
Proceedings of the Tenth Workshop on Noisy and User-generated Text, pages 108–116
May 3, 2025 ©2025 Association for Computational Linguistics

Multi-BERT: Leveraging Adapters for Low-Resource Multi-Domain
Adaptation

Parham Abed Azad
Department of Computer Engineering

Sharif University of Technology
Tehran, Iran

parhamabedazad@sharif.edu

Hamid Beigy
Department of Computer Engineering

Sharif University of Technology
Tehran, Iran

beigy@sharif.edu

Abstract

Multi-domain text analysis presents significant
challenges, particularly in Persian name en-
tity recognition (NER). Using a single model
for multiple domains often fails to capture the
specific features of different domains. That is
why many scientists have focused on prompt-
ing chatbots for this issue. However, studies
show that these models do not achieve remark-
able results in NER tasks without proper fine-
tuning while training and storing a chatbot is
extremely costly. This paper presents a new ap-
proach using one core model with various sets
of domain-specific parameters. By using tech-
niques like LoRAs and pre-fix tuning, along
with extra layers, we train each set of train-
able parameters for a specific domain. This al-
lows the model to perform as well as individual
models for each domain. Tests on various for-
mal and informal datasets show that by using
these added parameters, the proposed model
performs much better than existing practical
models. The model needs only one instance for
storage but achieves excellent results across all
domains. This paper also examines each adap-
tation strategy, outlining its strengths, weak-
nesses, and the best settings and hyperparam-
eters for Persian NER. Lastly, this study intro-
duces a new document-based domain detection
system for situations where text domains are
unknown. This novel pipeline enhances the
adaptability and practicality of the proposed
approach for real-world applications.

1 Introduction

Named entity recognition (NER) is an essential part
of natural language processing (NLP) that helps in
many tasks like information extraction or question
answering. Recently, NER has become even more
important, thanks to the increased interest in NLP,
which gave birth to many new challenges. One of
the most pressing challenges is the adaptation of
NER models to the ever-expanding text domains.
This task becomes particularly difficult as model

Figure 1: Each set of parameters belongs to exactly
one domain but layers are often shared by a couple of
domains.

sizes and inference times increase. The dynamic
nature of natural languages coupled with the di-
verse topics and contexts, presents a formidable
challenge. Especially, for languages like Persian
since there is a huge difference between texts found
on formally written sites like Wikipedia and infor-
mally written texts from social media posts, even
when those posts are made from official pages like
universities. When we look closer, it becomes evi-
dent that models trained within a specific textual do-
main often achieve worse results when confronted
with data from other domains. This performance
gap shows that many sentences require different
entity labels based on their specific context. For
instance, consider the sentence "Tesla was robbed":
in a scientific or historical context, "Tesla" would
likely be tagged as a person, whereas in discussions
related to business or economics, or within the con-
text of a casual tweet, "Tesla" would be categorized
as an organization. This ambiguity poses one of
the primary challenges in accurately identifying
entities, particularly within specialized fields such
as medicine (Kundeti et al., 2016).

Traditionally, the preferred approach was to train
a single transformer model for all domains. The
model would be trained in a way that performs

108



well in all domains. However, while we praise
these models for performing well without know-
ing the text domain, these models tend to perform
worse than models trained on a single domain. This
problem has stimulated the exploration of different
strategies to overcome the barriers posed by adapt-
ing to multiple domains in NER. An additional
challenge associated with this approach arises from
the limitation of a single model to produce out-
puts in only one format. Certain domains may
require different sets of labels, leading to the ne-
cessity for varied output formats tailored to each
domain’s needs. The adoption of multiple models
to accommodate various domains introduces sig-
nificant drawbacks, including resource-intensive
requirements such as extensive RAM and storage
constraints, as well as the time-consuming process
of training each instance. Moreover, training a
model for one task should inherently contribute to
the understanding and performance improvement
of another.

To deal with these challenges many have turned
to prompt engineering of generative models such
as OpenAI’s ChatGPT. However, studies show that
without fine-tuning, these models underperform
fine-tuned models by a large margin in many NLP
tasks such as NER (Abaskohi et al., 2024). Fur-
thermore, training these models requires a lot of
computational resources. and a huge sum of data
to train the model. This problem is extremely ex-
acerbated when we look at the languages that are
suffering from a lack of well-labeled and clean data
such as the Persian language. We delve deeper into
the details of these models in section 2.

Therefore, a novel approach is proposed. This
model offers an innovative solution to address these
challenges by leveraging adapters. We incorporate
specific parameters for each domain and create in-
dividual output layers to produce distinct outputs
for each domain. Subsequently, the added param-
eters and the output layers are trained for each
domain. Therefore, each set of these parameters
and layers is only used for certain domains. This
allows the model to perform perfectly in all do-
mains. Given access to a robust pre-trained model,
the core model is frozen; however, it can also be
trained during the training process if a pre-trained
model is unavailable, the layers are shared between
multiple domains, and the adapters are each only
used for a single domain. Remarkably, even when
facing limited data availability, we observe a signif-
icant performance boost compared to other models.

Finally, we introduce an innovative approach for
situations where the domain is unknown.

The rest of this paper is organized as follows:
section 2 gives a brief overview of the related
projects that try to solve these issues. Thereafter,
section 3 explains the proposed architecture of the
multi-Bert model and the model will be thoroughly
evaluated in section 4. Moreover, section 5 will
propose a novel pipeline that deals with the issues
that arise from not knowing the exact domain of
the texts, while section 6 concludes the paper and
section 7 talks about the future possibilities.

2 Related work

Named entity recognition has always been a pop-
ular task in NLP. Many new papers like PUnified-
NER advocate for customizing and training a gen-
erative LLM model capable of understanding di-
verse text domains and label sets (Lu et al., 2023).
By incorporating a lot of information into prompts
and leveraging extensive training data, this model
demonstrates a remarkable capability to label vari-
ous data types with diverse labels. However, other
papers focus on the development of template-free
models utilizing few-shot learning. These stud-
ies introduced models that, with a minimal set of
labeled examples (typically 16, 32, or 64), can
adeptly label texts (Wang et al., 2022; Lu et al.,
2023; He et al., 2023; Ma et al., 2022). How-
ever, these papers still fine-tuned the model. In
fact, it is shown that for some NLP tasks like NER
fine-tuning the model is a crucial step and solely
relying on prompt engineering results in subpar
results (Li et al., 2023). Furthermore, Our experi-
ments with ChatGPT on Arman and ParsTwiNER
datasets have resulted in much worse performance
compared to Bert models. This is in line with other
scientific research done with LLMs like Abaskohi’s
benchmarking of ChatGPT which achieved decent
results on tasks like question answering while get-
ting extremely low results on token classification
tasks. (Abaskohi et al., 2024).

At the forefront of Persian NER, current state-of-
the-art models include BeheshtiNER (Taher et al.,
2020) and ParsBERT (Farahani et al., 2021). a
BERT model fine-tuned for NER tasks. Recent
advancements in Persian NER have predominantly
focused on fine-tuning models to cater to diverse
domains. Outstanding examples of this strategy in-
clude ParsTwiNER (Aghajani et al., 2021), a BERT
model fine-tuned for informal and formal texts.

109



However, as seen in this paper, while the model
outperforms the original ParsBert on informal text,
it underperforms on the formal dataset, Arman. An-
other example is Hengam, a BERT model tailored
for token classification in the tagging of formal and
informal texts. As seen, these models exhibit no-
table drawbacks, such as prolonged training times
and diminished performance in previous domains
when adapting to new ones. The need for more
efficient and adaptable models remains an ongo-
ing concern within the landscape of Persian NER
research.

3 The proposed method

To mitigate the challenges posed by time and size
constraints inherent in employing multiple mod-
els, a model called multi-Bert is presented. In
multi-Bert, a single pre-trained model is completely
frozen, while multiple sets of additional parame-
ters and layers are integrated into the model. This
configuration allows for the generation of diverse
results from a single model. Moreover, this design
facilitates training for specific tasks without modi-
fying the underlying base model, thereby safeguard-
ing the performance of one task from affecting an-
other. However, while the domain-specific param-
eters are completely separate from each other, we
use pre-training for each set of parameters on other
sets of data. This approach allows us to leverage
any correlating information that can aid the model’s
performance. As seen in figure 1, the model allows
the selection of task-specific parameters during in-
ference, tailoring the model’s behavior to the re-
quirements of each individual task.

A significant advantage of multi-Bert is its effi-
cient use of adapters compared to traditional fine-
tuning methods. Adapters accelerate the training
process (He et al., 2021), reducing the time re-
quired for each epoch and enabling model conver-
gence in fewer than 10 epochs. This efficiency
allows us to employ a two-step training approach:
first, pre-training one set of parameters on all avail-
able data, and then fine-tuning a copy of these pa-
rameters for each specific task of interest. By lever-
aging task-specific data, we can effectively utilize
cross-task information during fine-tuning.

To incorporate these parameters we utilize
adapters. After exploring various methods and
adapters the most effective techniques were se-
lected. The first chosen adapter is Prefix-tuning (Li
and Liang, 2021). Prefix tuning is a technique

where a small set of learnable parameters, known
as a prefix, is embedded directly into the input of
all layers of a pre-trained language model. This
allows the model to rapidly adapt to task-specific
information without the need to fine-tune all the
model parameters. The prefix acts as a continu-
ous task-specific vector that can influence the be-
havior of the model across all layers, providing a
lightweight and efficient way to customize large
language models for specific tasks. It has been
shown to achieve comparable performance to full
model fine-tuning while requiring the tuning of
only a tiny fraction of the parameters By leverag-
ing the structured nature of prompts, this approach
facilitates prompt-driven learning, a crucial aspect
in multi-domain scenarios. On the other hand, for
adapters, we employ the well-known Low-rank
adaptation method, also known as LoRA (Hu et al.,
2022). This method yields comparable results by
incorporating learnable parameters into the model
layers. LoRA focuses on preserving adaptability
without compromising the integrity of the base
model. By adding parameters to each layer with-
out introducing new ones, LoRAs have emerged
as highly reliable adapters. Their efficiency lies
in seamlessly integrating new parameters into ex-
isting layers, yielding impressive results within a
short time frame, and facilitating straightforward
merging of the new parameters with the existing
layers.

Additionally, a classification layer is introduced
based on the required number of classes. In cases
where tasks share the same output structure, both
the size of output and the specific labels, this layer
can be shared among them. Conversely, for tasks
with differing output structures, we accommodate
multiple final layers tailored to each task’s unique
requirements. This streamlined approach not only
addresses the challenges associated with multiple
models but also provides flexibility in adapting
to diverse task requirements. The effectiveness of
multi-Bert is validated through comprehensive eval-
uations utilizing various parameter addition meth-
ods and task-specific classification layers.
We use a fine-tuned core model, ParsBert which
is arguably the best pre-trained Bert model. There
are a lot of different models pre-trained for the Per-
sian language and each one can be used. However,
based on our calculations ParsBert performs the
best for the NER tasks. Therefore, ParsBert was
used in this study and due to the high performance
of this model, it was frozen throughout the training

110



Figure 2: The size of the data in each domain of text greatly differs from one another, which results in massive
challenges.

steps of the multi-Bert model.

There are a few steps to train the model, firstly,
for each domain, exactly one adapter is introduced,
and for each set of adapters, that have the same
output template, a classifier header is included. Ini-
tially, one adapter is trained on all available data
associated with that classifier excluding the domain
of interest for a couple of epochs to ensure the
adapters have all the correlating knowledge from
other domains and the classifier is properly tuned.
Subsequently, this adapter is replicated across all
other adapters of the same classifier and fine-tuned
on each domain separately, until convergence and
before over fitting.

The classifier is only trained when the adapter is
being pre-trained since this step includes all of the
data associated with that particular output scheme.
Furthermore, this layer is frozen during the fine-
tuning of the adapters this helps make the overall
training to be shorter and helps preserve the knowl-
edge of the adapters from inference. After the
training process is complete, there is only one core
model with multiple headers and many domain-
specific parameters. Therefore, we have multi-
ple models each tailored for a single domain that
can perform separately while they share much of
their architecture. The subsequent section outlines
the implementation and workflow of the proposed
model, showing its efficiency and adaptability in
handling multi-domain NER tasks.

4 Evaluation and Results

The proposed model is evaluated by using three
different distinct datasets, each chosen to repre-
sent diverse unique challenges in the realm of NER
and to test the performance of our model in deal-
ing when faced with different challenges. We also
introduce important baselines to show the effective-
ness of our model. Finally, we compare the results
of all the models and discuss the hyperparameters
and advantages of prefix-tuning and LoRAs.

4.1 Datasets
To evaluate the aforementioned strategy the mod-
els are tested on three distinct datasets. For the
first two datasets, we focus on the classic formal
versus informal NER tasks, we utilize the Arman
dataset for formal entities, and ParstwiNER (Agha-
jani et al., 2021), for the informal ones. This dataset
serves as a benchmark for the adaptability of our
model across standard formal and informal con-
texts characterized by minimal noise. This is very
important since in many datasets all the text does
fall into these domains. For instance, if we have a
close look at the data on Twitter’s more established
accounts we see that many tweets are written per-
fectly and cleanly whether in a formal language
or an informal one. However, these two datasets
are extremely standard, they are both based on the
CONLL format, have 21 entity types, and lack con-
siderable errors or use of niche grammar which
makes them very similar to the majority of the text
the core model is trained on. Hence, the results on

111



(a) The best score is from the blue line (b) F1 peaks at 22 and 23 and falls after that.

Figure 3: All values are F1 scores of training a pre-trained model with the adapter for 2 epochs.

these two datasets differ from when datasets with
noisy data taken from sites like Twitter are used.

That’s where the third dataset, ParsNER (Asgari,
2021), comes in, ParsNER, This dataset consists of
a huge amount of noise, whether it is words that are
tagged inconsistently or general script errors. More
importantly, the labels of this model are different
from the previous datasets with only nine tags and
a "MISC" tag that is supposed to represent any
other tag, and probably any other dataset, since it’s
not based on a standard. The data is taken from
posts on Twitter pages reflecting different topics.
Thus, the data is clustered and grouped in different
domains. These domains are extremely different
from each other and as we mentioned at the start of
the paper, the tagging will be greatly influenced by
the topic at hand as a word like "Iran" is probably a
"loc" when we are talking about travel and an "org"
when we are talking about economics. This feature
turns the differences in domain huge as we will see
in later results that models that are specialized in
the domain greatly outperform general models.

Moreover, the number of entries in each domain
differ from one another you can see the number of
entries in each domain in the figure 2. Normally,
we would not be able to share one model for this
dataset with the previous ones due to these huge
differences. Still, with multi-Bert, we will use
our model to achieve state-of-the-art results across
all of our domains and datasets to show that this
model can truly be a solution fit for all problems.
Therefore, we have two sets of data with different
outputs each one has other domains that we need
to focus on and we will show that one instance of
our model can give state-of-the-art results across
all of these domains and datasets.

4.2 Baselines

For the baseline, we introduce two models that we
expect our model to perform between them. Firstly,
our lower bound baseline is a general model that
is trained on all of the domains however since a
model cannot give outputs in two different formats
like our multi-Bert we train two general models
one for the first two datasets and another for all the
domains in the ParsNER dataset. These general
models are trained by fine-tuning our pre-trained
core model on the concatenation of all domains.
However, we also design an upper-bound baseline.
We fine-tune the core model on all of our data and
fine-tune it on a single domain, we do this twelve
times for each single domain. This is an extremely
time-consuming experiment and the result is twelve
huge models that are not a feasible solution. How-
ever, this does give us the best possible solution.
Furthermore, ChatGPT is used to tag the sentences
in the formal and informal datasets. However, a
simple prompt is used that gives the model the
desired tags and asks the model to tag each word.
Using approaches like few-shot learning or training
the model might achieve greater results but those re-
quire a huge sum of data and computational power,
that the abstinence of it, is the main problem we
are trying to solve.

4.3 Hyper-parameters setting

One of the main challenges of using adapters in
general is the complex parameters. In this paper,
we used an approach that closely resembles grid-
search. Firstly we set all parameters to every num-
ber that is apart from each other eight(4, 12, 20, e.g)
after finding the best performing sets of parameters,
we adapt the model to all possible parameters in
the range. After many experiments on our different

112



Model Domains

acad art econ fun game news med it sport travel

Gen-Bert-9 82% 66% 70% 69% 78% 79% 83% 86% 81% 76%
Spec-Bert 86% 87% 93% 90% 96% 93% 95% 93% 95% 90%
Multi-lr 70% 78% 80% 86% 90% 87% 86% 83% 92% 87%
Multi-pre 90% 87% 86% 92% 91% 97% 93% 94% 93% 95%

Table 1: The F1 Scores of the general Bert is overshadowed in any domain but the difference is much more visible
in smaller domains

datasets, we came to the final conclusion that the
best number of tokens to add to our prompt is 22.
Adding fewer tokens to each input layer results in
worse performance while adding more tokens leads
to no positive change in the model performance,
if not worse, and only leads to much longer train-
ing time. For the LoRA model, we also did the
same thing but the only difference is that there are
two parameters and the result is dependent on their
combinations. Thus, Moreover, we use a batch size
of 16 with a learning rate of 0.0001 as it has proven
to give the best results.

As we see in the figure 3 the performance of
the model rises up to the 18 parameters and starts
falling significantly which makes choosing the 22
an easy choice. However, it’s a little more com-
plicated for the LoRA model since the results of
the model for each value of R or alpha are depen-
dent on the value of the other one. We came to
the conclusion that for our named entity recogni-
tion task the best combination is LoRA alpha and
r of 1 and 3 respectively. With these hyperparam-
eters, the prefix model adds 468,490 parameters,
and the LoRA model adds 136,714 parameters to
the model, which constitute 0.38% and 0.11% of
the model parameters, respectively. Since the base
model has 124 million parameters, the added pa-
rameters are less than 1% of the model parameters,
and having a few of these adapters is very low-cost.

Model parameters Save/trainable

Bert-21 117,722K 100%
Multi-Bert-lr 118,070K 0.294%
Multi-Bert-pre 119,522K 1.503%
ChatGPT 175B 100%

Table 2: Only a small percent of the parameters are
trained and saved for Multi-Bert

4.4 Training details

In this section we will discuss the details of the
models and the training procedure. The table 2
shows the number of parameters. The models were
trained on a t4x2 for 30 epochs and saved the best
model.

4.5 Results

As we see in the final results at table 3 and table
1 the general model under-performs in every do-
main. It is clear that the general model performs
better at Formal v. Informal task compared to the
10-domain task for multiple reasons. Firstly, the
data between the two classes are more even, we
see that in the second general model, the domains
with much smaller datasets are clearly forgotten
for the sake of the bigger domains. Secondly, the
more the number of our domains is, the harder
it becomes for the model to adapt to all of them.
We see that in the results of the domains that have
much less data compared to their competitors, the
model gets over-fixated on the other domains and
greatly under-performs in these domains while do-
ing relatively well in the domains with more data.
When we look at the F1 score of the specialized
models we see that even though each one of them
is trained on all of the data and specialized on a
single domain they do not outperform our model by
a huge margin, in fact, the multi-Bert with prompt-
tuning outperforms fine-tuning a model on multiple
instances by a small margin. Another important ob-
servation is that prompt-tuning outperforms LoRA
and is championed as the best way to create this
model. This is due to the problem of limited data.
Adapters require more data to train effectively. For
this simple reason, we see that LoRA gives us re-
sults close to the fine-tuned ones, but is greatly
overshadowed by prompt-tuning for the domains
with much smaller datasets.

113



Figure 4: The models specialized on News, politics and economy get the tag of US right. Text from the political
domain of ParsNER. Text translation: The Saudi prince proved to be a loyal ally to the United States.

Model Arman ParstwiNER

General-Bert-21 95.2% 75.4%
Spec Bert 99.6% 81.7%
Multi-Bert-lr 99.4% 80.8%
Multi-Bert-pre 99.3% 83.1%
ChatGPT 67.8% 55.7%

Table 3: Multi-Bert achieves similar results to a whole
specialized Bert.

4.6 Discussion

So the model is getting better results, but why and
where are these improvements? To answer these
essential questions in this section the domain mod-
els are tested on a particular example from the
ParsNER dataset in the general news section. The
translation of the sentence goes "The Saudi prince
proved to be a loyal ally to the United States". The
word United States has a huge ambiguity here, if
the loyalty is to the land of the country it needs
to be labeled as "LOC", however, if the point is
to be loyal to the government of the country the
label would be "ORG". To us, humans, labeling
this sentence might not be that hard, after all from
the tone and the context we might be able to un-
derstand that the context of the sentence is politics.
But this sentence proves to be exceptionally hard
for the model, as seen in the figure 4 not only do the
travel domains get this answer wrong but general
models and others such as the ones designed for IT
news also get this sentence wrong while the mod-
els that know the context of politics, economics or
even general news get it right. This also outlines
that a small boost goes a long way as seen in some
specialized models.

5 Document-based classifier pipeline

In this section, we address the challenges posed
by the absence of domain knowledge and propose
an innovative solution to overcome this obstacle.
Fortunately, determining the domain of a given
text becomes relatively straightforward when the
text is sufficiently long or when multiple samples
are available. Nevertheless, feeding multiple sam-
ples simultaneously to a model is impractical, as it
may lead to unwanted interference among distinct
entries. To tackle this issue, we introduce a new
pipeline by fine-tuning a new set of parameters to
our core model.

To achieve this objective, we aggregate every
set of elements (for example 8 elements) and as-
sign them a label representing the domain of the
data. Subsequently, we shuffle the data from all
domains and train a new adapter for the model
with the additional parameters tailored for a text
classification task. Upon completion of the train-
ing process, we construct our pipeline as seen in
the figure 5. When employing the model for in-
ference—whether it involves tagging a series of
comments on a website, tweets within a Twitter
thread, or processing a lengthy book—we provide
512 tokens from the text to the model to find the
domain and based on the identified domain, we ap-
ply the respective parameters from the core model
to obtain the final results.

It is important to note that since we utilize the
core model already employed in our token classi-
fication tasks and entirely freeze the core model
during the classifier training, this pipeline does not
adversely impact the main token classification mod-
els. To train, we concatenate each 8 input rows as
one input. However, we only concatenate up to a
length of 512. Therefore, if the sum size of 5 ele-
ments exceeds 512 we only concatenate 5 elements

114



Figure 5: One forward pass determines the domain of a set which then can be used for each single input.

and cut the first 512 tokens of it. Consequently,
each group of inputs turns into one input with the
label of the dataset they are picked from. Then,
we mix and shuffle all of the data and train and
evaluate the model on all the data.

For the formal and the informal datasets, we get
an accuracy of 100%. This is reasonable consid-
ering the distinctions between these two datasets.
However, when we look at the ParsNER dataset
we get an accuracy of 97% which is decent since
we have 8 different classes. Moreover, even if this
model fails to predict the right domain of the text, it
does not guarantee a wrong final output as the cho-
sen version may generate correct results. In fact,
the decided domain is probably extremely close
for this mix-up to happen. Hence we can use this
pipeline to use the collection of texts to decide on
their context and then process them normally one
by one.

6 Conclusions

This paper proposed the multi-Bert model. This
model is designed to perform well for all domains
with any set of outputs. This is thanks to the de-
liberate design of this model by adding parameters
for each domain and output layers for different sets
of outputs coupled with the faster training time.
This design allowed the model to perform the task
on all domains perfectly. Moreover, this paper
evaluated the proposed model on Arman (a formal
dataset), ParstwiNER (an informal dataset), and
the ParsNER, a collection of ten datasets from dif-
ferent contexts with large amounts of noise. The
results proved that this model performs as well as
the state-of-the-are for each domain, if not better.

In addition, we also proposed a pipeline that can
decide the domain of the data when a small set of
sentences are available. We observed that if we
use the model for sets of 8, it could understand
the formality of the inputs completely with a 100%
accuracy and can classify the exact domain of the
news with an astonishing accuracy of 97% for the
ParsNER dataset.

7 Future works

There is much to do in the future as this paper is
only one step toward dealing with multi-domain
problems. Firstly, creating a Multi-Bert with
the newer proposed ModernBERT might achieve
greater results (Warner et al., 2024). Secondly,
the effectiveness of chatbots should be tested in
multi-domain settings with fine-tuning. Due to
limited computational resources, we only tested
prompt engineering for generative LLMs but as
seen in other papers generative LLMs do not have
satisfying performance without proper fine-tuning
(Abaskohi et al., 2024). While no one has actually
fine-tuned these models for NER, fine-tuning these
models will probably give us better results com-
pared to smaller models like BERT. However, this
task needs a huge amount of computational power.
Last but not least, the proposed method approach
should be tested for other low-resource NLP tasks
such as question answering. Domain knowledge
becomes even more important in generative tasks
such as translation and question answering since
the generated text also needs to be in the domain
of the incoming text. However, in such research,
using BART or generative LLMs such as LLAMA
might give better results.

115



Limitations

This work is limited by the smaller architectures
of the Bert model. While the smaller size and pa-
rameter count helps us fine-tune the model with
low computation power it limits the results we are
able to get compared to huge generative models.
Moreover, the proposed approach is only tested for
the Persian language and only for the NER task.
Furthermore, the tests on ChatGPT are done with
a simple prompt, while our results are in line with
some of the found research in this field engineer-
ing greater prompts or using few-shot approaches
might result in a higher F1 score. However, due
to the huge difference in performance compared
to the fine-tuned models used in this paper it is
extremely likely that any prompt would achieve a
accuracy close to the trained Bert models.

References
Amirhossein Abaskohi, Sara Baruni, Mostafa Masoudi,

Nesa Abbasi, Mohammad Hadi Babalou, Ali Edalat,
Sepehr Kamahi, Samin Mahdizadeh Sani, Nikoo
Naghavian, Danial Namazifard, et al. 2024. Bench-
marking large language models for persian: A pre-
liminary study focusing on chatgpt. arXiv preprint
arXiv:2404.02403.

MohammadMahdi Aghajani, AliAkbar Badri, and
Hamid Beigy. 2021. ParsTwiNER: A corpus for
named entity recognition at informal persian. In
Proceedings of the Seventh Workshop on Noisy User-
generated Text (W-NUT 2021), pages 131–136.

Majid Asgari. 2021. Parsner. https://github.com/
majidasgari/ParsNER.

Mehrdad Farahani, Mohammad Gharachorloo, Marzieh
Farahani, and Mohammad Manthouri. 2021. Pars-
Bert: Transformer-based model for Persian language
understanding. Neural Processing Letters, 53:3831–
3847.

Kai He, Rui Mao, Yucheng Huang, Tieliang Gong,
Chen Li, and Erik Cambria. 2023. Template-free
prompting for few-shot named entity recognition via
semantic-enhanced contrastive learning. IEEE Trans-
actions on Neural Networks and Learning Systems,
pages 1–13.

Ruidan He, Linlin Liu, Hai Ye, Qingyu Tan, Bosheng
Ding, Liying Cheng, Jia-Wei Low, Lidong Bing,
and Luo Si. 2021. On the effectiveness of adapter-
based tuning for pretrained language model adapta-
tion. arXiv preprint arXiv:2106.03164.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
Weizhu Chen. 2022. LoRA: Low-Rank adaptation of

large language models. In International Conference
on Learning Representations.

Srinivasa Rao Kundeti, J Vijayananda, Srikanth Mujjiga,
and M Kalyan. 2016. Clinical named entity recogni-
tion: Challenges and opportunities. In Proceedings
of IEEE International Conference on Big Data, pages
1937–1945.

Xiang Lisa Li and Percy Liang. 2021. Prefix-tuning:
Optimizing continuous prompts for generation. arXiv
preprint arXiv:2101.00190.

Zongxi Li, Xianming Li, Yuzhang Liu, Haoran Xie, Jing
Li, Fu-lee Wang, Qing Li, and Xiaoqin Zhong. 2023.
Label supervised llama finetuning. arXiv preprint
arXiv:2310.01208.

Jinghui Lu, Rui Zhao, Brian Mac Namee, and Fei Tan.
2023. PUnifiedNER: A prompting-based unified
ner system for diverse datasets. In Proceedings of
the AAAI Conference on Artificial Intelligence, vol-
ume 37, pages 13327–13335.

Ruotian Ma, Xin Zhou, Tao Gui, Yiding Tan, Linyang
Li, Qi Zhang, and Xuanjing Huang. 2022. Template-
free prompt tuning for few-shot NER. In Proceedings
of the 2022 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 5721–5732.

Ehsan Taher, Seyed Abbas Hoseini, and Mehrnoush
Shamsfard. 2020. Beheshti-NER: Persian named
entity recognition using BERT. arXiv preprint
arXiv:2003.08875.

Liwen Wang, Rumei Li, Yang Yan, Yuanmeng Yan,
Sirui Wang, Wei Wu, and Weiran Xu. 2022. In-
structionNER: A multi-task instruction-based gen-
erative framework for few-shot ner. arXiv preprint
arXiv:2203.03903.

Benjamin Warner, Antoine Chaffin, Benjamin Clavié,
Orion Weller, Oskar Hallström, Said Taghadouini,
Alexis Gallagher, Raja Biswas, Faisal Ladhak, Tom
Aarsen, et al. 2024. Smarter, better, faster, longer:
A modern bidirectional encoder for fast, memory
efficient, and long context finetuning and inference.
arXiv preprint arXiv:2412.13663.

116

https://github.com/majidasgari/ParsNER
https://github.com/majidasgari/ParsNER

