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Abstract

Large Language Models (LLMs) have demon-
strated excellent capabilities in Question An-
swering (QA) tasks, yet their ability to iden-
tify and address ambiguous questions remains
underdeveloped. Ambiguities in user queries
often lead to inaccurate or misleading answers,
undermining user trust in these systems. De-
spite prior attempts using prompt-based meth-
ods, performance has largely been equivalent
to random guessing, leaving a significant gap in
effective ambiguity detection. To address this,
we propose a novel framework for detecting am-
biguous questions within LLM-based QA sys-
tems. We first prompt an LLM to generate mul-
tiple answers to a question, and then analyze
them to infer the ambiguity. We propose to use
a lightweight Random Forest model, trained on
a bootstrapped and shuffled 6-shot examples
dataset. Experimental results on ASQA, PA-
CIFIC, and ABG-COQA datasets demonstrate
the effectiveness of our approach, with accu-
racy up to 70.8%. Furthermore, our framework
enhances the confidence calibration of LLM
outputs, leading to more trustworthy QA sys-
tems that are able to handle complex questions.

1 Introduction

Recent advancements in Large Language Models
(LLM) (Chung et al., 2022; Touvron et al., 2023;
OpenAI, 2023) have significantly improved their
capabilities in Question Answering (QA). However,
users often ask under-specified questions that can
have multiple interpretations (Min et al., 2020; Sun
et al., 2023). Those ambiguities typically lead to in-
accurate or misleading answers, which undermine
the user trust in the systems (Ovalle et al., 2023).
Identifying questions requiring clarification is thus
a crucial task to build trustworthy NLP systems.

Recent studies (Cole et al., 2023; Deng et al.,
2023) explored how LLMs can detect question am-
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Context: Sound of Silence is a song performed by Australian 
recording artist Dami Im at the Eurovision Song Contest 2016  
<….>  Sounds of Silence is the second studio album by 
Simon & Garfunkel, released on January 17, 1966 <…>

Question: Who is the original artist of sound of silence?

Who is the original artist 
of sound of silence 
released in 2016?

Question Ambiguity

Who is the original artist 
of sound of silence 
released in 1966?

Dami Im

Uncertainty in LLM Answers

Simon & 
Garfunkel

Incorrect 
Answers

Model Input

Figure 1: Ambiguity can either originate from the inher-
ent ambiguity in the question (denotational uncertainty)
or stem from the model’s own indecision about potential
answers (epistemic uncertainty).

biguity with prompting (e.g., binary prompts where
LLM answers with ‘Yes’ or ‘No’). These works
found that the prompting strategy is ineffective and
performs at random guessing levels.

In light of these findings, we propose to address
the problem from a different angle by analyzing the
responses of the LLM to the potentially ambigu-
ous question. Intuitively, as illustrated in Figure 1,
if an LLM provides multiple plausible responses,
such as “Dami Im” and “Simon & Garfunkel” for
the question “Who is the original artist of Sound of
Silence?”, it can suggest ambiguity in the user ques-
tion. Therefore, we hypothesize that understanding
the variance of the LLM outputs can assist in de-
tecting the ambiguity of questions.

A straightforward implementation would be to
prompt the LLM to generate many possible an-
swers to the question and then measure the entropy
(i.e., uncertainty) over the answers (Kuhn et al.,
2023; Lin et al., 2023). The entropy can serve as a
proxy for the question ambiguity: when the LLM
insists on a single answer, the entropy will be 0
(indicating non-ambiguity); instead, if the LLM
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is confident about multiple answers, the resulting
entropy would increase towards 1 (thus indicating
ambiguity). However, LLMs often produce incor-
rect, incomplete, or misleading answers, due to a
lack of specific knowledge, hallucination, or other
underlying factors (Tian et al., 2023; Bang et al.,
2023). In Figure 1, such LLMs’ outputs, labeled as
"incorrect answers", amplify the measured entropy.
Therefore, a more refined interpretation model is
necessary to discern the question ambiguity.

In this work, we propose a novel framework to
detect ambiguity in questions in LLM-based QA
systems in low-resource settings. As shown in
Figure 2, our framework first prompts an LLM
to generate multiple answers to a question given
some contextual information, i.e., supporting ev-
idence in a retrieval-augmented setting (Lewis
et al., 2020); we prompt the LLM through self-
consistency prompting (Wang et al., 2022). Then,
we use an interpreter model to analyze the answers
with various distributional features of the LLM re-
sponses to infer the ambiguity. We found that a
Random Forest (RF) model, trained on a diverse
range of LLM output patterns simulated through
bootstrapping based on a very few-shot example
set, is capable of accurately identifying ambiguity
in questions. This approach outperforms various
baselines including self-interpretation by the LLM
itself, a ROBERTA-based classifier, and different
prompting strategies. In particular, we conduct ex-
periments on the ASQA (Stelmakh et al., 2022),
PACIFIC (Deng et al., 2022), and ABG-COQA (Guo
et al., 2021) datasets, and show that our proposed
framework substantially improves the performance
of the ambiguity detection task, with accuracy lev-
els up to 70.8%; this is a substantial improvement
over the existing prompt-based approaches, which
barely surpass a random baseline. Our evaluation
also shows that the prediction probabilities derived
from the RF are reliable indicators of the model’s
accuracy, which effectively reduces the likelihood
of providing incorrect or misleading answers, thus
improving the trustworthiness of the resulting sys-
tem. Our analysis also explores the benefits of
bootstrapping few-shot examples and reveals that
our approach delivers much fewer false positives,
compared to the heuristic method using entropy.

In summary, the contributions of this work are:
i) we introduce a novel framework for ambiguity
detection in LLM-based QA systems by prompting
the LLM to generate multiple answers which are
then analyzed by an RF model, trained using boot-

strapping; ii) experiments on the ASQA, PACIFIC,
and ABG-COQA datasets show that the proposed
framework considerably enhances the performance
of the ambiguity detection task; iii) our study re-
veals that prediction probabilities generated by the
RF model are reliable indicators of the model’s
accuracy. This aspect is crucial as it minimizes
the likelihood of providing incorrect responses, im-
proving the reliability of the resulting QA systems.

2 Related Work

Ambiguous Question Answering and Clarifi-
cation. Ambiguity is an element of human lan-
guage, which has led to numerous studies including
in instruction following (Shi et al., 2022a), conver-
sational search (Keyvan and Huang, 2022; Alianne-
jadi et al., 2019), product search (Chen et al., 2023,
2024), and question answering (Shao and Huang,
2022; Sun et al., 2023; Lee et al., 2023; Ji et al.,
2024; Zhang et al., 2024; Wu et al., 2024). Pre-
vious studies (Min et al., 2020; Shi et al., 2022b;
Cole et al., 2023) emphasize the importance of
grounding the ambiguity detection task within a
relevant context, as the definition of “ambiguous”
is inherently subjective. While the ClariQ dataset
(Aliannejadi et al., 2021) is one of the pioneering
datasets for query ambiguity, it does not offer a
grounding context, leading to some inconsistent an-
notations (see Appendix §B). Similarly, AmbigQA
(Min et al., 2020) and WebQuestionsSP (Yih et al.,
2016) do not provide annotated context. In this
research, we focus on a context-enhanced setting.

Uncertainty Estimation. Estimating uncertain-
ty/confidence is crucial for assessing the reliability
of LLMs (Gal and Ghahramani, 2016; Yang et al.,
2024a; Geng et al., 2024; Zhou et al., 2023a). Ide-
ally, a perfectly calibrated confidence estimation
reflects the true likelihood of the prediction be-
ing correct (Niculescu-Mizil and Caruana, 2005;
Guo et al., 2017). Earlier studies (Murray and Chi-
ang, 2018; Malinin and Gales, 2020; Jiang et al.,
2021) often used the token probability from the
language model to calculate the marginal prob-
ability of a sequence and use it to estimate the
model confidence. Recent works have raised the
question of whether post-training (Ouyang et al.,
2022; Wei et al., 2022a) might negatively impact
model calibration (OpenAI, 2023). Many efforts
have been made to calibrate uncertainty in LLMs.
Kadavath et al. (2022) estimated the LLM con-
fidence using the likelihood of the “True” token
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Context: Sound of Silence is a 
song performed by Australian 
recording artist Dami Im <….> 
Question: Who is the original 
artist of sound of silence?
Answer: 

Context: Harry Potter and the 
Prisoner of Azkaban is the 
third book <….>. 
Question: Who published Harry 
Potter and the Prisoner of 
Azkaban
Answer: Bloomsbury

Context: The first Italo-
Ethiopian  war was fought 
between Italy and Ethiopia
 <….>. 
Question: Who won the war 
between …?
Answer: Italy

Context: The SpongeBob 
Movie: Sponge Out of Water is 
a 2015 American 3D live-
action Comedy file <….>. 
Question: What is the name of 
the pirate?
Answer: Patchy\nBurger Beard
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Figure 2: Overview of our framework. Given a question, we first retrieve a set of supporting pieces of evidence with
a retrieval engine. Then, we perform two steps: (i) generate all feasible answers using self-consistency prompting;
(ii) adopt an interpreter to infer the ambiguity in the question. The interpreter is trained with a bootstrapping and
shuffling technique of 6 examples over distributional features from the generated answers.

when prompted to validate the correctness of its
prior response. Other works prompted LLMs to
generate their confidence (Mielke et al., 2022; Lin
et al., 2022; Tian et al., 2023; Zhou et al., 2023b).
Additionally, Si et al. (2023) considered the fre-
quency of the answer as a proxy for confidence.
Another line of work assumes that when the LLM
generates a broad range of semantically varied an-
swers, it indicates a high level of uncertainty (Lin
et al., 2023; Nikitin et al., 2024; Shi et al., 2024).
They measure the uncertainty via entropy over an-
swers sampled from the model output distribution.
After identifying semantically different answers
a, the overall uncertainty can be represented as
H(q) = −∑

a p(a|q) log p(a|q). However, these
approaches assume the existence of a single correct
answer.

Answer Calibration. Understanding when to
trust an LLM is essential for building safer AI
systems (Amodei et al., 2016; Hendrycks et al.,
2021; Zhao et al., 2020; Maynez et al., 2020; Por-
tillo Wightman et al., 2023; Yang et al., 2024b).
Selective question answering is a popular approach
for addressing this problem (Chow, 1957; El-Yaniv
et al., 2010; Kamath et al., 2020; Zhang et al.,
2021). Specifically, the idea is to assign the confi-
dence s(q) for answering the question q. A thresh-
old τ is used to decide whether to answer it, ask
for clarification, or abstain from answering. An
accurate uncertainty estimation may help reduce
the risk of generating false or unfounded outputs.

3 Task Formulation

We focus on the scenario where we prompt an LLM
to get an accurate answer to an unambiguous ques-
tion or detect an ambiguous question under the

few-shot setting. More specifically, given a user’s
question q, the QA system has access to some ex-
ternal information c relevant to the question. The
contextual information is either provided with the
question (e.g., a document-grounded conversation)
or is retrieved from a collection of documents D
(i.e., retrieval-augmented QA). Given c and q, the
goal of the QA system is to (1) find an accurate an-
swer a to an unambiguous question; or (2) request
clarification when the question is ambiguous (i.e.,
has multiple plausible interpretations).1

In this paper, we focus on two tasks: ambiguity
detection and confidence calibration. The goal of
the ambiguity detection task is to identify whether
a given question is ambiguous. As for confidence
calibration, the goal is to measure the quality of the
confidence estimation, which is crucial for avoiding
inaccurate, incomplete, or misleading answers.

4 Our Approach

In this section, we describe our framework (see Fig-
ure 2), aiming to (i) identify ambiguous questions;
and (ii) avoid providing incorrect, incomplete, or
misleading answers. We first prompt the LLM to
generate several answers (answer-oriented prompt-
ing; see §4.1) and then deduce the ambiguity by
analyzing cues from the LLM outputs (see §4.2).

4.1 Self-consistency Prompting for Multiple
Plausible Answers

Differently from previous work which prompted
the LLM to generate a single answer using stan-
dard self-consistency prompting (Wang et al., 2022;
Kuhn et al., 2023; Si et al., 2023), we prompt the

1In this paper we do not tackle the problem of generating
a clarification question, which we leave for future research.
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LLM to list all plausible answers, separated by a
delimiter (e.g., ‘\n’). Given a question q and a
corresponding context c, this can be represented as:

PLLM(A | prompt, c, q), (1)

where a ∈ A represents a single answer. This pro-
cess repeats m times by sampling from the LLM’s
decoder with a temperature value t (the number of
answers |A| can be varied across different samples).
Subsequently, we group all generated answers from
the m sampling outputs using exact text matching,
which is sufficient as the answers are typically short
phrases, and categorize them to generate a collec-
tion Am = {(a1, f1), . . . , (an, fn)}. Here, each
element (ai, fi) ∈ Am represents an individual an-
swer and its corresponding occurrence frequency
across the m LLM outputs.

4.2 LLM Outputs Analysis
The next phase is to analyze the LLM outputs. The
objectives of this step are twofold: (i) recognize
when the LLM is confident about a single answer
(indicating non-ambiguity); (ii) determine when
the LLM is confident about multiple answers (in-
dicating ambiguity). Intuitively, when an LLM
repeatedly generates the same answer, it implies
a high confidence level and likelihood of correct-
ness (Wang et al., 2022). Conversely, a variety of
low-frequency occurring answers may indicate ei-
ther low confidence or potential inaccuracies (Kuhn
et al., 2023). Therefore, we hypothesize that by ex-
amining the frequency of the LLM answers, we
can infer the ambiguity in the question. In this
work, we utilize an RF model to analyze the LLM
outputs. The RF input is a set of features derived
from the set Am of answers and their frequencies.
The model is used to predict a score reflecting the
probability that the question is ambiguous.

Random Forest Few-shot Training. A notable
challenge in training the interpreter model is the
limited amount of data available. To overcome
this, we adopt a bootstrapping and shuffling strat-
egy using few-shot examples to create an expanded
training dataset with N examples. Specifically, as
shown in Figure 2, given k examples in the demon-
stration data, we bootstrap by selecting up to k − 1
examples from these to form a new demonstration,
while using the remaining example as the input
and its corresponding label (i.e., ambiguous or non-
ambiguous) as the ground truth. Next, we shuf-
fle the examples to generate additional demonstra-

tions. This allows us to form a diverse collection
of demonstration-input pairs that are fed into the
LLM to produce a set of answer-frequency Am for
training. Then, we construct specific features to
capture the distributional patterns of the answers.

Feature Extraction. We hypothesize that fre-
quently occurring answers are more likely to be
accurate, regardless of semantic meaning. This
leads us to assume that discarding less common
answers, which might be incorrect, can help in bet-
ter assessing the question’s ambiguity. However,
different models of varying sizes exhibit distinct
patterns in generating erroneous answers, making
it challenging to set a fixed frequency threshold. To
address this, we compute the entropy over answers
with different frequencies. Specifically, we calcu-
late the entropy of answers occurring more than m
times, denoted as em. We find that using a binary
value as the feature enhances model performance.
Thus we define binary features fem,t ≜ 1em>t(em),
where t represents a threshold within the range
[0, 1]. We then generate a feature set by choosing
various values for m and t. These features and the
corresponding labels are used to train the random
forest model, which serves as an interpreter to ana-
lyze Am. The advantage of the RF model with our
bootstrapping and shuffling strategy against more
sophisticated models is to simulate and learn dif-
ferent potential answer distributions, rather than
relying on the semantic content.

4.3 Calibration for Question Answering

Another focus of this study is estimating the model
certainty when answering questions. Our approach
uses two types of confidence estimation. First,
we assess the model confidence in determining
whether a question is ambiguous using the probabil-
ity estimation from an interpreter model, which we
denote as camb ∝ P (ambiguity|x; Θ), where x is
the input to the interpreter model and Θ represents
its parameters. Secondly, to estimate the model con-
fidence in a specific answer a, we use a conditional
probability formula ca ∝ fa ·P (¬ambiguity|x; Θ),
where fa is the frequency ratio of the answer a to
the total frequency of all answers. Our hypothesis
is that a high probability assigned by the model to
either a single or multiple correct answers could
signify a greater chance of accuracy. Conversely,
a probability that reflects indecision or difficulty
in distinguishing between these scenarios might
indicate potential inaccuracies.
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Models ASQA PACIFIC ABG-COQA
P ↑ R ↑ F1 ↑ Acc ↑ P ↑ R ↑ F1 ↑ Acc ↑ P ↑ R ↑ F1 ↑ Acc ↑

*Supervised Learning and Random Baselines
RANDOM 57.642.3 51.661.3 54.481.7 50.762.3 55.341.2 54.13.7 54.682.4 53.471.5 42.951.9 37.361.7 50.522.4 50.541.7
ROBERTA-L (Full) 62.086.3 94.544.2 71.811.4 73.123.6 67.162.1 86.761.5 75.691.8 73.333.6 67.542.1 81.936.8 73.811.4 75.121.2
ROBERTA-L (6-shot) 50.861.5 61.426.3 55.573.4 58.011.6 63.812.2 33.745.6 43.754.5 45.870.8 46.700.8 71.113.4 56.361.6 47.201.1

*Binary Prompting (Standard Few-shot Prompting for Ambiguity)
FLAN-T5-XL 62.591.8 62.507.6 62.193.0 57.090.6 25.851.3 39.193.6 31.142.1 36.280.4 32.900.1 29.230.0 30.960.1 32.200.2
FLAN-T5-XXL 59.990.1 81.310.9 69.040.4 58.430.3 14.113.8 11.465.6 12.465.0 43.573.3 38.210.8 30.001.5 33.601.3 38.400.4
LLAMA-2-7B 56.671.4 90.818.4 69.703.4 55.323.1 36.221.0 94.798.7 52.372.5 36.760.1 51.4432.0 6.156.5 10.5010.7 50.102.2
LLAMA-2-13B 58.320.4 85.361.9 69.280.3 56.850.3 30.831.0 27.868.6 28.705.3 50.672.9 56.187.4 29.428.8 37.077.4 50.101.4
LLAMA-2-70B 52.592.6 54.625.3 53.854.9 50.802.7 38.641.0 44.276.0 41.262.9 53.551.2 48.563.8 32.6912.8 37.868.3 47.002.1

*Answer-Oriented Prompting with Random Forest (Ours)
FLAN-T5-XL 57.000.2 94.582.4 71.130.9 56.310.7 45.701.6 77.873.7 57.933.4 57.420.5 60.963.2 62.163.6 61.442.3 59.452.8
FLAN-T5-XXL 61.140.7 77.376.6 68.292.8 59.481.1 47.811.9 72.907.6 57.716.4 59.943.1 67.734.5 60.3114.1 62.477.2 63.712.7
LLAMA-2-7B 59.841.7 91.648.8 73.183.1 61.392.2 39.133.1 75.826.5 51.462.1 47.190.7 60.751.3 57.186.1 58.803.8 58.602.2
LLAMA-2-13B 61.426.8 88.678.9 72.304.2 61.254.7 42.1910.8 71.004.1 53.893.0 54.781.2 60.291.9 58.335.4 59.213.5 58.402.4
LLAMA-2-70B 64.043.4 88.674.1 73.982.2 64.572.2 58.162.7 72.408.2 58.164.9 61.614.0 73.953.2 67.693.6 70.682.8 70.802.3

Table 1: Ambiguity detection task results on the development set. We report the average performance with standard
deviation across 3 random seeds. The best prompting performance for each column is highlighted in blue.

Methods ASQA PACIFIC ABG-COQA

*Binary Prompting
Standard Prompting 48.764.7 53.551.2 47.002.1
CoT Prompting 56.913.4 44.413.0 48.931.5
Self-Consistency 53.666.0 52.712.1 45.903.6

*Answer-oriented Prompting
LLM-itself 44.081.1 45.662.1 46.842.2
ROBERTA-L 54.275.6 61.551.9 55.562.1
Frequency Heuristic 57.421.3 54.752.3 59.703.4
Heuristic Method 61.572.3 59.864.2 62.002.3
Sampling Repetition 51.611.7 54.555.0 51.641.5
Sampling Diversity 50.854.6 50.842.1 47.032.6
Random Forest (ours) 64.572.2 61.614.0 70.802.3

Table 2: Ambiguity detection accuracy on the dev set (3
seeds average) with different prompting using LLAMA-
2-70B. The best performance is marked in blue.

5 Experimental Setup

5.1 Datasets

We experimented with three datasets, including
ASQA (Stelmakh et al., 2022) , PACIFIC (Deng
et al., 2022), and ABG-COQA (Guo et al., 2021).
ASQA was created based on AmbigQA (Min et al.,
2020) by adding a context to each question and
long-form answers. PACIFIC is a QA dataset in the
financial domain, constructed based on the TAT-
QA dataset (Zhu et al., 2021) where the context is
in the form of tables and text. ABG-COQA, which
was built on top of the CoQA dataset (Reddy et al.,
2019), consists of narratives and corresponding am-
biguous questions. Following prior studies (Deng
et al., 2023; Cole et al., 2023; Tian et al., 2023), we
use the development sets for evaluation. See more
details and examples in Appendix §B.

5.2 Implementation Details

We experimented with a range of LLMs with differ-
ent sizes, including encoder-decoder, i.e., Flan-T5

(3B, 11B) (Chung et al., 2022) and decoder-only,
i.e., LLAMA-2 (7B, 13B, 70B) (Touvron et al.,
2023); for LLAMA-2, we used the CHAT variant.
We set the number of few-shot examples to 6 in all
models and prompting strategies due to the limited
length of the model input. We used the oracle con-
text as the input, except for our experiments with
noisy contexts over the ASQA dataset. For those
experiments, we utilized evidence retrieved by a
Dense Passage Retrieval (DPR) model (Karpukhin
et al., 2020); the retrieval corpus is the English
Wikipedia dump of 12/20/2018 and the documents
are split into chunks of 100 words (Karpukhin et al.,
2020). Examples of the different prompts and fur-
ther implementation details can be found in Ap-
pendix §C and §D, respectively.

5.3 Baselines

Ambiguity Detection. The first set of baselines
is based on Binary Prompting (Deng et al., 2023)
where the idea is to prompt the LLM to per-
form binary classification to determine question
ambiguity. We evaluated different prompting
strategies for binary prompting, including Stan-
dard prompting (Brown et al., 2020), Chain-of-
Thought (CoT) prompting (Wei et al., 2022b), and
Self-Consistency prompting (Wang et al., 2022).
The second set of baselines is based on Answer-
oriented Prompting, where we prompt the LLM to
generate multiple answers for a question and then
detect ambiguity based on the analysis of these an-
swers. In our approach, we use a Random Forest
model2 to analyze the answers. To test the effec-
tiveness of other models, we experimented with
the following baselines. (i) Heuristic Method: a

2Details on the Random Forest training are provided in
Appendix C.
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question is predicted as ambiguous if the entropy of
the generated answers exceeds a certain threshold.
(ii) Frequency Heuristic: a question is predicted
as ambiguous if there are multiple high-frequency
answers. We experiment with various thresholds to
define ’high frequency’. (iii) LLM-itself : prompt-
ing the model for question ambiguity binary classi-
fication based on the concatenation of all generated
answers, the original context, the question, and
some few-shot demonstrations. (iv) ROBERTA-
L: we train a ROBERTA-L model with the boot-
strapping dataset generated in §4 and use it for
prediction based on the same inputs as in LLM-
itself. (v) Sampling Repetition and Sampling
Diversity measure the frequency of the most con-
fident answer and count the number of unique an-
swers among samples from the LM respectively.
Following Cole et al. (2023), we report the best
performance among different values of Num Dis-
agreements and Num Answers.

Confidence Calibration. We use the following
approaches as baselines: Self-consistency Con-
fidence (Si et al., 2023) uses the frequency of
the most frequent answer from self-consistency
prompting as the confidence score. Sampling Di-
versity estimates the confidence in inverse propor-
tion to the number of distinct samples. Specifically,
the score is zero if every sample differs from the
others. We also use the Verbalized Confidence
approach (Mielke et al., 2022; Tian et al., 2023)
which concatenates the most frequent answer to
the original context and question, and prompts the
LLM to express its confidence in the range of 0 to
100. P(True) (Kadavath et al., 2022) concatenates
the most frequent answer to the original context
and question, and prompts the LLM to determine
whether the answer is true. Then, the confidence
score is computed based on the logit probability
associated with the “True” token. The methods
described above focus on assessing the confidence
of a single answer. Therefore, for a more compre-
hensive evaluation, we also consider approaches
that estimate the model confidence based on multi-
ple answers. For LLM-itself , we prompt the LLM
with all generated answers, the original context,
and the question. Then, unlike the ambiguity de-
tection task, the LLM is prompted to express its
confidence towards multi-correct answers in the
range of 0 to 100. For ROBERTA-L, the approach
is similar, but it uses the logits from the ROBERTA

model to quantify confidence. Finally, the Heuris-

Methods P ↑ R ↑ F1 ↑ Acc ↑
LLAMA-2-7B 59.841.7 91.648.8 73.183.1 61.392.2
w/ Top-3 57.800.3 94.930.1 71.850.3 57.240.6

LLAMA-2-13B 61.426.8 88.678.9 72.304.2 61.254.7
w/ Top-3 57.990.3 96.582.1 72.450.3 57.800.2

LLAMA-2-70B 64.043.4 88.674.1 73.982.2 64.572.2
w/ Top-3 58.621.2 94.661.4 72.390.7 58.601.1

Table 3: Results on the ambiguity detection task using
retrieved passages on the ASQA dataset. w/ Top-3
represents using the top-3 retrieved documents rather
than the oracle context. We report the accuracy of the
development set across three random seeds. The best
performance for each column is highlighted in blue.

tic method uses entropy as a measure of confidence.

5.4 Evaluation Metrics
For the ambiguity detection task, we use Precision,
Recall, F1, and Accuracy for evaluation. For the
confidence calibration task, we report the Accuracy
of whether the model provides the correct answer
to unambiguous user questions or accurately iden-
tifies the question ambiguity. For the confidence
calibration task, we report the Expected Calibration
Error (ECE) to measure the discrepancy between
the predicted accuracy (i.e., confidence) and its ac-
tual performance. Specifically, the predictions are
divided into M uniform bins Bm w.r.t. confidence
scores. Then, we compute the average absolute
difference between the confidence (cnf) and the
actual accuracy (acc) for each bin over n samples:

ECE =
M∑

m=1

|Bm|
n

|acc(Bm)− cnf(Bm)| (2)

Due to the limitations of ECE stemming from its
bucketing approach (Si et al., 2023), we also report
the Brier score (Brier, 1950). We also evaluate how
the system performs when it selectively responds
based on its confidence. Acc@50 indicates the ac-
curacy of questions if the QA system only answers
questions with the top 50% confidence scores.

6 Experimental Results

6.1 Ambiguity Detection
Tables 1 and 2 present experimental results on the
ambiguity detection task using various LLMs, and
different prompting strategies with the ground truth
context. Table 3 shows the more realistic scenario
results when using the context retrieved with a DPR
model. In particular, we use top-3 retrieved docu-
ments instead of the ground-truth documents.
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Method ASQA PACIFIC ABG-COQA
Acc ↑ Acc@50 ↑ ECE ↓ Brier ↓ Acc ↑ Acc@50 ↑ ECE ↓ Brier ↓ Acc ↑ Acc@50 ↑ ECE ↓ Brier ↓

*Single Answer Assumption
Verbalization 25.51 29.48 43.10 38.40 35.89 35.14 23.26 28.92 31.60 30.51 34.78 36.24
P(True) 25.51 44.64 28.58 28.61 35.89 40.15 14.00 24.26 31.60 50.85 25.48 28.29
Self-Consistency 25.51 62.37 28.09 24.02 35.89 49.62 9.15 21.18 31.60 52.00 25.23 26.33
Sampling Diversity 25.51 62.84 26.40 23.54 35.89 48.45 9.54 21.94 31.60 54.65 22.47 25.91

*Ambiguous Question Answering
LLM-itself 40.12 43.01 21.81 25.81 31.73 32.91 12.73 25.83 41.93 43.01 25.82 28.93
ROBERTA-L 46.84 49.02 20.30 24.72 35.31 49.02 9.20 20.83 42.41 51.03 22.31 25.05
Heuristic Method 52.35 53.61 26.07 33.55 33.21 47.69 10.37 21.50 44.80 55.20 25.25 27.44
Random Forest (ours) 61.26 65.82 10.15 23.90 37.39 53.08 8.67 19.49 49.60 59.20 16.83 24.84

Table 4: Calibration results on three datasets using LLAMA-2-70B on the development set. ↑ and ↓ indicate whether
higher or lower metrics are preferable, respectively. The best performance for each column is highlighted in blue.

#1. Limited Effectiveness of Binary Prompting
in Ambiguity Detection. As shown in Table 1,
we find that the performance of binary prompting
is inconsistent across different datasets. For ex-
ample, the ASQA dataset obtains a performance
slightly above random guessing, while the results
on the PACIFIC and ABG-COQA datasets are un-
derwhelming. Moreover, the increased model size
does not necessarily improve the performance of
this strategy. For example, the LLAMA-2-70B
does not perform better than LLAMA-2-7B on the
ASQA dataset. These findings indicate that binary
prompting might struggle to detect ambiguity con-
sistently. In Table 2 (Top), we further evaluate the
performance of different binary prompting strate-
gies (i.e., CoT and Self-consistency). We find that
these strategies did not yield any performance im-
provement. Our findings align with the prior study
(Deng et al., 2023), underscoring the difficulty of
this strategy to decide if a question is ambiguous.
Similarly, Cole et al. (2023) suggests that none of
the prompting strategies seems particularly useful,
with none surpassing the baseline precision of 53%.

#2. Improved Performance in Ambiguity De-
tection with Answer-Oriented Prompting and
Random Forest. Table 1 presents the perfor-
mance of the ambiguity detection task using our ap-
proach, which achieves the best performance across
datasets and model sizes. Notably, we observe a
clear trend where the effectiveness in detecting am-
biguity improves with the model size. This high-
lights that our approach can identify cases where
the LLM confidently suggests multiple answers (in-
dicating ambiguity) versus when it leans towards a
single answer (indicating non-ambiguity).

Table 2 (Bottom) shows the results where we
explore alternative models to the Random Forest
using answer-oriented prompting. We find that Ran-
dom Forest emerges as the most effective technique.

Moreover, we observe that LLMs lack the ability
to self-interpret their outputs. This observation
aligns with findings from prior studies (Valmeekam
et al., 2023; Stechly et al., 2023), indicating that
self-interpretation of responses remains a challeng-
ing task for the LLMs. Apart from our approach,
the heuristic method based on entropy delivers the
most optimal results. Please, find a detailed error
analysis of these two approaches in §6.3.

#3. Noisy Contexts Experiments. Table 3 eval-
uates a more realistic setting, where the context
is retrieved with ASQA. This experiment shows
what would be the performance when the retrieved
passages are noisy. The performance slightly de-
clines when using only the retrieved context (w/
Top-3) across all model sizes. Still, it is within
1-2 points in the F1 score compared to the ground
truth context setting, i.e., our approach is effective
in coping with noisy contexts.

#4. Low-resource Setting. Table 1 compares our
approach with supervised models in low-resource
settings. In fact, our model outperforms super-
vised models trained on the same set of 6 examples
(ROBERTA-L 6-shot): these models require much
more training examples to be competitive.

6.2 Confidence Calibration

#1. Our approach responds to unambiguous
questions or detects ambiguity. As shown in
Table 4, our approach consistently outperforms
all baselines, including models like the LLM or
ROBERTA. It reaches 61.26% accuracy, outper-
forming the closest competitor (i.e., heuristic) by
roughly 9% on ASQA. Similar outcomes can be
observed on other datasets. Interestingly, the ac-
curacy for Ambiguous Question Answering does
not always outperform those with Single Answer

47



Context: Sound of Silence is a song performed by Australian 
recording artist Dami Im at the Eurovision Song Contest 2016  
<….>  Sounds of Silence is the second studio album by 
Simon & Garfunkel, released on January 17, 1966 <…>

Question: Who is the original artist of sound of silence?

Context: Sound of Silence is a song performed by Australian 
recording artist Dami Im at the Eurovision Song Contest 2016  
<….>  Sounds of Silence is the second studio album by 
Simon & Garfunkel, released on January 17, 1966 <…>

Question: Who is the original artist of sound of silence?

Context: "Climb Every Mountain" is a show tune from the 
1959 Rodgers and Hammerstein musical "The Sound of 
Music”. It is sung at the close of the first act by the Mother 
Abbess. 
 

Question: Who sang clime every mountain in the sound of 
music movie?

Ours

AmbiguousHeuristic
Method

Heuristic
Method Ambiguous

Entropy 
Estimation = 0.83

Ambiguous

Non-Ambiguous

Random
Forest (ours)

Random
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Model Inputs Generated Answers 
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Ambiguity Prediction
(Model Prediction & Correctness)

Entropy 
Estimation = 0.72

Frequency
Features

Frequency
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Figure 3: Our model against the entropy-based heuristic: the latter tends to have a higher entropy when the LLM
produces incorrect answers. This leads to an overestimated denotational uncertainty, i.e., higher false positives rate.
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Figure 4: Impact of bootstrap size using LLAMA-2-70B.
The performance increases with the bootstrap size.

Assumption on PACIFIC3.

#2. Our approach demonstrates a superior abil-
ity to avoid incorrect, incomplete, or misleading
answers. Our experiments indicate that using the
Random Forest’s probability, our approach gen-
erates more accurately calibrated confidence es-
timates. In various metrics like ECE, ACC@50,
and Brier score, our method consistently outper-
forms other baseline methods across datasets. Our
approach has thus an enhanced grasp of the trust-
worthiness of its answers, thereby minimizing the
chances of providing incorrect information.

6.3 Further Analysis

Bootstrapping size. The main goal of the boot-
strapping and shuffling strategy is to generate a
diverse distribution of answers. Figure 4 shows
the impact of the bootstrapping size on the perfor-
mance. The accuracy improves with the size of the
bootstrapping set: this result is impressive, given
that only 6 annotated examples are initially used.

3In PACIFIC the context documents are mainly tables with
numbers; in this scenario, LLMs generally struggle, regardless
of their size.

Error Analysis. Figure 3 provides case studies
to compare the entropy-based heuristic and our
approach on ASQA. When the LLM gives some
incorrect answers, (e.g., "rodgers” and "hammer-
stain”), the heuristic method tends to have higher
entropy. In this case, the heuristic method misin-
terprets the source of this uncertainty to the ques-
tion ambiguity, rather than its knowledge gaps or
inaccuracies. This misinterpretation, often a re-
sult of the LLM’s errors or ’hallucinations’, leads
to increased entropy values and, consequently, a
higher rate of false positives. In our analysis, the
heuristic method exhibits a 32.1% false positive
rate and a 7.0% false negative rate. In contrast, our
approach achieves a reduced false positive rate of
25.4% while obtaining a slight increase in false
negatives at 10.1%.

7 Conclusion

In this work, we introduce a novel framework that
enables LLMs to recognize ambiguous questions.
Our approach prompts the LLM to generate mul-
tiple answers that are then analyzed through an
interpreter model (i.e., Random Forest) to detect
ambiguity. The Random Forest is trained with only
6 examples that are bootstrapped and shuffled to
create multiple answer distributions. Our experi-
ments on three datasets demonstrate the effective-
ness of our approach in low-resource settings in
identifying ambiguous questions. Furthermore, our
approach has been shown to effectively refine the
confidence calibration of LLM outputs: this im-
proves the LLMs’ ability to accurately interpret
and respond to complex queries, contributing to
more reliable and trustworthy QA systems.

48



Limitations

Our research is a step forward in identifying am-
biguous questions in LLM-based QA systems.
However, we must recognize certain limitations,
particularly regarding the dependency on model
scale. The effectiveness of our method for detect-
ing ambiguity is closely tied to the size of the LLM
used. Essentially, our approach requires a robust
LLM capable of accurately answering questions
first, before assessing the ambiguity of these ques-
tions. If the model is smaller or prone to errors,
our method may face challenges in accurately iden-
tifying ambiguities. This reliance on large-scale
models brings advantages in terms of performance
but also introduces scalability and resource chal-
lenges, especially in environments with limited re-
sources. Moreover, our approach requires the LLM
model to generate (possibly) all the answers to a
question. This may be inefficient from a latency
perspective, especially when using very large mod-
els. Finally, the current work doesn’t specifically
address the problem of disambiguation, which is
crucial in improving trust in the NLP systems.
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A Retrieval Performance

The table 5 provides a comparison of retrieval per-
formance metrics using Dense Passage Retrieval
(DPR), focusing on its effectiveness in passage/doc-
ument retrieval tasks. The performance is measured
using the MRECALL metric at two different recall
levels: 3 and 5. These recall levels indicate the
number of retrieved items (passages) considered
for evaluating the method’s accuracy.

Method MRECALL@3 MRECALL@5

DPR 43.46/33.70 48.66/38.08

Table 5: Performance on passage retrieval in MRECALL.
The two numbers in each cell indicate performance
on all questions and on questions with more than one
answer, respectively.

B Datasets

Datasets used in this work. In this section, we
provide details for each dataset, along with rep-
resentative examples in Table 7. Following the
previous work (Si et al., 2023; Tian et al., 2023),
we downsample the evaluation set to assess model
performance more effectively. Specifically, we
sampled 638 examples from the ASQA dataset,
521 from the PACIFIC dataset, and 250 from the
ABG-COQA dataset, all taken from their respective
evaluation sets.

Discussion about the ClariQ dataset. Here we
also discuss some potential inconsistent annota-
tions in the ClariQ dataset. The ambiguity annota-
tions within ClariQ can differ significantly based
on the perspective of the annotators, resulting in
multiple interpretations. For instance, while the
query "Find condos in Florida” is ambiguous, "Tell
me about hotels in New York.” is considered un-
ambiguous. Here we provide 10 pairs of questions
(20 questions in total) with inconsistent ambigu-
ity annotations. It is noteworthy that ClariQ only
consists of roughly 200 questions across both its
training and development sets. Such inconsistent
annotations highlight the importance of ground-
ing the ambiguity of a question within the context.
Datasets such as ASQA, PACIFIC, and ABG-COQA

address this issue by grounding questions within
their context.

User Query Ambiguity

Find condos in Florida. Yes
Tell me about hotels in New York. No

I want to learn about rock art. Yes
I’d like to learn about lymphoma in dogs No

How to change the toilet in the house Yes
how to build a fence? No

Tell me more about USA tax for annuity Yes
Find me information about the sales tax in Illinois. No

How to cook pork tenderlion Yes
How to get organised? No

I’m looking for information on worm Yes
I’m looking for information about South Africa No

Tell me about vines for shade. Yes
Tell me more on health clubs in Arkansas No

Tell me about source of the nile Yes
Tell me about american military university. No

Tell me about Barbados. Yes
Tell me more about dnr No

Where should I order dog clean-up bags Yes
Where can I buy pressure washers? No

Table 6: Analysis of ClariQ dataset. We provide 10 pairs
of questions with potentially inconsistent annotations.

C Implementation Details

We randomly select 6 examples from the training
set for few-shot examples in demonstrations, be-
cause (1) even if the datasets we used in our ex-
periments contain a large number of examples, our
solution targets low-resource scenarios where just
a bunch of annotated data are available; and (2) we
wanted to be sure the examples can easily fit into
the prompt of LLMs. Thus, we sample a very low
number of examples (i.e., 6 examples) and demon-
strate that these are sufficient to make our method
work.

We follow (Kuhn et al., 2023; Cole et al., 2023;
Si et al., 2023; Tian et al., 2023) to decode m = 10
times. For each, we generate 10 sampled outputs
(temperature=0.3,0.5,0.7) and use exact match
(after lowercasing and removing punctuation) for
comparison among outputs. We do sub-string and
exact matching to group the equivalent answers.
While previous works use the NLI model, it does
not work. We use XGboost (Chen and Guestrin,
2016) to train the Random Forest model. We per-
formed a grid search for the hyper-parameters of
the model by searching the best configuration on
a development set with respect to the max depth
among 1, 2, 3, 4, 5 and the number of estimators
among 20, 30, 50, 100. For the feature engineer-
ing, in our experiments, we set m to 0,1,2 and t to
0.5,0.7,0.9.
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To determine the confidence levels for both sin-
gle and multiple answers using the LLM-itself ,
ROBERTA-L, and Heuristic baselines, we first
calculate the confidence for multiple answers, de-
noted as pm. Once pm is established, we then
derive the confidence for a single answer using
ps = 1− pm. This approach assumes that the con-
fidence in a single answer inversely correlates with
the confidence in multiple answers. For the base-
line ROBERTA-L, we concatenate the questions
with the context and train them with a few labelled
examples or all examples in the train sets.

D Examples of Prompting

Table 8 provides examples of prompts used in our
work, including binary prompting, binary prompt-
ing with CoT, answer-oriented prompting, verbal-
ized confidence, and self-evaluation of LLMs to-
wards correctness. For self-consistency prompting,
we repeat the above-mentioned prompt multiple
times.
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Dataset Example

ASQA id: 7089015503030534342
question: Who is the original artist of sound of silence?
answers: Simon & Garfunkel, Dami Im
contexts: "Sound of Silence” is a song performed by Australian recording artist Dami Im. Written by Anthony Egizii
and David Musumeci of DNA Songs, it is best known as Australia’s entry at the Eurovision Song Contest 2016 which
was held in Stockholm, Sweden, where it finished 2nd, receiving a total of 511 points. The song also won the Marcel
Bezençon Award in the composer category. The song was leaked on 10 March 2016, one day before its initial release
date. It is Dami Im’s fourth Australian top 20 hit and worldwide, it reached the top 40 in more than six countries after
the Eurovision Song Contest 2016 Final.
Ambiguity: Yes

PACIFIC id: e4fe0666-9c0e-43c0-9f67-538dae3092b9
question: What is the amount of total sales?
clarification question: Which year are you asking about?
answer to clarification question: 2019
contexts: "Sales by Contract Type: Substantially all of our contracts are fixed-price type contracts. Sales included in
Other contract types represent cost plus and time and material type contracts. On a fixed-price type contract, we agree to
perform the contractual statement of work for a predetermined sales price. On a cost-plus type contract, we are paid our
allowable incurred costs plus a profit which can be fixed or variable depending on the contract’s fee arrangement up to
predetermined funding levels determined by the customer. On a time-and-material type contract, we are paid on the basis
of direct labor hours expended at specified fixed-price hourly rates (that include wages, overhead, allowable general
and administrative expenses and profit) and materials at cost. The table below presents total net sales disaggregated by
contract type (in millions):
Table:
| Years Ended September 30 |
| | 2019 | 2018 | 2017 |
| Fixed Price | $ 1,452.4 | $ 1,146.2 | $ 1,036.9 |
| Other | 44.1 | 56.7 | 70.8 |
| Total sales | $1,496.5 | $1,202.9 | $1,107.7 |
Ambiguity: Yes

ABG-COQA id: 3ns0a6kxc48ribjdggweghvkamnzgl|15|2
question: What politics did Lloyd George have?
answers: Liberalism
contexts: "Wales is a country that is part of the United Kingdom and the island of Great Britain. It is bordered by
England to the east, the Irish Sea to the north and west, and the Bristol Channel to the south. It had a population in 2011
of 3,063,456 and has a total area of . Wales has over of coastline and is largely mountainous, with its higher peaks in the
north and central areas, including Snowdon, its highest summit. The country lies within the north temperate zone and has
a changeable, maritime climate. Welsh national identity emerged among the Celtic Britons after the Roman withdrawal
from Britain in the 5th century, and Wales is regarded as one of the modern Celtic nations. Llywelyn ap Gruffudd’s death
in 1282 marked the completion of Edward I of England’s conquest of Wales, though Owain Glyndŵr briefly restored
independence to Wales in the early 15th century. The whole of Wales was annexed by England and incorporated within
the English legal system under the Laws in Wales Acts 1535–1542. Distinctive Welsh politics developed in the 19th
century. Welsh Liberalism, exemplified in the early 20th century by Lloyd George, was displaced by the growth of
socialism and the Labour Party. Welsh national feeling grew over the century; "Plaid Cymru" was formed in 1925 and
the Welsh Language Society in 1962. Established under the Government of Wales Act 1998, the National Assembly for
Wales holds responsibility for a range of.
Ambiguity: No

Table 7: Examples for ASQA, PACIFIC, and ABG-COQA datasets.

Method Prompt Template

Binary
Prompting

Let’s work this out in a step by step way to be sure we have the right answer. Please
determine whether the question needs the further clarification, given the context. Note that
only use information from the context to answer the question. Context: {CONTEXT}\nQuestion:
{Question}.\nWhether a clarification question is needed:

Binary
Prompting
(CoT)

Let’s work this out in a step by step way to be sure we have the right answer. Please
determine whether the question needs the further clarification, given the context. Note that
only use information from the context to answer the question. Context: {CONTEXT}\nQuestion:
{Question}.\nGenerated Answers: {Answers}\nWhether a clarification question is needed:

Answer-
oriented
Prompting

Provide all the accurate responses to the question based on the given context. You must only
use words that appear in the context to formulate your answer. Context: {CONTEXT}\nQuestion:
{Question}.\nAll correct answers for the question are:

Verbalized
Confidence

Let’s work this out in a step by step. Please indicate your confidence level (from 0 to 100)
regarding the accuracy of the provided answer, based on the given context. You must use numerical
values only. Context: {CONTEXT}\nQuestion: {Question}.\nGenerated Answers: {Answers}\nAnswer:
Answer.\nConfidence in accuracy:

LLM Self-Eval Let’s work this out in a step by step. Please determine whether the generated answer is
correct or not. Context: {CONTEXT}\nQuestion: {Question}.\nGenerated Answers: {Answers}\nAnswer:
Answer.\nWhether this answer is correct:

Table 8: Prompt templates for each method evaluated. Each example will be concatenated with several demonstration
examples, which contain ground-truth labels.
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