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Abstract

Claim verification in real-world settings (e.g.
against a large collection of candidate evi-
dences retrieved from the web) typically re-
quires identifying and aggregating a complete
set of evidence pieces that collectively pro-
vide full support to the claim. The problem
becomes particularly challenging when there
exists distinct sets of evidence that could be
used to verify the claim from different perspec-
tives. In this paper, we formally define and
study the problem of identifying such mini-
mal evidence groups (MEGs) for claim veri-
fication. We show that MEG identification can
be reduced from Set Cover problem, based on
entailment inference of whether a given evi-
dence group provides full/partial support to a
claim. Our proposed approach achieves 18.4%
& 34.8% absolute improvements on the WiCE
and SciFact datasets over LLM prompting. Fi-
nally, we demonstrate the benefits of MEGs in
downstream applications such as claim genera-
tion.

1 Introduction

The task of claim verification predicts whether
a claim is supported by the presented evidence
(Thorne et al., 2018; Chen et al., 2023a). A claim
verification model is expected to identify the cor-
rect evidence pieces (EPs; e.g. evidence sentences
or snippets) among tens of retrieved candidate ev-
idence, but a practical challenge lies in that there
might exist multiple sets of evidence that verify
the claim from different perspectives. Figure 1
shows an example where, given a claim and some
retrieved evidence, there exist two different — but
both valid — ways of supporting the claim.

While humans can quickly identify mutually re-
dundant EPs, e.g. e1 and e3 in Figure 1, and pro-
pose plausible combinations of EPs as evidence
groups (EGs, formally defined in Section 3.1),

* Work performed while the authors are interning at Google
as PhD students

On October 17, 2018, one year after Downie’s
death, a previously unreleased studio

recording of the song “Wait So Long” was 
played on K-Rock.

Claim

TITLE: Hear Previously Unreleased Tragically 
Hip Song ‘Wait So Long’ – K-ROCK 105.7

Candidate Evidence Pieces

On Wednesday, October 17, 2018, as the 
country remembered Gord Downie following 
the one year anniversary of his passing, we 
played a song from a special package that 

was delivered earlier in this month.

We played the song ‘Wait So Long’ a couple 
of times on the 17th as a part of Gord FM.

The song is also listed on the Hip’s official list 
of 61 unreleased songs.
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Figure 1: The problem of minimal evidence group iden-
tification for claim verification: given a claim and a list
of candidate evidence pieces, the task is to identify the
sets of minimal, non-redundant evidence, where each
set provides full support for the claim.

existing claim verification systems (Dagan et al.,
2005; Thorne et al., 2018; Wadden et al., 2020;
Schuster et al., 2021; Chen et al., 2023a,b) focus
only on the relationship between the claim and indi-
vidual EPs, without considering the co-supporting
relationships among EPs. This becomes problem-
atic because the retrieved EPs might be redundant,
or an individual EP may only partially support the
claim. An EG with redundant EPs makes it more
difficult to explain the reasoning for supporting
the claim, while an EG composed of partially sup-
porting EPs may still not fully support the claim,
resulting in logical flaws. These problematic out-
puts not only confuse human verifiers, but also hurt
the performance of downstream tasks.

In this paper, we introduce the problem of iden-
tifying minimal evidence groups (MEGs) from
retrieved evidence candidates. Conceptually, an
MEG is composed of EPs with the following prop-
erties: (1) Sufficiency: each MEG fully supports
the veracity of the claim; (2) Non-redundancy:
the EPs in an MEG are not redundant with each
other; and (3) Minimality: the number of EPs in
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each MEG is minimal. We formally define the
task of MEG identification and show that classic
claim verification approaches cannot effectively
solve this problem. We propose a simple yet practi-
cal approach to decompose it to support prediction
and evidence group merging. Our proposed ap-
proach significantly outperforms the baseline of di-
rectly prompting a large-language model (LLM) by
18.4% and 34.8% absolute precision scores on the
WiCE (Kamoi et al., 2023) and SciFact (Wadden
et al., 2020) benchmarks. Finally, we demonstrate
the benefit of MEGs for saving computation budget
in the downstream task of claim generation.

2 Related Work

Classic claim verification (Thorne et al., 2018;
Chen et al., 2023a) consists of three steps: evidence
retrieval, evidence selection, and stance prediction.
Evidence retrieval perform coarse-grained filtering
of EPs from thousands of candidates. Evidence se-
lection and stance prediction perform fine-grained
selection of EPs and predict whether the claim is
supported by the selected EPs. MEG identification
builds on classic claim verification by restricting ev-
idence selection and stance prediction to predict a
minimal group of EPs that fully supports the claim.

To address the problem that claim verification
systems (Dagan et al., 2005; Wadden et al., 2020;
Schuster et al., 2021; Chen et al., 2023b) may pre-
dict EPs that only partially support the claim, La-
ban et al. (2022); Schuster et al. (2022); Kamoi
et al. (2023) aggregated individual EPs’ entailment
scores into EG scores. However, they did not ad-
dress the problem of redundancy within an EG; we
propose MEG identification to fill this gap.

The closest work to ours is SciFact (Wadden
et al., 2020), which annotates “minimal evidence
sets” for each claim. However, the SciFact shared
task does not penalize non-minimal EGs, and con-
sequently models that evaluate on SciFact (Pradeep
et al., 2021; Li et al., 2021; Zhang et al., 2021;
Wadden et al., 2022) are trained on the union of
EGs from different human annotators, which is no
longer minimal. Similarly, Thorne et al. (2018);
Chen et al. (2023b); Kamoi et al. (2023) collect
(possibly redundant) EGs from multiple annotators
and use their union as training labels. As a result,
existing models prioritize EP recall and are not
directly comparable to MEG identification models.

3 Minimal Evidence Groups

3.1 Problem Formulation

MEG identification builds on the classic claim ver-
ification task (Thorne et al., 2018; Chen et al.,
2023a). Formally, claim verification takes a claim
c and a list of candidate EPs E = {e1, e2, ...} as
input. The evidence selection step retrieves all EPs
that are relevant to c, and the stance prediction step
predicts whether the selected EPs support c1. In
Figure 1, e1, e2, e3 all support c. A set of fully
supporting EPs is called an evidence group (EG).

MEG identification requires the EGs to be suf-
ficient, non-redundant, and minimal. We consider
a set of EPs S ⊆ E to fully or partially support
a claim c if the EPs in S collectively entail all or
only part of c, respectively; S does not support c if
none of EPs in S entail c. If S fully supports c, it
is an EG; an MEG is a minimal EG such that none
of its EPs are redundant in terms of supporting c.
In Figure 1, e1 and e3 are redundant; {e1, e2} and
{e2, e3} are MEGs that fully support c.

3.2 Task Evaluation

We focus on precision-oriented scores (precision
and F0.5) to penalize predicting non-minimal EGs
because we observe from prior claim verification
datasets (Thorne et al., 2018; Wadden et al., 2020;
Chen et al., 2023b; Kamoi et al., 2023) that (1) one
MEG is sufficient for claim verification in practice;
(2) humans are good at finding one plausible MEG
but struggle to exhaustively find all valid MEGs;
and (3) different annotators propose distinct MEGs.

Given a claim c with reference MEGs RG =
{G1, G2, ...}, we measured the following metrics:

Exact match of MEGs treats each reference
MEG atomically and considers a predicted MEG to
be correct if it exactly matches a reference MEG.

Best soft match of MEGs gives partial cred-
its to the predicted MEGs. We calculate the
EP-level scores between the predicted MEG G′

and the most similar reference MEG chosen by
Ĝ = argmaxGi∈RG F0.5(G

′, Gi).

4 MEG Identification Approach

The challenge of MEG identification is to find the
smallest set of EPs that fully supports the claim.
As discussed in Section 2, classic claim verifica-
tion models treat the EP as the basic unit; they are

1We limit our scope to claim support/non-support, ignoring
contradictions for simplicity. See Section 7 for discussion.
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Algorithm 1 MEG identification with a support
prediction Model. Simplified for illustration, see
Appendix Section A.2 for details.
Require: c, E = {e1, e2, ..., en}, Model
Require: max_size ▷ Max size of EGs to consider.
MEG← [] ▷ Proposed MEGs.
for size in 1...min(|E|,max_size) do

CS ← makeCombinations(c, E, size) ▷ List of
notRedundant combinations of partially supporting EPs.

for S in CS do
label←Model(c, S)
if label is fully support then

MEG.append(S)
end if

end for
if len(MEG) > 0 then break
end if

end for
Output MEG

neither designed nor trained for groups of evidence.
Our experiments of prompting directly with LLMs
also show poor performance (Table 2, “Direct”)2.

As Algorithms 1 shows, we decompose MEG
identification into two steps: (1) predicting whether
a candidate set of EPs fully supports, partially sup-
ports, or does not support the claim and (2) bottom-
up merging partially supporting groups in search
of a fully supporting group. The support predic-
tion Model can be implemented by any reasonable
approach, such as prompting LLMs or fine-tuning
models like T5 (Raffel et al., 2020). When merging
groups, we increment the overall group size by 1
at each step. Note that if we only evaluate the base
case with size=1, this is equivalent to classic claim
verification (Thorne et al., 2018; Wadden et al.,
2020; Schuster et al., 2021; Kamoi et al., 2023).

Based on the definition of MEG (Section 3.1),
we derive three principles to prune the problem
space for a tractable solution: (1) any superset of
an MEG fully supports the claim c; (2) any non-
empty subset of an MEG partially supports c; and
(3) if a set of EPs S fully supports or does not sup-
port c, then S is not a strict subset of any MEG.
Therefore, we stop merging sets that are predicted
as fully supporting or not supporting to maintain
the non-redundancy and minimality of the candi-
date EP sets. In addition, when choosing a pair
of sets to merge, we prune the candidate merge
partners for each set using a redundancy checker
notRedundant (implemented as a zero-shot LLM
prompt; see Appendix A.2). Finally, upon finding
a fully supporting set, we stop merging and return
all fully supporting sets of the current size.

2The explicit verification of combinations of EPs reduces
from Set Cover and is NP-hard (see proof in Section 5.)

5 Proof of NP-hardness

In this section, we provide a simple proof to show
that the MEG identification problem is NP-hard.

5.1 Simplifying to an Ideal Scenario
Inspired by Kamoi et al. (2023), who break com-
plicated claims into subclaims and verify each sub-
claim individually, we assume the solution of the
MEG identification problem explicitly breaks down
the claim c into one or more atomic claim units
CU = {cu1, cu2, ...} and verifies them one-by-
one. Each claim unit cu can be more fine-grained
or abstractive than the subclaims introduced by
Kamoi et al. If all claim units cui ∈ CU are veri-
fied, then c is fully supported. Otherwise, if only
a subset of CU is verified, then c is only partially
supported. In an ideal scenario, we have a perfect
model that is able to decompose c into CU and out-
put a binary vector for each EP to indicate which
cui are verified by the EP; this ideal MEG identi-
fication problem becomes the task of minimizing
the number of selected EPs such that all elements
in CU can be covered.

5.2 Reduction from Set Cover
Based on the formulation in 5.1, we can trivially
many-one reduce the Set Cover problem, which is
NP-Complete (Karp, 2010), to ideal MEG iden-
tification by mapping the universe to CU and
the collection of subsets to the full set of EPs
E = {e1, e2, ...}. Therefore the ideal MEG iden-
tification problem is NP-Complete, and the actual
MEG identification problem is NP-hard. Because
the assumption of explicitly tracking which cui are
covered/remaining is challenging for state-of-the-
art models, it is difficult to develop approximation
solutions for MEG identification.

6 Base Model Performance

A base Model solves the base problem of support
prediction: predicting whether a candidate set of
EPs fully supports, partially supports, or does not
support the claim. This can be implemented by
any reasonable approach but we use an LLM-based
approach for simplicity.

Implementation. For both the support predic-
tion Model and notRedundant checker, we prompt
PaLM-2L (Anil et al., 2023) with few-shot demon-
strations and greedy decoding. We follow Wan
et al. (2023) to select the LLM’s most confident ex-
amples for few-shot demonstrations. To prioritize
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Accuracy Precision Recall F1
Dataset Full Partial Not Full Partial Not Full Partial Not Macro F1
WiCE 0.792 0.891 0.373 0.960 0.790 0.612 0.866 0.838 0.464 0.911 0.737
SciFact 0.729 0.833 0.077 0.794 0.741 0.095 0.848 0.784 0.085 0.820 0.563

Table 1: Base model performance.

precision, we take the top-1 predicted MEG, ranked
according to the LLM’s predicted fully supporting
score, if multiple MEGs are predicted.

Experimental settings. To assess the support
prediction Model performance, we construct
datasets of 2255 and 462 entailment examples re-
spectively from WiCE test-set and SciFact dev-set.
The sampled WiCE subset contains 1139, 322, 794
fully support, partially support, and do not sup-
port examples, respectively. We directly use the
annotated EGs from fully and partially supporting
examples as inputs and randomly sample 1∼3 EPs
to serve as negative labels in not supporting exam-
ples. Similarly for SciFact, we treat each annotated
evidence group as fully supporting and the subsets
of annotated evidence groups as partially support-
ing; we randomly sample 1∼3 non-annotated EPs
to as negative lables for not supporting examples,
obtaining 216, 42, and 204 fully support, partially
support, and do not support examples, respectively.
Table 1 shows the prompt used for the LLM.

Experimental results. Table 1 shows the support
prediction base Model performance. Overall the
model yields satisfactory performance on fully and
not supporting examples but performs poorly on
partially supporting examples. This is because
the partial support label is vaguely defined, and
presumably the LLM (Anil et al., 2023) did not
encounter sufficient partially supporting entailment
examples in its pretraining.

7 Intrinsic Evaluation

7.1 Experimental Settings

7.1.1 Datasets
We perform filtering to convert classic claim veri-
fication datasets to align with our MEG identifica-
tion task. Both of the datasets listed below annotate
EGs with multiple annotators. We assume that ev-
ery human-annotated EG fully supports its claim,
every subset of an EG partially supports its claim,
and all non-labeled sentences do not support the
claim. In addition, we assume each reference EG
to be an MEG proposed by a different annotator.

SciFact (Wadden et al., 2020) is a biomedi-
cal fact-checking dataset and is the only existing
dataset whose annotation instructions match the
sufficiency, non-redundancy, and minimality re-
quirements of MEGs. We remove all examples
whose claims contradict the evidence, resulting in
268 samples from the development set. We use the
non-contradictory EGs as-is. To distinguish it from
the original SciFact dataset and task3, we call this
modified dataset SciFact-MEG.

WiCE (Kamoi et al., 2023) distinguishes EGs
that fully or partially support claims from
Wikipedia. We use the subclaim-level partition
of the dataset and only use samples labeled as fully
supporting, resulting in 528 samples from the test
set. We call this modified dataset WiCE-MEG.

7.1.2 Baseline Approaches
Direct prediction. We zero-shot prompt PaLM-
2L (Anil et al., 2023) to predict the MEG via EP
indices, given a claim and a list of candidate EPs
(Appendix Table 6).

Classic claim verification. To simulate clas-
sic claim verification without considering groups
of EPs (Thorne et al., 2018; Wadden et al., 2020;
Schuster et al., 2021; Kamoi et al., 2023), we use
our proposed approach but early stop after com-
puting size=1. If we find any fully supporting EP,
the output MEG will be the same as our proposed
approach. Otherwise, we concatenate all partially
supporting EPs as a single EG.

Classic claim verification with less redun-
dancy (Classic+LR). Given the output from “clas-
sic claim verification” above, we additionally re-
move EPs that cause redundancy, as predicted by
the pair-wise nonRedundant checker4.

7.2 Experimental Results

Table 2 shows the top-1 MEG identification per-
formance using the metrics introduced in Section
3.2. For both datasets, our approach significantly

3As discussed in Section 2, while the SciFact dataset anno-
tates EGs that meet the requirements of MEGs, the task does
not evaluate redundancy or minimality, only sufficiency.

4We simply remove redundant combinations when size=2.

106



Exact Match Best Soft Match
Dataset Approach Precision Prec. Recall F0.5

WiCE-MEG

Direct 0.456 0.176 0.522 0.203
Classic 0.568 0.338 0.554 0.367

Classic+LR 0.570 0.425 0.526 0.442
Ours 0.640 0.809 0.423 0.684

SciFact-MEG

Direct 0.243 0.235 0.652 0.269
Classic 0.479 0.468 0.478 0.470

Classic+LR 0.479 0.491 0.476 0.488
Ours 0.591 0.612 0.352 0.533

Table 2: Top-1 minimal evidence group identification
performance. Examples with failed outputs are excluded
for the baseline approach.

outperforms all baselines on precision and F0.5

scores. The baselines underperform our approach
because their predicted MEGs contain too many
EPs, especially the “Direct" LLM prompting base-
line. Decomposing MEG identification into many
individual entailment problems (“Classic”) greatly
improves the precision score. Further removing
pair-wise redundancy (“Classic+LR") slightly im-
proves performance, showing the impact of redun-
dancy. Finally, although requiring significantly
more computation, our bottom-up MEG identifi-
cation approach performs the best because every
combination of EPs is explicitly verified.

8 Extrinsic Evaluation

The non-redundancy of MEGs not only makes the
evidence more human-readable, it also improves
the performance of downstream applications. In-
spired by Chen et al. (2023c), we use WiCE-MEG
to highlight the MEG’s minimality and sufficiency
properties using claim generation as an example
downstream task, with a computation budget mea-
sured in the number of words or sentences.

8.1 Experimental Settings

Since EGs fully entail their claims, they contain the
information to reconstruct the claim. We compare
the following input settings for the task of claim
reconstruction using PaLM-2L (Anil et al., 2023):

MEGs. We use the top-1 MEG obtained with
our proposed approaches, each baseline in Table
2, and the human-annotated reference EG with the
smallest number of EPs for each claim.

Union of EGs (UEGs). We take the union of ref-
erence EGs (from different annotators) for a claim.

First-k. To simulate a low computation budget
setting, we follow Chen et al. (2023c) in taking the
first k EPs, where k is the size of the top-1 MEG.

Input Evidence # Words # Sents R-1 R-2 R-L
Direct 172.4 6.81 0.299 0.127 0.263

First-k Direct 34.1 1.15 0.282 0.114 0.250
Classic 85.0 3.20 0.282 0.120 0.250

Classic+LR 69.2 2.45 0.281 0.120 0.250
Our MEGs 39.5 1.29 0.289 0.121 0.254
Gold MEGs 37.0 1.31 0.294 0.126 0.259
Gold UEGs 71.7 2.78 0.302 0.128 0.267

First-k gold UEGs 33.0 1.31 0.264 0.101 0.232

Table 3: Budgeted retrieval-augmented generation per-
formance (ROUGE F1).

8.2 Experimental Results

Table 3 shows that both our predicted and gold
MEG settings perform comparably to settings with
much lower computation budgets, while signifi-
cantly outperforming the most constrained “first-k”
settings. These results indicate that (1) our pro-
posed approach for MEG identification is effective;
(2) MEGs contain complete information for the
claim generation task; (3) MEGs are much more
compact than EGs from other approaches, with
more than 45% fewer words, allowing them to be
used in low-computation scenarios.

9 Conclusion

We have addressed the challenging scenario in
claim verification where a model is expected to
identify a minimal group of evidence pieces (EPs)
among a relatively large amount of candidate evi-
dence, and there might exist different sets of evi-
dence that verify the claim from different perspec-
tives. We formally define and study the problem of
such minimal evidence group (MEG) identification
and show that it can be reduced from a Set Cover-
like problem. Our proposed approach achieves
significant improvements over direct LLM prompt-
ing. Finally, we demonstrate the benefit of MEGs
over classic claim verification approaches in down-
stream applications such as claim generation.

Limitations

Ignoring contradictions. In this work, we only
consider supporting/non-supporting evidence for
simplicity, and leave contradicting evidence for fu-
ture work. Our proposed approach avoids the edge
case of full/partial entailment problem brought by
contradiction. Nonetheless, we claim that contra-
diction can be regarded as the opposite of support,
where our proposed concepts and approaches still
apply with minor fix.
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Reliability of human annotations. As we point
out in Section 1, there is no gold-standard anno-
tated dataset designed for this task, and it is practi-
cally difficult to enforce and verify the sufficiency,
non-redundancy, and minimality requirements of
MEGs in the existing annotations. In practice, un-
less explicitly stated, it is unknown whether the an-
notated EGs are simply relevant to or fully support
the claim. Although human annotators are good at
proposing salient EGs, annotators usually do not ex-
haustively find all possible EGs. Moreover, human
annotators tend to over-select EPs for a better con-
textualization, which breaks the non-redundancy
and minimality requirements. As a result, we ar-
gue that the human annotations should only be
treated as a reference, instead of an absolute gold
standard. Therefore, the measured performance in
Table 2 can should be regarded as each approach’s
agreement with the human annotators, and does not
necessarily measure MEG correctness.

Definition of partial support. It is challenging to
precisely define partial support. Even Kamoi et al.
(2023), who proposed this label, did not clearly
define it. Our proposed approaches do not rely on
the precise definition of partial support but sim-
ply regard it as the intermediate label between not
support and fully support because the precise defi-
nition may vary case-by-case in different datasets
that the support prediction Model is trained on. Be-
cause of this ambiguity, partial support is the most
challenging label for LLMs to predict (Section 6)
and hurts the performance of MEG identification.

Computational complexity. Due to the NP-
hardness (Section 5) of the MEG identification
problem, we inevitably have to trade off running
time for higher performance, which results in the
worst-case running time for the proposed solution
being too long to be practically useful in a produc-
tion system. Our proposed approach is currently
more suitable for high-quality dataset annotation,
which requires a robust solution without strict run-
ning time requirements. Once a well-annotated
dataset is created, future work can distill our slow
but accurate approach to a faster and more efficient
model.

The apparent conflict between the high compu-
tational complexity of our proposed MEG identifi-
cation approach and the potential benefit of using
MEGs when there is low computational budget for
the downstream generation system. This conflict

arises from a conceptual mismatch: on one hand,
identifying MEGs at a high level does reduce the
computational burden for downstream generation.
On the other hand, the complexity of our approach
is necessary because, as we discuss in in Section 4,
there is no sufficiently large dataset for training a
MEG identification model, and current LLMs do
not perform well at directly predicting MEGs. As
a workaround, we propose an exact solution that
reduces MEG identification to the base entailment
prediction problem, which we have proven to be
inefficient (NP-hard in Section 5).

However, more efficient approximations may be
possible. For instance, the “Classic+LR” setting
in Section 7 simplifies the process by performing
only one iteration of redundancy removal. Alter-
natively, we could employ a distillation approach
(Yu et al., 2024), using our exact solution to auto-
matically annotate a large training dataset, which
would then allow us to train a specialized MEG
identification model that predicts MEGs efficiently.
However, this dataset creation process is complex,
as it requires careful selection of queries, candidate
evidence, and a well-performing base model, so we
leave it for future work.

Ethical Statements

Similar to all prior claim verification works (Da-
gan et al., 2005; Thorne et al., 2018; Wadden et al.,
2020; Schuster et al., 2021; Chen et al., 2023a,b),
we stress that the MEG identification problem and
the MEGs predicted by our proposed approach
only consider the relative entailment relationship
between the evidence and the claim. In other words,
the MEG identification problem and our proposed
approach do not guarantee the absolute correctness
of the claim or the EPs or EGs themselves. Any
future application must be cautious in distinguish-
ing between retrieving evidence that supports the
claim, correct or not, and verifying the absolute
factual correctness of the claim.
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Prompt
Your task is to examine if the given claim is jointly
supported by one or more evidence with short con-
texts. Take a deep breath and reason step by step,
and answer with “FULLY_SUPPORTED”, “PAR-
TIALLY_SUPPORTED” or “NOT_SUPPORTED” at
the end of your answer. FULLY_SUPPORTED means
the claim is fully supported by the evidence without
requiring other evidence. PARTIALLY_SUPPORTED
means the claim is partially covered by the evidence
that requires other evidence to collectively fully support
the claim. NOT_SUPPORTED means the claim is not
supported by the evidence.

Example:
Claim: {{example claim}}
Evidence with contexts:
{{example evidence text}}
Answer: {{example answer}}

Example:
...
Your problem:
Claim: {{claim}}
Evidence with contexts:
{{evidence text}}
Answer:

Table 4: Prompt for base problem.

Prompt
Each of the following two evidence individually par-
tially support the claim: “{{claim}}”.
Partial support means the claim is partially supported by
the evidence that requires other evidence to collectively
fully support the claim.

Evidence 1: “{{evidence text 1}}”.
Evidence 2: “{{evidence text 2}}”.

Are evidence 1 and 2 redundant to each other in terms of
how they support the claim, i.e. are they talking about
the same thing, and is one of the evidence unnecessary?
Take a deep breath and think step by step, and finally
answer YES or NO.

Table 5: Prompt for checking redundancy of merged
candidate EGs.

A Implementation Details

A.1 Additional Preprocessing

For the WiCE-MEG dataset, since the majority of
the candidate EPs are not relevant to the claim, but
some may be selected as part of the EGs by the
LLM, we additionally filter out sentences without
any stemmed token overlap with the claim in ad-
vance. This filtering removes 55.6% of candidate
EPs but affects only 6.7% of gold EGs, significantly
speeding up inference with minimal performance
loss.

Prompt
Given the following claim: “{{claim}}”, and evidence
sentences prepended with indices:
{{evidence text}}

Select the best minimal non-redundant group of evi-
dence sentences that fully supports the claim. Only
output sentence indices, separated by comma.

Answer:

Table 6: Prompt for directly predicting MEG.

Prompt
Write a claim that is fully supported by the given fol-
lowing evidence sentences:
{{evidence text}}

Table 7: Prompt for claim reconstruction.

A.2 Detailed Algorithm
To avoid redundant computation, we iteratively
merge two partially supporting set of EPs to a
larger candidate set and store it in PGs in Al-
gorithm 2. Therefore, PGs is implemented by
a Python dictionary with size of the set of EPs as
keys and another nested Python dictionary CS as
values. Each CS has a key of the merged set of
EPs G1 ∪ G2, and values of pair of the (G1, G2).
Algorithm 2 & 3 presents the full pseudo code of
our implementation. In Algorithm 3 we prepare
non-redundant candidate sets of EPs by running
notRedundant checker implemented by a zero-
shot LLM prompt (Table 5).

A.3 Inter-annotator Disagreement
In WiCE (Kamoi et al., 2023) dataset, we observe
some inter-annotator disagreements where some
human-labeled EGs are supersets of the other EGs
for the same claim, but in these cases we still in-
clude both EGs as references.
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Algorithm 2 Minimal Evidence Group Identifica-
tion with a support prediction Model.
Require: c, E = {e1, e2, ..., en}, Model
Require: max_size ▷ Max size of EGs to consider.
MEG← [] ▷ Proposed MEGs.
PGs← {} ▷ Dict[size: Dict[G: {G}]]
for size in 1...min(|E|,max_size) do

PGs←MergePartialGroup(c, E, size, PGs)
CS ← PGs[size].keys() ▷ All candidate sets of EPs

with size size
for S in CS do

label←Model(c, S)
if label is fully support then

MEG.append(S)
pop PGs[size][S]

else if label is not support then
pop PGs[size][S]

end if
end for
if len(MEG) > 0 then break
end if

end for
Output MEG

Algorithm 3 Merging partial evidence groups with
redundancy checking.
Require: notRedundant ▷ Redundancy Checker.

function MERGEPARTIALGROUP(c, E, size, PGs)
CS ← {} ▷ Dictionary of Sets.
if size = 1 then

for e in E do
CS[(e, )]← set([])

end for
else

for each pair G1 ∈ PGs[|G1|] &
G2 ∈ PGs[|G2|] s.t. |G1 ∪ G2| = size &
notRedundant(c,G1, G2) do

CS[G1 ∪G2].add((G1, G2))
end for

end if
PGs[size]← CS
return PGs

end function
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