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Abstract

The extensive memory footprint of language
model (LM) fine-tuning poses a challenge for
both researchers and practitioners. LMs use
an embedding matrix to represent extensive vo-
cabularies, forming a substantial proportion of
the model parameters. While previous work
towards memory-efficient fine-tuning has fo-
cused on minimizing the number of trainable
parameters, reducing the memory footprint of
the embedding matrix has yet to be explored.
We first demonstrate that a significant propor-
tion of the vocabulary remains unused during
fine-tuning. We then propose a simple yet ef-
fective approach that leverages this finding to
minimize memory usage. We show that our ap-
proach provides substantial reductions in mem-
ory usage across a wide range of models and
tasks. Notably, our approach does not impact
downstream task performance, while allowing
more efficient use of computational resources.1

1 Introduction

Language models (LMs) (Chung et al., 2022; Tou-
vron et al., 2023; Warner et al., 2024) form the foun-
dation of contemporary natural language process-
ing (NLP), however they require extensive com-
putational resources to train (Kaplan et al., 2020;
Hoffmann et al., 2022). This is contrary to the
democratization of NLP, exacerbating economic in-
equalities and hindering inclusivity (Schwartz et al.,
2020; Weidinger et al., 2022). Consequently, there
is a growing focus towards developing efficient
methods for LM training and fine-tuning (Treviso
et al., 2023; Lialin et al., 2023).

The memory footprint of LMs is a major chal-
lenge for their application. Storing model param-
eters requires extensive amounts of memory, con-
straining the size and architecture of the model
(Paleyes et al., 2022). This problem is especially

1https://github.com/mlsw/
partial-embedding-matrix-adaptation
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Figure 1: Memory-efficient language model fine-tuning
with Partial Embedding Matrix Adaptation (PEMA).

prominent during training as gradients and opti-
mizer states must also be retained (Kingma and
Ba, 2017). This can be problematic when using
consumer hardware or facing an academic budget
(Izsak et al., 2021; Ciosici and Derczynski, 2022).

LMs ordinarily use fixed vocabularies to derive
vector representations from text, known as word
embeddings. Each element of the vocabulary has a
corresponding word embedding, which collectively
form an embedding matrix within the LM. The size
of the embedding matrix scales with both the vocab-
ulary size and embedding dimension, comprising a
substantial proportion of the model parameters (Ta-
ble 5, Appendix A). This proportion is usually even
greater for multilingual LMs, which benefit from
larger vocabularies (Conneau et al., 2020; Liang
et al., 2023). However, we hypothesize that a signif-
icant proportion of LM vocabulary remains unused
during fine-tuning on many downstream tasks.

In this paper, we first demonstrate that our hy-
pothesis holds for a variety of downstream tasks,
with only a small subset of vocabulary used. We
then propose a method to reduce memory usage dur-
ing fine-tuning by excluding unused embeddings.
Finally, we empirically demonstrate the memory
savings from our approach across a range of models
and tasks. Notably, our approach does not impact
downstream task performance and is orthogonal to
many existing LM memory efficiency techniques.
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2 Related Work

Tokenization. Transformer LMs (Vaswani et al.,
2017) typically adopt subword tokenization (Schus-
ter and Nakajima, 2012; Sennrich et al., 2016) to en-
code text using a finite vocabulary. The use of large
subword vocabularies enables improved task per-
formance (Gallé, 2019), inference efficiency (Tay
et al., 2022), and multilingual performance (Liang
et al., 2023). Conversely, character or byte level
tokenization can be used (Clark et al., 2022; Xue
et al., 2022), reducing the size of the embedding
matrix at the cost of increasing the sequence length.

Reducing embedding parameters. To reduce
the size of the embedding matrix, LMs can be
trained with embedding factorization (Sun et al.,
2020; Lan et al., 2020), albeit with slightly lower
task performance. Alternatively, embeddings can
be generated from hash functions (Sankar et al.,
2021; Xue and Aletras, 2022; Cohn et al., 2023),
although this may harm performance due to the
many-to-one mapping from tokens to embeddings.

Multilingual vocabulary trimming. The closest
work to our own is Abdaoui et al. (2020), which
creates smaller multilingual LMs by permanently
reducing the number of supported languages. This
can harm performance as the removed vocabulary
may later be required for a downstream task. More-
over, selecting which vocabulary to remove re-
quires the computationally expensive processing of
a large corpus. Ushio et al. (2023) further examine
the performance impact of permanently removing
LM vocabulary either before or after fine-tuning.
However, the same fundamental limitations persist.

Parameter-efficient fine-tuning. PEFT meth-
ods, such as adapters (Houlsby et al., 2019), soft
prompts (Lester et al., 2021; Li and Liang, 2021),
ladder side-tuning (Sung et al., 2022), and low-rank
adaptation (Hu et al., 2022), effectively adapt LMs
by fine-tuning only a small number of parameters.
However, these methods still require all LM param-
eters to be held in accelerator memory.

Offloading. To minimize accelerator (e.g. GPU)
memory usage, LM parameters can be held in sep-
arate (e.g. CPU) memory until needed (Pudipeddi
et al., 2020; Ren et al., 2021). However, this ap-
proach substantially increases inference latency.

Model compression. In Appendix B, we discuss
a variety of orthogonal LM compression methods,
such as quantization, pruning, and distillation.
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Figure 2: The trend in vocabulary use for the datasets
in GLUE when using the vocabulary from GPT-2.

# Token

49,990 natureconservancy
50,072 ;;;;;;;;;;;;
50,160 PsyNetMessage
50,174 rawdownloadcloneembedreportprint
50,243 SolidGoldMagikarp

Table 1: Five examples of tokens from the GPT-2 vo-
cabulary that do not occur within English Wikipedia.

3 Vocabulary Usage Analysis

To empirically assess the level of vocabulary usage
during fine-tuning, we first examine the popular
GLUE benchmark (Wang et al., 2019). This com-
prises a series of tasks that are varied in both size
and domain (Appendix C). For tokenization, we use
the subword vocabulary from GPT-2, which was
later adopted by models including RoBERTa (Liu
et al., 2019), BART (Lewis et al., 2020), GPT-3
(Brown et al., 2020), and OPT (Zhang et al., 2022).

Figure 2 illustrates the relationship between
unique tokens and total tokens in each of the GLUE
datasets. Notably, six out of nine datasets fail to use
more than half of the vocabulary. Moreover, the
smallest dataset, WNLI, uses less than 4%. Interest-
ingly, we observe that the GLUE datasets follow a
trend resembling Heaps’ Law (Heaps, 1978). This
states that as the size of a corpus grows, there are
diminishing gains in new vocabulary. However, our
use of a finite subword vocabulary means that the
trend is asymptotic to the vocabulary size.

Separately, the statistical construction of sub-
word vocabularies can reflect anomalies in their
training data, creating tokens that may never be
used. To examine the extent of the issue, we iden-
tify such tokens by evaluating a processed dump
of English Wikipedia, comprising over 20GB of
text. Peculiarly, we identify nearly 200 anomalous
tokens without a single occurrence (see Table 1).2

2We refer readers interested in such anomalous tokens to
Rumbelow and Watkins (2023) and Land and Bartolo (2024).
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4 Partial Embedding Matrix Adaptation

Our empirical analysis (Section 3) suggests that
many fine-tuning datasets only use a fraction of
LM vocabulary. We leverage this insight to propose
Partial Embedding Matrix Adaptation (PEMA), a
method that achieves substantial memory savings
by selecting only the minimum subset of word em-
beddings needed for fine-tuning. Notably, this does
not impact task performance, as unused word em-
beddings are not updated during backpropagation.

Preliminaries. Let each token in the vocabulary
{w1, . . . , wk} be denoted by a unique integer i
such that V = {i ∈ N | i ≤ k}. The embedding
matrix E ∈ R|V|×d is then used to project each
token to a corresponding d-dimensional vector.

Before fine-tuning. Suppose we have fine-tuning
dataset D ∈ Vm×n where m is the number of ex-
amples and n is the length of each example. We
compute the partial vocabulary V ′ ⊂ V consisting
of only the tokens in D. As the elements of V ′ are
not necessarily consecutive integers, we define an
arbitrary mapping f : V ′ → {i ∈ N | i ≤ |V ′|}.
We then construct the partial embedding matrix
E′ ∈ R|V ′|×d with entries E′[:, f(i)] = E[:, i] for
all i ∈ V ′. That is, E′ retains only embedding vec-
tors corresponding to tokens in V ′. To adapt D for
the partial vocabulary V ′, we create an intermediary
dataset D′ where each entry D′[i, j] = f(D[i, j]).
Finally, we use D′ and E′ in place of D and E.

After fine-tuning. Following fine-tuning, our
partial embedding matrix E′ holds the newly
learned embeddings for the partial vocabulary.
However, we do not wish to keep only the par-
tial vocabulary, as this would limit future use of
the model (i.e. tasks with different vocabulary).
Therefore, we merge the newly learned embed-
dings into the original embedding matrix (stored
on-disk). More formally, we update E such that
E[:, f−1(i)] = E′[:, i] for all i ∈ V ′. This ensures
that the model remains structurally identical, with
embeddings for the complete vocabulary.

5 Experimental Setup

Datasets. To offer a fair selection of datasets,
we follow existing PEFT literature (Houlsby et al.,
2019; Hu et al., 2022; Sung et al., 2022; Zhang
et al., 2023) and focus our evaluation on the popular
GLUE benchmark. We additionally employ XNLI
(Conneau et al., 2018) to assess the performance

of our approach with multilingual data. Complete
data sources and implementation details are listed
in Appendix C and Appendix D, respectively.

Models. Similarly, we select a variety of popular
models used in existing work. However, we place
an emphasis on having a variety of vocabularies
(Table 5, Appendix A). For monolingual models,
we use BERT (Devlin et al., 2019), RoBERTa (Liu
et al., 2019), and DeBERTaV3 (He et al., 2023).
For multilingual models, we use mBERT (De-
vlin et al., 2019), XLM-RoBERTa (Conneau et al.,
2020), and XLM-V (Liang et al., 2023). To evalu-
ate the performance of distilled models, we also use
the available distilled counterparts: DistilBERT,
DistilRoBERTa, and DistilmBERT (Sanh et al.,
2020a). For a fair comparison between models,
we consistently select the base size (dmodel = 768).

Memory efficiency metrics. Following conven-
tion in the PEFT literature (Houlsby et al., 2019;
Hu et al., 2022; Ben Zaken et al., 2022), we report
memory efficiency in terms of model parameters.
This is advantageous as it avoids confounding fac-
tors such as weight precision, optimizer choice,
software implementation, and batch size.

6 Results

Larger vocabularies see more memory savings.
Table 2 presents the reduction in parameters for
each model across the GLUE benchmark. Follow-
ing our expectations from Section 3, we generally
observe that as vocabulary sizes increase (Table 5,
Appendix A), so do the potential memory savings.
For example, an average reduction in embedding
parameters of 47.3% is achieved for BERT, 52.1%
for RoBERTa, and 72.4% for DeBERTaV3.

Memory savings vary between datasets. In line
with our expectations from Section 3, the memory
savings vary substantially between datasets. For
BERT, the embedding matrix can be reduced by
94.3% for the smallest dataset (WNLI), yet only
11.5% for the largest (QQP). We demonstrate that
downstream task performance remains consistent
across models and datasets in Appendix E.

Distilled models substantially benefit. Consid-
ering the distilled models, we observe that they all
achieve an identical reduction in embedding param-
eters to their original counterparts. This is because
they use the same vocabulary and embedding size
(Sanh et al., 2020a). However, they offer substan-
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Model CoLA MNLI MRPC QNLI QQP RTE SST-2 STS-B WNLI Mean

Reduction in Embedding Parameters (%)

DistilBERT 80.1 14.8 54.9 13.1 11.5 41.5 57.9 57.2 94.3 47.3
DistilRoBERTa 86.1 14.8 64.0 17.7 5.9 51.6 68.6 64.4 96.0 52.1
DistilmBERT 94.9 76.9 88.2 73.8 72.7 85.0 91.9 88.8 98.4 85.6

BERT 80.1 14.8 54.9 13.1 11.5 41.5 57.9 57.2 94.3 47.3
RoBERTa 86.1 14.8 64.0 17.7 5.9 51.6 68.6 64.4 96.0 52.1
DeBERTaV3 95.0 44.3 85.7 47.1 28.5 79.0 87.5 85.9 98.6 72.4

mBERT 94.9 76.9 88.2 73.8 72.7 85.0 91.9 88.8 98.4 85.6
XLM-RoBERTa 97.8 88.8 94.9 87.6 85.4 93.3 96.3 94.9 99.3 93.1
XLM-V 99.3 93.2 98.0 92.8 90.5 97.1 98.3 98.0 99.8 96.3

Reduction in Model Parameters (%)

DistilBERT 28.0 5.2 19.2 4.6 4.0 14.5 20.3 20.0 33.0 16.5
DistilRoBERTa 40.5 7.0 30.1 8.3 2.8 24.3 32.3 30.3 45.1 24.5
DistilmBERT 64.4 52.2 59.9 50.1 49.3 57.7 62.3 60.2 66.8 58.1

BERT 17.1 3.2 11.8 2.8 2.5 8.9 12.4 12.2 20.2 10.1
RoBERTa 26.7 4.6 19.8 5.5 1.8 16.0 21.2 19.9 29.7 16.1
DeBERTaV3 50.7 23.6 45.7 25.1 15.2 42.1 46.7 45.8 52.6 38.6

mBERT 49.0 39.7 45.5 38.1 37.5 43.9 47.4 45.8 50.8 44.2
XLM-RoBERTa 67.5 61.3 65.5 60.5 59.0 64.4 66.5 65.5 68.5 64.3
XLM-V 88.3 82.9 87.2 82.6 80.5 86.4 87.5 87.2 88.8 85.7

Table 2: The reduction in embedding and model parameters (%) for each model across the GLUE benchmark.

Size CoLA MNLI MRPC QNLI QQP RTE SST-2 STS-B WNLI Mean

XSmall 46.7 21.8 42.2 23.2 14.0 38.8 43.1 42.3 48.5 35.6
Small 93.4 43.6 84.3 46.3 28.0 77.7 86.1 84.5 97.0 71.2
Base 93.4 43.6 84.3 46.3 28.0 77.7 86.1 84.5 97.0 71.2
Large 124.6 58.1 112.4 61.8 37.3 103.6 114.8 112.7 129.4 95.0

Table 3: The reduction in model parameters (millions) for each size of DeBERTaV3 across the GLUE benchmark.

tially higher overall savings, as there are fewer
parameters allocated to the transformer layers.

Memory savings scale with model size. Table 3
presents the reduction in model parameters for each
model from the DeBERTaV3 family. We observe
that this reduction continues to increase with model
size. On average, the extra small size is reduced by
35.6M parameters, while the large size is reduced
by 95.0M parameters. Although the same fixed-
size vocabulary is shared across models, the em-
bedding dimension continues to grow (Table 6, Ap-
pendix A), offering further memory savings. The
exception to this is the small and base sizes, where
the only difference is the number of layers.

Multilingual models achieve extreme savings.
Unsurprisingly, multilingual models demonstrate
extreme memory savings across the monolingual
GLUE benchmark. On average, a reduction in
model parameters of 44.2% is achieved for mBERT,
64.3% for XLM-RoBERTa, and 85.7% for XLM-V.
Table 4 presents the reduction in parameters for the
multilingual models when fine-tuning on different
subsets of XNLI. Even when fine-tuning on all
fifteen languages, these models still demonstrate
substantial memory savings from 23.0% to 58.4%.

Model en en-de en-zh All

Reduction in Embedding Parameters (%)

DistilmBERT 77.1 71.7 73.0 44.6
mBERT 77.1 71.7 73.0 44.6
XLM-RoBERTa 89.2 86.0 84.4 56.9
XLM-V 93.6 90.0 90.0 65.7

Reduction in Model Parameters (%)

DistilmBERT 52.3 48.6 49.6 30.3
mBERT 39.8 37.0 37.7 23.0
XLM-RoBERTa 61.6 59.4 58.3 39.3
XLM-V 83.2 80.0 80.0 58.4

Table 4: The reduction in parameters across different
subsets of XNLI, in addition to all fifteen languages.

7 Conclusion

In this paper, we identified that many fine-tuning
datasets do not use the majority of LM vocabulary.
We then proposed Partial Embedding Matrix Adap-
tation (PEMA), a simple yet effective approach to
minimize LM memory use during fine-tuning, that
is orthogonal to many existing methods. Finally,
we empirically demonstrated that our approach of-
fers substantial memory savings across a variety of
popular tasks and models, without compromising
performance. As future work, we are interested in
adapting our approach for the output embedding
matrix to offer further memory savings.
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Limitations

Processing the fine-tuning dataset to assess vocab-
ulary usage incurs a runtime cost. However, we
observe that this cost is negligible. We provide a
detailed analysis of this matter in Appendix F.

Ethical Considerations

Our approach improves the memory efficiency of
LM fine-tuning, therefore facilitating the use of less
powerful hardware. Although we hope that this
can reduce the environmental footprint of LM fine-
tuning, we acknowledge that it could be used to
support the fine-tuning of even larger LMs. We also
recognize the dual-use nature of LMs and concede
that efforts towards improving efficiency, including
our own, can lower the barrier to entry for their
misuse (Weidinger et al., 2022).
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A Language Model Vocabulary Sizes

Table 5 presents the vocabulary sizes (|V|) for the
models used in our experiments, as identified by
the Hugging Face Hub. We also report the number
of embedding parameters (Nemb), the number of
model parameters (N ), and the overall proportion
of embedding parameters (Nemb/N ). These met-
rics are also presented in Table 6 for each size of
DeBERTa, in addition to model hyperparameters.

B Language Model Compression

Supplementary to our discussion of related work
(Section 2), we additionally discuss the relation
to variety of popular LM compression approaches.
We emphasize that these methods are orthogonal
to our proposed approach.

Knowledge distillation. Knowledge distillation
(Hinton et al., 2015) aims to achieve comparable
performance by training a smaller model using the
predictions from a larger model. This approach
has been successfully applied to LMs (Sanh et al.,
2020a; Sun et al., 2020). It can also be used to train
models with a smaller vocabulary than the original
(Zhao et al., 2021; Singh and Lefever, 2022).

Pruning. Neural network pruning (LeCun et al.,
1989) seeks to remove redundant weights while
preserving performance. Existing approaches focus
on pruning the linear and attention weights in LMs
(Sanh et al., 2020b; Kurtic et al., 2022; Frantar and
Alistarh, 2023). However, pruning the embedding
matrix is widely avoided, as it can substantially
harm performance (Kurtic et al., 2024).

Quantization. The aim of quantization is to rep-
resent neural network weights using lower preci-
sion, therefore reducing computational costs. Re-
cent LM quantization efforts generally focus on
quantizing the linear layers (Dettmers et al., 2022;
Yao et al., 2022; Frantar et al., 2023). The em-
bedding matrix can also be quantized (Zafrir et al.,
2019; Bondarenko et al., 2021), although Shen et al.
(2020) find that it is more sensitive to quantization.

C Datasets

In all cases, we use the publicly available version of
each dataset available from Hugging Face (Lhoest
et al., 2021). The GLUE benchmark comprises
a diverse range of tasks, including linguistic ac-
ceptability (CoLA, Warstadt et al. 2019), sentiment

Model |V| Nemb N Nemb/N

DistilBERT 28,996 22.3M 65.8M 33.9%
DistilRoBERTa 50,265 38.6M 82.1M 47.0%
DistilmBERT 119,547 91.8M 135.3M 67.8%

BERT 28,996 22.3M 108.3M 20.6%
RoBERTa 50,265 38.6M 124.6M 31.0%
DeBERTaV3 128,100 98.4M 184.4M 53.3%

mBERT 119,547 91.8M 177.9M 51.6%
XLM-RoBERTa 250,002 192.0M 278.0M 69.1%
XLM-V 901,629 692.5M 778.5M 88.9%

Table 5: The vocabulary size and allocation of parame-
ters for each of the models used in our experiments. In
all cases, we select the base model size (dmodel = 768).

Size l h dmodel Nemb N Nemb/N

XSmall 12 6 384 49.2M 70.8M 69.4%
Small 6 12 768 98.4M 141.9M 69.3%
Base 12 12 768 98.4M 184.4M 53.3%
Large 24 16 1024 131.2M 435.1M 30.2%

Table 6: The DeBERTaV3 (He et al., 2023) family of
models. Columns l, h, and dmodel show the number of
hidden layers, number of attention heads, and hidden
embedding size, respectively.

analysis (SST-2, Socher et al. 2013), paraphras-
ing/sentence similarity (MRPC, Dolan and Brock-
ett 2005; STS-B, Cer et al. 2017; QQP, Iyer et al.
2017), and natural language inference (RTE, Dagan
et al. 2006; WNLI, Levesque et al. 2012; QNLI,
Rajpurkar et al. 2016; MNLI, Williams et al. 2018).
The number of examples per split in each dataset
are listed in Table 7. The XNLI dataset (Conneau
et al., 2018) extends MNLI to 15 languages: Ara-
bic, Bulgarian, Chinese, English, French, German,
Greek, Hindi, Russian, Spanish, Swahili, Thai,
Turkish, Vietnamese, and Urdu.

D Implementation & Hardware

We implement our experiments using PyTorch
(Paszke et al., 2019), Hugging Face Transform-
ers (Wolf et al., 2020) and Hugging Face Datasets
(Lhoest et al., 2021). Since downstream task
performance is not relevant to this study, we do
not perform hyperparameter tuning. Instead, we
broadly follow the hyperparameters from Devlin
et al. (2019), listed in Table 8.

We fine-tune all models using a single NVIDIA
Tesla V100 (SXM2 32GB) GPU and Intel Xeon
Gold 6138 CPU. For consistency, each model type
is evaluated on the same physical hardware.

E Fine-tuning on GLUE

Table 10 presents the task performance for each
model across the GLUE benchmark. We observe
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that the performance is largely identical, although
there are occasional fluctuations where PEMA per-
forms fractionally better or worse than the baseline.
Finally, we note that XLM-RoBERTa and XLM-V
both demonstrate very low performance on CoLA,
although this issue has also been observed in other
studies, e.g. Zhou et al. (2023).

F Runtime Impact

Table 9 presents the mean duration and standard
deviation of applying PEMA to RoBERTa and the
subsequent fine-tuning process. It also shows the
proportion of time spent applying PEMA relative
to fine-tuning. We observe that for five of the nine
datasets in GLUE, applying PEMA takes less than
half a second. For eight out of nine datasets, ap-
plying PEMA takes less than 1% of the fine-tuning
duration. We note that the time taken to apply
PEMA correlates with the size of the fine-tuning
dataset (Figure 2). Overall, we note that the time
taken to apply PEMA is generally fractional com-
pared to the fine-tuning duration, even though we
made no effort to optimize our implementation. As
guidance for future optimization efforts, we note
that the dataset processing operations in PEMA are
trivially parallelizable.

Dataset Train Validation Test Total

CoLA 8,551 1,043 1,063 10,657
MNLI 392,702 19,647 19,643 431,992
MRPC 3,668 408 1,725 5,801
QNLI 104,743 5,463 5,463 115,669
QQP 363,846 40,430 390,965 795,241
RTE 2,490 277 3,000 5,767
SST-2 67,349 872 1,821 70,042
STS-B 5,749 1,500 1,379 8,628
WNLI 635 71 146 852

Table 7: The number of examples per split in each of
the GLUE datasets.

Hyperparameter GLUE XNLI

Adam ϵ 1e-8
Adam β1 0.9
Adam β2 0.999
Batch Size 32
Dropout (Attention) 0.1
Dropout (Hidden) 0.1
Learning Rate (Peak) 2e-5, 7.5e-6 (XLM)
Learning Rate Schedule Linear
Sequence Length 128
Training Epochs 3 2

Table 8: The hyperparameters used for each set of ex-
periments.

Dataset PEMA Fine-tuning %

CoLA 0.4 0.0 172.7 0.9 0.2
MNLI 8.8 0.2 7817.8 16.6 0.1
MRPC 0.3 0.0 78.7 0.7 0.4
QNLI 2.4 0.0 2092.8 2.0 0.1
QQP 13.3 0.5 7235.5 4.9 0.2
RTE 0.4 0.0 55.4 0.6 0.7
SST-2 1.2 0.0 1329.2 0.3 0.1
STS-B 0.4 0.0 118.7 0.5 0.3
WNLI 0.3 0.0 18.3 0.8 1.4

Table 9: The mean duration (seconds) and standard
deviation over five runs of applying PEMA to RoBERTa
and fine-tuning on the GLUE datasets.
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Model PEMA CoLA MNLI MRPC QNLI QQP RTE SST-2 STS-B WNLI Mean

DistilBERT ✗ 49.3 82.2 84.2 88.5 86.7 59.6 90.5 86.5 49.3 75.2 1.5
✓ 49.3 82.2 84.2 88.6 86.7 59.6 90.5 86.5 49.3 75.2 1.5

DistilRoBERTa ✗ 56.4 84.2 85.0 90.9 87.2 65.7 92.3 87.2 53.0 78.0 0.9
✓ 56.4 84.2 85.0 90.9 87.2 65.7 92.3 87.2 53.0 78.0 0.9

DistilmBERT ✗ 29.7 78.3 81.8 86.7 85.8 60.9 89.1 84.4 48.2 71.6 0.3
✓ 29.6 78.3 81.8 86.7 85.8 60.9 89.2 84.4 48.2 71.6 0.4

BERT ✗ 56.4 84.3 84.3 91.1 87.9 64.4 92.6 88.1 37.7 76.3 0.7
✓ 56.7 84.3 84.3 91.3 87.8 64.4 92.5 88.1 37.7 76.3 0.8

RoBERTa ✗ 57.6 87.8 88.4 92.8 88.4 71.1 94.2 89.9 52.1 80.3 1.2
✓ 57.6 87.8 88.4 92.7 88.4 71.1 94.2 89.9 52.1 80.3 1.2

DeBERTaV3 ✗ 67.4 90.2 88.5 93.9 89.9 79.8 95.6 90.9 53.0 83.2 0.8
✓ 67.4 90.2 88.3 93.9 89.9 79.8 95.5 90.9 53.0 83.2 0.8

mBERT ✗ 35.3 82.3 85.8 91.1 87.1 69.0 91.0 88.0 53.0 75.8 2.0
✓ 35.4 82.2 85.8 91.1 87.2 69.0 90.8 88.0 53.0 75.8 2.0

XLM-RoBERTa ✗ 22.6 83.9 76.9 89.5 86.9 57.3 92.2 84.2 52.1 71.7 2.0
✓ 22.4 84.0 76.8 89.5 86.8 57.3 92.0 84.2 52.1 71.7 2.0

XLM-V ✗ 0.0 84.5 68.8 89.6 86.7 54.1 91.8 80.8 55.2 68.0 0.6
✓ 0.0 84.5 68.8 89.6 86.7 54.1 91.6 80.8 55.2 67.9 0.6

Table 10: Results on the validation set for each task from GLUE. We present the mean performance over five
different seeds, accompanied by the overall mean and standard deviation. We report Matthews correlation for CoLA,
F1 for QQP, Spearman correlation for STS-B, and accuracy for the remaining tasks.

196


