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Abstract

Language Models (LMs) struggle with lin-
guistic understanding at the discourse level,
even though discourse patterns such as co-
herence, cohesion, and narrative flow are
prevalent in their pre-training data. To im-
prove the discourse capabilities of LMs al-
ready at the pre-training stage, we intro-
duce DEPTH, an encoder-decoder model that
learns latent representations for sentences us-
ing a discourse-oriented pre-training objective.
DEPTH combines hierarchical sentence repre-
sentations with two objectives: (1) Sentence
Un-Shuffling, and (2) Span-Corruption. Our
approach trains the model to represent both
sub-word-level and sentence-level dependen-
cies over a pre-training corpora. When trained
either from scratch or continuing from a pre-
trained T5 checkpoint, DEPTH learns semantic
and discourse-level representations faster than
T5, outperforming it in span-corruption loss
despite the additional sentence-un-shuffling ob-
jective. Evaluations on the GLUE, DiscoEval,
and NI benchmarks demonstrate DEPTH’s abil-
ity to quickly learn diverse downstream tasks,
which require syntactic, semantic, and dis-
course capabilities. Our approach extends
the discourse capabilities of T5, while mini-
mally impacting other natural language under-
standing (NLU) capabilities in the resulting
LM. We share ur codebse for reproducibility:
https://github.com/zbambergerNLP/depth.git

1 Introduction
Discourse understanding—the ability to understand
how sentences and broader textual units form cohe-
sive narratives (Miltsakaki et al., 2004; Prasad et al.,
2008; Jernite et al., 2017; Prasad et al., 2018)—is
fundamental to effective communication. How-
ever, LMs often struggle with this, especially when
dealing with long and complex inputs, hindering
their performance on tasks like persuasive argu-
mentation (Durmus et al., 2019; Hidey et al., 2017;
Chakrabarty et al., 2019), summarization (Zhao

et al., 2022), essay scoring (Mim et al., 2021),
dialogue systems (Hua et al., 2023), and follow-
ing instructions (Wei et al., 2022a). Recent evi-
dence from Yu et al. (2024) reinforces this view,
demonstrating that human language comprehen-
sion occurs at multiple levels and that incorporat-
ing discourse-level objectives like next sentence
prediction (NSP) can lead to more human-like lan-
guage representations and improved contextual un-
derstanding.

Early attempts to incorporate discourse aware-
ness into pre-training, such as Next Sentence Pre-
diction (NSP) in BERT (Devlin et al., 2019) and
Sentence Order Prediction (SOP) in ALBERT (Lan
et al., 2020), proved overly simplistic and hin-
dered learning effective discourse representations
(Liu et al., 2019; Lan et al., 2020; Raffel et al.,
2020). Subsequent encoder models like Sentence-
level Language Model (SLM) (Lee et al., 2020),
CONPONO (Iter et al., 2020), and Hi-Transformer
(Wu et al., 2021) improved discourse capabilities
in LMs but lacked generative capabilities.

Unlike the pre-training tasks for encoder LMs,
next-token prediction provides decoder LMs like
GPT (Radford et al., 2018, 2019; Brown et al.,
2020; OpenAI et al., 2023) with powerful gener-
ative capabilities. However, without a dedicated
and costly alignment phase (Ouyang et al., 2022;
Wei et al., 2022a; Bai et al., 2022), these LMs tend
to falter in understanding and executing human
queries.

Even with a dedicated alignment phase, large
decoder-only models generally perform poorly on
discourse-oriented benchmarks that measure coher-
ence and cohesion (Chen et al., 2019; Maimon and
Tsarfaty, 2023a,b; Wang et al., 2023). Encoder-
decoder models such as T5 (Raffel et al., 2020)
and BART (Lewis et al., 2020a) consistently out-
perform much larger (≈ 400×) decoder-only mod-
els like GPT-3 (Brown et al., 2020) and GPT-4
(OpenAI et al., 2023) on these tasks. Recent work
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by Katz et al. (2024) indicates that incorporating
encoder-decoder attention mechanisms into mod-
ern decoder-only models like Llama-3 (Grattafiori
et al., 2024), Qwen-2.5 (Qwen et al., 2025), and
Mistral (Jiang et al., 2023) also boosts performance,
suggesting potential additional benefits from pre-
training models with such attention schemes.

To improve the discourse-capabilities of encoder-
decoders already at the pre-training stage, we pro-
pose DEPTH (Discourse-Education through Pre-
Training Hierarchically), a hierarchical language
model that learns representations for both sub-word
and sentence-level tokens. DEPTH extends the
pre-training objective of SLM from encoder-only
models like BERT, to encoder-decoder models like
T5. Notably, DEPTH introduces latent, heirarchi-
cal representations for sentences (as in Lee et al.
(2020); Yang et al. (2021); Yu et al. (2024)) directly
into the objective of a generative pre-training task.
By employing a hierarchical attention mechanism
across sub-word and sentence level tokens, DEPTH
captures both fine-grained semantic dependencies
and broader inter-sentence relationships. When
pre-trained from scratch, our DEPTH model ob-
tains meaningful representations for downstream
tasks much faster than our baseline T5. Contin-
uously pre-training T5 models with the DEPTH
objective improves the discourse capabilities of the
resulting models, without sacrificing performance
in downstream NLU tasks.

2 Method

Pre-training DEPTH involves simultaneously per-
forming span corruption (Raffel et al., 2020), while
also un-shuffling sentences as in Lee et al. (2020).
In Section 2.1 we introduce a new tokenizer for
DEPTH, which combines T5’s tokenizer with the
sentence segmentation operation required for sen-
tence un-shuffling. In Section 2.2, we detail how
we combined the pre-training objectives of both
models into the sequence-to-sequence framework
of T5. Next, in Section 2.3, we discuss how we
introduce hierarchical representations during pre-
training, and how this hierarchy encourages the
model to learn discourse representations. Finally,
in Section 2.4, we demonstrate how to combine the
losses of T5 and SLM into a unified objective that
is conducive to traditional teacher-forcing.

2.1 Tokenization

We introduce a tokenization function, t, which
transforms an input string, s, into a sequence of

tokens, X = (x1,1, x1,2, . . . , xm,len(m)), in our vo-
cabulary, V . Each token xi,j denotes the j’th token
of the i’th sentence, where m is the number of
sentences and len(i) is the length of the i’th sen-
tence. V includes special tokens <EOS>, <BOS>,
<PAD>, and sentinel tokens Vsentinel of the form
<special_token_z> as in the original T5 paper.

To facilitate DEPTH’s hierarchical structure, we
segment sentences using NLTK (Bird and Loper,
2004) and create k + 1 new tokens1:

S = {<SENT_1>, . . . , <SENT_k>, <EOSEN>}
V ′ = V ∪ S

We augment our tokenizer function t to form
t′, which maps sequence s to tokens in V ′. In
each sentence, we prepend a <SENT_i> token and
append a <EOSEN> token:

X = {<SENT_a>, x1,1, x1,2, . . . , x1,len(1), <EOSEN>,

. . . , xm,len(m), <EOSEN>, <EOS>}

The integer i in <SENT_i> represents a sen-
tence’s index, sampled uniformly at random from
{1, . . . , k} without replacement. We truncate sen-
tences beyond the k’th to limit vocabulary size.

Unlike SLM (an encoder-only LM with an aux-
iliary pointer-decoder), DEPTH is an encoder-
decoder that predicts <SENT_i> and <EOSEN> token
IDs directly. The <EOSEN> token signals the next
token is either <SENT_i> or <EOS>, allowing for
dynamic attention masking in the decoder.

Formally, we define a pre-tokenization function
f : s → s′, where s′ includes <SENT_i> and
<EOSEN> tokens. The tokenized input for DEPTH
is produced with T (s) = t(f(s)) = X . We use the
SentencePiece (Kudo and Richardson, 2018) tok-
enizer as t, adjusted to support DEPTH’s sentence-
level pre-training objective.

2.2 Corruption

Span-Masking: We apply a corruption process
to each batch of tokenized sequences. We sam-
ple masked spans using a geometric distribution
(as in Joshi et al. (2020) and Raffel et al. (2020)),
parameterized with an average span length of λ
and a masking probability of p. Spans overlapping
with sentence tokens (<EOSEN> or <SENT_i>) are
ignored. Masked token spans are replaced with a
single sentinel token <special_token_z>, where

1We follow Lee et al. (2020), using k = 20 sentence
tokens.
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"Hello! How are you?"

Hello! HowEOSEN SENT 17 EOSEN SENT 9 EOSEN EOSare you?

HowSENT 9 EOSENSpecial Token 1EOSEN Hello!SENT 17 EOSEN EOS

you?EOSEN SENT 17 EOSEN SENT 9 EOSEN EOSSpecial Token 1 are

Corruption
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Document
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Encoder
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Figure 1: DEPTH tokenization and corruption process. Given an input document, DEPTH introduces sentence
tokens (<SENT_i> and <EOSEN>), applies span masking, and shuffles sentences with probability 0.5. Attention
patterns are shown with arrows (dotted for cross-attention, solid for self-attention).

(z) is a uniformly sampled integer from 0, . . . , 99.
The missing token sequences appear after the corre-
sponding sentinel token in the labels. Note that in
the original T5 implementation, sentinel tokens ap-
pear in the same incrementally decreasing order in
each example (<special_token_99> followed by
<special_token_98>, etc...). We randomly sam-
ple sentinel token ID’s for DEPTH to eliminate
hints about sentence positions from the sentinel
tokens. For example, with the T5 scheme for span-
masking, the presence of <special_token_99> in-
dicates that the sentence in which it appears comes
first, making sentence un-shuffling too easy.

Sentence Un-Shuffling: Given an input se-
quence of up to k sentences, we randomly shuffle
the order of sentences in the model input2. We then
task the model with reconstructing the original or-
der of the sentence tokens in the target. We shuffle
all examples in a batch with probability p = 0.5 (as
in SLM). By disrupting the original sentence order,
DEPTH encourages learning of (1) the complete
meaning of individual sentences, independent of
their surrounding context, and (2) representations
that encode how sentences relate to each other3.
We show DEPTH’s corruption process in Figure 1.

2.3 Attention masks

Our baseline model (T5) utilizes bidirectional at-
tention in the encoder, auto-regressive attention in
the decoder, and full cross attention from the de-
coder to the encoder. However, T5’s formulation
does not account for the hierarchical treatment of
sentences used by SLM and DEPTH.

2We do not shuffle the order of tokens within a sentence
3E.g., discourse markers, co-reference, and entailment

We define non-sentence tokens, xreg, as tokens
x ∈ X where x /∈ S. We compose attention
masks to impose hierarchy. As part of encoder
self-attention, non-sentence tokens can attend to all
other tokens in the corrupted input sequence, while
<SENT_i> tokens can only attend to tokens within
their own sentence (including sentinel tokens). As
part of decoder self-attention, all tokens have an
auto-regressive attention mask, but <SENT_i> to-
kens can only attend to past sentence tokens. Fi-
nally, as part of cross attention, non-sentence to-
kens in the decoder can attend to the entire input in
the encoder, while sentence tokens in the decoder
can only attend to sentence tokens in the encoder.
This scheme is depicted in Figure 1.

This scheme encourages the model to use sen-
tence token representations in the encoder to pre-
dict the next sentence token in the decoder via
cross-attention. It also ensures that non-sentence
tokens in the encoder provide relevant discourse
information to their corresponding sentence tokens.

2.4 Loss Formulation

Let Y = {y1,1, y1,2, . . . , ym,len(m)} be the target
sequence, where each token yi,j belongs either
to the span-masking task (non-sentence tokens)
or to the sentence un-shuffling task (sentence to-
kens). We denote by Ŝ the set of all sentence
tokens in Y . The model prediction is given by
Ŷ = {ŷ1,1, ŷ1,2, . . . , ŷm,len(m)}, where ŷi,j repre-
sents the predicted probability distribution over the
vocabulary for token yi,j . Let the total number of
tokens be N = |Y |.

The loss for DEPTH, which jointly optimizes
the reconstruction (span-masking) and sentence un-
shuffling tasks, is defined as the token-averaged
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cross-entropy:

LDEPTH = − 1

N

m∑

i=1

len(i)∑

j=1

yi,j · log ŷi,j

= − 1

N

∑

yi,j∈Y ∩Ŝ
yi,j · log ŷi,j − 1

N

∑

yi,j∈Y \Ŝ
yi,j · log ŷi,j

Sentence Loss Reconstruction Loss

In this formulation, the summation runs over
all sentences in the input (i.e., up to m sentences,
where 1 ≤ m ≤ k), and within each sentence
over its tokens. This allows us to decompose the
model’s performance into the contributions from
the sentence un-shuffling and the span-masking
tasks. We explore additional loss formulations and
weighting schemes in Appendix B.1.

3 Experimental setup
The aim of our experiments is to measure the ef-
fectiveness of DEPTH against a standard encoder-
decoder model. Accordingly, our experiments ex-
plore the learning dynamics of DEPTH model rela-
tive to a T5-Base (220M parameter) baseline. We
pre-train both models on the C4 dataset (Raffel
et al., 2020; Dodge et al., 2021) to resemble the
manner in which the original T5 was trained (see
additional reasoning in Appendix D.2). We chose
to use Base-sized models given limited computa-
tional resources, and ease of reproducibility (fol-
lowing the example of Lee et al. (2020); Levine
et al. (2020); Zhang et al. (2020); Raffel et al.
(2020)). We did not use SLM as our baseline since
its codebase and checkpoints are not released, and
it cannot perform free-form text generation.

We chose to run our experiments without ex-
ample packing since this is how the SLM model,
which inspired DEPTH, was trained. Furthermore,
example-packing in T5 enables unrelated exam-
ples to impact the model’s decisions, thereby harm-
ing performance (Krell et al., 2021; Shi et al.,
2024). While example-packing is critical for
more computationally-efficient training (Ding et al.,
2024), we were interested in measuring which
model was able to use training examples more ef-
fectively. We examine the impacts of avoiding
example packing in Appendix A.2.

Consistent with Nawrot (2023), we found that
the Adafactor optimizer (Shazeer and Stern, 2018),
while more computationally efficient, slightly
harmed model performance. We therefore use

AdamW (Loshchilov and Hutter, 2019) instead.
We use a linearly increasing learning rate during
the first 10, 000 steps, and then reduce the learn-
ing rate linearly for DEPTH (as in SLM), and with
an inverse square learning rate ratio for T5 (as in
the original T5 paper). We chose to use a mask-
ing probability of p = 0.3,4 and an average span
length of λ = 3. Our mask probability is higher
than the advised 0.15 from T5 to accommodate for
the fact that sentence-tokens within DEPTH cannot
be masked.
We conduct two types of pre-training experiments:

1. From Scratch (FS): Both T5 and DEPTH
models are randomly initialized, and pre-
trained on C4 with their respective objectives.

2. Continuous Pre-Training (CPT): Both T5
and DEPTH models are initialized from the
T5-Base checkpoint on HuggingFace (Wolf
et al., 2019), and continue to pre-train on C4
with their respective objectives.

We note that our CPT experiments build on top
of T5 models that have been trained for over 1T
tokens, whereas the amount of tokens they see dur-
ing continuous pre-training is relatively minuscule
(≈ 67× fewer tokens for T5, and ≈ 80× fewer
tokens for DEPTH). We compare configurations of
similar-sized models in Appendix D.1.

3.1 Fine-tuning experiments

We follow up our pre-training experiments with
a collection of downstream tasks. We evalu-
ate our models on natural language inference
(MNLI, Williams et al. (2018)), sentiment anal-
ysis (SST2, Socher et al. (2013)), and grammar
(CoLA, Warstadt et al. (2019)) within the GLUE
benchmark (Wang et al., 2018). We also use the
DiscoEval suite (Chen et al., 2019) to evaluate mod-
els on their understanding of discourse. We use two
tasks from DiscoEval: Sentence Permutation (SP)
and Discourse Coherence (DC). SP involves iden-
tifying the correct position of a removed, while
DC involves predicting whether or not a paragraph
was coherent. Finally, we measure our model’s
generative abilities on the Natural Instructions (NI)
dataset (Mishra et al., 2022), which measures the
ability of LMs to follow instructions, and served as
a benchmark for NanoT5 (Nawrot, 2023).

4Raffel et al. (2020) reports that this span corruption ratio
does not adversely impact downstream performance, although
recently Ankner et al. (2024) suggested a dynamic masking
rate tends to perform best.
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Our experimental framework is inspired by
Pythia (Biderman et al., 2023), which evaluates
the performance of LMs on downstream tasks from
intermediate checkpoints. We run evaluation with
checkpoints from both T5 and DEPTH models,
gathered at steps {2K, 4K, . . . , 512K, 1M} in or-
der to examine these models’ emergent capabili-
ties. The exponential distance between these check-
points allows us to scale intermediate checkpoint
evaluation to much longer training runs.5

4 Results

4.1 C4 pre-training

During pre-training, we find that DEPTH consis-
tently achieves a lower validation loss than a com-
parably trained T5 model. This is true for both FS
and CPT. Furthermore, when we isolate the recon-
struction loss (the objective used by T5, without
sentence tokens), we find that DEPTH outperforms
T5 despite balancing an additional pre-training ob-
jective (Figure 2 for FS and Figure 3 for CPT).
These results are consistent with the findings in
SLM, where their model converged faster, and on
fewer tokens than models such as BERT and T5.

While we were not able to match the perfor-
mance of the baseline model of Raffel et al. (2020)
(see Appendix A for speculations on why), we have
obtained the lowest loss scores among PyTorch im-
plementations of T5 models. Specifically, in our
FS setting, we find that our randomly initialized T5
model outperforms the validation loss of NanoT5,
achieving 1.65 vs. 1.95 at step 64,000.

4.2 GLUE fine-tuning

We found that over the course of FS pre-training,
both models improved on GLUE tasks. How-
ever, T5’s improvement pattern was slower than
DEPTH’s (top row of Figure 4). We found it diffi-
cult to replicate the results of the original T5 (both
on GLUE tasks and the pre-training loss) as dis-
cussed in Appendix A. We project that with more
substantial training (i.e., 1–3M pre-training steps,
and ≥ 2048 examples per batch, as in T5), DEPTH
could match or exceed the performance of T5 and
SLM on downstream tasks.

In the CPT setting (Figure 4, bottom row), we
found that DEPTH and T5 perform similarly, both
improving only slightly beyond the baseline. Fine-
tuning DEPTH on early CPT checkpoints per-

5Evaluating intermediate checkpoint performance every
10,000 steps (as was done in Pythia) on datasets as large as
MNLI is unfeasible with our limited computational resources.

Figure 2: From Scratch Pre-Training loss (vali-
dation) for both T5 and DEPTH

Figure 3: Continuous Pre-Training loss (valida-
tion) for both T5 and DEPTH.

forms worse than fine-tuning comparable T5-CPT
checkpoints. We speculate that this dip in perfor-
mance is related to the change in objective from
span-masking to span-masking and sentence un-
shuffling. We share our full results on GLUE in
Appendix F.

4.3 DiscoEval fine-tuning

We find that in the FS setting DEPTH consistently
outperforms T5 across DC tasks, indicating its ro-
bustness in understanding discourse 6 (Figure 5,
top row). This suggests DEPTH’s pre-training ob-
jective is particularly beneficial for tasks that re-
quire a deep understanding of narrative structures
(both in conversations as in DC-Chat, and more
formal and informative texts as in DC-Wiki). We
note that between steps 32k and 64k, DEPTH ex-

6In particular, sentence-level discourse relations, as dis-
cussed in Jernite et al. (2017)
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(a) CoLA FS (b) MNLI FS (c) SST-2 FS

(d) CoLA CPT (e) MNLI CPT (f) SST-2 CPT

Figure 4: GLUE results for FS and CPT models. Top row: From Scratch (FS), Bottom row: From Pretrained (CPT).

perienced a large positive boost in performance
on DC-Wiki, perhaps indicative of an emergence
(Wei et al., 2022b) of discourse understanding dur-
ing this phase of pre-training. For T5, we found
that the model struggled to learn the SP-Arxiv
task, achieving random-guess accuracy late in pre-
training. However, in SP-Wiki and SP-Rocstory,
T5 improves in performances between steps 64k
and 128k, perhaps indicating an emergent ability
occurring within this timeframe. We report our full
results on DiscoEval in Appendix G.

While DEPTH outperformed other models in DC
tasks, it failed to reach a high performance level
on SP tasks (under-performing relative to SLM, as
seen in Table 1). This problem stems already from
the pre-training stage, where DEPTH’s sentence un-
shuffling accuracy is relatively low (≤ 5% accuracy
on shuffled sentence tokens; see Appendix B for ad-
ditional details). This highlights the complexity of
sentence un-shuffling relative to older discourse ob-
jectives like NSP and SOP. Surprisingly, while this
task was challenging for DEPTH, SLM reported
strong performance on sentence un-shuffling. SLM
used a dedicated pointer-generator network that
consists of a shallow DNN. This module “points”
to one of at most k sentences as it iterates over a
target sequence consisting of only sentence tokens.
Also, SLM’s non-sentence tokens cannot observe
sentence-level tokens as part of the reconstruction
loss, avoiding a potential “distraction” in their task.

Model SP DC

RoBERTa-Base 38.7 58.4

BERT-Base 53.1 58.9
BERT-Large 53.8 59.6

CONPONO 60.7 72.9

SLM (1M) 72.4 75.4
SLM (3M) 73.4 76.1

T5-Base 58.1 80.5
T5-FS 40.91 63.31

T5-CPT 59.48 82.27

DEPTH-FS 55.45 76.22
DEPTH-CPT 65.59 82.49

Table 1: Comparison of various models on the SP and
DC tasks within DiscoEval. All models aside from
T5 and DEPTH and encoder-only models trained with
discourse-oriented objectives.

4.4 NI fine-tuning

In the FS setting (Figure 6a), we observe that
DEPTH outperforms T5 in the NI benchmark, with
a notable leap in performance between steps 16k
and 32k. T5, by comparison, only improves sig-
nificantly after step 64k, and obtains worse perfor-
mance than DEPTH by the end of training. How-
ever, in the CPT setting (Figure 6b), DEPTH’s
pre-training appears to hinder downstream perfor-
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(a) Sentence Permutation (SP) FS (b) Discourse Coherence (DC) FS

(c) Sentence Permutation (SP) CPT (d) Discourse Coherence (DC) CPT

Figure 5: DiscoEval results for DEPTH and T5 models. Top row: From Scratch (FS), Bottom row: From Pretrained (CPT).

mance compared to T5, possibly due to the domain
shift from T5’s pre-training task to DEPTH’s pre-
training task, which involves learning from shuf-
fled inputs. We present a more complete analysis
of these results in Appendix H.

4.5 Error Analysis

We performed error analysis on the DiscoEval
benchmark to better understand the nature of dis-
course errors that DEPTH and T5 made. For the SP
task, we show in Table 3 that DEPTH made more
reasonable mistakes than T5. For example, in SP-
Arxiv FS, 23% of DEPTH’s mistakes were reason-
able, relative to 7% by T5). We define “reasonable”
mistakes as incorrect predictions that would have
still resulted in a coherent sentence ordering. Both
models struggled with pronoun resolution, which
frequently led to incorrect predictions (accounting
for 10-30% of all predictions we observed). T5-FS,
in particular, often failed to recognize when a re-
moved sentence should come first, a mistake largely
resolved in T5-CPT. We note that some examples
correctly predicted by FS models were incorrectly
predicted by CPT models, and vice versa.

In the DC task, we noted a significant number of
incorrectly formatted predictions (e.g., “cooherent”
rather than “coherent”), especially in the DC-Chat
subset. Each of these incorrectly formatted pre-

dictions, when adjusted to a correctly formatted
prediction, were incorrect (e.g., an example that
the model predicted “cooherent” is labeled “inco-
herent”). We show in Table 4, that DEPTH-FS was
incorrect in DC-Chat examples that humans might
find ambiguous (i.e., replacing a random sentence
leaves the resulting passage coherent), reinforcing
its strength in handling more complex discourse
structures. We discuss this further in Appendix E.

5 Related work

The potential of encoder-decoder architectures in
today’s NLP landscape cannot be overstated. These
architectures dominate context-heavy tasks rang-
ing from translation (Üstün et al., 2024; Xue et al.,
2021; Tay et al., 2022) to summarization (Zhang
et al., 2020; Guo et al., 2022; Tay et al., 2022),
and even following instructions across diverse do-
mains (Aribandi et al., 2022; Wei et al., 2022a;
Chung et al., 2024). Like their decoder-only coun-
terparts, encoder-decoders are able to accommo-
date long inputs (Guo et al., 2022), and scale effec-
tively effectively as a function of model size and
training data (Sutawika et al., 2024). Ormazabal
et al. (2024) released a series of encoder-decoder
models, where their dense 21B parameter model
outperformed all models of its size in the lmsys
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(a) Natural Instructions (NI) FS (b) Natural Instructions (NI) CPT

Figure 6: NI results for DEPTH and T5 models.

benchmark (Zheng et al., 2023).7 Encoder-deocder
models are also strong multi-modal learners (Or-
mazabal et al., 2024; Wu et al., 2023; Dosovitskiy
et al., 2021; Zhai et al., 2022). When scaled suffi-
ciently, encoder-decoders like Reca-Core may be
competitive with state of the art models like GPT-4
(OpenAI et al., 2023), Gemini (Team et al., 2023),
and Claude-3.

While specialized encoder-decoder models such
as PEGASUS (Zhang et al., 2020), DialogVED
(Chen et al., 2022), and a multi-party dialogue
pre-training model (Li et al., 2023) demonstrate
the value of discourse-oriented tasks for encoder-
decoder models, they have limited utility for
broader tasks. Long-T5 (Guo et al., 2022) and
UL2 (Tay et al., 2022) improved the ability of
encoder-decoders to handle long contexts, but did
not explicitly tackle discourse understanding. Flan-
T5 (Wei et al., 2022a) and Ex-T5 (Aribandi et al.,
2022) demonstrated the applicability of encoder-
decoders across a variety of tasks, including ones
that are heavily discourse dependent. However,
these models depend on a vast yet costly annotated
dataset to learn human preferences. Finally, BART
(Lewis et al., 2020a) is an encoder-decoder which
leverages sentence shuffling during pre-training,
but does not train dedicated hierarchical represen-
tations for sentences (essentially behaving like a
DEPTH model without sentence-tokens, and with-
out attention-mask induced hierarchy).

6 Limitations

Given our lack of computational resources (Ap-
pendix C), we were not able to pre-train our models
with a batch size that would allow an aggressive

7This Reka model is competitve with mixtral 8x22b (Jiang
et al., 2024) (which was trained with significantly more pa-
rameters using a mixture-of-experts architecture).

learning rate like that used in Raffel et al. (2020)’s
T5 (see Appendix A for additional details). We
also pre-trained on substantially fewer tokens than
T5. As a result, our model converges to a worse
loss during pre-training, and performs worse on
downstream tasks. We also lacked computational
resources to compute confidence intervals or statis-
tical significance for our downstream experiments.8

Encoder-decoder LMs have fewer tools avail-
able for computationally efficient pre-training. For
example, FlashAttention (Dao et al., 2022; Dao,
2023), which provides a massive training speedup,
is not available for encoder-decoder models. It is
therefore difficult to create scalable pre-training ex-
periments with new encoder-decoder architectures
and objectives.

7 Conclusions and future work

DEPTH’s new pre-training objective and hierar-
chical representations complement efforts to scale
model size, parallelize architectures, and acquire
high quality data for pre-training. Despite train-
ing over fewer tokens, DEPTH significantly out-
performed T5 both during pre-training and during
fine-tuning. DEPTH’s remarkably efficient learn-
ing and downstream performance on discourse ori-
ented tasks underscore the importance of discourse-
oriented pre-training.

Looking forward, the application of DEPTH to
RAG (Lewis et al., 2020b), especially over sen-
tence “chunks”, presents an exciting avenue for
future research. Additionally, extending DEPTH’s
pre-training objectives to encompass higher-level
discourse units—such as paragraphs, chapters, and

8Running a single downstream experiment on MNLI takes
5-7.5 hours. We run ≈ 120 experiments for each of 10 bench-
marks, and do not have the capacity to repeat experiments
≥ 5× to obtain statistical significance.
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whole documents—offers further flexibility emerg-
ing hierarchical RAG systems (Chen et al., 2024).
Moreover, conducting further experiments with
larger DEPTH models is helpful for understanding
the scalability of discourse-focused training objec-
tives. Such investigations could reveal whether
the promising capabilities observed in DEPTH
are amplified with increased model capacity. Fi-
nally, sentence-level pre-training tasks such as next-
sentence prediction (as in Krishna et al. (2022) and
Zhang et al. (2020)) may prove powerful alterna-
tives to sentence un-shuffling.
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A Challenges in replicating T5

A.1 Our speculations

We recognize that both DEPTH and T5 CPT mod-
els quickly reach a significantly lower reconstruc-
tion loss than their FS counterparts. While the
original T5’s reached a final training loss of ≈ 0.75
(with 512k steps of batch size 128 with packing)
(Raffel et al., 2020), our training loss reached ≈ 0.8
(after 800k steps of batch size 200 without pack-
ing). We propose the following ideas to explain
this gap:

1. The baseline model from which CPT models
are initialized is trained on 1T tokens. This is
≈ 20× greater than the amount of tokens we
used to train FS models.

2. Our examples never consist of the later text
in long documents. By truncating text after
512 tokens, our FS models might miss out on
valuable text to train on.

3. Our training examples consists of ≈ 2× fewer
tokens (on average) than examples the origi-
nal T5 was trained on. Furthermore, there is
much greater variance in example lengths in
our pre-training experiments. These factors
may impact our models’ learning dynamics
(e.g., learning effective positional representa-
tions given the presence of irregular padding
patterns).

4. The T5 baseline plot was reported using a
masking probability of 0.15, which is 2×
lower than the one we used. Our higher mask-
ing probability makes the reconstruction task
more challenging.

5. T5 models using the T5x framework use ag-
gressively high learning rates, which can lead
to a different, and perhaps more effective train-
ing dynamics than the ones we found in our FS
experiments. Using such high learning rates
in our settings caused our models to diverge.

A.2 Example packing

Given our choice of avoiding example-packing, we
found that we were not able to pre-train T5 with the
same hyper-parameters used in (Raffel et al., 2020).
Specifically, we found that with a batch size of 128
and a learning rate of 1e−2, our model consistently
diverged. This issue persisted with a learning rate
of 1e−3. To stabilize our loss given the absence of

packing, we used a lower maximum learning rate
(1e−4), which is in line with those used to pre-train
BERT, SLM, and PMI. On the other hand, we see
that given the same training parameters (i.e., learn-
ing rate and batch size), pre-training with packing
can converge at a high learning rate (see Figure 7).

We speculate that packing acts in a similar way
to increasing the batch size during training. The
model is exposed to loss on a greater amount of
tokens in each optimization step, and is therefore
able to generalize even with a larger learning rate.

One possible side effect of avoiding example-
packing is the truncation of long examples (exam-
ples are not dynamically chunked, so every token
past the context limit of 512 is ignored). We em-
pirically find that while T5 suffers greatly from no
packing, DEPTH is able to train effectively despite
these limitations.
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Figure 7: Exploration of packing and learning rates
when pre-training T5 models. “High LR” corresponds
to a learning rate of 1e−2, while “Low LR” corresponds
to a learning rate of 1e−4.
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B DEPTH loss decomposition

When we decompose DEPTH’s losses in the FS
setting, we find that sentence loss is consistently
lower than reconstruction loss, but plateus early on
into training. The overall loss is dominated by the
reconstruction loss, reflected by overlapping lines
in Figure 8. In the CPT setting (Figure 9), we find
that both of DEPTH’s losses plateu sooner, and that
the sentence loss is approximately equal (though
with higher fluctuations) to the reconstruction loss.

Figure 8: Decomposition of from-scratch pre-training
losses (validation) for DEPTH.

Figure 9: Decomposition of continuous pre-training
losses (validation) for DEPTH

We note that DEPTH’s loss over sentence tokens
in the FC setting, is close to that which the DEPTH-

CPT achieved (both in the range of 0.3-0.4, where
the more examples are shuffled, the higher the sen-
tence loss). In practice, given comperable ratios of
shuffling sentences, CPT DEPTH outperforms FS
DEPTH in predicting the next sentence accurately
during pre-training (≈ 1% − 3% higher given a
fixed shuffling ratio). We speculate that the better
representations for non-sentence tokens in the CPT
setting is the reason for this performance boost.

B.1 Weight of sentence loss

We explored the impact of increasing the weight
of the sentence loss during DEPTH pre-training.
Our “Baseline” run is the DEPTH model we re-
ported on in the main body of the paper. In our
“Sentence Weight 1x” run, our loss is composed of
the average loss over sentence tokens plus the aver-
age loss over non-sentence tokens (as opposed to
the average loss over all tokens). This formulation
places increased weight on sentence tokens, since
there are significantly fewer sentence tokens than
non-sentence tokens. In the “Sentence Weight 5x”
run, we weighed the sentence loss 5× more than
reconstruction loss.

We found that increasing the weight of this loss
had minimal impact on the model’s accuracy in
predicting sentence tokens, and adversely harmed
the model’s loss (see Figure 10).

Figure 10: We explore the impact of weighing sentence
loss more than reconstruction loss, and find that it has
minimal impact beyond early stages of pre-training.

C Computational resources
We utilize 4 A40 GPUs, and 64 CPUs for training.
We use a batch size of 200, since it helps us achieve
much better GPU memory utilization. We leverage
16 CPUs for each GPU in order to increase the
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data loading time to accommodate for DEPTH’s
more-complex corruption method, and to allow ef-
fective optimizer offloading with DeepSpeed Zero2
(Rajbhandari et al., 2020).

D Pre-training considerations

D.1 Pre-training scale

In Table 2 below we show the relative magnitude
of DEPTH’s pre-training. Specifically, we compare
the number of observed tokens and optimization
steps of our T5 and DEPTH models to comparably
sized models (such as SLM, BERT, and RoBERTa).
We highlight that the models we independently pre-
trained (bottom 4 rows of the table) observed far
fewer tokens than comparable LMs.

D.2 Pre-training data

The rationale behind selecting C4 extends beyond
its sheer volume and diversity. Given DEPTH’s
architectural roots in the T5 model, which was
originally pre-trained on C4, leveraging the same
dataset facilitates a direct comparison of the en-
hancements our model introduces. This baseline
compatibility is crucial for isolating the effects of
our architectural and methodological innovations
on the model’s performance. Furthermore, C4 is
a subset of both Dolma (Soldaini et al., 2024) and
RedPajama (Computer, 2023). These datasets were
used to train the most capable fully-open-source
LMs (with released data) to date: OLMO (Groen-
eveld et al., 2024) and LLama (Touvron et al., 2023)
respectively. This suggests that C4 is an effective
component in pre-training effective LMs, and of-
fers multiple additional datasets components that
would be new to our model for future training. Fi-
nally, Muennighoff et al. (2023) suggest that pre-
training over the same data up to 4× still improves
model performance, while (Raffel et al., 2020)’s
model has not completed even one full iteration
over the C4 dataset. This hints at the viability of
continuing to pre-train T5 on the same dataset it
was already pre-trained on.

E Error Analysis
We select randomly select 30 examples from each
task in DiscoEval, and manually inspect the na-
ture of our models’ errors. For example, in the SP
task, we were interested in observing if a model
tended to misunderstand clues from pronouns or
transitions. For both DC and SP, we were also
counted the number of examples where a human
might find the LLM’s answer reasonable (given the

human-perceived coherence of the example).

E.1 Sentence Position

Consistent with the macro-level results from our
DiscoEval fine-tuning experiments, DEPTH gener-
ally performs better in FS than T5. However, in the
CPT setting, while DEPTH shows better reasoning
in some cases, T5-CPT outperforms it, particularly
on simpler tasks like SP-Wiki and SP-Rocstory,
likely benefiting from more consistent pretraining.
DEPTH’s greater number of reasonable mistakes
indicates its strength in engaging with complex
discourse structures, but pronoun resolution and
transition errors remain areas for further improve-
ment.

Given the 30 examples we’ve sampled, we cate-
gorize the types of errors our models tend to make.
An error type is a reason by which a person might
be able to infer the correct label. If the model
predicts incorrectly given an “obvious” hint (e.g.
introducing an entity that is referenced via a pro-
noun), then we categorize the error type based on
that hint. In Table 3 we show the counts of error
types that each model made on each subset of SP.

E.2 Discourse Coherence

We found that in the Discourse Coherence (DC)
subset, both models were strictly incorrect by pre-
dicting poorly formatted outputs. Each of the
poorly formatted predictions was incorrect (e.g.,
if the model predicted “cooherent” instead of “co-
herent”, the correct label was “incoherent”). We
analyze the ratio of these types of predictions on
DC in Table 4. Further, we find that in DC-Chat,
both models tend to make errors that a human might
find reasonable. This implies that the augmenta-
tion on the input example (i.e., replacing one if
the sentences in the paragraph with another one)
did not adversely impact the example’s coherence.
Strangely, we found that FS models predicted more
correct outputs than their CPT counterparts. This
may be the result of selecting a too small a sample-
size of examples to analyze.

F GLUE results

In this section we show the full results from our
downstream experiments on GLUE tasks. Table 5
is reflected in the top row (FS) of Figure 4, while Ta-
ble 6 is reflected in the bottom row (CPT) of figure
4. Consistent with our hypothesis, we found that
both DEPTH and T5 improve across downstream
tasks as a function of the pre-training steps they’ve
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Model Tokens Steps Batch Size # Params Learning Rate

SLM-1M 125B 1M 256 ≈ 110M 1.5e−4

SLM-3M 375B 3M 256 ≈ 110M 1.5e−4

BERT-Base 137B 1M 256 ≈ 110M 1e−4

BERT-Large 137B 1M 256 ≈ 340M 1e−4

RoBERTa-Base 2.2T 500k 8000 ≈ 110M 1e−4

CONPONO (*) - 256k 256 ≈ 110M 1e−4

T5-Base 1T 1M 2048 ≈ 220M 1e−2

T5-FS 58.6B 1M 200 ≈ 220M 1e−4

T5-CPT (*) 15B 256k 200 ≈ 220M 1e−4

DEPTH-FS 48.9B 1M 200 ≈ 220M 1e−4

DEPTH-CPT (*) 12.5B 256k 200 ≈ 220M 1e−4

Table 2: Hyper-parameters of comparable models to DEPTH. We show published hyper-parameters in the top
rows of the table, and the models we train ourselves in the bottom of the table. We mark all models initialized
from publically released pre-training models with (*). Note that CONPONO did not report the number of tokens it
pre-trained on, so we exclude that value from the table above.

Dataset Model 0 1 2 3 4

SP-Wiki CPT
T5 0.57 0.07 0.23 0.13 0.07

DEPTH 0.57 0.03 0.23 0.2 0.03

SP-Wiki FS
T5 0.57 0.07 0.23 0.13 0.07

DEPTH 0.57 0.03 0.23 0.2 0.03

SP-Arxiv CPT
T5 0.63 0.07 0.2 0.1 0

DEPTH 0.57 0.13 0.2 0.1 0

SP-Arxiv FS
T5 0.37 0.23 0.3 0.07 0.03

DEPTH 0.43 0.1 0.3 0.23 0

SP-Rocstory CPT
T5 0.77 0.07 0.1 0.07 0

DEPTH 0.57 0.13 0.2 0.1 0

SP-Rocstory FS
T5 0.47 0.2 0.27 0.07 0

DEPTH 0.6 0.2 0.13 0.07 0

Table 3: Approximate ratio of prediction types for SP-
Wiki, SP-Arxiv, and SP-Rocstory across T5 and DEPTH
models in FS and CPT settings. There are 30 total exam-
ples. Each prediction over these examples is categorized
into one of 5 prediction types: 0 - Correct prediction, 1 -
Incorrect (hint from transitions), 2 - Incorrect (hint from
pronoun), 3 - Incorrect (reasonable error), 4 - Incorrect
(hint from punctuation).

taken. While DEPTH outperforms T5 across all
tasks is the FS setting, it did not reach the scores of
Raffel et al. (2020)’s T5 model. In the CPT setting,
T5 and DEPTH perform quite comparably. In fact,
in the penultimate checkpoint (128k) we found that
DEPTH outperformed T5 on all tasks except for
CoLA.

G DiscoEval results

In this section we show the full results from our
downstream experiments on discourse tasks from

Dataset Model 0 1 2

DC-Wiki-FS
T5 0.87 0.32 0.00
DEPTH 0.87 0.13 0.00

DC-Wiki-CPT
T5 0.80 0.08 0.00
DEPTH 0.83 0.08 0.00

DC-Chat-FS
T5 0.60 0.42 0.17
DEPTH 0.63 0.35 0.23

DC-Chat-CPT
T5 0.83 0.30 0.10
DEPTH 0.77 0.29 0.07

Table 4: Prediction types for models and dataset splits.
0: Correct predictions (Type 0), 1: Poorly formatted
predictions (Type 1), 2: Reasonable errors (Type 2).

the DiscoEval benchmark. In Table 7, we show the
full results of our models in the FS setting, while
in Table 8 we show the full results of our models
in the CPT setting. These tables reflect the top and
bottom row of Figure 5 respectively.

In the FS setting, we found that DEPTH’s wins
over T5 are even more pronounced in DiscoEval
than they were in GLUE. Specifically, T5 struggles
to learn discourse tasks (especially SP) during early
stages of pre-training. On the other hand, DEPTH
was highly effective in discourse tasks already from
early pre-training checkpoints. In the CPT setting,
we found that DEPTH still outperformed T5, de-
spite the fact that the original checkpoint was pre-
trained substantially with a different objective.
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Model CoLA SST-2 MNLI
Matched Mismatched

T5-Base @ 0 (Test) 12.3 80.62 68.02 68.0
T5-Base @ 1M (Test) 53.84 92.68 84.24 84.57
T5-Base @ 1M (Val) 53.98 94.73 87.28 87.1

T5 @ 2k 8.62 80.08 52.54 52.3
DEPTH @ 2k 8.67 78.52 57.07 58.14

T5 @ 4k 6.23 80.66 53.16 53.89
DEPTH @ 4k 7.75 80.08 59.31 59.62

T5 @ 8k 4.66 82.23 54.33 54.62
DEPTH @ 8k 6.93 79.69 58.92 59.73

T5 @ 16k 8.99 80.96 54.1 54.1
DEPTH @ 16k 10.94 81.25 62.79 61.46

T5 @ 32k 10.72 81.64 55.18 55.6
DEPTH @ 32k 7.73 82.81 71.23 72.7

T5 @ 64k 6.86 82.42 57.68 60.88
DEPTH @ 64k 27.78 86.72 73.84 76.05

T5 @ 128k 12.85 83.2 69.61 69.82
DEPTH @ 128k 38.01 88.87 77.5 78.06

T5 @ 256k 11.78 85.94 72.82 73.39
DEPTH @ 256k 45.57 91.31 79.45 80.07

T5 @ 512k 19.96 86.52 74.22 74.26
DEPTH @ 512k 47.14 91.11 80.42 81.43

T5 @ 1M 29.35 88.77 74.53 75.37
DEPTH @ 1M 45.91 91.41 81.0 81.96

Table 5: GLUE benchmark results for From Scratch (FS). Note that the first two rows are reported by Raffel et al.,
2019, while all later rows are the best reported results on the validation set across 3 attempted learning rates.

H NI results

In the from-scratch setting (Figure 6a and Table
9), we observe that DEPTH outperforms T5 in the
NI benchmark, with a notable leap in performance
between steps 16k and 32k. This indicates that
DEPTH’s pre-training objective is more effective
at learning representations that are beneficial for the
NI task. However, at steps 2k, 8k, and 16k, DEPTH
underperforms compared to T5, suggesting that the
benefits of DEPTH’s pre-training objective may
not be immediately apparent in the early stages of
training.

However, in the continuously pre-trained setting
(Figure 6b and Table 10), we find that DEPTH’s
pre-training harms downstream performance com-
pared to T5. Additionally, we observe that CPT
models are less sensitive to learning rate and can

train effectively across a wider range of learning
rates, with the exception of DEPTH in the early
stages of CPT, where it is adapting to a task that dif-
fers from its initial pre-training. This robustness to
learning rate is a positive property that the FS mod-
els did not exhibit, likely due to limitations in train-
ing scale (e.g., small batch size, avoiding packing,
and training on fewer tokens overall). Furthermore,
early in the CPT process, DEPTH’s performance
is somewhat unstable, possibly due to the domain
shift from T5’s pre-training task to DEPTH’s pre-
training task. Interestingly, lower learning rates
perform worse for DEPTH after CPT, suggesting
that the model needs to adjust its representations
more substantially to adapt to the downstream task.
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Model CoLA SST-2 MNLI
Matched Mismatched

T5-Base @ 1M (Test) 53.84 92.68 84.24 84.57
T5-Base @ 1M (Val) 53.98 94.73 87.28 87.1

T5 @ 2k 57.41 95.02 86.93 87.06
DEPTH @ 2k 53.93 94.34 86.38 86.2

T5 @ 4k 55.18 95.02 87.4 87.34
DEPTH @ 4k 47.11 94.34 87.14 87.01

T5 @ 8k 55.35 95.21 87.47 87.31
DEPTH @ 8k 50.67 94.43 86.62 86.52

T5 @ 16k 54.75 95.7 86.91 86.67
DEPTH @ 16k 52.65 94.34 86.62 86.67

T5 @ 32k 54.95 95.21 86.64 86.06
DEPTH @ 32k 53.79 94.63 86.95 87.02

T5 @ 64k 54.77 95.21 86.96 86.93
DEPTH @ 64k 52.95 94.14 86.65 86.91

T5 @ 128k 58.62 95.21 86.79 86.67
DEPTH @ 128k 56.21 95.61 87.42 87.64

T5 @ 256k 57.62 95.21 87.27 87.22
DEPTH @ 256k 56.78 95.02 86.86 86.45

Table 6: GLUE benchmark results for Continuous Pre-Training (CPT). As in the FS setting, we report our results on
the validation set after a hyper-parameter sweep over 3 learning rates.
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Model SP DC
Arxiv Wiki Rocstory Chat Wiki

Baseline T5 @ 1M 52.76 51.07 70.58 68.99 92.09

T5 @ 2k 21.0 20.9 21.2 55.18 53.59
DEPTH @ 2k 34.81 40.19 51.51 55.27 53.2

T5 @ 4k 20.4 21.4 20.9 57.18 55.37
DEPTH @ 4k 35.72 40.38 52.03 56.49 54.74

T5 @ 8k 20.6 20.9 21.0 57.42 54.57
DEPTH @ 8k 36.43 40.14 51.25 57.03 54.69

T5 @ 16k 21.4 22.0 21.24 57.62 55.18
DEPTH @ 16k 36.47 40.33 53.13 57.52 55.44

T5 @ 32k 21.75 21.75 20.63 57.62 56.1
DEPTH @ 32k 38.04 44.26 54.05 58.5 57.37

T5 @ 64k 21.92 21.53 21.24 57.23 57.01
DEPTH @ 64k 42.24 45.85 55.96 60.94 72.58

T5 @ 128k 21.09 33.96 42.63 60.16 60.01
DEPTH @ 128k 45.0 47.71 59.57 64.65 78.0

T5 @ 256k 22.85 37.92 44.85 58.89 61.91
DEPTH @ 256k 48.68 48.93 61.33 65.33 81.69

T5 @ 512k 26.61 41.97 52.29 61.33 60.89
DEPTH @ 512k 52.59 51.66 65.92 66.85 83.81

T5 @ 1M 28.54 43.22 50.98 61.13 65.48
DEPTH @ 1M 52.39 50.07 63.89 67.92 84.52

Table 7: DiscoEval Downstream Full Training (FS) Results
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Model SP DC
Arxiv Wiki Rocstory Wiki Chat

T5 @ 2k 62.26 51.9 74.83 92.09 71.44
DEPTH @ 2k 44.14 49.34 74.78 89.99 70.46

T5 @ 4k 61.33 52.39 74.98 91.72 74.27
DEPTH @ 4k 56.62 51.2 67.65 91.46 72.02

T5 @ 8k 63.63 52.03 77.0 92.33 73.1
DEPTH @ 8k 55.03 51.56 71.02 91.99 71.97

T5 @ 16k 60.94 51.78 76.49 91.53 74.71
DEPTH @ 16k 58.86 52.08 76.15 92.63 72.71

T5 @ 32k 60.69 52.22 75.61 92.33 74.02
DEPTH @ 32k 59.35 53.27 78.08 92.48 72.85

T5 @ 64k 58.96 52.25 76.07 92.58 73.73
DEPTH @ 64k 58.57 52.95 76.1 92.58 73.24

T5 @ 128k 60.13 51.03 75.76 91.14 73.44
DEPTH @ 128k 70.56 54.77 82.42 92.53 73.96

T5 @ 256k 59.03 52.66 66.77 92.31 72.22
DEPTH @ 256k 67.07 53.0 76.71 92.07 72.9

Table 8: DiscoEval Downstream Continuous Pre-Training (CPT) Results
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Model Step RougeL

Baseline T5 1M 42.48

T5 2k 8.36
DEPTH 2k 10.92

T5 4k 10.11
DEPTH 4k 11.03

T5 8k 10.15
DEPTH 8k 9.06

T5 16k 10.82
DEPTH 16k 10.43

T5 32k 10.68
DEPTH 32k 23.51

T5 64k 12.89
DEPTH 64k 30.23

T5 128k 18.24
DEPTH 128k 32.24

T5 256k 26.36
DEPTH 256k 32.63

T5 512k 28.05
DEPTH 512k 34.72

T5 1M 29.6
DEPTH 1M 33.8

Table 9: NI benchmark results for From Scratch (FS)
pre-training. The first row reports the performance of
the baseline T5 model, while all later rows show the best
reported results on the validation set across 3 attempted
learning rates.

Model Step NI RougeL

T5 2k 41.96
DEPTH 2k 39.15

T5 4k 42.72
DEPTH 4k 37.85

T5 8k 42.83
DEPTH 8k 38.04

T5 16k 42.88
DEPTH 16k 38.19

T5 32k 43.56
DEPTH 32k 37.79

T5 64k 43.06
DEPTH 64k 38.99

T5 128k 42.58
DEPTH 128k 39.19

T5 256k 43.29
DEPTH 256k 37.86

Table 10: NI benchmark results for Continuous Pre-
Training (CPT). All rows show the best reported results
on the validation set across 3 attempted learning rates.
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