 7.0 3.0 - 
NLG2 N=IO,M=30,K=3 86.3 5.8 7.2 0.7 26 
NLG3 N=5,M=30,K=10 88.4 4.0 7.4 0.2 37 

Table 6: Weighted evaluation of trainable surface generation systems by judge B 
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System 

NLG1 
NLG2 
NLG3 

Parameters % Correct % OK % Bad % No output % error reduction 
from NLG1 

48.4 6.8 24.2 20.5 
N=IO,M=30,K=3 64.7 12.1 22.6 0.5 32 
N=5,M=30,K=IO 63.1 11.6 23.7 1.6 29 

Table 7: Unweighted evaluation of trainable surface generation systems by judge A 

System Parameters 

NLG1 
NLG2 N=IO,M=30,K=3 
NLG3 N=5,M=30,K=IO 

% Correct % OK % Bad % No output % error reduction 
from NLG1 

41.1 8.9 29.5 20.5 
62.1 13.7 23.7 0.5 36 
65.3 11.1 22.1 1.6 41 

Table 8: Unweighted evaluation of trainable surface generation systems by judge B 

The training set consisted of 6000 templates describ- 
ing flights while the test set consisted of 1946 tem- 
plates describing flights. All systems used the same 
training set, and were tested on the attribute sets 
extracted from the phrases in the test set. For ex- 
ample, if the test set contains the template "flights 
to $city-to leaving at Stime-dep", the surface gener- 
ation systems will be told to generate a phrase for 
the attribute set { $city-to, Stime-dep }. The out- 
put of NLG3 on the attribute set { $city-to, $city-fr, 
$time-dep } is shown in Table 9. 

There does not appear to be an objective auto- 
matic evaluation method 2 for generated text that 
correlates with how an actual person might judge 
the output. Therefore, two judges - -  the author 
and a colleague - -  manually evaluated the output of 
all three systems. Each judge assigned each phrase 
from each of the three systems one of the following 
rankings: 

Correct :  Perfectly acceptable 

OK: Tense or agreement is wrong, but word choice 
is correct. (These errors could be corrected by 
post-processing with a morphological analyzer.) 

Bad: Words are missing or extraneous words are 
present 

No Outpu t :  The system failed to produce any out- 
put 

While there were a total 1946 attribute sets from 
the test examples, the judges only needed to evalu- 
ate the 190 unique attribute sets, e.g., the attribute 
set { $city-fr $city-to } occurs 741 times in the test 
data. Subjective evaluation of generation output is 

2Measur ing  word overlap or edit  d i s tance  between the  sys-  
t e m ' s  o u t p u t  and  a "reference" set  would be  an  au toma t i c  
scor ing m e t h o d .  We believe t ha t  such a m e t h o d  does not  
accura te ly  m e a s u r e  the  correc tness  or  g r a m m a t i c a l i t y  of  the  
text .  

not ideal, but is arguably superior than an auto- 
matic evaluation that fails to correlate with human 
linguistic judgement. 

The results of the manual evaluation, as well as 
the values of the search and feature selection param- 
eters for all systems, are shown in Tables 5, 6, 7, and 
8. (The values for N, M, and K were determined by 
manually evaluating the output of the 4 or 5 most 
common attribute sets in the training data). The 
weighted results in Tables 5 and 6 account for mul- 
tiple occurrences of attribute sets, whereas the un- 
weighted results in Tables 7 and 8 count each unique 
attribute set once, i.e., { $city-fr $city-to } is counted 
741 times in the weighted results but once in the un- 
weighted results. Using the weighted results, which 
represent testing conditions more realistically than 
the unweighted results, both judges found an im- 
provement from NLG1 to NLG2, and from NLG2 
to NLG3. NLG3 cuts the error rate from NLG1 by 
at least 33% (counting anything without a rank of 
Correct  as wrong). NLG2 cuts the error rate by 
at least 22% and underperforms NLG3, but requires 
far less annotation in its training data. NLG1 has no 
chance of generating anything for 3% of the data - -  
it fails completely on novel attribute sets. Using the 
unweighted results, both judges found an improve- 
ment from NLG1 to NLG2, but, surprisingly, judge 
A found a slight decrease while judge B found an 
increase in accuracy from NLG2 to NLG3. The un- 
weighted results show that the baseline NLG1 does 
well on the common attribute sets, since it correctly 
generates only less than 50% of the unweighted cases 
but over 80% of the weighted cases. 

5 D i s c u s s i o n  

The NLG2 and NLG3 systems automatically at- 
tempt to generalize from the knowledge inherent in 
the training corpus of templates, so that they can 
generate templates for novel attribute sets. There 
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Probability Generated Text 
0.107582 
0.00822441 
0.00564712 
0.00343372 
0.0012465 

$time-dep flights from $city-fr to $city-to 
$time-dep flights between $city-fr and $city-to 
Stime-dep flights $city-fr to $city-to 
flights from $city-fr to $city-to at Stime-dep 
Stime-dep flights from $city-fr to to $city-to 

Table 9: Sample output from NLG3. (Dependency tree structures are not shown.) Typical values for 
attributes: $time-dep -- "10 a.m.", $city-fr = "New York", $city-to = "Miami" 

is some additional cost associated with producing 
the syntactic dependency annotation necessary for 
NLG3, but virtually no additional cost is associated 
with NLG2, beyond collecting the data itself and 
identifying the attributes. 

The trainable surface NLG systems in this pa- 
per differ from grammar-based systems in how they 
determine the attribute ordering and lexical choice. 
NLG2 and NLG3 automatically determine attribute 
ordering by simultaneously searching multiple or- 
derings. In grammar-based approaches, such pref- 
erences need to be manually encoded. NLG2 and 
NLG3 solve the lexical choice problem by learning 
the words (via features in the maximum entropy 
probability model) that correlate with a given at- 
tribute and local context, whereas (Elhadad et al., 
1997) uses a rule-based approach to decide the word 
choice. 

While trainable approaches avoid the expense of 
crafting a grammar to determine attribute order- 
ing and lexicai choice, they are less accurate than 
grammar-based approaches. For short phrases, ac- 
curacy is typically 100% with grammar-based ap- 
proaches since the grammar writer can either cor- 
rect or add a rule to generate the phrase of interest 
once an error is detected. Whereas with NLG2 and 
NLG3, one can tune the feature patterns, search pa- 
rameters, and training data itself, but there is no 
guarantee that the tuning will result in 100% gener- 
ation accuracy. 

Our approach differs from the corpus-based 
surface generation approaches of (Langkilde and 
Knight, 1998) and (Berger et al., 1996). (Langkilde 
and Knight, 1998) maps from semantics to words 
with a concept ontology, grammar, and lexicon, and 
ranks the resulting word lattice with corpus-based 
statistics, whereas NLG2 and NLG3 automatically 
learn the mapping from semantics to words from a 
corpus. (Berger et ai., 1996) describes a statistical 
machine translation approach that generates text in 
the target language directly from the source text. 
NLG2 and NLG3 are also statistical learning ap- 
proaches but generate from an actual semantic rep- 
resentation. This comparison suggests that statis- 
tical MT systems could also generate text from an 
"interlingua", in a way similar to that of knowledge- 

based translation systems. 
We suspect that our statistical generation ap- 

proach should perform accurately in domains of sim- 
ilar complexity to air travel. In the air travel do- 
main, the length of a phrase fragment to describe 
an attribute is usually only a few words. Domains 
which require complex and lengthy phrase fragments 
to describe a single attribute will be more challeng- 
ing to model with features that only look at word 
n-grams for n E {2, 3). Domains in which there 
is greater ambiguity in word choice will require a 
more thorough search, i.e., a larger value of N, at 
the expense of CPU time and memory. Most im- 
portantly, the semantic annotation scheme for air 
travel has the property that it is both rich enough 
to accurately represent meaning in the domain, but 
simple enough to yield useful corpus statistics. Our 
approach may not scale to domains, such as freely 
occurring newspaper text, in which the semantic an- 
notation schemes do not have this property. 

Our current approach has the limitation that it 
ignores the values of attributes, even though they 
might strongly influence the word order and word 
choice. This limitation can be overcome by using 
features on values, so that NLG2 and NLG3 might 
discover - -  to use a hypothetical example - -  that 
"flights leaving $city-fr" is preferred over "flights 
from $city-fr" when $city-fr is a particular value, 
such as "Miami". 

6 Conclusions 

This paper presents the first systems (known to the 
author) that use a statistical learning approach to 
produce natural language text directly from a se- 
mantic representation. Information to solve the 
attribute ordering and lexical choice problems-- 
which would normally be specified in a large hand- 
written graxnmar-- is automatically collected from 
data with a few feature patterns, and is combined 
via the maximum entropy framework. NLG2 shows 
that using just local n-gram information can out- 
perform the baseline, and NLG3 shows that using 
syntactic information can further improve genera- 
tion accuracy. We conjecture that NLG2 and NLG3 
should work in other domains which have a com- 
plexity similar to air travel, as well as available an- 
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notated data. 
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