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Introduction

Welcome to RepL4NLP 2025, The 10th Workshop on Representation Learning for NLP. Co-located with
NAACL 2025, this workshop is scheduled for May 4, 2025 to be held in Albuquerque, New Mexico.

The 10th Workshop on Representation Learning for NLP (RepL4NLP) at NAACL 2025 is dedicated
to exploring linguistic information representation within computational models, a critical aspect of mo-
dern Natural Language Processing. A core focus of the workshop will be on the efficient learning of
representations, examining methods to create effective linguistic representations while minimizing com-
putational resources and optimizing training processes. Another key area of exploration is the dynamic
evolution of representations during training, seeking to understand how vector spaces change over time
and what factors influence these transformations. The workshop will also address the critical challen-
ge of evaluating existing representations, aiming to establish robust benchmarks and methodologies for
assessing their quality. A deeper understanding of the relationship between representations and model
behaviors is another central theme, investigating how representation choices impact model performance
and outcomes. Recognizing the importance of multilingual NLP, the workshop extends its scope beyond
English, encouraging the development and evaluation of representations for diverse languages and moda-
lities, including those with limited resources and multimodal datasets. By fostering collaboration among
researchers from various disciplines, the workshop aims to drive innovation and progress in the field of
linguistic representation learning.
This year, there were a total of 19 archival and non-archival submissions to the RepL4NLP workshop, of
which a total of 13 were accepted. All these works have been included in our proceedings.

In addition to poster sessions where accepted works will be presented, the Workshop also will also
host talks and a panel discussion with four invited speakers: Akari Asai, Najoung Kim, Ana Marasovic,
and Yoav Artzi.

Finally, we would like to express our gratitude to all the authors, committee members, invited speakers,
and participants for helping make this workshop possible. We would also like to gratefully acknowledge
our sponsor, Google DeepMind, for their support.
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Abstract

Language Models (LMs) struggle with lin-
guistic understanding at the discourse level,
even though discourse patterns such as co-
herence, cohesion, and narrative flow are
prevalent in their pre-training data. To im-
prove the discourse capabilities of LMs al-
ready at the pre-training stage, we intro-
duce DEPTH, an encoder-decoder model that
learns latent representations for sentences us-
ing a discourse-oriented pre-training objective.
DEPTH combines hierarchical sentence repre-
sentations with two objectives: (1) Sentence
Un-Shuffling, and (2) Span-Corruption. Our
approach trains the model to represent both
sub-word-level and sentence-level dependen-
cies over a pre-training corpora. When trained
either from scratch or continuing from a pre-
trained T5 checkpoint, DEPTH learns semantic
and discourse-level representations faster than
T5, outperforming it in span-corruption loss
despite the additional sentence-un-shuffling ob-
jective. Evaluations on the GLUE, DiscoEval,
and NI benchmarks demonstrate DEPTH’s abil-
ity to quickly learn diverse downstream tasks,
which require syntactic, semantic, and dis-
course capabilities. Our approach extends
the discourse capabilities of T5, while mini-
mally impacting other natural language under-
standing (NLU) capabilities in the resulting
LM. We share ur codebse for reproducibility:
https://github.com/zbambergerNLP/depth.git

1 Introduction
Discourse understanding—the ability to understand
how sentences and broader textual units form cohe-
sive narratives (Miltsakaki et al., 2004; Prasad et al.,
2008; Jernite et al., 2017; Prasad et al., 2018)—is
fundamental to effective communication. How-
ever, LMs often struggle with this, especially when
dealing with long and complex inputs, hindering
their performance on tasks like persuasive argu-
mentation (Durmus et al., 2019; Hidey et al., 2017;
Chakrabarty et al., 2019), summarization (Zhao

et al., 2022), essay scoring (Mim et al., 2021),
dialogue systems (Hua et al., 2023), and follow-
ing instructions (Wei et al., 2022a). Recent evi-
dence from Yu et al. (2024) reinforces this view,
demonstrating that human language comprehen-
sion occurs at multiple levels and that incorporat-
ing discourse-level objectives like next sentence
prediction (NSP) can lead to more human-like lan-
guage representations and improved contextual un-
derstanding.

Early attempts to incorporate discourse aware-
ness into pre-training, such as Next Sentence Pre-
diction (NSP) in BERT (Devlin et al., 2019) and
Sentence Order Prediction (SOP) in ALBERT (Lan
et al., 2020), proved overly simplistic and hin-
dered learning effective discourse representations
(Liu et al., 2019; Lan et al., 2020; Raffel et al.,
2020). Subsequent encoder models like Sentence-
level Language Model (SLM) (Lee et al., 2020),
CONPONO (Iter et al., 2020), and Hi-Transformer
(Wu et al., 2021) improved discourse capabilities
in LMs but lacked generative capabilities.

Unlike the pre-training tasks for encoder LMs,
next-token prediction provides decoder LMs like
GPT (Radford et al., 2018, 2019; Brown et al.,
2020; OpenAI et al., 2023) with powerful gener-
ative capabilities. However, without a dedicated
and costly alignment phase (Ouyang et al., 2022;
Wei et al., 2022a; Bai et al., 2022), these LMs tend
to falter in understanding and executing human
queries.

Even with a dedicated alignment phase, large
decoder-only models generally perform poorly on
discourse-oriented benchmarks that measure coher-
ence and cohesion (Chen et al., 2019; Maimon and
Tsarfaty, 2023a,b; Wang et al., 2023). Encoder-
decoder models such as T5 (Raffel et al., 2020)
and BART (Lewis et al., 2020a) consistently out-
perform much larger (≈ 400×) decoder-only mod-
els like GPT-3 (Brown et al., 2020) and GPT-4
(OpenAI et al., 2023) on these tasks. Recent work
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by Katz et al. (2024) indicates that incorporating
encoder-decoder attention mechanisms into mod-
ern decoder-only models like Llama-3 (Grattafiori
et al., 2024), Qwen-2.5 (Qwen et al., 2025), and
Mistral (Jiang et al., 2023) also boosts performance,
suggesting potential additional benefits from pre-
training models with such attention schemes.

To improve the discourse-capabilities of encoder-
decoders already at the pre-training stage, we pro-
pose DEPTH (Discourse-Education through Pre-
Training Hierarchically), a hierarchical language
model that learns representations for both sub-word
and sentence-level tokens. DEPTH extends the
pre-training objective of SLM from encoder-only
models like BERT, to encoder-decoder models like
T5. Notably, DEPTH introduces latent, heirarchi-
cal representations for sentences (as in Lee et al.
(2020); Yang et al. (2021); Yu et al. (2024)) directly
into the objective of a generative pre-training task.
By employing a hierarchical attention mechanism
across sub-word and sentence level tokens, DEPTH
captures both fine-grained semantic dependencies
and broader inter-sentence relationships. When
pre-trained from scratch, our DEPTH model ob-
tains meaningful representations for downstream
tasks much faster than our baseline T5. Contin-
uously pre-training T5 models with the DEPTH
objective improves the discourse capabilities of the
resulting models, without sacrificing performance
in downstream NLU tasks.

2 Method

Pre-training DEPTH involves simultaneously per-
forming span corruption (Raffel et al., 2020), while
also un-shuffling sentences as in Lee et al. (2020).
In Section 2.1 we introduce a new tokenizer for
DEPTH, which combines T5’s tokenizer with the
sentence segmentation operation required for sen-
tence un-shuffling. In Section 2.2, we detail how
we combined the pre-training objectives of both
models into the sequence-to-sequence framework
of T5. Next, in Section 2.3, we discuss how we
introduce hierarchical representations during pre-
training, and how this hierarchy encourages the
model to learn discourse representations. Finally,
in Section 2.4, we demonstrate how to combine the
losses of T5 and SLM into a unified objective that
is conducive to traditional teacher-forcing.

2.1 Tokenization

We introduce a tokenization function, t, which
transforms an input string, s, into a sequence of

tokens, X = (x1,1, x1,2, . . . , xm,len(m)), in our vo-
cabulary, V . Each token xi,j denotes the j’th token
of the i’th sentence, where m is the number of
sentences and len(i) is the length of the i’th sen-
tence. V includes special tokens <EOS>, <BOS>,
<PAD>, and sentinel tokens Vsentinel of the form
<special_token_z> as in the original T5 paper.

To facilitate DEPTH’s hierarchical structure, we
segment sentences using NLTK (Bird and Loper,
2004) and create k + 1 new tokens1:

S = {<SENT_1>, . . . , <SENT_k>, <EOSEN>}
V ′ = V ∪ S

We augment our tokenizer function t to form
t′, which maps sequence s to tokens in V ′. In
each sentence, we prepend a <SENT_i> token and
append a <EOSEN> token:

X = {<SENT_a>, x1,1, x1,2, . . . , x1,len(1), <EOSEN>,

. . . , xm,len(m), <EOSEN>, <EOS>}

The integer i in <SENT_i> represents a sen-
tence’s index, sampled uniformly at random from
{1, . . . , k} without replacement. We truncate sen-
tences beyond the k’th to limit vocabulary size.

Unlike SLM (an encoder-only LM with an aux-
iliary pointer-decoder), DEPTH is an encoder-
decoder that predicts <SENT_i> and <EOSEN> token
IDs directly. The <EOSEN> token signals the next
token is either <SENT_i> or <EOS>, allowing for
dynamic attention masking in the decoder.

Formally, we define a pre-tokenization function
f : s → s′, where s′ includes <SENT_i> and
<EOSEN> tokens. The tokenized input for DEPTH
is produced with T (s) = t(f(s)) = X . We use the
SentencePiece (Kudo and Richardson, 2018) tok-
enizer as t, adjusted to support DEPTH’s sentence-
level pre-training objective.

2.2 Corruption

Span-Masking: We apply a corruption process
to each batch of tokenized sequences. We sam-
ple masked spans using a geometric distribution
(as in Joshi et al. (2020) and Raffel et al. (2020)),
parameterized with an average span length of λ
and a masking probability of p. Spans overlapping
with sentence tokens (<EOSEN> or <SENT_i>) are
ignored. Masked token spans are replaced with a
single sentinel token <special_token_z>, where

1We follow Lee et al. (2020), using k = 20 sentence
tokens.
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"Hello! How are you?"

Hello! HowEOSEN SENT 17 EOSEN SENT 9 EOSEN EOSare you?

HowSENT 9 EOSENSpecial Token 1EOSEN Hello!SENT 17 EOSEN EOS

you?EOSEN SENT 17 EOSEN SENT 9 EOSEN EOSSpecial Token 1 are

Corruption

Tokenization

Document

Example

Encoder

Decoder

Figure 1: DEPTH tokenization and corruption process. Given an input document, DEPTH introduces sentence
tokens (<SENT_i> and <EOSEN>), applies span masking, and shuffles sentences with probability 0.5. Attention
patterns are shown with arrows (dotted for cross-attention, solid for self-attention).

(z) is a uniformly sampled integer from 0, . . . , 99.
The missing token sequences appear after the corre-
sponding sentinel token in the labels. Note that in
the original T5 implementation, sentinel tokens ap-
pear in the same incrementally decreasing order in
each example (<special_token_99> followed by
<special_token_98>, etc...). We randomly sam-
ple sentinel token ID’s for DEPTH to eliminate
hints about sentence positions from the sentinel
tokens. For example, with the T5 scheme for span-
masking, the presence of <special_token_99> in-
dicates that the sentence in which it appears comes
first, making sentence un-shuffling too easy.

Sentence Un-Shuffling: Given an input se-
quence of up to k sentences, we randomly shuffle
the order of sentences in the model input2. We then
task the model with reconstructing the original or-
der of the sentence tokens in the target. We shuffle
all examples in a batch with probability p = 0.5 (as
in SLM). By disrupting the original sentence order,
DEPTH encourages learning of (1) the complete
meaning of individual sentences, independent of
their surrounding context, and (2) representations
that encode how sentences relate to each other3.
We show DEPTH’s corruption process in Figure 1.

2.3 Attention masks

Our baseline model (T5) utilizes bidirectional at-
tention in the encoder, auto-regressive attention in
the decoder, and full cross attention from the de-
coder to the encoder. However, T5’s formulation
does not account for the hierarchical treatment of
sentences used by SLM and DEPTH.

2We do not shuffle the order of tokens within a sentence
3E.g., discourse markers, co-reference, and entailment

We define non-sentence tokens, xreg, as tokens
x ∈ X where x /∈ S. We compose attention
masks to impose hierarchy. As part of encoder
self-attention, non-sentence tokens can attend to all
other tokens in the corrupted input sequence, while
<SENT_i> tokens can only attend to tokens within
their own sentence (including sentinel tokens). As
part of decoder self-attention, all tokens have an
auto-regressive attention mask, but <SENT_i> to-
kens can only attend to past sentence tokens. Fi-
nally, as part of cross attention, non-sentence to-
kens in the decoder can attend to the entire input in
the encoder, while sentence tokens in the decoder
can only attend to sentence tokens in the encoder.
This scheme is depicted in Figure 1.

This scheme encourages the model to use sen-
tence token representations in the encoder to pre-
dict the next sentence token in the decoder via
cross-attention. It also ensures that non-sentence
tokens in the encoder provide relevant discourse
information to their corresponding sentence tokens.

2.4 Loss Formulation

Let Y = {y1,1, y1,2, . . . , ym,len(m)} be the target
sequence, where each token yi,j belongs either
to the span-masking task (non-sentence tokens)
or to the sentence un-shuffling task (sentence to-
kens). We denote by Ŝ the set of all sentence
tokens in Y . The model prediction is given by
Ŷ = {ŷ1,1, ŷ1,2, . . . , ŷm,len(m)}, where ŷi,j repre-
sents the predicted probability distribution over the
vocabulary for token yi,j . Let the total number of
tokens be N = |Y |.

The loss for DEPTH, which jointly optimizes
the reconstruction (span-masking) and sentence un-
shuffling tasks, is defined as the token-averaged
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cross-entropy:

LDEPTH = − 1

N

m∑

i=1

len(i)∑

j=1

yi,j · log ŷi,j

= − 1

N

∑

yi,j∈Y ∩Ŝ
yi,j · log ŷi,j − 1

N

∑

yi,j∈Y \Ŝ
yi,j · log ŷi,j

Sentence Loss Reconstruction Loss

In this formulation, the summation runs over
all sentences in the input (i.e., up to m sentences,
where 1 ≤ m ≤ k), and within each sentence
over its tokens. This allows us to decompose the
model’s performance into the contributions from
the sentence un-shuffling and the span-masking
tasks. We explore additional loss formulations and
weighting schemes in Appendix B.1.

3 Experimental setup
The aim of our experiments is to measure the ef-
fectiveness of DEPTH against a standard encoder-
decoder model. Accordingly, our experiments ex-
plore the learning dynamics of DEPTH model rela-
tive to a T5-Base (220M parameter) baseline. We
pre-train both models on the C4 dataset (Raffel
et al., 2020; Dodge et al., 2021) to resemble the
manner in which the original T5 was trained (see
additional reasoning in Appendix D.2). We chose
to use Base-sized models given limited computa-
tional resources, and ease of reproducibility (fol-
lowing the example of Lee et al. (2020); Levine
et al. (2020); Zhang et al. (2020); Raffel et al.
(2020)). We did not use SLM as our baseline since
its codebase and checkpoints are not released, and
it cannot perform free-form text generation.

We chose to run our experiments without ex-
ample packing since this is how the SLM model,
which inspired DEPTH, was trained. Furthermore,
example-packing in T5 enables unrelated exam-
ples to impact the model’s decisions, thereby harm-
ing performance (Krell et al., 2021; Shi et al.,
2024). While example-packing is critical for
more computationally-efficient training (Ding et al.,
2024), we were interested in measuring which
model was able to use training examples more ef-
fectively. We examine the impacts of avoiding
example packing in Appendix A.2.

Consistent with Nawrot (2023), we found that
the Adafactor optimizer (Shazeer and Stern, 2018),
while more computationally efficient, slightly
harmed model performance. We therefore use

AdamW (Loshchilov and Hutter, 2019) instead.
We use a linearly increasing learning rate during
the first 10, 000 steps, and then reduce the learn-
ing rate linearly for DEPTH (as in SLM), and with
an inverse square learning rate ratio for T5 (as in
the original T5 paper). We chose to use a mask-
ing probability of p = 0.3,4 and an average span
length of λ = 3. Our mask probability is higher
than the advised 0.15 from T5 to accommodate for
the fact that sentence-tokens within DEPTH cannot
be masked.
We conduct two types of pre-training experiments:

1. From Scratch (FS): Both T5 and DEPTH
models are randomly initialized, and pre-
trained on C4 with their respective objectives.

2. Continuous Pre-Training (CPT): Both T5
and DEPTH models are initialized from the
T5-Base checkpoint on HuggingFace (Wolf
et al., 2019), and continue to pre-train on C4
with their respective objectives.

We note that our CPT experiments build on top
of T5 models that have been trained for over 1T
tokens, whereas the amount of tokens they see dur-
ing continuous pre-training is relatively minuscule
(≈ 67× fewer tokens for T5, and ≈ 80× fewer
tokens for DEPTH). We compare configurations of
similar-sized models in Appendix D.1.

3.1 Fine-tuning experiments

We follow up our pre-training experiments with
a collection of downstream tasks. We evalu-
ate our models on natural language inference
(MNLI, Williams et al. (2018)), sentiment anal-
ysis (SST2, Socher et al. (2013)), and grammar
(CoLA, Warstadt et al. (2019)) within the GLUE
benchmark (Wang et al., 2018). We also use the
DiscoEval suite (Chen et al., 2019) to evaluate mod-
els on their understanding of discourse. We use two
tasks from DiscoEval: Sentence Permutation (SP)
and Discourse Coherence (DC). SP involves iden-
tifying the correct position of a removed, while
DC involves predicting whether or not a paragraph
was coherent. Finally, we measure our model’s
generative abilities on the Natural Instructions (NI)
dataset (Mishra et al., 2022), which measures the
ability of LMs to follow instructions, and served as
a benchmark for NanoT5 (Nawrot, 2023).

4Raffel et al. (2020) reports that this span corruption ratio
does not adversely impact downstream performance, although
recently Ankner et al. (2024) suggested a dynamic masking
rate tends to perform best.

4



Our experimental framework is inspired by
Pythia (Biderman et al., 2023), which evaluates
the performance of LMs on downstream tasks from
intermediate checkpoints. We run evaluation with
checkpoints from both T5 and DEPTH models,
gathered at steps {2K, 4K, . . . , 512K, 1M} in or-
der to examine these models’ emergent capabili-
ties. The exponential distance between these check-
points allows us to scale intermediate checkpoint
evaluation to much longer training runs.5

4 Results

4.1 C4 pre-training

During pre-training, we find that DEPTH consis-
tently achieves a lower validation loss than a com-
parably trained T5 model. This is true for both FS
and CPT. Furthermore, when we isolate the recon-
struction loss (the objective used by T5, without
sentence tokens), we find that DEPTH outperforms
T5 despite balancing an additional pre-training ob-
jective (Figure 2 for FS and Figure 3 for CPT).
These results are consistent with the findings in
SLM, where their model converged faster, and on
fewer tokens than models such as BERT and T5.

While we were not able to match the perfor-
mance of the baseline model of Raffel et al. (2020)
(see Appendix A for speculations on why), we have
obtained the lowest loss scores among PyTorch im-
plementations of T5 models. Specifically, in our
FS setting, we find that our randomly initialized T5
model outperforms the validation loss of NanoT5,
achieving 1.65 vs. 1.95 at step 64,000.

4.2 GLUE fine-tuning

We found that over the course of FS pre-training,
both models improved on GLUE tasks. How-
ever, T5’s improvement pattern was slower than
DEPTH’s (top row of Figure 4). We found it diffi-
cult to replicate the results of the original T5 (both
on GLUE tasks and the pre-training loss) as dis-
cussed in Appendix A. We project that with more
substantial training (i.e., 1–3M pre-training steps,
and ≥ 2048 examples per batch, as in T5), DEPTH
could match or exceed the performance of T5 and
SLM on downstream tasks.

In the CPT setting (Figure 4, bottom row), we
found that DEPTH and T5 perform similarly, both
improving only slightly beyond the baseline. Fine-
tuning DEPTH on early CPT checkpoints per-

5Evaluating intermediate checkpoint performance every
10,000 steps (as was done in Pythia) on datasets as large as
MNLI is unfeasible with our limited computational resources.

Figure 2: From Scratch Pre-Training loss (vali-
dation) for both T5 and DEPTH

Figure 3: Continuous Pre-Training loss (valida-
tion) for both T5 and DEPTH.

forms worse than fine-tuning comparable T5-CPT
checkpoints. We speculate that this dip in perfor-
mance is related to the change in objective from
span-masking to span-masking and sentence un-
shuffling. We share our full results on GLUE in
Appendix F.

4.3 DiscoEval fine-tuning

We find that in the FS setting DEPTH consistently
outperforms T5 across DC tasks, indicating its ro-
bustness in understanding discourse 6 (Figure 5,
top row). This suggests DEPTH’s pre-training ob-
jective is particularly beneficial for tasks that re-
quire a deep understanding of narrative structures
(both in conversations as in DC-Chat, and more
formal and informative texts as in DC-Wiki). We
note that between steps 32k and 64k, DEPTH ex-

6In particular, sentence-level discourse relations, as dis-
cussed in Jernite et al. (2017)
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(a) CoLA FS (b) MNLI FS (c) SST-2 FS

(d) CoLA CPT (e) MNLI CPT (f) SST-2 CPT

Figure 4: GLUE results for FS and CPT models. Top row: From Scratch (FS), Bottom row: From Pretrained (CPT).

perienced a large positive boost in performance
on DC-Wiki, perhaps indicative of an emergence
(Wei et al., 2022b) of discourse understanding dur-
ing this phase of pre-training. For T5, we found
that the model struggled to learn the SP-Arxiv
task, achieving random-guess accuracy late in pre-
training. However, in SP-Wiki and SP-Rocstory,
T5 improves in performances between steps 64k
and 128k, perhaps indicating an emergent ability
occurring within this timeframe. We report our full
results on DiscoEval in Appendix G.

While DEPTH outperformed other models in DC
tasks, it failed to reach a high performance level
on SP tasks (under-performing relative to SLM, as
seen in Table 1). This problem stems already from
the pre-training stage, where DEPTH’s sentence un-
shuffling accuracy is relatively low (≤ 5% accuracy
on shuffled sentence tokens; see Appendix B for ad-
ditional details). This highlights the complexity of
sentence un-shuffling relative to older discourse ob-
jectives like NSP and SOP. Surprisingly, while this
task was challenging for DEPTH, SLM reported
strong performance on sentence un-shuffling. SLM
used a dedicated pointer-generator network that
consists of a shallow DNN. This module “points”
to one of at most k sentences as it iterates over a
target sequence consisting of only sentence tokens.
Also, SLM’s non-sentence tokens cannot observe
sentence-level tokens as part of the reconstruction
loss, avoiding a potential “distraction” in their task.

Model SP DC

RoBERTa-Base 38.7 58.4

BERT-Base 53.1 58.9
BERT-Large 53.8 59.6

CONPONO 60.7 72.9

SLM (1M) 72.4 75.4
SLM (3M) 73.4 76.1

T5-Base 58.1 80.5
T5-FS 40.91 63.31

T5-CPT 59.48 82.27

DEPTH-FS 55.45 76.22
DEPTH-CPT 65.59 82.49

Table 1: Comparison of various models on the SP and
DC tasks within DiscoEval. All models aside from
T5 and DEPTH and encoder-only models trained with
discourse-oriented objectives.

4.4 NI fine-tuning

In the FS setting (Figure 6a), we observe that
DEPTH outperforms T5 in the NI benchmark, with
a notable leap in performance between steps 16k
and 32k. T5, by comparison, only improves sig-
nificantly after step 64k, and obtains worse perfor-
mance than DEPTH by the end of training. How-
ever, in the CPT setting (Figure 6b), DEPTH’s
pre-training appears to hinder downstream perfor-
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(a) Sentence Permutation (SP) FS (b) Discourse Coherence (DC) FS

(c) Sentence Permutation (SP) CPT (d) Discourse Coherence (DC) CPT

Figure 5: DiscoEval results for DEPTH and T5 models. Top row: From Scratch (FS), Bottom row: From Pretrained (CPT).

mance compared to T5, possibly due to the domain
shift from T5’s pre-training task to DEPTH’s pre-
training task, which involves learning from shuf-
fled inputs. We present a more complete analysis
of these results in Appendix H.

4.5 Error Analysis

We performed error analysis on the DiscoEval
benchmark to better understand the nature of dis-
course errors that DEPTH and T5 made. For the SP
task, we show in Table 3 that DEPTH made more
reasonable mistakes than T5. For example, in SP-
Arxiv FS, 23% of DEPTH’s mistakes were reason-
able, relative to 7% by T5). We define “reasonable”
mistakes as incorrect predictions that would have
still resulted in a coherent sentence ordering. Both
models struggled with pronoun resolution, which
frequently led to incorrect predictions (accounting
for 10-30% of all predictions we observed). T5-FS,
in particular, often failed to recognize when a re-
moved sentence should come first, a mistake largely
resolved in T5-CPT. We note that some examples
correctly predicted by FS models were incorrectly
predicted by CPT models, and vice versa.

In the DC task, we noted a significant number of
incorrectly formatted predictions (e.g., “cooherent”
rather than “coherent”), especially in the DC-Chat
subset. Each of these incorrectly formatted pre-

dictions, when adjusted to a correctly formatted
prediction, were incorrect (e.g., an example that
the model predicted “cooherent” is labeled “inco-
herent”). We show in Table 4, that DEPTH-FS was
incorrect in DC-Chat examples that humans might
find ambiguous (i.e., replacing a random sentence
leaves the resulting passage coherent), reinforcing
its strength in handling more complex discourse
structures. We discuss this further in Appendix E.

5 Related work

The potential of encoder-decoder architectures in
today’s NLP landscape cannot be overstated. These
architectures dominate context-heavy tasks rang-
ing from translation (Üstün et al., 2024; Xue et al.,
2021; Tay et al., 2022) to summarization (Zhang
et al., 2020; Guo et al., 2022; Tay et al., 2022),
and even following instructions across diverse do-
mains (Aribandi et al., 2022; Wei et al., 2022a;
Chung et al., 2024). Like their decoder-only coun-
terparts, encoder-decoders are able to accommo-
date long inputs (Guo et al., 2022), and scale effec-
tively effectively as a function of model size and
training data (Sutawika et al., 2024). Ormazabal
et al. (2024) released a series of encoder-decoder
models, where their dense 21B parameter model
outperformed all models of its size in the lmsys
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(a) Natural Instructions (NI) FS (b) Natural Instructions (NI) CPT

Figure 6: NI results for DEPTH and T5 models.

benchmark (Zheng et al., 2023).7 Encoder-deocder
models are also strong multi-modal learners (Or-
mazabal et al., 2024; Wu et al., 2023; Dosovitskiy
et al., 2021; Zhai et al., 2022). When scaled suffi-
ciently, encoder-decoders like Reca-Core may be
competitive with state of the art models like GPT-4
(OpenAI et al., 2023), Gemini (Team et al., 2023),
and Claude-3.

While specialized encoder-decoder models such
as PEGASUS (Zhang et al., 2020), DialogVED
(Chen et al., 2022), and a multi-party dialogue
pre-training model (Li et al., 2023) demonstrate
the value of discourse-oriented tasks for encoder-
decoder models, they have limited utility for
broader tasks. Long-T5 (Guo et al., 2022) and
UL2 (Tay et al., 2022) improved the ability of
encoder-decoders to handle long contexts, but did
not explicitly tackle discourse understanding. Flan-
T5 (Wei et al., 2022a) and Ex-T5 (Aribandi et al.,
2022) demonstrated the applicability of encoder-
decoders across a variety of tasks, including ones
that are heavily discourse dependent. However,
these models depend on a vast yet costly annotated
dataset to learn human preferences. Finally, BART
(Lewis et al., 2020a) is an encoder-decoder which
leverages sentence shuffling during pre-training,
but does not train dedicated hierarchical represen-
tations for sentences (essentially behaving like a
DEPTH model without sentence-tokens, and with-
out attention-mask induced hierarchy).

6 Limitations

Given our lack of computational resources (Ap-
pendix C), we were not able to pre-train our models
with a batch size that would allow an aggressive

7This Reka model is competitve with mixtral 8x22b (Jiang
et al., 2024) (which was trained with significantly more pa-
rameters using a mixture-of-experts architecture).

learning rate like that used in Raffel et al. (2020)’s
T5 (see Appendix A for additional details). We
also pre-trained on substantially fewer tokens than
T5. As a result, our model converges to a worse
loss during pre-training, and performs worse on
downstream tasks. We also lacked computational
resources to compute confidence intervals or statis-
tical significance for our downstream experiments.8

Encoder-decoder LMs have fewer tools avail-
able for computationally efficient pre-training. For
example, FlashAttention (Dao et al., 2022; Dao,
2023), which provides a massive training speedup,
is not available for encoder-decoder models. It is
therefore difficult to create scalable pre-training ex-
periments with new encoder-decoder architectures
and objectives.

7 Conclusions and future work

DEPTH’s new pre-training objective and hierar-
chical representations complement efforts to scale
model size, parallelize architectures, and acquire
high quality data for pre-training. Despite train-
ing over fewer tokens, DEPTH significantly out-
performed T5 both during pre-training and during
fine-tuning. DEPTH’s remarkably efficient learn-
ing and downstream performance on discourse ori-
ented tasks underscore the importance of discourse-
oriented pre-training.

Looking forward, the application of DEPTH to
RAG (Lewis et al., 2020b), especially over sen-
tence “chunks”, presents an exciting avenue for
future research. Additionally, extending DEPTH’s
pre-training objectives to encompass higher-level
discourse units—such as paragraphs, chapters, and

8Running a single downstream experiment on MNLI takes
5-7.5 hours. We run ≈ 120 experiments for each of 10 bench-
marks, and do not have the capacity to repeat experiments
≥ 5× to obtain statistical significance.
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whole documents—offers further flexibility emerg-
ing hierarchical RAG systems (Chen et al., 2024).
Moreover, conducting further experiments with
larger DEPTH models is helpful for understanding
the scalability of discourse-focused training objec-
tives. Such investigations could reveal whether
the promising capabilities observed in DEPTH
are amplified with increased model capacity. Fi-
nally, sentence-level pre-training tasks such as next-
sentence prediction (as in Krishna et al. (2022) and
Zhang et al. (2020)) may prove powerful alterna-
tives to sentence un-shuffling.
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A Challenges in replicating T5

A.1 Our speculations

We recognize that both DEPTH and T5 CPT mod-
els quickly reach a significantly lower reconstruc-
tion loss than their FS counterparts. While the
original T5’s reached a final training loss of ≈ 0.75
(with 512k steps of batch size 128 with packing)
(Raffel et al., 2020), our training loss reached ≈ 0.8
(after 800k steps of batch size 200 without pack-
ing). We propose the following ideas to explain
this gap:

1. The baseline model from which CPT models
are initialized is trained on 1T tokens. This is
≈ 20× greater than the amount of tokens we
used to train FS models.

2. Our examples never consist of the later text
in long documents. By truncating text after
512 tokens, our FS models might miss out on
valuable text to train on.

3. Our training examples consists of ≈ 2× fewer
tokens (on average) than examples the origi-
nal T5 was trained on. Furthermore, there is
much greater variance in example lengths in
our pre-training experiments. These factors
may impact our models’ learning dynamics
(e.g., learning effective positional representa-
tions given the presence of irregular padding
patterns).

4. The T5 baseline plot was reported using a
masking probability of 0.15, which is 2×
lower than the one we used. Our higher mask-
ing probability makes the reconstruction task
more challenging.

5. T5 models using the T5x framework use ag-
gressively high learning rates, which can lead
to a different, and perhaps more effective train-
ing dynamics than the ones we found in our FS
experiments. Using such high learning rates
in our settings caused our models to diverge.

A.2 Example packing

Given our choice of avoiding example-packing, we
found that we were not able to pre-train T5 with the
same hyper-parameters used in (Raffel et al., 2020).
Specifically, we found that with a batch size of 128
and a learning rate of 1e−2, our model consistently
diverged. This issue persisted with a learning rate
of 1e−3. To stabilize our loss given the absence of

packing, we used a lower maximum learning rate
(1e−4), which is in line with those used to pre-train
BERT, SLM, and PMI. On the other hand, we see
that given the same training parameters (i.e., learn-
ing rate and batch size), pre-training with packing
can converge at a high learning rate (see Figure 7).

We speculate that packing acts in a similar way
to increasing the batch size during training. The
model is exposed to loss on a greater amount of
tokens in each optimization step, and is therefore
able to generalize even with a larger learning rate.

One possible side effect of avoiding example-
packing is the truncation of long examples (exam-
ples are not dynamically chunked, so every token
past the context limit of 512 is ignored). We em-
pirically find that while T5 suffers greatly from no
packing, DEPTH is able to train effectively despite
these limitations.
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Figure 7: Exploration of packing and learning rates
when pre-training T5 models. “High LR” corresponds
to a learning rate of 1e−2, while “Low LR” corresponds
to a learning rate of 1e−4.
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B DEPTH loss decomposition

When we decompose DEPTH’s losses in the FS
setting, we find that sentence loss is consistently
lower than reconstruction loss, but plateus early on
into training. The overall loss is dominated by the
reconstruction loss, reflected by overlapping lines
in Figure 8. In the CPT setting (Figure 9), we find
that both of DEPTH’s losses plateu sooner, and that
the sentence loss is approximately equal (though
with higher fluctuations) to the reconstruction loss.

Figure 8: Decomposition of from-scratch pre-training
losses (validation) for DEPTH.

Figure 9: Decomposition of continuous pre-training
losses (validation) for DEPTH

We note that DEPTH’s loss over sentence tokens
in the FC setting, is close to that which the DEPTH-

CPT achieved (both in the range of 0.3-0.4, where
the more examples are shuffled, the higher the sen-
tence loss). In practice, given comperable ratios of
shuffling sentences, CPT DEPTH outperforms FS
DEPTH in predicting the next sentence accurately
during pre-training (≈ 1% − 3% higher given a
fixed shuffling ratio). We speculate that the better
representations for non-sentence tokens in the CPT
setting is the reason for this performance boost.

B.1 Weight of sentence loss

We explored the impact of increasing the weight
of the sentence loss during DEPTH pre-training.
Our “Baseline” run is the DEPTH model we re-
ported on in the main body of the paper. In our
“Sentence Weight 1x” run, our loss is composed of
the average loss over sentence tokens plus the aver-
age loss over non-sentence tokens (as opposed to
the average loss over all tokens). This formulation
places increased weight on sentence tokens, since
there are significantly fewer sentence tokens than
non-sentence tokens. In the “Sentence Weight 5x”
run, we weighed the sentence loss 5× more than
reconstruction loss.

We found that increasing the weight of this loss
had minimal impact on the model’s accuracy in
predicting sentence tokens, and adversely harmed
the model’s loss (see Figure 10).

Figure 10: We explore the impact of weighing sentence
loss more than reconstruction loss, and find that it has
minimal impact beyond early stages of pre-training.

C Computational resources
We utilize 4 A40 GPUs, and 64 CPUs for training.
We use a batch size of 200, since it helps us achieve
much better GPU memory utilization. We leverage
16 CPUs for each GPU in order to increase the
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data loading time to accommodate for DEPTH’s
more-complex corruption method, and to allow ef-
fective optimizer offloading with DeepSpeed Zero2
(Rajbhandari et al., 2020).

D Pre-training considerations

D.1 Pre-training scale

In Table 2 below we show the relative magnitude
of DEPTH’s pre-training. Specifically, we compare
the number of observed tokens and optimization
steps of our T5 and DEPTH models to comparably
sized models (such as SLM, BERT, and RoBERTa).
We highlight that the models we independently pre-
trained (bottom 4 rows of the table) observed far
fewer tokens than comparable LMs.

D.2 Pre-training data

The rationale behind selecting C4 extends beyond
its sheer volume and diversity. Given DEPTH’s
architectural roots in the T5 model, which was
originally pre-trained on C4, leveraging the same
dataset facilitates a direct comparison of the en-
hancements our model introduces. This baseline
compatibility is crucial for isolating the effects of
our architectural and methodological innovations
on the model’s performance. Furthermore, C4 is
a subset of both Dolma (Soldaini et al., 2024) and
RedPajama (Computer, 2023). These datasets were
used to train the most capable fully-open-source
LMs (with released data) to date: OLMO (Groen-
eveld et al., 2024) and LLama (Touvron et al., 2023)
respectively. This suggests that C4 is an effective
component in pre-training effective LMs, and of-
fers multiple additional datasets components that
would be new to our model for future training. Fi-
nally, Muennighoff et al. (2023) suggest that pre-
training over the same data up to 4× still improves
model performance, while (Raffel et al., 2020)’s
model has not completed even one full iteration
over the C4 dataset. This hints at the viability of
continuing to pre-train T5 on the same dataset it
was already pre-trained on.

E Error Analysis
We select randomly select 30 examples from each
task in DiscoEval, and manually inspect the na-
ture of our models’ errors. For example, in the SP
task, we were interested in observing if a model
tended to misunderstand clues from pronouns or
transitions. For both DC and SP, we were also
counted the number of examples where a human
might find the LLM’s answer reasonable (given the

human-perceived coherence of the example).

E.1 Sentence Position

Consistent with the macro-level results from our
DiscoEval fine-tuning experiments, DEPTH gener-
ally performs better in FS than T5. However, in the
CPT setting, while DEPTH shows better reasoning
in some cases, T5-CPT outperforms it, particularly
on simpler tasks like SP-Wiki and SP-Rocstory,
likely benefiting from more consistent pretraining.
DEPTH’s greater number of reasonable mistakes
indicates its strength in engaging with complex
discourse structures, but pronoun resolution and
transition errors remain areas for further improve-
ment.

Given the 30 examples we’ve sampled, we cate-
gorize the types of errors our models tend to make.
An error type is a reason by which a person might
be able to infer the correct label. If the model
predicts incorrectly given an “obvious” hint (e.g.
introducing an entity that is referenced via a pro-
noun), then we categorize the error type based on
that hint. In Table 3 we show the counts of error
types that each model made on each subset of SP.

E.2 Discourse Coherence

We found that in the Discourse Coherence (DC)
subset, both models were strictly incorrect by pre-
dicting poorly formatted outputs. Each of the
poorly formatted predictions was incorrect (e.g.,
if the model predicted “cooherent” instead of “co-
herent”, the correct label was “incoherent”). We
analyze the ratio of these types of predictions on
DC in Table 4. Further, we find that in DC-Chat,
both models tend to make errors that a human might
find reasonable. This implies that the augmenta-
tion on the input example (i.e., replacing one if
the sentences in the paragraph with another one)
did not adversely impact the example’s coherence.
Strangely, we found that FS models predicted more
correct outputs than their CPT counterparts. This
may be the result of selecting a too small a sample-
size of examples to analyze.

F GLUE results

In this section we show the full results from our
downstream experiments on GLUE tasks. Table 5
is reflected in the top row (FS) of Figure 4, while Ta-
ble 6 is reflected in the bottom row (CPT) of figure
4. Consistent with our hypothesis, we found that
both DEPTH and T5 improve across downstream
tasks as a function of the pre-training steps they’ve

19



Model Tokens Steps Batch Size # Params Learning Rate

SLM-1M 125B 1M 256 ≈ 110M 1.5e−4

SLM-3M 375B 3M 256 ≈ 110M 1.5e−4

BERT-Base 137B 1M 256 ≈ 110M 1e−4

BERT-Large 137B 1M 256 ≈ 340M 1e−4

RoBERTa-Base 2.2T 500k 8000 ≈ 110M 1e−4

CONPONO (*) - 256k 256 ≈ 110M 1e−4

T5-Base 1T 1M 2048 ≈ 220M 1e−2

T5-FS 58.6B 1M 200 ≈ 220M 1e−4

T5-CPT (*) 15B 256k 200 ≈ 220M 1e−4

DEPTH-FS 48.9B 1M 200 ≈ 220M 1e−4

DEPTH-CPT (*) 12.5B 256k 200 ≈ 220M 1e−4

Table 2: Hyper-parameters of comparable models to DEPTH. We show published hyper-parameters in the top
rows of the table, and the models we train ourselves in the bottom of the table. We mark all models initialized
from publically released pre-training models with (*). Note that CONPONO did not report the number of tokens it
pre-trained on, so we exclude that value from the table above.

Dataset Model 0 1 2 3 4

SP-Wiki CPT
T5 0.57 0.07 0.23 0.13 0.07

DEPTH 0.57 0.03 0.23 0.2 0.03

SP-Wiki FS
T5 0.57 0.07 0.23 0.13 0.07

DEPTH 0.57 0.03 0.23 0.2 0.03

SP-Arxiv CPT
T5 0.63 0.07 0.2 0.1 0

DEPTH 0.57 0.13 0.2 0.1 0

SP-Arxiv FS
T5 0.37 0.23 0.3 0.07 0.03

DEPTH 0.43 0.1 0.3 0.23 0

SP-Rocstory CPT
T5 0.77 0.07 0.1 0.07 0

DEPTH 0.57 0.13 0.2 0.1 0

SP-Rocstory FS
T5 0.47 0.2 0.27 0.07 0

DEPTH 0.6 0.2 0.13 0.07 0

Table 3: Approximate ratio of prediction types for SP-
Wiki, SP-Arxiv, and SP-Rocstory across T5 and DEPTH
models in FS and CPT settings. There are 30 total exam-
ples. Each prediction over these examples is categorized
into one of 5 prediction types: 0 - Correct prediction, 1 -
Incorrect (hint from transitions), 2 - Incorrect (hint from
pronoun), 3 - Incorrect (reasonable error), 4 - Incorrect
(hint from punctuation).

taken. While DEPTH outperforms T5 across all
tasks is the FS setting, it did not reach the scores of
Raffel et al. (2020)’s T5 model. In the CPT setting,
T5 and DEPTH perform quite comparably. In fact,
in the penultimate checkpoint (128k) we found that
DEPTH outperformed T5 on all tasks except for
CoLA.

G DiscoEval results

In this section we show the full results from our
downstream experiments on discourse tasks from

Dataset Model 0 1 2

DC-Wiki-FS
T5 0.87 0.32 0.00
DEPTH 0.87 0.13 0.00

DC-Wiki-CPT
T5 0.80 0.08 0.00
DEPTH 0.83 0.08 0.00

DC-Chat-FS
T5 0.60 0.42 0.17
DEPTH 0.63 0.35 0.23

DC-Chat-CPT
T5 0.83 0.30 0.10
DEPTH 0.77 0.29 0.07

Table 4: Prediction types for models and dataset splits.
0: Correct predictions (Type 0), 1: Poorly formatted
predictions (Type 1), 2: Reasonable errors (Type 2).

the DiscoEval benchmark. In Table 7, we show the
full results of our models in the FS setting, while
in Table 8 we show the full results of our models
in the CPT setting. These tables reflect the top and
bottom row of Figure 5 respectively.

In the FS setting, we found that DEPTH’s wins
over T5 are even more pronounced in DiscoEval
than they were in GLUE. Specifically, T5 struggles
to learn discourse tasks (especially SP) during early
stages of pre-training. On the other hand, DEPTH
was highly effective in discourse tasks already from
early pre-training checkpoints. In the CPT setting,
we found that DEPTH still outperformed T5, de-
spite the fact that the original checkpoint was pre-
trained substantially with a different objective.
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Model CoLA SST-2 MNLI
Matched Mismatched

T5-Base @ 0 (Test) 12.3 80.62 68.02 68.0
T5-Base @ 1M (Test) 53.84 92.68 84.24 84.57
T5-Base @ 1M (Val) 53.98 94.73 87.28 87.1

T5 @ 2k 8.62 80.08 52.54 52.3
DEPTH @ 2k 8.67 78.52 57.07 58.14

T5 @ 4k 6.23 80.66 53.16 53.89
DEPTH @ 4k 7.75 80.08 59.31 59.62

T5 @ 8k 4.66 82.23 54.33 54.62
DEPTH @ 8k 6.93 79.69 58.92 59.73

T5 @ 16k 8.99 80.96 54.1 54.1
DEPTH @ 16k 10.94 81.25 62.79 61.46

T5 @ 32k 10.72 81.64 55.18 55.6
DEPTH @ 32k 7.73 82.81 71.23 72.7

T5 @ 64k 6.86 82.42 57.68 60.88
DEPTH @ 64k 27.78 86.72 73.84 76.05

T5 @ 128k 12.85 83.2 69.61 69.82
DEPTH @ 128k 38.01 88.87 77.5 78.06

T5 @ 256k 11.78 85.94 72.82 73.39
DEPTH @ 256k 45.57 91.31 79.45 80.07

T5 @ 512k 19.96 86.52 74.22 74.26
DEPTH @ 512k 47.14 91.11 80.42 81.43

T5 @ 1M 29.35 88.77 74.53 75.37
DEPTH @ 1M 45.91 91.41 81.0 81.96

Table 5: GLUE benchmark results for From Scratch (FS). Note that the first two rows are reported by Raffel et al.,
2019, while all later rows are the best reported results on the validation set across 3 attempted learning rates.

H NI results

In the from-scratch setting (Figure 6a and Table
9), we observe that DEPTH outperforms T5 in the
NI benchmark, with a notable leap in performance
between steps 16k and 32k. This indicates that
DEPTH’s pre-training objective is more effective
at learning representations that are beneficial for the
NI task. However, at steps 2k, 8k, and 16k, DEPTH
underperforms compared to T5, suggesting that the
benefits of DEPTH’s pre-training objective may
not be immediately apparent in the early stages of
training.

However, in the continuously pre-trained setting
(Figure 6b and Table 10), we find that DEPTH’s
pre-training harms downstream performance com-
pared to T5. Additionally, we observe that CPT
models are less sensitive to learning rate and can

train effectively across a wider range of learning
rates, with the exception of DEPTH in the early
stages of CPT, where it is adapting to a task that dif-
fers from its initial pre-training. This robustness to
learning rate is a positive property that the FS mod-
els did not exhibit, likely due to limitations in train-
ing scale (e.g., small batch size, avoiding packing,
and training on fewer tokens overall). Furthermore,
early in the CPT process, DEPTH’s performance
is somewhat unstable, possibly due to the domain
shift from T5’s pre-training task to DEPTH’s pre-
training task. Interestingly, lower learning rates
perform worse for DEPTH after CPT, suggesting
that the model needs to adjust its representations
more substantially to adapt to the downstream task.
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Model CoLA SST-2 MNLI
Matched Mismatched

T5-Base @ 1M (Test) 53.84 92.68 84.24 84.57
T5-Base @ 1M (Val) 53.98 94.73 87.28 87.1

T5 @ 2k 57.41 95.02 86.93 87.06
DEPTH @ 2k 53.93 94.34 86.38 86.2

T5 @ 4k 55.18 95.02 87.4 87.34
DEPTH @ 4k 47.11 94.34 87.14 87.01

T5 @ 8k 55.35 95.21 87.47 87.31
DEPTH @ 8k 50.67 94.43 86.62 86.52

T5 @ 16k 54.75 95.7 86.91 86.67
DEPTH @ 16k 52.65 94.34 86.62 86.67

T5 @ 32k 54.95 95.21 86.64 86.06
DEPTH @ 32k 53.79 94.63 86.95 87.02

T5 @ 64k 54.77 95.21 86.96 86.93
DEPTH @ 64k 52.95 94.14 86.65 86.91

T5 @ 128k 58.62 95.21 86.79 86.67
DEPTH @ 128k 56.21 95.61 87.42 87.64

T5 @ 256k 57.62 95.21 87.27 87.22
DEPTH @ 256k 56.78 95.02 86.86 86.45

Table 6: GLUE benchmark results for Continuous Pre-Training (CPT). As in the FS setting, we report our results on
the validation set after a hyper-parameter sweep over 3 learning rates.
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Model SP DC
Arxiv Wiki Rocstory Chat Wiki

Baseline T5 @ 1M 52.76 51.07 70.58 68.99 92.09

T5 @ 2k 21.0 20.9 21.2 55.18 53.59
DEPTH @ 2k 34.81 40.19 51.51 55.27 53.2

T5 @ 4k 20.4 21.4 20.9 57.18 55.37
DEPTH @ 4k 35.72 40.38 52.03 56.49 54.74

T5 @ 8k 20.6 20.9 21.0 57.42 54.57
DEPTH @ 8k 36.43 40.14 51.25 57.03 54.69

T5 @ 16k 21.4 22.0 21.24 57.62 55.18
DEPTH @ 16k 36.47 40.33 53.13 57.52 55.44

T5 @ 32k 21.75 21.75 20.63 57.62 56.1
DEPTH @ 32k 38.04 44.26 54.05 58.5 57.37

T5 @ 64k 21.92 21.53 21.24 57.23 57.01
DEPTH @ 64k 42.24 45.85 55.96 60.94 72.58

T5 @ 128k 21.09 33.96 42.63 60.16 60.01
DEPTH @ 128k 45.0 47.71 59.57 64.65 78.0

T5 @ 256k 22.85 37.92 44.85 58.89 61.91
DEPTH @ 256k 48.68 48.93 61.33 65.33 81.69

T5 @ 512k 26.61 41.97 52.29 61.33 60.89
DEPTH @ 512k 52.59 51.66 65.92 66.85 83.81

T5 @ 1M 28.54 43.22 50.98 61.13 65.48
DEPTH @ 1M 52.39 50.07 63.89 67.92 84.52

Table 7: DiscoEval Downstream Full Training (FS) Results
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Model SP DC
Arxiv Wiki Rocstory Wiki Chat

T5 @ 2k 62.26 51.9 74.83 92.09 71.44
DEPTH @ 2k 44.14 49.34 74.78 89.99 70.46

T5 @ 4k 61.33 52.39 74.98 91.72 74.27
DEPTH @ 4k 56.62 51.2 67.65 91.46 72.02

T5 @ 8k 63.63 52.03 77.0 92.33 73.1
DEPTH @ 8k 55.03 51.56 71.02 91.99 71.97

T5 @ 16k 60.94 51.78 76.49 91.53 74.71
DEPTH @ 16k 58.86 52.08 76.15 92.63 72.71

T5 @ 32k 60.69 52.22 75.61 92.33 74.02
DEPTH @ 32k 59.35 53.27 78.08 92.48 72.85

T5 @ 64k 58.96 52.25 76.07 92.58 73.73
DEPTH @ 64k 58.57 52.95 76.1 92.58 73.24

T5 @ 128k 60.13 51.03 75.76 91.14 73.44
DEPTH @ 128k 70.56 54.77 82.42 92.53 73.96

T5 @ 256k 59.03 52.66 66.77 92.31 72.22
DEPTH @ 256k 67.07 53.0 76.71 92.07 72.9

Table 8: DiscoEval Downstream Continuous Pre-Training (CPT) Results
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Model Step RougeL

Baseline T5 1M 42.48

T5 2k 8.36
DEPTH 2k 10.92

T5 4k 10.11
DEPTH 4k 11.03

T5 8k 10.15
DEPTH 8k 9.06

T5 16k 10.82
DEPTH 16k 10.43

T5 32k 10.68
DEPTH 32k 23.51

T5 64k 12.89
DEPTH 64k 30.23

T5 128k 18.24
DEPTH 128k 32.24

T5 256k 26.36
DEPTH 256k 32.63

T5 512k 28.05
DEPTH 512k 34.72

T5 1M 29.6
DEPTH 1M 33.8

Table 9: NI benchmark results for From Scratch (FS)
pre-training. The first row reports the performance of
the baseline T5 model, while all later rows show the best
reported results on the validation set across 3 attempted
learning rates.

Model Step NI RougeL

T5 2k 41.96
DEPTH 2k 39.15

T5 4k 42.72
DEPTH 4k 37.85

T5 8k 42.83
DEPTH 8k 38.04

T5 16k 42.88
DEPTH 16k 38.19

T5 32k 43.56
DEPTH 32k 37.79

T5 64k 43.06
DEPTH 64k 38.99

T5 128k 42.58
DEPTH 128k 39.19

T5 256k 43.29
DEPTH 256k 37.86

Table 10: NI benchmark results for Continuous Pre-
Training (CPT). All rows show the best reported results
on the validation set across 3 attempted learning rates.
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Abstract

The extensive memory footprint of language
model (LM) fine-tuning poses a challenge for
both researchers and practitioners. LMs use
an embedding matrix to represent extensive vo-
cabularies, forming a substantial proportion of
the model parameters. While previous work
towards memory-efficient fine-tuning has fo-
cused on minimizing the number of trainable
parameters, reducing the memory footprint of
the embedding matrix has yet to be explored.
We first demonstrate that a significant propor-
tion of the vocabulary remains unused during
fine-tuning. We then propose a simple yet ef-
fective approach that leverages this finding to
minimize memory usage. We show that our ap-
proach provides substantial reductions in mem-
ory usage across a wide range of models and
tasks. Notably, our approach does not impact
downstream task performance, while allowing
more efficient use of computational resources.1

1 Introduction

Language models (LMs) (Chung et al., 2022; Tou-
vron et al., 2023; Warner et al., 2024) form the foun-
dation of contemporary natural language process-
ing (NLP), however they require extensive com-
putational resources to train (Kaplan et al., 2020;
Hoffmann et al., 2022). This is contrary to the
democratization of NLP, exacerbating economic in-
equalities and hindering inclusivity (Schwartz et al.,
2020; Weidinger et al., 2022). Consequently, there
is a growing focus towards developing efficient
methods for LM training and fine-tuning (Treviso
et al., 2023; Lialin et al., 2023).

The memory footprint of LMs is a major chal-
lenge for their application. Storing model param-
eters requires extensive amounts of memory, con-
straining the size and architecture of the model
(Paleyes et al., 2022). This problem is especially

1https://github.com/mlsw/
partial-embedding-matrix-adaptation

Original
Embeddings

Trainable
Embeddings

Unused
Embeddings

Merged
Embeddings

Figure 1: Memory-efficient language model fine-tuning
with Partial Embedding Matrix Adaptation (PEMA).

prominent during training as gradients and opti-
mizer states must also be retained (Kingma and
Ba, 2017). This can be problematic when using
consumer hardware or facing an academic budget
(Izsak et al., 2021; Ciosici and Derczynski, 2022).

LMs ordinarily use fixed vocabularies to derive
vector representations from text, known as word
embeddings. Each element of the vocabulary has a
corresponding word embedding, which collectively
form an embedding matrix within the LM. The size
of the embedding matrix scales with both the vocab-
ulary size and embedding dimension, comprising a
substantial proportion of the model parameters (Ta-
ble 5, Appendix A). This proportion is usually even
greater for multilingual LMs, which benefit from
larger vocabularies (Conneau et al., 2020; Liang
et al., 2023). However, we hypothesize that a signif-
icant proportion of LM vocabulary remains unused
during fine-tuning on many downstream tasks.

In this paper, we first demonstrate that our hy-
pothesis holds for a variety of downstream tasks,
with only a small subset of vocabulary used. We
then propose a method to reduce memory usage dur-
ing fine-tuning by excluding unused embeddings.
Finally, we empirically demonstrate the memory
savings from our approach across a range of models
and tasks. Notably, our approach does not impact
downstream task performance and is orthogonal to
many existing LM memory efficiency techniques.
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2 Related Work

Tokenization. Transformer LMs (Vaswani et al.,
2017) typically adopt subword tokenization (Schus-
ter and Nakajima, 2012; Sennrich et al., 2016) to en-
code text using a finite vocabulary. The use of large
subword vocabularies enables improved task per-
formance (Gallé, 2019), inference efficiency (Tay
et al., 2022), and multilingual performance (Liang
et al., 2023). Conversely, character or byte level
tokenization can be used (Clark et al., 2022; Xue
et al., 2022), reducing the size of the embedding
matrix at the cost of increasing the sequence length.

Reducing embedding parameters. To reduce
the size of the embedding matrix, LMs can be
trained with embedding factorization (Sun et al.,
2020; Lan et al., 2020), albeit with slightly lower
task performance. Alternatively, embeddings can
be generated from hash functions (Sankar et al.,
2021; Xue and Aletras, 2022; Cohn et al., 2023),
although this may harm performance due to the
many-to-one mapping from tokens to embeddings.

Multilingual vocabulary trimming. The closest
work to our own is Abdaoui et al. (2020), which
creates smaller multilingual LMs by permanently
reducing the number of supported languages. This
can harm performance as the removed vocabulary
may later be required for a downstream task. More-
over, selecting which vocabulary to remove re-
quires the computationally expensive processing of
a large corpus. Ushio et al. (2023) further examine
the performance impact of permanently removing
LM vocabulary either before or after fine-tuning.
However, the same fundamental limitations persist.

Parameter-efficient fine-tuning. PEFT meth-
ods, such as adapters (Houlsby et al., 2019), soft
prompts (Lester et al., 2021; Li and Liang, 2021),
ladder side-tuning (Sung et al., 2022), and low-rank
adaptation (Hu et al., 2022), effectively adapt LMs
by fine-tuning only a small number of parameters.
However, these methods still require all LM param-
eters to be held in accelerator memory.

Offloading. To minimize accelerator (e.g. GPU)
memory usage, LM parameters can be held in sep-
arate (e.g. CPU) memory until needed (Pudipeddi
et al., 2020; Ren et al., 2021). However, this ap-
proach substantially increases inference latency.

Model compression. In Appendix B, we discuss
a variety of orthogonal LM compression methods,
such as quantization, pruning, and distillation.
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Figure 2: The trend in vocabulary use for the datasets
in GLUE when using the vocabulary from GPT-2.

# Token

49,990 natureconservancy
50,072 ;;;;;;;;;;;;
50,160 PsyNetMessage
50,174 rawdownloadcloneembedreportprint
50,243 SolidGoldMagikarp

Table 1: Five examples of tokens from the GPT-2 vo-
cabulary that do not occur within English Wikipedia.

3 Vocabulary Usage Analysis

To empirically assess the level of vocabulary usage
during fine-tuning, we first examine the popular
GLUE benchmark (Wang et al., 2019). This com-
prises a series of tasks that are varied in both size
and domain (Appendix C). For tokenization, we use
the subword vocabulary from GPT-2, which was
later adopted by models including RoBERTa (Liu
et al., 2019), BART (Lewis et al., 2020), GPT-3
(Brown et al., 2020), and OPT (Zhang et al., 2022).

Figure 2 illustrates the relationship between
unique tokens and total tokens in each of the GLUE
datasets. Notably, six out of nine datasets fail to use
more than half of the vocabulary. Moreover, the
smallest dataset, WNLI, uses less than 4%. Interest-
ingly, we observe that the GLUE datasets follow a
trend resembling Heaps’ Law (Heaps, 1978). This
states that as the size of a corpus grows, there are
diminishing gains in new vocabulary. However, our
use of a finite subword vocabulary means that the
trend is asymptotic to the vocabulary size.

Separately, the statistical construction of sub-
word vocabularies can reflect anomalies in their
training data, creating tokens that may never be
used. To examine the extent of the issue, we iden-
tify such tokens by evaluating a processed dump
of English Wikipedia, comprising over 20GB of
text. Peculiarly, we identify nearly 200 anomalous
tokens without a single occurrence (see Table 1).2

2We refer readers interested in such anomalous tokens to
Rumbelow and Watkins (2023) and Land and Bartolo (2024).
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4 Partial Embedding Matrix Adaptation

Our empirical analysis (Section 3) suggests that
many fine-tuning datasets only use a fraction of
LM vocabulary. We leverage this insight to propose
Partial Embedding Matrix Adaptation (PEMA), a
method that achieves substantial memory savings
by selecting only the minimum subset of word em-
beddings needed for fine-tuning. Notably, this does
not impact task performance, as unused word em-
beddings are not updated during backpropagation.

Preliminaries. Let each token in the vocabulary
{w1, . . . , wk} be denoted by a unique integer i
such that V = {i ∈ N | i ≤ k}. The embedding
matrix E ∈ R|V|×d is then used to project each
token to a corresponding d-dimensional vector.

Before fine-tuning. Suppose we have fine-tuning
dataset D ∈ Vm×n where m is the number of ex-
amples and n is the length of each example. We
compute the partial vocabulary V ′ ⊂ V consisting
of only the tokens in D. As the elements of V ′ are
not necessarily consecutive integers, we define an
arbitrary mapping f : V ′ → {i ∈ N | i ≤ |V ′|}.
We then construct the partial embedding matrix
E′ ∈ R|V ′|×d with entries E′[:, f(i)] = E[:, i] for
all i ∈ V ′. That is, E′ retains only embedding vec-
tors corresponding to tokens in V ′. To adapt D for
the partial vocabulary V ′, we create an intermediary
dataset D′ where each entry D′[i, j] = f(D[i, j]).
Finally, we use D′ and E′ in place of D and E.

After fine-tuning. Following fine-tuning, our
partial embedding matrix E′ holds the newly
learned embeddings for the partial vocabulary.
However, we do not wish to keep only the par-
tial vocabulary, as this would limit future use of
the model (i.e. tasks with different vocabulary).
Therefore, we merge the newly learned embed-
dings into the original embedding matrix (stored
on-disk). More formally, we update E such that
E[:, f−1(i)] = E′[:, i] for all i ∈ V ′. This ensures
that the model remains structurally identical, with
embeddings for the complete vocabulary.

5 Experimental Setup

Datasets. To offer a fair selection of datasets,
we follow existing PEFT literature (Houlsby et al.,
2019; Hu et al., 2022; Sung et al., 2022; Zhang
et al., 2023) and focus our evaluation on the popular
GLUE benchmark. We additionally employ XNLI
(Conneau et al., 2018) to assess the performance

of our approach with multilingual data. Complete
data sources and implementation details are listed
in Appendix C and Appendix D, respectively.

Models. Similarly, we select a variety of popular
models used in existing work. However, we place
an emphasis on having a variety of vocabularies
(Table 5, Appendix A). For monolingual models,
we use BERT (Devlin et al., 2019), RoBERTa (Liu
et al., 2019), and DeBERTaV3 (He et al., 2023).
For multilingual models, we use mBERT (De-
vlin et al., 2019), XLM-RoBERTa (Conneau et al.,
2020), and XLM-V (Liang et al., 2023). To evalu-
ate the performance of distilled models, we also use
the available distilled counterparts: DistilBERT,
DistilRoBERTa, and DistilmBERT (Sanh et al.,
2020a). For a fair comparison between models,
we consistently select the base size (dmodel = 768).

Memory efficiency metrics. Following conven-
tion in the PEFT literature (Houlsby et al., 2019;
Hu et al., 2022; Ben Zaken et al., 2022), we report
memory efficiency in terms of model parameters.
This is advantageous as it avoids confounding fac-
tors such as weight precision, optimizer choice,
software implementation, and batch size.

6 Results

Larger vocabularies see more memory savings.
Table 2 presents the reduction in parameters for
each model across the GLUE benchmark. Follow-
ing our expectations from Section 3, we generally
observe that as vocabulary sizes increase (Table 5,
Appendix A), so do the potential memory savings.
For example, an average reduction in embedding
parameters of 47.3% is achieved for BERT, 52.1%
for RoBERTa, and 72.4% for DeBERTaV3.

Memory savings vary between datasets. In line
with our expectations from Section 3, the memory
savings vary substantially between datasets. For
BERT, the embedding matrix can be reduced by
94.3% for the smallest dataset (WNLI), yet only
11.5% for the largest (QQP). We demonstrate that
downstream task performance remains consistent
across models and datasets in Appendix E.

Distilled models substantially benefit. Consid-
ering the distilled models, we observe that they all
achieve an identical reduction in embedding param-
eters to their original counterparts. This is because
they use the same vocabulary and embedding size
(Sanh et al., 2020a). However, they offer substan-
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Model CoLA MNLI MRPC QNLI QQP RTE SST-2 STS-B WNLI Mean

Reduction in Embedding Parameters (%)

DistilBERT 80.1 14.8 54.9 13.1 11.5 41.5 57.9 57.2 94.3 47.3
DistilRoBERTa 86.1 14.8 64.0 17.7 5.9 51.6 68.6 64.4 96.0 52.1
DistilmBERT 94.9 76.9 88.2 73.8 72.7 85.0 91.9 88.8 98.4 85.6

BERT 80.1 14.8 54.9 13.1 11.5 41.5 57.9 57.2 94.3 47.3
RoBERTa 86.1 14.8 64.0 17.7 5.9 51.6 68.6 64.4 96.0 52.1
DeBERTaV3 95.0 44.3 85.7 47.1 28.5 79.0 87.5 85.9 98.6 72.4

mBERT 94.9 76.9 88.2 73.8 72.7 85.0 91.9 88.8 98.4 85.6
XLM-RoBERTa 97.8 88.8 94.9 87.6 85.4 93.3 96.3 94.9 99.3 93.1
XLM-V 99.3 93.2 98.0 92.8 90.5 97.1 98.3 98.0 99.8 96.3

Reduction in Model Parameters (%)

DistilBERT 28.0 5.2 19.2 4.6 4.0 14.5 20.3 20.0 33.0 16.5
DistilRoBERTa 40.5 7.0 30.1 8.3 2.8 24.3 32.3 30.3 45.1 24.5
DistilmBERT 64.4 52.2 59.9 50.1 49.3 57.7 62.3 60.2 66.8 58.1

BERT 17.1 3.2 11.8 2.8 2.5 8.9 12.4 12.2 20.2 10.1
RoBERTa 26.7 4.6 19.8 5.5 1.8 16.0 21.2 19.9 29.7 16.1
DeBERTaV3 50.7 23.6 45.7 25.1 15.2 42.1 46.7 45.8 52.6 38.6

mBERT 49.0 39.7 45.5 38.1 37.5 43.9 47.4 45.8 50.8 44.2
XLM-RoBERTa 67.5 61.3 65.5 60.5 59.0 64.4 66.5 65.5 68.5 64.3
XLM-V 88.3 82.9 87.2 82.6 80.5 86.4 87.5 87.2 88.8 85.7

Table 2: The reduction in embedding and model parameters (%) for each model across the GLUE benchmark.

Size CoLA MNLI MRPC QNLI QQP RTE SST-2 STS-B WNLI Mean

XSmall 46.7 21.8 42.2 23.2 14.0 38.8 43.1 42.3 48.5 35.6
Small 93.4 43.6 84.3 46.3 28.0 77.7 86.1 84.5 97.0 71.2
Base 93.4 43.6 84.3 46.3 28.0 77.7 86.1 84.5 97.0 71.2
Large 124.6 58.1 112.4 61.8 37.3 103.6 114.8 112.7 129.4 95.0

Table 3: The reduction in model parameters (millions) for each size of DeBERTaV3 across the GLUE benchmark.

tially higher overall savings, as there are fewer
parameters allocated to the transformer layers.

Memory savings scale with model size. Table 3
presents the reduction in model parameters for each
model from the DeBERTaV3 family. We observe
that this reduction continues to increase with model
size. On average, the extra small size is reduced by
35.6M parameters, while the large size is reduced
by 95.0M parameters. Although the same fixed-
size vocabulary is shared across models, the em-
bedding dimension continues to grow (Table 6, Ap-
pendix A), offering further memory savings. The
exception to this is the small and base sizes, where
the only difference is the number of layers.

Multilingual models achieve extreme savings.
Unsurprisingly, multilingual models demonstrate
extreme memory savings across the monolingual
GLUE benchmark. On average, a reduction in
model parameters of 44.2% is achieved for mBERT,
64.3% for XLM-RoBERTa, and 85.7% for XLM-V.
Table 4 presents the reduction in parameters for the
multilingual models when fine-tuning on different
subsets of XNLI. Even when fine-tuning on all
fifteen languages, these models still demonstrate
substantial memory savings from 23.0% to 58.4%.

Model en en-de en-zh All

Reduction in Embedding Parameters (%)

DistilmBERT 77.1 71.7 73.0 44.6
mBERT 77.1 71.7 73.0 44.6
XLM-RoBERTa 89.2 86.0 84.4 56.9
XLM-V 93.6 90.0 90.0 65.7

Reduction in Model Parameters (%)

DistilmBERT 52.3 48.6 49.6 30.3
mBERT 39.8 37.0 37.7 23.0
XLM-RoBERTa 61.6 59.4 58.3 39.3
XLM-V 83.2 80.0 80.0 58.4

Table 4: The reduction in parameters across different
subsets of XNLI, in addition to all fifteen languages.

7 Conclusion

In this paper, we identified that many fine-tuning
datasets do not use the majority of LM vocabulary.
We then proposed Partial Embedding Matrix Adap-
tation (PEMA), a simple yet effective approach to
minimize LM memory use during fine-tuning, that
is orthogonal to many existing methods. Finally,
we empirically demonstrated that our approach of-
fers substantial memory savings across a variety of
popular tasks and models, without compromising
performance. As future work, we are interested in
adapting our approach for the output embedding
matrix to offer further memory savings.
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Limitations

Processing the fine-tuning dataset to assess vocab-
ulary usage incurs a runtime cost. However, we
observe that this cost is negligible. We provide a
detailed analysis of this matter in Appendix F.

Ethical Considerations

Our approach improves the memory efficiency of
LM fine-tuning, therefore facilitating the use of less
powerful hardware. Although we hope that this
can reduce the environmental footprint of LM fine-
tuning, we acknowledge that it could be used to
support the fine-tuning of even larger LMs. We also
recognize the dual-use nature of LMs and concede
that efforts towards improving efficiency, including
our own, can lower the barrier to entry for their
misuse (Weidinger et al., 2022).
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A Language Model Vocabulary Sizes

Table 5 presents the vocabulary sizes (|V|) for the
models used in our experiments, as identified by
the Hugging Face Hub. We also report the number
of embedding parameters (Nemb), the number of
model parameters (N ), and the overall proportion
of embedding parameters (Nemb/N ). These met-
rics are also presented in Table 6 for each size of
DeBERTa, in addition to model hyperparameters.

B Language Model Compression

Supplementary to our discussion of related work
(Section 2), we additionally discuss the relation
to variety of popular LM compression approaches.
We emphasize that these methods are orthogonal
to our proposed approach.

Knowledge distillation. Knowledge distillation
(Hinton et al., 2015) aims to achieve comparable
performance by training a smaller model using the
predictions from a larger model. This approach
has been successfully applied to LMs (Sanh et al.,
2020a; Sun et al., 2020). It can also be used to train
models with a smaller vocabulary than the original
(Zhao et al., 2021; Singh and Lefever, 2022).

Pruning. Neural network pruning (LeCun et al.,
1989) seeks to remove redundant weights while
preserving performance. Existing approaches focus
on pruning the linear and attention weights in LMs
(Sanh et al., 2020b; Kurtic et al., 2022; Frantar and
Alistarh, 2023). However, pruning the embedding
matrix is widely avoided, as it can substantially
harm performance (Kurtic et al., 2024).

Quantization. The aim of quantization is to rep-
resent neural network weights using lower preci-
sion, therefore reducing computational costs. Re-
cent LM quantization efforts generally focus on
quantizing the linear layers (Dettmers et al., 2022;
Yao et al., 2022; Frantar et al., 2023). The em-
bedding matrix can also be quantized (Zafrir et al.,
2019; Bondarenko et al., 2021), although Shen et al.
(2020) find that it is more sensitive to quantization.

C Datasets

In all cases, we use the publicly available version of
each dataset available from Hugging Face (Lhoest
et al., 2021). The GLUE benchmark comprises
a diverse range of tasks, including linguistic ac-
ceptability (CoLA, Warstadt et al. 2019), sentiment

Model |V| Nemb N Nemb/N

DistilBERT 28,996 22.3M 65.8M 33.9%
DistilRoBERTa 50,265 38.6M 82.1M 47.0%
DistilmBERT 119,547 91.8M 135.3M 67.8%

BERT 28,996 22.3M 108.3M 20.6%
RoBERTa 50,265 38.6M 124.6M 31.0%
DeBERTaV3 128,100 98.4M 184.4M 53.3%

mBERT 119,547 91.8M 177.9M 51.6%
XLM-RoBERTa 250,002 192.0M 278.0M 69.1%
XLM-V 901,629 692.5M 778.5M 88.9%

Table 5: The vocabulary size and allocation of parame-
ters for each of the models used in our experiments. In
all cases, we select the base model size (dmodel = 768).

Size l h dmodel Nemb N Nemb/N

XSmall 12 6 384 49.2M 70.8M 69.4%
Small 6 12 768 98.4M 141.9M 69.3%
Base 12 12 768 98.4M 184.4M 53.3%
Large 24 16 1024 131.2M 435.1M 30.2%

Table 6: The DeBERTaV3 (He et al., 2023) family of
models. Columns l, h, and dmodel show the number of
hidden layers, number of attention heads, and hidden
embedding size, respectively.

analysis (SST-2, Socher et al. 2013), paraphras-
ing/sentence similarity (MRPC, Dolan and Brock-
ett 2005; STS-B, Cer et al. 2017; QQP, Iyer et al.
2017), and natural language inference (RTE, Dagan
et al. 2006; WNLI, Levesque et al. 2012; QNLI,
Rajpurkar et al. 2016; MNLI, Williams et al. 2018).
The number of examples per split in each dataset
are listed in Table 7. The XNLI dataset (Conneau
et al., 2018) extends MNLI to 15 languages: Ara-
bic, Bulgarian, Chinese, English, French, German,
Greek, Hindi, Russian, Spanish, Swahili, Thai,
Turkish, Vietnamese, and Urdu.

D Implementation & Hardware

We implement our experiments using PyTorch
(Paszke et al., 2019), Hugging Face Transform-
ers (Wolf et al., 2020) and Hugging Face Datasets
(Lhoest et al., 2021). Since downstream task
performance is not relevant to this study, we do
not perform hyperparameter tuning. Instead, we
broadly follow the hyperparameters from Devlin
et al. (2019), listed in Table 8.

We fine-tune all models using a single NVIDIA
Tesla V100 (SXM2 32GB) GPU and Intel Xeon
Gold 6138 CPU. For consistency, each model type
is evaluated on the same physical hardware.

E Fine-tuning on GLUE

Table 10 presents the task performance for each
model across the GLUE benchmark. We observe
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that the performance is largely identical, although
there are occasional fluctuations where PEMA per-
forms fractionally better or worse than the baseline.
Finally, we note that XLM-RoBERTa and XLM-V
both demonstrate very low performance on CoLA,
although this issue has also been observed in other
studies, e.g. Zhou et al. (2023).

F Runtime Impact

Table 9 presents the mean duration and standard
deviation of applying PEMA to RoBERTa and the
subsequent fine-tuning process. It also shows the
proportion of time spent applying PEMA relative
to fine-tuning. We observe that for five of the nine
datasets in GLUE, applying PEMA takes less than
half a second. For eight out of nine datasets, ap-
plying PEMA takes less than 1% of the fine-tuning
duration. We note that the time taken to apply
PEMA correlates with the size of the fine-tuning
dataset (Figure 2). Overall, we note that the time
taken to apply PEMA is generally fractional com-
pared to the fine-tuning duration, even though we
made no effort to optimize our implementation. As
guidance for future optimization efforts, we note
that the dataset processing operations in PEMA are
trivially parallelizable.

Dataset Train Validation Test Total

CoLA 8,551 1,043 1,063 10,657
MNLI 392,702 19,647 19,643 431,992
MRPC 3,668 408 1,725 5,801
QNLI 104,743 5,463 5,463 115,669
QQP 363,846 40,430 390,965 795,241
RTE 2,490 277 3,000 5,767
SST-2 67,349 872 1,821 70,042
STS-B 5,749 1,500 1,379 8,628
WNLI 635 71 146 852

Table 7: The number of examples per split in each of
the GLUE datasets.

Hyperparameter GLUE XNLI

Adam ϵ 1e-8
Adam β1 0.9
Adam β2 0.999
Batch Size 32
Dropout (Attention) 0.1
Dropout (Hidden) 0.1
Learning Rate (Peak) 2e-5, 7.5e-6 (XLM)
Learning Rate Schedule Linear
Sequence Length 128
Training Epochs 3 2

Table 8: The hyperparameters used for each set of ex-
periments.

Dataset PEMA Fine-tuning %

CoLA 0.4 0.0 172.7 0.9 0.2
MNLI 8.8 0.2 7817.8 16.6 0.1
MRPC 0.3 0.0 78.7 0.7 0.4
QNLI 2.4 0.0 2092.8 2.0 0.1
QQP 13.3 0.5 7235.5 4.9 0.2
RTE 0.4 0.0 55.4 0.6 0.7
SST-2 1.2 0.0 1329.2 0.3 0.1
STS-B 0.4 0.0 118.7 0.5 0.3
WNLI 0.3 0.0 18.3 0.8 1.4

Table 9: The mean duration (seconds) and standard
deviation over five runs of applying PEMA to RoBERTa
and fine-tuning on the GLUE datasets.
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Model PEMA CoLA MNLI MRPC QNLI QQP RTE SST-2 STS-B WNLI Mean

DistilBERT ✗ 49.3 82.2 84.2 88.5 86.7 59.6 90.5 86.5 49.3 75.2 1.5
✓ 49.3 82.2 84.2 88.6 86.7 59.6 90.5 86.5 49.3 75.2 1.5

DistilRoBERTa ✗ 56.4 84.2 85.0 90.9 87.2 65.7 92.3 87.2 53.0 78.0 0.9
✓ 56.4 84.2 85.0 90.9 87.2 65.7 92.3 87.2 53.0 78.0 0.9

DistilmBERT ✗ 29.7 78.3 81.8 86.7 85.8 60.9 89.1 84.4 48.2 71.6 0.3
✓ 29.6 78.3 81.8 86.7 85.8 60.9 89.2 84.4 48.2 71.6 0.4

BERT ✗ 56.4 84.3 84.3 91.1 87.9 64.4 92.6 88.1 37.7 76.3 0.7
✓ 56.7 84.3 84.3 91.3 87.8 64.4 92.5 88.1 37.7 76.3 0.8

RoBERTa ✗ 57.6 87.8 88.4 92.8 88.4 71.1 94.2 89.9 52.1 80.3 1.2
✓ 57.6 87.8 88.4 92.7 88.4 71.1 94.2 89.9 52.1 80.3 1.2

DeBERTaV3 ✗ 67.4 90.2 88.5 93.9 89.9 79.8 95.6 90.9 53.0 83.2 0.8
✓ 67.4 90.2 88.3 93.9 89.9 79.8 95.5 90.9 53.0 83.2 0.8

mBERT ✗ 35.3 82.3 85.8 91.1 87.1 69.0 91.0 88.0 53.0 75.8 2.0
✓ 35.4 82.2 85.8 91.1 87.2 69.0 90.8 88.0 53.0 75.8 2.0

XLM-RoBERTa ✗ 22.6 83.9 76.9 89.5 86.9 57.3 92.2 84.2 52.1 71.7 2.0
✓ 22.4 84.0 76.8 89.5 86.8 57.3 92.0 84.2 52.1 71.7 2.0

XLM-V ✗ 0.0 84.5 68.8 89.6 86.7 54.1 91.8 80.8 55.2 68.0 0.6
✓ 0.0 84.5 68.8 89.6 86.7 54.1 91.6 80.8 55.2 67.9 0.6

Table 10: Results on the validation set for each task from GLUE. We present the mean performance over five
different seeds, accompanied by the overall mean and standard deviation. We report Matthews correlation for CoLA,
F1 for QQP, Spearman correlation for STS-B, and accuracy for the remaining tasks.
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Abstract

Recently, many works have been attempting
to adapt Large Language Models (LLMs) for
sentence embedding, with most of them fine-
tuning LLMs towards the contrastive objective
and enabling bi-directional attention for bet-
ter performance, using LoRA to address the
large model scale. In this work, we suggest
that this adaptation can also be simply and ef-
fectively achieved using causal attention and
with even fewer trainable parameters through
soft prompt tuning, as an alternative to fine-
tuning with LoRA and other methods with ex-
tra post-training tasks. Our method only op-
timizes a few learnable tokens while keeping
the rest of the model frozen. Through experi-
ments on a diverse set of evaluation tasks, we
find that simply tuning only a few tokens can
achieve a competitive performance with that
of fine-tuning with LoRA. The percentage of
trainable parameters can be reduced to less than
0.001%. Moreover, we also demonstrate that
turning causal attention to bi-directional atten-
tion with or without extra post-training tasks
does not provide additional benefit when soft
prompt tuning is applied, suggesting that causal
attention can be naturally used in decoder-only
LLMs for sentence embedding adaptation.

1 Introduction

Sentence embedding compresses the semantic
meaning of sentences into fixed-size vectors in
a shared space (Conneau et al., 2017; Wu et al.,
2018; Reimers and Gurevych, 2019). Conven-
tional sentence embedding models are typically
built on an encoder-only architecture trained with
Contrastive Learning (CL) (van den Oord et al.,
2018), where the distance between semantically
similar sentences are pulled closer and dissimilar
ones are pushed farther (Gao et al., 2021; Wu et al.,
2022; Chuang et al., 2022; Jiang et al., 2022a). On
the other hand, scaled-up Large Language Mod-
els (LLMs) in the decoder-only architecture have
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Figure 1: Comparison of LoRA fine-tuning using bi-
directional attention or uni-directional attention. Extra
post-training task is solely applied to LoRA-bi. Simply
fine-tuning with LoRA-uni. shows strong performances.
Refer to Table 1 for detailed results.

dominated various downstream tasks with very
large-scale parameters and training data (OpenAI,
2022; Touvron et al., 2023a,b; OpenAI, 2023).
However, the use of LLMs on sentence embed-
ding still remains challenging, given the fact that
decoder-only LLMs are pre-trained to generate con-
tinuous texts instead of semantically meaningful
vectors (Jiang et al., 2023).

To this end, numerous recent methods attempt
to adapt LLMs for sentence embedding, e.g.,
CL-based fine-tuning (Jiang et al., 2023; Li and
Li, 2023), attention mechanism manipulation (Li
and Li, 2024), instruction tuning (Muennighoff
et al., 2024), with some approaches employing
the combinations thereof. Among these efforts,
LLM2Vec (BehnamGhader et al., 2024) stands
out as a promising method, employing a three-
step approach: (1) enabling bi-directional atten-
tion, (2) using Masked Next Token Prediction
(MNTP) (Lv et al., 2023) to effectively adapt LLMs
to bi-directional attention, and (3) fine-tuning with
CL, as shown in the upper part of Figure 2.
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Figure 2: Upper: Conventional three-step methods of turning LLMs into text encoders. We refer to tasks performed
before fine-tuning under the CL objective as post-training tasks. Lower: Our simple method which naturally
maintains causal attention by appending trainable soft prompts into the input.

However, given the large-scale parameters of
LLMs, performing these three steps, especially the
latter two, can be computationally inefficient. To
address this, Low-Rank Adaptation (LoRA) (Hu
et al., 2022) is commonly employed in the afore-
mentioned works to enable more efficient fine-
tuning by reducing the number of trainable param-
eters while maintaining performance.

Given the additional post-training efforts re-
quired by LLM2Vec, we begin questioning whether
it is possible to naturally maintain causal atten-
tion in LLMs for sentence embedding. To explore
this, we compare LoRA under bi-directional at-
tention with post-training to directly LoRA under
uni-directional attention without post-training on
the same dataset, and the results are shown in Fig-
ure 1. Interestingly, our results reveal that simply
fine-tuning LLMs with LoRA consistently yields
strong performances across the four evaluated tasks.
Based on these findings, we seek answers to the
following two questions: (1) Is bi-directional at-
tention with additional post-training necessary for
the adaptation? (2) Is there a simpler adaptation
method with minimum modification of the original
LLM?

We first investigate the adaptation of LLMs for
sentence embedding with even fewer trainable pa-
rameters by employing soft prompt tuning (Lester
et al., 2021; Li and Liang, 2021; Liu et al., 2022).
We introduce SPT (Suffix Prompt Tuning based
Adaptation of LLMs for Sentence Embedding), a
straightforward yet effective alternative to adapt
LLMs for sentence embedding. The use of soft

prompt tuning in this scenario is non-trivial. Specif-
ically, we append trainable tokens to the inputs,
allowing them to attend to all the input tokens due
to the causal attention in the decoder-only LLMs,
as illustrated in the lower part of Figure 2. No-
tably, as our approach only optimizes the parame-
ters within the additional soft prompt tokens, it is
flexible enough to reduce the amount of trainable
parameters to just a few tokens1. The percentage
of trainable parameters with our approach is less
than 0.001%, which is a percentage unreachable
by LoRA, even when setting the rank r to 1. Ex-
perimental results on retrieval, Semantic Textual
Similarities (STS), clustering, and classification
tasks reveal that training with only a few tokens
can yield comparable or even superior performance
to LoRA-based fine-tuning.

Additionally, we thoroughly analyze the impact
of bi-directional attention and extra post-training
tasks, finding that regardless of the pooling method
or attention mechanism used, causal attention with-
out post-training consistently delivers better perfor-
mance when SPT is applied.

In summary, the contribution of this work in-
cludes:

• We propose a simple method that adapts
LLMs to text encoders without requiring extra
adjustment for bi-directional attention, which
is applied in previous methods.

• We investigate the utilization of suffix prompt
1The amount of one trainable token varies according to

different models, e.g., 768 for OPT and 4096 for LLaMA.
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tuning other than LoRA fine-tuning for the
adaptation, providing the flexibility to further
reduce the trainable parameters.

2 Related Works

2.1 Turning LLMs into Text Encoders

Current methods for adapting LLMs into text en-
coders can be mainly categorized into two types
based on the attention mechanism they use.

w/ Causal Attention. Since most LLMs are pre-
trained with casual attention, it is natural to keep
this mechanism for sentence representation, using
the output of the last input token as sentence em-
bedding. Jiang et al. (2023) make the first attempt
to adapt LLMs for sentence embedding. They pro-
pose PromptEOL, which utilizes the prompt This
sentence: “[text]” means in one word:“ to generate
sentence embedding. Li and Li (2023) later extend
this prompt-based method on LLaMA2 using an-
gle optimization to address the gradient vanishing
problem in CL. In our work, we also prioritize the
natural use of causal attention, while aiming for a
simple but effective approach.

w/ Bidirectional Attention On the other hand,
some methods transform the causal attention into
bi-directional attention for better representation
ability. Li and Li (2024) observe that an LLM’s
sentence representation ability with causal atten-
tion initially improves across layers but begins to
degrade after reaching a critical turning point (a
particular layer). By modifying the layers after
the turning point to use bi-directional attention,
the LLM improves its sentence encoding ability.
BehnamGhader et al. (2024) introduce a three-step
pipeline for converting LLMs into text encoders,
including enabling bi-directional attention, masked
next token prediction (MNTP) and CL-based fine-
tuning. MNTP, which requires the model to predict
the masked token based solely on the tokens before
it, is applied to help LLMs adapt to bi-directional
attention. GRITLM (Muennighoff et al., 2024),
which utilizes instruction tuning, applies bidirec-
tional attention for embedding tasks and causal
attention for generation tasks. However, these
methods often require more complex design, po-
tential post-training tasks and rely on much bigger
datasets, which is far from simple. To this end, we
propose a more efficient and effective method to
easily adapt LLMs for high-quality sentence em-
bedding based on causal attention.

2.2 Soft Prompt Tuning in LLMs

Prompts normally refer to the physical tokens
additionally provided to the model towards spe-
cific tasks (Brown et al., 2020; Zhou et al., 2022;
Ouyang et al., 2024). Soft prompt tuning (Lester
et al., 2021; Li and Liang, 2021; Liu et al., 2022),
which provides virtual tokens (continuous vectors)
prepended to the input texts, offers an efficient al-
ternative for fine-tuning LMs. Soft prompt tuning
can mitigate overfitting by freezing the model’s pa-
rameters and updating only the parameters within
the soft prompts. Recent works continue to seek for
more efficient prompt tuning methods with even
fewer parameters (Shi and Lipani, 2024). In the
field of sentence embedding, Jiang et al. (2022b)
incorporate soft prompts into each layer of the
transformer encoder. In contrast, we focus on
decoder-only causal attention LLMs and append
soft prompts exclusively into the input embedding
layer for better efficiency.

3 Methods

CL has become the common practice for learning
sentence embeddings with pre-trained LMs (Gao
et al., 2021; Wu et al., 2022; Zhao et al., 2024;
Miao et al., 2024). It is performed with one an-
chor sentence, one positive instance and multiple
negative instances. Given a sentence Xi, it can be
tokenized into x1, x2, ..., x|Xi|, where | · | denotes
the number of tokens in Xi. Our method, SPT,
is simple and straightforward. It additionally ap-
pends a soft prompt, namely, a few trainable tokens
p = {p1, p2, ..., pk}, to the sentence Xi. This con-
structs the input as x1, x2, ..., x|Xi|, p1, p2, ..., pk.
Here, k is the length of the soft prompt and the
trainable parameters in the soft prompt equal to [k,
hidden_size].

Similar to existing methods, the text encoder
then transforms Xi into a fixed size dense vector hi.
We use the output of the appended soft prompt for
sentence embedding when k = 1, and the output
of the last soft prompt token pk as the sentence
embedding when k > 1.

Our training objective is consistent with previ-
ous works. The main idea of CL is to pull the
distance between the representation of anchor sen-
tence hi and its positive example’s representation
h+
i close while keeping hi and other negative ex-

amples’ representations far away. Moreover, hard
negatives (Kalantidis et al., 2020), which are in-
stances that are particularly challenging for models
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to distinguish from the anchor sentence, are usually
adopted to improve CL. We also use the training ob-
jective with the aforementioned ideas, as follows:

li = − log e
sim(hi,h

+
i

)/τ

∑N

j=1
(e

sim(hi,h
+
j

)/τ
+e

sim(hi,h
−
j

)/τ
)

, (1)

where sim(·, ·) is a similarity metric, N is the size
of a mini-batch, and τ is the temperature parameter.
h−
i is the representation of hard negative X−

i for
anchor sentence Xi. The training objective remains
the same for LLMs with or without post-training
tasks.

4 Experiments

4.1 Experimental Setup
In order to demonstrate the effectiveness of SPT,
we conduct experiments across models of three dif-
ferent sizes: base, 7B and 8B. Specifically, for base
size models, we choose OPT-125M2 (Zhang et al.,
2022) while for 7B models, LLaMA2-7B3 (Tou-
vron et al., 2023b) serves as our backbone model.
Finally, for 8B models, we select LLaMA3-8B4.
All of them are decoder-only auto-regressive mod-
els whose hidden_size is 768 for OPT-125M and
4096 for LLaMA2-7B and LLaMA3-8B. Follow-
ing (BehnamGhader et al., 2024), we set MNTP as
the post-training task.

4.2 Implementation Details
The training dataset we use is the NLI dataset5 from
Gao et al. (2021), which is a supervised dataset con-
taining one positive example and one hard negative
example for each anchor sentence with about 275k
data examples in total. We use cosine similarity as
the similarity metric and τ is set to 0.05 in Equa-
tion 1. For SPT, all of our models are trained for
one epoch, with evaluation on the development set
of STS-B (Cer et al., 2017) and SICK-R (Marelli
et al., 2014) conducted every 125 steps to find the
best checkpoint. Batch size is set to 32 for all mod-
els. Learning rate is grid-searched from {0.02, 0.01,
0.005, 0.001}. Weight decay is set to 0.01 with
AdamW optimizer (Loshchilov and Hutter, 2017)

2https://huggingface.co/facebook/opt-125m
3https://huggingface.co/meta-llama/

Llama-2-7b-chat-hf
4https://huggingface.co/meta-llama/

Meta-Llama-3-8B
5https://huggingface.co/datasets/

princeton-nlp/datasets-for-simcse/resolve/main/
nli_for_simcse.csv

implemented for all models. The input sequence
length is set to 32 following Gao et al. (2021). All
of our experiments for SPT are conducted on one
A100 80GB GPU.

4.3 Evaluation Tasks
We evaluate our models across a diverse set of
tasks, including retrieval, Semantic Textual Simi-
larity (STS), clustering and classification. Consid-
ering the input length of the NLI training dataset,
we prioritize relatively shorter datasets for evalua-
tion.

Retrieval tasks require the model to identify the
most relevant sentence among a large set of docu-
ments for a specific given query sentence. The
tested model will first transform the query sen-
tences and documents into embeddings and then
find the most relevant ones based on metrics such
as cosine similarity. We choose the QuoraRetrieval
dataset (DataCanary et al., 2017) from the MTEB
benchmark (Muennighoff et al., 2023) to evaluate
the retrieval performance of our models and report
the nDCG@10 metric.

STS tasks evaluate the model’s sentence repre-
sentation ability by calculating the cosine similarity
for the two given sentences after transforming them
into embeddings. We utilize the SentEval (Conneau
and Kiela, 2018) toolkit which includes STS12-
16 (Agirre et al., 2012, 2013, 2014, 2015, 2016),
STS-B (Cer et al., 2017) and SICK-R (Marelli et al.,
2014). Spearman’s correlation scores are reported
for STS tasks.

Clustering tasks evaluate the models’ ability to
group sentences based on their semantic similar-
ity, typically across different domains. The model
assigns sentences to clusters such that similar sen-
tences are grouped together, without relying on
pre-defined labels. To assess our models’ cluster-
ing performance, we specifically select the Twenty
Newsgroup Clustering dataset (Mitchell, 1997)
from MTEB and report the Validity Measure (V-
measure) metric.

Classification tasks involve training an addi-
tional classifier layer on top of the tested model to
evaluate its ability to correctly categorize input sen-
tences into predefined classes. In our experiments,
we specifically choose the Tweet Sentiment Ex-
traction Classification dataset (Maggie et al., 2020)
from MTEB. This task requires the model to iden-
tify and classify the sentiment (e.g., positive, nega-
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tive, neutral) of tweets. Accuracy is reported as the
evaluation metric.

4.4 Baselines
We choose several strong baselines and compare
them with our models based on the four kinds of
evaluation tasks. For base size models, we first
choose SimCSE (Gao et al., 2021) as a commonly
used encoder-only sentence embedder. Besides, we
fully fine-tune OPT-125M under CL objective as
a baseline. For larger size models, we first choose
LLM2Vec (BehnamGhader et al., 2024) as the
SOTA model. Notice that LLM2Vec is post-trained
with MNTP and further fine-tuned on a larger
dataset, E5 (Wang et al., 2024), using LoRA with
an input sequence length of 128. The E5 dataset
contains about 1.5m training examples (much big-
ger than 275k NLI) from different data sources
such as retrieval, QA, and ranking. Due to limited
computational resources and to ensure a fairer com-
parison between LLM2Vec and our models, we
reproduce LLM2Vec with MNTP post-training us-
ing our NLI dataset by initiating from the released
checkpoint6. Finally, we also fine-tune LLaMA
models under CL with LoRA as a general baseline.
We specifically set γ=16 and α=32, following set-
tings introduced in BehnamGhader et al. (2024).
Implementation details of baselines can be found
in Appendix A.1.

4.5 Experimental Results
The performance of various models on four dif-
ferent evaluation tasks is shown in Table 1. We
report results using a fixed seed=42 in our main
experiments. Details of trainable parameters for
each model can be found in Appendix A.2, while
full results of seven STS tasks are shown in Ap-
pendix A.3.

In Table 1, models-bi. refers to models trained
with bi-directional attention after post-training
tasks while models-uni indicates those trained on
causal attention without additional post-training
tasks. The LoRA-bi. equals to LLM2Vec fine-
tuned on the same NLI dataset as other models.
Except for LoRA-bi., where mean pooling is used
as suggested in BehnamGhader et al. (2024), all
the other models use the output of the last token
as sentence embedding. We will discuss the effect
of different pooling methods in Section 5.1. For
our SPT, we report two variants for each model:

6https://huggingface.co/McGill-NLP/
LLM2Vec-Llama-2-7b-chat-hf-mntp

one with a soft prompt length of 1, representing the
fewest trainable parameters, and the other with the
optimal soft prompt length that achieves the best
performance. The process for determining the best
length will be discussed in Section 5.2.

Upon observing the results of base size mod-
els, we find that the best average score for the four
evaluated tasks is given by the fully fine-tuned OPT-
125M under CL. While encoder-only models like
SimCSE outperform decoder-only models in the
traditional STS task, decoder-only models excel
SimCSE especially in retrieval and clustering tasks.
As for our SPT, it demonstrates competitive per-
formance with SimCSE even with a soft prompt
length of just 1, with only a 0.33 point difference
in the average scores. Extending the soft prompt
length to 16 further narrows the gap (0.2 average
performance differences) between our model and
the fully fine-tuned OPT-125M under CL, despite
our model updating just 0.0098% of the total pa-
rameters, compared to 100% in the fully fine-tuned
model. Note that the best scores for both retrieval
and classification tasks are from our SPT, with a
soft prompt length of 16. From the first part of Ta-
ble 1, we can see that uni-directional models show
strong performance at the base size.

As for larger 7B and 8B models, we first fo-
cus on the first six rows and observe that the best
average performance is achieved by our SPT in
uni-directional attention without extra post-training
tasks for both LLaMA2-7B and LLaMA3-8B with
optimal soft prompt lengths. Their performances
consistently outperform the reproduced LLM2Vec
models fine-tuned on the NLI dataset (referred
as LoRA-bi. in Table 1). Notably, our SPT on
LLaMA2-7B with k=16 achieves the highest clas-
sification accuracy while SPT on LLaMA3-8B with
k=5 delivers the best scores in retrieval, STS and
classification across all four tasks. Importantly,
SPT with the optimal soft prompt length requires
significantly fewer trainable parameters than other
baselines, underscoring the effectiveness and effi-
ciency of our approach. Moreover, as observed in
the base-sized models, even with just one trainable
token (4096 parameters), SPT greatly improves
LLMs’ sentence embedding capabilities, trailing
LoRA-based fine-tuned models by only about 1
point in average score. To this end, simply fine-
tuning LLMs using SPT results in comparable or
even better performances compared to fine-tuning
with more trainable parameters and models with
MNTP post-training.
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Model Params% Retrieval STS Clustering Classification avg.
Base models (≤ 125M)

SimCSE 100% 79.62 81.57 34.86 59.73 63.95
OPT w/o fine-tuning 0% 18.65 14.23 9.63 43.57 21.52
OPT w/ fine-tuning 100% 81.33 79.69 39.46 59.53 65.00
OPT w/ SPT (ours)

-k=1 0.000613% 80.32 78.06 36.61 59.50 63.62
-k=16 0.009812% 81.39 78.71 39.21 59.84 64.79

LLaMA2-7B
w/o fine-tuning 0% 52.93 35.48 11.69 48.39 37.12
LoRA-uni. 0.59% 85.64 85.24 45.97 61.79 69.66
LoRA-bi. 0.59% 85.24 84.43 44.07 61.30 68.76
SPT-uni. (ours)

k=1 0.000061% 85.10 83.60 43.25 62.31 68.57
k=16 0.000973% 85.34 84.93 45.74 62.77 69.70

SPT-bi. (ours)
-k=1 0.000061% 85.07 83.87 44.07 62.12 68.78
-k=16 0.000973% 86.01 84.34 45.48 62.20 69.51

LLaMA3-8B
w/o fine-tuning 0% 48.04 28.33 21.91 44.87 35.79
LoRA-uni. 0.56% 86.65 85.87 49.63 62.81 71.24
LoRA-bi. 0.56% 85.78 85.65 47.54 63.46 70.61
SPT-uni. (ours)

-k=1 0.000051% 85.20 84.32 48.25 62.55 70.08
-k=5 0.000255% 87.18 86.00 49.98 63.75 71.73

SPT-bi. (ours)
-k=1 0.000051% 85.47 84.55 48.08 62.34 70.11
-k=5 0.000255% 87.06 85.59 49.37 63.07 71.27

Table 1: Different models’ performance on four different evaluation tasks. Params% stands for the percentage of
trainable parameters in each model. Models-bi. refers to models trained with bi-directional attention after post-
training tasks, while models-uni. indicates uni-directional attention models without post-training tasks. LoRA-bi.
here equals to LLM2Vec trained on the NLI dataset. We highlight the best result for each task in bold and the
second-best result with an underline in each section of the table. Except for results of SimCSE, which are quoted
from its paper, other results are from our own implementation.

Next, we focus on the last three rows for
LLaMA2-7B and LLaMA3-8B in Table 1. To
better demonstrate the advantages of naturally
using causal attention, we implement SPT on
bi-directional models post-trained with MNTP,
referred to as SPT-bi.. In these variants, bi-
directional attention is employed during post-
training and fine-tuning. Comparing SPT-uni. and
SPT-bi., we observe that post-training with MNTP
and enabling bi-directional attention does not pro-
vide additional benefits over the natural use of
causal attention without MNTP training. SPT
with only a few trainable tokens on models with
MNTP still achieves strong performance, partic-
ularly when the soft prompt length k is set to 1.
In this case, bi-directional attention with MNTP
post-training shows a slightly higher average score
than the uni-directional model without MNTP, but
the increase is minimal (0.2 for LLaMA2-7B and
0.03 for LLaMA3-8B). However, the better aver-

age scores are consistently achieved by SPT w/o
MNTP for both LLaMA2-7B and LLaMA3-8B
when setting k to the optimal length. Consider-
ing the significant extra training efforts required of
post-training tasks for LLMs, we move on to dis-
cuss the necessity of applying post-training tasks
for turning LLMs into text encoders in Section 5.1.

5 Discussion

5.1 Do We Really Need Bi-directional with
MNTP Post-training?

In this section, we explore the usage of MNTP
post-training, which is designed to help LLMs ef-
fectively get adapted to the bi-directional attention
mechanism. Notably, enabling bi-directional at-
tention allows us to prepend soft prompts to the
input layer. We specifically select LLaMA2-7B
and report different variants’ performances on the
STS task. We compare them based on the atten-
tion mechanism, the soft prompt position and the

43



Methods Attention Soft Prompt Length Soft Prompt Position Pooling Method avg STS Scores
LLaMA2-7B

SPT w/o MNTP
bi 1 append EOSP 82.74
bi 16 append EOSP 83.77
bi 10 append Mean 83.59

SPT w/o MNTP
bi 1 prepend SOSP 82.09
bi 20 prepend SOSP 83.56
bi 16 prepend Mean 83.41

SPT w/ MNTP
bi 1 append EOSP 83.87
bi 16 append EOSP 84.34
bi 16 append Mean 84.22

SPT w/ MNTP
bi 1 prepend SOSP 83.03
bi 10 prepend SOSP 84.56
bi 16 prepend Mean 84.32

SPT w/o MNTP
uni 1 append EOSP 83.60
uni 16 append EOSP 84.93
uni 20 append Mean 84.60

Table 2: Comparison of models with different attention mechanisms, soft prompt positions and pooling methods.
EOSP refers to the end token of soft prompt while SOSP indicates the start token of soft prompt. Mean stands for
the average pooling for all soft prompts. Best and second-best scores are highlighted in bold and with underline.

pooling method.

We present the average results of seven STS
tasks in Table 2, reporting outcomes for both k=1
and the optimal searched k. For the optimal length
k, we also include results from different pooling
methods: the output of the last soft prompt token
for appending (referred to as EOSP), the output of
the first token for prepending (SOSP), and the aver-
age pooling of all soft prompts for both appending
and prepending (Mean). Notice that the optimal k
may vary across different pooling methods.

We first examine the bi-directional models in Ta-
ble 2 and observe that models with MNTP consis-
tently outperform those without MNTP across dif-
ferent soft prompt positions and pooling methods,
a trend that demonstrates the benefits brought by
post-training tasks for bi-directional models. How-
ever, when compared to our SPT with causal atten-
tion and without MNTP post-training, the highest
STS score across various soft prompt lengths, po-
sitions, and pooling methods is still achieved by
our simpler approach. Despite the gains brought
by post-training, our results show that SPT with
causal attention, without the need for MNTP post-
training, can still achieve superior performance on
key tasks like STS. This highlights the simplicity of
leveraging causal attention naturally, offering com-
petitive results without the added complexity and
computational cost of MNTP post-training. Thus,
while MNTP enhances bi-directional models, the
simplicity and effectiveness of our approach make
it a strong alternative for sentence embedding tasks.

5.2 Search for the Optimal Length k

In this section, we explore the effect of the length k
for the soft prompts. We range k from {1, 2, 5, 10,
16, 20} and test them with OPT-125m, LLaMA2-
7B and LLaMA3-8B on the seven STS tasks. We
particularly evaluate the best settings, where causal
attention is preserved and soft prompts are ap-
pended with no MNTP post-training. As shown
in Figure 3 and discussed in former sections, aver-
age pooling on soft prompt tokens yields a slightly
worse performance compared to using the output of
the last token. For both OPT-125m and LLaMA2-
7B, the best performance on STS is achieved at
k=16, while for LLaMA3-8B, the optimal length is
found at k=5. However, when k exceeds a certain
threshold, the performance deteriorates, which is
a consistent observation as noted by Li and Liang
(2021). We will introduce a possible solution on
how to involve more trainable parameters in Sec-
tion 5.3.

5.3 More Trainable Parameters

As discussed in the aforementioned section, the
performance of SPT hits its limit when the prompt
length k exceeds a particular threshold. However,
it is possible to implement more trainable tokens
through a variant of soft prompt tuning, which is
p-tuning v2 (Liu et al., 2022). Instead of only in-
serting trainable tokens into the input embedding
layer, p-tuning v2 introduces more trainable param-
eters by inserting trainable tokens into each layer
of the model. We specifically choose LLaMA2-7B
for p-tuning v2 implementation and evaluate its
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Model Params% Retrieval STS Clustering Classification avg.
LLaMA2-7B

LoRA-bi. 0.59% 85.24 84.43 44.07 61.30 68.76
LoRA-uni.

r=1 † 0.04% 85.19 84.86 46.02 60.88 69.24
r=16 0.59% 85.64 85.24 45.97 61.79 69.66

SPT-uni. (ours)
k=1 0.000061% 85.10 83.60 43.25 62.31 68.57
k=16 0.000973% 85.34 84.93 45.74 62.77 69.70

SPT v2-uni. (ours)
k=1 0.004% 85.39 84.95 45.74 62.50 69.65
k=10 0.039% 85.58 85.29 47.66 63.15 70.42

Table 3: Evaluation results of SPT v2. All the models are trained on the same NLI dataset. Models-bi. refers to
models trained with bi-directional attention after post-training tasks, while models-uni indicates uni-directional
attention models without post-training tasks. The best and second-best results are highlighted in bold and with
underline, respectively. To ensure a fair comparison with a similar number of trainable parameters, we reproduced
LoRA with r=1†.
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Figure 3: Performance on the STS tasks of models with
different pooling methods and k values.

performance on four evaluation tasks. The results
are shown in Table 3.

Notice that the official implementation of p-
tuning v27 achieves this by prepending tokens to
the past_key_values (one token for key and one
token for value in each layer), so the actual number
of trainable parameters would be [2, num_layers,
k, hidden_size]. This method does not alter the
number of input tokens. Since we maintain causal
attention, we follow Liu et al. (2022) and prepend
soft prompts to each layer, while still using the
output of the last token as sentence embedding.

As shown in Table 3, by increasing the number
of trainable parameters, our SPT v2 models outper-
form all other baselines fine-tuned on the same NLI
dataset. Notably, our SPT v2 with k=10 achieves

7https://github.com/THUDM/P-tuning-v2

the best performance in three out of the four evalu-
ated tasks, even surpassing the strong LoRA-based
fine-tuned models. We reproduced LoRA with r=1,
as it has nearly the same number of trainable pa-
rameters as our SPT v2 with k=10. These results
demonstrate that implementing p-tuning v2 with
SPT can achieve higher performance than LoRA-
based fine-tuning, while requiring fewer trainable
parameters. This highlights the simplicity and ef-
fectiveness of our approach in optimizing model
performance with minimal parameter overhead.

6 Conclusion

In this work, we first investigate a simple method
to adapt LLMs for sentence embedding by tuning
a few learnable tokens. We append trainable to-
kens to the inputs and utilize the output of the last
one as the sentence embedding. Our approach can
achieve the adaptation with less than 0.001% train-
able parameters, which is unattainable with LoRA.
Experimental results on various tasks demonstrate
that only a few tokens with our approach can
achieve competitive performance with fine-tuning
with LoRA. Moreover, we also find that directly
using causal attention in decoder-only LLMs is ca-
pable of adapting them for sentence embedding.
Specifically, our simple method with causal atten-
tion outperforms bi-directional attention baselines
with extra post-training tasks, offering insights on
the adaptation of LLMs for sentence embedding.
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Limitations

In this work, we demonstrate the effectiveness of
using soft prompts for sentence representation in
LLMs. However, whether this kind of adaptation
works in other tasks remains unclear. The optimal
soft prompt length relies on various factors, in-
cluding the training dataset and model size, which
require extra searches. Also, the multilingual sce-
nario could be taken into consideration.
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This paper aims at adapting LLMs for sentence rep-
resentation with low cost. All the data and models
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A Appendix

A.1 Baseline Implementation Details

We introduce the implementation details for base-
line reproduction in this section. For base-
lines directly fine-tuned with Low-Rank Adapta-
tion (LoRA), we follow the implementation intro-
duced in Jiang et al. (2023), with the modification
of changing the batch size to 32 and evaluating
the model every 125 steps on the development
set (compared to 50 steps in the original paper).
α is consistently set to 16. We do not include the
proposed PromptEOL method in Jiang et al. (2023)
for a fairer comparison and utilize the output of the
last input token as the sentence embedding. The
baseline reproduction is carried out on two A100
80GB GPUs.

For other baselines with Masked Next Token
Prediction (MNTP) post-training, we initiate the
models from the released checkpoint, while train-
ing with SPT follows the settings introduced in
Section 4.2.

A.2 Details of Trainable Parameters

We count the trainable parameters based on PEFT
library 8. The number of trainable parameters, total
parameters and the percentage of trainable param-
eters for each model are shown in Table 4. The
hidden state size for OPT-125M and LLaMA is
768 and 4096, respectively.

Model Trainable Param Total Param Percentage
OPT-125M + CL 125239296 125239296 100%
OPT-125M + SPT, k=1 768 125240064 0.00061%
OPT-125M + SPT, k=16 12288 125251584 0.0098%
LLaMA2 + LoRA r=1 2498560 6740914176 0.04%
LLaMA2 + LoRA r=16 39976960 6778392576 0.59%
LLaMA2 + LLM2Vec r=16 39976960 6778392576 0.59%
LLaMA2 + SPT, k=1 4096 6738419712 0.000061%
LLaMA2 + SPT, k=2 8192 6738423808 0.00012%
LLaMA2 + SPT, k=5 20480 6738436096 0.0003%
LLaMA2 + SPT, k=10 40960 6738456576 0.00061%
LLaMA2 + SPT, k=16 65536 6738481152 0.00097%
LLaMA2 + SPT, k=20 81920 6738497536 0.0012%
LLaMA2 + SPT v2, k=1 262144 6738677760 0.004%
LLaMA2 + SPT v2, k=10 2621440 6741037056 0.04%
LLaMA3 + LoRA, r=16 45088768 8075350016 0.56%
LLaMA3 + LLM2Vec, r=16 45088768 8075350016 0.56%
LLaMA3 + SPT, k=1 4096 8030265344 0.000051%
LLaMA3 + SPT, k=2 8192 8030269440 0.00001%
LLaMA3 + SPT, k=5 20480 8030281728 0.00026%
LLaMA3 + SPT, k=10 40960 8030302208 0.00051%
LLaMA3 + SPT, k=16 65536 8030326784 0.0008%
LLaMA3 + SPT, k=20 81920 8030343168 0.001%

Table 4: Comparison of trainable parameters.

8https://huggingface.co/docs/peft/main/en/
index

A.3 Full STS Results
We show full results on seven STS tasks in Table 5.
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Model STS12 STS13 STS14 STS15 STS16 STS-B SICK-R avg.
Base models (≤ 125M)

SimCSE 75.30 84.67 80.19 85.40 80.82 84.25 80.39 81.57
OPT w/o fine-tuning † 7.47 9.48 8.30 19.63 22.45 7.40 24.91 14.23
OPT w/ fine-tuning 73.80 81.97 77.58 83.42 79.50 83.05 78.51 79.69
OPT w/ SPT, k=1 (ours) 71.72 80.92 74.66 82.77 79.87 81.41 75.09 78.06
OPT w/ SPT, k=16 (ours) 73.43 81.03 75.57 82.73 79.26 82.33 76.60 78.71

LLaMA2-7B
w/o fine-tuning † 22.30 30.92 27.10 38.92 52.95 33.66 42.54 35.48
LoRA w/o MNTP, r=16 78.29 89.11 84.26 88.97 85.36 87.83 82.34 85.24
LoRA w/ MNTP (LLM2Vec, NLI) 78.01 87.96 83.06 88.45 85.51 87.57 80.44 85.24
SPT w/o MNTP, k=1 (ours) 75.46 87.91 82.84 87.00 84.66 87.15 80.16 83.60
SPT w/o MNTP, k=16 (ours) 76.53 89.12 83.26 89.21 85.21 88.34 82.86 84.93
SPT w/ MNTP, k=1 (ours) 76.60 87.70 81.97 88.38 84.07 87.35 81.00 83.87
SPT w/ MNTP, k=16 (ours) 76.13 88.54 82.69 88.82 85.12 87.80 81.29 84.34

LLaMA3-8B
w/o fine-tuning † 10.35 38.69 24.72 34.55 37.46 23.07 29.49 28.33
LoRA w/o MNTP, r=16 79.04 89.66 85.95 89.41 85.96 88.54 82.57 85.87
LoRA w/ MNTP (LLM2Vec, NLI) 78.59 89.67 85.40 89.83 85.16 88.41 82.46 85.65
SPT w/o MNTP, k=1 (ours) 75.20 88.79 83.60 88.60 84.15 87.82 82.05 84.32
SPT w/o MNTP, k=5 (ours) 78.61 90.23 85.10 89.53 86.87 89.33 82.38 86.00
SPT w/ MNTP, k=1 (ours) 76.59 88.11 84.16 88.97 85.16 87.03 81.87 84.55
SPT w/ MNTP, k=5 (ours) 78.74 89.63 84.72 89.30 86.04 87.92 82.81 85.59

Table 5: Full results of seven STS tasks. † marks models without further training, for which we take the output of
last input token as sentence embedding. Results with ∗ are quoted from the MTEB leaderboard (Muennighoff et al.,
2023). Results of SimCSE is quoted from its paper.
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Abstract

Music-to-music-video generation is a challeng-
ing task due to the intrinsic differences between
the music and video modalities. The advent
of powerful text-to-video diffusion models has
opened a promising pathway for music-video
(MV) generation by first addressing the music-
to-MV description task and subsequently lever-
aging these models for video generation. In this
study, we focus on the MV description genera-
tion task and propose a comprehensive pipeline
encompassing training data construction and
multimodal model fine-tuning. We fine-tune
existing pre-trained multimodal models on our
newly constructed music-to-MV description
dataset based on the Music4All dataset, which
integrates both musical and visual information.
Our experimental results demonstrate that mu-
sic representations can be effectively mapped
to textual domains, enabling the generation of
meaningful MV description directly from mu-
sic inputs. We also identify key components
in the dataset construction pipeline that criti-
cally impact the quality of MV description and
highlight specific musical attributes that war-
rant greater focus for improved MV description
generation.

1 Introduction

Generating a music-video (MV) to match a given
piece of music is a challenging task due to the in-
herent differences between the music and video
modalities. Despite the challenges, MV genera-
tion holds significant potential for enhancing the
music experience by providing a visual narrative
that aligns with the music’s tone, style, and mood,
offering a more immersive and engaging way for
audiences to connect with the music. Compared to
generating music or audio from a given video (Tian
et al., 2024; Kang et al., 2024), the reverse task
is more complex, as the video modality typically
conveys richer spatial and temporal information
than music. However, with the advent of text-to-

video diffusion models (Yang et al., 2024; Polyak
et al., 2024; Kong et al., 2024), videos can now be
generated from textual descriptions. This develop-
ment enables MV generation to be divided into two
subtasks: (1) music-to-MV description generation
and (2) MV description-to-MV generation. As il-
lustrated in Fig. 1, MV descriptions can be further
refined using large language models (LLMs) like
GPT (OpenAI, 2023) to fit specific text-to-video
models (Khachatryan et al., 2023). In this study, we
focus on the first task: generating MV descriptions
from music.

To this end, we propose a practical pipeline for
data construction and model training to generate
meaningful MV descriptions based on music in-
puts. Additionally, we explore methods to enhance
the alignment of the generated descriptions to the
given music. Specifically, we investigate the im-
pact of various data sources—such as music, mu-
sic genre tags, MV type tags, and lyrics under-
standing text—on the quality of the generated MV
descriptions when fine-tuning multimodal LLMs
like NExT-GPT (Wu et al., 2024). As shown in
Fig. 1, our approach first leverages existing mu-
sic understanding models (Zhao et al., 2024; Mao
et al., 2025) to extract lyrics understanding text.
We then fine-tune a multimodal LLM to process
these diverse inputs and generate MV descriptions.
The training data is constructed from gold-standard
MVs, incorporating music-related information to
enhance the connection between music and the gen-
erated descriptions. Unlike prior studies on MV
generation, such as ViPE (Shahmohammadi et al.,
2023), which focused solely on lyrics as input, our
work emphasizes leveraging multiple modalities
and evaluates the effectiveness of various combina-
tions of input data in connecting multimodal repre-
sentations for MV description generation.

To facilitate this study, we construct a music-
to-MV description training and evaluation dataset
using the Music4All dataset (Santana et al., 2020).
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Figure 1: Pipeline of music-to-MV generation. We focus on multimodal model training of Stage 2 in this study.

Empirical results on the NExT-GPT baseline and
multimodal LLMs fine-tuned with our dataset
demonstrate that meaningful MV descriptions can
be generated from music and music-related textual
inputs after multimodal fine-tuning. An ablation
study on different combinations of input sources,
including music, music genre tags, MV type tags,
and lyrics understanding text, reveals that music
and MV type tags are key components for high-
quality MV description generation. While music
genre tags and lyrics understanding text also con-
tribute positively, they can be used interchangeably.
Our findings can contribute to future study on en-
hancing MV descriptions and temporal alignment
between music, lyrics, and the generated MV.

2 Proposed Method

In this section, we present the pipeline proposed for
training a multimodal LLM specifically tailored to
the music-to-MV description generation task. For
the first time, our pipeline incorporates a broader
range of musical information beyond lyrics as in-
puts, aiming to enrich the holistic understanding
of the music. Additionally, we introduce strate-
gies to ensure the generated MV descriptions are
more closely aligned with the musical inputs. The
curated dataset is then utilized to fine-tune a mul-
timodal LLM for performing the MV description
generation task.

2.1 Data Construction
This section outlines our proposed pipeline for con-
structing training and evaluation datasets for the
music-to-MV description generation task.

2.1.1 MV Datasets
We construct our datasets based on the Music4All
dataset (Santana et al., 2020), which comprises
approximately 100k music clips paired with corre-
sponding MVs and enriched with metadata such as
energy, valence, and genre. To enhance the dataset,
we leverage the OpenMU model (Zhao et al., 2024)

to generate lyrics understanding text for all music
clips in Music4All. This process effectively inter-
prets the lyrics for each piece of music, providing
concise textual information related to the lyrics.
Additionally, we filter out MVs that consist solely
of static images rather than actual video footage.
After filtering, the final dataset includes 56, 446
samples, 55, 000 for training and 1, 446 for testing.

2.1.2 Construction of Input Data for Music
and Associated Information

After preparing the training and evaluation splits
of music clips, MVs, lyrics understanding text, and
metadata from the Music4All dataset, we curate
various data types as inputs for the MV description
generation task. To incorporate richer musical in-
formation across different modalities, we include
music genre tags and lyrics understanding text as
inputs in addition to the music clips. Moreover, to
refine the output MV descriptions and make the
task less open-ended, we specify the style of the
output by providing MV type tags. These tags are
assigned to the MV clips using GPT-4o mini (Ope-
nAI, 2023) and include ten category candidates:
Live Performance, Lyric Video, Animation, Story
Narrative, Artistic/Abstract, Dance Performance,
Behind-the-Scenes, Nature/Scenic, Static/Dynamic
Picture Montage, and Cinematic Drama.1

As shown in Fig. 2, the four types of inputs
are used to train the multimodal LLM, guided by a
fixed instruction: “Generate a concise video prompt
that captures the essence of the MV, incorporating
the music’s tone, style, and lyrical themes. The
prompt should reflect the specified MV type and
align with the music genre to ensure stylistic coher-
ence for guiding a text-to-video model.”

2.1.3 Construction of Output Data for MV
Description

The output MV descriptions should provide rich
content detailing the visual elements of the MV

1Generated based on suggestions from GPT-4o mini.
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④ Lyrics understanding

MV description

Multimodal LLM to train

(1) Video captions

+ (2) Unified music captions
(Music captions + Low-level music features)

+ (3) Lyrics understanding

GPT

① music.mp3

MV.mp4

③ MV type

② Music genre

GPT

GPT

Input: 
①Music: <Audio>
②Music Genre: Underground Hip Hop
③MV Type (The type or style of MV to create): Artistic/Abstract, Cinematic Drama
④ Lyrics Understanding: I think the song is about being optimistic in a "world of riffraff". It's about the mess that the world is in, but 
he still tries to be positive and do something about it, and he's asking everyone else to do the same. He says that everyone should 
be "bleeding or healing" instead of just "eating all our feelings with guilt after the fact". We should do something instead of just 
feeling bad about everything that's wrong in the world. …

Instruction:
Generate a concise video prompt that captures the essence of the MV, incorporating the music's tone, style, and lyrical themes. The 
prompt should reflect the specified MV type and align with the music genre to ensure stylistic coherence for guiding a text-to-video 
model.

Output (MV description):
# Overview
A mesmerizing journey through duality and introspection unfolds in this surreal music video. The brisk tempo mirrors the energetic 
yet contemplative soundscape, navigating between rich harmonies and softer reflective moments. The thoughtful interplay of 
organic and geometric visuals, complemented by shifting color tones, creates an immersive experience that invites deeper 
engagement with themes of transformation and optimism amidst chaos.

# Frame-by-frame Breakdown
1. **Blurred Reflection**: Begin with a soft, abstract blur, setting an enigmatic tone that hints at duality.
2. **Obscured Humanity**: Introduce a warm, human form partially hidden, symbolizing vulnerability and connection.
…

Figure 2: Process for creating music-to-MV description training datasets (top) and an example of utilizing the
generated data to train music-to-text LLMs (bottom).

while remaining closely tied to musical features,
such as tempo, downbeats, and high-level char-
acteristics like the mood conveyed by the music.
To achieve this, we first utilize GPT-4o mini to
caption MV clips and extract relevant visual con-
texts. Next, we refine these captions using GPT-
4o mini again, integrating key musical features,
including music captions, low-level musical at-
tributes, and lyrics understanding. Music captions
and lyrics understanding texts are generated using
the OpenMU music understanding model, while
low-level musical features are extracted with open-
source tools (Böck et al., 2016), following the
methodology of LLark (Gardner et al., 2024). The
constructed MV description dataset includes two
main components: an overview and a frame-by-
frame breakdown, with frame captions extracted at
two-second intervals for each 30-second MV clip.
Examples of music captions, low-level music fea-
tures, and a complete version of an MV description
are provided in Appendix A.

2.2 Multimodal Model Training

We utilize NExT-GPT (Wu et al., 2024), an any-to-
any multimodal training framework, to fine-tune
our model using the constructed music-to-MV de-
scription datasets. Following NExT-GPT’s method-
ology, the fine-tuning process is divided into mul-
tiple stages. In the first stage, we fine-tune only
the adaptor between the ImageBind (Girdhar et al.,
2023) encoder and the Vicuna LLM (Zheng et al.,
2023) utilizing the music captioning task. In the
second stage, we simultaneously fine-tune the adap-
tor and apply LoRA (Hu et al., 2022) fine-tuning
to Vicuna with the constructed music-to-MV de-
scription dataset. As illustrated in Fig. 2, the input
data including the music clip is sequentially format-
ted, followed by a fixed instruction. The model is
trained to generate MV descriptions comprising an
overall summary and frame-by-frame breakdowns.
We fine-tune for 5 and 2 epochs in the first and sec-
ond stages, respectively, utilizing a learning rate of
1e−4 and a batch size of 2. Training is conducted
on 2 NVIDIA A6000 GPUs. For LoRA, the rank
and alpha are both set to 32, following NExT-GPT.
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Model BLEU-1 BLEU ROUGE-P ROUGE-R ROUGE-F1 BERT-P BERT-R BERT-F1
Baseline
NExT-GPT (Wu et al., 2024) 8.3 0.2 20.7 9.2 11.8 80.9 76.5 78.6
Main results
1⃝+ 2⃝+ 3⃝+ 4⃝ 42.9 14.6 22.9 23.2 22.7 87.4 86.4 86.9
Ablation study
2⃝+ 3⃝+ 4⃝ 42.5 14.4 22.4 22.8 22.3 87.2 86.2 86.7
1⃝+ 2⃝+ 3⃝ 43.6 14.7 23.0 23.5 22.9 87.4 86.7 87.0
1⃝+ 3⃝+ 4⃝ 42.8 14.5 22.8 23.2 22.7 87.3 86.4 86.9
1⃝+ 2⃝+ 4⃝ 42.2 14.1 21.7 22.5 21.8 86.9 86.2 86.5
2⃝+ 3⃝ 41.8 14.0 21.8 22.4 21.8 87.2 86.1 86.6
1⃝+ 3⃝ 42.4 14.4 22.3 22.8 22.2 87.2 86.2 86.6
1⃝+ 4⃝ 41.3 13.8 21.4 22.4 21.6 86.8 86.0 86.4
Sanity check (w/o inputs, solely w/ instructions during inference)
1⃝+ 2⃝+ 3⃝+ 4⃝ 39.3 13.2 20.2 22.5 21.0 85.8 85.6 85.7
1⃝+ 4⃝ 39.7 12.5 20.3 20.8 20.3 86.1 85.6 85.9

Table 1: Results of MV description generation on the Music4All dataset. We provide BLEU-1 and BLEU-4 scores
for BLEU, along with precision, recall, and F1 scores for both ROUGE-L and BERT-score. 1⃝, 2⃝, 3⃝, and 4⃝
represent music, music genre tags, MV type tags, and lyrics understanding text, respectively. The top three values in
each metric are highlighted in bold.

3 Evaluation

Using the 1, 446 test samples from our constructed
dataset, we evaluate the generated MV descrip-
tions with BLEU (Papineni et al., 2002), ROUGE-
L (Lin, 2004), and BERT-score (Zhang et al.,
2020), considering different combinations of in-
puts: 1⃝ music, 2⃝ music genre tags, 3⃝ MV type
tags, and 4⃝ lyrics understanding text. Addition-
ally, we present several MV frames generated by
Text2Video-Zero (Khachatryan et al., 2023) to test
the feasibility of the entire proposed MV genera-
tion pipeline in Appendix B, using the ground-truth
MV descriptions annotated by us as input.

3.1 Main Results

As shown in Table 1, our proposed pipeline for
music-to-MV description generation achieves sig-
nificant improvements over the NExT-GPT base-
line after fine-tuning for a specific music domain.
This demonstrates that, with the proposed datasets
and pipeline, music can be effectively mapped to
the text domain. Comparing the main results with
sanity checks that remove all inputs during infer-
ence (leaving only a fixed instruction), we observe
that our carefully designed inputs for music-related
information substantially contribute to the quality
of the generated MV descriptions. Interestingly, af-
ter training, the model can generate reasonable MV
descriptions even without any inputs, suggesting
that the NExT-GPT model successfully adapts to
the MV description generation downstream task.

3.2 Ablation Study

Through an ablation study exploring different com-
binations of data sources, we find that settings
1⃝+ 2⃝+ 3⃝ and 1⃝+ 3⃝+ 4⃝ achieve comparable or
even slightly better performance to the full data
combination ( 1⃝+ 2⃝+ 3⃝+ 4⃝). This suggests that
the contributions of music genre tags ( 2⃝) and
lyrics understanding text ( 4⃝) are interchangeable,
without providing additional benefits when used
together. Observing the results of 1⃝+ 3⃝, we note
that music genre tags ( 2⃝) and lyrics understanding
( 4⃝) positively impact the results and are not re-
dundant inputs. When comparing the top three
performing settings ( 1⃝+ 2⃝+ 3⃝, 1⃝+ 3⃝+ 4⃝, and
1⃝+ 2⃝+ 3⃝+ 4⃝) with the combinations 2⃝+ 3⃝+ 4⃝
and 1⃝+ 2⃝+ 4⃝, we observe a significant perfor-
mance drop. This highlights the importance of
including both music ( 1⃝) and MV type tags ( 3⃝).
Seeing the results of 1⃝+ 4⃝, the simultaneous inclu-
sion of music genre tags ( 2⃝) and MV type tags ( 3⃝)
yields consistent improvement across all metrics.
Moreover, the results of 2⃝+ 3⃝ demonstrate that
even with simple tags for music and MV, the model
can generate reasonable MV descriptions, suggest-
ing future opportunities to enhance the model’s per-
formance by leveraging finer-grained features such
as temporal alignment between lyrics and musical
waves.

4 Conclusion

In this study, we explored data construction and
multimodal training pipelines for the music-to-MV
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description task, with the goal of building robust
base models for the broader music-to-MV genera-
tion task. Our results on the constructed Music4All
dataset highlight key data sources that significantly
impact the quality of MV descriptions. Future work
could extend our proposed dataset construction
pipeline to additional music domains. Addition-
ally, exploring more effective methods to align MV
descriptions or MVs with the corresponding music
could pave the way for improved performance in
this challenging task.

Limitations

The proposed approach has several limitations:
(1) The pipeline was evaluated on a single con-
structed dataset. Testing on additional datasets
could strengthen the claims made in this paper. (2)
The pipeline focuses on converting music into MV
descriptions for MV generation tasks, but relying
solely on text descriptions may overlook important
information necessary for effective MV generation.
(3) Inputs were limited to music, music genre tags,
MV type tags, and lyrics understanding text, while
other features that could significantly enhance MV
descriptions may not have been considered. (4) The
data construction pipeline depends on LLMs for
captioning, and the choice of LLMs could influence
the quality of the generated MV descriptions.

Ethical Considerations

In this study, we utilized only publicly available
datasets and models to fine-tune the music-to-MV
description generation task, ensuring no copyright
issues. While our experiments focused on MV de-
scription generation, it is important to acknowledge
that the fine-tuned models may produce potentially
risky hallucinations. Users should use the gen-
erated content with caution, understand the risks
associated with LLM-generated outputs, and im-
plement content safety checks as post-processing.
Although debiasing fine-tuning could help address
these issues, it falls outside the scope of this work.
Additionally, caution is needed when using text-
to-video models based on the generated MV de-
scriptions, ensuring that no illegal content, such
as unauthorized human identities or privacy viola-
tions, is included.
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A Examples of How to Construct MV
Description

We first extract low-level music features, including
tempo, key, downbeats, and chords, using the open-
source tool madmom (Böck et al., 2016). Based
on these features and the textual captions of each
music piece, we employ GPT-4o mini2 to generate
unified music captions that seamlessly integrate
all the musical information into natural, coherent
sentences, as illustrated in Figure 3. Subsequently,
we prompt GPT-4o mini again to construct MV
descriptions by combining the video captions of
each gold-standard MV, the unified music captions,
and the lyrics understanding text (see Figure 2).
The resulting MV descriptions incorporate both
visual and musical content, making them better
suited for reconstructing the original MV.

B Generating Video Frames using MV
Description

Figure 5 showcases frames generated by the
Text2Video-Zero (Khachatryan et al., 2023) model
using the gold-standard MV description example
provided in Figure 4. When compared to the orig-
inal MV frames, we observe that even with only
textual descriptions, the text-to-video model can
produce content closely aligned with the intended
visuals, such as the abstract geometric shapes in
frames #3 to #5 and the mirrored sky in frames #6
and #7. This demonstrates the feasibility of our
proposed pipeline for MV generation, as illustrated
in Figure 1. However, challenges remain, partic-
ularly in accurately generating complex elements
like multi-layered imagery and human faces using
current text-to-video models. Addressing these lim-
itations will be crucial for future advancements in
this domain.

2https://platform.openai.com/docs/models#
gpt-4o-mini
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Input: Music captions, low-level music features

Music captions: The music clip features a very fast tempo with medium energy, creating a sense of urgency in the rhythm. It has a low valence, conveying a somber or melancholic 
mood. The overall danceability is moderate, suggesting a balance between movement and reflection in the music. The combination of the brisk tempo, medium energy, and low 
valence gives the clip a unique sense of momentum tempered with emotional depth.

Low-level music features: {'tempo': [[85.71428571428571, 0.31086550309221533], [43.16546762589928, 0.16042116950818738], [171.42857142857142, 0.12771306118557813], [57.142857142857146, 0.0782649741917839], 
[64.51612903225806, 0.07135607527230461], [127.65957446808511, 0.065676126308472], [51.724137931034484, 0.04765587930734781], [68.96551724137932, 0.04586137274352434], [113.20754716981132, 0.032410353800951204], [250.0, 
0.030369918652813157], [49.18032786885246, 0.029405565936822024]], 'chords': [[0.0, 3.1, 'D#:maj'], [3.1, 4.7, 'A#:maj'], [4.7, 5.800000000000001, 'F:maj'], [5.800000000000001, 8.700000000000001, 'G:min'], [8.700000000000001, 11.0, 
'F:maj'], [11.0, 13.200000000000001, 'D#:maj'], [13.200000000000001, 14.3, 'G:min'], [14.3, 16.3, 'A#:maj'], [16.3, 16.900000000000002, 'F:maj'], [16.900000000000002, 18.5, 'G:min'], [18.5, 19.1, 'A#:maj'], [19.1, 19.900000000000002, 'D#:maj'], 
[19.900000000000002, 20.400000000000002, 'A#:maj'], [20.400000000000002, 21.900000000000002, 'C:maj'], [21.900000000000002, 22.8, 'G:min'], [22.8, 25.200000000000003, 'D#:maj'], [25.200000000000003, 27.900000000000002, 'A#:maj'], 
[27.900000000000002, 30.000000000000004, 'G:min']], 'downbeats': [[0.11, 1.0], [0.81, 2.0], [1.54, 3.0], [2.21, 4.0], [2.91, 1.0], [3.6, 2.0], [4.34, 3.0], [5.0, 4.0], [5.69, 1.0], [6.39, 2.0], [7.12, 3.0], [7.79, 4.0], [8.49, 1.0], [9.18, 2.0], [9.91, 3.0], [10.58, 
4.0], [11.28, 1.0], [11.98, 2.0], [12.7, 3.0], [13.37, 4.0], [14.07, 1.0], [14.77, 2.0], [15.5, 3.0], [16.16, 4.0], [16.86, 1.0], [17.56, 2.0], [18.27, 3.0], [18.95, 4.0], [19.65, 1.0], [20.35, 2.0], [21.08, 3.0], [21.74, 4.0], [22.44, 1.0], [23.14, 2.0], [23.85, 3.0], 
[24.53, 4.0], [25.23, 1.0], [25.93, 2.0], [26.65, 3.0], [27.33, 4.0], [28.02, 1.0], [28.72, 2.0], [29.45, 3.0]], 'key': [[0.0026776420418173075, 0.5507075190544128, 0.0008813949534669518, 0.0068492344580590725, 0.0008653984405100346, 
0.04045381024479866, 0.015051022171974182, 0.0028856105636805296, 0.0017399969510734081, 0.008495241403579712, 0.006829794496297836, 0.002278234576806426, 0.0019952855072915554, 0.0031427720095962286, 
0.0035238098353147507, 0.04947231337428093, 0.0013390464009717107, 0.014915909618139267, 0.003726801136508584, 0.002005897229537368, 0.0014139574486762285, 0.0013369121588766575, 0.2761196196079254, 
0.001292902510613203]]}

Model: GPT-4o mini
Output: Unified music captions

The music clip unfolds with a brisk tempo, distinctively fast but balanced with a medium energy that fuels a palpable sense of urgency throughout its rhythm. This intensity carries a somber 
undertone, reflective in the music’s low valence, leading listeners through a contemplative journey amid its forward momentum.

The harmonic structure pivots through a series of rich chords—beginning with the striking resonance of D#:maj, transitioning through A#:maj and F:maj, before settling into the darker 
reflections of G:min. This progression adds depth, embodying a landscape that evokes both movement and introspection. The interchange of these chords facilitates a pivotal emotional 
exploration, enhancing the track's melancholic essence while maintaining a danceable character, where reflection subtly intersperses with kinetic energy.

Synchronization of downbeats adds to the sense of drive, propelling the listener forward while imbuing each moment with a tender fragility. It creates a nuanced interplay between urgency 
and contemplation, inviting engagement without overwhelming the senses. In its entirety, the composition weaves a narrative that balances the frenetic pace of existence with the weight of 
emotional contemplation, crafting an immersive atmosphere where movement and melancholy coexist harmoniously.

Figure 3: An example of music caption, low-level features and generated unified music captions.

Input: (1) Video captions, (2) Unified Music Captions, (3) Lyrics understanding
Model: GPT-4o mini
Output: Video description

# Overview
A mesmerizing journey through duality and introspection unfolds in this surreal music video. The brisk tempo mirrors the energetic yet contemplative soundscape, navigating between 
rich harmonies and softer reflective moments. The thoughtful interplay of organic and geometric visuals, complemented by shifting color tones, creates an immersive experience that 
invites deeper engagement with themes of transformation and optimism amidst chaos.

# Frame-by-frame Breakdown
1. **Blurred Reflection**: Begin with a soft, abstract blur, setting an enigmatic tone that hints at duality.
2. **Obscured Humanity**: Introduce a warm, human form partially hidden, symbolizing vulnerability and connection.
3. **Geometric Chaos**: Shift to darker visuals with floating geometric shapes, suggesting tension and direction.
4. **Radiant Lines**: Bright red lines burst forth, enhancing the dynamic energy of the visual progression.
5. **Intricate Motion**: More complex red layers emerge, indicating escalating movement and urgency.
6. **Dreamlike Nature**: Transition to mirrored greenery, evoking serenity and a connection to the Earth.
7. **Skyward Contemplation**: Move towards the calmness of a mirrored sky, fostering reflection and peace.
8. **Whimsical Objects**: Introduce artistic mobile-like structures in soft tones, providing a sense of wonder.
9. **Intimate Textures**: Zoom in on reflective surfaces, deepening the intimate atmosphere within the narrative.
10. **Layered Complexity**: Explore deeper reflections and shadows, suggesting hidden depths beneath the surface.
11. **Earthy Symmetry**: Return to natural settings with earthy tones, enhancing organic beauty and exploration.
12. **Grounding Focus**: Highlight rich textures of the ground, reinforcing connection to nature.
13. **Endless Horizons**: Present a symmetrical sky view, connoting endless possibilities through mirroring.
14. **Tranquil Warmth**: A warm horizon emphasizes a feeling of openness and tranquility.
15. **Reflective Closure**: Conclude with a blend of organic shapes and warm tones, inviting contemplation on the journey within the video.

This concise frame-by-frame breakdown supports a nuanced visualization that evokes the music’s balance of urgency and reflection, mirroring the overarching themes expressed 
through lyrics.

Figure 4: An example of a full MV description.

• Frames generated by Text2video-Zero based on the MV description:

• Original frames from MV:

Figure 5: Frames from the original MV and generated by the Text2Video-Zero (Khachatryan et al., 2023) model.
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Abstract

The performance of Large Language Models
(LLMs) on natural language tasks can be im-
proved through both supervised fine-tuning
(SFT) and in-context learning (ICL), which op-
erate via distinct mechanisms. SFT updates the
model’s weights by minimizing loss on training
data, whereas ICL leverages task demonstra-
tions embedded in the prompt, without chang-
ing the model’s parameters. This study investi-
gates the effects of these learning paradigms on
the hidden representations of LLMs using In-
trinsic Dimension (ID). We use ID to estimate
the number of degrees of freedom between rep-
resentations extracted from LLMs as they per-
form specific natural language tasks. We first
explore how the ID of LLM representations
evolves during SFT and how it varies due to
the number of demonstrations in ICL. We then
compare the IDs induced by SFT and ICL and
find that ICL consistently induces a higher ID
compared to SFT, suggesting that representa-
tions generated during ICL reside in higher di-
mensional manifolds in the embedding space.
1

1 Introduction

Large Language Models (LLMs) have transformed
the field of Natural Language Processing through
their general natural language understanding ca-
pabilities, which can be applied to a broad range
of tasks. The performance of an LLM on a spe-
cific task can be improved through two primary
learning paradigms: supervised fine-tuning (SFT)
and in-context learning (ICL). SFT adapts pre-
trained models to specific tasks by updating their
parameters, while ICL requires no parameter up-
dates, relying instead on task-specific demonstra-
tions within the model’s context window. Despite
their widespread success, how these methods influ-
ence a model’s internal representation space is still
not fully understood.

1Code is available at the following GitHub repo.

Intrinsic dimension (ID) is a useful metric for
assessing the geometric complexity of a model’s
representations. It quantifies the number of degrees
of freedom in the representation space, serving
as a measure of the complexity of the underlying
manifolds where the embeddings reside.

In this work, we analyze the intrinsic dimension
(ID) of hidden representations across model lay-
ers during task execution under both supervised
fine-tuning (SFT) and in-context learning (ICL).
Specifically, we explore:

• How fine-tuning duration influences ID of rep-
resentations on both training and validation
data.

• How the number of demonstrations used in
ICL affects ID of representations.

Our findings reveal that (1) the ID sometimes
decreases during the early stages of fine-tuning but
generally increases in the later stages, and (2) the
ID increases initially with more demonstrations
in ICL, then either plateaus or decreases as the
number of demonstrations continues to rise.

We then conduct experiments directly compar-
ing the intrinsic dimensions of ICL and fine-tuning
across several models and datasets. We find that
the intrinsic dimensions of representations from
fine-tuned models are generally lower than those
from models using ICL, even though the fine-tuned
models achieve higher accuracy than the ICL mod-
els. Additionally, our results suggest that ID may
serve as a practical heuristic for selecting the opti-
mal number of demonstrations in ICL to maximize
performance while minimizing input length. These
findings shed light on the differing impacts that the
two learning paradigms have on the representation
space of LLMs.
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Figure 1: Accuracy, intrinsic dimension, and normalized AUC for the Llama-3-8B model on the MMLU dataset.
(a) Fine-tuning achieves the highest accuracy. (b) ICL produces intermediate representations with higher intrinsic
dimensions across model layers compared to zero-shot (ICL-0) and fine-tuned models. (c) Normalized AUC
increases with the number of demonstrations in ICL, while fine-tuned models exhibit lower AUC.

2 Background

2.1 Decoder Transformer Architecture

LLMs are built on the Transformer decoder archi-
tecture, which processes token sequences through
a series of Transformer layers. In each layer, token
representations are updated via self-attention that
considers only the preceding tokens from the previ-
ous layer, progressively encoding information for
the next-token prediction task. The final layer then
uses the representation of the last token to predict
the next token in the sequence. In this work, we an-
alyze the intrinsic dimension of the representations
corresponding to the last token of sequences where
LLMs are prompted to perform specific natural
language tasks.

2.2 Intrinsic Dimension Estimation

Intrinsic dimension (ID) refers to the minimal num-
ber of variables required to capture the essential
structure of high-dimensional data. Although mod-
ern neural networks operate in high-dimensional
spaces (e.g., the hidden representations of Llama-
3-8B span 4096 dimensions), the representations
corresponding to a specific dataset or task often
lie on a manifold of much lower dimension. This
occurs because the network disentangles and ex-
tracts the most relevant lower-dimensional features
needed to complete the task.

According to the manifold hypothesis, real-
world data typically resides on a low-dimensional
manifold (Goodfellow, 2016). Therefore, to ef-
fectively solve tasks—such as next-token predic-
tion—neural networks must learn representations
that align with this low-dimensional structure. Con-
sequently, the intrinsic dimension of data represen-

tations provides unique insight into the complexity
of the representation spaces constructed across the
layers of a neural network.

In this work, we estimate the intrinsic dimen-
sion (ID) of our representations using the TwoNN
estimator, as introduced by Facco et al. (2017).
We chose this method because of its simplicity,
computational efficiency, and robustness when
handling datasets with non-uniform densities and
high-dimensional curvature—common challenges
in neural network representations.

The TwoNN estimator operates on a set of points
by computing the distances to each point’s first (r1)
and second (r2) nearest neighbors. For a given
point x, the ratio

µ =
r2
r1

is calculated. The intrinsic dimension d is then
derived from the empirical cumulative distribution
function (CDF) of µ. Specifically, the log-linear
relationship between log(µ) and log

(
1−Femp(µ)

)
,

where Femp(µ) is the empirical CDF, is used to
estimate d:

d = − log
(
1− Femp(µ)

)

log(µ)

The TwoNN estimator has been successfully ap-
plied in several prior works analyzing the intrinsic
dimension of neural network representations, in-
cluding Sharma and Kaplan (2022), Ansuini et al.
(2019), Valeriani et al. (2024), and specifically in
large language models (LLMs) by Cheng et al.
(2023) and Lee et al. (2024). We also validate
the correlation between the TwoNN estimator and
another widely used intrinsic dimension estimator—
the Maximum Likelihood Estimator introduced by
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Levina and Bickel (2004)—in Appendix F as a
sanity check.

3 Related Works

3.1 Supervised Fine-Tuning in LLMs

Pre-trained LLMs can be quickly adapted to
improve performance on natural language tasks
through supervised fine-tuning, which updates the
model’s parameters via gradient descent on task-
specific training examples.

Aghajanyan et al. (2020) show that fine-tuning
large language models often requires updating
only a low-dimensional subspace of parameters
to achieve near-optimal performance. (Note that
their work focuses on the intrinsic dimension of the
parameter space, whereas our work examines the
intrinsic dimension of the representation space.)
Building on this, Hu et al. (2021) introduce Low-
Rank Adaptation (LoRA), a method that injects
low-rank matrices into the weight matrices for fine-
tuning instead of updating all parameters. We em-
ploy LoRA for all our fine-tuning experiments.

3.2 In-Context Learning

Introduced in GPT-3 by Brown (2020), ICL (or
few-shot learning) refers to the ability of LLMs to
learn to perform a task in a single forward pass,
using (input, output) pairs embedded in a prompt.

Dai et al. (2022) provides evidence that ICL op-
erates as implicit meta-optimization, where GPT
models perform a gradient-like update via atten-
tion mechanisms during the forward pass. This
suggests that ICL replicates fine-tuning behavior;
specifically, they demonstrate that attention outputs
and weights are updated in a direction similar to
that of fine-tuning.

Xie et al. (2021) explain in-context learning as
implicit Bayesian inference, where large language
models infer latent document-level concepts dur-
ing pretraining. These inferred concepts are then
leveraged at test time to solve tasks based on the
input-output examples provided in prompts.

Expanding the ICL paradigm to long-context
models, Agarwal et al. (2024) studied many-shot
ICL, in which hundreds or thousands of task ex-
amples are used to improve the performance of
frontier models. Their work finds that an increas-
ing number of demonstrations generally improves
model performance on a variety of complex tasks,
such as mathematical problem-solving.

3.3 Intrinsic Dimension in Deep Learning

Ansuini et al. (2019) investigated the intrinsic di-
mensionality (ID) of data representations across
various convolutional neural networks (CNNs) for
image classification. They observed a consistent
“hunchback” pattern in ID evolution—an initial in-
crease in the early layers followed by a progressive
decrease in later layers.

Valeriani et al. (2024) extended this analysis to
protein language models and image transformers,
finding that the evolution of representations across
layers of these models is also marked by distinct
phases of ID growth and compression.

Yin et al. (2024) explore the use of Local In-
trinsic Dimension (LID) to detect untruthful out-
puts from LLMs. Their study reveals that truthful
outputs typically exhibit lower LIDs compared to
hallucinated ones, suggesting that LID can serve as
a signal for truthfulness in LLM generations. They
also identify a positive relationship between the ID
of data representations and validation performance
during fine-tuning.

Cheng et al. (2023) demonstrate that intrinsic
dimension correlates with fine-tuning ease and per-
plexity, with low-dimensional representations en-
abling faster task adaptation. Moreover, they find
that ID values are consistent across model sizes,
supporting the manifold hypothesis and suggesting
that LLMs trained on similar data recover compa-
rable intrinsic dimensions.

Of particular relevance to our study is the concur-
rent work of Doimo et al. (2024), which examines
the internal representations of LLMs solving tasks
from the MMLU dataset using both ICL and SFT.
Their analysis reveals that ICL forms semantic clus-
ters in the early layers, while SFT sharpens these
clusters in later layers for task-specific answers.
Moreover, they observe that intrinsic dimension
(ID) increases with a higher number of demon-
strations in ICL, and that SFT generally induces a
higher ID compared to ICL. In contrast, our find-
ings indicate that beyond a certain range of ICL
demonstrations, ID may plateau or even decrease,
and that SFT consistently induces a lower ID than
ICL.

To our knowledge, our work is the first to system-
atically analyze and compare intrinsic dimension
across the two learning paradigms for numerous
datasets and models. We further provide in-depth
analyses of how ID is affected by various factors
within each paradigm, such as the number of gradi-
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ent steps in SFT and the number of demonstrations
in ICL.

3.4 Intrinsic Dimension and Neural Network
Scaling Laws

Sharma and Kaplan (2022) propose that the power-
law scaling of neural network performance is
rooted in the intrinsic dimensionality (ID) of the
data manifold. They empirically demonstrate that
the ID of learned representations, particularly in
the final hidden layer, directly relates to the scal-
ing exponent. Their theory, predicting a scaling
exponent of approximately α ≈ 4/d (where d
is ID), suggests that neural networks achieve ef-
ficient scaling by effectively performing regression
on a lower-dimensional data manifold, thus linking
model capacity to the data’s inherent complexity.

4 Methods

We perform experiments using subsets from the
following datasets: AG News (Zhang et al., 2015),
CoLA (Warstadt et al., 2018), CommonsenseQA
(Talmor et al., 2018), MMLU (Hendrycks et al.,
2020), MultiNLI (Williams et al., 2017), QNLI
(Wang, 2018), QQP (Wang et al., 2017), and SST2
(Socher et al., 2013).

For these experiments, we utilize the follow-
ing open-source LLMs: Llama-3-8B (Dubey et al.,
2024), Llama-2-13b, Llama-2-7b (Touvron et al.,
2023), and Mistral-7B-v0.3 (Jiang et al., 2023),
running them on 6 NVIDIA A6000s.

For each dataset, we created a training set of
1000 examples and a validation set of 5000 ex-
amples. We use the 5000 validation examples to
ensure stability of the TwoNN estimator. Details re-
garding dataset creation can be found in Appendix
G. Details of split generations and prompt tem-
plates are provided in Appendix G.

We calculate the accuracy of model responses
using the logit probabilities assigned to the tokens
corresponding to the possible answers for each
question. We mark a response as correct if the
probability corresponding to the first token of the
correct answer label is the highest.

4.1 Computing Intrinsic Dimension

In both Supervised Fine-Tuning (SFT) and In-
Context Learning (ICL) paradigms, a language
model receives an input sequence of tokens and
is tasked with generating an output sequence that
answers the given prompt. To quantify the intrinsic

dimensionality (ID) of a model’s representations
for a given dataset, we extract the hidden state ac-
tivations at each layer of the LLM. Specifically,
we focus on the activations corresponding to the
last token of each input sequence in the dataset.
For a model with L layers and a dataset containing
N input sequences, this process yields L sets of
hidden state representations. Each set corresponds
to a specific layer and comprises N representation
vectors (one for each input sequence in the dataset).
Subsequently, we compute the intrinsic dimension
(ID) for each of these L sets of N vectors. This
provides us with an ID estimate for the represen-
tation space at each layer. By plotting the Layer
Index against the corresponding ID estimates, we
construct what we term the Intrinsic Dimension
Curve.

To derive a single, aggregated metric that encapsu-
lates the intrinsic dimensionality across all layers
of a model, we calculate the Normalized Area Un-
der the Curve (AUC) of the Intrinsic Dimension
Curve, defined as follows:

Normalized AUC =
1

L

L−1∑

i=1

1

2
(IDi + IDi+1)

In this equation, IDi denotes the intrinsic dimen-
sion estimate at layer i. The formula employs the
trapezoidal rule for numerical integration to ap-
proximate the area beneath the Intrinsic Dimension
Curve. The normalization by L (the number of
layers) enables fair comparisons of intrinsic dimen-
sionality across models with varying depths.

5 Dynamics of ID during Supervised
Fine-Tuning

5.1 Supervised Fine-Tuning Experimental
Setup

To investigate the impact of supervised fine-tuning
at a granular level, we conduct experiments using
the 8 datasets discussed in Section 4 and the Llama-
3-8B and Llama-2-13B models.

Using the training split for each of the datasets,
we perform LoRA fine-tuning on the query, key,
value, and output projection matrices of attention
heads across all layers of the model. For all mod-
els, we fine-tune with a batch size of 16 for 15
epochs. For all fine-tuning runs, we use LoRA
hyperparameters of r = 64, lora_alpha = 16,
lora_dropout = 0.1, no LoRA bias, and a learn-
ing rate of 1e−4.
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Figure 2: Fine-tuning results for Meta-Llama-3-8B on
the MMLU dataset. (a) Intrinsic Dimension curves on
the validation split increase across training steps. (b)
Training accuracy improves steadily, while validation
accuracy plateaus. (c) Normalized AUC for training and
validation sets increases throughout fine-tuning.

During the fine-tuning process for a specific
model and dataset, we save a checkpoint of the
model after every epoch (~62 gradient update
steps). For each checkpoint, we evaluate the
model’s accuracy and measure the intrinsic di-
mension (ID) of the hidden representations on
prompts from the training and validation splits for
the dataset.

5.2 Intrinsic Dimension Generally Increases
Through Fine-Tuning

As depicted in Figure 2c, we find that ID of rep-
resentations corresponding to both training data
and validation data sometimes decreases during
the initial stages of fine-tuning, but then generally

increases as fine-tuning progresses.
We also observe larger changes in ID values for

later layers of the models, despite LoRA adapta-
tion being applied on all the layers with the same
configuration (Figure 2a).

Additionally, we find that the AUC values of
the model on the training set and validation set
are often highly correlated with each other during
the training process (Figure 2c). Experimental re-
sults for all models and datasets can be found in
Appendix B.

Prior work by Yin et al. (2024) found that on
Question-Answering datasets, intrinsic dimension
of representations is correlated with validation per-
formance and can therefore be used as a heuristic
to select final checkpoints. In general, we do not
find this trend to hold on the datasets and models
we tested. In fact, as shown in Figure 13, large in-
creases in validation accuracy sometimes coincide
with drops in ID on both the training and validation
datasets.

6 Relationship of ID in ICL with
Different Numbers of Shots

6.1 In-Context Learning Experimental Setup

To investigate the impact of ICL on the ID of
model representations, we conduct experiments us-
ing the Llama-3-8B and Llama-2-13B models. The
datasets included in our evaluation are Common-
senseQA, MMLU, and QNLI.

We evaluate ICL performance using various val-
ues of k, where k denotes the number of demon-
strations in the ICL prompt. The values considered
are k ∈ {0, 1, 2, 5, 10, 12, 14, 16, 18, 20}. Note
that k = 0 serves as a baseline, representing the
model’s performance in the absence of both ICL
and SFT.

For each k and dataset, we generate 5000 ICL
prompts (one for each element of the validation
split of the dataset). Each ICL prompt includes
k unique demonstrations, or (input, output) pairs,
randomly sampled from the training set. While we
ensure that demonstrations within a single prompt
are unique, they may be reused across different
prompts.

6.2 ID Has a Non-Linear Relationship with
Number of Demonstrations

We observe that ID values across layers can fluctu-
ate until a threshold value of k (typically around 5
to 10 for most model configurations), after which
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Figure 3: (ICL) results for Meta-Llama-3-8B model on MMLU dataset. (a) Accuracy increases, then plateaus as
number of demonstrations increases (b) Intrinsic Dimension (ID) curves for different values of k. (c) Normalized
AUC of the ID curves peaks at k=5, which also aligns with saturation of accuracy.

they either plateau or steadily decrease for larger
values of k (see Figure 3c). Results for all model
and dataset configurations are provided in Ap-
pendix A. This observation extends the findings of
Doimo et al. (2024), who found that ID increased as
k was varied from 0, 1, 2, and 5, by demonstrating
that beyond a certain number of demonstrations,
the trend can reverse.

We observe that across most (model, dataset)
combinations, the shapes of the intrinsic dimension
(ID) curves correlate strongly with each other for
k ≥ 2.

Due to our procedure of selecting demonstra-
tions with replacement, we suspected that the
plateau in ID for larger values of k might be
caused by a greater number of demonstrations
shared across prompts. We hypothesized that
shared demonstrations could make representations
corresponding to these prompts artificially simi-
lar, thereby skewing ID results. To test this, we
performed additional experiments using a larger
number of dataset elements from the Common-
senseQA, QNLI, and AG News datasets, which
contain enough training elements to ensure that
demonstrations are not reused in prompts for more
than one element of the validation set. We observed
the same trend—an increase followed by a general
plateau in the ID—suggesting that the plateau is
likely not due to the reuse of demonstrations among
the prompts. Full results for this experiment can be
found in Appendix D.

Furthermore, we find that peaks in the k versus
AUC relationship align with peak (or near-peak)
accuracy in 5 out of the 6 ICL experiments we
conducted. Thus, the k value corresponding to the

peak ID may serve as a practical indicator of the
optimal number of demonstrations to use for ICL,
maximizing performance while minimizing input
length.

One hypothesis for why ID plateaus or slightly
decreases as k increases is that more demonstra-
tions allow the model to more effectively capture
the underlying task conveyed by the demonstra-
tions, causing representations corresponding to dif-
ferent inputs to become more similar. This idea is
supported by previous theoretical analysis of ICL
by Xie et al. (2021), which posits that a greater
number of demonstrations helps the model more
effectively infer the latent concept across demon-
strations.

Finally, we find that across most experiments,
accuracy either steadily increases or plateaus with
higher numbers of demonstrations (Figure 3a).

7 Comparing Intrinsic Dimension of
In-Context Learning and Supervised
Fine-Tuning

7.1 Experiment Setup for Comparative
Analysis

We conduct a series of experiments to directly com-
pare the ID curves obtained from both SFT and
ICL, following similar setups as discussed in Sec-
tions 5 and 6. For the fine-tuning experiments in
this section, we train for only 4 epochs and measure
the accuracy and ID solely at the final checkpoint.
This choice is motivated by the observation in Sec-
tion 5 that models tend to overfit beyond 4 epochs
across the tested datasets.

For the ICL experiments, we consider values of
k ∈ {0, 1, 2, 5, 10} for the number of demonstra-
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Dataset ICL-0 ICL-1 ICL-2 ICL-5 ICL-10 Finetune 1K
SST-2 0.685 0.633 0.731 0.807 0.832 0.944
CoLA 0.720 0.723 0.735 0.746 0.742 0.750
QNLI 0.517 0.513 0.555 0.590 0.585 0.761
QQP 0.417 0.462 0.485 0.508 0.519 0.707
MNLI 0.374 0.367 0.387 0.414 0.431 0.676
AGNews 0.638 0.573 0.712 0.772 0.809 0.881
CommonsenseQA 0.199 0.375 0.417 0.470 0.492 0.500
MMLU 0.449 0.488 0.511 0.524 0.531 0.542

Table 1: Average accuracy results for Datasets across ICL and SFT settings. SFT obtains the highest average
accuracy for all datasets. Accuracy increases and then plateaus for higher number of demonstrations.
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Figure 4: Heatmap showing the average differences in
normalized AUC of ID curves between pairs of learning
paradigms. Each value represents the average difference
(Experiment Type 1 - Experiment Type 2), computed
across all (model, dataset) pairs.

tions. These values are popular in practice, and our
previous experiments in Section 6 indicate that ID
curves tend to plateau when k ≥ 10. We perform
these experiments on all 8 datasets and 4 models
discussed in Section 4.

7.2 In-context Learning Induces Higher IDs
Compared to Fine-Tuning

We find that across all datasets and models, ICL
prompts with k ≥ 5 consistently induces higher in-
trinsic dimensions (IDs) across all layers compared
to both SFT and 0-shot prompts (see Figures 1b and
1c). This contrasts with the findings of Doimo et al.
(2024), who find that SFT models often induces
higher ID than models performing ICL.

We also find that the ID values of models fine-
tuned with 1000 samples tend to remain similar to
the original ID of the baseline model on a zero-shot
prompt (designated by icl-0). We present a heatmap
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Figure 5: Boxplot displaying the distribution of normal-
ized AUC values for different learning paradigms. Each
point corresponds to the normalized AUC value for a
(model, dataset) pair. The median normalized AUC
peaks with 5-shot ICL, while values for SFT are closer
to the 0-shot baseline (icl-0).

displaying the average differences in normalized
AUC between learning paradigms in Figure 4, and
a boxplot depicting the distribution of normalized
AUC values for the different paradigms in Figure
5.

7.3 Analysis of Intrinsic Dimension Curves

7.3.1 Differing Shapes of Intrinsic Dimension
Curves

We observe that the exact shape of the Intrinsic Di-
mension curves is highly dependent on the dataset.
For some datasets, such as AG News, we observe
a consistent "hunchback" shape, where the ID ini-
tially increases and then is progressively lower in
the later layers of the model across all models and
learning paradigms (Figure 36). This shape has
been reported by previous work (Yin et al., 2024) in
QA datasets. However, this pattern does not consis-
tently hold across all models, datasets, and learning
paradigms. For example, on the QQP dataset, we
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malized AUC values across datasets for each model in
the ICL-5 shot setting. Each point corresponds to a
(model, dataset) pair. The ID values lie in a narrow
range, highlighting similarity in representation spaces
across models.

do not observe a consistent hunchback shape for icl-
0, icl-1, or fine-tuning learning paradigms (Figure
33). In contrast, prior work has shown that Convo-
lutional Neural Networks (Ansuini et al., 2019), as
well as Image Generation Transformers such as Im-
ageGPT and Protein Language Models (Valeriani
et al., 2024), exhibit consistent Intrinsic Dimension
patterns across their layers for inputs of their re-
spective data modalities. This difference suggests
that LLMs encode data into more diverse manifolds
in their representation space, potentially reflecting
their generality and the complexity of their learning
tasks compared to other neural networks.

We also find that, within a specific learning
paradigm, the range of normalized AUC values
across datasets is similar for the four different mod-
els we tested, despite the fact that these models
come from different families and have different
embedding dimensions (e.g., Llama-2-13b has a
hidden dimension of 5120, while the other three
models have hidden dimensions of 4096). Figure
6 depicts the range of normalized AUC values for
the ICL-5 learning paradigm and shows that all
values fall within a range of 20. We view this as
evidence that different models may be generating
representations with similar geometric complexity
for a specific dataset, despite differences in model
size or pre-training schemes. Similar boxplots for
normalized AUC values from other experiments
are included in Appendix B.2. These findings are
in agreement with results from Cheng et al. (2023),
which show that LLMs of different sizes and fam-
ilies create representations with similar ID values

for a variety of text corpora.

7.4 Comparing Performance of Different
Learning Paradigms

We found that models fine-tuned with 1k samples
obtained the highest accuracy, while models per-
forming ICL with 10 samples followed closely.
This observation suggests that intrinsic dimension
(ID) may not be directly related to accuracy: al-
though fine-tuning with 1k samples yields ID val-
ues that remain closer to the baseline model, ICL
models exhibit higher IDs yet achieve substantially
lower accuracies. See Table 1 for the average per-
formance of each learning paradigm across the
models and datasets tested.

8 Summary

We present a detailed analysis of the intrinsic di-
mension (ID) induced by the SFT and ICL learning
paradigms. Our experiments reveal that the nor-
malized AUC of ID curves sometimes decreases
during the initial stages of SFT but generally in-
creases during the later stages.

Additionally, we observe that the normalized
AUC of ID curves in ICL initially increases for
small values of k (the number of demonstrations)
but plateaus or slightly decreases as k increases
further. Notably, the k value corresponding to the
highest normalized AUC also achieves peak (or
near-peak) accuracy, suggesting that ID may serve
as a useful indicator for selecting the optimal num-
ber of demonstrations during ICL.

Finally, our direct comparison of ID curves from
ICL and SFT reveals that representations gener-
ated during ICL consistently yield higher ID curves
compared to those from SFT on 1k samples, even
though SFT with 1k samples achieves the high-
est overall performance. This analysis provides
evidence that the two learning paradigms induce
distinct representational structures in the embed-
ding space, with ICL representations occupying
higher-dimensional manifolds.

9 Limitations

In this study, we limit our analysis to models with
sizes between 7B and 13B parameters. Future work
may extend this investigation to models of different
sizes. We also focus on datasets defined by nar-
rowly focused tasks and do not consider datasets
with long-form answers. Due to computational con-
straints, we perform fine-tuning only using LoRA
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adapters and do not explore the impacts of full
fine-tuning on intrinsic dimension.

References
Rishabh Agarwal, Avi Singh, Lei M Zhang, Bernd

Bohnet, Stephanie Chan, Ankesh Anand, Zaheer Ab-
bas, Azade Nova, John D Co-Reyes, Eric Chu, et al.
2024. Many-shot in-context learning. arXiv preprint
arXiv:2404.11018.

Armen Aghajanyan, Luke Zettlemoyer, and Sonal
Gupta. 2020. Intrinsic dimensionality explains the
effectiveness of language model fine-tuning. arXiv
preprint arXiv:2012.13255.

Alessio Ansuini, Alessandro Laio, Jakob H Macke, and
Davide Zoccolan. 2019. Intrinsic dimension of data
representations in deep neural networks. Advances
in Neural Information Processing Systems, 32.

Stephen Bach, Victor Sanh, Zheng Xin Yong, Albert
Webson, Colin Raffel, Nihal V. Nayak, Abheesht
Sharma, Taewoon Kim, M Saiful Bari, Thibault
Fevry, Zaid Alyafeai, Manan Dey, Andrea Santilli,
Zhiqing Sun, Srulik Ben-david, Canwen Xu, Gun-
jan Chhablani, Han Wang, Jason Fries, Maged Al-
shaibani, Shanya Sharma, Urmish Thakker, Khalid
Almubarak, Xiangru Tang, Dragomir Radev, Mike
Tian-jian Jiang, and Alexander Rush. 2022. Prompt-
Source: An integrated development environment and
repository for natural language prompts. In Proceed-
ings of the 60th Annual Meeting of the Association
for Computational Linguistics: System Demonstra-
tions, pages 93–104, Dublin, Ireland. Association for
Computational Linguistics.

Tom B Brown. 2020. Language models are few-shot
learners. arXiv preprint arXiv:2005.14165.

Emily Cheng, Corentin Kervadec, and Marco Baroni.
2023. Bridging information-theoretic and geometric
compression in language models. arXiv preprint
arXiv:2310.13620.

Damai Dai, Yutao Sun, Li Dong, Yaru Hao, Shuming
Ma, Zhifang Sui, and Furu Wei. 2022. Why can gpt
learn in-context? language models implicitly perform
gradient descent as meta-optimizers. arXiv preprint
arXiv:2212.10559.

Diego Doimo, Alessandro Serra, Alessio Ansuini, and
Alberto Cazzaniga. 2024. The representation land-
scape of few-shot learning and fine-tuning in large
language models. arXiv preprint arXiv:2409.03662.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela
Fan, et al. 2024. The llama 3 herd of models. arXiv
preprint arXiv:2407.21783.

Elena Facco, Maria d’Errico, Alex Rodriguez, and
Alessandro Laio. 2017. Estimating the intrinsic di-
mension of datasets by a minimal neighborhood in-
formation. Scientific reports, 7(1):12140.

Ian Goodfellow. 2016. Deep learning.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou,
Mantas Mazeika, Dawn Song, and Jacob Steinhardt.
2020. Measuring massive multitask language under-
standing. arXiv preprint arXiv:2009.03300.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. 2021. Lora: Low-rank adap-
tation of large language models. arXiv preprint
arXiv:2106.09685.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel, Guil-
laume Lample, Lucile Saulnier, et al. 2023. Mistral
7b. arXiv preprint arXiv:2310.06825.

Jin Hwa Lee, Thomas Jiralerspong, Lei Yu, Yoshua
Bengio, and Emily Cheng. 2024. Geometric signa-
tures of compositionality across a language model’s
lifetime. arXiv preprint arXiv:2410.01444.

Elizaveta Levina and Peter Bickel. 2004. Maximum
likelihood estimation of intrinsic dimension. Ad-
vances in neural information processing systems, 17.

Utkarsh Sharma and Jared Kaplan. 2022. Scaling laws
from the data manifold dimension. Journal of Ma-
chine Learning Research, 23(9):1–34.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D Manning, Andrew Y Ng, and
Christopher Potts. 2013. Recursive deep models for
semantic compositionality over a sentiment treebank.
In Proceedings of the 2013 conference on empiri-
cal methods in natural language processing, pages
1631–1642.

Alon Talmor, Jonathan Herzig, Nicholas Lourie, and
Jonathan Berant. 2018. Commonsenseqa: A question
answering challenge targeting commonsense knowl-
edge. arXiv preprint arXiv:1811.00937.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Lucrezia Valeriani, Diego Doimo, Francesca Cuturello,
Alessandro Laio, Alessio Ansuini, and Alberto Caz-
zaniga. 2024. The geometry of hidden representa-
tions of large transformer models. Advances in Neu-
ral Information Processing Systems, 36.

Alex Wang. 2018. Glue: A multi-task benchmark and
analysis platform for natural language understanding.
arXiv preprint arXiv:1804.07461.

Zhiguo Wang, Wael Hamza, and Radu Florian. 2017.
Bilateral multi-perspective matching for natural lan-
guage sentences. arXiv preprint arXiv:1702.03814.

67

https://doi.org/10.18653/v1/2022.acl-demo.9
https://doi.org/10.18653/v1/2022.acl-demo.9
https://doi.org/10.18653/v1/2022.acl-demo.9


Alex Warstadt, Amanpreet Singh, and Samuel R Bow-
man. 2018. Neural network acceptability judgments.
arXiv preprint arXiv:1805.12471.

Adina Williams, Nikita Nangia, and Samuel R Bow-
man. 2017. A broad-coverage challenge corpus for
sentence understanding through inference. arXiv
preprint arXiv:1704.05426.

Sang Michael Xie, Aditi Raghunathan, Percy Liang, and
Tengyu Ma. 2021. An explanation of in-context learn-
ing as implicit bayesian inference. arXiv preprint
arXiv:2111.02080.

Fan Yin, Jayanth Srinivasa, and Kai-Wei Chang. 2024.
Characterizing truthfulness in large language model
generations with local intrinsic dimension. arXiv
preprint arXiv:2402.18048.

Xiang Zhang, Junbo Zhao, and Yann LeCun. 2015.
Character-level convolutional networks for text classi-
fication. Advances in neural information processing
systems, 28.

68



A In-Context Learning Experiments

A.1 Llama-3-8B In-Context Learning
Experiments
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Figure 7: ICL Experiment Results for Meta-Llama-3-8B on MMLU
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Figure 8: ICL Experiment Results for Meta-Llama-3-8B on CommonsenseQA
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Figure 9: ICL Experiment Results for Meta-Llama-3-8B on QNLI
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A.2 Llama-2-13b In-Context Learning
Experiments
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Figure 10: ICL Experiment Results for Llama-2-13b on MMLU
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Figure 11: ICL Experiment Results for Llama-2-13b on CommonsenseQA
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Figure 12: ICL Experiment Results for Llama-2-13b on QNLI
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B Supervised Fine-Tuning Experiments

B.1 Supervised Fine-Tuning Results for
Llama-3-8B
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Figure 13: Supervised Fine-Tuning Results for Llama-3-8B on Commonsense QA

0 5 10 15 20 25 30
Layer Index

12.5
15.0
17.5
20.0
22.5
25.0
27.5
30.0

In
tri

ns
ic 

Di
m

en
sio

n

ID Curves for Checkpoints on Training Set# Training Steps
0
62
124
186
248
310
372
434
496
558
620
682
744
806
868
930 0 5 10 15 20 25 30

Layer Index

12.5
15.0
17.5
20.0
22.5
25.0
27.5
30.0

In
tri

ns
ic 

Di
m

en
sio

n

ID Curves for Checkpoints on Validation Set

0 200 400 600 800
Checkpoint

0.5

0.6

0.7

0.8

0.9

Ac
cu

ra
cy

Accuracy by Checkpoint
Training Accuracy
Validation Accuracy

0 200 400 600 800
Checkpoint

17

18

19

20

21

22

23

24

No
rm

al
ize

d 
AU

C

Normalized AUC of ID Curve by Checkpoint
Training AUC
Validation AUC

Model: meta-llama-3-8B, Dataset: MMLU

Figure 14: Supervised Fine-Tuning Results for Llama-3-8B on MMLU
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Figure 15: Supervised Fine-Tuning Results for Llama-3-8B on MNLI
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Figure 16: Supervised Fine-Tuning Results for Llama-3-8B on QNLI
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Figure 17: Supervised Fine-Tuning Results for Llama-3-8B on QQP
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Figure 18: Supervised Fine-Tuning Results for Llama-3-8B on SST-2
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Figure 19: Supervised Fine-Tuning Results for Llama-3-8B on CoLA
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Figure 20: Supervised Fine-Tuning Results for Llama-3-8B on AG News
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Figure 21: Supervised Fine-Tuning Results for Llama-2-13B on Commonsense QA
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Figure 22: Supervised Fine-Tuning Results for Llama-2-13B on MMLU

72



0 5 10 15 20 25 30 35 40
Layer Index

5

10

15

20

25

30
In

tri
ns

ic 
Di

m
en

sio
n

ID Curves for Checkpoints on Training Set# Training Steps
0
62
124
186
248
310
372
434
496
558
620
682
744
806
868
930 0 5 10 15 20 25 30 35 40

Layer Index

5

10

15

20

25

30

In
tri

ns
ic 

Di
m

en
sio

n

ID Curves for Checkpoints on Validation Set

0 200 400 600 800
Checkpoint

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

Accuracy by Checkpoint
Training Accuracy
Validation Accuracy

0 200 400 600 800
Checkpoint

5

10

15

20

25

No
rm

al
ize

d 
AU

C

Normalized AUC of ID Curve by Checkpoint
Training AUC
Validation AUC

Model: llama-2-13b, Dataset: MNLI

Figure 23: Supervised Fine-Tuning Results for Llama-2-13B on MNLI
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Figure 24: Supervised Fine-Tuning Results for Llama-2-13B on QNLI
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Figure 25: Supervised Fine-Tuning Results for Llama-2-13B on QQP
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Figure 26: Supervised Fine-Tuning Results for Llama-2-13B on SST-2
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Figure 27: Supervised Fine-Tuning Results for Llama-2-13B on CoLA
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Figure 28: Supervised Fine-Tuning Results for Llama-2-13B on AG News
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C Comparisons of Supervised Fine-Tuning and In-Context Learning
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Figure 29: Comparison of Experimental Results for Commonsense QA
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Figure 30: Comparison of Experimental Results for MMLU
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Dataset: MNLI

Figure 31: Comparison of Experimental Results for MNLI
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Dataset: QNLI

Figure 32: Comparison of Experimental Results for QNLI
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Dataset: QQP

Figure 33: Comparison of Experimental Results for QQP

79



icl
-0

icl
-1

icl
-2

icl
-5

icl
-10

fin
e-t

un
e

Experiment Type

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

Accuracy by Experiment Type for Meta-Llama-3-8B

0 5 10 15 20 25 30
Layer Index

15

20

25

30

35

40

45

In
tri

ns
ic

 D
im

en
si

on

Intrinsic Dimension Curves for Meta-Llama-3-8B
Experiment Type

icl-0
icl-1
icl-2
icl-5
icl-10
fine-tune

icl
-0

icl
-1

icl
-2

icl
-5

icl
-10

fin
e-t

un
e

Experiment Type

0

5

10

15

20

25

30

N
or

m
al

iz
ed

 A
U

C

Normalized AUC by Experiment Type for Meta-Llama-3-8B

icl
-0

icl
-1

icl
-2

icl
-5

icl
-10

fin
e-t

un
e

Experiment Type

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

Accuracy by Experiment Type for Mistral-7B-v0.3

0 5 10 15 20 25 30
Layer Index

10

15

20

25

30

35

40

In
tri

ns
ic

 D
im

en
si

on

Intrinsic Dimension Curves for Mistral-7B-v0.3
Experiment Type

icl-0
icl-1
icl-2
icl-5
icl-10
fine-tune

icl
-0

icl
-1

icl
-2

icl
-5

icl
-10

fin
e-t

un
e

Experiment Type

0

5

10

15

20

25

30

35

N
or

m
al

iz
ed

 A
U

C

Normalized AUC by Experiment Type for Mistral-7B-v0.3

icl
-0

icl
-1

icl
-2

icl
-5

icl
-10

fin
e-t

un
e

Experiment Type

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

Accuracy by Experiment Type for Llama-2-7b

0 5 10 15 20 25 30
Layer Index

10

15

20

25

30

35

40

In
tri

ns
ic

 D
im

en
si

on

Intrinsic Dimension Curves for Llama-2-7b
Experiment Type

icl-0
icl-1
icl-2
icl-5
icl-10
fine-tune

icl
-0

icl
-1

icl
-2

icl
-5

icl
-10

fin
e-t

un
e

Experiment Type

0

5

10

15

20

25

30

35

N
or

m
al

iz
ed

 A
U

C

Normalized AUC by Experiment Type for Llama-2-7b

icl
-0

icl
-1

icl
-2

icl
-5

icl
-10

fin
e-t

un
e

Experiment Type

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

Accuracy by Experiment Type for Llama-2-13b

0 5 10 15 20 25 30 35 40
Layer Index

10

15

20

25

30

35

40

In
tri

ns
ic

 D
im

en
si

on

Intrinsic Dimension Curves for Llama-2-13b
Experiment Type

icl-0
icl-1
icl-2
icl-5
icl-10
fine-tune

icl
-0

icl
-1

icl
-2

icl
-5

icl
-10

fin
e-t

un
e

Experiment Type

0

5

10

15

20

25

30

N
or

m
al

iz
ed

 A
U

C

Normalized AUC by Experiment Type for Llama-2-13b

Dataset: SST-2

Figure 34: Comparison of Experimental Results for SST-2
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Dataset: CoLA

Figure 35: Comparison of Experimental Results for CoLA
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Dataset: AG News

Figure 36: Comparison of Experimental Results for AG News
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D ICL Experiment Results with Unique Demonstrations
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Figure 37: ICL Experiment Results with Unique Demonstrations on AGNews Dataset
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Figure 38: ICL Experiment Results with Unique Demonstrations on QNLI Dataset
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Figure 39: ICL Experiment Results with Unique Demonstrations on QQP Dataset
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E Normalized AUC Boxplot by Model for All Learning Paradigms
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Figure 40: Normalized AUC by Model boxplot for ICL-
0 experiments.
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Figure 41: Normalized AUC by Model boxplot for ICL-
1 experiments.

Mistral-7B-v0.3 Llama-2-7b-hf Meta-Llama-3-8B Llama-2-13b-hf
Model

16

18

20

22

24

26

28

30

32

N
or

m
al

iz
ed

 A
U

C

Normalized AUC by Model for ICL-2

Figure 42: Normalized AUC by Model boxplot for ICL-
2 experiments.
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Figure 43: Normalized AUC by Model boxplot for ICL-
5 experiments.
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Figure 44: Normalized AUC by Model boxplot for ICL-
10 experiments.
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Figure 45: Normalized AUC by Model boxplot for SFT
experiments.
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F Validating the TwoNN Estimator with
the MLE Estimator
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Figure 46: Scatterplot plotting ID estimation results for
all experiments using the MLE and TwoNN Estimators.

To assess the validity of our intrinsic dimension es-
timator, we calculate the intrinsic dimension for dif-
ferent combinations of (learning paradigm, dataset,
model, layer) using the TwoNN estimator and Max-
imum Likelihood Estimator (MLE) introduced by
Levina and Bickel (2004). We use a neighborhood
of size k = 50 when applying MLE. We find that
the estimates from the two estimators are corre-
lated with r = 0.7. While it is not possible to
know the ’true’ intrinsic dimensionality of the rep-
resentations, high correlation between two separate
estimators provides a sanity check for our choice
of the TwoNN estimator.

G Dataset Generation Details

H Dataset Details

We include details about dataset generation below.
We get prompts for all datasets except MMLU from
the PromptSource library (Bach et al., 2022).

H.1 QNLI
Items for the training and validation splits in our
QNLI experiments were taken from the official
QNLI ’train’ and ’validation’ splits respectively.

Prompt Template:
Does that sentence have all you need to

↪→ answer the question
↪→ "{{ question }}"?

|||
{{ answer_choices[label ]}}

Labels: [’yes’, ’no’]

H.2 CommonsenseQA
Items for both the training and validation splits
in our CommonsenseQA experiments were taken

from the official CommonsenseQA ’train’ split.
Prompt Template:

Given the following options , what do
↪→ you think is the correct answer
↪→ to the question below:

{{ question }}

Options:
{% for letter , t in zip(answer_choices ,

↪→ choices.text) %}
- {{ letter }}: {{t}}
{% endfor %} |||
{{ answerKey }}
{% endif %}

Labels: [’A’, ’B’, ’C’, ’D’]

H.3 MMLU
Items for both the training and validation splits
in our MMLU experiments were taken from the
official MMLU ’test’ split.

Prompt Template:
# generate input txt and output txt
letters = ['A', 'B', 'C', 'D']
choices = dataset_element['choices ']

input_txt =
↪→ f"{ dataset_element['question ']}\n\nA:
↪→ {choices [0]}\ nB:
↪→ {choices [1]}\ nC:
↪→ {choices [2]}\ nD:
↪→ {choices [3]}\ nAnswer :"

output_txt = letters[answer_idx]
combined = input_txt + output_txt

H.4 SST-2
Items for both the training and validation splits in
our SST-2 experiments were taken from the official
SST-2 ’train’ split.

Prompt Template:
{{ sentence }}
Question: Was that sentence

↪→ {{" positive "}} or
↪→ {{" negative "}}? Answer: ||| {{
↪→ answer_choices[label] }}

Labels: [’negative’, ’positive’]

H.5 CoLA
Items for both the training and validation splits in
our CoLA experiments were taken from the official
CoLA ’train’ split.

Prompt Template:
Does the following sentence make sense

↪→ and use correct English? Please
↪→ answer {{"yes"}} or {{"no"}}.

{{ sentence }}
|||
{{ answer_choices[label] }}
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Labels: [’no’, ’yes’]

H.6 AGNews
Items for the training and validation splits in our
AGNews experiments were taken from the official
AGNews ’train’ and ’validation’ splits respectively.

Prompt Template:
What label best describes this news

↪→ article?
{{text}} |||
{{ answer_choices[label] }}

Labels: [’World politics’, ’Sports’, ’Business’,
’Science and technology’]

H.7 MNLI
Items for the training and validation splits in our
MNLI experiments were taken from the official
MNLI ’train’ and ’validation_matched’ splits re-
spectively.

Prompt Template:
{{ premise }} Are we justified in saying

↪→ that "{{ hypothesis }}"? Yes , no,
↪→ or maybe? ||| {{
↪→ answer_choices[label] }}

Labels: [’Yes’, ’Maybe’, ’No’]

H.8 QQP
Items for the training and validation splits in our
QQP experiments were taken from the official QQP
’train’ and ’validation’ splits respectively.

Prompt Template:
I'm an administrator on the website

↪→ Quora. There are two posts , one
↪→ that asks "{{ question1 }}" and
↪→ another that asks
↪→ "{{ question2 }}". I can merge
↪→ questions if they are asking the
↪→ same thing. Can I merge these
↪→ two questions? ||| {{
↪→ answer_choices[label] }}

Labels: [’no’, ’yes’]
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Abstract

Foundational Language Models perform sig-
nificantly better on downstream tasks in spe-
cialised domains (such as law, computer sci-
ence, and medical science) upon being fur-
ther pre-trained on extensive domain-specific
corpora, but this continual pre-training incurs
heavy computational costs. Indeed, some of the
most performant specialised language models
such as BioBERT incur even higher comput-
ing costs during domain-specific training than
the pre-training cost of the foundational models
they are initialised from. In this paper, we argue
that much of the extended pre-training is redun-
dant, with models seemingly wasting valuable
resources re-learning lexical and semantic pat-
terns already well-represented in their founda-
tional models such as BERT, T5 and GPT. Fo-
cusing on Masked Language Models, we intro-
duce a novel domain-specific masking strategy
that is designed to facilitate continual learn-
ing while minimizing the training cost. Using
this approach, we train and present a BERT-
based model trained on a biomedical corpus
that matches or surpasses traditionally trained
biomedical language models in performance
across several downstream classification tasks
while incurring up to 11 times lower training
costs.

1 Introduction

Rapid advancements in Large Language Models
(LLMs) (OpenAI, 2024, Touvron et al., 2023) have
resulted in an increased focus on their capabili-
ties in specialised domains like biology, law and
computer science (Lai et al., 2024, Chen et al.,
2024). The significance of foundational models
like BERT, T5, GPT and LLaMa for application in
such fields is particularly evident from the multi-
tude of models based on them – such as LegalBERT
(Chalkidis et al., 2020), SciFive (Phan et al., 2021),
BioGPT (Luo et al., 2022) and PMC-LLaMa (Wu
et al., 2023) – delivering state-of-the-art results on

benchmarks in their respective domains. Given
the vast amount of training data available for con-
tinual pre-training across various fields, existing
literature shows that further pre-training founda-
tional language models on a domain-specific cor-
pus yields better model performance across down-
stream tasks (Gururangan et al., 2020, Rongali
et al., 2021). However, pre-training language mod-
els can be resource-prohibitive, both in terms of
monetary cost and time spent on training. This
is especially true for large, parameter-dense lan-
guage models like LLaMa (Touvron et al., 2023),
which are not only significantly more expensive
to train further, but also exhibit much smaller im-
provements in downstream performance per unit of
compute spent (Chen et al., 2024).

It is therefore worthwhile to attempt to lever-
age the capabilities of contemporary foundational
language models for tasks across such domains
without expending exorbitant computing resources
on diminishing returns. In this paper, we present
a novel strategy for continual/mixed-domain pre-
training that emphasises selecting relevant (as op-
posed to random) training samples to maximise
compute efficiency. We test our strategy in the
biomedical domain by further pre-training BERT
on a corpus of PubMed abstracts, mirroring the se-
lection of architecture and pre-training corpora of
BioBERT (Lee et al., 2020), one of the most popu-
lar biomedical language models. In our testing over
8 Named Entity Recognition (NER) tasks, the re-
sultant model significantly outperforms BioBERT-
v1.0 at two-thirds of the compute cost, and per-
forms similarly to BioBERT-v1.1 at about one-
eleventh of its compute cost.

2 Related Works

2.1 Biomedical Language Models

The vast majority of domain-adapted language
models employ the transformer architecture
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(Vaswani, 2017), either as encoder layers (like
BERT), decoder layers (like GPT) or a combina-
tion of the two (like T5). The two most popular
strategies to train domain-specific language mod-
els are: 1. pre-training from scratch on a corpus
relevant to the domain, and 2. further pre-training
a foundational model on the corpus. The former
approach has generally been shown to yield better
results when large corpora are available for train-
ing, because such models use a vocabulary relevant
to their corpus instead of inheriting the vocabulary
from a general-domain model (Gu et al., 2021).
However, experiments from the likes of Chalkidis
et al. (2020) and Lee et al. (2020) demonstrate that
the latter approach yields competitive results while
requiring significantly less training due to the trans-
fer of learning from their foundational models.

Of the architectures discussed above, the ver-
satility of encoder representations in downstream
tasks makes BERT-like models vastly popular for
domain adaptation. This is particularly true in the
biomedical domain which is littered with models
like SciBERT (Beltagy et al., 2019), BioBERT,
BioLinkBERT (Yasunaga et al., 2022), Distil-
BioBERT (Rohanian et al., 2022), PubMedBERT
and so on. Indeed, among the 8 tasks we test our
model on, the current State-Of-The-Art (SOTA)
results1 are claimed by a non–BERT-style model
only for two of the tasks.

2.2 Curriculum Learning

In a curriculum learning setting (Bengio et al.,
2009), training samples are presented to a model
not arbitrarily, but in an "easy-to-difficult" order,
where the method for ranking the difficulty of sam-
ples depends on the model and task involved. This
framework is designed to better simulate human
cognition, wherein humans learn complex concepts
more easily after having learnt basic ones. Re-
cent studies indicate that employing this approach
demonstrably accelerates convergence compared
to random presentation of samples in many settings
(Roy et al., 2024, Jarca et al., 2024, Tang et al.,
2024).

We approach domain-adaptation of a founda-
tional language model as an analogous task to cur-
riculum learning. We posit that since the model has
already been trained on a general ("easy") corpus
and must now be trained in a specific ("difficult")
domain, we can apply the same curriculum learn-

1sourced from https://paperswithcode.com/sota

ing principle of curating training samples such that
they specifically facilitate domain-specific learning.
To the best of our knowledge, this approach has not
thus far been tested or reported on.

3 Methodology

We begin by creating a biomedical corpus
consisting of PubMed abstracts publicly avail-
able at https://pubmed.ncbi.nlm.nih.gov/download/,
amounting to about 9.4GB of text. Leveraging the
linguistic difficulty criterion and subsequent cur-
riculum generation approach introduced by Lee
et al. (2022), who claim that frequently occuring
words that have many connections in a large knowl-
edge graph are easier to learn, we build a set S of
"basic" concepts – i.e. the n concepts with the most
connections in a large-scale knowledge graph that
occur in the corpus above a threshold frequency f .
Iterating through all the elements si of S, we add
si and every concept in ConceptNet within k hops
of si to a new set C, which acts as a "curriculum"
consisting of relevant concepts. Following manual
assessment of the curriculum generated, we settled
on using f = 200, 000, n = 5, 000 and k = 5.

For our purposes, despite the availability of
biomedical knowledge graphs like BIKG (Geleta
et al., 2021) and BIOS (Yu et al., 2022), we chose
to use the general-domain ConceptNet (Speer et al.,
2017) as the knowledge graph. We did not as-
sess the overlap between these specific knowledge
graphs and our corpus, and could not be certain
that their usage would not be counterproductive
given that BERT’s vocabulary itself is not tailored
towards biomedical terms. Moreover, this makes
our approach easier to generalise for other do-
mains without pre-existing large knowledge graphs.
Nonetheless, we recognise that the use of domain-
specific knowledge graphs for concept extraction,
wherever available, is worth investigating in future
studies.

Since this curriculum includes general-domain
concepts already represented well in BERT, we
iterate once over BERT’s corpus (Wikipedia +
BooksCorpus), identify concepts occuring more
than f/3 times and remove them from C. Note
that this cutoff frequency has been scaled down
with respect to the threshold frequency used for
the PubMed corpus above to account for the differ-
ence in sizes between the corpora. We then iterate
through C and remove any concepts that do not
occur at all in the PubMed corpus, ensuring that
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Dataset Entity type No. of annotations

NCBI Disease Disease 6,881
BC5CDR Disease 12,694
BC5CDR Drug/Chem. 15,411
BC4CHEMD Drug/Chem. 79,842
BC2GM Gene/Protein 20,703
JNLPBA Gene/Protein 35,460
LINNAEUS Species 4,077
Species-800 Species 3,708

Table 1: Statistics of the biomedical NER datasets.

the concepts now contained in C are relevant to the
biomedical domain.

We then initialize our model from the publicly
available BERT-base checkpoint, and train it for
Masked Language Modeling (MLM) over our cor-
pus. Past studies indicate that the difference be-
tween using cased and uncased models to warm-
start biomedical language models is minimal with
no clear advantage for either (Lee et al., 2020, Gu
et al., 2021, and it is beyond the scope of our cur-
rent experiment to test and compare the two. For
our purposes, we use the uncased version of the
model.

Differing from the likes of BERT and BioBERT
that randomly mask 15% of the tokens in each
batch, we mask only the tokens that form a concept
within the previously curated curriculum C while
ensuring that no more than 20% of the tokens in
any batch are masked. As concepts can span mul-
tiple tokens, we follow Lee et al. (2022)’s Whole
Concept Masking (WCM) strategy such that all the
tokens comprising a single concept are simultane-
ously masked. As is the standard, we replace 80%
of the masked concepts with a mask token, replace
another 10% with a random token and do not re-
place the remaining 10%. Since existing literature
shows minimal gains from calculating the Next
Sentence Prediction (NSP) loss (Liu et al., 2019),
we chose to omit it; MLM was our sole pre-training
objective.

4 Experimental Setup

4.1 Pre-training

We trained the model for 200K steps on four
NVIDIA RTX 6000 GPUs, using PyTorch’s Dis-
tributedDataParallel to share the load across the
GPUs. The batch size was fixed at 256 and the max-
imum sequence length was set to 256, resulting in
65,536 tokens per training iteration. This equates

to 33% lower compute compared to BioBERT-v1.0
trained on the same corpus (98,304 tokens per it-
eration and 200K iterations), and 91% lower com-
pute than BioBERT-v1.1, which was trained on the
same corpus2 for 1.2M training steps and addition-
ally trained on full-length PubMed Central articles
(∼3 times the corpus size of PubMed Abstracts) for
270K steps. Note that the computational overhead
caused by curriculum generation is minimal com-
pared to model training, as it only requires iterating
over two corpora and a section of one knowledge
graph.

4.2 Fine-tuning

With NER being a fundamental task for text min-
ing, we focus our limited testing on commonly
used NER benchmarks. We fine-tune and evaluate
our model on 8 tasks: BC2GM (Smith et al., 2008),
BC4CHEMD (Krallinger et al., 2015), BC5CDR-
Chemical (Li et al., 2016), BC5CDR-Disease (Li
et al., 2016), JNLPBA (Collier et al., 2004), LIN-
NAEUS (Gerner et al., 2010), NCBI Disease
(Doğan et al., 2014) and Species-800 (Pafilis et al.,
2013). We use pre-processed versions of the re-
spective datasets released by Rohanian et al. (2022).
Some specifications for the datasets are listed in
Table 1. Following the setup described in the
BioBERT paper, we use a learning rate of 5e-5
and train for 25 epochs per dataset. We leave test-
ing this approach in other tasks – such as Question
Answering, Relation Extraction as well as other
NER tasks – for future studies.

5 Results

The results obtained by our model relative to BERT,
BioBERT-v1.0, BioBERT-v1.1 and the current
SOTA3 are shown in Table 2. We consider these to
be the most apt comparisons to showcase because
BERT is the baseline we train upon, and BioBERT
most closely reflects what our model’s performance
would be if it had been trained using regular MLM.
The models delivering the SOTA results are, for the
most part, more resource-intensive to train or are
tailored towards Biomedical NER tasks as opposed
to being general-purpose biomedical transformers.
Nevertheless, we consider their performance to be
relevant benchmarks and include them in this com-
parison.

2our corpus is collected from the same source but is larger
as a virtue of being more up-to-date

3to the best of our knowledge
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Task/Model SOTA BERT BioBERT-v1.0 BioBERT-v1.1 Ours

BC2GM 86.97 81.79 82.54 84.72 85.43
BC4CHEMD 94.39 90.04 91.26 92.36 90.23
BC5CDR-Chemistry 94.88 91.16 92.64 93.47 93.25
BC5CDR-Disease 88.50 82.41 86.2 87.15 85.49
JNLPBA 82.0 74.94 76.65 77.49 79.29
LINNAEUS 92.7 87.6 88.13 88.24 89.23
NCBI Disease 89.71 85.63 87.38 89.71 87.92
Species-800 82.44 71.63 73.08 74.06 75.20

Table 2: Performance comparison across different models (F1 scores). The best result other than the SOTA
(italicised) is in bold, and the second-best is underlined.

Our model outperforms BioBERT-v1.0 in three-
fourths of the tasks and, despite significantly less
training on a much smaller corpus, outperforms
BioBERT-v1.1 in half of the tasks, demonstrating
the effectiveness of our training-sample-curation
strategy.

Limitations and Future Work

We acknowledge that being a short extended ab-
stract, this paper does not present a full comprehen-
sive study detailing the impact of our strategy. Our
aim in presenting our preliminary experiment and
findings is to incite further research into this idea
from the broader NLP community, encouraging
exploration of this approach with different parame-
ters, domains, corpora, model sizes, training steps,
model architectures and so on.

Ethics statement

The authors have no competing interests to de-
clare that are relevant to the contents of this ar-
ticle. All the datasets and models accessed as part
of this study were sourced from publicly available
archives and checkpoints.
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Abstract
Event Relation Extraction (ERE) predicts tem-
poral and causal relationships between events,
playing a crucial role in constructing compre-
hensive event knowledge graphs. However, ex-
isting approaches based on pairwise compar-
isons often suffer from computational ineffi-
ciency, particularly at the document level, due
to the quadratic operations required. Addition-
ally, the predominance of unrelated events also
leads to largely skewed data distributions. In
this paper, we propose an innovative two-stage
framework to tackle the challenges, consisting
of a retriever to identify the related event pairs
and a cross-encoder to classify the relationships
between the retrieved pairs. Evaluations across
representative benchmarks demonstrate our ap-
proach achieves better efficiency and signifi-
cantly better performance. We also investigate
leveraging event coreference chains for ERE
and demonstrate their effectiveness.

1 Introduction

Event Relation Extraction (ERE) aims at identify-
ing relationships between events, especially tem-
poral and causal connections. As illustrated in
Figure 1, given the original text and three event
mentions of interest, an ERE model should detect
and classify the temporal (e.g., overlaps and be-
fore) and causal (e.g., cause) relationships between
them. ERE plays a pivotal role in the construc-
tion of event knowledge graphs (EKGs, Ma et al.,
2022) and supports a variety of tasks, such as future
event prediction (Lin et al., 2022), machine reading
comprehension (Zhu et al., 2023), and multi-hop
reasoning (Li et al., 2024).

ERE is challenging due to the event relation va-
riety and the required comprehension (Liu et al.,
2020b). For document-level ERE (DERE), the chal-
lenge intensifies, needing event disambiguation and
connection across expansive narrative structures.
Previous research has mainly focused on enrich-
ing event semantics (Wen and Ji, 2021; Tran Phu

A major earthquake struck southern Haiti on Tuesday, knocking
down buildings and power lines and inflicting what its
ambassador to the United States called a catastrophe for the
Western Hemisphere's poorest nation.

struck

calleddown

OVERLAPS/
CAUSE

Event Relation Extraction

BEFORE/
CAUSE

OVERLAPS/
EFFECT

AFTER/
EFFECT

Figure 1: An example of ERE task with temporal and
causal relations. The dashed lines indicate there are no
event relations between the event mentions.

and Nguyen, 2021), or exploiting large language
models (LLMs) (Peng et al., 2023a). Neverthe-
less, current research faces a unique challenge in
inefficient learning and inference because the de-
termination of relationships requires pairwise clas-
sification after iterating through all event pairs (Hu
et al., 2023; Wang et al., 2024), which inherently ex-
hibits quadratic time complexity. Additional train-
ing challenges arise due to the largely skewed data
distribution, where most event pairs have no rela-
tion, becoming particularly critical for DERE with
a broader scope of events and lengthy sources (Gao
et al., 2023). However, this aspect has been over-
looked in existing studies, and we are the first to
investigate the efficiency issue in DERE with cru-
cial yet unexplored temporal and causal relations.

In this paper, we introduce a novel pruning-based
two-stage paradigm for DERE (Figure 2). In the
first stage of the framework, we employ a retriever
model to efficiently sift through event mentions
in latent embedding spaces and identify the re-
lated event pairs. Afterwards, a cross-encoder is
fine-tuned for event relation prediction on the nar-
rowed set of candidate pairs. This approach effec-
tively prunes the candidate event pairs to tackle
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Figure 2: Overall architecture of the proposed pruning-based two-stage ERE framework. Stage 1 retrieves candidate
event pairs, and then Stage 2 conducts the costly fine-grained event relation predictions on the retrieved pairs.

inefficiency and deals with the skewed distribution
to enhance performance. Experimental results on
Event StoryLine Corpus (ESC, Caselli and Vossen,
2017), Richer Event Description (RED, O’Gorman
et al., 2016), and MAVEN-ERE (Wang et al., 2022)
demonstrate significantly better performance and
efficiency compared to representative baselines.

In summary, the key contributions of this paper
are as follows: (1) We design a novel two-stage
framework for DERE by pruning candidate event
pairs to reduce computational complexity and miti-
gate the skewed distribution issue. (2) We conduct
rigorous evaluations and ablation studies on DERE
datasets with various retrievers and cross-encoders.
(3) We conduct a comprehensive analysis, includ-
ing time complexity, the effectiveness of encoding
strategies and coreference chains, and the effect of
retrieved candidate-pair count on performances.

2 Related Work

Recent progress of ERE has been made based on
pre-trained language models (PLMs), utilizing se-
mantic structures (Tran Phu and Nguyen, 2021; Hu
et al., 2023), temporal clues (Wen and Ji, 2021),
and external knowledge (Liu et al., 2020a; Cao
et al., 2021) to enrich the event representations.
Some other works leverage the high-order tran-
sitivity (Chen et al., 2022, 2023) and multi-task
learning (Ning et al., 2018; Wang et al., 2022) to
model the dependencies between different relation
types. Some researchers further investigate the use
of LLMs in ERE (Gao et al., 2023; Peng et al.,
2023a,b; Wang et al., 2024). However, they often
achieve this at the expense of computational effi-
ciency when performing pairwise classifications,
especially in document-level datasets (O’Gorman

et al., 2016; Wang et al., 2022). While some recent
work focus on improving the efficiency of entity
coreference resolution (Lee et al., 2018; Held et al.,
2021), they cannot be generalized to DERE be-
cause of the requirement for deeper semantic analy-
sis and the existence of more specific relation types.
In this paper, we inherit the ideas of pruning but
design a more effective framework with a retriever
model and a cross-encoder model.

3 Methodology

We formulate our DERE task as a multi-class clas-
sification problem. Formally, given a document D
that contains multiple sentences and two event men-
tions eh and et of interest, our goal is to predict the
potential temporal (e.g., before) and causal (e.g.,
cause) relationships between them. Following the
framework shown in Figure 2, we introduce the
implementation of the retriever and cross-encoder
models for training and inference in detail.

3.1 Candidate Event Pair Retrieval
The initial stage utilizes a retriever model (i.e., bi-
encoder1) to efficiently represents event mentions
in a latent embedding space to identify the event
pairs likely to have a relation to improve efficiency
and alleviate the skewed distribution problem. For-
mally, for two events eh and et, the wrapped men-
tions are defined as the sentences containing them
(sh, st) with events wrapped by markers <m> and
</m> for enhanced emphasis. With bi-encoder de-
noted as Enc(·), the representation of the events,
rh and rt, are encoded as:

rh = Enc(sh) = Enc(<s> . . . <m>eh</m> . . . </s>), (1)

1Bi-encoders are a broad class of models that map the input
and candidate responses separately into a common feature
space where their similarity is measured (Huang et al., 2021).
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rt = Enc(st) = Enc(<s> . . . <m>et</m> . . . </s>). (2)

Afterwards, we select the top 5 event mentions
most likely to form a relationship with each event.
For fine-tuning, the task is regarded as binary clas-
sification over rh · rt with cross-entropy loss. This
process is intended to direct the model’s attention to
the most significant elements of the event, thereby
improving its ability to discern relevant event pairs.

3.2 Pairwise Classification
In the second stage, we conduct pairwise classi-
fication on the pruned candidate set with a cross-
encoder, for which we employ both discriminative
and generative models.

Discriminative Models. Given an input docu-
ment D, we first obtain the hidden vectors in the
last transformer layer. Then, for event mentions eh
and et, we compute the representations rh and rt
by averaging the representation vectors of respect
tokens. Finally, we form an overall representation
vector rh→t by concatenating the two representa-
tions: rh→t = [rh; rt], and then feed it to a feed-
forward neural network for relation classification.

Generative Models. The generative models uti-
lize a Seq2Seq approach. An example is as follows:

Classify: Mention 1: The murder <m>
trial </m> of a suspended female [...]
<sep> Mention 2: The murder trial [...]
<m> shooting </m> three co-workers [...]

The design of the instruction starts from the word
“Classify:”. Then, we add the two sentences con-
taining the events, separated by a special symbol
<sep>, and we wrap the mentions with the markers
<m> and </m>. <s> and </s> denote the sentence
boundary. The output of the model is the specific
event relationship between them.

All positive event pairs and hard negatives, i.e.,
the negatives retrieved in Stage 1, are used for train-
ing. We adopt this strategy because (1) the cross-
encoder makes predictions on the outputs of the
retriever, which are essential for its learning pro-
cess; and (2) the retrieved event pairs are identified
as related ones, making them ideal candidates for
more expensive cross-comparison.

3.3 Inference
The inference process is distinct from training with
additional strategies. Utilizing the trained retriever
model, we retrieve a set of k events most likely to

form a relationship with the given mention, regard-
less of whether it is fine-tuned, and then we use the
cross-encoder to determine the specific relationship
between them. Our approach prunes aggressively
to improve efficiency. Stage 1 scales linearly, and
retrieved event pairs are sent to the cross-encoder
(Stage 2). In this case, the time of quadratic oper-
ation can be decreased significantly, and both the
prediction and efficiency can be improved.

4 Experiments

4.1 Datasets and Experimental Setup

We conduct experiments on three well-established
datasets: Event StoryLine Corpus (ESC, Caselli
and Vossen, 2017), Richer Event Description (RED,
O’Gorman et al., 2016), and MAVEN-ERE (Wang
et al., 2022). For MAVEN-ERE, we follow previ-
ous work (Gao et al., 2023; Chen et al., 2024) to
sample a subset. We report the precision (P), recall
(R), and micro F1-score (F1) under (1) event pairs
with relations following previous work, and (2) all
event pairs, as it is closer to EKG construction.

We employ diverse retrievers (RoBERTa-Large,
Liu et al., 2019) and S-BERT (Reimers and
Gurevych, 2019)) and classifiers (RoBERTa-Large
and T5-Large (Raffel et al., 2020)). The baseline
models we compared are in Appendix A.

4.2 Experimental Results

Experimental results are depicted in Tables 1 and
2, from which we have the following observations:

Firstly, the introduce of retriever significantly en-
hances cross-encoder performance, with BERT and
RoBERTa outperforming more complex models
like LIP and RichGCN. GPT-3.5 does not outper-
form PLM-based approaches due to its zero-shot
generative nature. Additionally, our retriever also
outperforms random sampling as it is more closely
aligned with the inference process. The hard nega-
tives identified by the retriever are also more similar
to positive ones, which are hard to differentiate.

Secondly, while all metrics increase simultane-
ously, the recall values increase more, particularly
on ESC (increases two times) containing large neg-
ative samples. Simultaneously, the performance
on non-negatives has significant increase; thus, the
skewed distribution problem can be alleviated. The
T5 model with the S-BERT retriever achieves the
best performance on all datasets, demonstrating
their superior capability in event relation classifica-
tion and candidate event pair identification.
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Retriever Classifier ESC RED
P R F1 P R F1

Random RoBERTa 78.4 85.2 81.7 81.2 86.2 83.6
T5 86.1 85.7 85.9 86.8 89.9 88.3

RoBERTa RoBERTa 77.2 86.9 81.8 82.7 87.5 85.0
RoBERTa (Fine-tuned) RoBERTa 77.3 88.1 82.3 82.5 88.4 85.3
RoBERTa T5 87.1 89.0 87.9 82.8 90.2 86.3
RoBERTa (Fine-tuned) T5 85.8 90.3 88.0 87.5 90.1 88.8

S-BERT RoBERTa 79.3 87.8 83.3 83.1 88.7 85.8
S-BERT (Fine-tuned) RoBERTa 82.1 88.4 85.1 84.3 89.1 86.6
S-BERT T5 88.9 90.6 89.7 90.6 91.2 90.9
S-BERT (Fine-tuned) T5 89.2 92.5 90.8* 93.5 91.9 92.7*

Table 1: Performance comparison on the whole evaluation set. For the “Random” retriever, the negatives are
randomly sampled to match our number of hard negatives. * designates statistical significance (p < 0.05).

Method ESC RED MAVEN-ERE
P R F1 P R F1 P R F1

BiLSTM 29.8 12.9 18.1 51.2 48.5 49.8 24.9 11.7 15.9
BERT 30.3 11.5 16.7 59.0 45.3 51.3 28.4 13.3 18.2
RoBERTa 31.9 14.4 21.5 61.3 48.7 54.3 28.6 12.7 17.6
LIP 36.2 23.5 28.2 64.8 57.6 61.0 − − −
T5 34.8 26.7 30.2 64.2 54.6 59.0 27.4 23.5 25.3
RichGCN 36.4 32.1 34.1 68.9 60.2 64.3 34.4 20.5 25.7
GPT-3.5 13.9 54.7 22.2 41.4 45.8 43.5 − − −
*Ours (Retriever + Classifier)
RoBERTa + RoBERTa 40.3 31.2 35.2 66.7 58.5 62.3 36.0 26.4 30.5
S-BERT + RoBERTa 40.6 34.2 37.1 76.9 59.5 67.1 36.2 26.9 32.0
RoBERTa + T5 41.4 33.6 37.0 70.9 75.5 73.1 40.4 33.5 31.9
S-BERT + T5 45.7 38.5 41.8* 87.4 62.1 72.6∗ 36.8 29.5 32.8*

Table 2: Performance comparison on all non-negative event pairs with different retrievers and classifiers.

 Time Complexity

Figure 3: Inference time complexity comparison over
events per document on ESC (k = 5).

Finally, after fine-tuning the retriever model, par-
ticularly S-BERT, the DERE performance can be
further improved. Indeed, the fine-tuned retrievers
significantly contribute to the overall performance
and efficiency of DERE models. Our findings em-
phatically advocate for the integration of advanced
retriever models as indispensable components of
the DERE frameworks.

4.3 Additional Analysis
Time Complexity Analysis. For m documents
with n events per document, conventional pairwise

Retriever Encoding ESC RED
P R F1 P R F1

RoBERTa
Trigger-only 73.2 77.0 75.1 81.3 79.8 80.5
Wrapped* 85.8 90.3 88.0 87.5 90.1 88.8
Graph-based 72.1 86.1 78.8 82.5 81.4 81.9

S-BERT
Trigger-only 79.1 80.2 79.6 82.8 85.4 84.1
Wrapped* 89.2 92.5 90.8 93.5 91.9 92.7
Graph-based 79.1 81.4 80.2 83.2 91.5 87.2

Table 3: Performance comparison using different encod-
ing strategies for both stages on the ESC dataset.

approaches exhibit a time complexity of O(m∗n2).
Our retriever narrows candidate pairs down to k ∗n
(k candidate per event), and it scales linearly with
matrix multiplication in inference. To quantify the
efficiency gains of our method, we compare the
time complexity at inference time. Figure 3 illus-
trates the quadratic growth versus our method’s lin-
ear growth. Average (n=18) and maximal (n=51)
event count is highlighted, in which our approach
reduces approximately 70% at inference time.

Effectiveness of Encoding Strategies. Table 3
shows a comparative analysis of various encoding
strategies. Our wrapped encoding, as formulated in
Equation 2, effectively aids models in recognizing
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k P R F1

3 91.4 67.2 77.5
5 89.2 92.5 90.8
7 85.0 93.2 88.9

10 79.9 91.8 85.4

# EVENT 86.1 85.7 85.9

Table 4: Relationship between the number of top event
pairs retrieved in Stage 1 (k) and Stage 2 performance.

and processing the relevant information within a
rich textual landscape, whereas trigger-only encod-
ing, formulated as: rh = Enc(<m>eh</m>), misses
some contextual nuances. Surprisingly, graph-
based encoding (Nguyen and Grishman, 2018) with
syntactic dependency trees does not improve the
performance, which might be attributed to the noise
introduced due to its high complexity.

Effect of Retrieved Candidate Count. We fur-
ther investigate the impact of the number of can-
didates retrieved per event (k), where S-BERT re-
triever and T5 classifier are used on the ESC dataset.
The results are shown in Table 4, where # EVENT
denotes without retrievers. When k = 3, high preci-
sion is offset by low recall, suggesting that too few
event pairs limit relation detection. k = 5 offers the
best performance, striking a balance between cap-
turing relevant relations and avoiding classification
overload. As k increases beyond this point, while
slowing the process by nature, more non-relevant
pairs are also considered, making the classifier’s
training data more skewed as well, which detracts
from the overall performance.

Effectiveness of Coreference Chains. Table 5
shows the experimental results after adding coref-
erence chains information, which is defined as the
event mentions referring to same events (Wang
et al., 2022). The coreference chains are obtained
from golden annotations and are incorporated as
supplementary inputs. Experimental results show
that the addition of coreference chains further en-
hance performance, regardless of which retriever
is employed. Furthermore, the performance with
the RoBERTa retriever gains more improvements,
even outperforming S-BERT, possibly because
RoBERTa are more proficient to leverage deep con-
textual insights from coreference chains.

4.4 Case Study

We further conduct a case study by sampling 50
event pairs that are mispredicted without the re-
triever but predicted correctly with the retriever

Model P R F1

Random (Retriever) 86.1 85.7 85.9

RoBERTa (Retriever) 85.8 90.3 88.0
+ Coref Chain 91.6 90.8 91.2

S-BERT (Retriever) 89.2 92.5 90.8
+ Coref Chain 96.1 86.5 91.0

Table 5: Impact of coreference chains on ESC.

model. We observe that the retriever model is par-
ticularly beneficial for document-level and implicit
event relations because of the notable decrease in
negative samples. As the following example:

A SAF spokesman denied the attack oc-
curred. [...] did not explode, fell directly
within the camp, [...]

the events “attack” and “fell” span in separate sen-
tences, and there are no causal clues (e.g., “cause”
and “lead to”) between them. Without the retrieval
stage, the cross-encoders are unable to identify the
relationship between them (i.e., attack is a pre-
condition of fell) because of the large proportion
of negatives in the training set; however, with the
cross-encoder trained on the samples retrieved by
the retriever, the relationships between these sam-
ples are more likely to be recognized, alleviating
the skewed distribution issue in DERE datasets.

5 Conclusion and Future Work

We for the first time introduce a novel two-stage
framework for DERE, which improves both effi-
ciency and model training. It first uses a retriever to
identify event pairs, then a cross-encoder for event
relation prediction. Experimental results on three
representative datasets underscore the effectiveness
of our method, which significantly improves both
accuracy and efficiency compared to the baseline
models. We further investigate the efficacy of dif-
ferent encoding strategies, and demonstrate the ef-
fectiveness of leveraging coreference chains in can-
didate event pair identification. In the future, we
will adapt our method to more IE tasks (e.g., entity
relation extraction), and verify its generalizability.

Limitations

Although our proposed two-stage framework per-
forms well on DERE in terms of both overall per-
formance and efficiency, it still has the following
two limitations: (1) Due to the limitation of DERE
datasets, we test the performance on the three most
representative and wildly adopted datasets in other
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papers in this field. Future research demands the
annotation of DERE datasets in other high-resource
and low-resource languages to test the generaliz-
ability of our method. (2) For the second stage
we employ the representative RoBERTa and T5
cross-encoders. More deliberated models or better
prompting may yield better results, though they do
not impact the conclusion of our experiments.
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A Baseline Models

We compare our method against various baselines:
BiLSTM (Cheng and Miyao, 2017) captures the
dependency paths between events. BERT (Devlin
et al., 2019) and RoBERTa (Liu et al., 2019) are
transformer-based discriminative models, and T5
(Raffel et al., 2020) is a transformer-based genera-
tive model. LIP (Gao et al., 2019) combines doc-
ument structure with textual content, identifying
nuanced event relations using structural patterns.
RichGCN (Tran Phu and Nguyen, 2021) employs
Graph Convolutional Networks to create interac-
tion graphs. Zhang et al. (2024) employs GPT-3.5
(turbo-1106) to enhance zero-shot prediction. All
baselines (GPT excluded) conduct pairwise com-
parisons.
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Abstract

Recent years have witnessed the adoption of
parameter-efficient adapters in pre-trained lan-
guage models for natural language processing.
Yet, their application in speech processing re-
mains less studied. In this work, we explore
the adapters for low-resource speech recogni-
tion, introducing a novel technique - ConvA-
dapt into pre-trained speech models. We inves-
tigate various aspects such as data requirements,
transfer learning within adapters, and scaling of
feed-forward layers in adapters. Our findings
reveal that bottleneck adapters offer competi-
tiveness with full fine-tuning with at least 10
hours of data, but they are not as effective in
few-shot learning scenarios. Notably, ConvA-
dapt demonstrates improved performance in
such cases. In addition, transfer learning in
adapters shows promise, necessitating research
in related languages. Furthermore, employing
larger speech models for adapter-tuning sur-
passes fine-tuning with ample data, potentially
due to reduced overfitting than fine-tuning.

1 Introduction

Automatic speech recognition (ASR) advance-
ments have favored high-resource languages due
to abundant data and computing power. How-
ever, over 7000 languages are low-resource or zero-
resourced, raising concerns of extinction (Dunbar
et al., 2021). Large pre-trained self-supervised
speech models like Wav2vec 2.0 show promise
in enhancing ASR for low-resource languages
through fine-tuning with smaller datasets (Baevski
et al., 2020). Fine-tuning such large and even
multi-lingual models with a low-resource lan-
guage data usually works well in practice but
has its own limitations. It involves updating
most of the model parameters which is inefficient,
resource-intensive and storage-demanding. More-
over, it poses challenges in dealing with multiple
tasks/languages, causing catastrophic forgetting

and complex decision-making for choosing the task
sequence (Pfeiffer et al., 2021).

Bottleneck adapters, initially introduced in com-
puter vision (Rebuffi et al., 2017), consist of two-
layer feed-forward networks inserted into large pre-
trained models (Houlsby et al., 2019). This tech-
nique selectively updates adapter parameters while
keeping the rest of the model frozen, effectively
reducing trainable parameters. It facilitates task-
specific adapter integration into pre-trained models,
avoiding the need for full re-training and mitigating
catastrophic forgetting (Pfeiffer et al., 2021).

While adapters have been well studied in natu-
ral language processing (NLP) literature (Houlsby
et al., 2019), investigating adapters in the speech
signal processing domain is relatively new. Bottle-
neck adapters are implemented for ASR with the
Wav2vec 2.0 English base model (Thomas et al.,
2022; Yue et al., 2024), MMS (Pratap et al., 2023),
and Google Universal Speech Model (Zhang et al.,
2023). These studies indicate that adapters perform
on par with fine-tuning while being parameter ef-
ficient. Few studies explore bottleneck adapters
for specialized tasks like multi-domain ASR mod-
eling with Transformers (Lee et al., 2021), per-
sonalized speech recognition in a multi-turn di-
alog setting with Transducers (RNN-T) (Chang
et al., 2023), atypical and accented speech recog-
nition with RNN-T and Transformer Transducers
(Tomanek et al., 2021). The latter one utilized resid-
ual connections within adapters. Different adapter-
based approaches are compared for several speech
processing tasks with three of the state-of-the-art
pre-trained models (Chen et al., 2023a). The selec-
tion of different neural layers to insert the adapters
is performed with a two-stage algorithm (Huang
et al., 2023). While the prior works rely on bot-
tleneck adapters, CHAPTER technique based on
convolutional neural network (CNN) adapters are
employed in HuBERT feature extractor on emotion
and speaker tasks (Chen et al., 2023b). To the best
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of our knowledge, no work leveraged convolutional
nets as adapters by incorporating them into the con-
textual Transformer layers in the speech processing
domain. Also, given the limited work on ASR mod-
eling using adapters, there exist substantial research
gaps that necessitate a comprehensive study of this
method. It still remains an open question what
the training data size must be for adapter-tuning
to perform on par with complete fine-tuning for
the low-resource ASR task since the prior work in-
vestigates the adapter-tuning for speech processing
with only high-resource languages such as English,
omitting the suitability of the approach for low-
resource languages. Furthermore, the possibility
of scaling the adapter modules or pre-training the
adapters with a source language are not explored
in the literature.

This study aims to address the aforementioned
research gaps by conducting a comprehensive in-
vestigation of adapters for ASR, with a particular
focus on the low-resource aspect. Through this
research, we aim to reduce computational com-
plexity while simultaneously maintaining ASR per-
formance, ensuring the representation and preser-
vation of low-resource languages in the field of
speech technology. The contribution of this work
is four-fold:

• Exploring the adapter-tuning approach for
ASR across various resource-constrained
scenarios, spanning from low-resource to
medium/high-resource conditions in three di-
verse languages: English (West Germanic),
Bengali (Indo-Aryan), and Maltese (Semitic).
To this end, we propose a simple yet effec-
tive technique ConvAdapt for extreme low-
resource parameter-efficient ASR. Notably, no
prior research has explored the data require-
ments for adapter-based low-resource ASR, to
the best of our knowledge.

• Leveraging the potential of multilingual, pre-
trained self-supervised speech models, we in-
corporate adapters into state-of-the-art mod-
els, namely XLS-R (Babu et al., 2021) and
MMS (Pratap et al., 2023). Additionally, we
investigate whether employing a larger pre-
trained model with a higher number of pa-
rameters enhances the performance of the
adapter-tuning approach for ASR. Adapter
performance for varied sizes of multi-lingual
pre-trained models is not studied in the litera-
ture, to our knowledge.

• Exploring pre-training adapters on a source
language and subsequently fine-tune them for
the target language, enabling transfer learning
within adapters for the first time.

• While bottleneck adapters with a two-layer
feed-forward network are common in adapter
architectures (Houlsby et al., 2019; Thomas
et al., 2022), this study extends the adapter
module by adding more fully connected layers
and assesses their influence on performance
across the three languages.

2 Integrating Adapters into Wav2vec 2.0

Figure 1 presents the architecture of the adapter-
based Wav2vec 2.0 model. The core structure of
Wav2vec 2.0 remains unchanged (Baevski et al.,
2020), while each Transformer block includes two
adapter modules. The process starts with raw
input signal passing through a feature encoder,
then entering the contextual network (Transformer).
Each Transformer block consists of sub-modules
like Multi-Head Self-Attention (MHSA) and feed-
forward layer. Adapter modules are inserted af-
ter the MHSA and the feed-forward layer. There
are two residual connections in each Transformer
block. The model can contain N transformer
blocks, with N being either 24 or 48, depending on
the specific Wav2vec 2.0 model. A linear classi-
fier (classification head) is added at the end of the
network. During adapter-tuning, only adapter mod-
ules, normalization layers, and the head are trained
while keeping the pre-trained backbone frozen, sub-
stantially reducing trainable parameters.

The bottleneck adapter architecture (FFAdapter),
depicted on the upper right side of Figure 1, con-
sists of two fully-connected feed-forward networks.
The first layer acts as a down-sampler, projecting
the Transformer model dimension to a lower in-
ner dimension through down-projection. A GELU
activation is added after that. The second layer
functions as an up-sampler, projecting back to the
original dimension. Both layers maintain an inner
dimension of 256. A residual connection adds the
second layer’s output with the initial adapter input,
processed through layer normalization to yield the
final output.

Let the Transformer model representation be dm
and the representation from the second FC layer is
fm. Both dm and the fm have the same dimension
of m. The output of the Add & Norm layer is
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Figure 1: The upper figure depicts the Wav2vec 2.0 architecture with adapter modules. The bottom left figure
shows the bottleneck adapter (FFAdapter), while the ConvAdapter is displayed on the bottom right. MHSA and FF
represent multi-head self-attention and feed-forward layers, respectively.

computed as,

AdapterOutput = LayerNorm(dm + fm) (1)

We propose the ConvAdapt technique by re-
placing the bottleneck adapters with CNN-based
adapters while keeping them at the same position in
the Transformer layers (See Figure 1). The latent
representation from the MHSA/FF of the trans-
former is fed as input to the ConvAdapters after re-
arranging the tensors to avoid dimension mismatch.
We employ two 1-dimensional convolutional lay-
ers, each followed by a rectified linear unit (ReLU).
There are 1280 input channels and 1280 output
channels, and both kernel size and stride are set to
1. The same padding is used. Finally, we rearrange
the resultant tensors again to obtain the original
dimension and add this to the adapter input through
a residual connection.

3 Experiments

Datasets: We conduct the experiments on three
languages: Bengali, Maltese, and English. The
LibriSpeech corpus is used for English (Panay-
otov et al., 2015), the SUBAK.KO corpus for
Bengali (Kibria et al., 2022), and a combina-

tion of datasets including CommonVoice, MASRI-
HEADSET, MEP, Tube, MERLIN, and Parliament
for Maltese (Ardila et al., 2020; Mena et al., 2020).
Various subsets of data are created, ranging from
10 minutes to 50 hours, for analyzing data require-
ments. Besides the 10 minute, 1 hour and 10 hour
subsets from LibriLight (Kahn et al., 2020), we
add an additional 50 hour subset from the standard
100-hour English LibriSpeech subset. For Ben-
gali, we create the subsets by randomly selecting
samples from the 200-hour SUBAK.KO train set.
We follow a similar random sampling approach
for Maltese. To ensure standardized benchmark-
ing, we utilize the LibriSpeech development (dev)
and test sets, both containing clean and other sub-
parts. The SUBAK.KO dataset includes standard
dev and test sets with 20 hours of data each. Simi-
larly, we utilize the standard Maltese dev and test
sets, containing 1.5 hours and 2.3 hours of speech,
respectively. The dataset details are summarized in
Table 1.

Experimental setup: We choose two large pre-
trained cross-lingual models, namely XLS-R and
MMS (Pratap et al., 2023; Babu et al., 2021). XLS-
R has three variants with 0.3 billion (B), 1B, and 2B
trainable parameters. We utilize MMS containing
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Lang Language Datasets train set dev set test set
Group length clean other clean other

BN Indo-Aryan
SUBAK.KO

200.3 20.5 - 20.3 -
(Kibria et al., 2022)

MT Semitic

Common Voice

52.5 2.3 - 1.5 -

(Ardila et al., 2020)
MASRI-HEADSET
(Mena et al., 2020)

MEP
Tube

MERLIN
Parlament

EN West Germanic
LibriSpeech

960.9 5.4 5.3 5.4 5.1
(Panayotov et al., 2015)

Table 1: The datasets are split into train, dev and test sets. BN, MT, and EN refer to Bengali, Maltese, and English,
respectively. For English, each of dev and test sets has clean and other (noisy) versions.

1B parameters. Both fully fine-tuned and adapter-
based ASR models are trained with a batch size
of 4, accumulating gradients for two steps, max
150K steps, early stopping patience for 10K steps,
and seed 100. The learning rates of 3e-5, 5e-5,
and 5e-4 are used for complete fine-tuning, bottle-
neck adapter-tuning, and ConvAdapt, respectively.
We use greedy search decoding leveraging connec-
tionist temporal classification (CTC) to obtain the
output characters (Graves et al., 2006).

Results: The comparison between fine-tuning
and adapter-tuning reveals their distinct advantages
depending on the dataset size (See Table 2). In ex-
tremely low-resource scenarios, like those with just
10 minutes or 1 hour of training data, fine-tuning
significantly outperforms bottleneck adapter-tuning
(FFAdapter) across languages and model sizes.
This situation can be seen as few-shot learning due
to the extremely limited labeled speech. However,
in moderately low-resource conditions (at least 10
hours), bottleneck adapter-tuning performs com-
petitive to fine-tuning while significantly reducing
trainable parameters. We argue that, with less data,
the fully connected feed-forward adapters cannot
be properly trained and the subsequent modules in
Transformer rely upon the output representations
from adapter. For this reason, bottleneck adapters
are not suitable for few-shot learning. To counter
this issue, our proposed technique ConvAdapt is
able to outperform bottleneck adapters in extremely
low-resource cases while still under-performing
than full fine-tuning. We hypothesize that due to
sparse connectivity and weight sharing in convo-

lutional nets as opposed to full connectivity in FF
nets, ConvAdapter achieves superior performance
than bottleneck adapters in few-shot scenarios with
less data. As training data increases, however, the
benefit of ConvAdapt over bottleneck adapters di-
minishes because fully connected weights in bottle-
neck adapters can be learned with sufficient amount
of data.

From Table 2, it is evident that the fully fine-
tuned XLS-R model with 2B parameters yields
comparatively high WERs across different lan-
guages and training dataset sizes. The XLS-R 2B
performance is consistently surpassed by smaller
capacity fully fine-tuned XLS-R models (0.3B, 1B)
and the MMS 1B model in all cases. Investigating
further, we refer to (Babu et al., 2021), which ex-
plores fine-tuned XLS-R models on LibriSpeech.
Though the authors argue that higher-capacity mod-
els could mitigate interference issue of pre-trained
models and yield lower WERs, this remains un-
verified for the XLS-R 2B model with no results
presented for this model.

In our work, we find that employing the bottle-
neck adapter-tuning approach enables the XLS-R
with 2B parameters to achieve the lowest WERs
across several dataset sizes except for the extremely
low-resource ones e.g. 10 min or 1 hour. This find-
ing is noteworthy since XLS-R 2B with bottleneck
adapters not only improves performance but also
reduces trainable parameters remarkably from 2B
to 64M (almost 31 times reduction). We argue that
adapters can function as regularizers in large pre-
trained speech models by mitigating overfitting and
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Train set Model Adapter # Params Maltese Bengali English

size Type in adapters FT Adapter FT Adapter FT Adapter
clean other clean other

10 min

XLS-R 0.3B FF 26M 63.6 98.9 70.2 93.7 39.3 48.4 100.0 100.0
XLS-R 1B FF 64M 70.5 90.3 70.4 89.9 36.1 45.7 98.3 100.0
XLS-R 2B FF 64M 62.9 93.5 69.9 87.6 39.4 49.0 91.8 96.2
MMS 1B FF 64M 60.5 89.0 64.2 100.0 36.5 43.4 100.0 100.0

XLS-R 1B Conv 192M 70.5 76.7 70.4 76.5 36.1 45.7 43.3 54.2

1 hour

XLS-R 0.3B FF 26M 43.1 65.4 46.2 63.4 16.7 25.5 86.0 92.2
XLS-R 1B FF 64M 48.1 63.4 44.3 56.9 15.5 24.9 38.2 53.3
XLS-R 2B FF 64M 43.9 98.2 47.5 66.2 17.9 27.6 24.2 36.3
MMS 1B FF 64M 43.5 61.9 44.3 58.5 16.1 23.9 34.9 49.4

XLS-R 1B Conv 192M 48.1 46.3 44.3 49.3 15.5 24.9 16.8 26.8

10 hours

XLS-R 0.3B FF 26M 27.8 34.8 20.1 26.9 8.7 17.2 10.7 21.6
XLS-R 1B FF 64M 28.6 29.4 19.8 21.0 8.3 17.4 9.3 18.3
XLS-R 2B FF 64M 31.1 31.0 20.2 25.7 10.1 20.1 7.6 15.7
MMS 1B FF 64M 35.0 36.1 18.8 28.4 8.7 16.7 9.2 18.1

XLS-R 1B Conv 192M 28.6 27.7 19.8 24.2 8.3 17.4 7.3 13.9

20 hours

XLS-R 0.3B FF 26M 26.0 28.2 15.2 17.4 7.1 16.3 8.0 19.8
XLS-R 1B FF 64M 26.2 26.5 18.6 25.0 7.1 18.2 6.8 16.7
XLS-R 2B FF 64M 28.2 25.6 13.7 15.8 7.4 18.2 6.0 14.9
MMS 1B FF 64M 26.5 30.2 13.9 18.0 7.5 16.5 7.5 16.2

XLS-R 1B Conv 192M 26.2 26.5 18.6 15.4 7.1 18.2 6.2 14.7

50 hours

XLS-R 0.3B FF 26M 24.5 26.2 12.4 14.6 5.8 14.1 6.4 16.2
XLS-R 1B FF 64M 21.1 24.9 10.9 12.9 6.0 16.2 5.1 12.7
XLS-R 2B FF 64M 24.4 23.9 19.8 11.3 6.4 17.3 5.3 12.9
MMS 1B FF 64M 21.5 29.9 12.1 13.2 6.0 14.8 5.5 12.6

XLS-R 1B Conv 192M 21.1 25.2 10.9 12.6 6.0 16.2 5.1 12.8

Table 2: Evaluation of full fine-tuning (FT) and adapter-tuning (bottleneck with FF and ConvAdapt ap-
proaches) with XLS-R and MMS models for low-resource ASR in terms of WERs (%). Varied trainable
parameters (0.3B, 1B, 2B) in pre-trained ASR models are explored. Maltese, Bengali, and English (LibriSpeech)
are chosen, representing diverse language groups. Five training subsets ranging from 10 min to 50 hours are derived
from corresponding datasets. Test set results are provided, and CTC-based greedy decoding is employed.

Language ISO XLS-R pre-training data

English en 69493 hours
Maltese mt 9120 hours
Bengali bn 100 hours

Table 3: Number of hours of English, Maltese, and
Bengali untranscribed speech data used for pre-training
XLS-R (Babu et al., 2021).

effectively harnessing their potential.

Table 2 highlights that adapter-tuning provides
the most benefits for English ASR, while Bengali

ASR with adapters exhibits higher WERs across
all dataset sizes. Notably, XLS-R underwent pre-
training with 69,493 hours for English, 9,120 hours
for Maltese, and only 100 hours for Bengali as
shown in Table 3 (Babu et al., 2021). The subpar
performance of adapter-tuning in Bengali might be
attributed to its insufficient representation in the
pre-trained XLS-R model (See Table 1). However,
with increased Bengali labeled data (200 hours)
for adapter-tuning, performance substantially im-
proves over full fine-tuning (See Table 4).

For a mid-resource case (200 hours and 360
hours of training data), Table 4 illustrates that
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Train dataset Approach dev set test set
clean other clean other

BN - 200 hrs
fine-tuning 18.8 - 16.3 -

adapter-tuning 8.1 - 6.9 -

EN - 360 hrs
fine-tuning 6.4 17.9 5.8 15.7

adapter-tuning 3.5 9.4 3.7 9.4

Table 4: Evaluation of fine-tuning and bottleneck adapter-tuning with XLS-R 2B for moderately large amount of
data of 200 hours for Bengali (BN) and 360 hours for English (EN). Results are reported in terms of WERs (%).

Language Transfer learning dev set test set
in adapters clean other clean other

BN
No 11.6 - 11.3 -

EN → BN 14.8 - 13.8 -
MT → BN 14.5 - 13.6 -

MT
No 15.4 - 23.9 -

BN → MT 14.0 - 22.7 -
EN → MT 15.3 - 24.1 -

EN
No 5.0 12.7 5.3 12.9

BN → EN 4.9 12.8 4.9 12.9
MT → EN 4.7 12.6 4.7 12.6

Table 5: Bottleneck adapters in XLS-R 2B are pre-trained with a 50-hour source language dataset, then fine-tuned
with an equivalent-sized target language dataset. The classification head dedicated to the source language is removed.
WERs (%) on dev and test sets are reported. “Source language" → “target language" signifies knowledge transfer.

bottleneck adapter-tuning achieves notably lower
WERs than fine-tuning for both Bengali and En-
glish, indicating its suitability for developing ASR
models with a moderate to large amount of data.
We underscore the significance of this finding for
the speech processing community.

Pre-training the adapters with a source language
shows a slight performance improvement for Mal-
tese and English ASR, yet the Bengali ASR perfor-
mance deteriorates when adapters are pre-trained
with a source language (See Table 5). We hypothe-
size that initializing adapters with weights from a
closely related source language could be advanta-
geous.

The standard bottleneck adapter, widely used in
computer vision and NLP, contains two FF layers.
We investigate the impact of increasing the number
of FF layers in each adapter block (See Figure
2), with an inner dimension of 256 and GELU
activation after each FF layer. Our results show that
using 6 FF layers in the adapter architecture yields
optimal performance across all three languages. It

is worth noting that increasing FF layers in adapters
elevates the number of trainable parameters, such
as from 64M for 2 FF layers to 102M for 6 FF
layers, although not significantly.

4 Conclusion and Future Scope

This study presents a comprehensive analysis of
parameter-efficient adapters for large pre-trained
speech models. We find that bottleneck adapters
are not suitable for few-shot learning, however,
they perform competitive to full fine-tuning when
at least 10 hours of data are available. Our pro-
posed ConvAdapt technique in Transformer lay-
ers is simple yet effective to deal with extremely
low-resource cases. In mid-to-high resource scenar-
ios, bottleneck adapter-tuning surpasses the widely
used full fine-tuning technique, signifying its con-
siderable impact in the field. Leveraging higher-
capacity models like XLS-R 2B significantly im-
proves adapter-based tuning, countering the over-
fitting challenge posed by large pre-trained mod-
els during full fine-tuning. Impressively, adapters
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Figure 2: Impact of increasing the number of FC layers in each bottleneck adapter, inserted into XLS-R 2B.

achieve strong performance with merely 2.96% of
total trainable parameters. The approach proves
better for languages with ample pre-training data.
Moreover, transfer learning within adapters bene-
fits Maltese and English, but not Bengali potentially
due to the lower amount of Bengali data used in pre-
training. Scaling adapters with six feed-forward
layers is optimal for all three languages.

We believe that our intriguing findings on
adapter-tuning showing remarkable potential for
both low-resource and mid/high-resource ASR
would encourage more research into this direction.
Future work includes exploring transfer learning
in adapters with closely-related languages and per-
forming multiple tasks using a single encoder.

5 Limitations

While this work provides novel findings applying
adapters for ASR, there exist some limitations. In
our experiments with pre-training adapters on the
source language and then finetuning on the target
language, we use three languages (Bengali, Mal-
tese, and English) that derive from distinct lan-
guage groups. However, using closely-related lan-
guage pairs, more performance gain is expected as
observed in different studies on transfer learning
(Baevski et al., 2020). Due to the limited scope, we
restrict this experiment to only the selected three
languages in this paper and leave it for future stud-
ies.
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Abstract

In this work, we reimagine classical probing
to evaluate knowledge transfer from simple
source to more complex target tasks. Instead of
probing frozen representations from a complex
source task on diverse simple target probing
tasks (as usually done in probing), we explore
the effectiveness of embeddings from multiple
simple source tasks on a single target task. We
select coreference resolution, a linguistically
complex problem that requires contextual un-
derstanding, as the focus target task, and we
test the usefulness of embeddings from com-
parably simpler tasks such as paraphrase de-
tection, named entity recognition, and relation
extraction. Through systematic experiments,
we evaluate the impact of individual and com-
bined task embeddings.

Our findings reveal that task embeddings vary
significantly in utility for coreference reso-
lution, with semantic similarity tasks (e.g.,
paraphrase detection) proving most beneficial.
Additionally, representations from intermedi-
ate layers of fine-tuned models often outper-
form those from final layers. Combining em-
beddings from multiple tasks consistently im-
proves performance, with attention-based ag-
gregation yielding substantial gains. These in-
sights shed light on the relationships between
task-specific representations and their adapt-
ability to complex downstream tasks, encourag-
ing further exploration of embedding-level task
transfer. Our source code is publicly available.1

1 Introduction

Language models have exhibited superior perfor-
mance in most areas of NLP applications, including
natural language inference (Williams et al., 2018),
question answering (Rajpurkar et al., 2016, 2018),

1github.com/Cora4NLP/multi-task-knowledge-transfer
* Equal contribution.
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Figure 1: Probing workflow with Coreference Resolu-
tion (Coref) as target task and four different source tasks:
Relation Extraction (RE), Question Answering (QA),
Named Entity Recognition (NER), and Paraphrase De-
tection (MRPC).

commonsense reasoning (Talmor et al., 2019; Os-
termann et al., 2019), and others. Since the es-
tablishment of language models with partial super-
human performance, research has aimed to pin-
point which types of knowledge are exactly en-
coded by such language models. One technique
in the field of explainable artificial intelligence for
evaluating the presence of such types of knowl-
edge is probing (Conneau et al., 2018; Hewitt and
Liang, 2019; Tenney et al., 2019a; Belinkov, 2022).
Probing involves adding linear classifiers on top of
representations extracted from a pre-trained model,
which are trained on simple tasks for predicting a
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feature of choice, such as syntactic structures (Lin
et al., 2019), entity types (Tenney et al., 2019b), or
specific types of commonsense knowledge (Zhou
et al., 2020).

A main intuition behind probing is to evaluate
to what degree the representations that are learned
from the complex source task can be re-purposed to
solve a new, simpler task (Belinkov, 2022). In our
work we decide to reverse this paradigm (thus re-
verse probing) and investigate how different source
task embeddings, from a model trained on simple
tasks, can be adapted to a new, more complex target
task. In other words, we try to answer the question:
Can we reuse knowledge from simpler tasks for
a more complex task? Such a recycling of knowl-
edge is not only interesting to deepen our under-
standing of what type of knowledge is encoded in
language models, but it also results in more energy-
efficient deep learning, by reusing network weights
and representations.

We choose coreference resolution (Lee et al.,
2017) as our target task because solving corefer-
ence is - up to date - a challenging NLP problem
that even newer large language models struggle
with (Bohnet et al., 2023; Martinelli et al., 2024).
Coreference resolution involves understanding of
context, what counts as a valid mention and which
mentions refer to the same entity. Solving coref-
erence may require different types of linguistic
knowledge. Our goal is to find out which types
of information from which source task models are
useful and how this information can be combined
and/or adapted to work for the target task.

To isolate the effects of single tasks, we rely on
small language models, in our case BERT (Devlin
et al., 2019). Such models do not possess sophis-
ticated in-context abilities and require finetuning
steps in order to perform well on tasks. Our re-
search questions are as follows:

(1) Which source tasks are beneficial for combi-
nation into a more complex target task, here coref-
erence resolution?

(2) Which layers of source task models con-
tribute most to the target model performance?

(3) What are the effects of combining embed-
dings from different models and layers? How
should these embeddings be aggregated? Can we
improve word representations by extending the em-
bedding context and combining the outputs of
several hidden layers?

2 Reverse Probing

The goal of our framework is to evaluate the trans-
ferability of knowledge embedded in representa-
tions from simpler source tasks to a complex target
task. Figure 1 gives an overview.

Let S = {s1, s2, . . . , sk} be a set of source tasks
with models pre-trained on simpler NLP tasks, and
T be the target task (coreference resolution in this
case). Ms is a pre-trained model fine-tuned on
source task s. We then define H l

s to be the output
embeddings from layer l of Ms.

For each source task si ∈ S, we extract embed-
dings Hs from layer l of the corresponding source
task model Ms (Figure 1, embedding extraction).
We either take the output at a single or multiple
consecutive layers. Note that these may be also
intermediate layers (model truncation). Optionally,
we apply L2 normalization.

Secondly, we aggregate token embeddings from
different source task models by using an aggre-
gation function A to combine embeddings across
layers and models. The aggregation is done token-
wise, so that every token can be represented as a
combination of different model outputs. We define
A to be either the mean of all vectors, i.e. as

ET =
1

k

k∑

i=1

Hsi

Alternative, we use a simple attention mechanism
for the combination (Figure 1, embedding aggrega-
tion):

ET =
k∑

i=1

αiHsi

where
αi = softmax(W ·Hsi)

In some experiments we use only a single model.
In this case the mean corresponds to the original
embedding of the source model and attention sim-
ply means self-attention.

Next, the aggregated token embeddings are
passed to the target task head that includes several
layers with trainable weights (Figure 1, training
target task layers which follow the coref-hoi imple-
mentation by Xu and Choi (2020)).

Figure 1 shows the probing workflow with four
different source task models. Each source model is
pre-trained separately on a corresponding dataset
as described in Section 3. The models are based on
bert-base-cased contextualized embeddings with
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different task-specific heads and their weights are
frozen. Given that the source models cannot up-
date their weights during probing, our conjecture is
that those models that perform better on the coref-
erence task “out-of-the-box” contain some useful
information that is relevant for the target task.

3 Tasks

In this section we describe the target task, the
source tasks and their respective training data.

3.1 Target Task

As our target model we choose a popular end-to-
end coreference resolution model based on the im-
plementation by (Xu and Choi, 2020) and train it
on the OntoNotes CoNLL 2012 corpus (Pradhan
et al., 2012). We use bert-base-cased and the rec-
ommended parameters for fine-tuning2.

3.2 Source Tasks

We focus on the comparison with standard BERT as
well as four other task-specific models. As source
tasks we take a range of tasks of varying complex-
ity: Paraphrase identification, named entity recog-
nition, relation extraction, and - a (more complex)
source task - quesion answering.

The first model is fine-tuned on the Microsoft
Research Paraphrase Corpus (MRPC) (Dolan and
Brockett, 2005). Since paraphrased sentences de-
scribe the same entities and events, such sentence
pairs likely contain more coreferent mentions than
standard (non-paraphrased) texts. Hence, MRPC
embeddings are more tuned towards semantic simi-
larity and could be useful for the coreference task.

Named Entity Recognition (NER) model is
trained on the CoNLL 2012 dataset (Pradhan et al.,
2012) and can generate one of the 37 labels for
each token (e.g., PERSON, PRODUCT, DATE
etc.). Named entities are often involved in corefer-
ence relations and being able to identify mention
spans correctly is crucial for coreference resolu-
tion.

Next, we also experiment with the Relation
Extraction model (RE) trained on the TACRED
dataset (Zhang et al., 2017). It provides annotations
for the spans of the subject and object mentions as
well as the mention types according to the Stanford
NER system and relations (if applicable) between
the entities. Similarly to the NER model, RE is

2https://github.com/lxucs/coref-hoi/blob/
master/experiments.conf

important for coreference because one of the tasks
that this model performs is mention span detection.
However, it also classifies different relations be-
tween the mentions and such relations are typically
non-referential (e.g. “per:employee_of”).

Another source task model used in this project
is trained on the SQUAD 2.0 dataset (Rajpurkar
et al., 2016) for extractive question answering. This
model (QA) can identify answer spans given the
question and a paragraph of text. Since answer-
ing questions often involves coreference resolution,
there is an overlap between these two tasks and
word embeddings from one task might be benefi-
cial for another.

For single model experiments we also anal-
yse the performance on the vanilla BERT model
3(Devlin et al., 2019) which was trained with a
masked language modeling objective on BookCor-
pus (Zhu et al., 2015) and English Wikipedia. Note
that all the other source models are fine-tuned ver-
sions of this model.

Additionally, we experiment with the POS-
tagging model4, the models for semantic tagging5

and chunking6 as well as another NER model
(NER-dslim)7 trained on the English version of the
CoNLL-2003 Named Entity Recognition dataset
(Tjong Kim Sang and De Meulder, 2003). How-
ever, we limit the number of experiments for these
models and focus mostly on MRPC, NER, RE and
QA tasks.

4 Experiments and Results

In this section we describe our experiments with
various source models and probe them on the coref-
erence resolution task (§4.2). We also evaluate
different embedding aggregation methods (§4.3),
measure the effects of using intermediate layer out-
put and normalization (§4.4), vary the embedding
context from several hidden layers (§4.5) and com-
pare the performance of multiple vs single models
(§4.6).

3We use the cased variant from HuggingFace under https:
//huggingface.co/bert-base-cased.

4https://huggingface.co/QCRI/
bert-base-cased-pos

5https://huggingface.co/QCRI/
bert-base-cased-sem

6https://huggingface.co/QCRI/
bert-base-cased-chunking

7https://huggingface.co/dslim/bert-base-NER
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4.1 Training Details and Evaluation

The coreference-specific layers are trained with the
learning rate 1e-4 and early stopping (maximum
number of epochs is set to 100 and patience is set
to 5). The learning rate was optimized based on the
experiments with the standard frozen BERT model.

For evaluation we use an average F1 score that is
a combination of MUC (Vilain et al., 1995), CEAF
(Luo, 2005) and B3 (Bagga and Baldwin, 1998)
coreference metrics. We run each experiment with
three different seeds and report the average F1 val-
ues on the validation set. The target (non-frozen)
model trained on the coreference resolution task
from scratch achieves 73.75 F1 which is an upper
bound for our probing task.

4.2 The Choice of the Source Task Models

Figure 2 shows the comparison between different
source task models. Our original set of models that
includes MRPC, NER, RE, QA and vanilla BERT
has two clear winners: BERT and MRPC (64.01
and 64.32 F1). They are followed by RE (52.43)
and QA (47.51) models and, finally, NER achieves
the lowest score of 36.03. This comparison is based
on a single run with the same seed, the averaged
results across three runs with standard deviation
can be found in Table 1.

We also have a closer look at the cosine sim-
ilarity between our source models and the pre-
trained coreference model. Figure 3 shows similar-
ity scores averaged across all tokens for 15 random
batches. The scores are collected before the em-
bedding aggregation. Hence, they show how close
the original source model embeddings are to the
“ideal” task embeddings. Unsurprisingly, BERT
and MRPC have the most similar embeddings to
the coreference target. On the other hand, although
both QA and NER embeddings are very differ-
ent from the target task embeddings, QA achieves
much better performance than NER on this task
(50.79 vs 35.63 F1, see Table 1). This shows that
even though cosine similarity is a good approx-
imation for the task similarity, it is not an ideal
predictor for the target task performance and even
the source models with very different embeddings
(QA) can still achieve the scores comparable to
the ones achieved by the models with more similar
embeddings (RE).

Additional models that we tested demonstrate
rather poor performance on the coreference res-
olution task (see Figure 2). POS-tagging model

struggles to learn anything about coreference and
the training does not progress. Another NER model
trained on a different version of Ontonotes (NER-
dslim) achieves the maximum of 37.83 F1. Chunk-
ing and semantic labeling are somewhat more suc-
cessful and achieve 48.81 and 49.82 F1 each, cor-
respondingly.

4.3 How to Combine Task Embeddings
We employ two different aggregation strategies to
combine the embeddings of the source task models:
mean and attention-based aggregation. Addition-
ally, we experimented with summing instead of
using the mean, but the results were comparable
or slightly worse: A combination of frozen MRPC
with BERT achieves 62.34 F1 with sum and 63.26
with mean (average values across three runs with
different seeds). Hence, in all further experiments
we focus on the comparison between the mean and
attention-based aggregation.

F1 scores for single models as well as for their
2x, 3x and 4x combinations can be found in Tables
1, 2 and 3. We also summarize the results for sin-
gle models and for pairs of models graphically in
Figure 4 that shows how much models benefit from
attention. However, the trend holds even when
there is only a single source model. This shows
how much improvement we get by simply adding
additional projections in the case of attention ag-
gregation. The performance gains are different
depending on the model. E.g., if we use pre-trained
coreference model as our source task, there is al-
most no difference between attention and mean
aggregation. However, other task-specific models
can substantially benefit from selective aggregation.
E.g., NER gains almost +19.7% and QA improves
by +9%. In general, all models except for the one
that has the same source and target tasks (Coref-
Target) benefit from attention and improvements
are larger for the models that have lower original
scores.

For multiple model combinations we also see a
similar trend with consistent improvements when
attention-based aggregation is used, e.g., +13.23%
for NER+MRPC and +9.36% for NER+QA (see
Figure 4 and Table 2 for further comparisons). In-
terestingly, when we combine our source models
with the model that was pre-trained on the coref-
erence task (CorefTarget), we have only negligi-
ble improvements because the attention aggregator
quickly learns which source model is beneficial
for the task and starts paying almost all attention
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Figure 2: Source task models: CorefTarget, BERT, MRPC, RE, QA, NER, SemTag, Chunking, NER-dslim, POS

Figure 3: Average cosine similarity between the embeddings of the source tasks and the target coreference task,
averaged across all tokens for 15 batches

to the output of this model ignoring all the others.
However, if we do not add coreference task to the
set of source tasks we observe some interesting
patterns that emerge with the combinations of dif-
ferent models. Figure 9 (in the Appendix) shows
how attention is distributed across different train-
ing epochs for the combination of MRPC, RE and
NER. In the beginning, all three models are being
paid the same amount of attention (≈33%). How-
ever, the aggregator soon starts prioritizing MRPC
and NER gets progressively less and less attention.
Interestingly, RE model also loses some impact
over time but more slowly and remains somewhat
important for the aggregator until the end of the
training.

4.4 How to Extract Embeddings

We also consider different ways of embedding ma-
nipulations since the final layers of BERT-based
models might be too specialized on their corre-
sponding tasks, so that their representations are no

longer useful for coreference resolution. In fact,
after comparing the embeddings from layer 6 to
12 we found that the best performing layer on our
probing task was typically not the final one. E.g.,
it was layer 9 for MRPC and RE, layer 8 for QA
and 6 for NER (see Figure 5). Tables 1, 2 and 3
show the detailed comparisons between the original
(full) model outputs as well as the normalized and
truncated (to the “best” layer) versions for single
models and their combinations (see also Figure 6
and 7 for the plot comparison). Truncation seems
to be a good strategy for embedding aggregation
and consistently yields best results across differ-
ent settings. Truncation improves NER by up to
+26.2%. QA is improved by +14% (Figure 6). Also
combinations of models work better with trunca-
tion, e.g., RE+QA pair gains +8.17% F1 with mean
aggregation and +2.84% with attention aggregation
when both models are truncated (Figure 7).

Since combining embeddings from disparate
models is a challenging task, especially when the
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models
mean attention layer concat + attention

full norm trunc full norm trunc 4 6 12
MRPC(9) 61.16±2.84 58.61±13.7 66.26±0.61 67.05±0.70 67.49±0.29 67.27±0.30 67.94±1.54 67.03±0.99 67.28±1.48

NER(6) 35.63±2.12 47.95±3.27 61.76±1.53 55.30±1.22 54.82±1.02 64.31±0.22 63.80±0.71 66.30±0.51 65.76±0.95

RE(9) 52.27±2.39 48.03±10.8 62.40±1.41 60.97±0.01 41.01±0.14 63.73±0.70 65.16±1.07 65.79±0.37 65.43±0.93

QA(8) 50.79±3.01 59.56±0.65 64.77±0.65 59.82±1.51 60.98±0.60 66.47±0.56 67.70±0.93 66.82±0.11 67.63±0.86

BERT(10) 64.95±0.98 66.50±0.09 66.40±1.66 67.15±0.49 43.94±0.70 68.19±0.80 69.06±0.49 69.07±1.15 68.79±0.99

Coref(12) 73.75±0.29 72.33±0.12 73.75±0.29 73.60±0.31 73.11±0.55 73.60±0.29 73.19±0.65 72.70±0.85 72.59±0.09

Table 1: Results for single models with different settings, mean and attention aggregation. Subscript indicates the
best truncation layer for the trunc setting.

models
mean attention

full norm trunc full norm trunc
RE(9) + MRPC(9) 61.76±1.85 64.71±0.42 64.49±0.76 67.56±0.36 51.06±13.8 68.78±0.32

NER(6) + MRPC(9) 54.71±4.57 64.47±0.29 65.71±0.22 67.94±0.78 67.36±0.46 68.67±0.46

RE(9) + NER(6) 56.13±1.42 60.68±0.48 64.38±1.14 64.00±0.74 62.80±0.36 67.03±0.31

QA(8) + MRPC(9) 60.84±1.04 65.58±0.48 66.46±2.05 67.87±0.92 59.00±15.0 68.98±0.44

RE(9) + QA(8) 57.66±3.61 63.55±0.26 65.83±0.61 65.02±0.39 64.49±0.30 67.86±0.59

NER(6) + QA(8) 55.66±1.72 61.14±0.74 65.06±0.68 65.02±0.46 62.51±0.59 67.65±0.55

Table 2: Results for the pairs of models with different settings, mean and attention aggregation. Subscript indicates
the best truncation layer for the trunc setting.

source tasks are quite different from each other,
we also experiment with applying L2 norm to the
output of each model before aggregating the em-
beddings. This gives us varied results depending
on the model and the aggregation type. E.g., for
mean aggregation single NER, QA and BERT ben-
efit from normalization but MRPC and RE result in
lower scores. For attention aggregation all models
except for MRPC and QA have substantial drop in
performance.

It is also interesting to see the effect of normaliza-
tion on the combinations of different models. For
mean aggregation normalization brings substantial
improvements, e.g., +9.76 F1 for NE+MRPC and
+5.48% for NER+QA and, in general, all 2x models
show better performance with normalization (Ta-
ble 2). However, there is a very different trend for
attention-based aggregation. Here we see a large
drop in performance for most of the models, e.g.,
-8.87 F1 for QA+MRPC which indicates that at-
tention can already combine the embeddings from
different models quite well and achieves worse re-
sults with more uniform normalized embeddings.

4.5 Embedding Context from Multiple Layers

Since we found in our previous experiments that
truncation consistently improves the performance
for many source models, we decided to explore
another setting that involves concatenating the em-
beddings of the last n hidden layers of the source
model before aggregating them with attention. We
experiment with the last 4, 6 and 12 layers and

compare them to the aggregation that affects only
the last layer of each model (see Table 1 for more
detail).

Our results show that for single models having
more “embedding context” is beneficial. Overall,
combinations of the last 4 or 6 layers result in the
best F1 scores. However, combining all layers of
the model is not necessarily useful and can even
hurt the performance. E.g., NER achieves 66.30 F1
with combined 6 layers which is +11 F1 improve-
ment compared to the same model that uses only a
single last layer but when we combine all 12 layers
of NER the metric decreases from 66.30 to 65.76
F1 (Table 1).

Another interesting observation is that for vanilla
BERT combining the outputs of the last 4 or 6 lay-
ers does not make any difference, and for other
models the difference is more pronounced, al-
though still rather small. NER is the model that
gains the most from the increased embedding con-
text, it gains additional +2.5 F1 by combining 6
instead of 4 last layers which is also consistent
with our finding for the truncated models and the
fact that NER performs better when truncated to
6 layers. The only model that does not show any
improvements in the layer concatenation setting
is the coreference source model since it is already
optimized for the task and performs best as it is,
i.e., without truncation, normalization or any other
embedding manipulations.
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models
mean attention

full norm trunc full norm trunc
RE(9) + NER(6) + QA(8) 58.95±1.11 63.70±0.08 65.04±0.71 66.24±0.14 64.71±0.50 68.98±0.32

MRPC(9) + NER(6) + QA(8) 60.35±1.42 65.13±0.65 65.68±0.83 69.21±0.17 59.10±14.1 69.56±0.35

MRPC(9) + RE(9) + QA(8) 61.83±0.38 65.22±0.20 66.69±0.64 68.63±0.60 67.17±0.21 68.81±0.69

MRPC(9) + RE(9) + NER(6) 62.27±2.08 65.15±0.18 65.96±0.52 68.31±0.10 66.88±0.16 69.30±0.52

MRPC(9) + RE(9) + NER(6) + QA(8) 62.19±1.49 65.56±0.11 65.66±0.50 69.03±0.45 66.80±0.53 69.39±0.74

Table 3: Results for multiple models with different settings, mean and attention aggregation. Subscript indicates the
best truncation layer for the trunc setting.

(a) Pairs of models: comparison of two embedding aggregation
methods, mean and attention, to combine the source task model
outputs

(b) Single models: performance gains by adding attention pro-
jections (attention) compared to having no additional parame-
ters (mean)

Figure 4: Mean vs attention aggregation (full setting)

4.6 Combining Multiple Source Models

An interesting research question with respect to the
embedding aggregation is how many models are ac-
tually needed to achieve good results and whether
such models should be more or less similar to each
other. E.g., NER and RE both focus on mention
span extraction, RE and QA process relations be-
tween the entities in the text and MRPC model is
more suitable for the semantic similarity tasks.

Firstly, we found that combinations of two mod-
els always outperform single models in the atten-
tion aggregation setting and, for the mean setting,
pairs of models typically also perform better than
the individual models except for the combinations
with MRPC that tend to have lower scores (see Fig-
ure 8 for the comparison with mean and attention).
E.g., NER with mean aggregation achieves 35.6
F1, RE achieves 52.3 and the combination of both
(RE+NER) has 56.1 F1.

Secondly, we observed that combining three or
more models typically works well for the full mod-
els. However, for the truncated setting there are
only negligible gains when we combine multiple
models (e.g., for RE+MRPC with attention we have
68.78 and for RE+MRPC+QA 68.81).

Lastly, model combinations that include MRPC
tend to perform better than the rest which likely

indicates the importance of semantic similarity for
the coreference task. However, the combinations
of RE+NER, RE+QA and QA+NER can also be
beneficial, especially in the mean aggregation set-
ting.

5 Related Work

Apart from the work on probing that was presented
in the introduction, our work is closely related to
the idea of transfer learning (Torrey and Shavlik,
2010), one of the ubiquitous paradigms in mod-
ern NLP. The idea of transfer learning is to train a
model on a task A and then transfer the weights to
a task B, either with or without further finetuning.
This is the basis of most modern language models,
which are pretrained and then applied or evaluated
on specific downstream tasks (Devlin et al., 2019;
Raffel et al., 2020; Jiang et al., 2023; Dubey et al.,
2024). The pretraining data of large language mod-
els often contains samples from various natural lan-
guage tasks, which renders most language models
as multi-task learners (Yu et al., 2024). Multi-task
learning describes a paradigm where a model is
simultaneously trained on a range of tasks. While
this concept is related to the work presented here,
the main difference is that several source tasks are
mixed together during (pre-)training usually, which
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Figure 5: Source task model performance truncated to the best layer (in parentheses) with mean aggregation

(a) Mean aggregation (b) Attention aggregation

Figure 6: Single models: full vs normalized vs truncated

is not the case with our work.
In some sense, our work is related to research

around task arithmetics (Matena and Raffel, 2022;
Chronopoulou et al., 2023; Ilharco et al., 2023;
Belanec et al., 2024), which has the goal to ex-
plicitly compute task representations in networks,
e.g. as differences to a random initalization, and
implement transfer learning by means of difference
vector arithmetics. In contrast, our work concen-
trates on hidden representations, rather than the
parameters of the network.

6 Conclusion

In this project we “reversed” the classical probing
and investigated how different source task embed-
dings contribute to a target task (coreference resolu-
tion). Our experiments with Paraphrase Detection
(MRPC), Named Entity Recognition (NER), Rela-
tion Extraction (RE) and Extractive Question An-
swering (QA) as source tasks show there are quite
different embedding representations that achieve
different scores on the target task ranging from
35.63 F1 (NER) to 61.16 F1 (MRPC) for single

models.
Moreover, we found that the best performing

embeddings were typically not the outputs of the
last hidden layer but rather the representations gen-
erated at lower layers. MRPC was found to be
the best source model, whereas, surprisingly, NER
performed the worst.

We also explored different combinations of
source models and found that two or more models
typically outperform single ones. We considered
mean and attention-based embedding aggregation
methods and demonstrated the effectiveness of at-
tention. For single models, we also showed that
combining the outputs of several hidden layers in-
stead of only one layer is beneficial. However,
combining the outputs of all available layers is not
necessarily a good strategy and usually the best
scores can be achieved by combining only the out-
puts of the last 4 hidden layers that possibly contain
more high-level, semantic information important
for the coreference task.

In the future it would be interesting to exper-
iment with more types of embedding manipula-
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(a) Mean aggregation (b) Attention aggregation

Figure 7: Pairs of models: full vs normalized vs truncated

(a) Mean aggregation (b) Attention aggregation

Figure 8: Single and combined (2x) models

tions. Also, a combination of truncation and nor-
malization could possibly bring some gains for
single models. Moreover, it would be interesting
to check the effects of attention aggregation with
hidden layer concatenations for multiple models
(e.g., RE+MRPC). Finally, it would be interesting
to replicate our experiments on larger (non-BERT)
models and tasks (e.g., semantic role labeling, dis-
course relation classification etc.).

We hope that our experiments can help to clarify
the impact of embeddings and their combinations
on the target coreference task. We also hope that
the reverse probing idea will facilitate further re-
search on finding useful information in the task-
specific representations that originate from differ-
ent fine-tuned models.

Limitations

While this work sheds light on the potential of
reverse probing and task embeddings, some limita-
tions arise.

First, we exclusively work with BERT-based
models. This gives us a controlled setup, but it
also means our findings might not fully translate
to larger models or other architectures like GPT,
T5, or multilingual models. Future work needs to

investigate a broader range of models.
Our choice of source tasks, Paraphrase Detec-

tion (MRPC), Named Entity Recognition (NER),
Relation Extraction (RE), and Question Answer-
ing (QA), is not exhaustive. There are many other
NLP tasks, such as sentiment analysis, syntactic
parsing, or commonsense reasoning, that might
contribute useful embeddings for coreference res-
olution. Also, some of the tasks are not necessar-
ily simpler than coreference resolution (e.g., QA),
which we chose as our target task. Generally, our
conclusions are centered around coreference resolu-
tion. While this is a challenging and linguistically
complex problem, our approach may not directly
apply to other NLP tasks, such as machine transla-
tion or text summarization.

Lastly, there is the question of computational
efficiency. Although we worked with relatively
small models, combining embeddings from multi-
ple layers and tasks does introduce extra processing
overhead.
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A Additional Figures

(a) MRPC

(b) RE

(c) NER

Figure 9: MRPC+RE+NER with attention aggregation
(full setting)
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Abstract
Unsupervised learning objectives like autore-
gressive and masked language modeling consti-
tute a significant part in producing pre-trained
representations that perform various down-
stream applications from natural language un-
derstanding to conversational tasks. However,
despite impressive generative capabilities of re-
cent large language models, their abilities to
capture syntactic or semantic structure within
text lag behind. We hypothesize that the mis-
match between linguistic performance and com-
petence in machines is attributable to insuffi-
cient learning of linguistic structure knowledge
via currently popular pre-training objectives.
Working with English, we show that punctu-
ation restoration as a learning objective im-
proves performance on structure-related tasks
like named entity recognition, open informa-
tion extraction, chunking, and part-of-speech
tagging. Punctuation restoration results in ▲≥
2%p improvement in 16 out of 18 experiments,
across 6 out of 7 tasks. Our results show that
punctuation restoration is an effective learning
objective that can improve structure understand-
ing and yield a more robust structure-aware rep-
resentations of natural language in base-sized
models.

1 Introduction

The modern natural language processing paradigm
centers around transformer-based pre-trained lan-
guage models (PLMs; Peters et al. (2018); Rad-
ford et al. (2018); Devlin et al. (2019)). They are
optimized on masked language modeling (MLM)
and autoregressive language modeling, which pro-
vide powerful representations to approach various
problems in natural language processing. It is no
exaggeration that language models have become
effective in tasks like named entity recognition
(NER), information extraction, semantic role la-
beling (SRL) that require understanding of syntac-
tic, semantic, and discourse structure (Wang et al.,
2021, 2022). However, the following suggests there

is still room for improvement in current language
models’ abilities to understand such structure in
natural language to perform downstream tasks reli-
ably and robustly.

1. The reversal or factorization curse. Lan-
guage models fail to infer "B is A" from "A is
B" (Berglund et al., 2024), or their representa-
tions are highly dependent on the order (fac-
torization) of the input (Kitouni et al., 2024).

2. The curse of performance instability. Model
checkpoint initialization and training dataset
order strongly affects sensitivity to syntactic
structure (Zhou et al., 2020; McCoy et al.,
2020; Du and Nguyen, 2023).

3. Poor out-of-distribution generalization.
Systems report close-to-human performance
on one dataset yet perform poorly on other
datasets representing the same task, due to
their picking up spurious correlations rather
than learning the task (Gururangan et al.,
2018; McCoy et al., 2019; Serrano et al.,
2023).

4. Insufficient or underutilized structure in-
formation. While PLMs do encode some
structure, they are poor few-shot structure pre-
dictors (Zhao et al., 2023; Bai et al., 2023) and
perform better when input is reinforced with
linguistic structure information (Strubell et al.,
2018; He et al., 2020; Sachan et al., 2021; Wu
et al., 2021; Fei et al., 2021; Xie et al., 2023;
Huang et al., 2024). This indicates their repre-
sentations are insufficient or underutilized.

These four phenomena illustrate that current rep-
resentations as a result of autoregressive (Radford
et al., 2018) or masked (Devlin et al., 2019; Liu
et al., 2019; Raffel et al., 2019) language mod-
eling are insufficient for structure understanding.
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Efforts to mitigate such shortcomings include data-
oriented approaches like syntactic augmentation to
improve robustness to spurious correlations (Min
et al., 2020; Yaghoobzadeh et al., 2021) and revers-
ing input to mitigate the reversal curse (Golovneva
et al., 2024). Architecture oriented efforts include
adding explicit graph network layers to encode
structure, resulting in improvement in benchmark
scores (Zhang et al., 2019; Sachan et al., 2021; Wu
et al., 2021) and generalization abilities (He et al.,
2020; Sartran et al., 2022).

They are human-in-the-loop methods that re-
quire human input or annotation, or a system that
requires such annotation. Recent work in distill-
ing linguistic structure knowledge from natural
language text to representations without supervi-
sion include inside-outside dynamic programming
for tree induction (DIORA; Drozdov et al., 2019),
dependency-constrained self-attention (Shen et al.,
2021; Momen et al., 2023), and augmenting MLM
with sentence-level contrastive learning (CLEAR;
Wu et al., 2020). With the exception of CLEAR,
these methods require additions to the model archi-
tecture. Wang et al. (2021) and Wang et al. (2022)
propose structure pre-training but use human-
annotated data.

In this paper, we investigate whether it is pos-
sible for an unsupervised method to mitigate the
four shortcomings of the modern language model
without implementing additional parser, tree, or
graph architecture. In particular, we believe the
pre-training stage of current PLMs may be fur-
ther improved and propose punctuation restora-
tion (PR) as an unsupervised learning objective
that improves structure understanding. Punctuation
markers, along with capitalization, often serve as
boundary markers between different syntactic com-
ponents of the sentence (Briscoe, 1996; Bayrak-
tar et al., 1998). Punctuation marks also corre-
spond to prosodic features of the sentence (Chafe,
1988), which in turn contain linguistic information
(Wilson and Wharton, 2006; Wolf et al., 2023).
Thus, the model’s ability to predict punctuation
from plain text may correlate to its ability to en-
code syntactic boundaries and thus structure. We
hypothesize that additional optimization on punc-
tuation restoration yields representations with in-
creased sensitivity to structure, measured by in-
distribution test set score, out-of-distribution gener-
alization performance, and stability across initial-
ization in structure-related natural language pro-

cessing (NLP) tasks.
Intuitively, punctuation restoration may seem

like an easy task. However, predicting punctuation
and capitalization given text still remains nontrivial
(Păiş and Tufiş, 2022; de Lima et al., 2024; Pang
et al., 2024), and is an area of active work especially
for post-processing results from automatic speech
recognition and trascription systems (Alam et al.,
2020; Zhu et al., 2024; You and Li, 2024; Zhong
and Sun, 2025). We provide performance on the
objective task in Appendix C.1. Although language
modeling already includes predicting punctuation
and capitalization, explicit optimization on punc-
tuation restoration would allow models to predict
them without explicit local context (e.g. beginning
of sentence or quotation, following capitalization).

2 Objective and experimental setup

2.1 Objective design
The punctuation restoration objective predicts the
original text from its "cleared-formatting" coun-
terpart. In our implementation, we remove the
following set of punctuation marks: the comma
,, the period ., the exclamation point !, the ques-
tion mark ?, the single-quotation mark ’, and the
double-quotation mark ", along with capitalization,
as shown below. Boldface indicates an addition to
or a modification of source text.

• Source: lee faker sang-hyeok (hangul:이상혁)
is a league of legends esports player currently
mid laner and part owner at t1

• Target: Lee “Faker” Sang-hyeok (Hangul:이
상혁) is a League of Legends esports player,
currently mid laner and part owner at T1.

While it is possible that a different selection
yield better results, our selection reflects frequency
(Sun and Wang, 2019) as well as syntactic signifi-
cance (Bayraktar et al., 1998; Brabanter, 2023).

Similarly to popular pre-training objectives like
MLM, autoregressive language modeling, and next-
sentence prediction, the objective requires no hu-
man input. The objective is also architecture-
agnostic and can be easily modified as appropriate.

From an internal database of English news arti-
cles, accessed between January 2022 and August
2023, we collected a total of 437,031 article ex-
cerpts, which are non-overlapping parts separated
by a limiting word count of 150. One thousand ex-
cerpts each are used as the development and test
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sets, while the remaining 435,031 excerpts are used
for training.

2.2 Experimental setup
Our experiments involve two stages. In the first
stage, we take the pre-trained weights of the T5-
base1 model (Raffel et al., 2019), and perform ad-
ditional pre-training on the punctuation restoration
objective to produce PR-T5. Then, in the second
stage, we fine-tune PR-T5 on downstream tasks
and datasets.

In the first stage, the model f is given the
"cleared-formatting" token sequence x comprising
of tokens xt and optimized to predict the original,
fully punctuated and capitalized text y comprising
of tokens yt as described in Section 2.1. However,
since there is textual overlap between x and y, as-
suming trivial copy error rate, we can write the
model f as a predictor of capitalization and punc-
tuation information mt = yt − xt:

mt = f(x, y<t) =





ϕ

addPunct(xt, θ)
addCap(xt, θ)

Thus, the effective loss is as follows:

L ≈ − 1

N

N∑

t=1

logP (mt | x, y<t) .

In the second stage, we fine-tune PR-T5 and mea-
sure the effects of punctuation restoration in down-
stream tasks. We measure effects across 13 datasets
that represent 7 tasks2 and across 3 settings: gener-
ative, discriminative , and multi-task. In the gener-
ative setting, fine-tuned PR-T5 makes entity or tag
predictions via autoregressive generation. We con-
duct 16 experiments in the generative setting, with
13 datasets from 7 tasks. In the multitask setting,
fine-tuned PR-T5 is trained to make predictions for
two tasks at once, namely NER and Open Infor-
mation Extraction (OpenIE). We conduct 1 experi-
ment in the multitask setting, with 2 datasets from
2 tasks. Generative and multitask predictions are
illustrated in Table 4. In the discriminative setting,
PR-T5’s decoder block is replaced with a classifica-
tion head, as described in Appendix A.1 and Figure
1. We conduct 1 experiment in the discriminative
setting, with 1 dataset from 1 task. We fine-tune
the publicly available pre-trained T5 weights on

1See Appendix C.1 for details on model size selection
2See Appendix B for task and dataset details

the same downstream tasks and use their perfor-
mance as comparison baseline for all three settings.
We publicly release our architecture, training, and
inference code.

3 Results

We measure the effects of punctuation restoration
as an additional pre-training objective on down-
stream tasks on t5-base, with the four behaviors
outlined in Section 1 in mind. In this section, we
find direct evidence that this method helps mitigate
three out of four behaviors we describe in Section
1.

We report our results in Tables 1, 2, 3. Each re-
ported value of precision, recall, and F1 represents
an average over the same 5 seed initializations,
with the exception of discriminative NER, where
we analyze 15 seed initializations.

3.1 Structure information encoding and use

In all 18 experiments across dataset, task, and set-
ting, PR-T5 reports improved performance over T5
baselines. Among them, 16 experiments report im-
provements ▲≥ .02, and 10 experiments ▲≥ .05
(Tables 1, 2, 3). This is evidence that punctuation
restoration makes available a nontrivial amount
of structure information that previously may have
been unavailable or underutilized, mitigating be-
havior 4 from Section 1.

3.2 Performance stability and
out-of-distribution generalization

An out-of-distribution evaluation measures perfor-
mance on a dataset that represents the same task
but comes from a different source than the training
dataset (e.g. evaluating on CaRB (Bhardwaj et al.,
2019) after fine-tuning on OIE2016 (Stanovsky and
Dagan, 2016)). It is an effective measure of robust-
ness of a representation, as fine-tuned models often
learn the dataset, rather than learning the task (Gu-
rurangan et al., 2018; McCoy et al., 2019; Serrano
et al., 2023). We compare out-of-distribution gener-
alization ability of PR-T5 to that of T5 in 5 exper-
iments across NER, OpenIE, Chunking, and POS
tagging, where we observe ▲≥ .05 increase in 4 of
them (Table 1). This is evidence that punctuation
restoration improves out-of-distribution generaliza-
tion, mitigating behavior 3 in Section 1.

In addition, we observe that punctuation restora-
tion reduces performance instability. Compared
to T5, PR-T5’s distribution of NER performance
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Task Training set Evaluation set t5-base + PR ∆

P R F1 P R F1 F1

NER Econ-mNER ID .69 .65 .67 .90 .89 .89 ▲.22
Econ-sNER .67 .76 .71 .74 .81 .77 ▲.06

GENIA ID .57 .73 .64 .64 .76 .69 ▲.05
CoNLL03 ID .89 .90 .89 .92 .92 .92 ▲.03
ontonotes ID .87 .88 .88 .91 .91 .91 ▲.03

OpenIE EconIE-PRO ID .47 .43 .45 .60 .63 .62 ▲.17
CaRB .22 .16 .19 .62 .42 .50 ▲.31

OIE2016 ID .16 .19 .18 .19 .19 .19 •.01
CaRB .10 .15 .12 .26 .27 .27 ▲.15

Chunking CoNLL00 ID .94 .94 .94 .96 .96 .96 ▲.02
CoNLL03 .41 .41 .41 .41 .42 .42 •.01

SRL CoNLL12 ID .75 .79 .77 .84 .86 .85 ▲.08

SBD PTB ID .97 .72 .81 .98 .98 .98 ▲.17

POS CoNLL00 ID .96 .96 .96 .98 .98 .98 ▲.02
CoNLL03 .74 .87 .79 .84 .88 .86 ▲.07

RE TACRED ID .67 .83 ▲.16

Table 1: Our main results where we compare t5-base model to PR-t5-base (+PR). ID denotes in-distribution
evaluation on a dataset from the same source as the training set. See Appendix B for dataset details.

t5-base (joint) + PR ∆

P R F1 P R F1 F1

NER .86 .84 .85 .87 .86 .87 ▲.02
OIE .57 .60 .58 .60 .62 .61 ▲.03

Table 2: Multitask (Econ-mNER, EconIE-PRO) perfor-
mance.

t5-base (EO) + PR ∆

P R F1 P R F1 F1

min .67 .91 .78 .74 .90 .82 ▲.04
max .88 . 94 .91 .90 .94 .91 •.00
avg .78 .93 .85 .83 .92 .88 ▲.03
sdev .061 .009 .035 .048 .010 .027 ▼.008

Table 3: Discriminative Econ-mNER performance.

across initialization seeds is narrower. Minimum-
maximum range (▼.04) and standard deviation
(▼23%) both decrease with additional pre-training
in punctuation restoration, as reported in Table 3.
The results support our hypothesis that punctuation
restoration increases stability across initialization
seed and training dataset order, mitigating behavior
2 discussed in Section 1.

4 Discussion

Results from Section 3 support our hypothesis that
complementing MLM with a more structure-related
objective improves structure understanding. In par-

ticular, we use a punctuation restoration objective,
described in Section 2 and evaluate with various
structure-related tasks. While it is difficult to inves-
tigate the exact mechanism of how additional train-
ing on punctuation restoration improves learned
representations, we attempt to provide an explana-
tion.

In Section 1, we analyze that current methods
for representation learning during the pre-training
stage lack sufficient signal, and hypothesize addi-
tional training with a structure-sensitive objective
should improve structure understanding. Much like
how prosody helps disambiguate syntax in human
speech processing (Price et al., 1991; Kahn et al.,
2005), punctuation can be a useful guide in syntax
disambiguation, and eventually toward forming a
robust representation of text. Punctuation marks
represent prosodic design (Chafe, 1988) which car-
ries linguistic information (Wilson and Wharton,
2006; Wolf et al., 2023). Punctuation marks of-
ten also indicate syntactic or semantic boundaries
(Briscoe, 1996; Bayraktar et al., 1998). Optimiz-
ing a computational system to predict punctuation
allows it to predict syntactic and semantic bound-
aries, even in the absence of punctuation in the
original text. Sufficient training in restoring punc-
tuation can imitate effects of explicitly providing a
parse, facilitating natural language understanding
via a stronger understanding of sentence structure.

Performance improvement from punctuation
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restoration is not limited to a specific dataset, task,
and setting3. and represents an overall increase in
representation robustness, as we observe out-of-
distribution performance jump in NER, OpenIE,
and chunking. Because of the wide range of experi-
ments in which improvement is observed, we inter-
pret this to be a general improvement of structure
understanding rather than fortunate task-specific
artifacts from the additional training.

Our methods yield a more reliable and robust rep-
resentation that can be easily implemented and do
not interfere with architectural additions. Punctua-
tion restoration can be applied to reinforce structure
understanding and improve robustness of learned
representations regardless of model choice, or task-
specific engineering policy. The effective objective
requires no supervision, and one can construct a
training corpus with little computational or manual
resources.

Limitations

The idea of structure understanding reinforcement
via punctuation restoration is still young–many de-
cisions relevant to the learning objective in this
paper, including selection of punctuation marks
and source of learning corpus warrant additional
investigation in future work. Our set of training
hyper-parameters also will benefit from additional
attention.

Among the 4 behaviors discussed in Section 1,
we find direct evidence that punctuation restoration
mitigates only three of them. While we predict
that unsupervised structure learning via objectives
like punctuation restoration can help mitigate the
reversal (factorization) curse, this will need explicit
verification.

While our experiments show promise in base-
sized natural language understanding models for
English, its effects in larger models, implications
to generative or conversational systems, and gen-
eralization to other languages and thus language-
agnostic nature also need to be verified.

It is also likely that punctuation restoration is
not the only unsupervised learning objective that
can be used to improve the representation learn-
ing stage of training NLP systems. Other forms
of unsupervised structure learning, possibly sim-
pler and more effective methods than punctuation
restoration, as well as optimizations on objective

3And decoding method, discussed in Appendix B

combination (e.g. with word prediction methods)
should be studied in future work.

Finally, although we believe that additional opti-
mization on punctuation restoration improves the
models’ encoded linguistic structure, leading to per-
formance jumps between T5 and PR-T5, we do not
control for the additional compute or the exposure
to novel data in this paper. Future work explicitly
controlling for such variables will provide more
robust arguments for punctuation restoration as a
representation learning objective.
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A Additional details on experimental
setup

We train the model on the punctuation restoration
objective for 40 epochs, before fine-tuning with su-
pervised datasets for downstream tasks. The exper-
iments are run on a single V100 GPU with 32GB
VRAM, with half precision and gradient accumula-
tion enabled at 16. Our choice of hyper-parameters
are as follows: batch size 32, maximum sequence
length 256, learning rate 3e-4, maximum grad norm
0.5, and Adam epsilon 1e-8. Number of fine-tuning
epochs was 10, with the exception of SRL, which
is fine-tuned for 1 epoch only. The additional pre-
training lasts about 2 weeks, while the length of
each epoch of training varies across datasets be-
tween 10 minutes and around 2 hours.

A.1 Discriminative approach

While there exist sophisticated attempts to incor-
porate the decoder layers in producing a discrimi-
native model from a pre-trained encoder-decoder
architecture (Liu et al., 2022), we use a simple ar-
chitecture where we forgo the decoder block and
place a T5ClassificationHead on top of the en-
coder block of the T5 model. That is, we take the
hidden state output from model’s encoder and use it
as input to the classification head. An illustration of
the model architecture is shown in Figure 1. After
additional pre-training on punctuation restoration
objective, the decoder block of the t5-base model
is removed and a newly initialized classification
head is placed on top of the encoder block. The
architecture is comparable to those of BERT-like
encoder-only models. Even by retaining weights
from the encoder blocks only, we observe that ad-
ditional unsupervised structure learning via punc-
tuation restoration results in downstream task per-
formance improvement.

A.2 Joint multitask generative approach

The joint multitask approach, where we focus on
open information extraction using the EconIE-PRO
dataset and NER using the Econ-mNER dataset, is
similar to the generative approach. The input se-
quence is identical to the experiments from Section
3, but the output sequence is a concatenation of out-
put sequences from the two datasets, as illustrated
in Table 4.

B Additional details on dataset

We use a suite of structure-related NLP tasks to
measure model structure understanding. Relevant
tasks include named entity recognition (NER), sen-
tence boundary detection (SBD), open information
extraction (OpenIE), chunking, semantic role la-
beling (SRL), part-of-speech tagging, and relation
classification. Our selection mostly follows that
from Wang et al. (2021) and Lee et al. (2024). We
use both public and internal datasets, and check for
in- and out-of-distribution generalization. A full
list of datasets for each task is shown in Table 5.
In the main body of the paper, we discuss effects
of punctuation restoration across task, dataset, and
setting. Here, we discuss another variable across
which punctuation restoration is effective: decod-
ing method.

B.1 Entity generation tasks

NER, OpenIE, SRL, and relation classification
are entity generation tasks, where fine-tuned mod-
els autoregressively generate entity objects. For
example, (Faker: PER), (Faker, is, a
League of Legends esports player), (Faker,
employeeAt, T1) are NER, OpenIE, and relation
classification examples, respectively. The order in
which entities are generated does not affect evalua-
tion in the case of entity generation tasks.

Source Faker is a League of Legends esports player,
currently mid laner and part owner at T1.

OpenIE (Faker, is, a League of Legends esports player)
(Faker, is mid laner and part owner at, T1)

NER (Faker: PER) (T1: ORG)
Multitask (Faker: PER)

(Faker, is, a League of Legends esports player)
(Faker, is mid laner and part owner at, T1)
(T1: ORG)

Table 4: Example output from generative NER, OpenIE,
and multitask models.

B.2 Tag sequence generation tasks

Chunking and POS tagging are tag sequence
generation tasks, where fine-tuned models auto-
regressively generate tag sequences. "NP VP ADVP
PP NP NP NP" and "NP VBZ DT NP IN NP" are
example sequences of chunking and POS tagging,
respectively.
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T5ClassificationHead

(Faker: PER)
(T1: ORG)

B-PER O O O O O O O O O O O O O O B-ORG

(Faker, is, a League of Legends esports player)
(Faker, is mid laner and part owner at, T1)

Linear (LM head)

T5Block (decoder)

T5Block (encoder)

(b)

Faker is a League of Legends esports player, 
currently mid laner and part owner at T1

T5Block (encoder)

Faker is a League of Legends esports player, 
currently mid laner and part owner at T1

(a)

Figure 1: (a) The t5 architecture for a generative, text-to-text approach to NLP tasks. Here, we illustrate open
information extraction. (b) A modification to the t5 architecture to allow a discriminative approach to NLP tasks.
Here, we illustrate named entity recognition.

B.3 Sequence generation tasks

Punctuation restoration and sentence boundary de-
tection are sequence generation tasks. Fine-tuned
models auto-regressively generate natural text se-
quences, with predefined tags to perform the task.
For example, a sentence boundary detection model
would generate a [<s>] token between sentences,
given a passage.

B.4 Token classification tasks

NER in the discriminative setting is a token classi-
fication task. Given a sentence of length n, the fine-
tuned model outputs an array of length n, each ele-
ment of which represents whether its corresponding
token is part of a named entity. For example, one
from a tag set such as [O, B-PER, I-PER, B-LOC,
I-LOC, B-ORG, I-ORG], as illustrated in Figure
1.

C Additional details on results

In our results, improvements from punctuation
restoration persist across decoding methods–entity
generation in NER, OpenIE, SRL, and relation
classification; tag sequence generation in chunk-
ing and POS tagging; sequence generation in sen-
tence boundary detection; and token classification
in discriminative NER.

C.1 Objective results

Punctuation restoration, along with capitalization
restoration is no trivial task, especially when the
model needs to predict restoration location without
local context (Gravano et al., 2009; Alam et al.,
2020; Păiş and Tufiş, 2022; de Lima et al., 2024;
Zhong and Sun, 2025). Should our hypothesis hold,
it is likely that syntactic signals from punctuation
restoration transfer more effectively in models with
stronger punctuation restoration performances. We
experiment with three sizes of the T5 architec-
ture (Raffel et al., 2019). We consider t5-small,
t5-base, and t5-large. Table 6 includes their
punctuation restoration performance, in addition to
ChatGPT’s (Brown et al., 2020) zero-shot perfor-
mance as a reference point, which shows that the
objective is nontrivial.

Across the T5 models, there is some correla-
tion between size and punctuation restoration per-
formance. Because the performance gap between
t5-base and t5-large models is small (•.00),
while gap between t5-small and t5-base more
significant (▲.05), we use the t5-base model for
our experiments.

We also note that our selection of the T5 model
is due to its ability to perform both generative and
discriminative tasks after single pre-training.
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Task Dataset Source Task type

Internal datasets

PR finPR Rule-based tagging on finance news Seq. gen.
NER Econ-mNER Manual tagging on finance news and corporate filings Ent. gen., Tok. cls.

Econ-sNER Semi-supervised tagging on finance news Ent. gen.
OpenIE EconIE-PRO Rule-based tagging on finance news, predicate range optimized Ent. gen.

Public datasets

NER GENIA Kim et al. (2003) Ent. gen.
CoNLL 2003 Tjong Kim Sang and De Meulder (2003) Ent. gen.
ontonotes Weischedel et al. (2013) Ent. gen.

SBD PTB Marcus et al. (1993) Seq. gen.
OpenIE OIE2016 Stanovsky and Dagan (2016) Ent. gen.

CaRB Bhardwaj et al. (2019) Ent. gen.
Chunk, POS CoNLL 2000 Tjong Kim Sang and Buchholz (2000) Tag gen.

CoNLL 2003 Tjong Kim Sang and De Meulder (2003) Tag gen.
SRL CoNLL 2012 Pradhan et al. (2012) Ent. gen.
ORE TACRED Zhang et al. (2017) Ent. gen.

Table 5: We use a total of 14 datasets across 8 tasks, including punctuation restoration. Four are internal datasets,
while the rest are publicly available.

Model architecture P R F1

ChatGPT 0-shot* .75 .71 .73
t5-small .91 .86 .88
t5-base .93 .92 .93
t5-large .94 .93 .93

Table 6: Punctuation restoration performance after 50
epochs (small), 40 epochs (base), and 20 epochs (large)
of training respectively. *Measured on a small subset of
the punctuation restoration evaluation dataset.

C.2 Joint multitask generative setting

Similarly to the generative approach, we observe
that additional unsupervised structure learning
via punctuation restoration results in downstream
task performance improvement (▲.02 NER and
▲.03 OpenIE). While PR-T5 multi-task perfor-
mance slightly degrades compared to its single-
task generative setting (▼.02 NER and •.01 Ope-
nIE), multitask-T5 outperforms single task-T5
on EconIE-PRO, an open information extraction
dataset (▲.13).

C.3 Discriminative setting

Given the results from the single-task generative ap-
proach, the transfer from punctuation restoration to
multi-task generative approach may be no big sur-
prise, as there is no drastic difference between the
generative nature of the two approaches. However,
we report that our improved representations from

punctuation restoration non-trivially transfers to the
discriminative approach as well, where the decoder
block is removed from the model, as illustrated in
Figure 1. Although the maximum performance for
T5 and PR-T5 are similar at .91 (•.00), there is a
significant difference in the minimum, at .78 and
.82, respectively (▲.04). Punctuation restoration re-
sults in not only higher performance, but also more
consistent and stable sets across different initializa-
tions.
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Abstract

Large language model development relies on
the pre-train-then-align paradigm, in which the
model is typically pre-trained on a large text
corpus and undergoes a tuning stage to align
the model with human preference or down-
stream tasks. We investigate the relationship be-
tween pre-training and supervised fine-tuning
by considering multiple tasks as well as differ-
ent pre-trained model checkpoints. Our results
on 18 datasets and two models suggest that i) al-
though the model benefits significantly through
supervised fine-tuning, it may forget previously
known domain knowledge and tasks that are
not seen during fine-tuning; ii) the model ex-
hibits high sensitivity to evaluation prompts
after supervised fine-tuning, but this sensitivity
can be alleviated through further pre-training;
iii) continual pre-training improves the model
in a latent way that manifests after fi ne-tuning;
iv) The model can already solve some tasks
after pre-training, while fine-tuning most ben-
efits datasets where the model does not show
capability during pre-training. 1

1 Introduction

The rise of large language models (LLMs) as a
general-purpose tool for a diverse range of nat-
ural language processing tasks has dramatically
transformed the field, introducing new paradigms
for data collection and model training (Brown
et al., 2020, Biderman et al., 2023, Touvron et al.,
2023, Jiang et al., 2023, Chowdhery et al., 2023,
Groeneveld et al., 2024, Wang et al., 2024, in-
ter alia). Numerous models, training methods,
datasets, and evaluation methods continue to be
developed on an ongoing basis. Nevertheless, a
unified paradigm has emerged for training LLMs:

1Code, results, and data to repro-
duce the experiments are available at
github.com/KaiserWhoLearns/AmuroCharPTFTRelationship.
All the model checkpoints resulting from this work are avail-
able at huggingface.co/KaiserWhoLearns/PTvsSFT_OLMo1b

Figure 1: Illustration of the experimental scheme. In-
termediate pre-training checkpoints are fine-tuned on
different datasets.

pre-train on an enormous corpus of diverse docu-
ments, ranging from 250B (Biderman et al., 2023)
to 15T (AI@Meta, 2024) tokens, followed by an
alignment stage to make the model more useful and
performative for various tasks.

Based on this paradigm, work has focused on
improving these two stages. Work to improve pre-
trained models includes larger training sets (Hoff-
mann et al., 2022; AI@Meta, 2024; Touvron et al.,
2023), different data selection mechanisms (Xia
et al., 2024), higher quality data (Zhou et al., 2024),
and various model architectures (Su et al., 2024;
Touvron et al., 2023). Meanwhile, research on
model alignment includes different training objec-
tives (Rafailov et al., 2024; Schulman et al., 2017),
new datasets (Narayanan and Aepli, 2024), more
efficient training (Hu et al., 2021; Dettmers et al.,
2024) and safety tuning (Bianchi et al., 2023). The
alignment stage usually involves either supervised
fine-tuning for specific tasks or instruction fine-
tuning for general-purpose usage. Regardless, fine-
tuning (almost always) comes at the end of pre-
training and yields remarkable improvements on
downstream tasks (Touvron et al., 2023; Groen-
eveld et al., 2024). Consequently, the benefits of
each stage are largely explored independently, with
improvements to pretraining being orthogonal to
benefits from model alignment.

Rather than exploring these two training regimes
independently, we ask: What does the model learn
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and forget during pre-training and fine-tuning?
Specifically, how do pretraining and fine-tuning
interact to produce the resulting model? Does
more pre-training hinder better fine-tuning results?
Answering these questions requires us to exam-
ine how models learn during pre-training and how
this affects fine-tuning. Therefore, we begin by
fine-tuning two language models under a variety
of conditions to determine how fine-tuning affects
model behavior. We explore both supervised and
instruction fine-tuning, testing the models’ memo-
rization and forgetting when learning specific tasks
and serving as general-purpose language-AI tools.
We then explore the affect of pre-training on these
behaviors by fine-tuning multiple pre-training
checkpoints of a large language model (Figure 1),
evaluating each checkpoint and its fine-tuned vari-
ant on downstream evaluation sets. We track model
abilities during pre-training and compare them to
improvements achieved after fine-tuning at the cor-
responding pre-training step.2

Our experiments yield the following insights into
LLM training: (1) although supervised fine-tuning
can improve performance on in-distribution tasks,
it can also cause the model to forget domain knowl-
edge or tasks that it was previously capable of solv-
ing (§4); (2) fine-tuned models show high sensitiv-
ity to evaluation prompts, but this sensitivity can
be alleviated by more pre-training (§4); (3) contin-
ued pre-training can improve a model in ways that
are only revealed after fine-tuning (§6); (4) tasks
for which the model already performs well dur-
ing pre-training benefit much less from fine-tuning
than those where the model does not demonstrate
capabilities (§5, §6);

Our findings provide insights into model train-
ing and can inform methods for both pre-training
and fine-tuning. Furthermore, our work shows the
value of analyzing the training dynamics, in addi-
tion to analyzing the final checkpoint of an LLM,
as an aspect of interpretability, and we encourage
model developers to release these checkpoints to
aid future studies.

2 Background: Model Training

We use “model alignment” as a general term for
techniques that align a model with a desired behav-
ior, often accomplished by fine-tuning models after

2While we believe that we were the first to explore these
issues through intermediate model checkpoints, recently re-
leased work has also utilized pre-training checkpoints and are
highlighted in Section 8.

pretraining. The term is also associated with other
definitions (Shen et al., 2024).

We begin with a brief survey of the core com-
ponents of LLM training: pre-training, fine-tuning,
and instruction fine-tuning. The first step of train-
ing an LLM is pre-training on a massive text corpus
(Achiam et al., 2023; Touvron et al., 2023; Groen-
eveld et al., 2024). Initial work increased model
size to hundreds of billions of parameters (Brown
et al., 2020; Rae et al., 2021; Chowdhery et al.,
2023), along with explorations in model size, train-
ing corpus size, and training data characteristics
(Radford et al., 2019; Hoffmann et al., 2022; Gu-
rurangan et al., 2020). Other work increased the
amount of pre-training data (Computer, 2023; Sol-
daini et al., 2024), with new models now reaching
15 trillion tokens (AI@Meta, 2024).

After the pre-training stage, when a specific task
of interest has been identified, supervised fine-
tuning can improve a pre-trained model. Task-
agnostic tuning became popularized with the ad-
vent of T5 models (Raffel et al., 2020), where a
pre-trained LLM is tuned using a general text-to-
text solution. Instruction fine-tuning is preferred
when more general model behaviors are desired.
When multiple tasks are given to the model, the
model is commonly given a task-specific prefix or
an instruction along with the task input, leading
to the development of various methods of prefix
tuning (Li and Liang, 2021) and instruction tuning
(Wei et al., 2021; Mishra et al., 2022; Victor et al.,
2022).

Other works explore human preference tuning
with or without a reward model (Christiano et al.,
2017; Ziegler et al., 2019; Stiennon et al., 2020;
Ouyang et al., 2022; Rafailov et al., 2024; Song
et al., 2024; Xu et al., 2024). In-context learn-
ing utilizes a small amount of supervised data to
improve model performance without updating the
parameters. In this work, we focus specifically on
single-task supervised fine-tuning and multi-task
instruction tuning.

3 Experimental Setup

In this section, we describe the models and datasets
used. The hyperparameter tuning procedure and
setup for each fine-tuning setting can be found in
Appendix B.

3https://huggingface.co/datasets/pietrolesci/gpt3_nli
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Supervised Fine-Tuning

Task Training ID Test OOD Test

Summary
Generation XSum XSum,

XLSum CNN

Question
Generation SocialIQa SocialIQA SciQ,

TweetQA

Natural Language
Inference MNLI MNLI1,

MNLI2
RTE,
GPT3NLI3

Paraphrase
Detection Paws Paws QQP,

STS-B

Instruction Tuning

Dataset Description

TÜLU-v2 A mixture of instruction datasets.
ARC Grade-school multiple-choice QA.
OpenbookQA Open book exam QA.
Hellaswag Commonsense inference.
BoolQ Reading comprehension.
SciQ Science exam multiple choice QA.

Table 1: Dataset information. For Generation tasks,
ROUGE-L is used as evaluation metric, and accuracy is
used for classification tasks. ID = In-domain, OOD =
Out-of-domain.

3.1 Model Choice

We consider two open models of different architec-
tures and scales: Llama3-8B (AI@Meta, 2024) and
OLMo-1B (Groeneveld et al., 2024). To minimize
potential confounding factors such as multilingual
ability and double descent (Belkin et al., 2019; Ca-
ballero et al., 2022; Schaeffer et al., 2023), we ex-
clusively select models predominantly pre-trained
in English and incorporate significantly more pre-
trained tokens than the number of parameters. We
do not include models trained in a multi-stage man-
ner to ensure uniformity of the tokens seen by the
model during pre-training. Some of our experi-
ments consider intermediate pre-training check-
points. We select checkpoints uniformly by the
number of tokens seen from the pre-training history
along with the first and the final checkpoints. Un-
fortunately, very few large language models release
intermediate pre-training checkpoints (summarized
in Table 2). Further consideration and reasoning of
model selection are included in Appendix A.

3.2 Training Procedure

We fully fine-tune each of the selected model check-
points using two different procedures to create
fine-tuned models: supervised fine-tuning and in-
struction tuning. The supervised fine-tuning is con-
ducted separately for each model checkpoint and
dataset, while the instruction fine-tuning is done

once using the instruction dataset. The instruction-
tuned model is evaluated on a suite of LLM bench-
marks. All experiments are conducted on two
Nvidia 80GB A100, with a total cost of approx-
imately 1100 GPU hours. The detailed number
of GPU hours consumed for each experiment is
included in Appendix E.

Supervised Fine-tuning. We adapt the datasets
from Yang et al. (2024) for supervised fine-tuning.
For each in-domain dataset, one to two cross-
domain evaluation datasets are supplied. OLMo-
1B is fully fine-tuned for 3 epochs with a batch size
of 8, while Llama3-8B is fine-tuned with a batch
size of 16 and 2 training epochs. Both models are
trained with learning rates resulting from minimal
hyperparameter tuning (Appendix B). Each task is
formatted using a default prompt-completion for-
mat (Table 5).

Instruction Fine-Tuning. We instruction-tune
the model on TÜLU (Ivison et al., 2023), following
the decision of Groeneveld et al., 2024. Each model
checkpoint is fully fine-tuned for 5 epochs with a
batch size of 8 and a learning rate of 2× 10−6.

3.3 Evaluation
For each model, we conduct a few-shot evaluation
with a shot size of 4, after examining with shot size
in {0, 2, 4, 6}.

Datasets. The datasets are summarized in Table
1 and data licenses are in Table 7. We evaluate
the model with an in-domain test set and one or
two out-of-domain test sets for each of the super-
vised fine-tuning tasks. We conduct experiments
on the tasks of summary generation (Narayan et al.,
2018; Hasan et al., 2021; Hermann et al., 2015),
question generation (Sap et al., 2019; Xiong et al.,
2019; Welbl et al., 2017), natural language infer-
ence (Williams et al., 2018; Wang et al., 2018; Da-
gan et al., 2006; Bar Haim et al., 2006; Giampic-
colo et al., 2007; Bentivogli et al., 2009), and para-
phrase detection (Zhang et al., 2019; Wang et al.,
2018; Agirre et al., 2007). We subsample 6,000
training instances for each set to ensure a fair com-
parison.

In instruction fine-tuning, we base our down-
stream evaluation settings on Groeneveld et al.
(2024), as OLMo is found to have stable per-
formance on these datasets. The instruction-
tuned models are evaluated on ARC (both arc
easy and arc challenge) (Clark et al., 2018),
OpenbookQA (Mihaylov et al., 2018), Hellaswag
(Zellers et al., 2019), BoolQ (Clark et al., 2019),
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Figure 2: Example of model performance with different task formats. The figure of all datasets can be found in
Figure 14.
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Figure 3: LLAMA3-8B performance with different task
format. Instruct and Default always lead to highest
evaluation results.

and SciQ (Welbl et al., 2017).
Metrics. We use accuracy (Pedregosa et al.,

2011) for classification tasks and ROUGE-L (Lin,
2004) for generation tasks. The maximum amount
of newly generated tokens is set to 5 for classifica-
tion tasks and 60 for generation tasks. Outputs are
generated with greedy decoding. For classification
tasks, we experiment with both constrained decod-
ing and logit-based predictions. We find the best
performance by selecting the label with the highest
logit of its first subtoken (Appendix C).

4 Supervised Fine-Tuning: What does the
model learn and forget?

We begin our analysis with the supervised fine-
tuning process to understand the downstream re-
sults of the training process. Specifically, we ex-
plore three dimensions: task format, task trans-
fer, and domain knowledge. In each case, we
fine-tune both final checkpoints and intermediate
pre-training checkpoints to understand the relation-
ship between pre-training and fine-tuning.

4.1 Task Format

LLMs can be extremely sensitive to prompt per-
turbation in few-shot settings (Sclar et al., 2023;

Leidinger et al., 2023; Salinas and Morstatter, 2024;
Wahle et al., 2024). We hypothesize that fine-
tuning fits the model to a specific task format, re-
sulting in higher performance when the evaluation
set matches this format. To test this hypothesis, we
vary the task format to either match the training for-
mat, use a different format, or rely on instructions.

We carefully construct three different prompt for-
mats for the following settings. 1) Default is the
same format used for training, where we expect the
model to benefit from learning the task format; 2)
IO format, by contrast, reflects a common way of
performing supervised fine-tuning by incorporating
only unprocessed input and output; 3) Instruct
uses a human-readable instruction template to for-
mat the input. Table 5 in the Appendix shows
an example of each format. The performance of
Llama3-8B with different task formats is shown
in Figure 3. Checkpoint performance on OLMo
before and after fine-tuning is shown in Figure 2.

Across both models, IO format leads to the least
favorable performance, as the only task-specific
information in this format is included in the eval-
uation shots. Model reports similar performance
when evaluated with the default and instruct
format, aligning with the findings in Hewitt et al.
(2024) that the models retain their instruction-
following ability after fine-tuning without instruc-
tions. However, in the early pre-training steps,
aligning the task format with fine-tuning data
plays a crucial role (Figure 2), suggesting that the
instruction-following ability has not yet been devel-
oped. In this view, fine-tuning teaches the model
how to format a response for the task, while
further pretraining enhances the instruction-
following ability. In other words, the instruction
provides a directed prior for the model to behave
in a certain way.
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Figure 4: Example of out-of-domain performance for
fine-tuned models. The solid blue line represents the
fine-tuned checkpoint evaluated on an out-of-domain
dataset, and the dashed orange line represents the base
checkpoint where the model is not fine-tuned. Figure 4a
shows an example of fine-tuning hurting OOD perfor-
mance, while Figure 4b shows an example of fine-tuning
boosting OOD performance as pre-traininng proceeds.
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Figure 5: Ratio of out-of-domain performance change
for each task, averaged across checkpoints.

4.2 Domain Knowledge

We next explore how the domain-generalization
ability is affected by fine-tuning by inspecting
whether the model forgets the domain knowledge
after fine-tuning on a different domain. An ex-
ample of OOD model performance is shown in
Figure 4, and the mean ratio of change by datasets
is presented in Figure 5 and Figure 15.

The models do not benefit equally from the in-
domain fine-tuning: Llama shows subtle benefits
on question generation tasks, while not benefiting
at all on the other tasks (Figure 15). Across OLMo
training history (Figure 5), NLI datasets experi-
ence a boost when fine-tuning on MNLI, while fine-
tuning on Paws is detrimental to other paraphrase
detection datasets. This suggests that both forget-

ting and learning are happening in fine-tuning: the
model learns to perform the task with in-domain
knowledge, but it may, in turn, forget information
more distant from what is learned in fine-tuning.
Furthermore, under the same task, the amount
of general-purpose pre-training may not affect
the model’s reaction to out-of-domain knowl-
edge. Questions remain, however, about whether
domain-specific continual pre-training or contin-
ual pretraining on similarly distributed data would
bring different conclusions, which requires further
study of pre-training dynamics.

4.3 Task Transfer

Model forgetting occurs when model training on
new tasks improves those tasks at the expense of
previously trained tasks (Luo et al., 2023; Mehta
et al., 2023; Li and Lee, 2024). To understand
whether the model will forget a previously known
task solution when fine-tuned on a different one, we
evaluate model forgetfulness by examining whether
the model does worse on some tasks after fine-
tuning for other tasks. Specifically, we divide our
tasks into two types: classification and generation.

We notate the training datasets as DT and the
evaluation datasets as DE . We represent the per-
formance of a pre-trained model (BASE) on check-
point i as PerfiBASE(d) for an evaluation dataset
d ∈ DE , and the performance of the i-th check-
point fine-tuned on dataset t ∈ DT be Perfit(d).
To normalize the effect caused by uneven perfor-
mance across different datasets, we compute the
mean ratio of change (MRC) in performance for
each checkpoint as follows.

MRC = 1
|DE\{t}|

∑
∀d∈DE ,d ̸=t

Perfit(d)−PerfiBASE(d)

PerfiBASE(d)

(1)
Models fine-tuned on classification tasks and

evaluated on generation tasks decrease on aver-
age 61.4% compared to models that are never fine-
tuned. In contrast, models fine-tuned on generation
tasks can still perform the same as the BASE model
on classification tasks, with a 0.3% MRC, which
is not statistically significantly different from a 0%
change. Our findings on all pre-training check-
points align with the findings of Yang et al. (2024)
on the final checkpoint of LLAMA-7B and our ex-
periments on the final checkpoint of Llama3-8B
(Appendix G).

Regardless of the pre-training stage, a model
maintains classification abilities when trained
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Figure 6: Few-shot performance on different pre-training steps.

for generation but loses generation abilities
when trained for classification. This is not sur-
prising given that classification tasks can be seen as
a subset of generation, while the reverse is not true.
The model follows a simplicity bias (Shah et al.,
2020) and thus is more likely to memorize simple
classification tasks than generation tasks with an
exponentially larger search space. Additionally,
since we evaluate the classification tasks based on
the output logits and the base model performs ran-
domly on the classification tasks, it is much easier
for the models to maintain the same performance
as the BASE models. Regardless of the stage of
pre-training, fine-tuning can cause a model to lose
abilities when the desired fine-tuning behavior does
not support those abilities.

Across these three experimental settings, we
find that fine-tuning teaches a model how to per-
form a task without hurting the model’s instruction-
following ability, but can sacrifice generalization
across domains and tasks.

5 How does the model change across
pre-training?

Section 4.1 reveals that the effect brought by fine-
tuning could be different depending on the amount
of pre-training, but how exactly does pre-training
affect downstream fine-tuning results? We begin
by considering how additional pre-training changes
the BASE model. Typically, researchers track the
value of the training or held-out loss during training.
However, performance improvements on down-
stream tasks do not always follow the same trend
with the loss curves (Groeneveld et al., 2024).

Instead, we evaluate the pre-trained checkpoints
with few-shot examples, as models without align-
ment tend to do poorly in a zero-shot context. Four
shots are randomly sampled from the datasets,
which are selected based on the highest perfor-

mance shot amount reported in Yang et al. (2024).
The model’s performance at each pre-training step
is reported in Figure 6.

Broadly speaking, our results suggest that all
datasets fall into one of two groups. For the first
group of datasets (Figure 6a), although the model
shows clear improvement during the early stages
of pre-training, performance levels off fairly early
on and remains consistent. The dramatic improve-
ments in the early stages of pre-training may result
from larger steps in early optimization. We find im-
provements stop increasing past step 342,000. The
second group (Figure 6a) shows tasks that are never
learned during pre-training. Performance remains
constant throughout the whole pre-training process
even when we vary shot sizes. These datasets in-
clude MNLI, XSum, and BoolQ. A natural hypoth-
esis for this finding is potential data contamina-
tion in the pre-training data. However, the eval-
uation datasets are selected based on the popu-
larity of the task and the content of pre-training
data. All datasets that experience improvement do
not exist in the model’s pre-training data (Soldaini
et al., 2024), while the more likely leaked datasets
(MNLI, XSUM) never gain an improvement during
the pre-training process.

Overall, these results reveal an interesting di-
chotomy. Some tasks can be learned during pre-
training, while others cannot. Next, we explore
what exactly the model is learning regarding this
second group of datasets during pre-training by
exploring the fine-tuned models.

6 Does more pre-training yield better
fine-tuning results?

Groeneveld et al. (2024) compares OLMo’s perfor-
mance on several tasks before and after fine-tuning
the final checkpoint and finds that fine-tuning en-
ables the model to do well on tasks for which the
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Figure 7: Example of few-shot performance on different
pre-training steps of the models that benefited (7a) and
did not benefit from fine-tuning (7b). The solid blue line
represents the fine-tuned checkpoint, and the dashed
orange line represents the base checkpoint. The results
of all datasets can be found in Figure 10 and Figure 9.
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Figure 8: Amount of performance increase brought by
fine-tuning between tasks that model can solve in pre-
training (mandarin orange) and tasks that the model
could not solve until fine-tuning (sage green). The exact
number of mean increase is shown in Appendix J.

unaligned model does poorly. We observe (§5) that
while some datasets improved during pre-training,
there is a group of datasets for which a pre-trained
model does poorly. Does the model learn useful
information for these tasks but cannot express it
without fine-tuning? In this section, we further
explore this dataset dichotomy by examining fine-
tuned checkpoints for each of the datasets.

Our results appear in Figure 7 and Figure 8. First,
we consider those datasets where the pre-trained
models do well (Figure 6a). These datasets do not
improve with fine-tuning, suggesting that whatever
is learned during fine-tuning, which we discuss be-
low, the model already gains the knowledge during
pre-training. This effect is observed at all check-
points; fine-tuning simply does not help.

However, a different story is observed for
datasets that are not learned during pre-training.
For these, fine-tuning yields significant improve-

ments at every model checkpoint, with Figure 8
showing the magnitude of improvement on these
datasets compared to no improvement to the
datasets already learned during pre-training. More-
over, earlier checkpoints obtain more substantial
gains from fine-tuning than later checkpoints. The
benefit of fine-tuning continues to increase until a
certain threshold in pre-training steps is reached
(approximately 424,000). Figure 7 shows represen-
tative plots comparing the performance of a pre-
trained versus fine-tuned model at different check-
points for two datasets (full list in Appendix F).
For Hellaswag (learned during pre-training), fine-
tuning does not benefit the model, even during
early checkpoints when the model performs poorly
on the task. Nevertheless, for MNLI (not learned
during pre-training), fine-tuning dramatically im-
proves the model. Interestingly, later checkpoints
achieve better results after fine-tuning, even when
the performance of the pre-trained model is un-
changed. This suggests that the model is, in fact,
improving during pre-training, but it cannot
express that improvement without fine-tuning.

Our findings suggest that early stopping in pre-
training will not be detrimental to downstream
fine-tuning performance. When the budget is lim-
ited, the benefits of fine-tuning an LLM could ex-
ceed the benefits of continued pretraining, which
sheds light on the potential of a cost-effective train-
ing paradigm with less pre-training. However, di-
rectly identifying such stopping criteria without
fine-tuning intermediate checkpoints is challeng-
ing. We only empirically observed that the point
where more pre-training lead to diminishing return
on downstream fine-tuning results approximately
align with the turning point of few-shot perfor-
mance in Section 5. Without such a hypothesis, the
improvement trend is invisible before fine-tuning
the checkpoints. Overall, when resource-intensive
pre-trained LLMs are not available, fine-tuning
models on checkpoints with less pre-training may
be a reasonable practical choice for obtaining a
high-quality model.

7 Discussion

Our study fine-tunes model pre-training check-
points to understand the dynamics of pre-training
and fine-tuning on model performance.

Fine-tuning teaches additional task format but
leads to forgetting unused abilities. Our results
show that fine-tuning guides the model to under-
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stand the format and complete a given task. As this
information diminishes, the model’s overall ability
improves. Additionally, more pre-training will lead
to a model that reacts better to instruction-style
prompts, and the ability to interpret such instruc-
tion will not be lost when the model is fine-tuned
in a different format. However, fine-tuning comes
at the expense of other model abilities, such as the
capability of solving tasks or domains that are unre-
lated or weakly related to the fine-tuning task. This
insight can be helpful in our understanding of the
multitask abilities of LLMs, where certain tasks
can introduce conflicts during multi-task training
(Mueller et al., 2022).

Some datasets can be learned without fine-
tuning. We discover a dichotomy between datasets.
Some are learned during model pre-training, while
others show no improvements during pre-training.
Furthermore, the datasets learned during pre-
training do not benefit from fine-tuning. This ob-
servation, combined with our study about what is
learned during fine-tuning (§4) suggests that some
tasks are presented in a manner that aligns with
what the model sees during pre-training, and thus
fine-tuning provides no additional information. It
may be possible to modify tasks to better align with
pre-training and thus make them learnable.

Pre-training can improve models in unseen ways.
Some datasets are not learned during pre-training
but benefit significantly from fine-tuning (§5).
However, these datasets still benefit from addi-
tional pre-training, even though those benefits are
not revealed without fine-tuning (§6). The model
learns important information to solve the task, even
though it cannot express that information without
fine-tuning. We empirically observe that the point
where more pre-training lead to diminishing return
on downstream fine-tuning results approximately
align with the turning point of few-shot perfor-
mance in Section 5. Future work may identify
ways to verify the turning point and detect these
improvements during pre-training, which can better
guide pre-training choices to produce models that
perform better post-fine-tuning. Perhaps there is a
way in which information about these tasks can be
included in pre-training, allowing the model to bet-
ter utilize the massive amount of pre-training data.
For example, early stopping during pre-training
could lead to better utilization of limited training
resources if we know when to stop.

8 Related Work

Recent studies identify phase transition of model
training (Olsson et al., 2022; Wei et al., 2022),
where new capabilities or behaviors suddenly
emerge when certain thresholds of model complex-
ity are reached. The aspects of complexity often
include model size, amount of training by FLOPs
or tokens, and model architecture. Several prior
works studied the training dynamics of language
models by analyzing the internals of train-from-
scratch models (Tirumala et al., 2022; Chen et al.,
2023; Tian et al., 2023; Chen et al., 2024; Chang
et al., 2024). The results of these works suggest
that the behaviors that are often overlooked after
training could be valuable signals for model analy-
sis. In addition to train-from-scratch models, Ren
and Sutherland (2024) studied the fine-tuning dy-
namics of language models. This work focuses on
the effect of pre-training dynamics on downstream
fine-tuning results by fine-tuning intermediate pre-
training checkpoints on various tasks. Due to the
scarcity of publically accessible intermediate pre-
training checkpoints, the effect of fine-tuning at
different pre-training stages is largely unexplored.
Concurrent work (Snell et al., 2024) also fine-tunes
intermediate pre-training checkpoints and finds that
supervised fine-tuning results can be used as a
signal to predict when emergence occurs, while
our findings point out a dichotomy of model be-
havior on different datasets, with the potential for
data-efficient and budget-friendly training by un-
derstanding the stages of model training.

9 Conclusion

We explore the relationship between fine-tuning
and pre-training LLMs through fine-tuning mul-
tiple pre-training checkpoints of large language
models. Our results on 18 datasets and two models
provide insights into LLM training. We identify
the aspects that LLM learns and forgets during su-
pervised fine-tuning; By analyzing pre-training his-
tory, we find that pre-training improves the model
in a latent way that is only observable after fine-
tuning. The model may excel at some tasks without
fine-tuning. However, the model can rapidly learn
datasets that it does not demonstrate capabilities
during pre-training with a small amount of super-
vision. Overall, our study highlights the value of
analyzing language model training dynamics. We
encourage model developers to release pre-training
checkpoints to facilitate research on LLM training.
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Limitations

While our insights suggest directions for future
work, we note important limitations inherent in
our experiments. We discuss the weaknesses and
limitations in the following section.

Computing Resource. Due to computational
constraints, we can only conduct checkpointing
experiments on a 1B model. We supply the final
checkpoint of an 8B model to verify the findings
that are shared across checkpoints. The amount of
GPU hours spent for each experiment in this study
is listed in Table 4.

Model Size and Variant. For the analysis with
intermediate checkpoints, this study considered a
single, relatively small LLM, which may, therefore,
conceal the emergent capability brought by larger
models (Wei et al., 2022). To combat this, we
include the final checkpoint of an 8B model from
a different model family. Future work needs to
confront these issues on larger models and more
datasets.

Availbility of Pre-training Checkpoints. Al-
though Choshen et al. (2024) points out that the
behavior of a model can often be predicted with
a model with the same architecture but a differ-
ent family. This study would benefit significantly
from including a broader spectrum of models, but
the public pre-training checkpoint releases are lim-
ited. We list open-source LLMs with intermediate
checkpoint release in Appendix A. After a series of
preliminary experiments, we select available mod-
els’ best-performing and robust families.

Analysis Protocol. Wu et al. (2023) show that
the evaluation result may be affected by samples
that have been memorized by the model during
training instead of revealing the reasoning capabil-
ity. The only analysis protocol used in this work
is the downstream performance of a trained model.
More investigation should be done into model in-
ternals during pre-training dynamics and how they
relate to the effects of fine-tuning.

Training Paradigm. Although multiple tun-
ing strategies exist, to create a fair comparison
environment where checkpoints receive the same
amount of training, models are fine-tuned with a
fixed amount of epochs in this work. On different
pre-training stages, the model may converge at a
different speed. Further study can be done to study

the effect of pre-training on different fine-tuning
methods or fine-tuning dynamics in different pre-
training stages. We only explored the scenario
of full-parameter fine-tuning. Whether parameter-
efficient fine-tuning or human preference tuning
will lead to a different conclusion also remains an
open question.

Randomness. In this study, we only assess un-
certainty with Bootstrap during evaluation. How-
ever, uncertainty may emerge during training,
which poses optimizer initialization and data or-
dering, the study of which requires an extensive
amount of computing resources.
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A Model and Data Selection

Only a small subset of large language models pub-
licly release their intermediate training checkpoints.
We list these models in Table 2 and would like to
call for model developers to release intermediate
checkpoints in the future to aid the research of train-
ing dynamics. To reduce the confounding factor
of language and stages of training, we select the
models that are dominantly trained in English and
followed a single-staged training strategy. Only the
models pre-trained with significantly more tokens
than the model parameters are considered to avoid
the occurrence of double descent (Belkin et al.,
2019; Schaeffer et al., 2023) in the middle of pre-
trianing, which could lead to a broken scaling law
(Caballero et al., 2022) that complicates the analy-
sis. Additionally, we restrict our selection to mod-
els pre-trained on over one trillion tokens, thereby
ensuring a sufficiently extended training trajectory
is represented. We conduct initial experiments with
OLMo and RedPajama-INCITE. We observe that
the RedPajama-INCITE shows subtle improvement
following instruction-tuning or fine-tuning, and its
7B variant shows lower performance compared to
OLMo 1B. Therefore, we select OLMo 1.0 1B as
the backbone for analysis.

During this study, several recent initiatives re-
leased the intermediate checkpoints. We also list
these works in Table 2.

B Hyperparameter Tuning

For both supervised fine-tuning and instruction tun-
ing, we pre-set the effective batch size to 8, and
tune the learning rate within {2× 10−5, 2× 10−6,
2 × 10−7}. OLMo-1B is fine-tuned for 3 epochs
on the supervised fine-tuning tasks and 5 epochs

on Tulu for instruction tuning. Llama3-8B is fine-
tuned for 2 epochs with a learning rate of 5×10−6,
with learning rate selected from {5 × 10−5, 5 ×
10−6, 5 × 10−7}. In both settings, we adopt an
AdamW optimizer with a linear learning rate sched-
uler. The optimizer is warmed up for the first 3%
of the training time.

C Prediction Generation Method

For classification tasks, we examine three different
prediction generation methods: Free Generation
(Free), Constrained Generation (Constrained),
and Token Probability (TokenProb), the results are
shown in Table 3. In Constrained, we force the
output to include at least one label in the acceptable
label set. In TokenProb, we compare the logits of
acceptable labels and select the label with the high-
est score as the final output. This ablation study
is conducted only on the BASE and fine-tuned
versions of the final checkpoint of the pre-trained
model. We find that, although prediction gener-
ation methods have less effect on the evaluation
result of a fine-tuned model, BASE variants suffer
much more from not knowing the desired output.
Therefore, we proceed with all the classification
experiments with TokenProb.

C.1 Label and Tokenizations

Depending on the tokenizer variant, the label text
may be tokenized differently, leading to evaluation
unreliability. For example, in paraphrase detection,
the model could assign probability on both “yes"
and “ yes" (the same label with a prefix space).
This behavior is reported and explored in various re-
lated work (Sun et al., 2023; Batsuren et al., 2024;
Singh and Strouse, 2024). In this study, we le-
niently regard all individual tokens that contain the
whole label or part of the label along with some
special characters that do not affect the semantics
as an acceptable target label.

D Task Format

We adopt the task format from (Yang et al., 2024),
with an additional task format of input-output. How
each dataset is formated can be found in Table 5.

E GPU Hours per-Experiment

We show a table of GPU hours spent for each exper-
iment in Table 4. The total number of GPU hours
spent on this project is approximately 1067 A100
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Pythia OpenLLAMA K2 (LLM360) Crystal (LLM360) Baichuan2

Citation Biderman et al., 2023 Geng and Liu, 2023 LLM360, 2024 Tao et al., 2024 Yang et al., 2023

Size (Param)

70M, 160M,
410M, 1B,
1.4B, 2.8B,
6.9B, 12B

3B, 7B 65B 7B 7B, 13B

Languages English English English English English & Chinese

Pre-trained
Tokens 300B 1T 1.4T 1300B 2.6T

Note - - Multi-phase
pre-training

Multi-phase
pre-training -

OLMO-2 OLMO TinyLLaMA RedPajama-INCITE Bloom

Citation Ai2, 2024 Groeneveld et al., 2024 Zhang et al., 2024 Computer, 2023 Le Scao et al., 2023

Size (Param) 4T, 5T 1B, 7B 1B 7B 176B

Languages English English English English Multilingual

Pre-trained
Tokens 7B, 13B 3T, 2.5T 3T 1.2T 366B

Note Multi-phase
pre-training -

BOS Token leads
to training history
inconsistency.

Poor
fine-tunablity -

Table 2: Large language models with public release of intermediate pre-training checkpoints. All models are under
Apache 2.0 license.

Dataset Model Free Constrained TokenProb

MNLI Fine-tuned 0.786 0.791 0.792
BASE 0.0 0.0 0.327

RTE Fine-tuned 0.658 0.662 0.66
BASE 0.0 0.0 0.241

Paws Fine-tuned 0.871 0.878 0.878
BASE 0.0 0.0 0.558

STS-B Fine-tuned 0.775 0.741 0.744
BASE 0.0 0.0 0.964

Table 3: Performance of final checkpoint with different
prediction generation method.

hours. We lose track of the GPU hours spent on pre-
liminary experiments, so a lower-bound estimation
is reported.

F Per-dataset Figures

We show the model performance on each dataset
after supervised fine-tuning and instruction tuning
correspondingly in Figure 10 and Figure 9. The
datasets that already show improvement during pre-
training do not benefit from fine-tuning, while per-
formance improves drastically on the datasets that
the model has never learned during pre-training.

Out-of-domain Generalization The out-of-

domain performance for each dataset with respect
to pre-training steps is shown in Figure 11. Over-
all, the model generalizes well after fine-tuning on
NLI tasks, while its performance deteriorates when
evaluated on out-of-domain paraphrase detection
tasks.

Cross-task Generalization The cross-task per-
formance for each dataset with respect to pre-
training steps is shown in Figure 12 and Figure 13.

Task-Format The performance of models on
evaluation sets formatted with different prompt for-
matting methods is shown in Figure 14.

G Llama3-8B Results

To provide more evidence of the findings on a
different model architecture and size, we con-
duct some experiments on the final checkpoint of
Llama3-8B.

Task Transfer Similar to our findings with
OLMo, Llama3-8B fine-tuned on classification
tasks and evaluated on generation tasks decreases
on average 61.0% compared to models that are
never fine-tuned. In contrast, models fine-tuned
on generation tasks perform similarly to the BASE
model on classification tasks, with a 10.6% MRC.
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Prelinminary Experiments

Description GPU Hours

Instruction Tuning on LIMA, TULU, and NaturalInstructions ∼300
Model Performance Verification, Dataset Selection 120

Instruction Tuning

Instruction Tuning 360
Evaluation 10
Total 370

Fine-Tuning

XSum SocialIQa MNLI Paws

Training 12 6 4.6 5.3
Evaluation 8 5.3 3 2

OOD Evaluation 96 32 11 25.6
CrossTask Evauation 5.2 6.5 7.7 8.15

Task Format Evaluation 16 12.8 6 4
Total 137.2 + 62.6 + 32.3 + 45 = 277.1

Table 4: GPU hours for each experiment. The total amount of GPU hours spent in this project is approximately
1067 A100 hours.
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Figure 9: Model performance after instruction tuning on each pre-training step.

Domain Knowledge The ratio of out-of-domain
performance change by task is shown in Figure 15.
Overall, we observe that Llama and OLMo experi-
ence benefits with different tasks after fine-tuning,
but both model shows an inconsistent change
across tasks.

H License of Artifacts

We include the license of artifacts used in this paper
in Table 7

I Full Performance Table

Due to the availability of space and the amount
of fine-tuned checkpoints, we omit displaying all
exact metric values in the paper. The performance
of each fine-tuned variant on each dataset can be
found in the csv file under directory results in
the code base.

J Performance Difference Numbers

The average performance change before and after
fine-tuning for each checkpoint is shown in Table 6.
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Figure 10: Model performance after supervised fine-tuning on each pre-training step.
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(a) MNLI -> RTE
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(g) SocialIQA -> TweetQA

Figure 11: Out-of-domain performance after supervised fine-tuning on each pre-training step.

The data in this table is used to create Figure 8.

K Generalization Taxonomy

Following the generalization taxonomy in Hupkes
et al. (2023), the evaluation card is included in
Table 8.
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(f) XSum -> Paws

Figure 12: Cross-task performance after supervised fine-tuning on each pre-training step. The model is fine-tuned
on a classification task and evaluated on a generation task or a classification task with a different label set.
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(f) XSum -> SocialIQA

Figure 13: Cross-task performance after supervised fine-tuning on each pre-training step. The model is fine-tuned
on a generation task and evaluated on a classification task.

148



Task Default Prompt Instruction Prompt IO Prompt Expected Output

Summary
Generation

### Input: {document}
### Summary:

Please read the following text: {document}
Provide a summary: {document} {summary}

Question
Generation

### Input: {context}
### Answer: {answer}
### Question:

Given the context: {context}
And the answer: {answer}
Generate a suitable question:

{context}
{answer} {question}

Natural Language
Inference

### Input_1: {premise}
### Input_2: {hypothesis}
### Inference:

Consider the following texts: Text 1: {premise}
Text 2: {hypothesis} The relation is

{premise}
{hypothesis} {label}

Paraphrase Detection
### Input_1: {sentence1}
### Input_2: {sentence2}
### Paraphrase Classification:

Let’s compare the two sentences:
Sentence_1: {sentence1}
Sentence_2: {sentence2} Are they paraphrasing?:

{sentence1}
{sentence2} {label}

Table 5: Formatting of the prompts
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Figure 14: Model performance with different task formats.
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Checkpoint Learned in
Pre-train

Learned in
Fine-Tune

1000 0.048 0.062
18000 0.048 0.149

342000 0.004 0.286
424000 0.01 0.297
505000 0.03 0.304
592000 0.027 0.297
738000 0.021 0.264

main -0.005 0.290

Table 6: Average performance change before and af-
ter fine-tuning for each checkpoint (Perf(Fine-tuned) -
Perf(BASE)). The group that is never learned during pre-
training is picked up by the model during fine-tuning.

Question 
Generation

Summary 
Generation

NLI Paraphrase 
Detection

0.0

0.1

Figure 15: Ratio of out-of-domain performance change
for each task on the final checkpoint of LLAMA3-8B.
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Name License Name License

OLMo-1b Apache 2.0 SocialIQa CC-BY
TULU ODC-BY CNN/DailyMail Apache 2.0
ARC CC BY-SA TweetQA CC BY-SA-4.0

OpenbookQA Apache 2.0 MNLI CC-BY-3.0
Hellaswag MIT GPT3NLI MIT

BoolQ Apache 2.0 RTE N/A
SciQ CC-BY-NC-3.0 Paws Free

XSum MIT QQP Non-Commercial
XLSum CC-BY-NC-SA 4.0 STS-B Other

Table 7: License of artifacts used in this paper.

Motivation
Practical Cognitive Intrinsic Fairness
□ △

Generalisation type
Compositional Structural Cross Task Cross Language Cross Domain Robustness

△ □
Shift type

Covariate Label Full Assumed
□ △

Shift source
Naturally occuring Partitioned natural Generated shift Fully generated

□ △
Shift locus

Train–test Finetune train–test Pretrain–train Pretrain–test
□ △

Table 8: Generalization experiment summary following taxonomy in Hupkes et al. (2023).
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Abstract

Transformers dominate NLP and IR; but their
inference inefficiencies and challenges in ex-
trapolating to longer contexts have sparked
interest in alternative model architectures.
Among these, state space models (SSMs) like
Mamba offer promising advantages, particu-
larly O(1) time complexity in inference. De-
spite their potential, SSMs’ effectiveness at
text reranking — a task requiring fine-grained
query-document interaction and long-context
understanding — remains underexplored.

This study benchmarks SSM-based architec-
tures (specifically, Mamba-1 and Mamba-2)
against transformer-based models across var-
ious scales, architectures, and pre-training
objectives, focusing on performance and ef-
ficiency in text reranking tasks. We find
that (1) Mamba architectures achieve compet-
itive text ranking performance, comparable to
transformer-based models of similar size; (2)
they are less efficient in training and inference
compared to transformers with flash attention;
and (3) Mamba-2 outperforms Mamba-1 in
both performance and efficiency. These results
underscore the potential of state space models
as a transformer alternative and highlight areas
for improvement in future IR applications.1

1 Introduction

The transformer architecture (Vaswani et al., 2017)
is an established standard within NLP and IR com-
munity. Compared to recurrent neural networks
(RNNs) transformers better capture long-range de-
pendencies and also admit large scale pre-training.
However, for inference with a sequence of length
L and D-dimensional hidden states, transformers
cost O(L) time and O(LD) space complexity —
proving to be less efficient than RNNs.

⋄Equal Contribution, order decided randomly.
1The code for reproducing our experiments is available at

https://github.com/zhichaoxu-shufe/RankMambaV2

Recently, there has been a growing interest in
developing alternative architectures for modeling
sequence data. For example, RWKV (Peng et al.,
2023) combines the efficient parallelizable train-
ing of transformers with the efficient inference of
RNNs. Another notable architecture is the state
space model (SSM, Gu and Dao, 2023; Gu et al.,
2020, 2021b), which is related to convolutional
and recurrent neural networks, and also to signal
processing literature.

In essence, state space models compress the con-
text into a smaller state of size N , achieving O(1)
time complexity and O(ND) space complexity in
inference time. However, the capabilities of SSMs
are limited by the amount of information that can
be compressed in its hidden state. To mitigate this,
Gu and Dao (2023) propose a novel selective state
space model named Mamba. Mamba selectively
encodes the input to the hidden state to improve
model expressiveness, while also addressing the
computation problem with a selective scan method
and hardware-aware optimization. Gu and Dao
(2023) and followup work (Dao and Gu, 2024; Zhu
et al., 2024; Wang et al., 2024; Waleffe et al., 2024,
inter alia) examine the efficacy of Mamba models
for various sequence modeling tasks, notably lan-
guage modeling, and also image and audio tasks.
The parameterized SSMs are able to achieve perfor-
mance close to transformer-based models of similar
sizes while also demonstrating efficiency in train-
ing and inference.

Despite the growing popularity of state space
models, their effectiveness in information retrieval
remains underexplored. Modern search systems
typically consist of at least two stages: retrieval
and reranking. During retrieval, offline indexes
first fetch a preliminary list of candidate documents,
which is refined by the reranking model. Reranking
requires models to understand long context input,
and to capture fine-grained query-document interac-
tions. The attention mechanism in the transformer
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naturally allows for the latter; it allows query to-
kens to attend to document tokens. In contrast,
state space models may fail to model long-range
dependencies due to their recurrent nature.

In this paper, we examine the following research
questions about Mamba-1 and Mamba-2:

1. Performance RQ: How do Mamba models
compare to transformers for text reranking?

2. Efficiency RQ: How efficient are the Mamba
architectures with respect to training throughput
and inference speed?

To this end, we conduct a rigorous benchmark-
ing study comparing the two model families, across
varying architectures, sizes, pre-training objectives,
and attention patterns. Specifically, we train neu-
ral reranking models following established train-
ing methodologies outlined in prior literature (Gao
et al., 2021; Boytsov et al., 2022; Ma et al., 2023).
Our experiments allow us to address the two re-
search questions above. We find that:

1. Mamba-based language models can achieve
strong text reranking performance, matching
transformer-based models of similar scales.

2. Although Mamba architectures have better com-
plexity theoretically, in practice they are less
efficient compared to transformer architecture
with I/O-aware optimization (e.g., flash atten-
tion (Dao, 2024)).

3. Mamba-2 improves upon Mamba-1 in both per-
formance and efficiency.

We discuss the implications of our results and point
out future directions of transformer alternative ar-
chitectures for IR tasks.

2 Background: State Space Models

We will briefly survey state space models and their
connection to RNNs and transformers. We use
Structured State Space Sequence Models (S4, Gu
et al., 2021a) to illustrate the idea behind state space
models before describing the Mamba models.

State space models. In its simplest form, an SSM
maps a 1-dimensional function or sequence x(t) ∈
R to y(t) ∈ R via a latent state h(t) ∈ RN . Here, t
denotes a timestep and N is the state size (different
from hidden dimensionality D). It is parameterized

by (∆,A,B,C) and defines a continuous sequence-
to-sequence transformation as:

h′(t) = Ah(t) + Bx(t) y(t) = Ch(t) (1)

The above transformation can be discretized as:

ht = Aht−1 + Bxt yt = Cht (2)

The discretization of A and B is defined by the
discretization rule, for example:

A = exp(∆A) (3)

B = (∆A)−1(exp(∆A)− I) ·∆B (4)

Expanding Eqn. (2) with the whole sequence x =
(x1, x2, . . . , xn) leads to a convolutional form:

y = x ∗ K (5)

K = (CB, CAB, . . . , CAn−1B) (6)

While Eqn. (2) resembles an RNN, Eqn. (5) looks
like a CNN, where K is a large convolution ker-
nel over the whole input sequence x. The pa-
rameterization of (∆,A,B,C) is independent of
input sequence x and is fixed during all time steps,
a property referred to as linear time invariance
(LTI). Structured state space models (S4) imposes
a structure on the A matrix for efficiency. Exist-
ing works (Gu et al., 2021a; Gupta et al., 2022;
Smith et al., 2022) employ a diagonal matrix, thus
A ∈ RN×N , B ∈ RN×1 and C ∈ R1×N matrices
are all represented by N parameters.

The above expressions can be generalized to D-
channel features, i.e., xt, yt ∈ RD. A concrete
example might be D-dimensional word embed-
dings or hidden states. In this case, computation of
A,B,C is applied to each channel independently.

Mamba-1 Models. State space models compress
potentially unbounded context into a state ht ∈
RN , potentially limiting their effectiveness. Gu
and Dao (2023) propose to make the parame-
ters (∆,B,C) input-dependent. This modification
changes the model from time-invariant to time-
varying, therefore posing challenges to the model’s
computational efficiency; the model now cannot be
trained in CNN mode. Gu and Dao (2023) address
this via a hardware-aware optimization algorithm
called Selective Scan. We refer the reader to the
original paper for details.
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Scalar Structured SSM. Mamba-2 (Dao and Gu,
2024) restricts the matrix A to be a scalar times
identity matrix; i.e., all the diagonal elements of
A are the same value. It also introduces a new hy-
perparameter P , the SSM head dimension, which
is analogous to the transformer head dimension,
i.e., D = P × #heads. Mamba-2 uses different
(∆,A,B,C) for each SSM head, and P is set to 64
or 128, similar to transformers. Further, Dao and
Gu (2024) develop efficient implementations for
training and inference, enabling much larger state
size (from N = 16 in Mamba-1 to N = 64, 256
or larger in Mamba-2), while simultaneously being
faster in training. Subsequent works (Yang et al.,
2024; Qin et al., 2024; Dao and Gu, 2024, inter
alia) also reported Mamba-2’s performance and
efficiency improvement over Mamba-1.

3 The Text Reranking Problem

Modern IR systems employ a two-stage retrieval-
reranking pipeline (Schütze et al., 2008; Zhang
et al., 2021; Asai et al., 2024; Xu et al., 2025, in-
ter alia). After the initial retrieval by an efficient,
scalable first-stage retriever, a reranker refines the
ranklist to optimize ranking metrics. Reranking
involves ordering texts (passages or documents) by
their relevance to a query, with passage reranking
being a finer-grained form of document reranking.
Our focus is to study this second stage and perform
a comprehensive analysis of different rerankers for
the tasks of both passage reranking and document
reranking.

Let q be an input query, and d ∈ D be a text,
where D is the set of all texts (passages for passage
reranking and documents for document reranking).
The reranking model fθ(q, d), parameterized by θ,
predicts a scalar relevance score. The model f is
instantiated as a linear layer on top of a language
model. We adopt the common practice of concate-
nating the query and the document as input to the
model (Nogueira et al., 2019; Yates et al., 2021;
Boytsov et al., 2022; Ma et al., 2023, inter alia).

Training a Reranker. Training the reranking
model involves sampling negatives from the docu-
ment collection. We use the recommended setup
from literature (Gao et al., 2021; Ma et al., 2023;
Boytsov et al., 2022; Xu, 2024) to sample hard neg-
atives from the retrieval results obtained from the
first-stage retriever.

Let us denote the relevant document to query qi
as d+i , and sampled negatives as d−i ∈ D−

i , training

pair (qi, d+i ) ∈ S, the reranking model is trained
with optimizing the following softmax loss:

− 1
|S|

∑
(qi,d

+
i )∈S

log
exp fθ(qi,d

+
i )

exp fθ(qi,d
+
i )+

∑
j∈D−

i
exp fθ(qi,d

−
i )

(7)
We pack multiple training instances into a mini-
batch and jointly optimize the backbone language
model and the linear layer.

4 Experiments

In this section, we describe the experimental setup
for passage (§ 4.1) and document reranking (§ 4.3).
For Performance RQ, we report results and ana-
lyze the implications in § 4.2 and § 4.4 respectively.
Then we address Efficiency RQ in § 4.5.

4.1 Passage Reranking

First, let us examine the passage reranking task.

Datasets and Evaluation Metrics. We employ
the passage ranking subset of the well-known
MS MARCO dataset (Bajaj et al., 2016) which
contains a total of 524K training instances. For
the passage retriever in the first stage, we use
BGE-large-en-v1.5 (Xiao et al., 2023) due to its
strong trade-off between retrieval performance and
size of the retriever. (See Table 7 in the appendix
for this comparison). The training set for our pas-
sage reranker is constructed by uniformly sampling
15 hard negatives from the ranklist of top-1000 pas-
sages returned by the BGE retriever. Zhuang et al.
(2023); Ma et al. (2023) highlight that increasing
the number of negatives along with the global batch
size leads to better ranking performance. Training
demands significant GPU RAM. We determined
these hyperparameters by balancing performance
and the available hardware resources.

The in-domain evaluation is conducted using
the official passage ranking development set (Dev)
containing 6,980 queries. We also include TREC
DL19/DL20 (Craswell et al., 2020, 2021) eval-
uation set that contains 43/54 queries with in-
depth annotation for passage ranking. We report
the official evaluation metrics for passage rank-
ing, i.e., MRR@10 for Dev and NDCG@10 for
DL19/DL20. For out-of-domain evaluation, we use
13 publicly available BEIR testsets (Thakur et al.,
2021) covering different text domains. Again, we
report the official evaluation metric NDCG@10.
All evaluations involve first constructing the index
with the first-stage retriever, then retrieving pas-
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Model Size Architecture Pre-train
#Tokens

Encoder-only Models (Bi-directional)
BERT-base 110M Transformer 3.3B
RoBERTa-base 120M Transformer 33B
ELECTRA-base 105M Transformer 3.3B
BERT-large 330M Transformer 3.3B
RoBERTa-large 335M Transformer 33B
ELECTRA-large 320M Transformer 33B
Encoder-Decoder Models (Bi-directional)
BART-base 130M Transformer 33B
BART-large 385M Transformer 33B
Decoder-only Models (Uni-directional)
OPT-125M 125M Transformer 180B
Mamba-1-130M 130M Mamba-1 300B
Mamba-2-130M 130M Mamba-2 300B
OPT-350M 350M Transformer 180B
Mamba-1-370M 370M Mamba-1 300B
Mamba-2-370M 370M Mamba-2 300B
Mamba-1-790M 790M Mamba-1 300B
Mamba-2-780M 780M Mamba-2 300B
OPT-1.3B 1.3B Transformer 180B
Mamba-1-1.4B 1.4B Mamba-1 300B
Mamba-2-1.3B 1.3B Mamba-2 300B
Llama-3.2-1B 1.3B Transformer++ 15T

Table 1: Details of the Pre-trained language models
used in our comparative study. Transformer++ indicates
the state-of-the-art transformer architecture. Note the
pre-training #tokens is not directly comparable between
encoder-only, encoder-decoder and decoder-only mod-
els due to different pre-training objectives.

sages with the retriever, followed by refining the
ranklist using our trained rerankers.

Language Models Used. We conduct a compara-
tive study between rerankers using state space mod-
els and several previously studied language models.
Among encoder-only models, we use BERT (De-
vlin et al., 2019), RoBERTa (Liu et al., 2019), and
ELECTRA (Clark et al., 2020) with their base as
well as large variants. For encoder-decoder mod-
els, we select both base and large variants of the
BART model (Lewis et al., 2020). Among decoder-
only models, we compare with OPT (Zhang et al.,
2022), and Llama3 (Dubey et al., 2024) models.
The Llama3 model serves as an upper bound for
transformer-based models, given that is the state-
of-the-art pre-trained model at the 1B scale and
high pre-training cost. We compare these with both
Mamba-1 and Mamba-2-based rerankers at four dif-
ferent parameter settings. The details of the models
used in our comparison study are shown in Table 1.

This extensive selection of pre-trained language
models enables the comparison across different
architecture types (e.g., encoder-only vs decoder-
only), pre-trained model scales (from 110M to 1.4B

parameters), as well as different pre-training objec-
tives (e.g., masked language modeling in BERT
vs replaced token detection in ELECTRA). It is
important to acknowledge that the pre-trained mod-
els are trained under different pre-training setups
(such as varying datasets and hyperparameter con-
figurations, etc.); comparing them is not entirely
fair. Nevertheless, we can gain insights by evalu-
ating different language models using a consistent
fine-tuning approach.

Baselines. We include MonoBERT (Nogueira
and Cho, 2019), cross-SimLM (Wang et al., 2022),
MonoT5 (Nogueira et al., 2020), RankT5 (Zhuang
et al., 2023) as well as the state-of-the-art RankL-
lama model (Ma et al., 2023). Appx. B gives a
detailed description of these methods .

Implementation Details. Our code is imple-
mented in PyTorch (Paszke et al., 2019) using the
Huggingface library (Wolf, 2019). The weights of
the pre-trained language models are obtained from
the Huggingface Hub2. Wherever applicable, we
use Flash Attention 2 (Dao, 2024), gradient accu-
mulation, and activation checkpointing. Note that
the models are trained without parameter-efficient
fine-tuning techniques such as LoRA (Hu et al.,
2021) which is different from Ma et al. (2023).
We also do not investigate alternative compression
techniques for improved parameter efficiency, such
as low-rank factorization (Gupta et al., 2024), and
leave these avenues for future research.

We do not extensively tune hyperparameters; as
discussed by prior works (Boytsov et al., 2022;
Ma et al., 2023) fine-tuning of reranking models
is less sensitive to hyperparameters. We found
the vanilla AdamW optimizer along with learning
rate warm-up with linear scheduler to work for all
training runs. Refer to Appx. D for an overview
of hyperparameters throughout the experiments.
Out implementation as well as checkpoints will be
made public to facilitate reproducibility.

For the autoregressive models, including Mamba
models, we provide input with the following tem-
plate: document: {d} ; query: {q} ; [EOS]. The
linear layer then takes the last layer representation
of the [EOS] token and outputs the relevance score:

fθ(q, d) = Linear
(
model(input)[−1]

)
(8)

For encoder-only and encoder-decoder models, we
use a different template: [CLS] ; query: {q} ;

2https://huggingface.co/models
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document: {d}. The linear layer in this case uses
the representation of the [CLS] token.

4.2 Passage Reranking Results
In-domain Evaluation. We show the in-domain
passage reranking results in Table 2. First, note that
our trained models are comparable to previously
reported results. For example, we report that BERT-
base achieves 38.5, 73.3, 73.1 on Dev, DL19, DL20
respectively, compared to MonoBERT (Nogueira
and Cho, 2019)’s 37.2, 72.3 and 72.2. This suggests
the correctness of our training setup.

Between transformer models of different archi-
tectures, we notice that both encoder-only and
encoder-decoder models outperform decoder-only
models (OPT-125M and 350M in our case), de-
spite OPT being pre-trained with more tokens. We
hypothesize the reason is that the bi-directional at-
tention in encoders better capture the interaction
between query and document tokens. But decoder-
only models are easier to scale.

Between transformer and Mamba architectures,
Mamba models are able to achieve strong perfor-
mance. For example, despite being uni-directional,
Mamba-2-370M achieves 38.6, 75.8, and 74.0 on
three datasets compared to the best transformer-
based model in that parameter range—BERT-
large’s 39.1, 76.4, and 72.4. The overall best
transformer-based model—Llama-3.2-1B outper-
forms the Mamba models of similar size. However,
note that Llama-3.2-1B is pre-trained on 15T to-
kens compared to Mamba model’s 300B tokens.
We conclude that Mamba models are competitive
in the passage ranking task.

Among Mamba models, despite being trained
on the same number of tokens, we notice overall
that Mamba-2 achieves better performance than
Mamba-1. A similar trend is shown in BEIR and
document reranking results. In conclusion, Mamba-
2 is a better SSM architecture compared to Mamba-
1 for text reranking.
Out-of-domain Evaluation. We report part
of BEIR results in § 4.2 and leave full results
to Appx. E. Overall, Mamba models are able to
achieve competitive performance compared to the
transformer-based models of similar sizes. Specif-
ically, Mamba-2-1.3B achieves 53.6 NDCG@10
averaged over 13 datasets compared to OPT-1.3B’s
52.7. Compared to baselines, Mamba-based mod-
els are only outperformed by the much larger Ran-
kLlama — a 7B model based on 7B-sized retrieval
model RepLlama. This reinforces our findings

from in-domain evaluation, suggesting the efficacy
of Mamba models in the passage reranking task.

One surprising observation is the underperfor-
mance of the Llama-3.2-1B model. This pre-
trained model was not only trained on more tokens
(15B) but was also trained on a much more diverse
set of web documents. Ideally, a model pre-trained
on a more diverse set of documents should perform
better on out-of-domain evaluation sets, but we find
that to not be the case with Llama-3.2-1B model.

4.3 Document Reranking

Next, we discuss the experimental setup and results
for the document reranking task. The setup closely
aligns with that used for passage reranking, with
specific differences highlighted where applicable.

Datasets and Evaluation Metrics. We use the
document ranking subset from the MSMARCO
dataset containing 320K training instances. We use
Pyserini’s implementation of BM25 (Robertson
et al., 1995)3 as the first-stage document retriever
and use top-100 documents to uniformly sample 7
hard negatives for each positive query-document
pair. We train two model variants — FirstP and
LongP — which truncate the input at 512 and 1,536
tokens respectively. Prior works (Boytsov et al.,
2022; Ma et al., 2023) note that longer training
lengths only yield marginal performance improve-
ments. So we do not experiment with them.

For evaluation, we use the official develop-
ment set (Dev) containing 5,193 queries and re-
port MRR@100 for comparison. For the TREC
DL19/DL20 (Craswell et al., 2020, 2021) evalu-
ation set that includes 43/45 queries, we use the
official NDCG@10 as our evaluation metric.

Other Details. Among the baselines, we include
MonoT5 (Nogueira et al., 2020), RankT5 (Zhuang
et al., 2023) along with RankLlama that is the cur-
rent state-of-the-art model using 7 Billion parame-
ters. We also report two baseline runs from Boytsov
et al. (2022): BERT-base-FirstP and BERT-base-
MaxP as a sanity check for our implementation.
MaxP method first segments the long document
into several shorter passages, then uses the maxi-
mum relevance of segmented passages as the rele-
vance of the document. We train document rerank-
ing models for each of the pre-trained models high-
lighted in § 4.1. Note that as encoder-only models

3https://github.com/castorini/pyserini
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Model Size Retriever Dev
MRR@10

DL19
NDCG@10

DL20
NDCG@10

MonoBERT (Nogueira and Cho, 2019) 110 M BM25 37.2 72.3 72.2
cross-SimLM (Wang et al., 2022) 110 M bi-SimLM 43.7 74.6 72.7
MonoT5 (Nogueira et al., 2020) 220 M BM25 38.1 - -
RankT5 (Zhuang et al., 2023) 335 M GTR 42.2 - -
RankLlama (Ma et al., 2023) 7 B RepLlama 44.9† 75.6† 77.4†
BERT-base E 110 M BGE 38.5 73.3 73.1
RoBERTa-base E 120 M BGE 39.1 75.4 72.0
ELECTRA-base E 105 M BGE 39.8 73.4 74.1
BART-base ED 130 M BGE 37.8 74.7 70.2
OPT-125M D 125 M BGE 35.2 70.6 69.2
Mamba-1-130M D 130 M BGE 37.8 73.7 70.5
Mamba-2-130M D 130 M BGE 37.0 73.8 70.8

BERT-large E 330 M BGE 39.1 76.4 72.4
RoBERTa-large E 335 M BGE 37.8 75.1 69.4
ELECTRA-large E 320 M BGE 38.8 74.9 73.2
BART-large ED 385 M BGE 39.2 74.6 72.2
OPT-350M D 350 M BGE 36.3 72.1 68.9
Mamba-1-370M D 370 M BGE 38.9 74.7 72.5
Mamba-2-370M D 370 M BGE 38.6 75.8 74.0

Mamba-1-790M D 790 M BGE 38.2 76.4 72.9
Mamba-2-780M D 780 M BGE 39.0 76.8 73.6

OPT-1.3B D 1.3 B BGE 38.9 74.2 73.7
Mamba-1-1.4B D 1.4 B BGE 38.9 74.7 72.5
Mamba-2-1.3B D 1.3 B BGE 38.6 75.8 74.0
Llama-3.2-1B D 1.3 B BGE 40.4‡ 76.8‡ 76.2‡

Table 2: Results for passage reranking in-domain evaluation. We denote BGE-large-en-v1.5 as BGE for simplicity.
We mark best results in each section bold; † indicates the overall best result and ‡ indicates the best result among
our trained models. For the reranking threshold, RankLlama reranks top-100 results from RepLlama while other
models reranks top-1000 results. Superscript E denotes encoder-only model, ED denotes encoder-decoder model
and D denotes decoder-only model.

BM25 MonoT5 RankT5 RankLlama ELECTRA BART Llama-3.2 OPT Mamba-1 Mamba-2
Dataset - 220M 335M 7B 335M 385M 1.3B 1.3B 1.4B 1.3B

Arguana 39.7 19.4 22.3 56.0† 14.6 18.0 32.7 35.7‡ 33.1 34.4
Climate-FEVER 16.5 24.5 20.6 28.0† 18.2 20.9 22.6 26.7‡ 22.6 26.2
DBPedia 31.8 41.9 43.5 48.3† 43.2 43.5 43.1 45.8‡ 45.8‡ 45.8‡
FEVER 65.1 80.1 83.5 83.9† 76.8 77.5 72.9 83.0‡ 80.9 81.9
FiQA 23.6 41.3 41.6 46.5† 38.8 41.4 40.5 44.3‡ 43.3‡ 43.3‡
HotpotQA 63.3 69.5 71.3 75.3† 68.6 71.9 69.2 74.9 75.8 76.3‡
NFCorpus 32.2 35.7 32.6 30.3 33.5 34.9 37.9 32.8 38.8 39.2†‡
NQ 30.6 56.7 59.6 66.3† 49.2 51.0 48.2 52.6‡ 50.8 52.1
Quora 78.9 82.3 82.2 85.0† 79.3 73.6 84.9‡ 84.0 80.9 83.9
SCIDOCS 14.9 16.4 18.2 17.8 16.5 17.0 17.7 17.8 19.0 19.6†‡
SciFact 67.9 73.5 74.9 73.2 65.9 65.7 71.7 72.7 77.4†‡ 76.8
TREC-COVID 59.5 77.6 75.2 85.2† 67.2 70.6 77.0 81.6 83.0‡ 79.9
Touche-2020 44.2 27.7 45.9† 40.1 34.3 34.9 32.8 33.2 36.7 37.7‡

Average 43.7 49.7 51.7 56.6† 46.6 47.8 50.1 52.7 52.9 53.6‡
Table 3: Results for passage reranking out-of-domain evaluation. We show results of the largest encoder-only,
encoder-decoder model and decoder-only models. Full results are referred to Appx. E. We mark best results in each
section bold; † indicates the overall best result and ‡ indicates best result among our trained models.
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have a fixed context length (ex: BERT with 512),
we do not have LongP variants for them.

Model Size Dev DL19 DL20
MRR@100 NDCG@10 NDCG@10

BERT-base-FirstP 110 M 39.4 63.1 59.8
BERT-base-MaxP 110 M 39.2 64.8 61.5
MonoT5 3 B 41.1 - -
RankLlama 7 B 50.3† 67.7 67.4†
FirstP models
BERT-base E 110 M 41.3 65.8 61.5
RoBERTa-base E 125 M 39.4 65.5 59.3
ELECTRA-base E 105 M 39.0 66.3 62.3
BART-base ED 130 M 37.5 63.9 59.9
OPT-125M D 125 M 38.8 63.8 61.8
Mamba-1-130M D 130 M 40.9 66.5 64.4
Mamba-2-130M D 130 M 38.3 66.7 63.9

BERT-large E 330 M 40.1 65.9 61.4
RoBERTa-large E 355 M 43.3‡ 66.8 64.2
ELECTRA-large E 335 M 40.3 67.8 64.9
BART-large ED 385 M 40.3 64.7 61.6
OPT-350M D 350 M 39.0 64.7 63.1
Mamba-1-370M D 370 M 42.5 67.8 63.9
Mamba-2-370M D 370 M 41.0 67.2 64.7

Mamba1-790M D 790 M 42.0 67.4 64.9
Mamba2-780M D 780 M 42.0 68.7 64.6

OPT-1B D 1.3 B 40.8 65.3 61.8
Llama-3.2-1B D 1.3 B 40.6 67.6 60.8
Mamba-1-1.3B D 1.3 B OOM OOM OOM
Mamba-2-1.3B D 1.3 B 42.1 68.3 64.6
LongP models
OPT-125M D 125 M 38.8 63.8 61.8
Mamba-1-130M D 130 M 39.2 66.0 63.0
Mamba-2-130M D 130 M 38.3 67.3 63.6

OPT-350M D 350 M 35.7 64.3 60.5
Mamba-1-370M D 370 M 39.3 67.8 64.3
Mamba-2-370M D 370 M 41.4 67.3 65.1

Mamba-1-790M D 790 M 41.3 68.0 64.9
Mamba-2-780M D 780 M 42.2 70.0†‡ 66.9‡
OPT-1.3B D 1.3 B 41.8 68.0 63.9
Llama-3.2-1B D 1.3 B 40.9 68.5 63.5
Mamba-1-1.4B D 1.4 B OOM OOM OOM
Mamba-2-1.3B D 1.3 B OOM OOM OOM

Table 4: Results for document reranking. We mark the
best result in each section bold; † marks the overall best
result and ‡ marks best result among our trained models.
For the reranking threshold, MonoT5 reranks top-1000
documents from the retriever while others rerank top-
100 results. Superscripts E, ED and D are the same
as Table 2. OOM denotes Out-Of-Memory Error.

4.4 Document Reranking Results

The task of document reranking necessitates using
models that can process lengthy contexts. Although
transformer models can accommodate long con-
texts through adjustments like improved positional
embeddings (Su et al., 2024) or specialized training
methods (Xiong et al., 2024; Dubey et al., 2024), it
remains unclear whether Mamba-based state space
models possess this capability. Our experiments in
document reranking aim to address this gap. Our
document reranking results are shown in Table 4.

We make two important observations. First,
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Figure 1: Training throughput comparison between
models≈330M. For batch_size=8, all models except
OPT-FlashAttn and Mamba-2 run out of memory with
a 48 GB VRAM GPU.

in terms of the task performance, Mamba-based
rerankers are comparable to their Transformer-
based counterparts for every parameter budget. No-
tably, among the sub-1 billion parameter models,
the best model is the 780 million Mamba-2 model
trained with 1536 context length. Second, while the
Mamba-1 and Mamba-2 variants perform compara-
bly for document reranking, we found that Mamba-
2 models in general require less GPU memory. One
such instance is the training run with 1.3B param-
eters for context length of 512 (FirstP settings)—
Mamba-1 leads to OOM error but Mamba-2 does
not. This echoes prior works’ observation that
Mamba-2 is more memory efficient during training
compared to Mamba-1 (Dao and Gu, 2024; Yang
et al., 2024, inter alia).

4.5 Training Throughput and Inference Speed
To answer the Efficiency RQ, we evaluate the train-
ing throughput and inference speed of Mamba mod-
els and compare them to the transformer-based
models. We perform this comparison with doc-
ument ranking models as it involves a more chal-
lenging setting. All the numbers reported here are
measured on a server with Intel Xeon Gold 6230
CPU @2.1GHz and a single Nvidia A40 GPU (48
GB VRAM).

We measure training throughput (#to-
kens/second) with 512 training length and
the inference speed (#queries/second) on MS
MARCO document ranking dataset with max
input length of 512 and 1,536. The results for the
training throughput with different training batch
sizes are shown in Fig. 1. The average inference
speed over the queries from DL19 eval set is
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Model Size Max.
Length

Queries. per
Second (↑)

BERT-large 330 M 512 0.65
BART-large 385 M 512 0.65
OPT-350M 350 M 512 0.69
Mamba-1-370M 370 M 512 0.53
Mamba-2-370M 370 M 512 0.56

OPT-350M 370 M 1536 0.45
Mamba-1-370M 370 M 1536 0.40
Mamba-2-370M 370 M 1536 0.45

OPT-1.3B 1.3 B 512 0.29
Llama-3.2-1B 1.3 B 512 0.33
Mamba-1-1.4B 1.4 B 512 0.25
Mamba-2-1.3B 1.3 B 512 0.30

OPT-1.3B 1.3 B 1536 0.28
Llama-3.2-1B 1.3 B 1536 0.31
Mamba-1-1.4B 1.4 B 1536 0.24
Mamba-2-1.3B 1.3 B 1536 0.29

Table 5: Inference speed of different models. We use
half precision and batch size 32 for all models.

shown in Table 5.
First, observe that Mamba-2 has a much higher

training throughput than Mamba-1. Additionally,
since the Mamba-2 models are more memory effi-
cient during training compared to Mamba-1, we do
not notice an Out-Of-Memory (OOM) errors with
Mamba-2 — Mamba-1-370M does not train with
batch size 8. The throughput of Mamba models
is significantly worse than that of the transformer-
based models. In other words, the Mamba-based
models are much less efficient at training time.

As highlighted in prior research (Waleffe et al.,
2024; Gu and Dao, 2023, inter alia), the true ben-
efit of the Mamba models is realized with an im-
proved inference speed. We do not observe this
to be the case for the document reranking task
(see Table 5). The main reason is that for infer-
ence, reranking only requires one single forward
computation compared to multiple forward com-
putations in autoregressive generation. We further
discuss the deficiency of Mamba models in § 4.6.

4.6 Profiling Inference Computation
To better understand the inference performance of
Mamba models, we use the PyTorch profiler4 to
analyze the execution time of Mamba models at the
operator level, comparing it to Transformer-based
models of similar sizes. As in § 4.5, we use the
DL19 document ranking evaluation set, an input
length of 512, an evaluation batch size of 32, and

4https://pytorch.org/docs/stable/profiler.html

the same hardware configuration. The results are
presented in Fig. 2.

For Transformer-based models like OPT, I/O-
related operators (e.g., aten::copy_, aten::to,
aten::_to_copy, etc.) account for the majority of
the execution time. Flash Attention (Dao, 2024)
mitigates this by optimizing the I/O operations in-
volved in attention computation, as seen in the re-
duced execution time for I/O-related operations
in Figs. 2b and 2f. This optimization leads to a
noticeable speedup in inference, highlighting the
importance of improving I/O efficiency for Trans-
formers.

In contrast, the total execution time of
Mamba-1 is dominated by operators such
as aten::is_nonzero, aten::item, and
aten::_local_scalar_dense. The first operator,
aten::is_nonzero, checks whether tensors con-
tain any non-zero elements, while aten::item and
aten::_local_scalar_dense are used to extract
scalar values from tensors. This suggests that
Mamba-1’s architecture might suffer from compu-
tational inefficiencies due to an over-reliance on
these scalar-extraction operations, which could be
bottlenecking the performance. We hypothesize
that these operations contribute to the model’s
overall computational deficiency, particularly in
comparison to models that utilize more efficient
tensor operations. Mamba-2 improves upon this by
parameterizing the Mamba-2 block, allowing for
more effective utilization of matrix multiplication.
This change is reflected in the elimination of
the aforementioned scalar-extraction operators,
with the new operator MambaSplitConv1D now
accounting for over half of the total execution time.
Mamba-2’s shift towards matrix multiplication
suggests a more balanced computational load,
although it still doesn’t fully close the gap in
terms of inference speed compared to Transformer
models with Flash Attention. This empirical
evidence points to the need for further architectural
refinement to optimize performance and better
leverage compute-optimized hardware.

5 Related Works

Text Ranking with Pre-trained Transformers.
Fine-tuning pre-trained transformers has been the
standard practice for text ranking tasks (Yates et al.,
2021; Karpukhin et al., 2020, inter alia). Com-
bining the query and the document as the input,
the model predicts a scalar score indicating the
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(a) OPT-125M (b) OPT-125M w/ FlashAttn (c) Mamba-1-130M (d) Mamba-2-130M

(e) OPT-350M (f) OPT-350M w/ FlashAttn (g) Mamba-1-370M (h) Mamba-2-370M

Figure 2: Inference profiling results for Mamba models versus OPT models of similar size.

relevance. Prior works have highlighted different
aspects of training transformer-based text ranking
models. Nogueira and Cho (2019); Nogueira et al.
(2020); Dai and Callan (2019) are among the first
efforts to showcase the effectiveness of fine-tuning
pre-trained transformer-based language models.
Gao et al. (2021) studied the retrieval-reranking
pipeline and recommended training rerankers by
sampling negatives from the results of first-stage
retrievers. Li et al. (2023); Hofstätter et al. (2021)
studied the effectiveness of chunking and pool-
ing in long document ranking with shorter context
transformer models. Boytsov et al. (2022) focused
on benchmarking long context pre-trained trans-
formers in long document ranking. Refer to (Yates
et al., 2021; Xu et al., 2025) for detailed surveys.

Transformer Alternatives. Different works
have explored transformer alternative model ar-
chitectures for sequence modeling. For example,
S4 (Gu et al., 2021b; Smith et al., 2022) demon-
strate the effectiveness of structured state space
models. Recent works (Peng et al., 2023; Yang
et al., 2023, 2024; Qin et al., 2024, inter alia) have
vastly improved the computational bottleneck of
RNN-alike architectures and have shown compa-
rable performance to modern transformer architec-
tures at a moderate scale of comparison. We refer
readers to these works for more details.

Within the IR community, works have explored
the possibility of using state space models as re-
triever (Zhang et al., 2024) and reranker (Xu, 2024).
This study extends prior works with more compre-
hensive experiments and points out new directions.

6 Conclusion and Future Work

This study investigates the suitability of Mamba ar-
chitectures, a novel class of state space models, for

text ranking. Our findings demonstrate that Mamba
models, particularly Mamba-2, can achieve compet-
itive performance compared to transformer-based
models of comparable size, showcasing their po-
tential as viable alternatives for sequence modeling
in IR tasks. While Mamba architectures currently
exhibit lower training and inference efficiency com-
pared to transformers with flash attention, continu-
ous advancements in model optimization and hard-
ware acceleration have the potential to mitigate
these limitations.

We picture two future directions of this work:
the task direction and the model direction. From
the task perspective, the efficacy of state space mod-
els, including Mamba should be further examined
in other IR tasks (e.g., text retrieval). From the
model perspective, hybrid models (Lieber et al.,
2024; Lenz et al., 2024; Glorioso et al., 2024;
Nvidia, 2025) have shown promise in certain NLP
tasks. We believe the effectiveness of hybrid mod-
els should be thoroughly tested. Additionally, op-
timization for state space models is an interesting
challenge that may offer substantial improvements.

Limitations and Potential Risks

This paper studies the efficacy of state space mod-
els in text ranking tasks. Our experiments are car-
ried out by fine-tuning pre-trained language models,
which differ in the pre-training corpus as well as
pre-training FLOPs. Limited by hardware and bud-
get, we are not able to carry out an apples-to-apples
comparison with the exact same pre-training setup.
We believe this leaves room for future direction.

This paper studies a well established task with
publicly available datasets licensed for academic
usage (see Appx. A). To the best of our knowledge
this paper does not introduce potential risks.
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Qinghua Zhou, Jian Zhu, and Rui-Jie Zhu. 2023.
RWKV: Reinventing RNNs for the transformer era.
In Findings of the Association for Computational
Linguistics: EMNLP 2023, pages 14048–14077, Sin-
gapore. Association for Computational Linguistics.

Ronak Pradeep, Rodrigo Nogueira, and Jimmy Lin.
2021. The expando-mono-duo design pattern for
text ranking with pretrained sequence-to-sequence
models. arXiv preprint arXiv:2101.05667.

Zhen Qin, Songlin Yang, Weixuan Sun, Xuyang Shen,
Dong Li, Weigao Sun, and Yiran Zhong. 2024.
Hgrn2: Gated linear rnns with state expansion. arXiv
preprint arXiv:2404.07904.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2020. Exploring the lim-
its of transfer learning with a unified text-to-text
transformer. Journal of machine learning research,
21(140):1–67.

Stephen E Robertson, Steve Walker, Susan Jones,
Micheline M Hancock-Beaulieu, Mike Gatford, et al.
1995. Okapi at trec-3. Nist Special Publication Sp,
109:109.

Hinrich Schütze, Christopher D Manning, and Prab-
hakar Raghavan. 2008. Introduction to information
retrieval, volume 39. Cambridge University Press
Cambridge.

Jimmy TH Smith, Andrew Warrington, and Scott Lin-
derman. 2022. Simplified state space layers for se-
quence modeling. In The Eleventh International Con-
ference on Learning Representations.

Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan,
Wen Bo, and Yunfeng Liu. 2024. Roformer: En-
hanced transformer with rotary position embedding.
Neurocomputing, 568:127063.

Nandan Thakur, Nils Reimers, Andreas Rücklé, Ab-
hishek Srivastava, and Iryna Gurevych. 2021. Beir:
A heterogeneous benchmark for zero-shot evaluation
of information retrieval models.

James Thorne, Andreas Vlachos, Christos
Christodoulopoulos, and Arpit Mittal. 2018.
Fever: a large-scale dataset for fact extraction and
verification. arXiv preprint arXiv:1803.05355.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing
systems, 30.

Ellen Voorhees, Tasmeer Alam, Steven Bedrick, Dina
Demner-Fushman, William R Hersh, Kyle Lo, Kirk
Roberts, Ian Soboroff, and Lucy Lu Wang. 2021.
Trec-covid: constructing a pandemic information re-
trieval test collection. In ACM SIGIR Forum, vol-
ume 54, pages 1–12. ACM New York, NY, USA.

Henning Wachsmuth, Shahbaz Syed, and Benno Stein.
2018. Retrieval of the best counterargument without
prior topic knowledge. In Proceedings of the 56th
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 241–251.

David Wadden, Shanchuan Lin, Kyle Lo, Lucy Lu
Wang, Madeleine van Zuylen, Arman Cohan, and
Hannaneh Hajishirzi. 2020. Fact or fiction: Verifying
scientific claims. arXiv preprint arXiv:2004.14974.

Roger Waleffe, Wonmin Byeon, Duncan Riach, Bran-
don Norick, Vijay Korthikanti, Tri Dao, Albert
Gu, Ali Hatamizadeh, Sudhakar Singh, Deepak
Narayanan, et al. 2024. An empirical study of
mamba-based language models. arXiv preprint
arXiv:2406.07887.

Junxiong Wang, Daniele Paliotta, Avner May, Alexan-
der Rush, and Tri Dao. 2024. The mamba in the

163

https://doi.org/10.18653/v1/2022.findings-acl.146
https://doi.org/10.18653/v1/2022.findings-acl.146
https://doi.org/10.18653/v1/2023.findings-emnlp.936


llama: Distilling and accelerating hybrid models. Ad-
vances in Neural Information Processing Systems,
37:62432–62457.

Liang Wang, Nan Yang, Xiaolong Huang, Binxing Jiao,
Linjun Yang, Daxin Jiang, Rangan Majumder, and
Furu Wei. 2022. Simlm: Pre-training with represen-
tation bottleneck for dense passage retrieval. arXiv
preprint arXiv:2207.02578.

T Wolf. 2019. Huggingface’s transformers: State-of-
the-art natural language processing. arXiv preprint
arXiv:1910.03771.

Shitao Xiao, Zheng Liu, Peitian Zhang, and Niklas
Muennighof. 2023. C-pack: Packaged resources to
advance general chinese embedding. arXiv preprint
arXiv:2309.07597.

Wenhan Xiong, Jingyu Liu, Igor Molybog, Hejia Zhang,
Prajjwal Bhargava, Rui Hou, Louis Martin, Rashi
Rungta, Karthik Abinav Sankararaman, Barlas Oguz,
et al. 2024. Effective long-context scaling of founda-
tion models. In Proceedings of the 2024 Conference
of the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies (Volume 1: Long Papers), pages 4643–4663.

Zhichao Xu. 2023. Context-aware decoding reduces
hallucination in query-focused summarization. arXiv
preprint arXiv:2312.14335.

Zhichao Xu. 2024. Rankmamba, benchmarking
mamba’s document ranking performance in the era
of transformers. arXiv preprint arXiv:2403.18276.

Zhichao Xu and Daniel Cohen. 2023. A lightweight
constrained generation alternative for query-focused
summarization. In Proceedings of the 46th Inter-
national ACM SIGIR Conference on Research and
Development in Information Retrieval, pages 1745–
1749.

Zhichao Xu, Daniel Cohen, Bei Wang, and Vivek Sriku-
mar. 2024a. In-context example ordering guided by
label distributions. In Findings of the Association
for Computational Linguistics: NAACL 2024, pages
2623–2640, Mexico City, Mexico. Association for
Computational Linguistics.

Zhichao Xu, Ashim Gupta, Tao Li, Oliver Bentham, and
Vivek Srikumar. 2024b. Beyond perplexity: Multi-
dimensional safety evaluation of LLM compression.
In Findings of the Association for Computational
Linguistics: EMNLP 2024, pages 15359–15396, Mi-
ami, Florida, USA. Association for Computational
Linguistics.

Zhichao Xu, Hemank Lamba, Qingyao Ai, Joel
Tetreault, and Alex Jaimes. 2023. Counterfactual
editing for search result explanation. arXiv preprint
arXiv:2301.10389.

Zhichao Xu, Hemank Lamba, Qingyao Ai, Joel
Tetreault, and Alex Jaimes. 2024c. Cfe2: Coun-
terfactual editing for search result explanation. In

Proceedings of the 2024 ACM SIGIR International
Conference on Theory of Information Retrieval, IC-
TIR ’24, page 145–155, New York, NY, USA. Asso-
ciation for Computing Machinery.

Zhichao Xu, Fengran Mo, Zhiqi Huang, Crystina Zhang,
Puxuan Yu, Bei Wang, Jimmy Lin, and Vivek Sriku-
mar. 2025. A survey of model architectures in infor-
mation retrieval. arXiv preprint arXiv:2502.14822.

Songlin Yang, Bailin Wang, Yikang Shen, Rameswar
Panda, and Yoon Kim. 2023. Gated linear attention
transformers with hardware-efficient training. arXiv
preprint arXiv:2312.06635.

Songlin Yang, Bailin Wang, Yu Zhang, Yikang Shen,
and Yoon Kim. 2024. Parallelizing linear transform-
ers with the delta rule over sequence length. In The
Thirty-eighth Annual Conference on Neural Informa-
tion Processing Systems.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Ben-
gio, William W Cohen, Ruslan Salakhutdinov, and
Christopher D Manning. 2018. Hotpotqa: A dataset
for diverse, explainable multi-hop question answer-
ing. arXiv preprint arXiv:1809.09600.

Andrew Yates, Rodrigo Nogueira, and Jimmy Lin. 2021.
Pretrained transformers for text ranking: Bert and be-
yond. In Proceedings of the 14th ACM International
Conference on web search and data mining, pages
1154–1156.

Hanqi Zhang, Chong Chen, Lang Mei, Qi Liu, and Ji-
axin Mao. 2024. Mamba retriever: Utilizing mamba
for effective and efficient dense retrieval. In Pro-
ceedings of the 33rd ACM International Conference
on Information and Knowledge Management, pages
4268–4272.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel
Artetxe, Moya Chen, Shuohui Chen, Christopher De-
wan, Mona Diab, Xian Li, Xi Victoria Lin, et al. 2022.
Opt: Open pre-trained transformer language models.
arXiv preprint arXiv:2205.01068.

Yue Zhang, ChengCheng Hu, Yuqi Liu, Hui Fang, and
Jimmy Lin. 2021. Learning to rank in the age of
Muppets: Effectiveness–efficiency tradeoffs in multi-
stage ranking. In Proceedings of the Second Work-
shop on Simple and Efficient Natural Language Pro-
cessing, pages 64–73, Virtual. Association for Com-
putational Linguistics.

Lianghui Zhu, Bencheng Liao, Qian Zhang, Xinlong
Wang, Wenyu Liu, and Xinggang Wang. 2024. Vi-
sion mamba: Efficient visual representation learning
with bidirectional state space model. In Forty-first
International Conference on Machine Learning.

Honglei Zhuang, Zhen Qin, Rolf Jagerman, Kai Hui,
Ji Ma, Jing Lu, Jianmo Ni, Xuanhui Wang, and
Michael Bendersky. 2023. Rankt5: Fine-tuning t5
for text ranking with ranking losses. In Proceedings
of the 46th International ACM SIGIR Conference on
Research and Development in Information Retrieval,
pages 2308–2313.

164

https://doi.org/10.18653/v1/2024.findings-naacl.167
https://doi.org/10.18653/v1/2024.findings-naacl.167
https://doi.org/10.18653/v1/2024.findings-emnlp.901
https://doi.org/10.18653/v1/2024.findings-emnlp.901
https://doi.org/10.1145/3664190.3672508
https://doi.org/10.1145/3664190.3672508
https://openreview.net/forum?id=y8Rm4VNRPH
https://openreview.net/forum?id=y8Rm4VNRPH
https://doi.org/10.18653/v1/2021.sustainlp-1.8
https://doi.org/10.18653/v1/2021.sustainlp-1.8
https://doi.org/10.18653/v1/2021.sustainlp-1.8


A Dataset Artifacts and Licenses

Four of the datasets we used in experiments (NF-
Corpus (Boteva et al., 2016), FiQA-2018 (Maia
et al., 2018), Quora5, Climate-Fever (Diggelmann
et al., 2020)) do not report the dataset license in the
paper or a repository. For the rest of the datasets,
we list their licenses below:

• MS MARCO (Bajaj et al., 2016): MIT Li-
cense for non-commercial research purposes.

• ArguAna (Wachsmuth et al., 2018): CC BY
4.0 license.

• DBPedia (Hasibi et al., 2017): CC BY-SA 3.0
license.

• FEVER (Thorne et al., 2018): CC BY-SA 3.0
license.

• HotpotQA (Yang et al., 2018): CC BY-SA 4.0
license.

• NQ (Kwiatkowski et al., 2019): CC BY-SA
3.0 license.

• SCIDOCS (Cohan et al., 2020): GNU General
Public License v3.0 license.

• SciFact (Wadden et al., 2020): CC BY-NC 2.0
license.

• TREC-COVID (Voorhees et al., 2021):
"Dataset License Agreement".

• Touche-2020 (Bondarenko et al., 2020): CC
BY 4.0 license.

B Additional Experiment Details

B.1 Complexity Analysis of State Space Model

We use the complexity analysis from (Dao and
Gu, 2024). For details, refer to Section 6 of Dao
and Gu (2024). Denote the sequence length as
L and state size as N , which means size N per
channel. We skip the #channel dimension (D) for
ease of comparison. SSD structure used in Mamba-
2 is able to achieve better training and inference
complexity, as reflected in our experiments (Fig. 1
and Table 5).

5https://www.kaggle.com/c/
quora-question-pairs

Attention SSM SSD

State size O(L) O(N) O(N)
Training FLOPs O(L2N) O(LN2) O(LN2)
Inference FLOPs O(LN) O(N2) O(N2)

(Naive) memory O(L2) O(LN2) O(LN)
Matrix multiplication ✓ ✗ ✓

Table 6: Complexity analysis between state space struc-
ture and attention.

B.2 Baselines

B.2.1 Sparse and Dense Retrieval Methods
For both document and passage retrieval, we in-
clude the classical BM25 baseline. For passage
retrieval, bi-SimLM (Wang et al., 2022) is a com-
petitive baseline that uses specialized pre-training
with encoder-only transformer architecture for text
retrieval task; GTR (Ni et al., 2022) is based on
T5 (Raffel et al., 2020) architecture and is exten-
sively fine-tuned for passage representations; BGE-
large-en-v1.5 (Xiao et al., 2023) is based on BERT
style encoder architecture and is fine-tuned with
millions of synthetic query-passage pairs to achieve
strong performance; OpenAI Ada2 (Neelakantan
et al., 2022) is a proprietary embedding model de-
veloped by OpenAI; RepLlama (Ma et al., 2023) is
based on Llama-2 language model (Touvron et al.,
2023) and is fine-tuned on the training split of MS
MARCO datasets. It achieves state-of-the-art per-
formance on passage retrieval. For document re-
trieval, a common practice in literature is to seg-
ment long documents into several passages to fit
into the 512 context length of BERT-style encoder-
only transformer models. Each passage is scored
individually and the relevance score of the docu-
ment is an aggregation of individual passage’s rele-
vance scores. We include two such retrieval base-
lines: BM25-Q2D (Nogueira et al., 2019) uses the
document expansion technique to enhance BM25’s
performance. CoCondenser-MaxP is based on Co-
Condenser technique (Gao and Callan, 2022) and
uses max pooling for document relevance.

B.2.2 Reranking Methods
We include results from prior works as a compari-
son. For long document ranking, a common prac-
tice is to segment the long document into shorter
passages and score them individually. For exam-
ple, Dai and Callan (2019) referred to models only
computing the relevance between query and the
first document segment as FirstP, and methods that
use the maximum relevance of passages within
the document as the relevance of the document as
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MaxP. We refer to document ranking models that
based on long context language models as LongP
following Boytsov et al. (2022).

For document ranking, we include BERT-base-
FirstP and BERT-base-MaxP from Boytsov et al.
(2022). We also include another MaxP baseline
MonoT5 (Pradeep et al., 2021) and a state-of-the-
art LongP model RankLlama (Ma et al., 2023).

For passage ranking, we include results of
MonoBERT (Nogueira and Cho, 2019), cross-
SimLM (Wang et al., 2022), MonoT5 (Nogueira
et al., 2020) and more recent RankT5 (Zhuang et al.,
2023) and RankLlama (Ma et al., 2023). An ad-
ditional note is these ranking models are coupled
with different first-stage retrievers and with differ-
ent training strategies. We refer to RankT5 (Zhuang
et al., 2023) for a comprehensive study of loss func-
tions and training strategies involved in training
ranking models.

C Retrieval Results

We show the passage retrieval results in Table 7
and document retrieval results in Table 8.

D Hyperparameter Setting

We show the hyperparameters in Table 9 and Ta-
ble 10.

E Full BEIR Results

We refer the full results on BEIR to Table 11.
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Model Size Embed. Dim. Dev DL19 DL20
MRR@10 Recall@1000 NDCG@10 Recall@1000 NDCG@10 Recall@1000

BM25 - - 18.4 85.3 50.6 75.0 48.0 78.6
bi-SimLM 110M 768 39.1 98.6 69.8 - 69.2 -
GTR-base 110M 768 36.6 98.3 - - - -
GTR-XXL 4.8B 768 38.8 99.0 - - - -
BGE-large-en-v1.5 335M 1024 35.7 97.6 70.8 84.5 70.7 83.0
OpenAI Ada2 ? 1536 34.4 98.6 70.4 86.3 67.6 87.1
RepLlama 7B 4096 41.2 99.4 74.3 - 72.1 -

Table 7: Passage retrieval performance of different retrieval models. We mark the best performance bold.

Model Size Seg. Y/N Embed. Dim. Dev DL19 DL20
MRR@100 Recall@1000 NDCG@10 Recall@100 NDCG@10 Recall@100

BM25 - N - 27.7 93.6 52.3 38.5 50.6 58.6
BM25-Q2D - Y - 32.7 95.5 59.7 39.9 58.5 61.8
CoCondenser-MaxP 110M Y 768 42.5 93.9 64.8 - 64.0 -
RepLlama 7B N 4096 45.6 98.9 65.0 - 63.2 -

Table 8: Document retrieval performance of different models. We mark the best performance bold.

Model Size Architecture LR Warmup #Epochs Global BZ AMP FlashAttn
Encoder-only Models (Bi-directional)
BERT-base 110M Transformer 2e-5 10% 2 8 FP16 ✗

RoBERTa-base 120M Transformer 2e-5 10% 2 8 FP16 ✗

ELECTRA-base 105M Transformer 2e-5 10% 2 8 FP16 ✗

BERT-large 330M Transformer 1e-5 10% 2 8 FP16 ✗

RoBERTa-large 335M Transformer 1e-5 10% 2 8 FP16 ✗

ELECTRA-large 320M Transformer 1e-5 10% 2 8 FP16 ✗

Encoder-Decoder Models (Bi-directional)
BART-base 130M Transformer 2e-5 10% 2 8 FP16 ✗

BART-large 385M Transformer 1e-5 10% 2 8 FP16 ✗

Decoder-only Models (Uni-directional)
OPT-125M 125M Transformer 2e-5 10% 2 8 BF16 ✓

Mamba-1-130M 130M Mamba-1 2e-5 10% 2 8 BF16 ✗

Mamba-2-130M 130M Mamba-2 2e-5 10% 2 4 BF16 ✗

OPT-350M 350M Transformer 1e-5 10% 2 8 BF16 ✓

Mamba-1-370M 370M Mamba-1 1e-5 10% 2 4 BF16 ✗

Mamba-2-370M 370M Mamba-2 1e-5 10% 2 4 BF16 ✗

Mamba-1-790M 790M Mamba-1 1e-5 10% 1 4 BF16 ✗

Mamba-2-780M 780M Mamba-2 1e-5 10% 1 4 BF16 ✗

OPT-1.3B 1.3B Transformer 1e-5 10% 1 4 BF16 ✓

Mamba-1-1.4B 1.4B Mamba-1 1e-5 10% 1 4 BF16 ✗

Mamba-2-1.3B 1.3B Mamba-2 1e-5 10% 1 4 BF16 ✗

Llama-3.2-1B 1.3B Transformer++ 1e-5 10% 1 4 BF16 ✓

Table 9: Hyperparameters for passage reranking models. We use 10% of the total training steps for linear learning
rate warmup. Global BZ denotes global batch size; AMP denotes automatic mixed precision, FlashAttn denotes
whether Flash Attention 2 (Dao, 2024) is used.
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Model Size Architecture LR Warmup #Epochs Global BZ AMP FlashAttn
Encoder-only Models (Bi-directional)
BERT-base 110M Transformer 2e-5 10% 2 8 FP16 ✗

RoBERTa-base 120M Transformer 2e-5 10% 2 8 FP16 ✗

ELECTRA-base 105M Transformer 2e-5 10% 2 8 FP16 ✗

BERT-large 330M Transformer 1e-5 10% 2 8 FP16 ✗

RoBERTa-large 335M Transformer 1e-5 10% 2 8 FP16 ✗

ELECTRA-large 320M Transformer 1e-5 10% 2 8 FP16 ✗

Encoder-Decoder Models (Bi-directional)
BART-base 130M Transformer 2e-5 10% 2 8 FP16 ✗

BART-large 385M Transformer 1e-5 10% 2 8 FP16 ✗

Decoder-only Models (Uni-directional)
OPT-125M 125M Transformer 2e-5 10% 2 8 BF16 ✓

Mamba-1-130M 130M Mamba-1 2e-5 10% 2 8 BF16 ✗

Mamba-2-130M 130M Mamba-2 2e-5 10% 2 4 BF16 ✗

OPT-350M 350M Transformer 1e-5 10% 2 8 BF16 ✓

Mamba-1-370M 370M Mamba-1 1e-5 10% 2 4 BF16 ✗

Mamba-2-370M 370M Mamba-2 1e-5 10% 2 4 BF16 ✗

Mamba-1-790M 790M Mamba-1 1e-5 10% 1 4 BF16 ✗

Mamba-2-780M 780M Mamba-2 1e-5 10% 1 4 BF16 ✗

OPT-1.3B 1.3B Transformer 1e-5 10% 1 4 BF16 ✓

Mamba-1-1.4B 1.4B Mamba-1 1e-5 10% 1 4 BF16 ✗

Mamba-2-1.3B 1.3B Mamba-2 1e-5 10% 1 4 BF16 ✗

Llama-3.2-1B 1.3B Transformer++ 1e-5 10% 1 4 BF16 ✓

Table 10: Hyperparameters for document reranking models. We use 10% of the total training steps for linear learning
rate warmup. Global BZ denotes global batch size; AMP denotes automatic mixed precision, FlashAttn denotes
whether Flash Attention 2 (Dao, 2024) is used. Note for LongP models, we additionally use gradient accumulation
and/or activation checkpoint techniques to maintain a reasonably large global batch size. Mamba-1-1.4B gets
OOM in FirstP setting; Mamba-1-1.4B and Mamba-2-1.3B get OOM in LongP setting with batch size 1 despite all
optimization techniques at our hands.
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BM25 MonoT5 RankT5 RankLlama BERT-base BART-base RoBERTa-base ELECTRA-base
Dataset - 220M 335M 7B 110M 130M 120M 105M

Arguana 39.7 19.4 22.3 56.0 15.6 16.1 14.8 18.2
ClimateFever 16.5 24.5 20.6 28.0 16.9 16.6 17.8 20.3
DBPedia 31.8 41.9 43.5 48.3 38.5 42.5 42.1 42.1
FEVER 65.1 80.1 83.5 83.9 73.9 72.9 70.9 78.2
FiQA 23.6 41.3 41.6 46.5 34.6 38.4 36.4 40.1
HotpotQA 63.3 69.5 71.3 75.3 66.0 69.7 70.8 68.9
NFCorpus 32.2 35.7 32.6 30.3 29.3 32.7 26.1 29.9
NQ 30.6 56.7 59.6 66.3 45.2 48.6 49.6 50.1
Quora 78.9 82.3 82.2 85.0 75.8 75.3 74.8 79.3
SCIDOCS 14.9 16.4 18.2 17.8 16.1 15.8 15.4 17.1
SciFact 67.9 73.5 74.9 73.2 65.3 67.7 61.3 66.3
TREC-COVID 59.5 77.6 75.2 85.2 67.8 70.3 70.9 72.3
Touche-2020 44.2 27.7 45.9 40.1 30.7 33.2 30.1 33.3

Average 43.7 49.7 51.7 56.6 44.3 46.1 44.7 47.4

OPT-125M Mamba-1-130M Mamba-2-130M BERT-large BART-large RoBERTa-large ELECTRA-large OPT-350M
Dataset 125M 130M 130M 330M 385M 335M 320M 350M

Arguana 10.1 32.8 33.8 19.5 18.0 15.4 14.6 21.0
ClimateFever 5.9 21.0 23.1 23.4 20.9 15.1 18.2 8.1
DBPedia 17.6 43.8 43.7 43.1 43.5 42.7 43.2 23.0
FEVER 9.5 76.6 76.3 79.5 77.5 71.9 76.8 19.8
FiQA 11.2 38.9 40.7 38.2 41.4 36.4 38.8 16.1
HotpotQA 31.7 72.2 72.8 70.2 71.9 66.8 68.6 48.1
NFCorpus 10.2 36.3 37.2 35.0 34.9 27.7 33.5 12.9
NQ 22.1 48.3 48.3 51.5 51.0 48.2 49.2 29.0
Quora 34.5 85.1 84.5 76.6 73.6 82.1 79.3 60.2
SCIDOCS 5.2 17.4 17.4 16.8 17.0 15.5 16.5 7.9
SciFact 9.7 72.2 73.0 68.8 65.7 55.4 65.9 28.6
TREC-COVID 51.9 75.9 79.0 68.0 70.6 70.8 67.2 57.3
Touche-2020 10.4 36.4 36.3 48.6 34.9 29.6 34.3 16.1

Average 17.7 50.5 51.2 49.2 47.8 44.4 46.6 26.8

Mamba-1-370M Mamba-2-370M Mamba-1-790M Mamba-2-780M OPT-1.3B Llama-3.2-1B Mamba-1-1.4B Mamba-2-1.3B
Dataset 370M 370M 790M 780M 1.3B 1.3B 1.4B 1.3B

Arguana 33.3 34.8 34.4 33.7 35.7 32.7 33.1 34.4
ClimateFever 23.3 25.4 24.7 23.9 26.7 22.6 22.6 26.2
DBPedia 45.8 46.0 46.1 46.4 45.8 43.1 45.8 45.8
FEVER 76.5 79.1 81.8 80.4 83.0 72.9 80.9 81.9
FiQA 42.4 41.5 44.8 43.6 44.3 40.5 43.3 43.3
HotpotQA 75.7 75.0 75.6 76.2 74.9 69.2 75.8 76.3
NFCorpus 37.9 39.1 41.0 39.9 32.8 37.9 38.8 39.2
NQ 51.0 51.9 53.4 52.8 52.6 48.2 50.8 52.1
Quora 86.0 83.5 86.0 84.4 84.0 84.9 80.9 83.9
SCIDOCS 18.6 19.1 19.1 19.5 17.8 17.7 19.0 19.6
SciFact 75.2 76.0 77.7 77.1 72.7 71.7 77.4 76.8
TREC-COVID 82.7 81.2 82.7 85.1 81.6 77.0 83.0 79.9
Touche-2020 48.6 36.1 39.6 37.5 33.2 32.8 36.7 37.7

Average 53.6 53.0 54.4 53.9 52.7 50.1 52.9 53.6

Table 11: Full results for passage ranking out-of-domain evaluation.
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Abstract
Large language models (LLMs) demonstrate
strong performance as text embedding mod-
els when finetuned with supervised contrastive
training. However, their large size balloons
inference time and memory requirements. In
this paper, we show that by pruning the last
p% layers of an LLM before supervised train-
ing for only 1000 steps, we can achieve a pro-
portional reduction in memory and inference
time. We evaluate four different state-of-the-
art LLMs on text embedding tasks and find
that our method can prune up to 30% of layers
with negligible impact on performance and up
to 80% with only a modest drop. With only
three lines of code, our method is easily imple-
mented in any pipeline for transforming LLMs
to text encoders. We also propose L3Prune,
a novel layer-pruning strategy based on the
model’s initial loss that provides two optimal
pruning configurations: a large variant with
negligible performance loss and a small variant
for resource-constrained settings. On average,
the large variant prunes 21% of the parameters
with a −0.3 performance drop, and the small
variant only suffers from a −5.1 decrease while
pruning 74% of the model. We consider these
results strong evidence that LLMs are overpa-
rameterized for text embedding tasks, and can
be easily pruned.

1 Introduction

In the past few years, the field of natural language
processing (NLP) has seen a significant shift to-
wards large-scale language models (LLMs). These
models, due to a combination of their large size,
extensive pre-training, and instruction-following
ability, have achieved state-of-the-art performance
on a wide range of NLP tasks, such as language
modeling, text generation, and text understanding
(Dubey et al., 2024; Brown et al., 2020; Jiang et al.,
2023a).

Despite their strong generative capabilities,
decoder-only LLMs have seen comparatively little

adoption for text embedding tasks until recently
(BehnamGhader et al., 2024). Text embedding,
which involves mapping a text sequence of varying
length to a fixed-dimensional vector representation,
is a fundamental task in NLP and is used as a build-
ing block for a wide range of downstream tasks,
such as semantic textual similarity, information re-
trieval, text classification, and retrieval-augmented
generation (Lewis et al., 2020).

Traditionally, text embedding models have been
based on masked language models (MLMs) and
bidirectional encoders, such as BERT (Devlin et al.,
2019) and T5 (Raffel et al., 2020), typically adapted
for text embedding tasks by following a multi-step
training pipeline consisting of weakly- and fully-
supervised contrastive training (Ni et al., 2022; Li
et al., 2023a; Xiao et al., 2024a).

Decoder-only LLMs, however, offer several
advantages over their encoder-only counterparts.
They are more sample-efficient during pre-training,
leverage instruction-following capabilities for task
generalization, and benefit from a rich and evolving
research ecosystem (Clark et al., 2020; Asai et al.,
2023; BehnamGhader et al., 2024). Further, the
availability of high-performing public pre-trained
LLMs and their continual development make it
appealing to explore their use for text embedding
tasks. To this end, several studies have experi-
mented with various pipelines, training methods,
and architectural modifications, effectively convert-
ing LLMs into state-of-the-art text embedding mod-
els with small amounts of supervised contrastive
training (BehnamGhader et al., 2024; Li and Li,
2024; Ma et al., 2024; Muennighoff, 2022; Springer
et al., 2024; Lee et al., 2024).

On the other hand, the increasingly large size of
LLMs, with parameters ranging up to 540B (Brown
et al., 2020; Chowdhery et al., 2023; Dubey et al.,
2024), stands in stark contrast to traditional small
bidirectional encoders of sizes almost universally
less than 1B parameters (Li et al., 2023a; Xiao et al.,
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2024a). Even the smallest LLMs in use typically
have 3-8B parameters (Abdin et al., 2024). Conse-
quently, inference with LLM-based text encoders
is far more demanding in terms of computing and
memory requirements.

Therefore, there are a variety of post-training
techniques for reducing the cost of LLMs, such as
pruning, quantization, and distillation (Zhu et al.,
2024). In particular, the recent work of Gromov
et al. (2024) showed that LLMs can be pruned
to up to half their size with minimal impact on
downstream performance (i.e. question answer-
ing) by dropping the last half of the model’s layers,
with the exception of the final layer, and applying
a small amount of parameter-efficient finetuning.
Layer-dropping as a pruning strategy has partic-
ular benefits: it is straightforward to implement,
with memory and inference time decreasing lin-
early with the number of layers dropped, and it can
be combined with other efficiency methods such as
quantization.

In this work, we build on these findings and
apply them in the context of text embedding, re-
sulting in an easy-to-use and efficient approach to
transform any pre-trained decoder-only LLM into
a much smaller text embedding model. By simply
pruning the last n% layers of a model before su-
pervised contrastive training, we reduce the final
model size with a proportional decrease in memory
and inference time. We experiment with four differ-
ent decoder-only LLMs ranging from 3.8B to 8B
parameters with a variety of pruning percentages
and show that up to 30% of a model’s layers may
be pruned with almost no impact in performance
and may even increase it. Even intensive pruning
of up to 80% still provides reasonably effective text
embedding models, with a drop in performance on
the downstream embedding task from 64.9 to 59.8
for our highest-performing model.

Further, we propose L3Prune, a simple and
novel heuristic that pinpoints particular layers to
prune to based on the initial loss without requiring
significant testing or experimentation. With no in-
put, our method produces both a) a lightly-pruned
model, 69-89% of the original size with minimal
performance loss of −0.2 on average and even a
performance improvement in one model, and b) a
heavily pruned model, 16-36% of their original size
with a modest performance drop of −4.4 to −6.9.

Our contributions can be summarized as follows:
• We are the first to apply pruning in a text em-

bedding setting, formulating a simple proce-

dure that can be easily applied to pipelines
converting an LLM to a text encoder.

• We demonstrate that LLMs can be pruned by
up to 30% with negligible impact on the qual-
ity of representations and up to 80% with a
modest performance drop.

• We propose and evaluate L3Prune, a novel
method that identifies layers to prune by lever-
aging the model’s initial loss, minimizing the
need for trial-and-error for effective pruning.

Overall, our work demonstrates that decoder-
only LLMs are generally overparameterized for
text embedding tasks and that significant reduc-
tions in model size can be achieved with minimal
impact on performance. We release the full code
for L3Prune 1.

2 Related Work

2.1 Encoder-only Text Embedding Models

BERT-based models have largely dominated the
field of text representation in the past, relying on
supervised training with natural language inference
or sentence similarity to produce high-quality sen-
tence embeddings (Conneau et al., 2017; Reimers
and Gurevych, 2019). Recent methods have fur-
ther improved these representations through large-
scale contrastive pretraining followed by multi-task
fine-tuning (Ni et al., 2022; Wang et al., 2022; Li
et al., 2023a; Xiao et al., 2024a). These methods
generally require a complex multi-stage training
pipeline that demands substantial engineering ef-
fort, along with large-scale compute-intensive pre-
training (Zhang et al., 2024).

2.2 Decoder-only Text Embedding Models

Various recent works have explored leveraging
LLMs and their capabilities to generate high-
quality text representations. Generally, a combi-
nation of (a) a pooling method, (b) architectural
modifications, and (c) supervised or unsupervised
fine-tuning are used to effectively convert LLMs to
text embedding models.

The majority of prior work considers two
straightforward pooling strategies to extract em-
beddings for a sequence of tokens: mean pool-
ing and last-token pooling (Springer et al., 2024;
Jiang et al., 2023b; BehnamGhader et al., 2024;
Muennighoff, 2022; Wang et al., 2024b). Mean

1https://github.com/thennal10/l3prune
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pooling is more effective with bidirectional embed-
ding models (BehnamGhader et al., 2024; Wang
et al., 2022) while last-token pooling is generally
preferred when working with causal attention (Lee
et al., 2024; BehnamGhader et al., 2024). Muen-
nighoff (2022) introduces weighted mean pooling,
assigning a higher weight to later tokens to offset
the autoregressive nature of decoder-only LLMs,
with significant success. Lee et al. (2024) utilizes
a trainable latent attention layer as a pooling tech-
nique and obtains consistent improvement.

Several studies identify the causal attention
mechanism of decoder-only LLMs as an obstacle
in obtaining performant representations and sug-
gest modifications to the architecture to compen-
sate. Li and Li (2024) and BehnamGhader et al.
(2024) replace the causal attention mechanism with
bidirectional attention. Muennighoff et al. (2024)
utilizes a hybrid objective with both bidirectional
representation learning and causal generation train-
ing. Lee et al. (2024) finds that simply removing
the causal attention mask works compellingly well.

Finally, both supervised and unsupervised fine-
tuning have been extensively explored to signifi-
cantly improve the performance of decoder-only
LLMs in representational tasks, with supervised
training consistently producing the best results
(BehnamGhader et al., 2024; Muennighoff, 2022;
Jiang et al., 2023b). Several modifications to
the training pipeline have been proposed, such
as an additional masked token prediction training
step (BehnamGhader et al., 2024), or a two-stage
instruction-tuning setup (Lee et al., 2024). The
zero-shot setting has also been studied with limited
success by Springer et al. (2024) and Jiang et al.
(2023b).

2.3 LLM Pruning
Pruning as a method of size reduction has a long
history in the field of deep learning (Cheng et al.,
2024). Classic pruning techniques sparsify net-
works by removing individual parameters based
on various criteria (LeCun et al., 1990; Han et al.,
2015). While these models were smaller, these
techniques generally lead to irregular sparsifica-
tion patterns that require specialized hardware or
libraries to fully utilize. Structured pruning tech-
niques were developed to remove irrelevant groups
of parameters together, such as particular channels
or filters in convolutional neural networks (Wen
et al., 2016; Li et al., 2022).

Recent work has focused on applying structure

pruning methods to transformers. Almost every
possible component of the model architecture is
studied as candidates for removal, most promi-
nently methods that drop attention heads (Voita
et al., 2019; Michel et al., 2019; Kim and Hassan,
2020) and layers (Fan et al., 2020; Zhang et al.,
2022; Sajjad et al., 2023; Gromov et al., 2024; Men
et al., 2024; Fan et al., 2024). Prior literature on
layer pruning generally considers BERT-like mod-
els (Fan et al., 2020; Sajjad et al., 2023), with re-
cent studies shifting focus to decoder-only LLMs
(Gromov et al., 2024; Men et al., 2024; Fan et al.,
2024).

Sajjad et al. (2023) finds that for BERT-like mod-
els, dropping the last layers is the best layer pruning
strategy. Gromov et al. (2024) extends this research
to decoder-only LLMs and presents a layer pruning
strategy, pruning a block of layers based on angu-
lar distance between layer representations. Their
results indicate that the last layer, in particular, is
essential for maintaining performance. Informed
by this finding, they propose a simpler strategy:
dropping the last n layers except the final layer.
They conclude that simply dropping the last layers
works effectively to prune the model, with a caveat:
after dropping the layers, it is required to "heal" the
model via finetuning with QLoRA (Dettmers et al.,
2023) for 1000 steps.

While these results suggest that the last layer, in
particular, is essential when pruning LLMs for text
generation, this is not necessarily the case when
utilizing the LLM for other tasks. To this end, Fan
et al. (2024) finds that for "simpler" tasks such as
sentiment analysis, early stopping—stopping the
inference after a certain number of layers—is an
effective strategy to significantly reduce inference
time with minimal impact on performance. The
authors suggest that the later layers of LLMs, in-
cluding the final layer, may not be necessary when
using the LLM representations for other tasks.

3 Pruning

We borrow the intuition from Gromov et al. (2024),
that the representations in a transformer can be
thought of as a slowly changing function of the
layer index. Specifically, the representation can
be formulated as the following iterative residual
equation:

x(ℓ+1) = x(ℓ) + f(x(ℓ), θ(ℓ)), (1)
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where x(ℓ), θ(ℓ), respectively, are the multi-
dimensional input and parameter vectors for layer
ℓ, and f(x, θ) describes the transformation of one
multi-head self-attention and MLP layer block.

The authors assert that these representations con-
verge to a slowly changing function:

x(ℓ) ≈ x(ℓ−1) + ϵ (2)

with ϵ ≪ xℓ as an approximation. They verify
this hypothesis experimentally by calculating the
distance between layer representations and using
them for a pruning algorithm. Their findings in-
dicate that the earlier layers have a significantly
larger impact on the representation compared to
the later layers, with a particular caveat: the final
layer also modifies the representation significantly.
Thus, they propose and verify a simpler pruning
strategy, where the last n layers of the model, ex-
cluding the final layer, are dropped. This method re-
quires a "healing" step, recovering the downstream
performance with a few QLoRA finetuning steps
(Dettmers et al., 2023).

Our hypothesis extends theirs and posits that for
the text embedding task, the final layer is also not
necessary. Our pruning experiments are conducted
with the percentage pruned p, between 0% (all lay-
ers intact) and 100% (all layers removed). Given a
pruning percentage and a total number of layers n,
the new number of layers n∗ is calculated as

n∗ = ⌊n× (1− p)⌋

Given a model and its configuration, this straight-
forward procedure can be integrated with modern
LLM implementations with just three lines of code:

1 n = int(config.num_hidden_layers * (1-p))
2 model.layers = model.layers [:n]
3 config.num_hidden_layers = n

We then conduct supervised contrastive training,
as with prior work on converting LLMs to text
encoders. Instead of an explicit healing step, we
hypothesize that the aforementioned training acts
as such. Thus, no additional or separate training is
necessary to execute our method.

4 Experiments

4.1 General Setup
For our experiments, we chose four instruct-tuned
decoder-only LLMs across different families
ranging from 3.7B to 7.5B: LLaMA-3-8B
(Meta-Llama-3-8B-Instruct, Dubey et al.,

2024), Mistral-7B (Mistral-7B-Instruct-v0.2,
Jiang et al., 2023a), Qwen2-7B
(Qwen2-7B-Instruct, Yang et al., 2024),
and Phi3-4B (Phi-3-mini-4k-instruct, Abdin
et al., 2024). These model families were chosen
due to their widespread use in open-source
communities and LLM literature. As we are
conducting pruning and are only concerned with
its effects, we pick the smallest model available
in each family, and we opt for no modification
to the LLM architecture itself. We use weighted
mean pooling (Muennighoff, 2022) to generate
embeddings from the outputs of the LLM as it
is straightforward to implement and outperforms
other pooling measures when paired with causal
attention (Muennighoff, 2022; BehnamGhader
et al., 2024).

We also conduct supervised contrastive finetun-
ing, known to outperform unsupervised finetun-
ing and the zero-shot setting, and considered to be
an integral part of effectively utilizing LLMs as
embedding models (BehnamGhader et al., 2024;
Muennighoff, 2022; Jiang et al., 2023b). We use
the replication of the public portion of the E5
dataset (Wang et al., 2024b), curated by Springer
et al. (2024), as the training dataset. Consisting
of approximately 1.5 million samples, it is a mul-
tilingual compilation of various retrieval datasets
meant for supervised contrastive training of embed-
ding models. In accordance, we use contrastive
loss with hard negatives and in-batch negatives
(Springer et al., 2024; BehnamGhader et al., 2024).
Further details on the dataset and training are pro-
vided in Appendix A.

All experiments were conducted on a single
A100 (80GB) GPU, reinforcing the accessible na-
ture of our proposed procedure.

4.2 Zero-shot Loss Evolution Over Layers
As a preliminary test of our hypothesis—that an
LLM can form performant text representations
even before reaching the final layer—we first cal-
culate how well the output of each layer of the
model performs as an embedding. We note that
this is equivalent to a zero-shot setting. As we are
interested in a comparative measure between layers
intra-model, the loss as a metric is sufficient. We
take a random sampling of 1280 tuples from the
training dataset and calculate the embeddings via
weighted mean pooling of the outputs of each layer.
Then, the loss is calculated and averaged per layer.
We find that the loss values converge fairly quickly,
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Figure 1: For each layer of an unmodified model, we compute the loss on 1280 randomly sampled examples from
the training dataset. The marked points indicate the layer with minimal loss before and after the midpoint.

Layer

La
ye
rs

LargeSmall

Lo
ss

1 2 3 54 6 7 8 9 11 1210
 17 1816
14 1513
 20 2119 25
23 2422
 26 28 2927 31 3230


Figure 2: A simplified illustration of L3Prune. The ini-
tial loss of the representation of each layer is found, and
the two minima before and after 50% of the model corre-
spond to the layers to prune to in the two configurations,
small and large.

so 1280 samples are sufficient for our purposes.
The results are aggregated in Figure 1.

The loss for all four models follows a similar
curve: an initial drop to around layer 5-10, a sub-
sequent rise around layer 15, and a slower drop up
to layer 22-25, where it rises again by the end with
layer 28-32. While the specifics of how LLM rep-
resentations evolve are not well understood, these
results suggest that the early layers of the model are
generally focused on representation. In contrast,
the final layers transform the representation into the
specific probability distribution for the next token.
Regardless of the underlying dynamics, the drop-
rise-drop curve is consistent across model sizes and
families in our experiments.

We expect that training will considerably trans-
form the shape of this layerwise evolution. We
also have little reason to expect that the final down-
stream performance of layer-dropped models will
be accurately modeled by the effectiveness of these
initial representations. However, we posit that these
initial loss curves also reveal optimal starting points

for pruning. The minima of these curves indicate
layers where the text embeddings are best opti-
mized, making them good candidates for pruning
without significant performance loss.

Inspired by these findings, we consider the fol-
lowing heuristic for pruning: find the two minima
in the layer-loss curve before and after 50% of
the layers (the low point of the two drops). We
hypothesize that pruning up to these layers pro-
vides us with two models: a smaller model with
degraded but reasonable performance and a larger
model whose performance is close to the origi-
nal. This procedure would thus produce two text
embedding model variants from an LLM, each us-
able in different circumstances. The two aforemen-
tioned models are termed large and small in the
following sections. We term this method LLM
Layerwise Loss Pruning, or L3Prune for short.
Figure 2 shows a simple illustration of the process.

4.3 Supervised Training

To verify the general efficacy of our hypothe-
sis—that LLMs can form effective text representa-
tions even before reaching their deeper layers—we
conduct training on pruned LLMs to convert them
into effective text encoders. We keep the training
procedure fairly straightforward: supervised con-
trastive learning for 1000 steps with LoRA modules
(Hu et al., 2022). Other hyperparameters are de-
tailed in Appendix A.2. We first test a range of
pruning percentages from 10% to 90% at 10% in-
tervals. Figure 3 shows the training loss for all
models and pruning percentages. We note that the
training loss curves all generally follow the same
shape, indicating stability in training even with the
modified architecture.

174



200 400 600 800 1000
Step

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
Tr

ai
ni

ng
 L

os
s

LLaMA-3-8B

200 400 600 800 1000
Step

Mistral-7B

200 400 600 800 1000
Step

Qwen2-7B

200 400 600 800 1000
Step

Phi3-4B

Prune %
0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

Figure 3: The training loss curves for each model at different pruning percentages.
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Figure 4: The final loss values at the end of training
across different pruning percentages.

Figure 4 shows the final loss in relation to the
pruned model parameters, with each marked point
representing a model pruned by an additional 10%.
The final loss values for each model follow a
straightforward trajectory with increasing pruning
percentage: minimal increases up to 30-40%, with
larger increases as the pruning percentage hits 90%.
Notably, we find that the final loss of different mod-
els correlates more with the final parameter count
after pruning than with the percentage of layers re-
tained. This suggests that the parameter count is a
more significant factor in determining the effective-
ness of a pruned model than simply the proportion
of layers kept.

If we presume that training loss correlates well
with downstream accuracy for text embedding, we
can make a series of predictions from an analysis
of the plots:

• Performance always degrades sharply as the
parameter count approaches and goes below 1
billion.

• In contrast, performance degrades little even
with 30-50% pruning. LLaMA-3-8B degrades
minimally up to 40-50%, Mistral-7B up to 30-
40%, and Phi3-4B up to 20-30%. Qwen2-7B

degrades more at low pruning percentages, but
remains stable between 30-60%.

• Even at high pruning percentages, model per-
formance degrades at a reasonable rate. Mod-
els can likely be pruned up to 2 billion param-
eters while still producing viable embeddings.

4.4 Simple Pruning Evaluation

To validate the predictions made from the training
loss, we evaluate the models at various pruning
percentages on downstream text embedding tasks.
Specifically, to speed up evaluation, we opt for
the 15-task subset of the Massive Text Embedding
Benchmark (MTEB, Muennighoff et al., 2023) col-
lected and used by BehnamGhader et al. (2024).
The subset, which we term MTEB-15 for clarity,
covers representative tasks from the full 56 tasks
in MTEB, including tasks from each category with
almost the same proportion to prevent bias. Further
details are provided in Appendix B.1.

In accordance with previous work
(BehnamGhader et al., 2024; Springer et al.,
2024; Wang et al., 2024b), we evaluate with task-
specific instructions. We use the same instructions
as Wang et al. (2024b), which can be found in
Appendix Table 4. Following BehnamGhader et al.
(2024), for symmetric tasks, the same instruction
is used for the query and the document. Instruction
tokens are excluded from the final pooling.

Figure 5 shows the impact of pruning on MTEB-
15 results across a range of pruning percentages.
We plot with respect to the number of parameters
as opposed to relative pruning percentages because
parameter count correlates better with the score.
We can see that the training loss and MTEB-15
score also roughly correlate. This confirms that our
predictions in Section 4.3, based on the supervised
training loss, are fairly accurate.

LLama at 50% pruning (3.77B) is only degraded
by −1.89, still providing a strong performance of
63.10. Even at 80% pruning (1.41B), it performs
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LLaMA-3-8B Mistral-7B Qwen2-7B Phi3-4B BGE GTE E5

Large Small Large Small Large Small Large Small - - -

Layers 25 (-7) 5 (-27) 22 (-10) 8 (-24) 25 (-3) 10 (-18) 25 (-7) 8 (-24) 24 24 24
Params 5.9 (78%) 1.18 (16%) 4.92 (69%) 1.79 (25%) 6.35 (89%) 2.54 (36%) 2.91 (78%) 0.93 (25%) 0.36 0.36 0.36
Score 63.5 (-1.5) 58.1 (-6.9) 63.1 (-0.1) 59.0 (-4.2) 64.5 (+0.3) 60.9 (-3.3) 61.7 (-0.1) 55.5 (-6.3) 61.6 57.1 61.3

Table 1: Comparison of large and small variants across various models, including number of layers, parameters,
and MTEB scores. Changes from the full model are provided in parentheses. The encoder-only models BGE, GTE,
and E5 are also provided as a baseline.

at a reasonable 59.69. Mistral’s performance de-
crease is an almost negligible −0.08 up to 30%
(4.91B). Qwen’s performance increases by +0.32
with a pruning of 10%. It drops distinctly at 30%
pruning. However, it stabilizes at a reasonable
61.51 up to 60% (2.79B). Phi degrades negligibly
up to 20% pruning (2.91B) with −0.03, and −0.53
at 30% (2.56B). Higher pruning percentages de-
grade it significantly as the model parameter count
decreases below the 2 billion mark.

Our results correspond roughly with those of
Gromov et al. (2024): sharp transitions in perfor-
mance around 45%-55% for models in the Llama
family, 35% for Mistral, 25% for Phi, and 20%
for Qwen. However, instead of a sharp transition
to near-random performance, we observe a steady
but reasonable decline even at higher pruning per-
centages. In general, we only observe a significant
decline in performance as model size goes below
roughly 2 billion parameters. These results also
correlate roughly with previous findings by Jiang
et al. (2023b), who investigated LLM-based sen-
tence embedding models between 125M to 66B
parameters and found diminishing returns at pa-
rameter counts over 2B.

We can derive some general insights from these
experiments. For one, the resilience of a model to
pruning is not entirely consistent across families
and sizes. Thus, model-specific experimentation
may be required. However, in general, models can
be pruned 10-30% with minimal drop in down-
stream performance. Further, higher pruning per-
centages up to 80% still yield reasonably effective
embedding models.

We note that LLaMa-3-8B at 50% pruning, with
3.77B parameters, outperforms an unpruned Phi3-
4B at 3.73B parameters. In conjunction with
our other results, we suggest that, given a com-
pute/memory budget, simply dropping layers of a
high-performing LLM may be a superior and sig-
nificantly simpler strategy than training a smaller
LM that fits the budget.
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Figure 5: The MTEB (15 task subset) scores with re-
spect to the number of model parameters.

4.5 L3Prune Evaluation

As mentioned in Section 4.2, we hypothesize that
the minima in the layer-loss curve before and af-
ter the midpoint are particularly effective points
for pruning. We prune to those particular layers
and conduct the same training and evaluation as
described in Sections 4.3 and 4.4. Table 1 aggre-
gates the results across base models for the two
resulting prune configurations, termed small and
large, along with three well-known encoder-only
models as a baseline (see Section 4.6. It also shows
the particular layer numbers and parameter counts.

The results are consistent with our previous find-
ings. The small models generally perform worse
than the full-sized models, with performance drops
ranging between −4.4 and −6.9. However, at 16%-
36% of their original size (84%-64% pruning), the
models are proportionally compute- and memory-
efficient in exchange for the dropped performance.
The large models, on the other hand, perform al-
most as well as the unpruned models, with only a
slight drop in performance, while pruned to 69%-
89% (31%-11% pruning). As we have seen before,
Qwen2-7B’s performance increases slightly with
pruning, and both Mistral-7B and Phi3-4B’s per-
formance drops are negligible. LLaMA-3-8B’s
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performance drops by −1.4 points but still remains
a fairly strong 63.5.

Combined with the results from Section 4.4, we
can see that the layers picked by L3Prune are gen-
erally optimal. For instance, Mistral-7B, Qwen2-
7B, and Phi3-4B show strong performances up to
30%, 10%, and 20% pruning, respectively, and the
layers corresponding to those pruning percentages
are exactly the layers pinpointed by L3Prune for
the large variant. As LLaMa-3-8B’s performance
decrease remains fairly consistent when pruning
below 50%, we infer that there is no particularly
optimal point for pruning. Similarly, the small
variants are pruned up to the point before each
model’s performance drops drastically—roughly
85% for LLAMA-3-8B, 75% for Mistral-7B, 65%
for Qwen2-7B, and 75% for Phi3-4B.

Based on these results, we can conclude that the
layerwise loss evolution of a model can be used to
effectively pick optimal points for pruning. The
resulting variants can be used to provide a range of
models with different performance and efficiency
trade-offs. The large models are particularly ef-
fective, with a negligible drop (or even an increase)
in performance for a significant size reduction. The
small models can be used for resource-constrained
settings with reasonable performance.

We further note that the training of the small
variants required only 23.6 GB of VRAM at maxi-
mum, and the layerwise loss curves can be calcu-
lated with less than 17 GB of VRAM. The training
is only conducted for 1000 steps and takes less
than an hour on average using an A100 GPU. Thus,
small variant models can be trained on consumer-
grade GPUs, making it accessible to open-source
and practitioner communities. Further details on
training times are given in Appendix A.3.

4.6 Baseline Comparison to Existing
Encoder-Only Models

Table 1 also includes the MTEB-15 scores of three
high-performing encoder-only embedding models:
BGE (bge-large-en, Xiao et al., 2024b), GTE
(gte-large, Li et al., 2023b), and E5 (e5-large,
Wang et al., 2024a). These models are among the
top-performing models with less than 1B parame-
ters on the HuggingFace MTEB Leaderboard, and
we evaluated them on our reduced MTEB-15 sub-
set. All the pruned large models perform bet-
ter than the encoder-only models, but the small
models generally perform on par or worse. As
the encoder-only models are significantly smaller,

they would indeed be a better choice in a resource-
constrained setting. However, we note that these
models require long, complex, and computation-
ally intensive multi-stage training pipelines. The
E5 model, for instance, requires a contrastive pre-
training phase consisting of 20,000 steps with a
batch size of 32,768, requiring 64 V100 GPUs and
2 days of training time (Wang et al., 2024a). Li
et al., 2023a similarly apply a contrastive pretrain-
ing stage for training the GTE model, with 50,000
steps and a batch size of 16,384 on 8 A100 (80GB)
GPUs. The BGE model is trained with a three-
stage pipeline, with large-scale pre-training using a
batch size of 19,200, followed by general-purpose
finetuning and task-specific fine-tuning (Xiao et al.,
2024b).

In contrast, given an already available LLM, our
method can produce a small and reasonably effec-
tive pruned embedding model with just an hour
of training on a single A100 (80GB) GPU, and
will theoretically work with a single V100 (24GB)
GPU. Further, our methods scale well with advance-
ments in LLM technology, and the generality of our
method allows it to be quickly adapted to any new
decoder-only architecture or LLM-to-embedding
pipeline.

5 Conclusion

In this work, we presented a simple and effective
pruning approach to convert LLMs into lightweight,
performant text embedding models. By dropping
the last p% layers of the model, we achieved sig-
nificant reductions in model size and inference
time, with minimal impact on text embedding tasks.
Our procedure is straightforward to implement in
pipelines converting LLMs to text encoders and
requires no additional training, providing smaller
models at no cost. Based on the initial model
loss, we also proposed L3Prune, a heuristic to pin-
point optimal layers to prune to, providing an ef-
ficient strategy for pruning without extensive ex-
perimentation. We demonstrated that significant
pruning—up to 31%—can be conducted with a
negligible performance loss, and substantial prun-
ing—up to 84%—can still produce effective mod-
els. Overall, our results show that decoder-only
LLMs are overparameterized for text embedding
tasks and can be pruned with minimal performance
loss.
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6 Limitations

Our work only considers the supervised finetun-
ing setting for utilizing LLMs as text encoders, as
this is the most common and generally effective.
Further, our results may not hold with extensive
modifications to the architecture or training pro-
cess or on models larger than 8 billion parameters.
Lastly, even with extensive pruning, our smallest
models are still generally larger than traditionally
trained encoder-only models. However, as we men-
tion in Section 4.6, these models require a complex
and computationally expensive training procedure,
in contrast to inexpensive parameter-efficient fine-
tuning required for LLM-based models.

7 Ethical Considerations

Our work provides an effective and efficient
method to produce optimized text embedding mod-
els from LLMs. As we mentioned in Section 4.5,
our method is memory and compute-efficient. It
can be conducted on consumer-grade GPUs, mak-
ing it accessible to a wider audience of practition-
ers and academics. However, this also enhances
potential misuse issues, lowering the bar for mali-
cious actors to train and host embedding models.
Regardless, embedding models, in general, have
significantly fewer avenues for malicious behavior
in comparison to, e.g., generative LLMs.
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A Training

A.1 Dataset

The dataset we use consists of ELI5 (sample ra-
tio 0.1, Fan et al., 2019), HotpotQA (Yang et al.,
2018), FEVER (Thorne et al., 2018), MIRACL
(Zhang et al., 2023), MS-MARCO passage rank-
ing (sample ratio 0.5) and document ranking (sam-
ple ratio 0.2, Bajaj et al., 2018), NQ (Karpukhin
et al., 2020), SNLI (Bowman et al., 2015), MNLI
(Williams et al., 2018), SQuAD (Rajpurkar et al.,
2016), TriviaQA (Joshi et al., 2017), Quora Du-
plicate Questions2 (sample ratio 0.1), Mr- TyDi
(Zhang et al., 2021), DuReader (He et al., 2018),
and T2Ranking (sample ratio 0.5, Xie et al., 2023).
The instructions used for each dataset can be found
in Table 5.

A.2 Hyperparameters

All models are trained with LoRA rank r = 16 and
use brain floating point (bfloat16) precision, gra-
dient checkpointing, and FlashAttention-2 (Dao,
2024) to optimize GPU memory consumption.
Training is conducted with a batch size of 64 for
1000 steps, gradient accumulation over 1 step, and
a maximum sequence length of 512 tokens. The
Adam optimizer has a learning rate of 2 × 10−4

and a linear warm-up over the first 300 steps.

A.3 Training Time

Large Small

LLaMA-3-8B 2h 48m 35m
Mistral-7B 2h 41m 56m
Qwen2-7B 3h 1m 1h 14m
Phi3-4B 1h 40m 33m

Table 2: Training time for the variants produced by
L3Prune.

Table 2 shows the time taken to train the two vari-
ants (large and small) provided by L3Prune for

2https://quoradata.quora.com/
First-Quora-Dataset-Release-Question-Pairs
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Figure 6: The total training time taken for all models at
different pruning percentages.

each model. Figure 6 shows the training time for
the models pruned at different pruning percentages,
with respect to total parameter count. As we expect,
the time taken to train a pruned model is linear to
the pruning percentage, and corresponds roughly to
the total parameter count. All models were trained
on a single NVIDIA A100 GPU. Including evalua-
tion, we estimate that all experiments took a total
of 200 GPU hours.

B Massive Text Embeddings Benchmark
(MTEB)

B.1 MTEB subset details

MTEB encompasses a diverse array of embedding
tasks varying in size, making a full evaluation quite
time-consuming—it takes over 160 hours for a full-
sized 7B model, such as Qwen2-7B, on an A100
GPU. To expedite our analysis, we use a represen-
tative subset of 15 tasks from MTEB, selected and
used by BehnamGhader et al. (2024), detailed in
Table 3. This subset includes tasks from each cate-
gory in proportions closely matching those of the
full MTEB.

B.2 MTEB instructions

For evaluation on MTEB-15, we use the instruc-
tions from Wang et al. (2024b), also used by
BehnamGhader et al. (2024). The list of instruc-
tions for each task is listed in Table 4.

C Licenses

All four models we used are available for research
purposes—LLaMA-3-8B is under its own permis-
sive license, Mistral-7B and Qwen2-7B are under

Category Dataset

Retrieval (3)
SciFact
ArguAna
NFCorpus

Reranking (2) StackOverflowDupQuestions
SciDocsRR

Clustering (3)
BiorxivClusteringS2S
MedrxivClusteringS2S
TwentyNewsgroupsClustering

Pair Classification (1) SprintDuplicateQuestions

Classification (3)
Banking77Classification
EmotionClassification
MassiveIntentClassification

STS (3)
STS17
SICK-R
STSBenchmark

SummEval (0) -

Overall 15 datasets

Table 3: MTEB-15, the subset of MTEB tasks used for
our work.

Apache License 2.0, and Phi3-4B is under MIT Li-
cense. MTEB and the tasks it includes are provided
under the Apache License 2.0. We overview the
licenses of all datasets used in training below:

• ELI5: Provided under no specified license,
available for research purposes.

• HotpotQA: Provided under CC BY-SA 4.0.
• FEVER: Provided under CC BY-SA 3.0.
• MIRACL: Provided under Apache License

2.0.
• MS-MARCO: Provided under no specific li-

cense, available for non-commercial research
purposes.

• Natural Questions (NQ): Provided under CC
BY 4.0.

• Stanford Natural Language Inference (SNLI):
Provided under CC BY-SA 4.0.

• Multi Natural Language Inference (MNLI):
Provided under a combination of permissive
licenses, elaborated by Williams et al. (2018).

• SQuAD: Provided under CC BY-NC 4.0.
• TriviaQA: Provided under Apache License

2.0.
• Quora Duplicate Questions: Provided un-

der no specified license, available for non-
commercial purposes.

• Mr. TyDi: Provided under Apache License
2.0
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• DuReader: Provided under Apache License
2.0

• T2Ranking: Provided under Apache License
2.0
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Task Name Instruction

Banking77Classification Given a online banking query, find the corresponding intents
EmotionClassification Classify the emotion expressed in the given Twitter message into one

of the six emotions: anger, fear, joy, love, sadness, and surprise
MassiveIntentClassification Given a user utterance as query, find the user intents
BiorxivClusteringS2S Identify the main category of Biorxiv papers based on the titles
MedrxivClusteringS2S Identify the main category of Medrxiv papers based on the titles
TwentyNewsgroupsClustering Identify the topic or theme of the given news articles
SprintDuplicateQuestions Retrieve duplicate questions from Sprint forum
SciDocsRR Given a title of a scientific paper, retrieve the titles of other relevant

papers
StackOverflowDupQuestions Retrieve duplicate questions from StackOverflow forum
ArguAna Given a claim, find documents that refute the claim
NFCorpus Given a question, retrieve relevant documents that best answer the

question
SciFact Given a scientific claim, retrieve documents that support or refute the

claim
STS* Retrieve semantically similar text.

Table 4: Instructions used for evaluation on the MTEB benchmark. “STS*” refers to all the STS tasks.

Dataset Instruction(s)

SNLI & MNLI Given a premise, retrieve a hypothesis that is entailed by the premise
Retrieve semantically similar text

DuReader Given a Chinese search query, retrieve web passages that answer the question
ELI5 Provided a user question, retrieve the highest voted answers on Reddit ELI5 forum
FEVER Given a claim, retrieve documents that support or refute the claim
HotpotQA Given a multi-hop question, retrieve documents that can help answer the question
MIRACL Given a question, retrieve Wikipedia passages that answer the question
MrTyDi Given a question, retrieve Wikipedia passages that answer the question
MSMARCO
Passage

Given a web search query, retrieve relevant passages that answer the query

MSMARCO
Document

Given a web search query, retrieve relevant documents that answer the query

NQ Given a question, retrieve Wikipedia passages that answer the question
QuoraDuplicates Given a question, retrieve questions that are semantically equivalent to the given

question
Find questions that have the same meaning as the input question

SQuAD Retrieve Wikipedia passages that answer the question
T2Ranking Given a Chinese search query, retrieve web passages that answer the question
TriviaQA Retrieve Wikipedia passages that answer the question

Table 5: Instructions used for each of the E5 datasets.
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Abstract

The extensive memory footprint of language
model (LM) fine-tuning poses a challenge for
both researchers and practitioners. LMs use
an embedding matrix to represent extensive vo-
cabularies, forming a substantial proportion of
the model parameters. While previous work
towards memory-efficient fine-tuning has fo-
cused on minimizing the number of trainable
parameters, reducing the memory footprint of
the embedding matrix has yet to be explored.
We first demonstrate that a significant propor-
tion of the vocabulary remains unused during
fine-tuning. We then propose a simple yet ef-
fective approach that leverages this finding to
minimize memory usage. We show that our ap-
proach provides substantial reductions in mem-
ory usage across a wide range of models and
tasks. Notably, our approach does not impact
downstream task performance, while allowing
more efficient use of computational resources.1

1 Introduction

Language models (LMs) (Chung et al., 2022; Tou-
vron et al., 2023; Warner et al., 2024) form the foun-
dation of contemporary natural language process-
ing (NLP), however they require extensive com-
putational resources to train (Kaplan et al., 2020;
Hoffmann et al., 2022). This is contrary to the
democratization of NLP, exacerbating economic in-
equalities and hindering inclusivity (Schwartz et al.,
2020; Weidinger et al., 2022). Consequently, there
is a growing focus towards developing efficient
methods for LM training and fine-tuning (Treviso
et al., 2023; Lialin et al., 2023).

The memory footprint of LMs is a major chal-
lenge for their application. Storing model param-
eters requires extensive amounts of memory, con-
straining the size and architecture of the model
(Paleyes et al., 2022). This problem is especially

1https://github.com/mlsw/
partial-embedding-matrix-adaptation

Original
Embeddings

Trainable
Embeddings

Unused
Embeddings

Merged
Embeddings

Figure 1: Memory-efficient language model fine-tuning
with Partial Embedding Matrix Adaptation (PEMA).

prominent during training as gradients and opti-
mizer states must also be retained (Kingma and
Ba, 2017). This can be problematic when using
consumer hardware or facing an academic budget
(Izsak et al., 2021; Ciosici and Derczynski, 2022).

LMs ordinarily use fixed vocabularies to derive
vector representations from text, known as word
embeddings. Each element of the vocabulary has a
corresponding word embedding, which collectively
form an embedding matrix within the LM. The size
of the embedding matrix scales with both the vocab-
ulary size and embedding dimension, comprising a
substantial proportion of the model parameters (Ta-
ble 5, Appendix A). This proportion is usually even
greater for multilingual LMs, which benefit from
larger vocabularies (Conneau et al., 2020; Liang
et al., 2023). However, we hypothesize that a signif-
icant proportion of LM vocabulary remains unused
during fine-tuning on many downstream tasks.

In this paper, we first demonstrate that our hy-
pothesis holds for a variety of downstream tasks,
with only a small subset of vocabulary used. We
then propose a method to reduce memory usage dur-
ing fine-tuning by excluding unused embeddings.
Finally, we empirically demonstrate the memory
savings from our approach across a range of models
and tasks. Notably, our approach does not impact
downstream task performance and is orthogonal to
many existing LM memory efficiency techniques.
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2 Related Work

Tokenization. Transformer LMs (Vaswani et al.,
2017) typically adopt subword tokenization (Schus-
ter and Nakajima, 2012; Sennrich et al., 2016) to en-
code text using a finite vocabulary. The use of large
subword vocabularies enables improved task per-
formance (Gallé, 2019), inference efficiency (Tay
et al., 2022), and multilingual performance (Liang
et al., 2023). Conversely, character or byte level
tokenization can be used (Clark et al., 2022; Xue
et al., 2022), reducing the size of the embedding
matrix at the cost of increasing the sequence length.

Reducing embedding parameters. To reduce
the size of the embedding matrix, LMs can be
trained with embedding factorization (Sun et al.,
2020; Lan et al., 2020), albeit with slightly lower
task performance. Alternatively, embeddings can
be generated from hash functions (Sankar et al.,
2021; Xue and Aletras, 2022; Cohn et al., 2023),
although this may harm performance due to the
many-to-one mapping from tokens to embeddings.

Multilingual vocabulary trimming. The closest
work to our own is Abdaoui et al. (2020), which
creates smaller multilingual LMs by permanently
reducing the number of supported languages. This
can harm performance as the removed vocabulary
may later be required for a downstream task. More-
over, selecting which vocabulary to remove re-
quires the computationally expensive processing of
a large corpus. Ushio et al. (2023) further examine
the performance impact of permanently removing
LM vocabulary either before or after fine-tuning.
However, the same fundamental limitations persist.

Parameter-efficient fine-tuning. PEFT meth-
ods, such as adapters (Houlsby et al., 2019), soft
prompts (Lester et al., 2021; Li and Liang, 2021),
ladder side-tuning (Sung et al., 2022), and low-rank
adaptation (Hu et al., 2022), effectively adapt LMs
by fine-tuning only a small number of parameters.
However, these methods still require all LM param-
eters to be held in accelerator memory.

Offloading. To minimize accelerator (e.g. GPU)
memory usage, LM parameters can be held in sep-
arate (e.g. CPU) memory until needed (Pudipeddi
et al., 2020; Ren et al., 2021). However, this ap-
proach substantially increases inference latency.

Model compression. In Appendix B, we discuss
a variety of orthogonal LM compression methods,
such as quantization, pruning, and distillation.

0 5M 10M 15M 20M 25M
Total Number of Tokens

0

20K

40K

N
um

be
ro

fU
ni

qu
e

To
ke

ns

CoLA

MNLI

MRPC

QNLI QQP

RTE

SST-2
STS-B

WNLI

Vocabulary Usage (Fit)
Vocabulary Size

Figure 2: The trend in vocabulary use for the datasets
in GLUE when using the vocabulary from GPT-2.

# Token

49,990 natureconservancy
50,072 ;;;;;;;;;;;;
50,160 PsyNetMessage
50,174 rawdownloadcloneembedreportprint
50,243 SolidGoldMagikarp

Table 1: Five examples of tokens from the GPT-2 vo-
cabulary that do not occur within English Wikipedia.

3 Vocabulary Usage Analysis

To empirically assess the level of vocabulary usage
during fine-tuning, we first examine the popular
GLUE benchmark (Wang et al., 2019). This com-
prises a series of tasks that are varied in both size
and domain (Appendix C). For tokenization, we use
the subword vocabulary from GPT-2, which was
later adopted by models including RoBERTa (Liu
et al., 2019), BART (Lewis et al., 2020), GPT-3
(Brown et al., 2020), and OPT (Zhang et al., 2022).

Figure 2 illustrates the relationship between
unique tokens and total tokens in each of the GLUE
datasets. Notably, six out of nine datasets fail to use
more than half of the vocabulary. Moreover, the
smallest dataset, WNLI, uses less than 4%. Interest-
ingly, we observe that the GLUE datasets follow a
trend resembling Heaps’ Law (Heaps, 1978). This
states that as the size of a corpus grows, there are
diminishing gains in new vocabulary. However, our
use of a finite subword vocabulary means that the
trend is asymptotic to the vocabulary size.

Separately, the statistical construction of sub-
word vocabularies can reflect anomalies in their
training data, creating tokens that may never be
used. To examine the extent of the issue, we iden-
tify such tokens by evaluating a processed dump
of English Wikipedia, comprising over 20GB of
text. Peculiarly, we identify nearly 200 anomalous
tokens without a single occurrence (see Table 1).2

2We refer readers interested in such anomalous tokens to
Rumbelow and Watkins (2023) and Land and Bartolo (2024).
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4 Partial Embedding Matrix Adaptation

Our empirical analysis (Section 3) suggests that
many fine-tuning datasets only use a fraction of
LM vocabulary. We leverage this insight to propose
Partial Embedding Matrix Adaptation (PEMA), a
method that achieves substantial memory savings
by selecting only the minimum subset of word em-
beddings needed for fine-tuning. Notably, this does
not impact task performance, as unused word em-
beddings are not updated during backpropagation.

Preliminaries. Let each token in the vocabulary
{w1, . . . , wk} be denoted by a unique integer i
such that V = {i ∈ N | i ≤ k}. The embedding
matrix E ∈ R|V|×d is then used to project each
token to a corresponding d-dimensional vector.

Before fine-tuning. Suppose we have fine-tuning
dataset D ∈ Vm×n where m is the number of ex-
amples and n is the length of each example. We
compute the partial vocabulary V ′ ⊂ V consisting
of only the tokens in D. As the elements of V ′ are
not necessarily consecutive integers, we define an
arbitrary mapping f : V ′ → {i ∈ N | i ≤ |V ′|}.
We then construct the partial embedding matrix
E′ ∈ R|V ′|×d with entries E′[:, f(i)] = E[:, i] for
all i ∈ V ′. That is, E′ retains only embedding vec-
tors corresponding to tokens in V ′. To adapt D for
the partial vocabulary V ′, we create an intermediary
dataset D′ where each entry D′[i, j] = f(D[i, j]).
Finally, we use D′ and E′ in place of D and E.

After fine-tuning. Following fine-tuning, our
partial embedding matrix E′ holds the newly
learned embeddings for the partial vocabulary.
However, we do not wish to keep only the par-
tial vocabulary, as this would limit future use of
the model (i.e. tasks with different vocabulary).
Therefore, we merge the newly learned embed-
dings into the original embedding matrix (stored
on-disk). More formally, we update E such that
E[:, f−1(i)] = E′[:, i] for all i ∈ V ′. This ensures
that the model remains structurally identical, with
embeddings for the complete vocabulary.

5 Experimental Setup

Datasets. To offer a fair selection of datasets,
we follow existing PEFT literature (Houlsby et al.,
2019; Hu et al., 2022; Sung et al., 2022; Zhang
et al., 2023) and focus our evaluation on the popular
GLUE benchmark. We additionally employ XNLI
(Conneau et al., 2018) to assess the performance

of our approach with multilingual data. Complete
data sources and implementation details are listed
in Appendix C and Appendix D, respectively.

Models. Similarly, we select a variety of popular
models used in existing work. However, we place
an emphasis on having a variety of vocabularies
(Table 5, Appendix A). For monolingual models,
we use BERT (Devlin et al., 2019), RoBERTa (Liu
et al., 2019), and DeBERTaV3 (He et al., 2023).
For multilingual models, we use mBERT (De-
vlin et al., 2019), XLM-RoBERTa (Conneau et al.,
2020), and XLM-V (Liang et al., 2023). To evalu-
ate the performance of distilled models, we also use
the available distilled counterparts: DistilBERT,
DistilRoBERTa, and DistilmBERT (Sanh et al.,
2020a). For a fair comparison between models,
we consistently select the base size (dmodel = 768).

Memory efficiency metrics. Following conven-
tion in the PEFT literature (Houlsby et al., 2019;
Hu et al., 2022; Ben Zaken et al., 2022), we report
memory efficiency in terms of model parameters.
This is advantageous as it avoids confounding fac-
tors such as weight precision, optimizer choice,
software implementation, and batch size.

6 Results

Larger vocabularies see more memory savings.
Table 2 presents the reduction in parameters for
each model across the GLUE benchmark. Follow-
ing our expectations from Section 3, we generally
observe that as vocabulary sizes increase (Table 5,
Appendix A), so do the potential memory savings.
For example, an average reduction in embedding
parameters of 47.3% is achieved for BERT, 52.1%
for RoBERTa, and 72.4% for DeBERTaV3.

Memory savings vary between datasets. In line
with our expectations from Section 3, the memory
savings vary substantially between datasets. For
BERT, the embedding matrix can be reduced by
94.3% for the smallest dataset (WNLI), yet only
11.5% for the largest (QQP). We demonstrate that
downstream task performance remains consistent
across models and datasets in Appendix E.

Distilled models substantially benefit. Consid-
ering the distilled models, we observe that they all
achieve an identical reduction in embedding param-
eters to their original counterparts. This is because
they use the same vocabulary and embedding size
(Sanh et al., 2020a). However, they offer substan-
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Model CoLA MNLI MRPC QNLI QQP RTE SST-2 STS-B WNLI Mean

Reduction in Embedding Parameters (%)

DistilBERT 80.1 14.8 54.9 13.1 11.5 41.5 57.9 57.2 94.3 47.3
DistilRoBERTa 86.1 14.8 64.0 17.7 5.9 51.6 68.6 64.4 96.0 52.1
DistilmBERT 94.9 76.9 88.2 73.8 72.7 85.0 91.9 88.8 98.4 85.6

BERT 80.1 14.8 54.9 13.1 11.5 41.5 57.9 57.2 94.3 47.3
RoBERTa 86.1 14.8 64.0 17.7 5.9 51.6 68.6 64.4 96.0 52.1
DeBERTaV3 95.0 44.3 85.7 47.1 28.5 79.0 87.5 85.9 98.6 72.4

mBERT 94.9 76.9 88.2 73.8 72.7 85.0 91.9 88.8 98.4 85.6
XLM-RoBERTa 97.8 88.8 94.9 87.6 85.4 93.3 96.3 94.9 99.3 93.1
XLM-V 99.3 93.2 98.0 92.8 90.5 97.1 98.3 98.0 99.8 96.3

Reduction in Model Parameters (%)

DistilBERT 28.0 5.2 19.2 4.6 4.0 14.5 20.3 20.0 33.0 16.5
DistilRoBERTa 40.5 7.0 30.1 8.3 2.8 24.3 32.3 30.3 45.1 24.5
DistilmBERT 64.4 52.2 59.9 50.1 49.3 57.7 62.3 60.2 66.8 58.1

BERT 17.1 3.2 11.8 2.8 2.5 8.9 12.4 12.2 20.2 10.1
RoBERTa 26.7 4.6 19.8 5.5 1.8 16.0 21.2 19.9 29.7 16.1
DeBERTaV3 50.7 23.6 45.7 25.1 15.2 42.1 46.7 45.8 52.6 38.6

mBERT 49.0 39.7 45.5 38.1 37.5 43.9 47.4 45.8 50.8 44.2
XLM-RoBERTa 67.5 61.3 65.5 60.5 59.0 64.4 66.5 65.5 68.5 64.3
XLM-V 88.3 82.9 87.2 82.6 80.5 86.4 87.5 87.2 88.8 85.7

Table 2: The reduction in embedding and model parameters (%) for each model across the GLUE benchmark.

Size CoLA MNLI MRPC QNLI QQP RTE SST-2 STS-B WNLI Mean

XSmall 46.7 21.8 42.2 23.2 14.0 38.8 43.1 42.3 48.5 35.6
Small 93.4 43.6 84.3 46.3 28.0 77.7 86.1 84.5 97.0 71.2
Base 93.4 43.6 84.3 46.3 28.0 77.7 86.1 84.5 97.0 71.2
Large 124.6 58.1 112.4 61.8 37.3 103.6 114.8 112.7 129.4 95.0

Table 3: The reduction in model parameters (millions) for each size of DeBERTaV3 across the GLUE benchmark.

tially higher overall savings, as there are fewer
parameters allocated to the transformer layers.

Memory savings scale with model size. Table 3
presents the reduction in model parameters for each
model from the DeBERTaV3 family. We observe
that this reduction continues to increase with model
size. On average, the extra small size is reduced by
35.6M parameters, while the large size is reduced
by 95.0M parameters. Although the same fixed-
size vocabulary is shared across models, the em-
bedding dimension continues to grow (Table 6, Ap-
pendix A), offering further memory savings. The
exception to this is the small and base sizes, where
the only difference is the number of layers.

Multilingual models achieve extreme savings.
Unsurprisingly, multilingual models demonstrate
extreme memory savings across the monolingual
GLUE benchmark. On average, a reduction in
model parameters of 44.2% is achieved for mBERT,
64.3% for XLM-RoBERTa, and 85.7% for XLM-V.
Table 4 presents the reduction in parameters for the
multilingual models when fine-tuning on different
subsets of XNLI. Even when fine-tuning on all
fifteen languages, these models still demonstrate
substantial memory savings from 23.0% to 58.4%.

Model en en-de en-zh All

Reduction in Embedding Parameters (%)

DistilmBERT 77.1 71.7 73.0 44.6
mBERT 77.1 71.7 73.0 44.6
XLM-RoBERTa 89.2 86.0 84.4 56.9
XLM-V 93.6 90.0 90.0 65.7

Reduction in Model Parameters (%)

DistilmBERT 52.3 48.6 49.6 30.3
mBERT 39.8 37.0 37.7 23.0
XLM-RoBERTa 61.6 59.4 58.3 39.3
XLM-V 83.2 80.0 80.0 58.4

Table 4: The reduction in parameters across different
subsets of XNLI, in addition to all fifteen languages.

7 Conclusion

In this paper, we identified that many fine-tuning
datasets do not use the majority of LM vocabulary.
We then proposed Partial Embedding Matrix Adap-
tation (PEMA), a simple yet effective approach to
minimize LM memory use during fine-tuning, that
is orthogonal to many existing methods. Finally,
we empirically demonstrated that our approach of-
fers substantial memory savings across a variety of
popular tasks and models, without compromising
performance. As future work, we are interested in
adapting our approach for the output embedding
matrix to offer further memory savings.
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Limitations

Processing the fine-tuning dataset to assess vocab-
ulary usage incurs a runtime cost. However, we
observe that this cost is negligible. We provide a
detailed analysis of this matter in Appendix F.

Ethical Considerations

Our approach improves the memory efficiency of
LM fine-tuning, therefore facilitating the use of less
powerful hardware. Although we hope that this
can reduce the environmental footprint of LM fine-
tuning, we acknowledge that it could be used to
support the fine-tuning of even larger LMs. We also
recognize the dual-use nature of LMs and concede
that efforts towards improving efficiency, including
our own, can lower the barrier to entry for their
misuse (Weidinger et al., 2022).
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A Language Model Vocabulary Sizes

Table 5 presents the vocabulary sizes (|V|) for the
models used in our experiments, as identified by
the Hugging Face Hub. We also report the number
of embedding parameters (Nemb), the number of
model parameters (N ), and the overall proportion
of embedding parameters (Nemb/N ). These met-
rics are also presented in Table 6 for each size of
DeBERTa, in addition to model hyperparameters.

B Language Model Compression

Supplementary to our discussion of related work
(Section 2), we additionally discuss the relation
to variety of popular LM compression approaches.
We emphasize that these methods are orthogonal
to our proposed approach.

Knowledge distillation. Knowledge distillation
(Hinton et al., 2015) aims to achieve comparable
performance by training a smaller model using the
predictions from a larger model. This approach
has been successfully applied to LMs (Sanh et al.,
2020a; Sun et al., 2020). It can also be used to train
models with a smaller vocabulary than the original
(Zhao et al., 2021; Singh and Lefever, 2022).

Pruning. Neural network pruning (LeCun et al.,
1989) seeks to remove redundant weights while
preserving performance. Existing approaches focus
on pruning the linear and attention weights in LMs
(Sanh et al., 2020b; Kurtic et al., 2022; Frantar and
Alistarh, 2023). However, pruning the embedding
matrix is widely avoided, as it can substantially
harm performance (Kurtic et al., 2024).

Quantization. The aim of quantization is to rep-
resent neural network weights using lower preci-
sion, therefore reducing computational costs. Re-
cent LM quantization efforts generally focus on
quantizing the linear layers (Dettmers et al., 2022;
Yao et al., 2022; Frantar et al., 2023). The em-
bedding matrix can also be quantized (Zafrir et al.,
2019; Bondarenko et al., 2021), although Shen et al.
(2020) find that it is more sensitive to quantization.

C Datasets

In all cases, we use the publicly available version of
each dataset available from Hugging Face (Lhoest
et al., 2021). The GLUE benchmark comprises
a diverse range of tasks, including linguistic ac-
ceptability (CoLA, Warstadt et al. 2019), sentiment

Model |V| Nemb N Nemb/N

DistilBERT 28,996 22.3M 65.8M 33.9%
DistilRoBERTa 50,265 38.6M 82.1M 47.0%
DistilmBERT 119,547 91.8M 135.3M 67.8%

BERT 28,996 22.3M 108.3M 20.6%
RoBERTa 50,265 38.6M 124.6M 31.0%
DeBERTaV3 128,100 98.4M 184.4M 53.3%

mBERT 119,547 91.8M 177.9M 51.6%
XLM-RoBERTa 250,002 192.0M 278.0M 69.1%
XLM-V 901,629 692.5M 778.5M 88.9%

Table 5: The vocabulary size and allocation of parame-
ters for each of the models used in our experiments. In
all cases, we select the base model size (dmodel = 768).

Size l h dmodel Nemb N Nemb/N

XSmall 12 6 384 49.2M 70.8M 69.4%
Small 6 12 768 98.4M 141.9M 69.3%
Base 12 12 768 98.4M 184.4M 53.3%
Large 24 16 1024 131.2M 435.1M 30.2%

Table 6: The DeBERTaV3 (He et al., 2023) family of
models. Columns l, h, and dmodel show the number of
hidden layers, number of attention heads, and hidden
embedding size, respectively.

analysis (SST-2, Socher et al. 2013), paraphras-
ing/sentence similarity (MRPC, Dolan and Brock-
ett 2005; STS-B, Cer et al. 2017; QQP, Iyer et al.
2017), and natural language inference (RTE, Dagan
et al. 2006; WNLI, Levesque et al. 2012; QNLI,
Rajpurkar et al. 2016; MNLI, Williams et al. 2018).
The number of examples per split in each dataset
are listed in Table 7. The XNLI dataset (Conneau
et al., 2018) extends MNLI to 15 languages: Ara-
bic, Bulgarian, Chinese, English, French, German,
Greek, Hindi, Russian, Spanish, Swahili, Thai,
Turkish, Vietnamese, and Urdu.

D Implementation & Hardware

We implement our experiments using PyTorch
(Paszke et al., 2019), Hugging Face Transform-
ers (Wolf et al., 2020) and Hugging Face Datasets
(Lhoest et al., 2021). Since downstream task
performance is not relevant to this study, we do
not perform hyperparameter tuning. Instead, we
broadly follow the hyperparameters from Devlin
et al. (2019), listed in Table 8.

We fine-tune all models using a single NVIDIA
Tesla V100 (SXM2 32GB) GPU and Intel Xeon
Gold 6138 CPU. For consistency, each model type
is evaluated on the same physical hardware.

E Fine-tuning on GLUE

Table 10 presents the task performance for each
model across the GLUE benchmark. We observe
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that the performance is largely identical, although
there are occasional fluctuations where PEMA per-
forms fractionally better or worse than the baseline.
Finally, we note that XLM-RoBERTa and XLM-V
both demonstrate very low performance on CoLA,
although this issue has also been observed in other
studies, e.g. Zhou et al. (2023).

F Runtime Impact

Table 9 presents the mean duration and standard
deviation of applying PEMA to RoBERTa and the
subsequent fine-tuning process. It also shows the
proportion of time spent applying PEMA relative
to fine-tuning. We observe that for five of the nine
datasets in GLUE, applying PEMA takes less than
half a second. For eight out of nine datasets, ap-
plying PEMA takes less than 1% of the fine-tuning
duration. We note that the time taken to apply
PEMA correlates with the size of the fine-tuning
dataset (Figure 2). Overall, we note that the time
taken to apply PEMA is generally fractional com-
pared to the fine-tuning duration, even though we
made no effort to optimize our implementation. As
guidance for future optimization efforts, we note
that the dataset processing operations in PEMA are
trivially parallelizable.

Dataset Train Validation Test Total

CoLA 8,551 1,043 1,063 10,657
MNLI 392,702 19,647 19,643 431,992
MRPC 3,668 408 1,725 5,801
QNLI 104,743 5,463 5,463 115,669
QQP 363,846 40,430 390,965 795,241
RTE 2,490 277 3,000 5,767
SST-2 67,349 872 1,821 70,042
STS-B 5,749 1,500 1,379 8,628
WNLI 635 71 146 852

Table 7: The number of examples per split in each of
the GLUE datasets.

Hyperparameter GLUE XNLI

Adam ϵ 1e-8
Adam β1 0.9
Adam β2 0.999
Batch Size 32
Dropout (Attention) 0.1
Dropout (Hidden) 0.1
Learning Rate (Peak) 2e-5, 7.5e-6 (XLM)
Learning Rate Schedule Linear
Sequence Length 128
Training Epochs 3 2

Table 8: The hyperparameters used for each set of ex-
periments.

Dataset PEMA Fine-tuning %

CoLA 0.4 0.0 172.7 0.9 0.2
MNLI 8.8 0.2 7817.8 16.6 0.1
MRPC 0.3 0.0 78.7 0.7 0.4
QNLI 2.4 0.0 2092.8 2.0 0.1
QQP 13.3 0.5 7235.5 4.9 0.2
RTE 0.4 0.0 55.4 0.6 0.7
SST-2 1.2 0.0 1329.2 0.3 0.1
STS-B 0.4 0.0 118.7 0.5 0.3
WNLI 0.3 0.0 18.3 0.8 1.4

Table 9: The mean duration (seconds) and standard
deviation over five runs of applying PEMA to RoBERTa
and fine-tuning on the GLUE datasets.
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Model PEMA CoLA MNLI MRPC QNLI QQP RTE SST-2 STS-B WNLI Mean

DistilBERT ✗ 49.3 82.2 84.2 88.5 86.7 59.6 90.5 86.5 49.3 75.2 1.5
✓ 49.3 82.2 84.2 88.6 86.7 59.6 90.5 86.5 49.3 75.2 1.5

DistilRoBERTa ✗ 56.4 84.2 85.0 90.9 87.2 65.7 92.3 87.2 53.0 78.0 0.9
✓ 56.4 84.2 85.0 90.9 87.2 65.7 92.3 87.2 53.0 78.0 0.9

DistilmBERT ✗ 29.7 78.3 81.8 86.7 85.8 60.9 89.1 84.4 48.2 71.6 0.3
✓ 29.6 78.3 81.8 86.7 85.8 60.9 89.2 84.4 48.2 71.6 0.4

BERT ✗ 56.4 84.3 84.3 91.1 87.9 64.4 92.6 88.1 37.7 76.3 0.7
✓ 56.7 84.3 84.3 91.3 87.8 64.4 92.5 88.1 37.7 76.3 0.8

RoBERTa ✗ 57.6 87.8 88.4 92.8 88.4 71.1 94.2 89.9 52.1 80.3 1.2
✓ 57.6 87.8 88.4 92.7 88.4 71.1 94.2 89.9 52.1 80.3 1.2

DeBERTaV3 ✗ 67.4 90.2 88.5 93.9 89.9 79.8 95.6 90.9 53.0 83.2 0.8
✓ 67.4 90.2 88.3 93.9 89.9 79.8 95.5 90.9 53.0 83.2 0.8

mBERT ✗ 35.3 82.3 85.8 91.1 87.1 69.0 91.0 88.0 53.0 75.8 2.0
✓ 35.4 82.2 85.8 91.1 87.2 69.0 90.8 88.0 53.0 75.8 2.0

XLM-RoBERTa ✗ 22.6 83.9 76.9 89.5 86.9 57.3 92.2 84.2 52.1 71.7 2.0
✓ 22.4 84.0 76.8 89.5 86.8 57.3 92.0 84.2 52.1 71.7 2.0

XLM-V ✗ 0.0 84.5 68.8 89.6 86.7 54.1 91.8 80.8 55.2 68.0 0.6
✓ 0.0 84.5 68.8 89.6 86.7 54.1 91.6 80.8 55.2 67.9 0.6

Table 10: Results on the validation set for each task from GLUE. We present the mean performance over five
different seeds, accompanied by the overall mean and standard deviation. We report Matthews correlation for CoLA,
F1 for QQP, Spearman correlation for STS-B, and accuracy for the remaining tasks.
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