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Abstract

Verifiable generation is introduced to improve
the transparency and trustworthiness of outputs
produced by large language models (LLMs).
Recent studies observe that open-source mod-
els struggle to include accurate citations to
supporting documents in their generation with
in-context learning, in contrast to the strong
performance demonstrated by proprietary mod-
els. Our work aims to reveal the critical de-
sign choices that can benefit open-source mod-
els, including generation pipelines, fine-tuning
methods, and inference-time compute tech-
niques. We consider three generation pipelines,
producing the outputs directly or decompos-
ing the generation into subtasks. These gen-
eration pipelines are fine-tuned using super-
vised fine-tuning and preference-based opti-
mization including further fine-tuning with re-
jection sampling data and direct preference op-
timization (DPO). The construction of prefer-
ence data with varying content and citation di-
versity is also investigated. Additionally, we
examine the benefit of an additional reranking
step. With four open-source models, our exper-
iments show that directly generating the out-
puts achieves the best performance. Compared
to other fine-tuning methods, DPO that com-
putes training signals from contrastive pairs
consistently yields better performance, and it
reaches the peak performance when the con-
trastive pairs are constructed with sufficient
content diversity. We also find that reranking
can further boost the performance of verifiable
generation systems, but the marginal improve-
ment might not justify the additional cost.

1 Introduction

Verifiable generation, a generation paradigm where
large language models (LLMs) are required to pro-
duce outputs along with citations to supporting
documents, has gained increased attention for its
potential to enhance user trust in the model re-
sponses (Liu et al., 2023; Huang and Chang, 2024).
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Figure 1: Illustration of our findings. To effectively em-
ploy medium-size open-source LLMs for verifiable gen-
eration, we suggest using the direct generation pipeline
fine-tuned with DPO on samples that are sufficiently
diverse in content. Though reranking over-generated
samples during inference time can further increase out-
put quality, the gain is limited.

By allowing users to verify the generated content
against cited sources, this approach not only en-
hances reliability but also facilitates access to addi-
tional relevant information. The paradigm has been
incorporated into online services like Google and
Bing Chat that are powered by proprietary mod-
els such as Gemini (Team et al., 2024) and GPT-
4o (OpenAI et al., 2024).

Nevertheless, prior studies have demonstrated
that open-source LLMs struggle to generate high-
quality citations compared to proprietary mod-
els (Gao et al., 2023b), limiting their practical ap-
plication. To address this gap, recent research has
explored methods such as gathering citation-rich
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data (Cao and Wang, 2024) and incorporating hu-
man preference data for fine-tuning (Huang et al.,
2024). However, the scope of these investigations
remains narrow, as they cover only a limited num-
ber of backbone LLMs, fine-tuning methods, and
approaches to verifiable generation.

Our study systematically investigates the de-
sign considerations for verifiable generation using
medium-size open-source LLMs. Specifically, we
examine three crucial components: the structure of
generation pipelines, the selection of fine-tuning
strategies, and the construction of preference data.

Various approaches exist for generating outputs
with citations. The simplest method is direct gen-
eration, where a model produces both content and
citations in a single step. Alternatively, the task can
be decomposed into two sequential steps handled
by two separate models: content generation fol-
lowed by citation generation. To further enhance ci-
tation quality, we introduce a hybrid joint pipeline,
where the model first generates a response without
citations, then revises it by incorporating citations
within the same inference run.

Fine-tuning plays a crucial role in enhancing
verifiable generation capabilities, especially for
medium-size open-source LLMs. Starting with
supervised fine-tuning using existing data, we col-
lect preference data and perform further supervised
fine-tuning on the most preferred samples (Nakano
et al., 2022). Alternatively, we use direct prefer-
ence optimization (DPO) on pairs of preferred and
rejected samples (Rafailov et al., 2023). Both meth-
ods rely on preference data, collection of which is
important to effectiveness of fine-tuning. There-
fore, we construct preference data of various diver-
sity in content and citations and study its impacts.
We further explore the benefits of inference-time
compute (Snell et al., 2024) by adding a scoring
and reranking step upon over-generated model out-
puts.

We conduct experiments on SCIFI, a citation-
rich dataset (Cao and Wang, 2024), and ALCE,
a question-answering dataset with retrieved docu-
ments for benchmarking verifiable generation (Gao
et al., 2023b). The backbone models include
Llama-3.1 (Grattafiori et al., 2024), Mistral-Nemo
(AI, 2024), Qwen-2.5 (Team, 2024), and Phi-3.5
(Abdin et al., 2024). Models are fine-tuned on
SCIFI and tested on ALCE as an out-of-domain
dataset. Our findings, as illustrated in Figure 1,
indicate that:

1. Direct generation of outputs with citations out-
performs pipelines that decompose the task
into content generation and citation genera-
tion;

2. Fine-tuning on preference data of moderate
content diversity with DPO yields the best-
performing model and consistently improves
the citation quality measured by the entail-
ment level between the citation text and cited
sources;

3. Reranking over-generated outputs consis-
tently improves the fine-tuned generation
pipelines, while the improvement is marginal
for the top fine-tuned models.

2 Related Work

Verifiable Generation. Early exploration of
large language models (LLMs) for verifiable gen-
eration trains LLMs to learn citation generation
behaviors (Nakano et al., 2022). Recent advance-
ments in LLM pre-training, instruction-tuning, and
alignment have enabled prompting with human
instructions to generate outputs with citations di-
rectly (Gao et al., 2023b), although the generated
citations might not always be accurate. The intri-
cacies of verifiable generation inspire a modular
approach, where dedicated modules are employed
for generating content and identifying supporting
documents, respectively (Gao et al., 2023a). While
more sophisticated systems can incorporate addi-
tional processes such as verification and regenera-
tion to enhance citation quality (Sun et al., 2024),
our work focuses on studying pipelines that gen-
erate final outputs either directly or in two steps,
which is orthogonal to the design of more complex
systems and can serve as the generation module for
those systems.

Most existing verifiable generation systems rely
on the citation generation capability of powerful
backbone LLMs activated with instructions (Liu
et al., 2023). For less capable models, fine-tuning
with human-annotated (Menick et al., 2022) or web-
sourced data (Cao and Wang, 2024) is essential
to achieve comparable performance. Huang et al.
(2024) propose warming up open-source LLMs
with samples distilled from large proprietary mod-
els and using evaluation metrics to guide the con-
struction of training samples for reinforcement
learning. Our experiments similarly utilize pref-
erence data labeled with automatic metrics, though
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we verify the effectiveness of additional training
data for various verifiable generation pipelines,
with the training data constructed using different
strategies under the same labeling budget.

Preference-based Optimization. Early work has
aligned LLMs with human preference by training
reward models using pairwise preference data and
employing reinforcement learning (Ouyang et al.,
2022). To circumvent the computational expenses
associated with reward models in the learning algo-
rithm (Schulman et al., 2017), Zhao et al. (2023)
consider directly learning with contrastive loss on
pairwise preference data. Rafailov et al. (2023)
further introduce direct preference optimization
(DPO), based on a mapping between reward func-
tions and optimal policies, to align LLMs with
human preference without reward models.

3 Verifiable Generation

In this section, we first introduce the candidate
pipelines for verifiable generation (§3.1). Follow-
ing the introduction of these pipelines, we discuss
the strategies for fine-tuning models to enhance
their performance and the methods for collecting
training samples (§3.2). Lastly, we investigate the
techniques that leverage inference-time compute
(§3.3).

Task Formulation. We adhere to the task formu-
lation outlined by (Gao et al., 2023b). Specifically,
a system is given a query q and a set of candidate
cited sources D = {d1, . . . , dM}, where M de-
notes the total number of candidate cited sources.
Each cited source di can be either a text passage or
an entire document, depending on the dataset. To
process the lengthy aggregation of D, we provide
each system with summarized versions of the doc-
uments. We leave the exploration of long-context
processing techniques to future research, as using
summarized documents achieves comparable per-
formance to enabling truncation or more sophisti-
cated methods such as interactive lookup of full
documents (Gao et al., 2023b).

Typically, verifiable generation systems indicate
citations in their outputs with square brackets that
enclose indices of cited sources (e.g., [1]). We
denote the system output as y = [y1, . . . , yL] and
define this output format by treating yi as a tu-
ple comprising a text token and a set of indices
Ci = {ci,1, . . . }, which point to the supporting
documents. L represents the total number of text

Direct Generation

Single Model
He served in units in Washington, D.C. from 1970 to 1976 [2].

Decomposed Generation

Content Generation Model
He served in units in Washington, D.C. from 1970 to 1976.

Citation Generation Model
He served in units in Washington, D.C. from 1970 to 1976 [2].

Joint Generation

Single Model
He served in units in Washington, D.C. from 1970 to 1976.
He served in units in Washington, D.C. from 1970 to 1976 [2].

Figure 2: The generation pipelines examined in this
study. Decomposed generation employs two separate
models for content generation and citation generation.
In contrast, both direct generation and joint generation
utilize single models. While joint generation also de-
composes verifiable generation, it performs the subtasks
in a single pass.

tokens. For instance, a generated span “British Em-
pire [3]” corresponds to the tuples (“British”,
{}) and (“Empire”, {3}).

3.1 Generation Pipelines
A generation pipeline outlines the process for de-
riving the final output y, as illustrated in Figure 2.
We abstract each pipeline using formulations, with
detailed templates and instructions provided in Ap-
pendix C.5.

Direct Generation. Direct generation treats the
composition of responses with citations as an inher-
ent ability of LLMs and leverages this capability to
generate the final output in a single stage. Formally,
y = f(q,D), where f is an LLM. Additionally, f
is supplied with instructions, which are omitted in
the formulation for simplicity in this paper.

Decomposed Generation. Decomposed genera-
tion separates verifiable generation into two distinct
steps—content generation and citation generation—
employing a different model for each step. This
separation enables dedicate optimization for each
step. During content generation, an intermediate
output without citation, denoted as ȳ, is produced
as ȳ = f1(q,D), where Ci = ∅, ∀ȳi. The in-
termediate output is then processed by a separate
LLM specialized in citation generation to obtain
the final output: y = f2(q, ȳ,D). Decomposed
generation can be viewed as a post-hoc attribu-
tion method. Unlike traditional post-hoc attribution
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Figure 3: Left: The preference data construction pro-
cess. Right: The studied preference-based optimization
methods. We show an example of using two distinct
random seeds for content generation and two distinct
random seeds for citation generation, creating four final
outputs in total.

methods that rely on pairwise similarity measures
(e.g., entailment scores (Huo et al., 2023; Chen
et al., 2023)), decomposed generation takes a gen-
erative approach and eliminates the need to iterate
over all candidate cited sources individually.

Joint Generation. In decomposed generation,
the content generation LLM is not explicitly re-
quired to establish connections between source doc-
uments and the intermediate output. This limitation
can result in less grounded outputs and constrain
the performance of the citation generation module.
We propose a hybrid approach that combines direct
and decomposed generation, where both interme-
diate and final outputs are generated sequentially
in a single pass: [ȳ; y] = f(q,D). [·; ·] denotes the
concatenation of two sequences. By maintaining
awareness of the requirements for the final output,
the LLM can enforce stronger groundedness for ȳ
while employing different skills to generate both
outputs.

3.2 Fine-tuning Strategies

For each generation pipeline, we first conduct su-
pervised fine-tuning on the training set of the exper-
imented dataset. The reference output y is provided
by the dataset, and we obtain ȳ by removing all ci-
tation notations from y. During fine-tuning, the
loss is computed across all output tokens for each
model. Based on the supervised fine-tuned models,
we collect preference data to further enhance them
with preference-based optimization methods.

Preference Data Sampling. To collect prefer-
ence data, the common practice involves sampling
outputs from supervised fine-tuned models and an-
notating them using human efforts or automatic
evaluators (Stiennon et al., 2020; Lee et al., 2024).
For cost-effective data collection, it is critical to
produce and select outputs that are more beneficial
for model enhancement to be annotated. To this
end, our paper investigates the effect of using data
with varying degrees of diversity in content and
citations. Specifically, for each training sample, we
generate outputs using the supervised fine-tuned
decomposed generation pipeline, where multiple
intermediate outputs are sampled from the content
generation module using different random seeds.
Subsequently, different citations are inserted into
each intermediate output by the citation generation
module, also using different random seeds. For fair
comparisons, the number of final sampled outputs
across preference datasets created with different
random seed combinations is kept constant, sim-
ulating a fixed annotation budget. Finally, each
sampled output is assigned a content quality score,
a citation quality score, and a combined overall
quality score using the automatic evaluation met-
rics detailed in §4.

Preference-based Optimization. Given the la-
beled preference dataset, we consider continuing
fine-tuning each generation pipeline with sampled
outputs that have the best quality score, which re-
sembles fine-tuning with data created by rejection
sampling (Nakano et al., 2022).

For direct generation, we fine-tune the model us-
ing yo,the sampled output with the highest overall
quality score. For decomposed generation, we sep-
arately fine-tune the content and citation generation
models. The content generation model is trained
on ȳcon, which is the sampled output with the high-
est content quality score after removing citations.
The citation generation model is trained on ycit,
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which represents the sampled output with the high-
est citation quality score. The training approach
differs for the joint generation pipeline. Instead of
computing the loss across all output tokens as in
direct and decomposed generation, we employ a
selective loss computation strategy. When training
with [ȳcon; ycon] to enhance content generation, we
minimize the loss only for tokens in ȳcon while ig-
noring the loss for tokens in ycon. Similarly, when
improving citation generation with [ȳcit; ycit], we
compute the loss only for tokens in ycit while ig-
noring those in ȳcit.

Beyond fine-tuning with top-ranked outputs
alone, we explore learning from contrastive
pairs using direct preference optimization
(DPO) (Rafailov et al., 2023). Given pairs of
positive and negative samples constructed from
sampled outputs, DPO increases the difference
between the generation probabilities of pairs of
positive and negative samples, promoting the
generation of positive samples while discouraging
negative ones. To ensure stable model optimization,
DPO additionally uses generation probabilities
from a reference model as baselines.1

For paired sampled outputs, we determine posi-
tive and negative samples by comparing their qual-
ity scores. Direct generation uses overall quality
scores for comparisons, while decomposed and
joint generation use content and citation quality
scores for their respective optimization tasks. Simi-
lar to fine-tuning with rejection sampling data, for
joint generation, we ignore the loss over tokens that
are irrelevant to the task being optimized. To main-
tain a reasonable computational cost, each sampled
output is included in only one pair, ensuring that all
sampled outputs are covered while keeping the size
of the fine-tuning samples manageable. Compared
to rejection sampling, where models learn to imi-
tate the most preferred output, DPO teaches models
to differentiate between negative and positive out-
puts, aiming to avoid the generation of negative
outputs.

3.3 Inference-time Compute
In addition to training-time techniques, we evalu-
ate the effectiveness of scoring and reranking dur-
ing inference. Specifically, an LLM-based scorer
feval assesses a candidate output y′ and produces
two scores: ry′,a and ry′,c. These scores, rang-
ing from 1 to 5 on a Likert scale, measure the

1The supervised fine-tuned models serve as reference mod-
els in this paper.

quality of the answers and citations, respectively.
The scoring process can be formally expressed as
[ry′,a, ry′,c] = feval(y

′, q,D). To train the scorer,
we partition our preference data’s content quality
and citation quality scores into 5 equally-sized bins.
Each data point receives a Likert score based on its
bin assignment.

During test time, we generate multiple outputs
from each pipeline using different random seeds.
The scorer then reranks these outputs to select the
one that maximizes the sum of quality scores, ex-
pressed as: y = argmaxy′∈Y(ry′,a + ry′,c), where
Y represents the set of generated outputs for rerank-
ing.

4 Experiment Setups

Datasets. We conduct experiments on SCIFI, a
citation-rich dataset featuring subsentence-level ci-
tations sourced from Wikipedia (Cao and Wang,
2024). The training and test sets consist of 4,000
and 1,000 samples, respectively. For preference
data collection, we sample model outputs on the
training set of SCIFI.

To evaluate generalizability, we further test each
generation pipeline on the ALCE dataset (Gao
et al., 2023b). ALCE comprises three subsets of
knowledge-intensive question-answering samples,
each paired with retrieved text passages that serve
as candidate cited sources. We select the ASQA
and ELI5 subsets, which feature questions with
natural language responses. These subsets contain
948 and 1,000 samples, respectively.

Evaluation Metrics. We evaluate citation quality
by assessing the entailment level between each out-
put statement and its corresponding cited source, in
line with previous research (Rashkin et al., 2023).
To decompose each model output into independent
statements, we prompt Llama-3.1-8b (Grattafiori
et al., 2024) with in-context examples. The cited
documents, indicated by square brackets enclosing
their indices, are then assigned to the output state-
ments based on the heuristic rules outlined in prior
work (Cao and Wang, 2024). Finally, we use an
off-the-shelf NLI model (Honovich et al., 2022)
to estimate the entailment level between output
statements and their corresponding cited sources.
Details of the evaluation metrics are provided in
Appendix A.

The evaluation of content quality differs across
datasets. For SCIFI, we calculate the precision of
statements by averaging the scores of the generated
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statements entailing the reference, and the recall
of statements by averaging scores of the reference
statements entailing the generated output. The over-
all content quality is then determined by calculating
the F1 score based on the precision and recall. For
ALCE, we follow Gao et al. (2023b) and compute
the recall of answer words and statements as the
measure of content quality.

Additionally, we consider combining the two
quality metrics into a single metric for SCIFI.
Specifically, when calculating the precision of the
generated statements in the content quality metric,
we adjust the entailment level between each output
statement and the reference by multiplying it with
the entailment level between the output statement
and its corresponding cited source.

Model Setups and Comparisons. We con-
duct experiments with four open-source LLMs
containing around 10B parameters: Llama-3.1-
8B (Grattafiori et al., 2024), Mistral-Nemo
(12B) (AI, 2024), Phi-3.5-mini (4B) (Abdin et al.,
2024), and Qwen-2.5-7B (Team, 2024). For all
models, we take their variants that have been
aligned with human feedback.

For preference-based optimization, we consis-
tently sample 8 outputs per training instance across
all configurations for data collection, yielding
32,000 samples in total. Four configurations are
considered for allocating the sampling budget. In
each configuration, we generate 1, 2, 4, or 8 outputs
during the citation generation step, corresponding
to 8, 4, 2, or 1 intermediate outputs from the con-
tent generation step, respectively. Due to the high
computational cost, we experiment with these con-
figurations using only Llama-3.1-8B and apply the
best-performing configuration to other LLMs.

In addition to the generation pipelines described
in §3, we include an in-context learning (ICL) setup
that performs direct generation by prompting the
backbone LLMs with instructions and two demon-
strations.

Training Details. We adopt LoRA (Hu et al.,
2021) for model fine-tuning. The LoRA adapters
are applied to all linear projection layers of each
backbone LLM. We set the LoRA rank to 32 and
use an α of 64. All systems are fine-tuned with
supervised learning for 3 epochs on SCIFI and are
further fine-tuned with rejection sampling or DPO
for 1 epoch. We use an effective batch size of 16
and a learning rate of 10−5. For computing infras-
tructure, we use 4 A40 GPU, each with 48GB of

Pipeline Content Citation Combined

Llama-3.1-8B
Direct 21.80 71.82 18.56
Decomposed 21.77 41.61 15.13
Joint 21.07 64.59 16.60

Mistral-Nemo
Direct 23.08 72.02 19.25
Decomposed 22.86 60.06 18.20
Joint 22.75 61.49 17.81

Qwen-2.5-7B
Direct 21.04 57.69 15.13
Decomposed 21.64 42.55 14.91
Joint 19.22 44.61 14.18

Phi-3.5-Mini
Direct 16.59 43.27 12.07
Decomposed 17.00 37.04 11.32
Joint 16.93 41.61 12.12

Table 1: Performance of different generation pipelines
on SCIFI. Results of the best-performing fine-tuning
methods are reported. For each metric, the best result
for each backbone LLMs is bolded.

memory during model training. During inference,
we use a single A40 GPU. The average training
time of each system is 10 hours for supervised fine-
tuning, and 10 hours for further fine-tuning with
preference-based optimization.

5 Results

5.1 Main Results
We first compare the performance of different gen-
eration pipelines, as shown in Table 1. Direct gen-
eration achieves better or comparable combined
quality compared to the other pipelines across all
four backbone LLMs. Despite dedicate fine-tuning
for each subtask, decomposed generation consis-
tently produces citations of the lowest quality, as
the content generation stage lacks awareness of the
citation task’s groundedness requirements. While
joint optimization of content and citation gener-
ation enhances citation quality, this approach re-
mains less effective than direct generation. We be-
lieve that direct generation benefits from its closer
alignment with the pre-training text formats, as
LLM pre-training increasingly emphasizes output
verifiability, which is also evidenced by the perfor-
mance improvements observed in newer generation
models compared to older ones (results of Llama-2-
7B and Llama-3-8B are in Table 6 of Appendix B).

Figure 4 presents the results for various fine-
tuning strategies employed on different generation
pipelines. Systems fine-tuned with DPO consis-
tently outperform others across different back-
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Figure 4: Performance of generation pipelines fine-
tuned with different methods on SCIFI. ICL: in-context
learning; SFT: vanilla supervised fine-tuning; RJS: su-
pervised with rejection sampling data. Detailed results
are in Appendix B.

bone LLMs and generation pipelines, with two
exceptions: decomposed generation with Llama-
3.1 and joint generation with Qwen-2.5. Unlike
supervised fine-tuning with rejection sampling data
that only learns from the best sampled outputs,
DPO leverage contrastive pairs of sampled out-
puts, which effectively guides LLMs towards the
desired behaviors by training LLMs to distinguish
between higher and lower quality outputs. Notably,
all fine-tuning methods significantly outperform
in-context learning, highlighting the effectiveness
of fine-tuning for open-source models.

5.2 Analysis of Preference Data
Configurations

Different configurations for collecting preference
data within the sampling budget are compared in
Table 2. The notation “(Gen × 4) × (Cite × 2)” in-
dicates that the content generation model produces

Configuration Content Citation Combined

Direct Generation + RJS
(Gen × 1) × (Cite × 8) 21.71 44.07 15.74
(Gen × 2) × (Cite × 4) 21.84 44.73 15.97
(Gen × 4) × (Cite × 2) 21.69 45.25 15.85
(Gen × 8) × (Cite × 1) 22.23 45.90 16.31

Direct Generation + DPO
(Gen × 1) × (Cite × 8) 16.09 63.99 13.30
(Gen × 2) × (Cite × 4) 21.08 76.16 18.17
(Gen × 4) × (Cite × 2) 21.80 71.82 18.56
(Gen × 8) × (Cite × 1) 20.96 50.65 12.55

Decomposed Generation + RJS
(Gen × 1) × (Cite × 8) 16.67 45.16 12.88
(Gen × 2) × (Cite × 4) 18.22 47.14 14.17
(Gen × 4) × (Cite × 2) 18.69 48.87 14.53
(Gen × 8) × (Cite × 1) 21.77 41.61 15.13

Decomposed Generation + DPO
(Gen × 1) × (Cite × 8) 19.77 40.94 14.89
(Gen × 2) × (Cite × 4) 19.12 52.79 15.03
(Gen × 4) × (Cite × 2) 13.99 59.53 11.19
(Gen × 8) × (Cite × 1) 20.29 49.10 13.94

Joint Generation + RJS
(Gen × 1) × (Cite × 8) 21.33 43.67 15.50
(Gen × 2) × (Cite × 4) 21.83 44.62 15.88
(Gen × 4) × (Cite × 2) 21.46 45.46 15.76
(Gen × 8) × (Cite × 1) 22.23 45.49 16.31

Joint Generation + DPO
(Gen × 1) × (Cite × 8) 20.69 62.51 16.40
(Gen × 2) × (Cite × 4) 21.07 64.59 16.60
(Gen × 4) × (Cite × 2) 19.53 56.48 14.74
(Gen × 8) × (Cite × 1) 18.08 19.93 5.77

Table 2: Performance of generation pipelines on SCIFI
with different configurations for obtaining sampled out-
puts. All the systems are based on Llama-3.1-8B. For
each generation pipeline and fine-tuning method, the
best data configuration is bolded. For both optimization
methods, using more than 1 intermediate output to gen-
erate final outputs with citations leads to better citation
quality. The best configuration for each optimization
method is applied to other backbone models in the main
experiments.

4 intermediate outputs, and the citation generation
model creates 2 outputs with citations for each in-
termediate output, resulting in 8 total final outputs.
Our analysis reveals that maintaining sufficient
content diversity among these sampled outputs is
crucial. Configurations that allocate the entire bud-
get to generating outputs with different citations
do not achieve better citation quality compared to
other configurations that allocate more budget for
content diversity. For instance, after fine-tuning
direct generation with DPO using 8 outputs com-
prising different citations and the same content, the
system performs 17% worse than using outputs
based on two distinct intermediate outputs.
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Figure 5: Changes of combined quality after apply-
ing over-generation and reranking to Llama-3.1-8B
pipelines on SCIFI. For each test sample, four out-
puts are generated and reranked. All systems benefit
from inference-time compute, though the improvement
is not as significant as fine-tuning.

Fine-
tuning

ASQA ELI5
Cont. Cit. Cont. Cit.

ICL 42.14 19.78 14.57 16.98
SFT 35.84 35.63 11.89 20.89
RS 36.65 49.91 12.06 31.23
DPO 39.43 62.00 13.86 51.26

Table 3: Performance of direction generation that is
based on Llama-3.1-8B and fine-tuned on SCIFI and
tested on the ASQA and ELI5 subsets of ALCE. Sys-
tems optimized with DPO again achieves the best cita-
tion quality, and the trend of improvement in citation
quality over the in-context learning baseline is similar
to the one on SCIFI. However, compared to in-context
learning, the content quality would drop.

5.3 Effectiveness of Inference-Time Compute

We apply the over-generation and reranking tech-
nique on top of verifiable generation systems
that are based on Llama-3.1-8B. During over-
generation, we sample from each system with 4
different random seeds. For decomposed genera-
tion, we use the same random seed for the content
generation model and the citation generation model.
As shown in Figure 5, the scoring and reranking
technique can consistently enhance the quality of
the final output for all systems. Compared to sys-
tems fine-tuned with other methods, systems fine-
tuned with DPO observe smaller improvement after
reranking. Considering the cost of over-generating
outputs and training the reranking model, employ-
ing inference-time compute methods might not be
cost-effective for the top models.

5.4 Generalizability

Finally, we evaluate the generaliablity of direct gen-
eration that are based on Llama-3.1-8B. The strong
citation quality of systems fine-tuned with DPO
well generalizes to test samples that do not come
from the dataset used for model training. Over-
all, the trend in citation quality remains consistent
with the results on SCIFI, suggesting that the ci-
tation capability acquired through fine-tuning
are robust across datasets. However, fine-tuning
on out-of-domain data can lead to a decline in con-
tent quality when applied to in-domain data, as
observed on both ASQA and ELI5. We believe this
is due to the variation of focus of output content
across different domains.

6 Conclusions

We conduct an analysis of design choices in the de-
velopment of verifiable generation systems, includ-
ing generation pipelines and optimization meth-
ods. Three generation pipelines are investigated:
direct generation that outputs responses with ci-
tations in one pass; decomposed generation that
connects a content generator with a citation genera-
tor to produce outputs in two steps; joint generation
that combines the aforementioned pipelines. We
conduct supervised fine-tuning for these genera-
tion pipelines and additionally apply preference-
based optimization including further supervised
fine-tuning with rejection sampling data and direct
preference optimization (DPO). Moreover, we ex-
amine the effect of content and citation diversity on
fine-tuned model performance. Besides training-
time techniques, we also study an inference-time
technique—over-generation and reranking. Our ex-
periments find that (1) direct generation yields the
best overall quality; (2) DPO is the best fine-tuning
method; (3) maintaining sufficient content diversity
is crucial for preference-based optimization; (3)
reranking of over-generated samples can benefit all
verifiable generation systems but cost-effectiveness
might be low; (4) LLMs’ ability to cite supporting
sources is robust across datasets. We hope our find-
ings can guide further development of verifiable
generation systems with open-source LLMs.
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7 Limitations and Potential Risks

Limitations. Our work conducts a wide range
of experiments, but there remain design choices
that are not investigated, due to the complexity of
verifiable generation systems. For example, the pro-
cess of handling the pool of candidate cited sources
could benefit from more sophisticated strategies,
which might include multi-turn processing of cited
sources or the construction of dense representa-
tions.

The datasets employed in our experiments pro-
vide a fixed set of candidate sources with well-
formatted content. However, in real-world scenar-
ios, candidate sources are dynamically retrieved
from online search engines. The use of online
search engines can introduce a greater diversity of
candidate sources, resulting in domain and style
shifts that could impact model behavior and task
performance unpredictably.

Potential Risks. Echoing the limitations men-
tioned, our results are based on a pool of trustwor-
thy sources, such as Wikipedia articles. However,
when verifiable generation systems are deployed
in practical settings, they may encounter sources
with varying degrees of reliability. This creates a
risk of propagating misinformation if the system
inadvertently relies on less credible sources. Fur-
thermore, dynamically retrieved data could include
biased or malicious content, potentially leading
to harmful consequences. Therefore, our study re-
veals best practices of verifiable generation systems
in controlled conditions, the robustness of them in
uncontrolled environments requires further investi-
gation. Developers should equip their systems with
additional content filters to ensure healthy outputs.
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A Evaluation Metrics

Citation Quality. Given an output statement si
and its corresponding cited document dsi , we use
a T5-based NLI model2 to calculate the score of

2https://huggingface.co/google/t5_xxl_truenli_
mixture

how dsi support si as the citation quality mea-
sure. We take the probability of the NLI model
predicting “entail” as the score. As the length of
dsi might exceed the maximum input length of
the NLI model and the NLI model is trained with
shorter sequences, following (Kamoi et al., 2023),
we split the document into chunks of 256 tokens
{d1si , . . . , dMsi } and take the maximum entailment
score between si and chunks of dsi as the entail-
ment score between si and dsi :

ucit(si) = max
1≤m≤M

ent(si, d
m
si ) (1)

where ucit(si) denotes citation quality score of si.
The citation quality score of a system output is then
computed by averaging ucit(si) for all statements
in the output.

Content Quality. We calculate the precision of
system generated statements as 1

N

∑
i ent(si, ŷ),

where ŷ is the reference output and N is the total
number of statements in the system output. Simi-
larly, the recall of reference statement is calculated
as 1

N̂
ent(ŝi, y), where y is the system output, ŝi is

a reference statement, and N̂ is the total number
of statements in the reference output. We take the
harmonic mean of the precision and recall as the
content quality of a system output. The entailment
is calculated between a statement and a full text
output following (Gao et al., 2023b).

Combined Quality. The combined quality is sim-
ilar to the content quality, except that we change the
precision calculation to 1

N

∑
i ent(si, ŷ)×ucit(si).

Citation Mapping. To determine the cited doc-
ument for each statement given the raw system
output, we use the assignment rule as in (Cao and
Wang, 2024). After decomposing the system out-
put into individual statements, each statement is
mapped back to a segment in the original system
output by prompting a Llama-3.1-8B model with
in-context examples adapted from (Min et al., 2023;
Kamoi et al., 2023). For an output statement, the
generated citation that is closest to the end of its
corresponding segment is taken as its cited source.

B Additional Results

Fine-tuning Strategies. In Table 4 and 5, we
provide detailed results of generation pipelines
paired with different fine-tuning strategies. Using
DPO achieves the best performance across different
pipelines.
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Pipeline Fine-
tuning Content Citation Combined

Llama-3.1-8B

Direct

ICL 16.58 32.63 8.05
SFT 19.60 36.99 13.63
RJS 22.23 45.90 16.31
DPO 21.80 71.82 18.56

Decomposed
SFT 19.71 35.22 13.35
RJS 21.77 41.61 15.13
DPO 19.12 52.79 15.03

Joint
SFT 19.21 35.53 12.83
RJS 22.23 45.49 16.31
DPO 21.07 64.59 16.60

Mistral-Nemo (12B)

Direct

ICL 19.37 31.64 8.86
SFT 21.05 36.55 14.30
RJS 21.46 47.45 15.90
DPO 23.08 72.02 19.25

Decomposed
SFT 20.92 36.15 14.06
RJS 22.02 43.25 15.50
DPO 22.86 60.06 18.20

Joint
SFT 20.48 35.28 13.56
RJS 21.66 46.05 15.95
DPO 22.75 61.49 17.81

Qwen-2.5-7B

Direct

ICL 15.68 17.78 4.03
SFT 17.24 35.64 12.06
RJS 19.65 45.81 14.69
DPO 21.04 57.69 15.13

Decomposed
SFT 17.20 33.86 11.40
RJS 19.34 41.25 13.59
DPO 21.64 42.55 14.91

Joint
SFT 16.82 35.59 11.59
RJS 19.22 44.61 14.18
DPO 20.58 32.94 8.32

Table 4: Performance of generation pipelines fine-tuned
with different methods on SCIFI. ICL: in-context learn-
ing; SFT: vanilla supervised fine-tuning; RJS: super-
vised with rejection sampling data. For each metric and
pipeline, the best fine-tuning method is bolded.

Older Models. We report results based on dif-
ferent Llama models in Table 6. The latest Llama
model obtains significantly better performance than
its older generations, suggesting the increased em-
phasis of verifiability during model pre-training
and alignment. We also observe a decrease in the
effectiveness of joint generation, which might be
due to the increase number of pre-training samples
that contain citations.

Pipeline Fine-
tuning Content Citation Combined

Phi-3.5-Mini (4B)

Direct

ICL 5.43 2.90 0.83
SFT 14.82 33.39 9.81
RJS 16.59 43.27 12.07
DPO 18.48 49.70 13.02

Decomposed
SFT 14.60 32.28 9.60
RJS 17.00 37.04 11.32
DPO 16.52 41.96 11.83

Joint
SFT 14.50 31.30 9.07
RJS 16.93 41.61 12.12
DPO 17.97 45.32 13.58

Table 5: Continuation of Table 4.

Pipeline Content Citation Combined

Llama-2-7B
Direct 13.98 23.48 6.79
Decomposed 13.23 30.17 9.68
Joint 13.87 36.71 10.49

Llama-3-8B
Direct 17.58 41.82 13.21
Decomposed 16.51 37.65 12.39
Joint 17.04 43.56 13.42

Llama-3.1-8B
Direct 21.80 71.82 18.56
Decomposed 21.77 41.61 15.13
Joint 21.07 64.59 16.60

Table 6: Performance of different generation pipelines
on SCIFI, based on Llama models of various genera-
tions. For each metric, the best result for each backbone
LLMs is bolded.

C Implementations

C.1 Datasets
We obtain the SCIFI dataset3 and the ALCE
dataset4 from their authors’ official releases. They
are with CC-By-4.0 and MIT licenses, respectively.

C.2 Models
All the backbone LLMs are retrieved from the Hug-
gingface Hub:

• Llama-3.1-7B: https://huggingface.co/
meta-llama/Llama-3.1-8B-Instruct

• Mistral-Nemo: https://
huggingface.co/mistralai/
Mistral-Nemo-Instruct-2407

• Phi-3.5-Mini: https://huggingface.co/
microsoft/Phi-3.5-mini-instruct

3https://shuyangcao.github.io/projects/
subsentence_citation/

4https://github.com/princeton-nlp/ALCE
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• Qwen-2.5-7B: https://huggingface.co/
Qwen/Qwen2.5-7B-Instruct

C.3 Training
We use LLaMA-Factory (Zheng et al., 2024) for
the implementations of model trainers including
the DPO optimization algorithm.

C.4 Usage of AIi Assistant
We use Copilot for implementation of experiment
code and analysis code. ChatGPT is used for refin-
ing the grammar and fixing typo during writing.

C.5 Prompt Templates
The instructions and prompts we use for each gen-
eration pipeline are shown in Table 7–10.
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Instruction: Write an accurate, engaging, and concise answer for the given question using only the
provided search results (some of which might be irrelevant) and cite them properly. You are provided
summaries of the search results, rather than the original search results. Use an unbiased and journalistic
tone. Always cite after the completion of each individual fact in the answer. Facts might be completed
in the middle of a sentence.

Question: {query}

Document [1] (Title: {document1_title})
{document1_text}

...

Document [N] (Title: {documentN_title})
{documentN_text}

Answer: {output_with_citation}

Table 7: Instruction and prompt for intrinsic generation.

Instruction: Write an accurate, engaging, and concise answer for the given question using only the
provided search results (some of which might be irrelevant). You are provided summaries of the search
results, rather than the original search results. Use an unbiased and journalistic tone.

Question: {query}

Document [1] (Title: {document1_title})
{document1_text}

...

Document [N] (Title: {documentN_title})
{documentN_text}

Answer: {content_generation_output}

Table 8: Instruction and prompt for content generation in modular generation.
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Instruction: Support facts in the given statement by citing the provided search results (some of which
might be irrelevant). You are provided summaries of the search results, rather than the original search
results. Cite after the completion of each individual fact in the answer. Facts might be completed in the
middle of a sentence.

Question: {query}

Document [1] (Title: {document1_title})
{document1_text}

...

Document [N] (Title: {documentN_title})
{documentN_text}

Statement: {content_generation_output}

Statement with Citations: {output_with_citation}

Table 9: Instruction and prompt for citation generation in modular generation.

Instruction: Write an accurate, engaging, and concise answer for the given question using only the
provided search results (some of which might be irrelevant) and cite them properly. You are provided
summaries of the search results, rather than the original search results. Use an unbiased and journalistic
tone. Always cite after the completion of each individual fact in the answer. Facts might be completed
in the middle of a sentence.

Question: {query}

Document [1] (Title: {document1_title})
{document1_text}

...

Document [N] (Title: {documentN_title})
{documentN_text}

Answer: {output_without_citation} | Answer with Citations: {output_with_citation}

Table 10: Instruction and prompt for intrinsic-modular generation.
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