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Abstract
Transformer-based pretrained large language
models (PLM) such as BERT and GPT have
achieved remarkable success in NLP tasks.
However, PLMs are prone to encoding stereo-
typical biases. Although a burgeoning litera-
ture has emerged on stereotypical bias mitiga-
tion in PLMs, such as work on debiasing gen-
der and racial stereotyping, how such biases
manifest and behave internally within PLMs
remains largely unknown. Understanding the
internal stereotyping mechanisms may allow
better assessment of model fairness and guide
the development of effective mitigation strate-
gies. In this work, we focus on attention heads,
a major component of the Transformer archi-
tecture, and propose a bias analysis framework
to explore and identify a small set of biased
heads that are found to contribute to a PLM’s
stereotypical bias. We conduct extensive ex-
periments to validate the existence of these
biased heads and to better understand how
they behave. We investigate gender and racial
bias in the English language in two types of
Transformer-based PLMs: the encoder-based
BERT model and the decoder-based autoregres-
sive GPT model, LLaMA-2 (7B), and LLaMA-
2-Chat (7B). Overall, the results shed light on
understanding the bias behavior in pretrained
language models.

1 Introduction

Transformer-based pretrained language models
such as BERT (Devlin et al., 2018), GPT-2 (Rad-
ford et al., 2019), and large foundation models
such GPT-3 (Brown et al., 2020), PaLM (Chowd-
hery et al., 2022), and LLaMA (Touvron et al.,
2023) have achieved superior performance in many
natural language processing (NLP) tasks (Adlakha
et al., 2023; Gao et al., 2023; Li et al., 2023; Wei
et al., 2023; Yao et al., 2023). However, since
PLMs and foundation models are trained on large
human-written corpora, they often encode unde-
sired stereotypes towards different social groups,

such as gender, race, or people with disabilities
(Bender et al., 2021; Blodgett et al., 2020; Hutchin-
son et al., 2020; Lalor et al., 2024). For example,
GPT-2 has been shown to generate stereotypical
text when prompted with context containing cer-
tain races (Sheng et al., 2019). A stereotype is an
over-simplified belief about a particular group of
people, e.g., “women are emotional.” Stereotyping
can cause representational harms (Blodgett et al.,
2020; Barocas et al., 2017) because it can lead to
discrimination, prejudice, and unfair treatment of
individuals based on their membership in a particu-
lar group (Fiske, 1998).

In order to design robust and accountable NLP
systems, a rich and growing body of literature has
investigated the stereotypes in PLMs from two per-
spectives. The first line of work aims to quantify
the stereotypical biases. For example, May et al.
(2019) propose a Sentence Encoder Association
Test (SEAT), and Nadeem et al. (2021) develop the
StereoSet dataset to assess if a PLM encodes stereo-
types. The second line of work aims to propose
de-biasing strategies that remove undesired stereo-
typical association biases from PLMs (Zhou et al.,
2023; Guo et al., 2022; He et al., 2022; Kaneko and
Bollegala, 2021). Similarly, foundation models
also need to be further aligned to alleviate its bias
concern, using techniques such as Reinforcement
Learning from Human Feedback (RLHF) (Ouyang
et al., 2022). We later demonstrate that RLHF can
help reduce biases by comparing LLaMA-2 with
LLaMA-2-Chat. However, there are still gaps in
understanding stereotypical biases in transformer-
based language models. For bias assessment, while
the common practice uses one score to quantify the
model bias, it is unclear how the bias manifests
internally in a language model. For bias mitigation,
existing works are usually designed in an end-to-
end fashion with a “bias neutralization” objective,
but the inner-workings of the entire debiasing pro-
cedure remain a black-box. There is a need for
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in-depth analysis that uncovers how biases are en-
coded inside language models.

We propose a framework to analyze stereotypical
bias in a principled manner.1 Our main research
question is, how does bias manifest and behave
internally in a language model? Prior work in bet-
ter understanding the internal mechanisms of deep
neural networks has focused on specific model com-
ponents. For example, we take inspiration from the
seminal work of finding a single LSTM unit which
performs sentiment analysis (Radford et al., 2017)
and attributing types of transformer attention heads
as “induction heads” that do in-context learning
(Olsson et al., 2022). In this work, we focus on
attention heads in pretrained language models. At-
tention heads are important because they enable
transformer-based models to capture relationships
between words, such as syntactic, semantic, and
contextual relationships (Clark et al., 2019).

Our proposed framework begins by measuring
the bias score of each Transformer attention head
with respect to a type of stereotype. This is done by
deriving a scalar for each attention head, obtained
by applying a gradient-based head importance de-
tection method on a bias evaluation metric, i.e., the
Sentence Encoder Association Test (SEAT, May
et al., 2019). Heads associated with higher bias
scores are dubbed biased heads, and are the heads
upon which we then conduct in-depth analyses.

In our analysis, we start by investigating how
gender biases are encoded in the attention heads of
BERT. We visualize the positions of biased heads
and how they are distributed across different layers.
To further verify that the identified biased heads
indeed encode stereotypes, we conduct a counter-
stereotype analysis by comparing the attention
score changes between the biased heads and normal
(non-biased) heads. Specifically, given a sentence
containing a gender stereotype such as “women
are emotional,” we obtain its counter-stereotype
“men are emotional.” We then calculate the atten-
tion score change for the stereotypical word “emo-
tional.” Since the only difference between the orig-
inal sentence and its counter-stereotype sentence
is the gender-related word, we would expect sig-
nificant score changes for those heads that encode
biases, and minimal changes for those heads that do
not encode biases. Our analysis on a large external
corpus verifies that the attention score change of

1Throughout the paper, we use the term bias to refer to
stereotypical bias.

the biased heads are statistically and significantly
greater than that of the normal heads.

Later in the paper, we extend the analysis to
investigate bias in the GPT model, LLaMA-2,
LLaMA-2-Chat, as well as racial stereotype as-
sociated with Caucasians and African Americans.
Moreover, we show that a simple debiasing strat-
egy that specifically targets a small set of biased
heads (by masking), which is different from pre-
vious end-to-end bias mitigation approaches that
tune the entire PLM, yields a lower model bias
performance with minimal disruption to language
modeling performance.

In summary, this work makes two important
contributions. First, we open the black-box of
PLM biases, and identify biased heads using a
gradient-based bias estimation method and visu-
alizations, shedding light on the internal behaviors
of bias in large PLMs. The proposed framework
also contributes to the literature on understanding
how PLMs work in general (Rogers et al., 2020).
Second, we propose a novel counter-stereotype
analysis to systematically study the stereotyping
behavior of attention heads. As a resource to
the research community and to spur future work,
we open-source the code used in this study at
https://github.com/hduanac/Biased-Head/.

2 Background

2.1 Multi-Head Self-Attention

Multi-head self-attention in Transformers is the
fundamental building block for language models
(Vaswani et al., 2017). In short, the self-attention
mechanism allows a token to attend to all the tokens
in the context, including itself. Formally, headi,j
denotes the output of attention head j in layer i.,
i.e., headi,j = Attention(Qi,j ,Ki,j , Vi,j), where
Qi,j , Ki,j , and Vi,j are learnable weight matrices.
A language model usually contains multiple layers
of Transformer block and each layer consists of
multiple self-attention heads. For example, BERT-
base contains 12 layers of Transformers block, and
each layer consists of 12 self-attention heads.2

The attention outputs are concatenated and then
combined with a final weight matrix by extending
the self-attention to multi-headed attention:

2In this paper, we use <layer>−<head number> to de-
note a particular attention head, and both the layer index and
head index start with 1. For example, the 12-th head in the
9-th layer in BERT-base model is denoted as 9-12.
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MultiHeadi(Xi−1) = Concat
j=1...H

(headi,j)W
O, (1)

where WO serves as a “fusion” matrix to further
project the concatenated version to the final output,
and Xi−1 is the output from the previous layer.

2.2 Stereotyping and Representational Harms
in PLMs

A growing body of work exploring AI fairness in
general, and bias in NLP systems in particular, has
highlighted stereotyping embedded in state-of-the-
art large language models – that is, such models
represent some social groups disparately on demo-
graphic subsets, including gender, race, and age
(Bender et al., 2021; Shah et al., 2020; Guo and
Caliskan, 2021; Hutchinson et al., 2020; Kurita
et al., 2019; May et al., 2019; Tan and Celis, 2019;
Wolfe and Caliskan, 2021; Rozado, 2023; Du et al.,
2025). According to the surveys of Blodgett et al.
(2020) and Gallegos et al. (2024), a majority of
NLP papers on bias study representational harms,
especially stereotyping. Our work is in line with
the branch of research on exploring stereotypical
bias in Transformer-based PLMs.

Prior work proposes several ways of assess-
ing the stereotyping encoded in a PLM. A com-
monly used metric is the Sentence Encoder Asso-
ciation Test (SEAT) score, which is an extension
of the Word Embedding Association Test (WEAT,
Caliskan et al., 2017), which examines the associa-
tions in contextualized word embeddings between
concepts captured in the Implicit Association Test
(Greenwald et al., 1998). While the SEAT score
provides a quantifiable score to evaluate the stereo-
typing in PLMs, investigating how such stereotyp-
ical associations manifest in PLMs can provide
more nuanced insights (Chintam et al., 2023; Vig
et al., 2020; Yu and Ananiadou, 2025; Ma et al.,
2023). Our work aligns with this goal and differs
from existing studies in how we identify biased
components, presenting new findings.

To mitigate stereotyping and representational
harms in PLMs, many different debiasing strate-
gies have been proposed, including data augmenta-
tion (Garimella et al., 2021), post-hoc operations
(Cheng et al., 2021; Liang et al., 2020), fine-tuning
the model (Kaneko and Bollegala, 2021; Lauscher
et al., 2021), prompting techniques (Guo et al.,
2022; Si et al., 2022; Oba et al., 2024), causal anal-
ysis (Yu et al., 2025), and Reinforcement Learn-
ing from Human Feedback (RLHF) (Ouyang et al.,

2022). However, recent literature has noted sev-
eral critical weaknesses of existing bias mitigation
approaches, including the effectiveness of bias mit-
igation (Gonen and Goldberg, 2019; Meade et al.,
2022), high training cost (Kaneko and Bollegala,
2021; Lauscher et al., 2021), poor generalizability
(Garimella et al., 2021), and the inevitable degra-
dation of language modeling capability (He et al.,
2022; Meade et al., 2022). We believe that progress
in addressing PLM bias has been inhibited by a
lack of deeper understanding of how the bias man-
ifests/behaves internally in the PLM. This paper
aims to offer a perspective on this research gap.

3 Attention Head Bias Estimation
Framework

Our proposed framework for attention head bias
estimation measures the bias score of Trans-
former self-attention heads with respect to a fo-
cal/concerning bias (e.g., gender). We first in-
troduce a new variable, the head mask variable
(boolean), that exists independently in each atten-
tion head. We then discuss how this variable can be
utilized to quantify the bias in each attention head.

3.1 Head Mask Variable

Michel et al. (2019) propose a network pruning
method that examines the importance of each self-
attention head in a Transformer model. Given
our interest in measuring the importance of each
self-attention head with respect to a concerning
bias, for each attention layer i comprised of H
attention heads, we introduce a variable mi =
[mi,1,mi,2, . . . ,mi,H ]′ called the head mask vari-
able that is multiplied element-wise with the output
from each attention head in the ith layer. This al-
lows us to understand (and control) the contribution
of each attention head to the model’s final output:

MultiHeadi(Xi−1) = Concat
j=1,...,H

(mi,j · headi,j)WO,

(2)

where mi,j is a scalar initialized with 1 in our imple-
mentations. In Equation 2, if mi,j = 0, it signifies
that the attention head i-j is completely masked
out from the language model, that is, it contributes
nothing to the model’s final output. On the con-
trary, if mi,j = 1, it is degenerated into its standard
multi-head attention form as shown in Equation 1.
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3.2 Estimating Bias for Each Attention Head
Next, we show how this head mask variable can be
utilized to quantify biases for each attention head.
Formally, let X and Y be two sets of target words
of equal size, and let A and B be two sets of at-
tribute words. Here, target words are those that
should be bias-neutral but may reflect human-like
stereotypes. For example, in the context of gender
bias, target words include occupation-related words
such as doctor and stereotyping-related words such
as emotional, and attribute words represent femi-
nine words (e.g., she, her, woman) and masculine
words (e.g., he, his, man). We assume X is stereo-
typed with A (e.g., stereotype related to female)
and Y is stereotyped with B (e.g., stereotype re-
lated to male) . Since we aim to measure how
much stereotypical association is encoded in each
of the attention heads, we directly use the absolute
value of the Sentence Encoder Association Test
score (May et al., 2019) as the objective function,
as follows:

L|SEAT |(X,Y,A,B) =

|meanx∈Xs(x,A,B)−meany∈Y s(y,A,B)|
std_devw∈X∪Y s(w,A,B)

,
(3)

where s(w,A,B) = meana∈Acos(
−→w ,−→a ) −

meanb∈Bcos(
−→w ,

−→
b ) and cos(−→a ,

−→
b ) denotes the

cosine of the angle between contextualized embed-
dings −→a and

−→
b . 3 Therefore, the bias score of

each attention head can be computed as:

bi,j =
∂L|SEAT |
∂mi,j

, (4)

where a larger bi,j indicates head i-j is encoded
with higher stereotypical bias. Using the absolute
value of the SEAT score as the objective function
allows us to back-propagate the loss to each of the
attention heads in different layers and quantify their
“bias contribution.” Therefore, if the bias score of
an attention head is positive, it means that a de-
crease in the mask score from 1 to 0 (i.e., excluding
this attention head) would decrease the magnitude
of bias as measured by SEAT. In other words, the
head is causing the SEAT score to deviate from
zero and intensify the stereotyping (intensify ei-
ther female-related stereotyping or male-related

3We use the outputs from the final layer of the model as
embeddings. Each word in the attribute sets is a static embed-
ding obtained by aggregating the contextualized embeddings
in different contexts via averaging, which has been shown as
an effective strategy (Kaneko and Bollegala, 2021).

stereotyping or both). In contrast, an attention head
with negative bias score indicates that removing
the head increases the model’s stereotypical as-
sociation. Therefore, we define biased heads as
those having positive bias scores, and the magni-
tude of bias score indicates the level of encoded
stereotypes.

Our proposed attention head bias estimation pro-
cedure has several advantages. First, the proce-
dure is model-agnostic. The objective function
(i.e., L|SEAT |) can be easily customized/replaced
to serve different purposes, providing flexibility for
more general or specific bias analyses including dif-
ferent types of biases, datasets, and PLM architec-
tures. Second, it is only comprised of one forward
pass (to compute L|SEAT |) and one backpropaga-
tion process (to compute bi,j). Thus, it is computa-
tionally efficient for increasingly large foundation
models. Third and critically, the bias score can
quantify the importance of each attention head on
the concerning bias. We later empirically evaluate
the proposed bias estimation procedure, enhancing
our understanding of stereotype in PLMs.

4 Experimental Setup

Gender and Racial Bias Word Lists: Our anal-
ysis focuses on studying gender bias and racial
bias, which are two of the most commonly ex-
amined stereotypes in PLMs. For gender bias,
we employ attribute and target word lists used in
prior literature (Zhao et al., 2018; Masahiro and
Bollegala, 2019). In total, the gender attribute
word list contains 444 unique words (222 pairs of
feminine-masculine words), and the target list con-
tains 84 gender related stereotypical words.4 For
racial bias, we examine the stereotypical associa-
tion between Caucasian/African American terms
and stereotypical words. Specifically, we use the
attribute word list and target word list proposed
in prior work (Manzini et al., 2019). The racial at-
tribute word list contains 6 unique words (3 pairs of
African-American vs. Caucasian words), and the
target list contains 10 racial stereotypical words.5

External Corpus for Bias Estimation: We use
the News-commentary-v15 corpus to obtain contex-
tualized word embeddings for PLMs and identify
biased heads using the bias estimation method (Sec.
3.2). This corpus has often been used in prior PLM

4https://github.com/kanekomasahiro/
context-debias

5https://github.com/TManzini/
DebiasMulticlassWordEmbedding/
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bias assessment and debiasing work (Masahiro and
Bollegala, 2019; Liang et al., 2020).6

PLMs: We study the encoder-based BERT
model, the decoder-based GPT model, LLaMA-
2, and LLaMA-2-Chat. For the BERT model, we
consider BERT-base, which is comprised of 12
Transformer layers with 12 heads in each layer. For
the GPT model, we consider GPT-2Small (Radford
et al., 2019), which also consists of 12 Transformer
layers with 12 attention heads in each layer. We
consider LLaMA-2 (7B) (Touvron et al., 2023) and
its finetuned version LLaMA-2-Chat, which con-
sists of 32 Transformer layers with 32 attention
heads in each layer.7 We implemented the frame-
work and conducted experiments on an Nvidia RTX
3090 GPU using PyTorch 1.9. PLMs were imple-
mented using the transformers library.8

5 Assessing Gender Bias in BERT and
GPT

Prior literature has shown that PLMs like BERT
and GPT exhibit human-like biases by expressing
a strong preference for male pronouns in positive
contexts related to careers, skills, and salaries (Ku-
rita et al., 2019). This stereotypical association may
further enforce and amplify sexist viewpoints when
the model is fine-tuned and deployed in real-world
applications such as hiring. We use the proposed
method to assess gender bias in BERT and GPT-2.

5.1 Distribution of Biased Heads

There are 144 attention heads in BERT-base and
GPT-2Small; we obtain a bias score, bi,j , for each
of the attention heads. We visualize the bias score
distribution in Figure 1a and Figure 1b respectively.
It shows that most of the attention heads have a bias
score that is centered around 0, indicating that they
have no major effect on the SEAT score. Notably,
there are several attention heads (on the right tail
of the distribution curve) that have much higher
bias scores compared to others. Moreover, GPT-
2 contains more attention heads with pronounced
negative bias scores than BERT, indicating that

6The dataset contains news commentaries, released
for the WMT20 news translation task. We use
the English data. https://www.statmt.org/wmt20/
translation-task.html

7We download the models from Meta AI (https:
//ai.meta.com/resources/models-and-libraries/
llama-downloads/)

8https://pypi.org/project/transformers/

there are less biased attention heads in GPT-2.9 In
the ensuing analysis, we examine the biased heads,
especially those with higher bias score values.

To understand the location of biased heads in
BERT and GPT, we created a heatmap (Figure 2a
and Figure 2b respectively) in which each cell rep-
resents a particular attention head, and the darker
the color of the cell, the higher the bias score. Con-
sistent with (Kaneko and Bollegala, 2021), the iden-
tified biased heads appear across all layers. In
Appendix A, we demonstrate a simple debiasing
strategy by masking out a small set of highly biased
heads, can mitigate PLM bias, without affecting
the language modeling and NLU capability.

5.2 Counter-Stereotype Experiment
We now turn to evaluate if the identified biased
heads - those attention heads with positive bias
scores - indeed encode more stereotypical associa-
tions than non-biased attention heads with negative
bias scores. We propose a counter-stereotype ex-
periment for this purpose.

Although stereotyping in PLMs can be seen from
the contextualized representations in the last layer,
it is largely driven by how each token attends to
its context in the attention head. By examining the
attention maps (Clark et al., 2019) — the distribu-
tion of attention scores between an input word and
its context words, including itself, across different
attention layers — we can gain insight into how
bias behavior manifests in PLMs.

We argue that we can gain insight into how bias
behavior manifests in an attention head by exam-
ing how it assigns the attention score between two
words. For example, given two sentences “women
are emotional” and “men are emotional”, since
these two sentences have the exact same sentence
structure except the gender attribute words are dif-
ferent, we should expect to see negligible atten-
tion score difference between the target word (emo-
tional) and the gender attribute word (women, men).
However, if an attention head encodes stereotyp-
ical gender bias that women are more prone to
emotional reactions compared to men, there will be
a higher attention score between “emotional” and
“women” in the former sentence than that between
“emotional” and “men” in the later sentence. In
other words, simply substituting attribute words
should not drastically change how the attention
head works internally, unless the attention head is

9Relatedly, the SEAT score of GPT-2Small is 0.351 while
that of BERT-base is 1.35.
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(a) BERT-base gender. (b) GPT-2 gender. (c) BERT-base race.

Figure 1: Bias score distributions for BERT-base gender (1a), GPT-2 gender (1b), and BERT-base race (1c).

(a) BERT-base gender. (b) GPT-2 gender. (c) BERT-base race.

Figure 2: Attention head visualizations for BERT-base gender (2a), GPT-2 gender (2b), BERT-base race (2c). Note
that negative bias scores are converted to zero for better visual illustration.

encoded with stereotypical associations. A running
example is shown below.

Running example: We take an input text
“[CLS] the way I see it, women are more emtional
beings...” from the /r/TheRedPill corpus,10 feed
it into the BERT-base model, and visualize its at-
tention maps, the distribution of attention scores
(Clark et al., 2019), for the target word “emotional”
at one biased head and one randomly sampled regu-
lar head in Figure 3.11 Notably, for this biased head,
the normalized attention score12 between the tar-
get word emotional and the attribute word women
is 0.0167. However, in the counter-stereotype ex-
ample where women is substituted with men, the
normalized attention score drops to 0.0073. All
other things being equal, this head encodes more
stereotypical associations. On the other hand, for
the unbiased head, the change between attention
score is negligible.

It is worth noting that the absolute value of the
attention score does not necessary indicate the sig-
nificance of bias. This is because the some at-
tention heads may indeed be “gender” heads that
associate high weights between gender words and

10/r/TheRedPill dataset contains 1,000,000 stereotypical
text collected from the Reddit community (Ferrer et al., 2021).

11Note that for clarity, we do not display the attention with
regards to special tokens (e.g., [CLS], [SEP]) and punctua-
tions (e.g., comma, period).

12The raw attention score is normalized using the min-max
method, and the attentions to special tokens (i.e., [CLS] and
[SEP]) and punctuation are excluded.

target word, which could be very useful for con-
text such as correference resolution. Therefore, to
account for this, we measure the difference of atten-
tion score between a stereotype association (e.g.,
women and emotional) and a counter-stereotype
association (e.g., men and emotional).

Quantitative counter-stereotype analysis: To
assess the bias in biased heads more systemati-
cally and quantitatively, we conduct the counter-
stereotype analysis using a large sample of sen-
tences. The detailed steps are as follows.

Step 1: Form a stereotype dataset. We first
obtain a set of sentences from TheRedPill corpus,
where each sentence contains exactly one attribute
word (e.g., “women”) from our predefined word
lists and one of its associated stereotypical target
word (e.g., “emotional”). Note that this set of sen-
tences could contain both women-related and men-
related stereotype. We denote this dataset as Sorig.

Step 2: Form a counter-stereotype dataset.
We then construct a counter-stereotype dataset by
replacing the attribute word (e.g., “women”) with
its counterpart (e.g., “men”), with all other words
in the sentence unchanged, for each example in
Sorig. For example, given an original sentence
“women are emotional,” the counter-stereotype sen-
tence would be “men are emotional.” We denote
this dataset as Scounter. Note that sentences in
Sorig and Scounter are paired, and the only differ-
ence in the paired sentences is that the stereotype
related attribute words are different.
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Figure 3: A running example for the counter-stereotype experiment. The four plots show the attention score (the
boldface number) in the original sentence and the counter-stereotype sentence of a biased head (left two figures)
and an unbiased head (right two figures). In this example, the target word is “emotional”. The edge thickness is
associated with its normalized attention score. BERT-base model is used in this example.

(a) BERT; gender. (b) GPT-2; gender. (c) BERT; race

Figure 4: Quantitative counter-stereotype experiments.

Step 3: Examine attention score difference
and statistical significance. For Head i-j (the j-th
head in the i-th layer), we calculate the attention
score that the target word has on the attribute word
for each of the sentences in s ∈ Sorig, which we de-
note as ws

[i−j]. Similarly, we calculate the attention
score for each of the counter-stereotype sentences
s′ ∈ Scounter, which we denote as ws′

[i−j]. We mea-
sure the attention score change after the attribute
word substitution as ds[i−j] = ws

[i−j] − ws′
[i−j]. We

then conduct a one-tail t-test to examine the null hy-
pothesis that ds[i−j] equals to zero. If the examined
focal attention head encodes stereotypical bias, we
would see that ds[i−j] is significantly greater than
zero and thus reject the null hypothesis.

The counter-stereotype experiment results are
presented in Figure 4a (BERT) and Figure 4b
(GPT) respectively. For BERT, we can see that
for the biased heads, whose bias score is posi-
tive, the average attention score in Sorig is statisti-

cally higher than that in Scounter (t-stat = 3.182,
p-value < 0.001, N = 500). However, the aver-
age attention score difference in the regular heads
are not statistically significant (t-stat = −1.478,
p-value = 0.93, N = 500), indicating that there
is no significant change of attention score. The
results are similar for GPT. The average atten-
tion score of biased heads in GPT is statistically
higher in the original group than in the counter-
stereotype group (t-stat = 2.897, p-value < 0.005,
N = 500). However, there is no statistical signifi-
cance between the original group and the counter-
stereotype group for the regular heads (t-stat =
0.213, p-value = 0.42, N = 500). Taken together,
the counter-stereotype experiment validates that the
attention heads we identify as biased heads indeed
encode stereotypical biases.

It should be noted that our counter-stereotype
experiment differs from StereoSet (Nadeem et al.,
2021), which incorporates human-annotated stereo-

282



type and counter-stereotype sentences. In Stere-
oSet, the examples of stereotype and counter-
stereotype are represented by completely different
sentences. In contrast, our counter-stereotype ex-
amples are constructed by altering only the attribute
words (such as those related to gender), while the
overall sentence context remains unchanged. This
method enables us to examine how the attention
score of a specific attention head changes in a con-
trolled manner.

We also conduct experiments using our frame-
work on previously released debiased models, in-
cluding CDA (Zmigrod et al., 2019), Dropout
(Webster et al., 2020), Context-Debias (Kaneko
and Bollegala, 2021), and Auto-Debias (Guo et al.,
2022). The results provide evidence suggesting that
prior end-to-end debiasing strategies may cover-up
stereotyping rather than removing it from PLMs.
Please refer to Appendix C for details.

6 Assessing Racial Stereotyping

In this section, to demonstrate our bias analysis
framework is also applicable to other types of bi-
ases beyond gender bias, we apply our framework
to examine racial bias between Caucasian/African
American terms and racial related stereotypical
words such as criminal, runner, etc. In the fol-
lowing experiment, we use BERT-base as the un-
derlying PLM.13

We visualize the bias score distribution and heat
map in Figure 1c and Figure 2c respectively. Much
like the distribution of gender bias in BERT, we
observe several heads with significantly higher bias
scores. Moreover, the biased heads appear across
all layers; some of the highest scores are distributed
in the higher layers.

We conduct a counter-stereotype experiment to
validate the identified racial biased heads. Similar
to the counter-stereotype experiment step for gen-
der bias analysis, we first obtain a set of sentences
from the Reddit corpus that contains both the racial
attribute words (such as “black”) and stereotypical
words (such as “criminal”). Then we measure the
attention score change in a sentence and its coun-
terfactual by replacing an attribute word to its coun-
terpart word (such as “white”). Figure 4c shows
that for the bias heads, the average attention score
is significantly lower in the counter-stereotype
group than in the original group, indicating these

13The results are similar for GPT model, and are omitted
for space considerations.

heads encode stronger racial stereotype associa-
tions (t-stat = 2.324, p-value < 0.05, N = 500).
In contrast, for the unbiased heads group, there is
no statistical difference in the original sentences
and their counter-stereotypes (t-stat = −0.107,
p-value = 0.54, N = 500).

7 Generalizing to Large Language
Models (LLMs)

We generalize our bias analysis framework to
LLMs - specifically, LLaMA-2 (7B) and its
instruction-tuned counterpart LLaMA-2-Chat (7B)
(Touvron et al., 2023). We repeat the same proce-
dures, as done in the earlier experiments, to assess
gender bias. The obtained bias scores for LLaMA-
2 and LLaMA-2-Chat are 0.27 and 0.18, respec-
tively, suggesting that instruction-tuned LLMs ex-
hibit less biases as compared to its base model.
This is potentially due to the RLHF process that
mitigates the stereotypes in LLMs through human
feedbacks. The respective bias score distribution
appears in Appendix D, as expected, we observe
LLaMA-2-Chat contains significantly less heads
with pronounced positive bias scores relative to the
base version.

8 Conclusion and Discussion

In this work, we present an approach to understand
how stereotyping biases are encoded in the atten-
tion heads of pretrained language models. We infer
that the biases are mostly encoded in a small set
of biased heads. We further analyze the behavior
of these biased heads, by comparing them with
other regular heads, and confirm our findings. We
also present experiments to quantify gender bias
and racial bias in BERT and GPT. This work is
among the first work aiming to understand how
bias manifests internally in PLMs. Previous work
has often used downstream tasks or prompting to
examine a PLM’s fairness in a black-box manner.
We try to open up the black-box and analyze differ-
ent patterns of bias. In doing so, we strengthen our
understanding of PLM bias mechanisms. Future
work can apply our method to assess concerning bi-
ases in increasingly large foundation models. Over-
all, our work sheds light on how bias manifests
internally in language models, and constitutes an
important step towards designing more transparent,
accountable, and fair NLP systems.
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9 Limitations

Our work also has limitations that can be improved
in future research. First, we focus on stereotyping
bias (i.e., representational harm), which is one of
the two major bias categories in PLMs (Blodgett
et al., 2020). Allocational bias is not investigated
in this study. Future research can study how bi-
ased heads perform in downstream NLP tasks that
unfairly allocate resources or opportunities to dif-
ferent social groups. Second, our work relies on
existing word lists to identify biased heads and
assess stereotyping bias. Although those (gender
or racial) word lists are curated based on theories,
concepts, and methods from psychology and other
social science literature, their coverage may still
be limited for other protected groups such as the
groups related to education, literacy, or income,
or even intersectional biases (Lalor et al., 2022).
Moreover, existing word lists are constructed for
the English language only, which restricts the gen-
eralization of our findings on PLM stereotyping
on non-English languages. Given the important
role of curated stereotype word lists in quantifying
NLP system’s fairness, future work can study a
more principled way to curate word lists for dif-
ferent social groups and different languages. Our
proposed framework could be used as a tool to help
validate lists generated in future research. For ex-
ample, future paired word lists for education-based
biased could use our counterfactual experiments to
assess the effectiveness of the collected lists. Third,
given the unique importance of self-attention in
the transformer architecture, our work focuses on
attention heads only. However, bias may also man-
ifest in other components of the model, such as
the input embeddings or feedforward layer connec-
tions. The complexity and multi-layer nature of
Transformer models makes it difficult to pin down
their precise working behavior. However, by em-
pirically observing changes via perturbation (e.g.,
our counterfactual experiments), we can assemble
a plausible case for what might be happening inside
the network. Future studies can also look inside
those components to better understanding biases
in PLMs. Finally, while we focus this work on
those biased heads with positive bias scores, we
also observe a subset of attention heads with large
negative bias scores in our results. We show that
when these heads are removed, bias in the model
increases. It may be that their amplification can fur-
ther reduce biases. Further detailed investigation

of these possibly anti-bias heads may also inform
our understanding of bias in Transformer models,
and how to better mitigate it.
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A Understanding Debiasing Through the
Lens of Biased Heads

Existing bias mitigation approaches are usually de-
signed in an end-to-end fashion and fine tune all
model parameters with a bias neutralization objec-
tive or a bias neutral corpus. For example, Attana-
sio et al. (2022) propose to equalize the attention
probabilities of all attention heads, and counterfac-
tual data augmentation debiasing (CDA) proposes
to pretrain a language model with a gender-neutral
dataset (Zmigrod et al., 2019). Below, we use the
scores from our bias analysis framework to shed
light on possible application of biased heads for
bias-mitigation.

We examine a different debiasing strategy that
specifically targets on a set of attention heads. As
an initial exploration of targeted debiasing, we ex-
amine a simple strategy, called Targeted-Debias,
that masks out top-K attention heads that have the
largest bias score (Top-3). In addition, we also
examine an opposite targeted debiasing that masks
out K attention heads with the most negative bias
score (Bottom-3). Moreover, we mask out all at-
tention heads with a positive bias score (All) (in the
case of gender bias in BERT, there are 45 attention
heads with a positive bias score).

To benchmark the performance of Targeted-
Debias, we consider Random-Debias that ran-
domly masks out K out of BERT-base’s 144 heads.
To evaluate the impact of masking out attention
heads, we assess the model’s bias using SEAT
score, and we also evaluate the model’s language
modeling capability using pseudo-perplexities (PP-
PLs)14 (Salazar et al., 2020), and model’s Natural
Language Understanding (NLU) capability on the
GLUE tasks (Wang et al., 2018).

The main debiasing results are presented in Ta-
ble 1. We can see that Targeted-Debias (Top-3)
achieves the best performance among the three de-
biasing strategies: it has the lowest SEAT and low-
est PPPL scores. Compared to the two versions
of Targeted-Debias (Top-3 vs. All(45) ), mask-
ing out more biased heads does not further lower
SEAT, but does significantly worsen the language
modeling performance (4.16 vs. 5.75). The Top-
3 Targeted-Debias only slightly increases BERT’s
PPPL from 4.09 to 4.16. Interestingly, we can see
that targeting on the anti-biased heads (Bottom-3)

14Performed on the test split of “wikitext-2-raw-v1”
accessible through https://huggingface.co/datasets/
wikitext.

increases the overall model bias. Random-Debias,
which randomly masks out attention heads, actu-
ally exacerbates model bias. We posit that this
result makes sense, given that if random heads are
removed, those biased heads that remain will have
their bias amplified. The GLUE task results appear-
ing in Table 2 show similar trends as the language
modeling task. That is, masking out the top-3 bi-
ased heads achieves comparable NLU performance
to the original BERT-base model, while masking
out all biased heads significantly worsens model
performance. Taken together, it is encouraging that
a simple debiasing strategy, targeting a small set of
highly biased heads, can reduce PLM bias without
affecting language modeling and NLU capability.
We further conduct a robustness check in Appendix
B using a different bias evaluation metric to rule
out the possibility that the debiasing outcomes are
tautological.

Targeted debiasing strategy Evaluation metric
SEAT PPPLs

BERT-base 1.35 4.09

Targeted-Debias
Top-3 1.21 4.16

Bottom-3 1.39 4.20
All 1.21 5.75

Random-Debias 3 1.36 4.13
All 1.46 5.80

Table 1: Targeted debiasing.

B Robustness Check

Our main analyses rely on the SEAT metric. As a
robustness check, we use an alternative metric for
assessing PLM stereotyping, namely the log prob-
abilities bias score (LPBS, Kurita et al., 2019).
Given a sentence “[MASK] is emotional,” we first
compute the probability assigned to the sentence
“she is emotional,” denoted as ptarget. Then we
query BERT with sentence “[MASK] is [MASK]”
and compute the probability BERT assigns to the
sentence “she is [MASK],” denoted as pprior. The
association between the word “emotional” and
“she” can then be calculated as log

ptarget
pprior

. Simi-
larly, we can obtain the association between the
word “emotional” and “he.” Finally, the differ-
ence between the log probability for the words she
and he can be used to measure the gender bias
in BERT for the target word emotional.15 Differ-
ent from SEAT, which measures the bias using the
final output embeddings, LPBS directly queries

15We follow the experimental settings in (Kurita et al., 2019)
to calculate LPBS, including the templates.
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Task Metric Result
0 (Full) Top-3 All

RTE Accuracy 0.6905 0.6748 0.6452
SST-2 Accuracy 0.9297 0.9308 0.9185
WNLI Accuracy 0.5506 0.5818 0.5298
QNLI Accuracy 0.9154 0.9154 0.9066
CoLA Matthews corr. 0.5625 0.5702 0.5584
MRPC F1 / Accuracy 0.8701 / 0.8266 0.8748 / 0.8277 0.8729 / 0.8220
QQP F1 / Accuracy 0.8829 / 0.9129 0.8823 / 0.9128 0.8796 / 0.9105

STS-B Pearson / Spearman corr. 0.8862 / 0.8847 0.8875 / 0.8847 0.8817 / 0.8782
MNLI Matched acc. / Mismatched acc. 0.8394 / 0.8406 0.8454 / 0.8518 0.8380 / 0.8422

Table 2: GLUE benchmark.

the model to measure its bias for a particular to-
ken using masked language modeling. Therefore,
SEAT and LPBS quantify model bias from different
perspectives, and hence ensure that the evaluation
outcomes are not tautological.

In this experiment, we follow Caliskan et al.
(2017) and choose three gender bias related tests:
Career vs. Family, Math vs. Arts, and Science vs.
Arts. Accordingly, the bias test examines whether
female words are more associated than male words
with family than with career, with arts than with
mathematics, and with arts than with sciences.

We first identify the biased heads using the pro-
posed method and rank them according to the bias
score. We then mask out the top-K biased heads
and measure the resulting LPBS. The results in Ta-
ble 3 show that masking out the top-K biased heads
can indeed lead to a reduction in LPBS. Interest-
ingly and perhaps counter-intuitively, masking out
all of the biased heads does not necessarily achieve
the lowest debiasing score. One reason could be
some identified biased heads only slightly encode
bias, or even offset bias. Simply covering them
all up may result in unexpected behavior. Overall,
masking out the top few heads leads to lower LPBS,
indicating less stereotyping. This robustness check,
using a different bias measurement, also confirms
that the identified bias heads are responsible for
encoding stereotypes in PLMs.

Top-K LPBS
Career vs. Family Math vs. Arts Science vs. Arts

BERT-base 1.39 1.23 0.97
10 1.39 0.86 0.99
15 1.28 0.71 0.99
20 1.38 0.71 0.70
25 1.36 0.81 0.75
30 1.23 0.95 0.50
35 1.29 0.94 0.39
40 1.31 1.06 0.33

45 (All) 1.57 0.99 0.62

Table 3: PLM bias, quantified by LPBS, when top-K
biased heads are masked out. The first row (0) means
no heads are masked out (i.e., vanilla BERT).

C Assessing Debiased PLMs

Prior literature has proposed several bias miti-
gation approaches, including data augmentation
CDA (Zmigrod et al., 2019), post-hoc operations
Dropout (Webster et al., 2020), fine-tuning the
model Context-Debias (Kaneko and Bollegala,
2021), and prompting techniques Auto-Debias
(Guo et al., 2022). In this experiment, we ex-
amine whether said debiased models have biased
heads. We conduct experiments using our frame-
work on these debiased models.16 It is worth noting
that these debiased models adopt an end-to-end ap-
proach to mitigate stereotyping.

The bias heatmap results appear in Figure 5.
Compared to the original two non-debiased mod-
els (i.e., BERT-base and BERT-large), the prior
debiasing methods have fewer biased heads, which
visually illustrates their effectiveness in reducing
PLM bias. However, our analysis seems to suggest
that there are still a number of biased heads in these
debiasing models. Moreover, some of the slightly
biased heads are getting darker in the debiased mod-
els. Also, we highlight the top-5 anti-biased heads
(with the largest negative bias scores) in red boxes
in the original BERT-base and BERT-large, and
find that all debiased models (except Auto-Debias)
turn some attention heads that were originally neg-
ative values (i.e., anti-biased heads) into positive
values (biased heads). In other words, current de-
biasing strategies might be perturbing heads that
are mitigating bias. This finding echoes prior work
that some of the debiasing strategies may cover-up,
rather than remove, stereotyping (Gonen and Gold-
berg, 2019). This warrants further investigation in
future work.

16Auto-Debias and Context-Debias released debiased
BERT-base models; CDA and Dropout released debiased
BERT-large models.
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Figure 5: Bias heads heatmap in prior debiased mod-
els. We highlight the top-5 anti-biased heads (with the
largest negative bias scores) in red boxes in the original
BERT-base and BERT-large.

D Bias Score Distributions of LLaMA-2
(7B) and LLaMA-2-Chat (7B)

Figure 6: LLaMA-2 (gender bias).

Figure 7: LLaMA-2-Chat (gender bias).
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