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Abstract

The widespread usage of large-scale multi-
modal models like CLIP has heightened con-
cerns about the leakage of PII. Existing meth-
ods for identity inference in CLIP models re-
quire querying the model with full PII, includ-
ing textual descriptions of the person and cor-
responding images (e.g., the name and the face
photo of the person). However, applying im-
ages may risk exposing personal information to
target models, as the image might not have been
previously encountered by the target model. Ad-
ditionally, previous MIAs train shadow mod-
els to mimic the behaviors of the target model,
which incurs high computational costs, espe-
cially for large CLIP models. To address these
challenges, we propose a textual unimodal de-
tector (TUNI) in CLIP models, a novel tech-
nique for identity inference that: 1) only uti-
lizes text data to query the target model; and 2)
eliminates the need for training shadow models.
Extensive experiments of TUNI across various
CLIP model architectures and datasets demon-
strate its superior performance over baselines,
albeit with only text data.

1 Introduction

Recent years have witnessed a rapid development
of large-scale multimodal models, such as Con-
trastive Language—Image Pre-training (CLIP) (Rad-
ford et al., 2021). These models synthesize in-
formation across different modalities, particularly
text and images, facilitating applications from au-
tomated image generation to sophisticated visual
question answering systems. Despite their potential,
these models pose significant privacy risks (Inan
et al., 2021; Carlini et al., 2021; Leino and Fredrik-
son, 2020; Rigaki and Garcia, 2023; Helbling et al.,
2023; Rahman et al., 2024; Rahman, 2023) as the
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vast datasets used for training often contain person-
ally identifiable information (PII) (Schwartz and
Solove, 2011; Abadi et al., 2016; Bonawitz et al.,
2017), raising concerns (Xi et al., 2024) about PII
leakage and misuse (Hu et al., 2023; Yin et al.,
2021). Therefore, it is extremely important to de-
velop tools to detect potential PII leakage from
CLIP models. Specially, as the first step, we would
like to address the identity inference problem, i.e.,
to determine if the PII of a particular person was
used in training of a target CLIP model.

Traditional methods, like Membership Inference
Attacks (MIAs) (Shokri et al., 2017), have focused
on determining whether a specific data sample was
used for model training. When applied to CLIP
models, these approaches typically involve query-
ing the model with both texts and images of the
target individual (Ko et al., 2023), and exposing
images of a person the CLIP model may have not
seen in the training set brings new privacy leak-
age risk (He et al., 2022). Hence, it is desirable to
have a detection mechanism for ID inference that
does not query the CLIP model with real images of
the person (see an example in Figure 1). Further-
more, traditional MIAs often rely on constructing
shadow models that mimic the behaviors of the tar-
get model to obtain training data to construct attack
models (Hu et al., 2022a), which demands exten-
sive computational resources and is less feasible in
environments with limited computational capabil-
ities (Mattern et al., 2023; Hisamoto et al., 2020;
Jagielski et al., 2024). Alternative methods for
shadow models in MIAs, such as those based on co-
sine similarity (Ko et al., 2023) and self-influence
functions (Cohen and Giryes, 2024), exhibit either
lower accuracy or still necessitate substantial com-
putational resources (Oh et al., 2023).

To address these limitations, we propose a tex-
tual unimodel detector (TUNI) for identity infer-
ence in CLIP models, which queries the target
model with only text information during inference.
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Our goal: query with textual data only

Figure 1: Current methods query LLMs with both text and image, while our goal is to conduct identity inference with only

textual data.
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Figure 2: Features of textual descriptions extracted from the
optimized images guided by a CLIP model with ResNet50x4
architecture, trained on a dataset where each person has 75
images. The cosine similarity between the embeddings of opti-
mized image and the tested text, and the distance between the
embeddings of the optimized images, can clearly distinguish
between the samples within and outside the training dataset
of the target CLIP model.

Specifically, we first propose a feature extractor,
which maps a textual description to a feature vector
through image optimization guided by the CLIP
model; then, we randomly generate a large amount
of textual gibberish, which we know do not match
any textual descriptions in the training dataset. As
shown in Figure 2, we make the key observation
that the feature distributions of textual gibberish
and member samples in the training set are well
distinguishable.

Leveraging this property, we use the feature vec-
tors of the generated textual gibberish to train mul-
tiple anomaly detectors to form an anomaly de-
tection voting system. At test time, TUNI simply
feeds the feature vector of the test text to the voting
system, and determines that if the corresponding
PII is included in the training set (abnormal) or
not (normal). The training of the anomaly detec-
tor in TUNI costs only several hours with four
NVIDIA GeForce RTX 3090 GPUs, avoiding train-

ing shadow models with the size of the CLIP model
in traditional MIAs, which can cost over 18 days
even with hundreds of advanced GPUs (Gu et al.,
2022; Ko et al., 2023; Hu et al., 2022b).

Our contributions are summarized as follows:

* We propose a textual unimodal detector,
dubbed TUNI, which is the first method to
conduct identity inference in CLIP models
with unimodal data, preventing risky exposure
of images to the target model;

* We find that the feature distributions of texts
that are in and out of the target CLIP model
are well separated, and propose to adopt ran-
domly generated text to train anomaly detec-
tors for ID inference, avoiding the need for
computationally intensive shadow models in
traditional MIAs.

Extensive experiments conducted across six
kinds of CLIP models have indicated that the
proposed TUNI achieves better performance
than current methods for identity inference,
even when using only textual data.

2 Related Work

2.1 Privacy Leakage in CLIP Models

CLIP model exemplifies modern multimodal inno-
vation by integrating an image encoder and a text
encoder into its architecture (Radford et al., 2021).
These encoders transform inputs into a shared em-
bedding space, enabling effective measurement of
semantic similarity (Ramesh et al., 2022). Despite
the significant advances and expansive applicability
of CLIP models, the vast and diverse datasets uti-
lized for training such models could potentially in-
clude sensitive information, raising concerns about
privacy leakage (Hu et al., 2022b). Various infer-
ence attacks, including model stealing (Dziedzic
et al., 2022; Liu et al., 2022; Wu et al., 2022),



knowledge stealing (Liang et al., 2022), data steal-
ing (He and Zhang, 2021), and membership in-
ference attacks (Liu et al., 2021; Ko et al., 2023),
have been developed for CLIP, exposing poten-
tial vulnerability in privacy leakage. These privacy
concerns underscore the necessity for developing
robust defense mechanisms to safeguard sensitive
information in CLIP models (Golatkar et al., 2022;
Jia et al., 2023; Huang et al., 2023).

2.2 Personally Identifiable Information and
Leakage Issues

Personally Identifiable Information (PII) is defined
as any data that can either independently or when
combined with other information, identify an indi-
vidual. Training Large Language Models (LLMs)
often utilizes publicly accessible datasets, which
may inadvertently contain PII. This elevates the risk
of data breaches that could compromise individual
privacy and entail severe legal and reputational con-
sequences for the deploying entities (Lukas et al.,
2023; Abadi et al., 2016; Bonawitz et al., 2017;
Rahman et al., 2020; Shamshad et al., 2023). Vari-
ous attacks have been developed to reveal PII from
LLMs. A method is proposed in (Panda et al., 2024)
to steal private information from LLMs via crafting
specific queries to GPT-4 that can reveal sensitive
data by appending a secret suffix to the generated
text; Zhang et al. introduced the ETHICIST method
for targeted training data extraction, through loss
smoothed soft prompting and calibrated confidence
estimation, significantly improving extraction per-
formance on public benchmarks (Zhang et al.,
2023); Carlini et al. also studied training data ex-
traction from LLMs, emphasizing the predictive
capability of attacks given a prefix (Carlini et al.,
2021); ProPILE, proposed in (Kim et al., 2024),
probes privacy leakage in LLMs, by assessing the
leakage risk of PII included in the publicly avail-
able Pile dataset; Inan et al. investigated the risks
associated with membership inference attacks us-
ing a Reddit dataset, further emphasizing the per-
sistent threat of PII leakage in various data environ-
ments (Inan et al., 2021).

2.3 Current Identity Inference Methods and
Their Limitations

Identity inference, critical in privacy-preserving
data analysis, has garnered significant attention
across domains, such as genomic data (Erlich et al.,
2018), location-based spatial queries (Kalnis et al.,
2007), person re-identification scenarios (Karaman

and Bagdanov, 2012), computer-mediated commu-
nication (Motahari et al., 2009)and face recogni-
tion (Zhou and Lam, 2018; Prince et al., 2011;
Sanderson and Lovell, 2009). Membership Infer-
ence Attacks (MIAs), which determine if specific
data points were in a model’s training dataset, can
be used to perform identity inference. Traditional
MIAs often require constructing shadow models to
mimic the target model’s behavior, posing computa-
tional efficiency challenges for large models (Truex
etal.,, 2019; Ye et al., 2022; Meeus et al., 2023; Xue
et al., 2023).

While identity inference has been mainly per-
formed on unimodal models, it is recently extended
to CLIP models. Identity Detection Inference At-
tack (IDIA) (Hintersdorf et al., 2022) does not need
shadow models; it involves providing real photos
of the tested individual and 1000 prompt templates
including the real name to choose from. The at-
tacker generates multiple queries by substituting
the <NAME> placeholder and analyzes the model’s
responses to calculate an attack score based on cor-
rect predictions. If the correct name is predicted for
a threshold number of templates, the individual is
inferred to be in the training data. Cosine Similarity
Attacks (CSA) (Ko et al., 2023) uses cosine simi-
larity (CS) between image and text features to infer
membership, as CLIP is trained to maximize CS
for training samples. Based on CSA, Weak Super-
vision Attack (WSA) uses a new weak supervision
MIA framework with unilateral non-member in-
formation for enhancement. Both IDIA and WSA
avoid the high costs associated with shadow mod-
els, but require querying the target model with real
images the model may have never seen, raising new
privacy concerns.

3 Methodology

3.1 Problem Setup and Threat Model

Consider a CLIP model M trained on a dataset
Dyain. Each sample s; = (t;, ;) in Dygin records
the personally identifiable information (PII) of an
individual person, and consists of a textual descrip-
tion ¢; (e.g., name of the person) and a correspond-
ing image z; (e.g., face photo of the person). For
distinct indices ¢ # j, it is possible that t; = t;
and z; # x;, indicating that multiple non-identical
images of the same person may exist.

A detector would like to probe potential leakage
of a person’s PII through the target CLIP model M,
via conducting an identity inference task against



M, to determine if any PII samples of this person
were included in the training set Digip.

Detector’s Goal. For a person with textual de-
scription ¢, a detector would like to determine
whether there exits a PII sample (¢;, ;) € Dirain,
such that t; = ¢.

Note that rather than detecting for a particular
text-image pair (¢, ), our goal is to detect existence
of any (one or more) pair with a textual description
of t. This is because that multiple images of the
same person can be used for training, and any one
of these images may lead to potential PII leakage.

Detector’s Knowledge and Capability. The de-
tector can query M and observe the output, includ-
ing extracted image and text embeddings as well
as their matching score, but does not know the
model architecture of M, the parameter values, or
the training algorithms. For the target textual de-
scription ¢, depending on the application scenarios,
the detector may or may not have actual images
corresponding to t. Nevertheless, in the case where
the detector knows corresponding images, due to
privacy concerns, it cannot include them in the
queries to M. The detector cannot modify M or
access its internal state.

3.2 TUNI: Textual Unimodal Detector for ID
Inference

We design a textual unimodal detector for ID infer-
ence (TUNI), to determine whether the PII of a per-
son is in the training set of the target CLIP model
M, with the restriction that only the textual descrip-
tion of the person can be exposed to M. Firstly, for
a textual description ¢, we develop a feature ex-
tractor to map ¢ to a feature vector, through image
optimization guided by the CLIP model. Then, we
make the key observation that fextual gibberish like
“D2;I-NOXRT”—random combinations of numbers
and symbols clearly do not match any textual de-
scriptions in the training set, and hence the detector
can generate large amount of textual gibberish that
are known out of Dy, Using feature vectors ex-
tracted from these textual gibberish, the detector
can train multiple anomaly detectors to form an
anomaly detection voting system. Finally, during
the inference phase, the features of the target tex-
tual description are fed into the system, and the
inference result is determined through voting. Ad-
ditionally, when the actual images of the textual
description is available to the detector, they can be
leverage to perform clustering on the feature vec-
tors of the test samples to further enhance detection

Algorithm 1: CLIP-guided Feature Extraction

Input: Target CLIP model M, textual description ¢
Output: Mean optimized cosine similarity .S, stan-
dard deviation of optimized image embeddings D

1: n < number of epochs

2: m < number of optimization iterations per

epoch

S0, V0

vy <= M (t) > Obtain text embedding from M

fori =1tondo
xo < Rand()

initial image

A

> Randomly generate an

7: forj =0tom — 1do
8: Vg, < M () > Obtain image
embedding from M
Vt Vg
9: Tj41 ¢ arg maxy, m >

Update image to maximize cosine similarity
10: end for
. . Vt-Vam
AN ) ey
for epoch 2
12: S+ SU{S}L,V+«Vvu{u,,}
13: end for
. 1 .
14: S " > s.esSi
150 U 4= 2D cp?
1 —
t6: D /15,0y [lo— 0]

17: return S, D

> Optimized similarity

performance. An overview of the proposed TUNI
framework is shown in Figure 3.

Feature Extraction through CLIP-guided Im-
age Optimization. The feature extraction for a
textual description ¢ involves iterative optimiza-
tion of an image x, to maximize the correlation
between the embeddings of ¢ and x out of the tar-
get CLIP model. The extraction process, described
in Algorithm 1, iterates for n epochs; and within
each epoch, an image is optimized for m itera-
tions, to maximize the cosine similarity between
its embedding of the CLIP model and that of the
target textual description. The average optimized
cosine similarity .S and standard deviation of the
optimized image embeddings D are extracted as
the features of ¢ from model M.

Generation of Textual Gibberish. TUNI starts
the detection process with generating a set of ¢
gibberish strings G = {g1, 92, - .., g¢}, which are
random combinations of digits and symbols with
certain length. As these gibberish texts are ran-
domly generated at the inference time, with over-
whelming probability that they did not appear in
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Figure 3: Overview of TUNL

the training set. Applying the proposed feature ex-
traction algorithm on G, we obtain ¢ feature vectors
F ={f1, fo,..., fe} of the gibberish texts.

Training Anomaly Detectors. Motivated by the
observations in Figure 2 that the feature vectors
of the texts that are in and out of the training set
of M are well separated, we propose to train an
anomaly detector using JF, such that texts out of
Dirain are considered “normal”, and the problem of
ID inference on textual description ¢ is converted to
anomaly detection on the feature vector of t. More
specifically, ¢ is detected to be in Dy, if its fea-
ture vector is detected “abnormal” by the trained
anomaly detector. Specifically in TUNI, we train
several anomaly detection models on JF, such as
Isolation Forest, LocalOutlierFactor (Cheng et al.,
2019) and AutoEncoder (Chandola et al., 2009).
These models constitute an anomaly detection vot-
ing system that will be used for ID inference on the
test textual descriptions.

Textual ID Inference through Voting. For each
textual description ¢ in the test set, TUNI first ex-
tracts its feature vector f using Algorithm 1, and
then feeds f to each of the obtained anomaly de-
tectors to cast a vote on whether ¢ is an anomaly.
When the total number of votes exceeds a prede-
fined detetion threshold N, ¢ is determined as an
anomaly, i.e., PII with textual description ¢ is used
to train the CLIP model M; otherwise, ¢ is consid-
ered normal and no PII with ¢ is leaked through
training of M.

Enhancement with Real Images. At inference
time, if real images of the test texts are available
at the detector (e.g., photos of a person), they can
be used to extract an additional feature measuring
the average distance between the embeddings of
real images and those of optimized images using
the CLIP model, using which the feature vectors
of the test texts can be clustered into two partitions
with one in Dy, and another one out of Diin.
This adds an additional vote for each test text to the
above described anomaly detection voting system,

potentially facilitating the detection accuracy.

Specifically, for each test text ¢, the detec-
tor is equipped with a set of ¢ real images
{xl 22 ,..., 2, }. Similar to the feature ex-
traction process in Algorithm 1, over £ epochs with
independent initializations, k optimized images
{adpi, a2, - @k} for t are obtained under the
guidance of the CLIP model. Then, we apply a
pretrained feature extraction model F' (e.g., Deep-
Face (Taigman et al., 2014) for face images) to the
real and optimized images to obtain real embed-
dings {vrleal, v?eal’ ...,V } and optimized embed-
dings {03, v25, - - -, v& . }. Finally, we compute
average pair-wise /o distance between real and op-
timized embeddings, denoted by R, over c - k pairs,
and use R as an additional feature of the text ¢.

For a batch of B test texts (t1,%o,...,tR),
we start with extracting their features
((Sl, Dl, R1>, (SQ, DQ, RQ), ey (SB, DB, RB>)
Feeding the first two features S; and D; into
the trained anomaly detection system, each text
t; obtains an anomaly score as the number of
anomaly detectors who believe that it is abnormal.
Additional, the K-means algorithm with K = 2 is
performed on the feature vectors {(S;, D;, R;)} 15;1
to partition them into a “normal” cluster and an
“abnormal” cluster, adding another vote on the
anomaly score of each test instance. Then, the ID
inference of each text is performed by comparing
its total number of received votes and a detection
threshold N'.

4 Evaluations

We evaluate the performance of TUNI, for the task
of ID inference from the name of a person, with
the corresponding image being the face photo of
the person.

4.1 Setup

Our experiments leverage datasets and target CLIP
models from (Hintersdorf et al., 2022).



Table 1: Performance comparison with baseline methods across different CLIP models. A indicates the improvement of TUNL

Architecture Number of photos per Method Precision A Recall A Accuracy A
person in training set
WSA  0.6653 £0.0032 0.1979 0.2925+0.0045 0.6896 0.6675 +0.0037 0.2497
1 IDIA  0.6922+0.0023 0.1712 0.4032 +£0.0027 0.5789 0.6836 +0.0034 0.2336
TUNI  0.8634 + 0.0031 - 0.9821 + 0.0042 - 0.9172 + 0.0028 -
ResNet-50
WSA  0.6625 +£0.0018 0.2017 0.2867 £0.0061 0.6968 0.6710 +0.0043 0.2322
75 IDIA 0.6901 £0.0024 0.1741 0.3998 £ 0.0049 0.5837 0.6907 +£0.0075 0.2125
TUNI  0.8642 + 0.0057 - 0.9835 + 0.0019 - 0.9032 + 0.0033 -
WSA  0.6712+£0.0029 0.1901 0.2912+£0.0048 0.6835 0.6808 +0.0031 0.2547
1 IDIA  0.6625+0.0036 0.1963 0.3980 £ 0.0031 0.5267 0.6957 +£0.0029 0.2398
TUNI  0.8613 + 0.0033 - 0.9747 £ 0.0013 - 0.9355 + 0.0038 -
ResNet-50x4
WSA  0.6724 £0.0022 0.1988 0.2935+0.0054 0.6981 0.6685 +0.0047 0.2777
75 IDIA  0.7085+0.0021 0.1627 0.3904 £0.0018 0.6012 0.7167 £0.0035 0.2295
TUNI  0.8712 £ 0.0043 - 0.9916 + 0.0037 - 0.9462 + 0.0029 -
WSA  0.6323 £0.0064 0.0268 0.2964 £0.0052 0.3421 0.6812 +0.0045 0.0025
1 IDIA  0.6783 +0.0047 0.0308 0.3746 +0.0033 0.2639 0.6772 +£0.0041 0.0065
VIT-B/32 TUNI  0.7091 + 0.0056 - 0.6385 + 0.0062 - 0.6837 + 0.0044 -
WSA  0.7045+£0.0075 0.0137 0.2806 +0.0048 0.3566 0.6895 +0.0052 0.0052
75 IDIA  0.6890 £0.0051 0.0292 0.3811 £0.0063 0.2561 0.6927 +0.0045 0.0020
TUNI  0.7182 + 0.0068 - 0.6372 £ 0.0046 - 0.6947 + 0.0078 -

Dataset Construction. The datasets for train-
ing and ID inference are constructed from three
datasets: LAION-5B (Schuhmann et al., 2022),
Conceptual Captions 3M (CC3M) (Changpinyo
et al.,, 2021), and FaceScrub (Kemelmacher-
Shlizerman et al., 2016). Specifically, 200 celebri-
ties—100 for training and 100 for validation, with
their face photos accompanied by labels contain-
ing their names are selected from the FaceScrub
dataset; then these data samples are augmented by
additional photos of the selected celebrities found
in LAION-5B, such that each person has multi-
ple photos; finally these augmented data points are
mixed with the CC3M dataset to form the training
set of the CLIP model. By doing this, we have the
ground truth on which people are in the training
set and which are not. In our experiments, we con-
struct two datasets, one with a single photo for each
person, and another with 75 photos for each person.
Samples of this dataset are shown in Figure 4 and
a more detailed description is given in appendix.

Models. Our analysis involves ID inference from
six pre-trained target CLIP models, categorized
into ResNet-50, ResNet-50x4, and ViT-B/32 archi-
tectures. The ResNet-50 and ResNet-50x4 models
are based on the ResNet architecture (He et al.,
2016; Theckedath and Sedamkar, 2020); and ViT-
B/32 models employ the Vision Transformer archi-
tecture (Chen et al., 2021). DeepFace (Serengil and
Ozpinar, 2020) is used for facial feature extraction
for enhancement with real images.

Evaluation Metrics. TUNIs effectiveness is as-
sessed using Precision, Recall, and Accuracy met-
rics, measuring anomaly prediction accuracy, cor-
rect anomaly identification, and overall prediction
correctness, respectively.

Baselines. Current ID inference detection meth-
ods for CLIP models typically require detector to
query target model with corresponding real images.
Most MIAs involve training shadow models and
related methods like shadow encoders (Liu et al.,
2021), which can be particularly costly for large-
scale multimodal models. We empirically compare
the performance of TUNI with the following SOTA
inference methods, which both avoid using shadow
models, but still require submitting both text and
image to the target CLIP model for inference.

* Identity Inference Attack (IDIA) (Hinters-
dorf et al., 2022) detects with a list of 1000
names to choose from and 30 real photos for a
tested person. In IDIA, the attacker (detector)
selects candidate names as prompt templates,
and predicts names for each image and prompt.
Once the correct name is predicted, it’s in-
ferred that the target individual is in training
dataset. We compare IDIA using 3 photos for
each test sample with TUNI using only text.

* Weakly Supervised Attack (WSA) (Ko
et al., 2023) uses cosine similarity between
image and text features to infer membership,
and adds a weak supervision MIA framework
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Figure 4: Samples from the dataset for training CLIP models.

based on non-member data generated after the
release of the target model.

All experiments are performed using four
NVIDIA GeForce RTX 3090 GPUs. Each exper-
iment is repeated for 10 times, and the average
values and the standard deviations are reported.

4.2 Results

On training anomaly detectors, we randomly gen-
erated ¢ = 50 textual gibberish (some of them are
shown in Table 3).

The image optimization was performed for n =
100 epochs; and in each epoch, m = 1000 Gradient
Descent (GD) iterations with a learning rate of 0.02.
Four anomaly detection models, i.e., LocalOutlier-
Factor (Cheng et al., 2019), IsolationForest (Liu
et al., 2008), OneClassSVM (Li et al., 2003; Khan
and Madden, 2014), and AutoEncoder (Chen et al.,
2018) were trained, and N = 3 was chosen as the
detection threshold.

As shown in Table 1, TUNI, even with only text
information, consistently outperforms WSA and
IDIA in all metrics by a large margin, across all
model architectures and datasets, demonstrating its
superior performance.

We also evaluate the effect of providing the
TUNI detector with an real photo of the inferred

person. In this case, the embedding distances be-
tween the real and optimized images of the test
samples are used to perform a 2-means clustering,
adding another vote to the inference result. We
accordingly raise the detection threshold N’ to 4.
As illustrated in Table 2, the given photo helps
to improve the performance of TUNI across all
tested CLIP models. While recalls in some ResNet
models experience minor declines attributed to the
raised threshold, all remain above 94%. Conversely,
the ViT-B models exhibit an almost 11% increase
in recall. A lower detection threshold aids recall
enhancement but may concurrently lead to declines
in other metrics.

4.3 Ablation Study

We further explore the impacts of different system
parameters on the detection accuracy.
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Optimization parameters. Figure 5 and 6 show
that during feature extraction, optimizing for n =
100 epochs, each with m = 1, 000 iterations, offers
the optimal performance. Additional epochs and
optimization iterations, while incurring additional
computational cost, do not significantly improve
the detection accuracy.



Table 2: Detection performance with a given photo during inference. A indicates performance improvement.

Architecture Number of photos per TUNI

person in training set

Precision

A Recall

A

Accuracy

A

Text only

: With 1 photo

ResNet-50

0.8634 + 0.0031
0.9653 £ 0.0032

0.9821 + 0.0042

0.1019
- 0.9425 £ 0.0057

-0.0396

0.9172 + 0.0028
0.9475 £ 0.0041

0.0303

Text only

& With 1 photo

0.8642 + 0.0057
0.9825 + 0.0031

0.9835 £ 0.0019

0.1183
- 0.9467 + 0.0024

-0.0188

0.9032 + 0.0033
0.9570 + 0.0038

0.0538

Text only

ResNet-50x4 With 1 photo

0.8613 +0.0033
0.9923 + 0.0011

0.9747 £ 0.0013

0.1290
- 0.9564 + 0.0044

-0.0183

0.9355 +0.0038
0.9672 + 0.0028

0.0317

Text only

& With 1 photo

0.8712 +0.0043
0.9624 + 0.0042

0.9916 + 0.0037

0.0912
- 0.9935 + 0.0029

0.0019

0.9462 + 0.0029
0.9785 + 0.0037

0.0323

Text only

ViT-B/32 With 1 photo

0.7091 + 0.0056
0.8523 + 0.0038

0.6385 + 0.0062

0.1432
- 0.7469 + 0.0078

0.1084

0.6837 + 0.0044
0.7812 + 0.0031

0.0975

Text only

& With 1 photo

0.7182 + 0.0068
0.8535 + 0.0042

0.6372 £ 0.0046

0.1353
- 0.7458 + 0.0039

0.1086

0.6947 + 0.0078
0.8095 + 0.0063

0.1148

Table 3: Samples of randomly generated gibberish.

Table 4: Covert gibberish that seem to be real names.

Karinix | Zylogene | Glycogenyx
Zylotrax | Vexilith Dynatrix
Exodynix | Novylith | Glycosyne
Xenolynx | Rynexis | Delphylith

+7IKXb2Y | FR!pnl<5xS euiT_;yw/
jel%S5(s=G\_ | 7W<E{Dvmz | hgf- =j<q5
#IEZO0yrZ5ig ’2_:6[jiOa X*|<tFxl4/
Fa<Z*Oike[ | \93W4>x5u | ?=&QplxC-c

Detection threshold. Figure 7 and 8 show that
the system attains higher accuracy, when it adopts
a threshold of three votes for considering an input
as an anomaly with text only, and four votes with
an added detection model using an additional given
photo. Setting a high threshold may result in failing
to detect an anomaly, while setting a low one may
lead to identifying a normal one as anomaly.

Number of textual gibberish. As shown in Fig-
ure 9, for different target models, the detection
accuracies initially improve as the number of gib-
berish texts increases, and converge after using
more than 50 gibberish strings.

Number of real photos. As shown in Figure 10,
integrating real photos can enhance the detection
accuracy; however, the improvements of using
more than 1 photo are rather marginal.

5 Defense and Covert Gibberish
Generation

In real-world scenarios, target models being de-
tected may deploy defense mechanisms to recog-
nize anomalous inputs like gibberish and provide
misleading outputs, causing TUNI to misjudge in-
clusion of PIIL.

To generate more covert gibberish data, we can
create strings resembling normal text, with a few
characters replaced by syllables from another lan-
guage. For instance, the detector can craft query
texts, by randomly combining English names with
syllables from Arabic medical terminology. One

way to do this is to start by prompting LLMs like
GPT-3.5-turbo to create lists of common initial and
final syllables in English words. These syllable lists
are then extracted and refined to ensure diversity
and eliminate duplicates. Next, the refined sylla-
ble combinations are randomly paired to create
pseudo-English names, such as “Karinix”, “Zylo-
gene”, “Glycogenyx”, and “Renotyl”. It’s crucial
to verify the novelty of these names by checking
against a database of real names to avoid collision.
Then by prompting the LLM to generate strings
using the refined syllable combinations, covert gib-
berish strings resembling real names are produced
(some examples are given in Table 4).

6 Conclusion

In this paper, we propose TUNI, the first method to
conduct identity inference without exposing acutal
images to target CLIP models. TUNI turns infer-
ence problem into anomaly detection, through ran-
domly generating textual gibberish that are known
to be out of training set, and exploting them to train
anomaly detectors. Furthermore, the incorporation
of real images is shown to enhance detection perfor-
mance. Through evaluations across various CLIP
model architectures and datasets, we demonstrate
the consistent superiority of TUNI over baselines.



7 Limitations

Due to constraints resources, we conducted experi-
ments using the name of the individual as textual
descriptions. This approach may not fully encapsu-
late the complexities and nuances of real-world PII
leakage including addresses, phone numbers, and
other sensitive information.

8 Ethics and Social Impact

The development of TUNI highlights crucial ethi-
cal considerations in identity inference using mul-
timodal models like CLIP. By enabling identity
inference with only textual data, TUNI reduces the
risks associated with exposing PII through images.
This approach not only helps protect individual pri-
vacy but also minimizes the potential for misuse in
harmful applications. As such technologies evolve,
it is essential for researchers to adhere to ethical
guidelines and promote transparency, ensuring that
advancements in Al prioritize user privacy and fos-
ter responsible usage in society.

9 Potential Risks

TUNI aims to bolster privacy by aiding in identity
inference and safeguarding personal identifiable
information within Al systems. While mindful of
the risk of misuse, TUNI should adhere to data
regulations and be employed only with explicit
consent from involved data subjects, promoting
privacy and security in Al practices.
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A Dataset Description

We utilized the datasets from previous work (Hin-
tersdorf et al., 2022).

LAION-400M (Schuhmann et al., 2021), com-
prising 400 million image-text pairs, primarily em-
ployed for pre-training the CLIP model, offering
a wide array of visual content and textual descrip-
tions to facilitate the model’s learning of relation-
ships between images and text, including direct
associations between specific individuals and im-
ages. In the experiment, this dataset is used to ana-
lyze the frequency of individuals appearing within
it to identify individuals with lower frequencies
of appearance, thereby avoiding the use of those
individuals that appear very frequently to prevent
skewing the experimental results. A threshold is
set to only use individuals with fewer than 300 ap-
pearances for the experiments to ensure that the
experimental results would not be dominated by
individuals with very high occurrence frequencies,
thus ensuring the accuracy and reliability of the
experimental outcomes.

LAION-5B (Schuhmann et al., 2022), contain-
ing over 5.8 billion pairs and LAION-400M is its
subset. In the experiment, LAION-5B is used to
expand the CC3M dataset, enriching and increas-
ing the sample size and diversity of the dataset.
LAION-5B is used to find similar pairs to those in
the FaceScrub dataset for each of the 530 celebri-
ties. After confirming the presence of these celebri-
ties’ names in the captions of the found images,
these image-text pairs were added to the CC3M
dataset for training the target CLIP models.

Conceptual Captions 3M (CC3M) (Changpinyo
et al., 2021), consisting of 2.8 million image-text
pairs, anonymizes image captions by replacing
named entities (e.g., celebrity names) with their
hypernyms (e.g., "actor"). This dataset was also
employed for pre-training the CLIP model. How-
ever, in this experiment, researchers analyzed the
dataset using facial recognition technology to deter-
mine if specific celebrity images were present, and
selectively added image-text pairs for model train-
ing adversarial attacks. As the named entities in
CC3M dataset are anonymized in image captions,
i.e., specific celebrity names replaced with their
hypernyms like "actor," after confirming the pres-
ence or absence of specific celebrity images in the
CC3M dataset, controlled additions of image-text
pairs were made to the CC3M dataset.

FaceScrub (Kemelmacher-Shlizerman et al.,
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2016), containing images of 530 celebrities, was
used to ascertain whether the identities one intends
to infer are part of the training data. Celebrities
were chosen due to the wide availability of their
images in the public domain, minimizing privacy
concerns associated with using their images.

To accurately calculate evaluation metrics, it was
necessary to analyze which individuals were al-
ready part of the dataset and which were not. For
the LAION-5B dataset, names of the 530 celebri-
ties from the FaceScrub dataset were searched
within all captions, and corresponding image-text
pairs were saved, which were then added to the
CC3M dataset. This was done to train the CLIP
model and evaluate the effectiveness of IDIA under
controlled conditions. In the experiments with the
CC3M dataset, a total of 200 individuals were used,
with 100 added to the dataset for model training and
the remaining 100 held out for model validation.
The selection of data in this process was balanced
in terms of gender, with an equal distribution of
male and female individuals to enhance the persua-
siveness of the results. We construct two datasets
for training the CLIP models of three architectures
relatively, one with a single photo for each per-
son, and another with 75 photos for each person.
Samples of the datasets are shown in Figure 4.



