@inproceedings{ng-markov-2025-leveraging,
title = "Leveraging Open-Source Large Language Models for Native Language Identification",
author = "Ng, Yee Man and
Markov, Ilia",
editor = "Scherrer, Yves and
Jauhiainen, Tommi and
Ljube{\v{s}}i{\'c}, Nikola and
Nakov, Preslav and
Tiedemann, Jorg and
Zampieri, Marcos",
booktitle = "Proceedings of the 12th Workshop on NLP for Similar Languages, Varieties and Dialects",
month = jan,
year = "2025",
address = "Abu Dhabi, UAE",
publisher = "Association for Computational Linguistics",
url = "https://preview.aclanthology.org/fix-sig-urls/2025.vardial-1.3/",
pages = "20--28",
abstract = "Native Language Identification (NLI) {--} the task of identifying the native language (L1) of a person based on their writing in the second language (L2) {--} has applications in forensics, marketing, and second language acquisition. Historically, conventional machine learning approaches that heavily rely on extensive feature engineering have outperformed transformer-based language models on this task. Recently, closed-source generative large language models (LLMs), e.g., GPT-4, have demonstrated remarkable performance on NLI in a zero-shot setting, including promising results in open-set classification. However, closed-source LLMs have many disadvantages, such as high costs and undisclosed nature of training data. This study explores the potential of using open-source LLMs for NLI. Our results indicate that open-source LLMs do not reach the accuracy levels of closed-source LLMs when used out-of-the-box. However, when fine-tuned on labeled training data, open-source LLMs can achieve performance comparable to that of commercial LLMs."
}
Markdown (Informal)
[Leveraging Open-Source Large Language Models for Native Language Identification](https://preview.aclanthology.org/fix-sig-urls/2025.vardial-1.3/) (Ng & Markov, VarDial 2025)
ACL