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Abstract
Uncertainty quantification (UQ) in Large Lan-
guage Models (LLMs) is essential for their safe
and reliable deployment, particularly in critical
applications where incorrect outputs can have
serious consequences. Current UQ methods
typically rely on querying the model multiple
times using non-zero temperature sampling to
generate diverse outputs for uncertainty estima-
tion. However, the impact of selecting a given
temperature parameter is understudied, and our
analysis reveals that temperature plays a fun-
damental role in the quality of uncertainty esti-
mates. The conventional approach of identify-
ing optimal temperature values requires expen-
sive hyperparameter optimization (HPO) that
must be repeated for each new model-dataset
combination. We propose Monte Carlo Tem-
perature (MCT), a robust sampling strategy that
eliminates the need for temperature calibration.
Our analysis reveals that: 1) MCT provides
more robust uncertainty estimates across a wide
range of temperatures, 2) MCT improves the
performance of UQ methods by replacing fixed-
temperature strategies that do not rely on HPO,
and 3) MCT achieves statistical parity with or-
acle temperatures, which represent the ideal
outcome of a well-tuned but computationally
expensive HPO process. These findings demon-
strate that effective UQ can be achieved with-
out the computational burden of temperature
parameter calibration.

1 Introduction

Large Language Models (LLMs) have fundamen-
tally transformed the way we interact with artificial
intelligence, revolutionizing various domains, from
content creation to complex problem-solving tasks
(Bommasani et al., 2021; Wei et al., 2022; Orrù
et al., 2023). However, these powerful models can
sometimes produce unreliable or incorrect outputs,
raising concerns about their deployment in criti-
cal applications (Rohrbach et al., 2018; Xiao and
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Wang, 2021; Bacciu et al., 2024). While signifi-
cant research efforts have focused on improving
LLMs’ accuracy through techniques like Chain-of-
Thought prompting (Wei et al., 2022) and Retrieval-
Augmented Generation (Lewis et al., 2020), par-
allel work has emerged on developing uncertainty
quantification (UQ) methods to estimate model con-
fidence as an indicator of potential errors (Kadavath
et al., 2022; Kuhn et al., 2023; Lin et al., 2024).

Existing UQ methods for LLMs can be used to
predict the correctness of a LLM’s output, either
under white-blox or black-box assumptions. They
fall into two broad categories: single-sample and
multi-sample approaches. Single-sample methods
analyze a single generation using metrics like per-
plexity or evaluating model’s weight activations. In
contrast, multi-sample methods, which we focus on
in this work, rely on querying the model multiple
times with the same input and non-zero fixed tem-
perature sampling, to induce and measure diversity
in the generations. To assess the effectiveness of
UQ methods in distinguishing between correct and
incorrect model outputs, they are typically evalu-
ated as a classification procedure using the area un-
der the receiver operator characteristic curve (AU-
ROC) metric (Hanley and McNeil, 1982). However,
the impact of selecting a specific fixed temperature
parameter is understudied, and our analysis reveals
that temperature plays a fundamental role in the
effectiveness of different UQ methods across sce-
narios in which different LLMs are employed to
solve different tasks. Figure 1 exemplifies this be-
havior over four question-answering datsets and
three models using the semantic entropy method1

(Kuhn et al., 2023). The figure highlights three crit-
ical observations: (1) for a given model and dataset,
performance varies significantly with changes in
temperature; (2) no single temperature consistently

1Similar plots for other UQ methods can be found in the
Appendix A.
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optimizes performance across datasets for a given
model; and (3) no universal temperature yields op-
timal results across models for a given dataset. For
instance, the Falcon-40B model achieves peak per-
formance on the TriviaQA dataset at a temperature
of 0.6, but requires a lower temperature of 0.3 for
the SVAMP dataset. Similarly, within the same
TriviaQA dataset, optimal temperature values dif-
fer across different models: Falcon-40B performs
best at 0.6, while Falcon-7B-Instruct achieves su-
perior results at 1.0. This lack of robustness in
maintaining consistent performance across differ-
ent scenarios poses significant challenges for prac-
titioners attempting to implement UQ methods and
highlight the need for more robust approaches to
temperature selection.

To address the challenges of selecting a specific
fixed temperature in UQ methods, we introduce
Monte Carlo Temperature (MCT), a sampling strat-
egy that dynamically varies the temperature dur-
ing multiple sentence generations, allowing UQ
methods to generalize more effectively to differ-
ent model-dataset combinations. This approach
reduces sensitivity to specific temperature values
and ensures more reliable uncertainty estimates.

We evaluate MCT against an oracle determined
by selecting the temperature that yields the best
results on the test set. By using an oracle as refer-
ence, we place ourselves in the most challenging
evaluation scenario, as it represents an idealized
outcome that hyperparameter optimization (HPO)
may not achieve in practice.

Beyond this comparison, we assess MCT against
two alternative model-dataset agnostic approaches,
that do not require HPO: the Best On Average Tem-
perature, which selects a single fixed value per-
forming well across multiple models and datasets,
and the Fixed Random Temperature approach that
randomly chooses a single temperature.

Our results demonstrate that MCT consistently
achieves statistical parity with the oracle, elimi-
nating the need for expensive HPO. Additionally,
MCT outperforms both the Best On Average Tem-
perature and the Fixed Random Temperature strate-
gies, further highlighting the benefits of structured
temperature sampling.

The paper is structured as follows: in Section
2, we present an overview of multi-sample UQ
methods. In Section 3, we introduce the MCT ap-
proach and describe its implementation. Section 4
details the experimental setup, including the LLMs,
datasets, and evaluation metrics used. Section 5

presents the results of our experiments. Finally,
in Section 6, we discuss the implications of our
findings, acknowledge limitations, and outline po-
tential future research directions.

2 Multi-Sample UQ Methods

In this section, we present an overview of popular
multi-sample UQ methods that we selected to eval-
uate the MCT sampling strategy. These methods
represent a diverse set of approaches commonly
employed for estimating uncertainty in LLMs.

• Naive Entropy (NE): NE (Kuhn et al., 2023)
computes the uncertainty of model predictions
by measuring the entropy of the generated
output sequences based on their probabilities.
For a given input x, the probability of each
output sequence y is computed using the chain
rule of probability, which considers the joint
probability of each token in the sequence. The
entropy is then defined as:

H(x) = −
∑

y∈S
p̂(y|x) log p̂(y|x), (1)

where S represents the set of sampled se-
quences used for UQ.

• Semantic Entropy (SE): SE (Kuhn et al.,
2023) quantifies uncertainty by evaluating
entropy across semantic clusters of the gen-
erated outputs. These clusters are formed
based on semantic similarity, identified us-
ing an entailment model (as described in sec-
tion 4.3). For each cluster c, the probability
p̂(c|x) is calculated by summing the probabil-
ities of all sequences within the cluster, i.e.,
p̂(c|x) =

∑
y∈c p̂(y|x), where y represents

a sequence assigned to cluster c. Semantic
entropy is then computed as:

SE(x) = −
∑

c∈C
p̂(c|x) log p̂(c|x), (2)

where C represents the set of semantic clus-
ters.

• Discrete Semantic Entropy (DSE): Unlike
SE, DSE (Farquhar et al., 2024) does not re-
quire model-provided probability scores. In-
stead, it approximates cluster probabilities us-
ing the relative frequency of samples within
each cluster. This method is particularly ef-
fective in black-box settings where access to
internal probability scores is restricted.
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Figure 1: AUROC score distributions of the semantic entropy method across various model-dataset combinations
and different fixed temperature values.

• Number of Semantic Sets (NumSemSets):
NumSemSets (Lin et al., 2024) simplifies
DSE by directly counting the number of
unique semantic clusters identified by the en-
tailment model, where a larger number of
clusters indicates higher uncertainty in the
model’s outputs.

• P(True): This technique (Kadavath et al.,
2022) is designed to capture the LLM’s un-
certainty by structuring the task as a multiple-
choice question. The LLM first generates a set
of candidate answers based on a given prompt
and then re-evaluates these responses by as-
signing probabilities. Specifically, the model
is asked to determine whether a generated an-
swer is correct by selecting between True and
False, e.g., Is the possible answer: (A) True
(B) False?. The probability assigned to (A) is
recorded as an uncertainty measure. A few-
shot prompting strategy with examples from
the training set is used to provide contextual
guidance.

3 Robustness and MCT Sampling for UQ

In this section, we define the concept of robustness
in the context of UQ methods and formalize the
MCT sampling strategy.

3.1 Robustness Definition in UQ Methods
Robustness in the context of UQ refers to the sta-
bility and generalization of a UQ method’s per-
formance when applied across different settings.
In our use case, robustness captures the range to
which a UQ method remains effective in assessing
uncertainty under changes in the following dimen-
sions:

• Inference Parameters2: Variability in param-
eters such as temperature, top-k sampling, or
nucleus sampling, which govern the stochastic
nature of responses generated by LLMs.

• Model Diversity: Differences in architec-
tures, training objectives, and scales of LLMs,
requiring the UQ method to adapt without sig-
nificant degradation in performance.

• Dataset Variability: Application to datasets
with differing domains, topics, or complex-
ity levels, ensuring the UQ method’s efficacy
across tasks.

3.2 Monte Carlo Temperature
MCT is a novel sampling strategy designed to im-
prove robustness and avoid costly HPO by dynam-
ically varying the temperature parameter across
multiple queries for the same input. Traditional
methods often rely on a fixed temperature value, τ ,
selected through HPO. In contrast, MCT eliminates
the need for HPO by introducing a probabilistic
mechanism that samples temperature values from
a predefined distribution.

MCT can be directly applied to any existing UQ
multi-sample strategy. Instead of determining the
ideal fixed temperature through extensive tuning,
MCT dynamically samples temperatures, enabling
the same UQ multi-sample method to perform ro-
bustly without additional optimization. This ap-
proach ensures that the method adapts seamlessly
across varying model-dataset combinations.

The process of applying MCT to a query x in-
volves the following steps:

2In this work we focused on the study of the tempera-
ture parameter. Future work will focus on the other common
generation parameters.
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1. Define a temperature distribution p(T ) with
support [τmin, τmax], where τmin and τmax rep-
resent the minimum and maximum tempera-
tures considered for sampling.

2. Draw k independent samples from the temper-
ature distribution:

τi ∼ p(T ), i ∈ 1, . . . , k.

3. Generate k responses yi from a model M,
where each response is conditioned on the
query x and the corresponding sampled tem-
perature τi:

yi = M(x; τi), i ∈ {1, . . . , k}.

4. Apply the selected UQ multisample
method based on the generated responses
{y1, y2, . . . , yk}.

For this work, we used a discrete distribu-
tion with possible temperature values selected as
equidistant points between the specified bounds
τmin and τmax. For a given number of generations k,
the temperature values are drawn without replace-
ment from the discrete set:

{τmin, τmin +∆, τmin + 2∆, . . . , τmax}, (3)

where ∆ = τmax−τmin
k−1 .

4 Experimental Setup

This section outlines the experimental framework
employed to evaluate the performance of MCT and
related UQ methods. We detail the configurations
used for answer generation, the LLMs and datasets
selected for evaluation, and the specific entailment
and evaluation models utilized in the study.

4.1 Configuration for Generating Answers
In this study, we applied UQ methods to the open
question-answering task, focusing on sentence-
length outputs. The temperature parameter for
our experiments was sampled within the range
τmin = 0.1 to τmax = 1.0. To ensure a balance
between computational efficiency and statistical ro-
bustness, we generated k = 5 outputs per question.
Prior research has demonstrated that using 5 gen-
erations provides results that closely approximate
those obtained with 10 generations (Farquhar et al.,
2024; Lin et al., 2024).

Once the parameters τmin, τmax, and k are
defined, applying equation (3) yields the exact
interval that we employed for MCT sampling:
{0.100, 0.325, 0.550, 0.775, 1.000}.

4.2 LLMs and Datasets

We evaluated the following LLMs: Falcon-7B-
Instruct (Almazrouei et al., 2023), Mistral-7B-
Instruct-v0.3 (Jiang et al., 2023), Falcon-40B (Al-
mazrouei et al., 2023), and LLaMA-8B-Instruct-
v3.1 (Grattafiori et al., 2024). Note that due to the
licensing of LLaMA models family, we accessed it
via an API that provided text generations without
likelihood scores.

Our experiments employed four open-question
datasets covering various topics: TriviaQA (Joshi
et al., 2017) and Natural Questions (Kwiatkowski
et al., 2019) for general knowledge, SVAMP (Patel
et al., 2021) for mathematics, and BIOASQ (Tsat-
saronis et al., 2015) for biology.

We sampled 1,000 questions from each dataset,
except for SVAMP, which contains fewer samples.
In this case, all available questions were used. No-
tably, this represents a dataset size 2.5 times larger
than that employed in the work of Farquhar et al.
(2024).

4.3 Entailment and Evaluation Model

This study employs semantic clustering to assess
bidirectional entailment between pairs of answers,
following the methodology outlined in Farquhar
et al. (2024). To implement it, we adopted an LLM-
as-Judge approach, utilizing the Amazon Nova Mi-
cro (Intelligence, 2024) model to perform cluster-
ing tasks.

For response correctness evaluation, we em-
ployed the LLM-as-Judge paradigm, a method
proven to be more reliable than traditional
substring-overlap metrics (Santilli et al., 2024;
Zheng et al., 2023). Claude Haiku 3.5 (Anthropic,
2024) served as the evaluation model, configured
to assess correctness based on the original question
and reference answer in the dataset. To maintain
consistency with Farquhar et al. (2024), we ensured
that correctness evaluation was conducted using an
additional response generated with a fixed temper-
ature of 0.1. This setting minimizes randomness,
producing more deterministic outputs that serve as
a stable basis for evaluation.

Our evaluation framework mirrors the dual LLM-
as-Judge structure employed in Farquhar et al.
(2024), where one model is dedicated to clustering
and the other to correctness evaluation. However,
while the original framework utilized GPT-3.5 for
clustering and GPT-4 for evaluation (Brown et al.,
2020; OpenAI et al., 2024), we relied on alternative
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LLMs.
To assess the effectiveness of UQ methods, we

measured performance using AUROC, PR-AUC,
and AURAC metrics (Hanley and McNeil, 1982;
Davis and Goadrich, 2006; Farquhar et al., 2024).
Confidence intervals at the 95% level were com-
puted for all metrics via bootstrapping to ensure
statistical relevance.

5 Results

In this section, we present the results of the
MCT sampling strategy, comparing its perfor-
mance against three baselines: (1) the oracle tem-
perature, selected to maximize test set performance,
(2) the Best On Average Temperature across model-
dataset combinations, and (3) the Fixed Random
Temperature approach. First, we assess how closely
MCT approximates the oracle temperature and
achieves statistical parity. Then, we compare MCT
to the two baselines that do not rely on HPO. Our
results reveal that a previously optimal tempera-
ture does not necessarily generalize well across
different model-dataset settings, as the Best On Av-
erage Temperature still underperforms relative to
MCT. Meanwhile, the random baseline highlights
the drawbacks of uninformed selection, showing
that arbitrary temperature choices lead to unpre-
dictable and often suboptimal results.

5.1 Statistical Parity with Oracle
Temperatures

Figure 2 demonstrates that MCT achieves statisti-
cal parity with optimal oracle-fixed temperatures
across all UQ methods, models, and datasets, using
statistical analysis at 95% confidence level. This
finding suggests that MCT can effectively replace
any fixed temperature sampling approach while
eliminating the need for temperature tuning. These
results are further validated by additional perfor-
mance metrics (PRAUC and AURAC), with de-
tailed visualizations available in Appendix A.

5.2 Comparison with the Best On Average
and Fixed Random Temperature

We evaluated MCT against a baseline approach that
determined the best fixed temperature by averaging
the scores obtained with each fixed temperature
across all model-dataset combinations. To ensure
an unbiased comparison, we applied leave-one-out
cross-validation, systematically excluding each se-
lected model along with all its associated datasets,

as well as each selected dataset along with all its
associated models, in the tested combination. The
optimal temperature was then determined by aver-
aging performance across the remaining combina-
tions. This approach ensured that the test combi-
nation did not influence the temperature selection,
effectively eliminating potential bias.

Additionally, we performed a comparison
against a random baseline. To construct this base-
line, we randomly sampled a fixed temperature 100
times from the same discrete range as MCT and
computed the average performance across these
simulations. This ensures a robust estimation of
the expected performance when selecting a temper-
ature at random, serving as an additional reference
point for evaluating MCT’s effectiveness.

To assess performance, we quantified the rela-
tive difference, denoted as ∆, which measures the
deviation of each method (MCT, the best average
fixed temperature, and the random baseline) from
the oracle temperature’s performance. The results
show that MCT consistently achieves a lower av-
erage ∆ across all model-dataset configurations.
Specifically, the average ∆ for the best average
fixed temperature method is 5.34%, while for the
random baseline, it is higher at 5.85%. In contrast,
MCT achieves an average ∆ of 3.77%, demonstrat-
ing its superior adaptability and accuracy.

Moreover, this advantage translates into strong
win-rate performance for MCT. It outperforms the
Best Average Fixed Temperature method in 63.24%
of cases and achieves an even greater win rate of
72.03% against the Random Baseline, further con-
firming its robustness.

Fine-grained results supporting these findings
are provided in Table 1 for the AUROC metric
and in Appendix A for the other metrics (PR-AUC,
AURAC).

6 Conclusion

In this work, we introduced MCT, a general and
robust sampling method for UQ in LLMs. Our ap-
proach eliminates the need for expensive HPO of
temperature parameters, providing consistent per-
formance across a wide range of models, datasets,
and UQ methods. The experimental results demon-
strate that MCT achieves statistical parity with
oracle-fixed temperatures obtained through com-
putationally intensive optimization. Additionally,
it outperforms the best average fixed-temperature
and random baselines by reducing performance
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Figure 2: Comparison between oracle-fixed temperature performance and MCT sampling strategy performance
across different UQ methods using the AUROC metric.
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Discrete Semantic Entropy
Model Dataset Oracle MCT Best Avg. Random MCT ∆ (%) Best Avg. ∆ (%) Random ∆ (%)

Falcon-7b-Instruct

triviaQA 0.8028 0.7832 0.7880 0.7453 2.44 1.84 7.16
bioasq 0.7681 0.7353 0.7639 0.7178 4.27 0.54 6.55
svamp 0.6713 0.6778 0.6307 0.6267 -0.97 6.05 6.64
nq 0.7361 0.7339 0.7282 0.7036 0.29 1.07 4.41

Mistral-7b-Instruct

triviaQA 0.8143 0.7528 0.7326 0.7217 7.55 10.03 11.38
bioasq 0.7286 0.6829 0.7226 0.6880 6.27 0.82 5.57
svamp 0.7981 0.7662 0.7604 0.7192 3.99 4.73 9.88
nq 0.7397 0.7036 0.6937 0.6923 4.88 6.22 6.40

Falcon-40b

nq 0.7262 0.7164 0.6966 0.7025 1.34 4.07 3.25
triviaQA 0.8185 0.8208 0.7882 0.7733 -0.28 3.71 5.52
svamp 0.7462 0.7498 0.6255 0.6718 -0.49 16.17 9.96
bioasq 0.7394 0.7125 0.6617 0.6966 3.64 10.51 5.79

Llama-8b-Instruct

triviaQA 0.8125 0.7746 0.8023 0.7872 4.66 1.25 3.11
nq 0.7544 0.7708 0.7517 0.7407 -2.17 0.35 1.81
bioasq 0.7450 0.7155 0.7142 0.7197 3.96 4.13 3.40
svamp 0.6957 0.7144 0.6957 0.6637 -2.69 0.00 4.59

Naive Entropy

Falcon-7b-Instruct

triviaQA 0.7391 0.6959 0.6960 0.7021 5.85 5.84 5.00
bioasq 0.6983 0.6842 0.6865 0.6768 2.03 1.70 3.08
svamp 0.6489 0.6595 0.6157 0.6258 -1.64 5.12 3.56
nq 0.7147 0.7145 0.7075 0.6895 0.04 1.02 3.54

Mistral-7b-Instruct

triviaQA 0.7303 0.6663 0.7016 0.6556 8.77 3.93 10.23
bioasq 0.7201 0.6907 0.7057 0.6852 4.08 1.99 4.84
svamp 0.7215 0.7298 0.7050 0.6933 -1.16 2.28 3.90
nq 0.6794 0.6626 0.6606 0.6576 2.47 2.77 3.20

Falcon-40b

nq 0.6670 0.6464 0.6414 0.6499 3.10 3.84 2.57
triviaQA 0.7973 0.7587 0.7692 0.7665 4.85 3.53 3.86
svamp 0.6733 0.6406 0.5901 0.6338 4.85 12.36 5.86
bioasq 0.5882 0.5656 0.5415 0.5614 3.86 7.94 4.57

Semantic Entropy

Falcon-7b-Instruct

triviaQA 0.8072 0.7861 0.7716 0.7348 2.61 4.40 8.97
bioasq 0.7725 0.7386 0.7725 0.7208 4.39 0.00 6.69
svamp 0.6626 0.6763 0.6343 0.6356 -2.06 4.27 4.09
nq 0.7320 0.7305 0.7320 0.7045 0.21 0.00 3.76

Mistral-7b-Instruct

triviaQA 0.8239 0.7538 0.7347 0.7276 8.50 10.83 11.69
bioasq 0.7279 0.6900 0.7023 0.6907 5.21 3.52 5.11
svamp 0.8132 0.7620 0.7554 0.7396 6.29 7.10 9.05
nq 0.7369 0.7046 0.7294 0.6935 4.38 1.03 5.90

Falcon-40b

nq 0.7359 0.7209 0.7098 0.7133 2.05 3.55 3.08
triviaQA 0.8452 0.8090 0.8102 0.7742 4.29 4.15 8.40
svamp 0.7682 0.7808 0.6543 0.6888 -1.64 14.82 10.34
bioasq 0.7418 0.7271 0.6818 0.7085 1.98 8.09 4.48

Number of Semantic Sets

Falcon-7b-Instruct

triviaQA 0.7966 0.7795 0.7871 0.7305 2.14 1.20 8.30
bioasq 0.7638 0.7346 0.7624 0.7283 3.82 0.18 4.65
svamp 0.6669 0.6720 0.6215 0.6299 -0.76 6.81 5.56
nq 0.7336 0.7313 0.7265 0.7062 0.32 0.98 3.74

Mistral-7b-Instruct

triviaQA 0.8127 0.7526 0.7085 0.7416 7.40 12.82 8.74
bioasq 0.7265 0.6826 0.7189 0.6760 6.05 1.05 6.95
svamp 0.7994 0.7654 0.7606 0.7327 4.26 4.85 8.34
nq 0.7380 0.7038 0.6952 0.6892 4.64 5.80 6.62

Falcon-40b

nq 0.7215 0.7138 0.6920 0.6996 1.07 4.09 3.03
triviaQA 0.8153 0.8191 0.7809 0.7724 -0.46 4.21 5.26
svamp 0.7388 0.7365 0.6160 0.6589 0.31 16.61 10.81
bioasq 0.7349 0.7067 0.6567 0.6950 3.83 10.65 5.43

Llama-8b-Instruct

triviaQA 0.8056 0.7728 0.8024 0.7877 4.08 0.39 2.22
nq 0.7542 0.7658 0.7506 0.7393 -1.54 0.48 1.98
bioasq 0.7405 0.7120 0.7085 0.7188 3.85 4.32 2.93
svamp 0.6907 0.7104 0.6907 0.6602 -2.86 0.00 4.41

P(True)

Falcon-7b-Instruct

triviaQA 0.5335 0.4796 0.4924 0.4858 10.11 7.72 8.95
bioasq 0.6170 0.4421 0.5442 0.5398 28.33 11.80 12.51
svamp 0.4228 0.3852 0.3802 0.3941 8.89 10.07 6.78
nq 0.6352 0.5990 0.6232 0.6024 5.71 1.90 5.17

Mistral-7b-Instruct

triviaQA 0.8122 0.7383 0.7417 0.7680 9.09 8.68 5.44
bioasq 0.7983 0.7445 0.7532 0.7564 6.73 5.65 5.25
svamp 0.7273 0.6709 0.6540 0.6848 7.76 10.09 5.85
nq 0.7672 0.7137 0.7342 0.7393 6.97 4.30 3.63

Falcon-40b

nq 0.7556 0.7330 0.6575 0.6899 2.99 12.98 8.69
triviaQA 0.8282 0.7469 0.8005 0.7915 9.82 3.35 4.43
svamp 0.7070 0.6713 0.5797 0.6583 5.05 18.00 6.88
bioasq 0.7906 0.7234 0.7208 0.7573 8.50 8.83 4.22

Table 1: Performance comparison of UQ methods using AUROC score. Bold values show best performance per
scenario, with ∆ indicating difference from oracle baseline (lower ∆ is better). Note: MCT ∆ may be negative
when performance exceeds the oracle baseline.
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variability and enhancing robustness across diverse
configurations.

MCT’s flexibility makes it applicable to any UQ
method requiring multiple generations, and its dy-
namic temperature sampling effectively addresses
challenges associated with fixed temperature con-
figurations. This adaptability highlights MCT as
a practical solution for deploying UQ methods
in real-world scenarios where computational re-
sources are limited.

7 Limitations

While this study demonstrates promising results,
several limitations must be acknowledged. Al-
though we validated MCT across a diverse set of
UQ techniques and LLMs, further exploration is
required to assess its effectiveness on larger-scale
models and alternative architectures. Additionally,
this work primarily focused on temperature as the
inference parameter; future studies should exam-
ine the impact of other sampling techniques and
inference configurations, such as top-P and top-k
sampling, to expand MCT’s applicability.
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A Appendix

This appendix provides additional quantitative re-
sults supporting the findings presented in the main
text. The following figures and tables illustrate the
performance of MCT compared to the oracle tem-
perature and non-HPO fixed-temperature strategies,
including the best average temperature and random
selection, across various model-dataset combina-
tions.

figures 3, 4, and 5 present the AUROC, PR-AUC,
and AURAC score distributions for different UQ
methods across a range of fixed temperature values,
complementing figure 1 in the main text. These
distributions highlight the significant impact of tem-
perature selection on performance and underscore
the limitations of static temperature choices.

figures 6 and 7 compare the performance of
MCT with oracle-fixed temperature values using
PR-AUC and AURAC metrics, complementing the
results shown in figure 2.

Tables 2 and 3 provide detailed performance
comparisons for each UQ method across multiple
models and datasets using the PR-AUC and AU-
RAC metrics, complementing the results shown in
Table 1.
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Figure 3: AUROC score distributions of tested UQ methods across various model-dataset combinations at different
fixed temperature values.
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Figure 4: PR-AUC score distributions of tested UQ methods across various model-dataset combinations at different
fixed temperature values.
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Figure 5: AURAC score distributions of tested UQ methods across various model-dataset combinations at different
fixed temperature values.
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Figure 6: Comparison between oracle-fixed temperature performance and MCT sampling strategy performance
across different UQ methods using the PR-AUC metric.
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Figure 7: Comparison between oracle-fixed temperature performance and MCT sampling strategy performance
across different UQ methods using the AURAC metric.
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Discrete Semantic Entropy
Model Dataset Oracle MCT Best Avg. Random MCT ∆ (%) Best Avg. ∆ (%) Random ∆ (%)

Falcon-7b-Instruct

triviaQA 0.7970 0.7899 0.7597 0.7738 0.89 4.68 2.92
bioasq 0.8594 0.8325 0.8379 0.8333 3.13 2.51 3.04
svamp 0.8145 0.8219 0.7937 0.8015 -0.90 2.56 1.60
nq 0.8962 0.8987 0.8925 0.8866 -0.28 0.41 1.08

Mistral-7b-Instruct

triviaQA 0.7057 0.6461 0.5665 0.6111 8.46 19.73 13.42
bioasq 0.7493 0.7213 0.7129 0.7206 3.74 4.85 3.84
svamp 0.6956 0.6974 0.6648 0.6496 -0.25 4.44 6.61
nq 0.7893 0.7545 0.7547 0.7613 4.41 4.38 3.55

Falcon-40b

nq 0.8103 0.7899 0.7637 0.7839 2.52 5.76 3.26
triviaQA 0.6431 0.5978 0.5630 0.5745 7.05 12.47 10.68
svamp 0.6812 0.6884 0.5426 0.5978 -1.06 20.35 12.25
bioasq 0.7661 0.6980 0.6412 0.6836 8.89 16.31 10.77

Llama-8b-Instruct

triviaQA 0.6817 0.6386 0.6427 0.6523 6.31 5.72 4.30
nq 0.8100 0.8240 0.7921 0.7924 -1.73 2.21 2.17
bioasq 0.6945 0.6668 0.6390 0.6568 3.98 7.98 5.42
svamp 0.5701 0.6060 0.5618 0.5399 -6.28 1.46 5.30

Naive Entropy

Falcon-7b-Instruct

triviaQA 0.7169 0.6753 0.6770 0.6758 5.80 5.56 5.73
bioasq 0.7688 0.7540 0.7599 0.7440 1.92 1.16 3.22
svamp 0.8058 0.7984 0.7746 0.7796 0.92 3.88 3.26
nq 0.8826 0.8773 0.8783 0.8695 0.60 0.49 1.49

Mistral-7b-Instruct

triviaQA 0.4536 0.3554 0.2993 0.3488 21.66 34.02 23.11
bioasq 0.6634 0.6096 0.6474 0.6134 8.12 2.42 7.54
svamp 0.5695 0.5928 0.5133 0.5161 -4.08 9.87 9.39
nq 0.6832 0.6637 0.6627 0.6582 2.86 3.01 3.67

Falcon-40b

nq 0.7034 0.6598 0.6864 0.6822 6.20 2.41 3.01
triviaQA 0.4107 0.3730 0.3644 0.3746 9.17 11.28 8.80
svamp 0.5710 0.5341 0.4634 0.5191 6.46 18.84 9.10
bioasq 0.4988 0.4804 0.4580 0.4734 3.70 8.19 5.09

Semantic Entropy

Falcon-7b-Instruct

triviaQA 0.7789 0.7767 0.7617 0.7473 0.28 2.21 4.06
bioasq 0.8552 0.8247 0.8331 0.8193 3.57 2.58 4.19
svamp 0.8029 0.8200 0.7845 0.7933 -2.12 2.29 1.21
nq 0.8896 0.8908 0.8811 0.8779 -0.14 0.95 1.31

Mistral-7b-Instruct

triviaQA 0.6788 0.5939 0.4749 0.5537 12.51 30.04 18.43
bioasq 0.7218 0.6956 0.6755 0.6818 3.64 6.42 5.54
svamp 0.6772 0.6591 0.6324 0.6172 2.69 6.62 8.87
nq 0.7778 0.7395 0.7266 0.7413 4.92 6.58 4.68

Falcon-40b

nq 0.8025 0.7909 0.7655 0.7809 1.44 4.62 2.69
triviaQA 0.5964 0.5626 0.5634 0.5551 5.66 5.52 6.91
svamp 0.6915 0.7190 0.5544 0.5896 -3.97 19.83 14.74
bioasq 0.7572 0.7114 0.6187 0.6890 6.05 18.29 9.01

Number of Semantic Sets

Falcon-7b-Instruct

triviaQA 0.7931 0.7871 0.7565 0.7681 0.76 4.62 3.16
bioasq 0.8592 0.8341 0.8394 0.8386 2.92 2.31 2.40
svamp 0.8136 0.8193 0.7922 0.8024 -0.70 2.64 1.38
nq 0.8961 0.8992 0.8925 0.8889 -0.35 0.41 0.81

Mistral-7b-Instruct

triviaQA 0.7053 0.6518 0.5646 0.6314 7.58 19.96 10.48
bioasq 0.7470 0.7240 0.7168 0.7168 3.07 4.04 4.04
svamp 0.6942 0.6984 0.6655 0.6553 -0.60 4.14 5.61
nq 0.7904 0.7578 0.7594 0.7621 4.13 3.92 3.57

Falcon-40b

nq 0.8105 0.7903 0.7630 0.7808 2.50 5.86 3.67
triviaQA 0.6478 0.5994 0.5636 0.5773 7.47 13.01 10.88
svamp 0.6748 0.6791 0.5408 0.5864 -0.64 19.85 13.11
bioasq 0.7662 0.7001 0.6444 0.6894 8.62 15.89 10.01

Llama-8b-Instruct

triviaQA 0.6884 0.6406 0.6490 0.6597 6.94 5.72 4.17
nq 0.8100 0.8217 0.7940 0.7943 -1.45 1.98 1.95
bioasq 0.6930 0.6726 0.6431 0.6609 2.94 7.20 4.64
svamp 0.5671 0.6088 0.5659 0.5383 -7.36 0.21 5.07

P(True)

Falcon-7b-Instruct

triviaQA 0.5504 0.5229 0.5380 0.5274 4.99 2.26 4.17
bioasq 0.6931 0.5879 0.6425 0.6404 15.18 7.30 7.61
svamp 0.6626 0.6399 0.6424 0.6480 3.43 3.05 2.19
nq 0.8413 0.8280 0.8305 0.8255 1.58 1.29 1.89

Mistral-7b-Instruct

triviaQA 0.6263 0.5140 0.5407 0.5748 17.93 13.67 8.22
bioasq 0.7144 0.6528 0.6707 0.6708 8.63 6.11 6.11
svamp 0.6216 0.5351 0.4813 0.5406 13.91 22.57 13.03
nq 0.7955 0.7473 0.7602 0.7637 6.06 4.43 3.99

Falcon-40b

nq 0.8417 0.7927 0.6954 0.7326 5.82 17.39 12.96
triviaQA 0.5577 0.3654 0.4780 0.5111 34.49 14.29 8.35
svamp 0.6386 0.6569 0.4888 0.5747 -2.88 23.45 10.00
bioasq 0.7486 0.6228 0.6323 0.6832 16.80 15.54 8.73

Table 2: Performance comparison of UQ methods using PR-AUC score. Bold values show best performance per
scenario, with ∆ indicating difference from oracle baseline (lower ∆ is better). Note: MCT ∆ may be negative
when performance exceeds the oracle baseline.
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Discrete Semantic Entropy
Model Dataset Oracle MCT Best Avg. Random MCT ∆ (%) Best Avg. ∆ (%) Random ∆ (%)

Falcon-7b-Instruct

triviaQA 0.6418 0.6295 0.6367 0.6046 1.91 0.80 5.79
bioasq 0.5120 0.4878 0.5098 0.4833 4.72 0.42 5.60
svamp 0.3592 0.3546 0.3341 0.3320 1.28 7.00 7.59
nq 0.3304 0.3209 0.3265 0.3135 2.88 1.18 5.12

Mistral-7b-Instruct

triviaQA 0.8448 0.8200 0.8137 0.8103 2.93 3.67 4.08
bioasq 0.6608 0.6327 0.6567 0.6387 4.25 0.63 3.34
svamp 0.7819 0.7576 0.7609 0.7427 3.11 2.70 5.01
nq 0.5747 0.5557 0.5502 0.5488 3.30 4.26 4.51

Falcon-40b

nq 0.5261 0.5245 0.5104 0.5127 0.32 2.99 2.56
triviaQA 0.8703 0.8738 0.8619 0.8569 -0.40 0.97 1.53
svamp 0.6853 0.6654 0.6258 0.6480 2.90 8.69 5.46
bioasq 0.6494 0.6430 0.6115 0.6297 1.00 5.84 3.03

Llama-8b-Instruct

triviaQA 0.8298 0.8149 0.8222 0.8183 1.79 0.91 1.38
nq 0.5649 0.5565 0.5634 0.5558 1.49 0.27 1.60
bioasq 0.7121 0.6934 0.6961 0.6971 2.62 2.25 2.11
svamp 0.7042 0.7290 0.7042 0.6863 -3.52 0.00 2.55

Naive Entropy

Falcon-7b-Instruct

triviaQA 0.6314 0.6029 0.6001 0.6056 4.51 4.96 4.08
bioasq 0.4968 0.4867 0.4932 0.4858 2.03 0.72 2.22
svamp 0.3623 0.3652 0.3423 0.3492 -0.82 5.50 3.59
nq 0.3369 0.3287 0.3320 0.3218 2.43 1.43 4.47

Mistral-7b-Instruct

triviaQA 0.8278 0.8085 0.8191 0.8022 2.33 1.05 3.09
bioasq 0.6805 0.6631 0.6699 0.6601 2.56 1.56 3.00
svamp 0.7608 0.7573 0.7550 0.7466 0.46 0.76 1.88
nq 0.5618 0.5554 0.5537 0.5500 1.14 1.44 2.09

Falcon-40b

nq 0.5166 0.5159 0.5049 0.5087 0.14 2.28 1.52
triviaQA 0.8823 0.8730 0.8735 0.8724 1.05 1.00 1.12
svamp 0.6708 0.6276 0.6270 0.6460 6.44 6.53 3.69
bioasq 0.5938 0.5872 0.5653 0.5765 1.10 4.79 2.91

Semantic Entropy

Falcon-7b-Instruct

triviaQA 0.6637 0.6464 0.6356 0.6074 2.62 4.24 8.48
bioasq 0.5266 0.5036 0.5233 0.4942 4.35 0.63 6.15
svamp 0.3680 0.3728 0.3462 0.3471 -1.29 5.93 5.69
nq 0.3458 0.3308 0.3458 0.3242 4.33 0.00 6.25

Mistral-7b-Instruct

triviaQA 0.8522 0.8215 0.8428 0.8148 3.60 1.10 4.38
bioasq 0.6650 0.6390 0.6617 0.6440 3.90 0.49 3.16
svamp 0.7990 0.7584 0.7700 0.7573 5.08 3.63 5.22
nq 0.5829 0.5685 0.5825 0.5554 2.47 0.07 4.73

Falcon-40b

nq 0.5466 0.5350 0.5321 0.5300 2.12 2.66 3.03
triviaQA 0.8827 0.8730 0.8688 0.8587 1.10 1.57 2.72
svamp 0.7050 0.7012 0.6491 0.6680 0.54 7.92 5.25
bioasq 0.6622 0.6632 0.6284 0.6449 -0.15 5.11 2.62

Number of Semantic Sets

Falcon-7b-Instruct

triviaQA 0.6320 0.6218 0.6084 0.5912 1.61 3.73 6.46
bioasq 0.5042 0.4834 0.5042 0.4850 4.13 0.00 3.81
svamp 0.3511 0.3475 0.3246 0.3293 1.03 7.55 6.20
nq 0.3240 0.3140 0.3221 0.3100 3.08 0.57 4.30

Mistral-7b-Instruct

triviaQA 0.8420 0.8187 0.8118 0.8158 2.77 3.59 3.12
bioasq 0.6567 0.6312 0.6516 0.6302 3.89 0.78 4.04
svamp 0.7783 0.7548 0.7581 0.7469 3.02 2.59 4.04
nq 0.5687 0.5512 0.5478 0.5435 3.06 3.67 4.42

Falcon-40b

nq 0.5200 0.5197 0.5025 0.5068 0.06 3.38 2.54
triviaQA 0.8669 0.8715 0.8592 0.8550 -0.54 0.89 1.37
svamp 0.6759 0.6509 0.6134 0.6357 3.70 9.24 5.94
bioasq 0.6456 0.6349 0.6035 0.6246 1.66 6.52 3.26

Llama-8b-Instruct

triviaQA 0.8265 0.8120 0.8223 0.8164 1.76 0.51 1.23
nq 0.5582 0.5459 0.5575 0.5498 2.22 0.13 1.51
bioasq 0.7052 0.6887 0.6957 0.6920 2.35 1.36 1.87
svamp 0.6965 0.7233 0.6965 0.6820 -3.85 0.00 2.08

P(True)

Falcon-7b-Instruct

triviaQA 0.4866 0.4485 0.4547 0.4543 7.82 6.54 6.63
bioasq 0.4436 0.3315 0.4009 0.3975 25.26 9.62 10.38
svamp 0.2340 0.2121 0.2340 0.2178 9.37 0.00 6.93
nq 0.2953 0.2673 0.2747 0.2773 9.48 7.00 6.10

Mistral-7b-Instruct

triviaQA 0.8542 0.8272 0.8282 0.8376 3.17 3.04 1.94
bioasq 0.7296 0.7012 0.7067 0.7059 3.90 3.13 3.25
svamp 0.7532 0.7207 0.7274 0.7359 4.31 3.42 2.29
nq 0.6109 0.5832 0.5925 0.5936 4.54 3.00 2.84

Falcon-40b

nq 0.5519 0.5463 0.5100 0.5231 1.00 7.59 5.22
triviaQA 0.8844 0.8652 0.8759 0.8718 2.17 0.95 1.42
svamp 0.6819 0.6272 0.6091 0.6496 8.03 10.69 4.74
bioasq 0.7084 0.6782 0.6771 0.6901 4.26 4.41 2.58

Table 3: Performance comparison of UQ methods using AURAC score. Bold values show best performance per
scenario, with ∆ indicating difference from oracle baseline (lower ∆ is better). Note: MCT ∆ may be negative
when performance exceeds the oracle baseline
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