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Abstract

Foundational Language Models perform sig-
nificantly better on downstream tasks in spe-
cialised domains (such as law, computer sci-
ence, and medical science) upon being fur-
ther pre-trained on extensive domain-specific
corpora, but this continual pre-training incurs
heavy computational costs. Indeed, some of the
most performant specialised language models
such as BioBERT incur even higher comput-
ing costs during domain-specific training than
the pre-training cost of the foundational models
they are initialised from. In this paper, we argue
that much of the extended pre-training is redun-
dant, with models seemingly wasting valuable
resources re-learning lexical and semantic pat-
terns already well-represented in their founda-
tional models such as BERT, T5 and GPT. Fo-
cusing on Masked Language Models, we intro-
duce a novel domain-specific masking strategy
that is designed to facilitate continual learn-
ing while minimizing the training cost. Using
this approach, we train and present a BERT-
based model trained on a biomedical corpus
that matches or surpasses traditionally trained
biomedical language models in performance
across several downstream classification tasks
while incurring up to 11 times lower training
costs.

1 Introduction

Rapid advancements in Large Language Models
(LLMs) (OpenAI, 2024, Touvron et al., 2023) have
resulted in an increased focus on their capabili-
ties in specialised domains like biology, law and
computer science (Lai et al., 2024, Chen et al.,
2024). The significance of foundational models
like BERT, T5, GPT and LLaMa for application in
such fields is particularly evident from the multi-
tude of models based on them – such as LegalBERT
(Chalkidis et al., 2020), SciFive (Phan et al., 2021),
BioGPT (Luo et al., 2022) and PMC-LLaMa (Wu
et al., 2023) – delivering state-of-the-art results on

benchmarks in their respective domains. Given
the vast amount of training data available for con-
tinual pre-training across various fields, existing
literature shows that further pre-training founda-
tional language models on a domain-specific cor-
pus yields better model performance across down-
stream tasks (Gururangan et al., 2020, Rongali
et al., 2021). However, pre-training language mod-
els can be resource-prohibitive, both in terms of
monetary cost and time spent on training. This
is especially true for large, parameter-dense lan-
guage models like LLaMa (Touvron et al., 2023),
which are not only significantly more expensive
to train further, but also exhibit much smaller im-
provements in downstream performance per unit of
compute spent (Chen et al., 2024).

It is therefore worthwhile to attempt to lever-
age the capabilities of contemporary foundational
language models for tasks across such domains
without expending exorbitant computing resources
on diminishing returns. In this paper, we present
a novel strategy for continual/mixed-domain pre-
training that emphasises selecting relevant (as op-
posed to random) training samples to maximise
compute efficiency. We test our strategy in the
biomedical domain by further pre-training BERT
on a corpus of PubMed abstracts, mirroring the se-
lection of architecture and pre-training corpora of
BioBERT (Lee et al., 2020), one of the most popu-
lar biomedical language models. In our testing over
8 Named Entity Recognition (NER) tasks, the re-
sultant model significantly outperforms BioBERT-
v1.0 at two-thirds of the compute cost, and per-
forms similarly to BioBERT-v1.1 at about one-
eleventh of its compute cost.

2 Related Works

2.1 Biomedical Language Models

The vast majority of domain-adapted language
models employ the transformer architecture
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(Vaswani, 2017), either as encoder layers (like
BERT), decoder layers (like GPT) or a combina-
tion of the two (like T5). The two most popular
strategies to train domain-specific language mod-
els are: 1. pre-training from scratch on a corpus
relevant to the domain, and 2. further pre-training
a foundational model on the corpus. The former
approach has generally been shown to yield better
results when large corpora are available for train-
ing, because such models use a vocabulary relevant
to their corpus instead of inheriting the vocabulary
from a general-domain model (Gu et al., 2021).
However, experiments from the likes of Chalkidis
et al. (2020) and Lee et al. (2020) demonstrate that
the latter approach yields competitive results while
requiring significantly less training due to the trans-
fer of learning from their foundational models.

Of the architectures discussed above, the ver-
satility of encoder representations in downstream
tasks makes BERT-like models vastly popular for
domain adaptation. This is particularly true in the
biomedical domain which is littered with models
like SciBERT (Beltagy et al., 2019), BioBERT,
BioLinkBERT (Yasunaga et al., 2022), Distil-
BioBERT (Rohanian et al., 2022), PubMedBERT
and so on. Indeed, among the 8 tasks we test our
model on, the current State-Of-The-Art (SOTA)
results1 are claimed by a non–BERT-style model
only for two of the tasks.

2.2 Curriculum Learning

In a curriculum learning setting (Bengio et al.,
2009), training samples are presented to a model
not arbitrarily, but in an "easy-to-difficult" order,
where the method for ranking the difficulty of sam-
ples depends on the model and task involved. This
framework is designed to better simulate human
cognition, wherein humans learn complex concepts
more easily after having learnt basic ones. Re-
cent studies indicate that employing this approach
demonstrably accelerates convergence compared
to random presentation of samples in many settings
(Roy et al., 2024, Jarca et al., 2024, Tang et al.,
2024).

We approach domain-adaptation of a founda-
tional language model as an analogous task to cur-
riculum learning. We posit that since the model has
already been trained on a general ("easy") corpus
and must now be trained in a specific ("difficult")
domain, we can apply the same curriculum learn-

1sourced from https://paperswithcode.com/sota

ing principle of curating training samples such that
they specifically facilitate domain-specific learning.
To the best of our knowledge, this approach has not
thus far been tested or reported on.

3 Methodology

We begin by creating a biomedical corpus
consisting of PubMed abstracts publicly avail-
able at https://pubmed.ncbi.nlm.nih.gov/download/,
amounting to about 9.4GB of text. Leveraging the
linguistic difficulty criterion and subsequent cur-
riculum generation approach introduced by Lee
et al. (2022), who claim that frequently occuring
words that have many connections in a large knowl-
edge graph are easier to learn, we build a set S of
"basic" concepts – i.e. the n concepts with the most
connections in a large-scale knowledge graph that
occur in the corpus above a threshold frequency f .
Iterating through all the elements si of S, we add
si and every concept in ConceptNet within k hops
of si to a new set C, which acts as a "curriculum"
consisting of relevant concepts. Following manual
assessment of the curriculum generated, we settled
on using f = 200, 000, n = 5, 000 and k = 5.

For our purposes, despite the availability of
biomedical knowledge graphs like BIKG (Geleta
et al., 2021) and BIOS (Yu et al., 2022), we chose
to use the general-domain ConceptNet (Speer et al.,
2017) as the knowledge graph. We did not as-
sess the overlap between these specific knowledge
graphs and our corpus, and could not be certain
that their usage would not be counterproductive
given that BERT’s vocabulary itself is not tailored
towards biomedical terms. Moreover, this makes
our approach easier to generalise for other do-
mains without pre-existing large knowledge graphs.
Nonetheless, we recognise that the use of domain-
specific knowledge graphs for concept extraction,
wherever available, is worth investigating in future
studies.

Since this curriculum includes general-domain
concepts already represented well in BERT, we
iterate once over BERT’s corpus (Wikipedia +
BooksCorpus), identify concepts occuring more
than f/3 times and remove them from C. Note
that this cutoff frequency has been scaled down
with respect to the threshold frequency used for
the PubMed corpus above to account for the differ-
ence in sizes between the corpora. We then iterate
through C and remove any concepts that do not
occur at all in the PubMed corpus, ensuring that
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Dataset Entity type No. of annotations

NCBI Disease Disease 6,881
BC5CDR Disease 12,694
BC5CDR Drug/Chem. 15,411
BC4CHEMD Drug/Chem. 79,842
BC2GM Gene/Protein 20,703
JNLPBA Gene/Protein 35,460
LINNAEUS Species 4,077
Species-800 Species 3,708

Table 1: Statistics of the biomedical NER datasets.

the concepts now contained in C are relevant to the
biomedical domain.

We then initialize our model from the publicly
available BERT-base checkpoint, and train it for
Masked Language Modeling (MLM) over our cor-
pus. Past studies indicate that the difference be-
tween using cased and uncased models to warm-
start biomedical language models is minimal with
no clear advantage for either (Lee et al., 2020, Gu
et al., 2021, and it is beyond the scope of our cur-
rent experiment to test and compare the two. For
our purposes, we use the uncased version of the
model.

Differing from the likes of BERT and BioBERT
that randomly mask 15% of the tokens in each
batch, we mask only the tokens that form a concept
within the previously curated curriculum C while
ensuring that no more than 20% of the tokens in
any batch are masked. As concepts can span mul-
tiple tokens, we follow Lee et al. (2022)’s Whole
Concept Masking (WCM) strategy such that all the
tokens comprising a single concept are simultane-
ously masked. As is the standard, we replace 80%
of the masked concepts with a mask token, replace
another 10% with a random token and do not re-
place the remaining 10%. Since existing literature
shows minimal gains from calculating the Next
Sentence Prediction (NSP) loss (Liu et al., 2019),
we chose to omit it; MLM was our sole pre-training
objective.

4 Experimental Setup

4.1 Pre-training

We trained the model for 200K steps on four
NVIDIA RTX 6000 GPUs, using PyTorch’s Dis-
tributedDataParallel to share the load across the
GPUs. The batch size was fixed at 256 and the max-
imum sequence length was set to 256, resulting in
65,536 tokens per training iteration. This equates

to 33% lower compute compared to BioBERT-v1.0
trained on the same corpus (98,304 tokens per it-
eration and 200K iterations), and 91% lower com-
pute than BioBERT-v1.1, which was trained on the
same corpus2 for 1.2M training steps and addition-
ally trained on full-length PubMed Central articles
(∼3 times the corpus size of PubMed Abstracts) for
270K steps. Note that the computational overhead
caused by curriculum generation is minimal com-
pared to model training, as it only requires iterating
over two corpora and a section of one knowledge
graph.

4.2 Fine-tuning

With NER being a fundamental task for text min-
ing, we focus our limited testing on commonly
used NER benchmarks. We fine-tune and evaluate
our model on 8 tasks: BC2GM (Smith et al., 2008),
BC4CHEMD (Krallinger et al., 2015), BC5CDR-
Chemical (Li et al., 2016), BC5CDR-Disease (Li
et al., 2016), JNLPBA (Collier et al., 2004), LIN-
NAEUS (Gerner et al., 2010), NCBI Disease
(Doğan et al., 2014) and Species-800 (Pafilis et al.,
2013). We use pre-processed versions of the re-
spective datasets released by Rohanian et al. (2022).
Some specifications for the datasets are listed in
Table 1. Following the setup described in the
BioBERT paper, we use a learning rate of 5e-5
and train for 25 epochs per dataset. We leave test-
ing this approach in other tasks – such as Question
Answering, Relation Extraction as well as other
NER tasks – for future studies.

5 Results

The results obtained by our model relative to BERT,
BioBERT-v1.0, BioBERT-v1.1 and the current
SOTA3 are shown in Table 2. We consider these to
be the most apt comparisons to showcase because
BERT is the baseline we train upon, and BioBERT
most closely reflects what our model’s performance
would be if it had been trained using regular MLM.
The models delivering the SOTA results are, for the
most part, more resource-intensive to train or are
tailored towards Biomedical NER tasks as opposed
to being general-purpose biomedical transformers.
Nevertheless, we consider their performance to be
relevant benchmarks and include them in this com-
parison.

2our corpus is collected from the same source but is larger
as a virtue of being more up-to-date

3to the best of our knowledge
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Task/Model SOTA BERT BioBERT-v1.0 BioBERT-v1.1 Ours

BC2GM 86.97 81.79 82.54 84.72 85.43
BC4CHEMD 94.39 90.04 91.26 92.36 90.23
BC5CDR-Chemistry 94.88 91.16 92.64 93.47 93.25
BC5CDR-Disease 88.50 82.41 86.2 87.15 85.49
JNLPBA 82.0 74.94 76.65 77.49 79.29
LINNAEUS 92.7 87.6 88.13 88.24 89.23
NCBI Disease 89.71 85.63 87.38 89.71 87.92
Species-800 82.44 71.63 73.08 74.06 75.20

Table 2: Performance comparison across different models (F1 scores). The best result other than the SOTA
(italicised) is in bold, and the second-best is underlined.

Our model outperforms BioBERT-v1.0 in three-
fourths of the tasks and, despite significantly less
training on a much smaller corpus, outperforms
BioBERT-v1.1 in half of the tasks, demonstrating
the effectiveness of our training-sample-curation
strategy.

Limitations and Future Work

We acknowledge that being a short extended ab-
stract, this paper does not present a full comprehen-
sive study detailing the impact of our strategy. Our
aim in presenting our preliminary experiment and
findings is to incite further research into this idea
from the broader NLP community, encouraging
exploration of this approach with different parame-
ters, domains, corpora, model sizes, training steps,
model architectures and so on.

Ethics statement

The authors have no competing interests to de-
clare that are relevant to the contents of this ar-
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of this study were sourced from publicly available
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