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Gibberish is All You Need for Membership Inference Detection in
Contrastive Language-Audio Pretraining
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Abstract

Audio can disclose PII, particularly when com-
bined with related text data. Therefore, it is
essential to develop tools to detect privacy
leakage in Contrastive Language-Audio Pre-
training(CLAP). Existing MIAs need audio as
input, risking exposure of voiceprint and re-
quiring costly shadow models. We first pro-
pose PRMID, a membership inference detec-
tor based probability ranking given by CLAP,
which does not require training shadow models
but still requires both audio and text of the in-
dividual as input. To address these limitations,
we then propose USMID, a textual unimodal
speaker-level membership inference detector,
querying the target model using only text data.
We randomly generate textual gibberish that are
clearly not in training dataset. Then we extract
feature vectors from these texts using the CLAP
model and train a set of anomaly detectors on
them. During inference, the feature vector of
each test text is input into the anomaly detector
to determine if the speaker is in the training
set (anomalous) or not (normal). If available,
USMID can further enhance detection by in-
tegrating real audio of the tested speaker. Ex-
tensive experiments on various CLAP model
architectures and datasets demonstrate that US-
MID outperforms baseline methods using only
text data.

1 Introduction

Microphones in Internet of Things (IoT) de-
vices (Abdul-Qawy et al., 2015) like phones can
lead to unintended inferences from audio (Shah
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Figure 1: Current MIAs on MCL always query with dual-
modal data of the tested individual for inference, while our
goal is to avoid this.

et al., 2021; Feng et al., 2022; Zhao et al., 2023a;
Li and Zhao, 2023). Vocal features and linguistic
content can reveal personally identifiable informa-
tion (PII) (Schwartz and Solove, 2011) like biomet-
ric identity and socioeconomic status. Combining
audio with text data increases susceptibility to infer-
ence attacks. Thus, developing tools to detect pri-
vacy leakage in text-audio models like contrastive
language-audio pre-training(CLAP) (Elizalde et al.,
2023; Zhao et al., 2023b; Wu et al., 2023a) is es-
sential.

Traditional methods like membership inference
attacks (MIAs) (Shokri et al., 2017) focus on de-
termining whether a specific data sample was used
for model training. Research on MIAs for mul-
timodal contrastive learning (MCL) (Yuan et al.,
2021) like Contrastive Language-Image Pretrain-
ing(CLIP) (Radford et al., 2021) is extensive (Ko
et al., 2023; Li et al., 2024a; Hintersdorf et al.,
2024), but little attention is given to CLAP.

Traditional MIAs train shadow models to simu-
late target model’s behavior (Abdullah et al., 2021;
Chen et al., 2023; Tseng et al., 2021), which re-
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Figure 2: Optimization of audio is guided by a CLAP
model trained on LibriSpeech dataset where each person has
50 audios. Distance between the embeddings of optimized
audio and tested text, and probability score of the tested text
among gibberish, can clearly distinguish between samples
within and outside the training set of target CLAP model.

quires high computational costs, particularly for
multimodal models like CLAP. We first propose
PRMID, which uses the probability ranking pro-
vided by CLAP for membership inference detec-
tion, thereby avoiding the computational costs of
shadow models.

However, current MIAs for MCL as well as
PRMID often rely on dual-modal data inputs (Hu
et al., 2022), which may lead to new leakage, as
one modal of the pair might not have been exposed
to the risky target model. Therefore, a detector
that does not query CLAP with explicitly matched
audio-text pair of speaker (see an example in Fig-
ure 1) is desirable. This concept is known as multi-
modal data protection (Liu et al., 2024).

To address these limitations, we propose US-
MID, a textual unimodal speaker-level member-
ship inference (Miao et al., 2022) detector for
CLAP models, which queries the target model with
only text data. Specifically, we introduce a fea-
ture extractor that maps text data to feature vectors
through CLAP-guided audio optimization. We then
generate sufficient text gibberish that clearly does
not match any text description in training dataset.

As shown in Figure 2, we observe a distinct
separation between the features of gibberish and
members in training set.

Based on this observation, we train multiple
anomaly detectors using the feature vectors of gen-
erated text gibberish, creating an anomaly detec-
tion voting system. During testing, USMID inputs
the feature vectors of test text into the voting sys-
tem to determine if the corresponding speaker is
in(anomalous) or out(normal) of the training set.

Our contributions are summarized as follows:
• We are the first to study membership infer-

ence detection in CLAP, constructing several
audio-text pair datasets and trained various
architectures of CLAP models.

• We introduce USMID, the first speaker-level
membership inference detector for CLAP,
which avoids exposing audio data to risky
target model and the high cost for training
shadow models in traditional MIAs.

• Extensive experiments show that USMID out-
performs all baselines even using only text PII
for query.

2 Related Work

2.1 Contrastive Language-Audio Pretraining
Contrastive language-audio pretraining(CLAP) has
significantly improved multimodal representation
learning (Wu et al., 2023b; Zhao et al., 2023b).
Techniques like DSCLAP and T-CLAP enhance
domain-specific applications and temporal align-
ment, showcasing the effectiveness of integrating
language and audio (Li et al., 2024b).

2.2 Membership Inference in Automatic
Speech Recognition

Recent studies show that automatic speech recogni-
tion (ASR) systems are vulnerable to MIAs(Li and
Zhao, 2023; Shah et al., 2021).These MIAs typ-
ically rely on costly shadow models(Chen et al.,
2023) and require real audio as input to target
model(Abdullah et al., 2021), which may lead to
new leakage.

3 Threat Model

Consider a CLAP model M trained on a dataset
Dtrain. Each sample si = (ti, xi) in Dtrain contains
the PII of a speaker, consisting of a textual descrip-
tion ti and its corresponding audio xi. For distinct
indices i ̸= j, it is possible for ti = tj while
xi ̸= xj , indicating that multiple non-identical au-
dio samples may exist for the same speaker.

Detector’s Goal. The detector aims to probe po-
tential leakage of a speaker’s PII through the target
CLAP model M , seeking to determine whether any
PII of the speaker were included in the training set
Dtrain. For a speaker with textual description t, the
detector aims to determine whether there exists a
PII sample (ti, xi) ∈ Dtrain such that ti = t.

Note that our goal is not to detect a specific
text-audio pair (t, x), but rather to identify the ex-
istence of any pair with textual description t. This
is because that multiple audio samples of the same
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speaker may be used for training, any of which
could contribute to potential PII leakage.

Detector’s Knowledge and Capability. The
detector can query M and observe the output, in-
cluding extracted audio and text embeddings as
well as their matching score. For the target textual
description t, depending on the application scenar-
ios, the detector may or may not have actual audios
corresponding to t. However, if the detector does
have the corresponding audio samples, it cannot
include them in its queries to M due to privacy
concerns. Additionally, the detector is unable to
modify M or access its internal state.

4 Methodology

4.1 Probability Ranking Membership
Inference Detector

CLAP is trained to maximize cosine similarity be-
tween audio and text features of members. Thus,
if one modality of a member is provided to tar-
get model, the corresponding other modality data
typically yields a higher probability score in the
calculated distribution when input alongside other
samples.

Based on this, we propose PRMID (Probability
Ranking Membership Inference Detector) as shown
in Figure 3.

Probability Distribution Evaluated by CLAP.
We first match the tested audio x with tested text t
and a set of textual gibberish G = {g1, g2, . . . , gℓ}.
We use CLAP to obtain the probability distribution
P = {P (t), P (g1), P (g2), . . . , P (gℓ)}, where
P (t) + P (g1) + P (g2) + . . .+ P (gℓ) = 1.

Membership Inference through Ranking. We
define the rank of the tested text t within the prob-
ability distribution P as rt = P (t). We conduct
N repeated experiments, generating ℓ gibberish
samples in each trial. Each experiment yields a
probability distribution P , which enables us to ana-
lyze rt.

We set thresholds T1 and T2 for top k% and
bottom k%, where k% is a specified percentage
(for example, 1%).

We consider three scenarios below:

• If count of rt in top k% exceeds T1 across N
experiments, we infer that both t and x are
present in Dtrain.

• If count of rt in bottom k% exceeds T2 across
N experiments, t is outside of Dtrain, while x
remains within.

• A sample is classified as random if rt exhibits
a uniform distribution across all ℓ+ 1 options.
Specifically, the expected probability for any
rank is 1

ℓ+1 . If the observed frequencies for
each rank fall within the expected range of
N
ℓ+1 , we conclude that t is outside of Dtrain,
with the status of x remaining undetermined.

Membership inference for Audio. In reverse
inference, we can swap the roles of audio and text
and repeat the inference process above as illustrated
in Figure 4, allowing membership inference for
both modalities.

4.2 Unimodal Speaker-Level Membership
Inference Detector

While PRMID requires both audio and text inputs
from the individual as input for the target model,
this can introduce new privacy risks, as the target
model may not have previously encountered dual-
modal PII of that individual.

To address this limitation, we propose USMID
(unimodal detector for membership inference detec-
tion). This detector is designed to ascertain whether
the PII of a speaker is included in the training set
of target CLAP model M , under the condition that
only the speaker’s textual description is provided
to M .

An overview of USMID is illustrated in Figure 5.
Firstly, for a textual description t, we develop a fea-
ture extractor to map t to a feature vector, through
audio optimization guided by CLAP. Then, we
make the key observation that textual gibberish
like “dv3*4l-XT0”—random combinations of num-
bers and symbols clearly do not match any textual
descriptions in training set, and hence the detec-
tor can generate large amount of textual gibberish
that are known out of Dtrain. Using feature vectors
extracted from these gibberish, detector can train
multiple anomaly detectors to form an anomaly
detection voting system. Finally, during inference
phase, the features of the target textual description
are fed into the system, and the inference result
is determined through voting. Furthermore, when
actual audio samples corresponding to the textual
description are available, the detector can leverage
them to perform clustering on feature vectors of
the test samples to enhance detection performance.

Feature Extraction through CLAP-guided Au-
dio Optimization. The feature extraction for a tex-
tual description t involves iterative optimization of
an audio x, to maximize the correlation between
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Figure 3: To determine whether a person’s text is in the training set, we input his audio alongside a collection of other individuals’
audios into the CLAP model. The model then generates a probability distribution based on the matching scores, which we use to
conduct inference.

Figure 4: To determine whether a person’s audio is in the training set, we input his text alongside a collection of texts from
other individuals.

the embeddings of t and x produced by the target
CLAP model. The extraction process, described in
Algorithm 1, iterates for n epochs; and within each
epoch, an audio is optimized for m iterations, to
maximize the cosine similarity between its embed-
ding of CLAP and that of target textual description.
The average optimized cosine similarity S and stan-
dard deviation of optimized audio embeddings D
are extracted as the features of t from model M .

Generation of Textual Gibberish. USMID
starts the detection process with generating a set of
ℓ gibberish strings G = {g1, g2, . . . , gℓ}, which are
random combinations of digits and symbols with
certain length. As these gibberish texts are ran-
domly generated at the inference time, with over-
whelming probability that they did not appear in
the training set. Applying the proposed feature ex-
traction algorithm on G, we obtain ℓ feature vectors
F = {f1, f2, . . . , fℓ} of the gibberish texts.

Training Anomaly Detectors. Motivated by the

observations in Figure3 that feature vectors of the
texts in and out of the training set of M are well
separated, we propose to train an anomaly detector
using F , such that texts out of Dtrain are considered
“normal”, and the problem of membership inference
on t is converted to anomaly detection on its fea-
ture vector. More specifically, t is classified as part
of Dtrain, if its feature vector is detected “abnormal”
by the trained anomaly detector. Specifically in
USMID, we train several anomaly detection mod-
els on F , such as Isolation Forest (Liu et al., 2008),
LocalOutlierFactor (Cheng et al., 2019) and Au-
toEncoder (Chandola et al., 2009). These models
constitute an anomaly detection voting system that
will be used for membership inference on the test
textual descriptions.

Textual Membership Inference through Vot-
ing. For each textual description t in the test set,
USMID first extracts its feature vector f using Al-
gorithm 1, and then feeds f to each of the obtained
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Figure 5: Overview of USMID.

Algorithm 1 CLAP-guided Feature Extraction
Input: Target CLAP model M , textual description
t
Output: Mean optimized cosine similarity S, stan-
dard deviation of optimized audio embeddings D

1: n← number of epochs
2: m ← number of optimization iterations per

epoch
3: S ← ∅, V ← ∅
4: vt ←M(t) ▷ Obtain text embedding from M
5: for i = 1 to n do
6: x0 ← Rand() ▷ Randomly generate an

initial audio
7: for j = 0 to m− 1 do
8: vxj ←M(xj) ▷ Obtain audio

embedding from M
9: xj+1 ← argmaxxj

vt·vxj
∥vt∥ ∥vxj ∥

▷

Update audio to maximize cosine similarity
10: end for
11: Si ← vt·vxm

∥vt∥ ∥vxm∥ ▷ Optimized similarity
for epoch i

12: S ← S ∪ {Si}, V ← V ∪ {vxm}
13: end for
14: S ← 1

n

∑
Si∈S Si

15: v̄ ← 1
n

∑
v∈V v

16: D ←
√

1
n

∑
v∈V ∥v − v̄∥2

17: return S, D

anomaly detectors to cast a vote on whether t is an
anomaly. When the total number of votes exceeds
a predefined detetion threshold N , t is determined
as an anomaly, i.e., PII with textual description t
is used to train the CLAP model M ; otherwise, t
is considered normal and no PII with t is leaked
through training of M .

Enhancement with Real audios. At inference
time, if real audios of the test texts are available
at the detector (e.g., audios of a person), they can
be used to extract an additional feature measuring

the average distance between the embeddings of
real audios and those of optimized audios using the
CLAP model, using which the feature vectors of
the test texts can be clustered into two partitions
with one in Dtrain and another one out of Dtrain.
This adds an additional vote for each test text to the
above described anomaly detection voting system,
potentially facilitating the detection accuracy.

Specifically, for each test text t, the detec-
tor is equipped with a set of c real audios
{x1real, x2real, . . . , xcreal}. Similar to the feature ex-
traction process in Algorithm 1, over k epochs with
independent initializations, k optimized audios
{x1opt, x2opt, . . . , xkopt} for t are obtained under the
guidance of the CLAP model. Then, we apply a pre-
trained feature extraction model F (e.g.,DeepFace
for face audios) to the real and optimized audios
to obtain real embeddings {v1real, v2real, . . . , vcreal}
and optimized embeddings {v1opt, v2opt, . . . , vkopt}.
Finally, we compute the average pair-wise ℓ2 dis-
tance between the real and optimized embeddings,
denoted by R, over c · k pairs, and use R as an
additional feature of the text t.

For a batch of B test texts
(t1, t2, . . . , tB), we extract their features
((S1, D1, R1), (S2, D2, R2), . . . , (SB, DB, RB))
first. Feeding the first two features Si and Di into
a trained anomaly detection system, each text ti
obtains an anomaly score based on the number of
detectors that classify it as abnormal. Additionally,
the K-means algorithm with K = 2 partitions
the feature vectors {(Si, Di, Ri)}Bi=1 into “normal”
cluster and an “abnormal” clusters, contributing
another vote to the anomaly score of each instance.
Finally, membership inference is performed by
comparing the total votes received to a detection
threshold N ′.

5 Evaluations

We evaluate the performance of USMID, for
speaker-level membership inference using only text
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Table 1: Comparison with baseline methods.

Architecture Number of Audios per Method Precision Recall Accuracy
person in training set

LibriSpeech

1

Audio Auditor 63.38 ± 0.24 73.24 ± 0.33 65.19 ± 0.27
SLMIA-SR 75.21 ± 0.18 88.64 ± 0.14 83.42 ± 0.21

AuditMI 82.57 ± 0.21 95.26 ± 0.26 87.91 ± 0.24
PRMID 85.32 ± 0.18 95.58 ± 0.22 89.75 ± 0.17
USMID 86.49 ± 0.19 96.49 ± 0.23 91.27 ± 0.15

50

Audio Auditor 65.59 ± 0.23 80.13 ± 0.16 66.59 ± 0.29
SLMIA-SR 76.19 ± 0.31 90.07 ± 0.18 84.33 ± 0.25

AuditMI 83.41 ± 0.14 98.04 ± 0.09 88.16 ± 0.13
PRMID 86.15 ± 0.16 95.87 ± 0.24 90.12 ± 0.19
USMID 88.12 ± 0.26 98.76 ± 0.12 93.07 ± 0.16

CommonVoice

1

Audio Auditor 54.85 ± 0.23 68.22 ± 0.19 60.52 ± 0.21
SLMIA-SR 65.39 ± 0.36 76.91 ± 0.27 70.47 ± 0.24

AuditMI 71.43 ± 0.28 81.45 ± 0.41 74.36 ± 0.18
PRMID 72.35 ± 0.23 84.52 ± 0.20 78.43 ± 0.18
USMID 74.96 ± 0.25 86.01 ± 0.22 81.79 ± 0.15

50

Audio Auditor 56.11 ± 0.33 73.58 ± 0.27 61.35 ± 0.25
SLMIA-SR 66.28 ± 0.21 79.27 ± 0.34 72.18 ± 0.22

AuditMI 73.52 ± 0.17 84.81 ± 0.28 75.64 ± 0.23
PRMID 75.12 ± 0.19 88.26 ± 0.18 80.98 ± 0.14
USMID 76.47 ± 0.12 89.46 ± 0.32 82.33 ± 0.19

Table 2: Samples of randomly generated gibberish.

+
¯
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d3|%5G\_ 4teh<E{43ter 5gtb-hgF
#4c3rdg ’2_:gt6[45gb g*|<trgt|3/

PII of the individual.
Dataset Construction. In addition to Lib-

riSpeech (Panayotov et al., 2015), we built a
speaker recognition dataset based on Common-
Voice18.0 (Ardila et al., 2019), which covers var-
ious social groups and has richer background in-
formation. Specifically, 3,000 speakers (1,500 for
training and 1,500 for verification) were selected
from CommonVoice, and their audio files were
accompanied by unique user PII like ID, age, gen-
der, and region information; then for each user ID,
we used GPT-4o to generate detailed background
description based on their PII; finally, these ex-
panded background descriptions and audio files
corresponding to each user ID constituted the train-
ing set of CLAP.

By doing this, we obtained basic facts about who
is in the training set and who is not. For each type
of content, we created two datasets: one with 1
audio clip per person and another with 50 audio
clips per person.

Models. In our CLAP model, audio en-
coder uses HTSAT(Chen et al., 2022), which is
transformer with 4 groups of swin-transformer

Table 3: Comparison of training time, GPU memory con-
sumption, and inference time per sample with baselines on
LibriSpeech dataset.

Method Train Time GPU Memory Inference Time

Audio Auditor 7.5h 11.3GB 0.359s
SLMIA-SR 9h 13.7GB 0.406s
AuditMI 80h 49.5GB 2.375s
USMID 3.7h 24.3GB 0.628s

blocks(Liu et al., 2021). We use the output of its
penultimate layer (a 768-dimensional vector) as
the output sent to the projection MLP layer. Text
encoder uses RoBERTa (Liu et al., 1907), which
converts input text into a 768-dimensional feature
vector. We apply a 2-layer MLP with ReLU acti-
vation (Agarap, 2018) to map the audio and text
outputs to 512 dimensions for final representation.

Evaluation Metrics. USMID’s effectiveness
is assessed using Precision, Recall, and Accuracy
metrics, measuring anomaly prediction accuracy,
correct anomaly identification, and overall predic-
tion correctness, respectively.

Baselines. Current speaker-level membership in-
ference detection methods require detector to query
target model with real audio. Most MIAs involve
training shadow models, which can be particularly
costly for multimodal LLMs. We empirically com-
pare the performance of USMID with PRMID and
the following SOTA inference methods. The audio
encoders for Audio Auditor and SLMIA-SR are
LSTM, for AuditMI they are Transformer, and for
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Table 4: Comparison of performance with a given audio.

Architecture Number of audios per USMID Precision Recall Accuracy
person in training set

LibriSpeech
1 Text only 86.49 ± 0.19 96.49 ± 0.23 91.27 ± 0.15

With 1 audio 89.21 ± 0.14 98.68 ± 0.18 93.54 ± 0.13

50 Text only 88.12 ± 0.26 98.76 ± 0.12 93.07 ± 0.16
With 1 audio 91.63 ± 0.21 99.57 ± 0.08 95.24 ± 0.23

CommonVoice
1 Text only 74.96 ± 0.25 86.01 ± 0.22 81.79 ± 0.15

With 1 audio 76.02 ± 0.17 89.55 ± 0.31 83.56 ± 0.21

50 Text only 76.47 ± 0.12 89.46 ± 0.32 82.33 ± 0.19
With 1 audio 79.34 ± 0.23 91.13 ± 0.16 85.69 ± 0.24

PRMID and USMID, they are CLAP.
• Audio Auditor (Miao et al., 2022) trains

shadow models and extracts audio features
for inference.

• SLMIA-SR (Chen et al., 2023) employs a
shadow speaker recognition system to train
attack model.

• AuditMI (Teixeira et al., 2024) trains shadow
model using input utterances and features
from model outputs.

All experiments are performed using four
NVIDIA GeForce RTX 4090 GPUs. Each exper-
iment is repeated for 10 times, and the average
values and the standard deviations are reported.

5.1 Results

On training anomaly detectors, we randomly gen-
erated ℓ = 100 textual gibberish (some of them are
shown in Table 2).

The audio optimization was performed for n =
100 epochs; and in each epoch, m = 100 Gradi-
ent Descent (GD) iterations with a learning rate
of 3 × 10−2. Four anomaly detection models,
i.e., LocalOutlierFactor (Cheng et al., 2019), Iso-
lationForest (Liu et al., 2008), OneClassSVM (Li
et al., 2003; Khan and Madden, 2014), and AutoEn-
coder (Chen et al., 2018) were trained, and N = 3
was chosen as the detection threshold.

As shown in Table 1, USMID consistently out-
performs all baselines even with only text PII,
achieving a precision of 88.12% on LibriSpeech
with 50 audio clips per person.

Additionally, USMID demonstrates notable ad-
vantages in training time and resource efficiency
compared to baseline methods as shown in Table 3.
It requires only 3.7 hours of training, much less
than AuditMI’s 80 hours, while maintaining com-
petitive inference times.

We also evaluate the effect of providing USMID
with a real audio of the tested person. In this case,
the embedding distances between the real and op-
timized audios of the test samples are used to per-
form a 2-means clustering, adding another vote to
the inference. We accordingly raise the detection
threshold N ′ to 4. As illustrated in Table 4, the
given audio helps to improve the performance of
USMID across all tested CLAP models, showing
an increase of 3.36% on CommonVoice with 1 au-
dio clip per person.

5.2 Ablation Study

We further explore the impacts of different system
parameters on the detection accuracy.

Optimization parameters. Figure 6 and 7
show that during feature extraction, optimizing for
n = 100 epochs, each with m = 1, 000 iterations,
offers the optimal performance. Additional epochs
and optimization iterations yield minimal improve-
ments despite increased computational costs.

Detection threshold. Figure 8 and 9 show that
the system achieves higher accuracy with a thresh-
old of three votes for text-only inputs and four
votes when real audio is included. A high threshold
may miss anomalies, while a low threshold may
incorrectly classify normal inputs as anomalies.

Number of textual gibberish. As shown in
Figure 10, for different target models, the detec-
tion accuracies initially improve as the number of
gibberish texts increases, and converge after using
more than 50 gibberish strings.

Number of real audios. As shown in Figure 11,
integrating real audios can enhance the detection ac-
curacy; however, the improvements of using more
than 1 audio are rather marginal.
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Figure 6: Detection accuracy for different numbers of opti-
mization iterations per epoch.

Figure 7: Detection accuracy for different numbers of
epochs.

Figure 8: Detection accuracy with text PII only. Figure 9: Detection accuracy with real audio for enhance-
ment.

Figure 10: Detection accuracy for different numbers of
gibberish.

Figure 11: Detection accuracy for different number of real
audio.

6 Defense and Covert Gibberish
Generation

In real-world scenarios, target models may imple-
ment defense mechanisms to detect anomalous
inputs like gibberish, potentially leading to mis-
leading outputs that cause USMID to misidentify
the inclusion of PII. To address this, we prompted
GPT-3.5-turbo to generate fictional character back-
grounds rather than mere gibberish as shown in
Table 5.

7 Conclusion

This paper presents the first focused study on mem-
bership inference detection in contrastive language-
audio pre-training models. We introduce PRMID

Name Occupation Hometown
Jaston Spark Alien Biologist Martian Oasis
Carl Thunder Climate Manipulator Stormhaven
Vega Quasar Cosmic Navigator Starfall Galaxy

Table 5: Covert gibberish that seem to be real PII.

and USMID, both of which avoid the need for com-
putationally expensive shadow models required in
traditional MIAs. Additionally, USMID is the first
approach to conduct membership inference with-
out exposing real audio samples to target CLAP
models. Evaluations across various CLAP model
architectures and dataset demonstrate the consistent
superiority of USMID across baseline methods.
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