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Abstract

In this work, we reimagine classical probing
to evaluate knowledge transfer from simple
source to more complex target tasks. Instead of
probing frozen representations from a complex
source task on diverse simple target probing
tasks (as usually done in probing), we explore
the effectiveness of embeddings from multiple
simple source tasks on a single target task. We
select coreference resolution, a linguistically
complex problem that requires contextual un-
derstanding, as the focus target task, and we
test the usefulness of embeddings from com-
parably simpler tasks such as paraphrase de-
tection, named entity recognition, and relation
extraction. Through systematic experiments,
we evaluate the impact of individual and com-
bined task embeddings.

Our findings reveal that task embeddings vary
significantly in utility for coreference reso-
lution, with semantic similarity tasks (e.g.,
paraphrase detection) proving most beneficial.
Additionally, representations from intermedi-
ate layers of fine-tuned models often outper-
form those from final layers. Combining em-
beddings from multiple tasks consistently im-
proves performance, with attention-based ag-
gregation yielding substantial gains. These in-
sights shed light on the relationships between
task-specific representations and their adapt-
ability to complex downstream tasks, encourag-
ing further exploration of embedding-level task
transfer. Our source code is publicly available.1

1 Introduction

Language models have exhibited superior perfor-
mance in most areas of NLP applications, including
natural language inference (Williams et al., 2018),
question answering (Rajpurkar et al., 2016, 2018),

1github.com/Cora4NLP/multi-task-knowledge-transfer
* Equal contribution.
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Figure 1: Probing workflow with Coreference Resolu-
tion (Coref) as target task and four different source tasks:
Relation Extraction (RE), Question Answering (QA),
Named Entity Recognition (NER), and Paraphrase De-
tection (MRPC).

commonsense reasoning (Talmor et al., 2019; Os-
termann et al., 2019), and others. Since the es-
tablishment of language models with partial super-
human performance, research has aimed to pin-
point which types of knowledge are exactly en-
coded by such language models. One technique
in the field of explainable artificial intelligence for
evaluating the presence of such types of knowl-
edge is probing (Conneau et al., 2018; Hewitt and
Liang, 2019; Tenney et al., 2019a; Belinkov, 2022).
Probing involves adding linear classifiers on top of
representations extracted from a pre-trained model,
which are trained on simple tasks for predicting a
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feature of choice, such as syntactic structures (Lin
et al., 2019), entity types (Tenney et al., 2019b), or
specific types of commonsense knowledge (Zhou
et al., 2020).

A main intuition behind probing is to evaluate
to what degree the representations that are learned
from the complex source task can be re-purposed to
solve a new, simpler task (Belinkov, 2022). In our
work we decide to reverse this paradigm (thus re-
verse probing) and investigate how different source
task embeddings, from a model trained on simple
tasks, can be adapted to a new, more complex target
task. In other words, we try to answer the question:
Can we reuse knowledge from simpler tasks for
a more complex task? Such a recycling of knowl-
edge is not only interesting to deepen our under-
standing of what type of knowledge is encoded in
language models, but it also results in more energy-
efficient deep learning, by reusing network weights
and representations.

We choose coreference resolution (Lee et al.,
2017) as our target task because solving corefer-
ence is - up to date - a challenging NLP problem
that even newer large language models struggle
with (Bohnet et al., 2023; Martinelli et al., 2024).
Coreference resolution involves understanding of
context, what counts as a valid mention and which
mentions refer to the same entity. Solving coref-
erence may require different types of linguistic
knowledge. Our goal is to find out which types
of information from which source task models are
useful and how this information can be combined
and/or adapted to work for the target task.

To isolate the effects of single tasks, we rely on
small language models, in our case BERT (Devlin
et al., 2019). Such models do not possess sophis-
ticated in-context abilities and require finetuning
steps in order to perform well on tasks. Our re-
search questions are as follows:

(1) Which source tasks are beneficial for combi-
nation into a more complex target task, here coref-
erence resolution?

(2) Which layers of source task models con-
tribute most to the target model performance?

(3) What are the effects of combining embed-
dings from different models and layers? How
should these embeddings be aggregated? Can we
improve word representations by extending the em-
bedding context and combining the outputs of
several hidden layers?

2 Reverse Probing

The goal of our framework is to evaluate the trans-
ferability of knowledge embedded in representa-
tions from simpler source tasks to a complex target
task. Figure 1 gives an overview.

Let S = {s1, s2, . . . , sk} be a set of source tasks
with models pre-trained on simpler NLP tasks, and
T be the target task (coreference resolution in this
case). Ms is a pre-trained model fine-tuned on
source task s. We then define H l

s to be the output
embeddings from layer l of Ms.

For each source task si ∈ S, we extract embed-
dings Hs from layer l of the corresponding source
task model Ms (Figure 1, embedding extraction).
We either take the output at a single or multiple
consecutive layers. Note that these may be also
intermediate layers (model truncation). Optionally,
we apply L2 normalization.

Secondly, we aggregate token embeddings from
different source task models by using an aggre-
gation function A to combine embeddings across
layers and models. The aggregation is done token-
wise, so that every token can be represented as a
combination of different model outputs. We define
A to be either the mean of all vectors, i.e. as

ET =
1

k

k∑

i=1

Hsi

Alternative, we use a simple attention mechanism
for the combination (Figure 1, embedding aggrega-
tion):

ET =
k∑

i=1

αiHsi

where
αi = softmax(W ·Hsi)

In some experiments we use only a single model.
In this case the mean corresponds to the original
embedding of the source model and attention sim-
ply means self-attention.

Next, the aggregated token embeddings are
passed to the target task head that includes several
layers with trainable weights (Figure 1, training
target task layers which follow the coref-hoi imple-
mentation by Xu and Choi (2020)).

Figure 1 shows the probing workflow with four
different source task models. Each source model is
pre-trained separately on a corresponding dataset
as described in Section 3. The models are based on
bert-base-cased contextualized embeddings with
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different task-specific heads and their weights are
frozen. Given that the source models cannot up-
date their weights during probing, our conjecture is
that those models that perform better on the coref-
erence task “out-of-the-box” contain some useful
information that is relevant for the target task.

3 Tasks

In this section we describe the target task, the
source tasks and their respective training data.

3.1 Target Task

As our target model we choose a popular end-to-
end coreference resolution model based on the im-
plementation by (Xu and Choi, 2020) and train it
on the OntoNotes CoNLL 2012 corpus (Pradhan
et al., 2012). We use bert-base-cased and the rec-
ommended parameters for fine-tuning2.

3.2 Source Tasks

We focus on the comparison with standard BERT as
well as four other task-specific models. As source
tasks we take a range of tasks of varying complex-
ity: Paraphrase identification, named entity recog-
nition, relation extraction, and - a (more complex)
source task - quesion answering.

The first model is fine-tuned on the Microsoft
Research Paraphrase Corpus (MRPC) (Dolan and
Brockett, 2005). Since paraphrased sentences de-
scribe the same entities and events, such sentence
pairs likely contain more coreferent mentions than
standard (non-paraphrased) texts. Hence, MRPC
embeddings are more tuned towards semantic simi-
larity and could be useful for the coreference task.

Named Entity Recognition (NER) model is
trained on the CoNLL 2012 dataset (Pradhan et al.,
2012) and can generate one of the 37 labels for
each token (e.g., PERSON, PRODUCT, DATE
etc.). Named entities are often involved in corefer-
ence relations and being able to identify mention
spans correctly is crucial for coreference resolu-
tion.

Next, we also experiment with the Relation
Extraction model (RE) trained on the TACRED
dataset (Zhang et al., 2017). It provides annotations
for the spans of the subject and object mentions as
well as the mention types according to the Stanford
NER system and relations (if applicable) between
the entities. Similarly to the NER model, RE is

2https://github.com/lxucs/coref-hoi/blob/
master/experiments.conf

important for coreference because one of the tasks
that this model performs is mention span detection.
However, it also classifies different relations be-
tween the mentions and such relations are typically
non-referential (e.g. “per:employee_of”).

Another source task model used in this project
is trained on the SQUAD 2.0 dataset (Rajpurkar
et al., 2016) for extractive question answering. This
model (QA) can identify answer spans given the
question and a paragraph of text. Since answer-
ing questions often involves coreference resolution,
there is an overlap between these two tasks and
word embeddings from one task might be benefi-
cial for another.

For single model experiments we also anal-
yse the performance on the vanilla BERT model
3(Devlin et al., 2019) which was trained with a
masked language modeling objective on BookCor-
pus (Zhu et al., 2015) and English Wikipedia. Note
that all the other source models are fine-tuned ver-
sions of this model.

Additionally, we experiment with the POS-
tagging model4, the models for semantic tagging5

and chunking6 as well as another NER model
(NER-dslim)7 trained on the English version of the
CoNLL-2003 Named Entity Recognition dataset
(Tjong Kim Sang and De Meulder, 2003). How-
ever, we limit the number of experiments for these
models and focus mostly on MRPC, NER, RE and
QA tasks.

4 Experiments and Results

In this section we describe our experiments with
various source models and probe them on the coref-
erence resolution task (§4.2). We also evaluate
different embedding aggregation methods (§4.3),
measure the effects of using intermediate layer out-
put and normalization (§4.4), vary the embedding
context from several hidden layers (§4.5) and com-
pare the performance of multiple vs single models
(§4.6).

3We use the cased variant from HuggingFace under https:
//huggingface.co/bert-base-cased.

4https://huggingface.co/QCRI/
bert-base-cased-pos

5https://huggingface.co/QCRI/
bert-base-cased-sem

6https://huggingface.co/QCRI/
bert-base-cased-chunking

7https://huggingface.co/dslim/bert-base-NER
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4.1 Training Details and Evaluation

The coreference-specific layers are trained with the
learning rate 1e-4 and early stopping (maximum
number of epochs is set to 100 and patience is set
to 5). The learning rate was optimized based on the
experiments with the standard frozen BERT model.

For evaluation we use an average F1 score that is
a combination of MUC (Vilain et al., 1995), CEAF
(Luo, 2005) and B3 (Bagga and Baldwin, 1998)
coreference metrics. We run each experiment with
three different seeds and report the average F1 val-
ues on the validation set. The target (non-frozen)
model trained on the coreference resolution task
from scratch achieves 73.75 F1 which is an upper
bound for our probing task.

4.2 The Choice of the Source Task Models

Figure 2 shows the comparison between different
source task models. Our original set of models that
includes MRPC, NER, RE, QA and vanilla BERT
has two clear winners: BERT and MRPC (64.01
and 64.32 F1). They are followed by RE (52.43)
and QA (47.51) models and, finally, NER achieves
the lowest score of 36.03. This comparison is based
on a single run with the same seed, the averaged
results across three runs with standard deviation
can be found in Table 1.

We also have a closer look at the cosine sim-
ilarity between our source models and the pre-
trained coreference model. Figure 3 shows similar-
ity scores averaged across all tokens for 15 random
batches. The scores are collected before the em-
bedding aggregation. Hence, they show how close
the original source model embeddings are to the
“ideal” task embeddings. Unsurprisingly, BERT
and MRPC have the most similar embeddings to
the coreference target. On the other hand, although
both QA and NER embeddings are very differ-
ent from the target task embeddings, QA achieves
much better performance than NER on this task
(50.79 vs 35.63 F1, see Table 1). This shows that
even though cosine similarity is a good approx-
imation for the task similarity, it is not an ideal
predictor for the target task performance and even
the source models with very different embeddings
(QA) can still achieve the scores comparable to
the ones achieved by the models with more similar
embeddings (RE).

Additional models that we tested demonstrate
rather poor performance on the coreference res-
olution task (see Figure 2). POS-tagging model

struggles to learn anything about coreference and
the training does not progress. Another NER model
trained on a different version of Ontonotes (NER-
dslim) achieves the maximum of 37.83 F1. Chunk-
ing and semantic labeling are somewhat more suc-
cessful and achieve 48.81 and 49.82 F1 each, cor-
respondingly.

4.3 How to Combine Task Embeddings
We employ two different aggregation strategies to
combine the embeddings of the source task models:
mean and attention-based aggregation. Addition-
ally, we experimented with summing instead of
using the mean, but the results were comparable
or slightly worse: A combination of frozen MRPC
with BERT achieves 62.34 F1 with sum and 63.26
with mean (average values across three runs with
different seeds). Hence, in all further experiments
we focus on the comparison between the mean and
attention-based aggregation.

F1 scores for single models as well as for their
2x, 3x and 4x combinations can be found in Tables
1, 2 and 3. We also summarize the results for sin-
gle models and for pairs of models graphically in
Figure 4 that shows how much models benefit from
attention. However, the trend holds even when
there is only a single source model. This shows
how much improvement we get by simply adding
additional projections in the case of attention ag-
gregation. The performance gains are different
depending on the model. E.g., if we use pre-trained
coreference model as our source task, there is al-
most no difference between attention and mean
aggregation. However, other task-specific models
can substantially benefit from selective aggregation.
E.g., NER gains almost +19.7% and QA improves
by +9%. In general, all models except for the one
that has the same source and target tasks (Coref-
Target) benefit from attention and improvements
are larger for the models that have lower original
scores.

For multiple model combinations we also see a
similar trend with consistent improvements when
attention-based aggregation is used, e.g., +13.23%
for NER+MRPC and +9.36% for NER+QA (see
Figure 4 and Table 2 for further comparisons). In-
terestingly, when we combine our source models
with the model that was pre-trained on the coref-
erence task (CorefTarget), we have only negligi-
ble improvements because the attention aggregator
quickly learns which source model is beneficial
for the task and starts paying almost all attention
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Figure 2: Source task models: CorefTarget, BERT, MRPC, RE, QA, NER, SemTag, Chunking, NER-dslim, POS

Figure 3: Average cosine similarity between the embeddings of the source tasks and the target coreference task,
averaged across all tokens for 15 batches

to the output of this model ignoring all the others.
However, if we do not add coreference task to the
set of source tasks we observe some interesting
patterns that emerge with the combinations of dif-
ferent models. Figure 9 (in the Appendix) shows
how attention is distributed across different train-
ing epochs for the combination of MRPC, RE and
NER. In the beginning, all three models are being
paid the same amount of attention (≈33%). How-
ever, the aggregator soon starts prioritizing MRPC
and NER gets progressively less and less attention.
Interestingly, RE model also loses some impact
over time but more slowly and remains somewhat
important for the aggregator until the end of the
training.

4.4 How to Extract Embeddings

We also consider different ways of embedding ma-
nipulations since the final layers of BERT-based
models might be too specialized on their corre-
sponding tasks, so that their representations are no

longer useful for coreference resolution. In fact,
after comparing the embeddings from layer 6 to
12 we found that the best performing layer on our
probing task was typically not the final one. E.g.,
it was layer 9 for MRPC and RE, layer 8 for QA
and 6 for NER (see Figure 5). Tables 1, 2 and 3
show the detailed comparisons between the original
(full) model outputs as well as the normalized and
truncated (to the “best” layer) versions for single
models and their combinations (see also Figure 6
and 7 for the plot comparison). Truncation seems
to be a good strategy for embedding aggregation
and consistently yields best results across differ-
ent settings. Truncation improves NER by up to
+26.2%. QA is improved by +14% (Figure 6). Also
combinations of models work better with trunca-
tion, e.g., RE+QA pair gains +8.17% F1 with mean
aggregation and +2.84% with attention aggregation
when both models are truncated (Figure 7).

Since combining embeddings from disparate
models is a challenging task, especially when the
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models
mean attention layer concat + attention

full norm trunc full norm trunc 4 6 12
MRPC(9) 61.16±2.84 58.61±13.7 66.26±0.61 67.05±0.70 67.49±0.29 67.27±0.30 67.94±1.54 67.03±0.99 67.28±1.48

NER(6) 35.63±2.12 47.95±3.27 61.76±1.53 55.30±1.22 54.82±1.02 64.31±0.22 63.80±0.71 66.30±0.51 65.76±0.95

RE(9) 52.27±2.39 48.03±10.8 62.40±1.41 60.97±0.01 41.01±0.14 63.73±0.70 65.16±1.07 65.79±0.37 65.43±0.93

QA(8) 50.79±3.01 59.56±0.65 64.77±0.65 59.82±1.51 60.98±0.60 66.47±0.56 67.70±0.93 66.82±0.11 67.63±0.86

BERT(10) 64.95±0.98 66.50±0.09 66.40±1.66 67.15±0.49 43.94±0.70 68.19±0.80 69.06±0.49 69.07±1.15 68.79±0.99

Coref(12) 73.75±0.29 72.33±0.12 73.75±0.29 73.60±0.31 73.11±0.55 73.60±0.29 73.19±0.65 72.70±0.85 72.59±0.09

Table 1: Results for single models with different settings, mean and attention aggregation. Subscript indicates the
best truncation layer for the trunc setting.

models
mean attention

full norm trunc full norm trunc
RE(9) + MRPC(9) 61.76±1.85 64.71±0.42 64.49±0.76 67.56±0.36 51.06±13.8 68.78±0.32

NER(6) + MRPC(9) 54.71±4.57 64.47±0.29 65.71±0.22 67.94±0.78 67.36±0.46 68.67±0.46

RE(9) + NER(6) 56.13±1.42 60.68±0.48 64.38±1.14 64.00±0.74 62.80±0.36 67.03±0.31

QA(8) + MRPC(9) 60.84±1.04 65.58±0.48 66.46±2.05 67.87±0.92 59.00±15.0 68.98±0.44

RE(9) + QA(8) 57.66±3.61 63.55±0.26 65.83±0.61 65.02±0.39 64.49±0.30 67.86±0.59

NER(6) + QA(8) 55.66±1.72 61.14±0.74 65.06±0.68 65.02±0.46 62.51±0.59 67.65±0.55

Table 2: Results for the pairs of models with different settings, mean and attention aggregation. Subscript indicates
the best truncation layer for the trunc setting.

source tasks are quite different from each other,
we also experiment with applying L2 norm to the
output of each model before aggregating the em-
beddings. This gives us varied results depending
on the model and the aggregation type. E.g., for
mean aggregation single NER, QA and BERT ben-
efit from normalization but MRPC and RE result in
lower scores. For attention aggregation all models
except for MRPC and QA have substantial drop in
performance.

It is also interesting to see the effect of normaliza-
tion on the combinations of different models. For
mean aggregation normalization brings substantial
improvements, e.g., +9.76 F1 for NE+MRPC and
+5.48% for NER+QA and, in general, all 2x models
show better performance with normalization (Ta-
ble 2). However, there is a very different trend for
attention-based aggregation. Here we see a large
drop in performance for most of the models, e.g.,
-8.87 F1 for QA+MRPC which indicates that at-
tention can already combine the embeddings from
different models quite well and achieves worse re-
sults with more uniform normalized embeddings.

4.5 Embedding Context from Multiple Layers

Since we found in our previous experiments that
truncation consistently improves the performance
for many source models, we decided to explore
another setting that involves concatenating the em-
beddings of the last n hidden layers of the source
model before aggregating them with attention. We
experiment with the last 4, 6 and 12 layers and

compare them to the aggregation that affects only
the last layer of each model (see Table 1 for more
detail).

Our results show that for single models having
more “embedding context” is beneficial. Overall,
combinations of the last 4 or 6 layers result in the
best F1 scores. However, combining all layers of
the model is not necessarily useful and can even
hurt the performance. E.g., NER achieves 66.30 F1
with combined 6 layers which is +11 F1 improve-
ment compared to the same model that uses only a
single last layer but when we combine all 12 layers
of NER the metric decreases from 66.30 to 65.76
F1 (Table 1).

Another interesting observation is that for vanilla
BERT combining the outputs of the last 4 or 6 lay-
ers does not make any difference, and for other
models the difference is more pronounced, al-
though still rather small. NER is the model that
gains the most from the increased embedding con-
text, it gains additional +2.5 F1 by combining 6
instead of 4 last layers which is also consistent
with our finding for the truncated models and the
fact that NER performs better when truncated to
6 layers. The only model that does not show any
improvements in the layer concatenation setting
is the coreference source model since it is already
optimized for the task and performs best as it is,
i.e., without truncation, normalization or any other
embedding manipulations.
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models
mean attention

full norm trunc full norm trunc
RE(9) + NER(6) + QA(8) 58.95±1.11 63.70±0.08 65.04±0.71 66.24±0.14 64.71±0.50 68.98±0.32

MRPC(9) + NER(6) + QA(8) 60.35±1.42 65.13±0.65 65.68±0.83 69.21±0.17 59.10±14.1 69.56±0.35

MRPC(9) + RE(9) + QA(8) 61.83±0.38 65.22±0.20 66.69±0.64 68.63±0.60 67.17±0.21 68.81±0.69

MRPC(9) + RE(9) + NER(6) 62.27±2.08 65.15±0.18 65.96±0.52 68.31±0.10 66.88±0.16 69.30±0.52

MRPC(9) + RE(9) + NER(6) + QA(8) 62.19±1.49 65.56±0.11 65.66±0.50 69.03±0.45 66.80±0.53 69.39±0.74

Table 3: Results for multiple models with different settings, mean and attention aggregation. Subscript indicates the
best truncation layer for the trunc setting.

(a) Pairs of models: comparison of two embedding aggregation
methods, mean and attention, to combine the source task model
outputs

(b) Single models: performance gains by adding attention pro-
jections (attention) compared to having no additional parame-
ters (mean)

Figure 4: Mean vs attention aggregation (full setting)

4.6 Combining Multiple Source Models

An interesting research question with respect to the
embedding aggregation is how many models are ac-
tually needed to achieve good results and whether
such models should be more or less similar to each
other. E.g., NER and RE both focus on mention
span extraction, RE and QA process relations be-
tween the entities in the text and MRPC model is
more suitable for the semantic similarity tasks.

Firstly, we found that combinations of two mod-
els always outperform single models in the atten-
tion aggregation setting and, for the mean setting,
pairs of models typically also perform better than
the individual models except for the combinations
with MRPC that tend to have lower scores (see Fig-
ure 8 for the comparison with mean and attention).
E.g., NER with mean aggregation achieves 35.6
F1, RE achieves 52.3 and the combination of both
(RE+NER) has 56.1 F1.

Secondly, we observed that combining three or
more models typically works well for the full mod-
els. However, for the truncated setting there are
only negligible gains when we combine multiple
models (e.g., for RE+MRPC with attention we have
68.78 and for RE+MRPC+QA 68.81).

Lastly, model combinations that include MRPC
tend to perform better than the rest which likely

indicates the importance of semantic similarity for
the coreference task. However, the combinations
of RE+NER, RE+QA and QA+NER can also be
beneficial, especially in the mean aggregation set-
ting.

5 Related Work

Apart from the work on probing that was presented
in the introduction, our work is closely related to
the idea of transfer learning (Torrey and Shavlik,
2010), one of the ubiquitous paradigms in mod-
ern NLP. The idea of transfer learning is to train a
model on a task A and then transfer the weights to
a task B, either with or without further finetuning.
This is the basis of most modern language models,
which are pretrained and then applied or evaluated
on specific downstream tasks (Devlin et al., 2019;
Raffel et al., 2020; Jiang et al., 2023; Dubey et al.,
2024). The pretraining data of large language mod-
els often contains samples from various natural lan-
guage tasks, which renders most language models
as multi-task learners (Yu et al., 2024). Multi-task
learning describes a paradigm where a model is
simultaneously trained on a range of tasks. While
this concept is related to the work presented here,
the main difference is that several source tasks are
mixed together during (pre-)training usually, which
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Figure 5: Source task model performance truncated to the best layer (in parentheses) with mean aggregation

(a) Mean aggregation (b) Attention aggregation

Figure 6: Single models: full vs normalized vs truncated

is not the case with our work.
In some sense, our work is related to research

around task arithmetics (Matena and Raffel, 2022;
Chronopoulou et al., 2023; Ilharco et al., 2023;
Belanec et al., 2024), which has the goal to ex-
plicitly compute task representations in networks,
e.g. as differences to a random initalization, and
implement transfer learning by means of difference
vector arithmetics. In contrast, our work concen-
trates on hidden representations, rather than the
parameters of the network.

6 Conclusion

In this project we “reversed” the classical probing
and investigated how different source task embed-
dings contribute to a target task (coreference resolu-
tion). Our experiments with Paraphrase Detection
(MRPC), Named Entity Recognition (NER), Rela-
tion Extraction (RE) and Extractive Question An-
swering (QA) as source tasks show there are quite
different embedding representations that achieve
different scores on the target task ranging from
35.63 F1 (NER) to 61.16 F1 (MRPC) for single

models.
Moreover, we found that the best performing

embeddings were typically not the outputs of the
last hidden layer but rather the representations gen-
erated at lower layers. MRPC was found to be
the best source model, whereas, surprisingly, NER
performed the worst.

We also explored different combinations of
source models and found that two or more models
typically outperform single ones. We considered
mean and attention-based embedding aggregation
methods and demonstrated the effectiveness of at-
tention. For single models, we also showed that
combining the outputs of several hidden layers in-
stead of only one layer is beneficial. However,
combining the outputs of all available layers is not
necessarily a good strategy and usually the best
scores can be achieved by combining only the out-
puts of the last 4 hidden layers that possibly contain
more high-level, semantic information important
for the coreference task.

In the future it would be interesting to exper-
iment with more types of embedding manipula-
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(a) Mean aggregation (b) Attention aggregation

Figure 7: Pairs of models: full vs normalized vs truncated

(a) Mean aggregation (b) Attention aggregation

Figure 8: Single and combined (2x) models

tions. Also, a combination of truncation and nor-
malization could possibly bring some gains for
single models. Moreover, it would be interesting
to check the effects of attention aggregation with
hidden layer concatenations for multiple models
(e.g., RE+MRPC). Finally, it would be interesting
to replicate our experiments on larger (non-BERT)
models and tasks (e.g., semantic role labeling, dis-
course relation classification etc.).

We hope that our experiments can help to clarify
the impact of embeddings and their combinations
on the target coreference task. We also hope that
the reverse probing idea will facilitate further re-
search on finding useful information in the task-
specific representations that originate from differ-
ent fine-tuned models.

Limitations

While this work sheds light on the potential of
reverse probing and task embeddings, some limita-
tions arise.

First, we exclusively work with BERT-based
models. This gives us a controlled setup, but it
also means our findings might not fully translate
to larger models or other architectures like GPT,
T5, or multilingual models. Future work needs to

investigate a broader range of models.
Our choice of source tasks, Paraphrase Detec-

tion (MRPC), Named Entity Recognition (NER),
Relation Extraction (RE), and Question Answer-
ing (QA), is not exhaustive. There are many other
NLP tasks, such as sentiment analysis, syntactic
parsing, or commonsense reasoning, that might
contribute useful embeddings for coreference res-
olution. Also, some of the tasks are not necessar-
ily simpler than coreference resolution (e.g., QA),
which we chose as our target task. Generally, our
conclusions are centered around coreference resolu-
tion. While this is a challenging and linguistically
complex problem, our approach may not directly
apply to other NLP tasks, such as machine transla-
tion or text summarization.

Lastly, there is the question of computational
efficiency. Although we worked with relatively
small models, combining embeddings from multi-
ple layers and tasks does introduce extra processing
overhead.
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A Additional Figures

(a) MRPC

(b) RE

(c) NER

Figure 9: MRPC+RE+NER with attention aggregation
(full setting)
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