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Message from the General Chair

Welcome to the Joint 25th Nordic Conference on Computational Linguistics and 11th Baltic Conference
on Human Language Technologies (NoDaLiDa/Baltic-HLT 2025) to be held in beautiful Tallinn, Estonia,
on March 2–5, 2025.

It is 48 years since the first NoDaLiDa was held and 21 years since the first Baltic HLT was held. Now,
for the first time, the two major conferences on computational linguistics and language technology in the
Nordic and Baltic regions have joined forces as a joint event. Both conferences aim to bring together
researchers in the Nordic and Baltic countries interested in any aspect related to human language and
speech technology. As a joint event, we extended the conference with one extra workshop day so that we
have one day before and one day after the main two-day conference. It is a great honor for me to serve
as the general chair of this joint event.

We solicited three different types of papers (long, short, and demo papers) and received 127 valid sub-
missions, of which 4 were withdrawn during the process. In total, we accepted 81 papers (acceptance
rate: 66%; long papers 65%, short papers: 66%, demos 80%), which will be presented as 43 oral pre-
sentations, 34 posters, and 4 demos. More than half of the accepted papers are student papers, in which
the first author is a student (29 long, 19 short, and 2 demo papers). Each paper was reviewed by three
experts. We are extremely grateful to the 155 Programme Committee members for their detailed and
helpful reviews.

The 81 accepted papers are organized into 12 oral sessions and 2 poster and demo sessions. In addition to
these regular sessions, the conference program includes three keynote talks. We would like to extend our
gratitude to the keynote speakers for agreeing to present their work at NoDaLiDa/Baltic-HLT. Arianna
Bisazza from the University of Groningen will talk on the topic of “Not all Language Models Need to be
Large: Studying Language Evolution and Acquisition with Modern Neural Networks.” Dirk Hovy from
Bocconi University will talk about “The Illusion of Understanding – Unpacking the True Capabilities of
Language Models.” Arvi Tavast from the Institute of the Estonian Language will talk about “No Sex, No
Future: On the Status of Estonian in a Changing World,” continuing the NoDaLiDa tradition of featuring
a presentation about the local language.

The main conference is complemented by 6 workshops on a diverse set of topics. On March 2, pre-
ceding the main conference: Resources and representations for under-resourced languages and do-
mains (RESOURCEFUL-2025); Nordic-Baltic Responsible Evaluation and Alignment of Language
models (NB-REAL); and The 1st Workshop on Ecology, Environment, and Natural Language Process-
ing (NLP4Ecology). On March 5, after the main conference: Constraint Grammar and Finite State NLP
– Rule-based and hybrid methods and tools for user communities; The 13th Workshop on Natural Lan-
guage Processing for Computer Assisted Language Learning (NLP4CALL); and Automatic Assessment
of Atypical Speech (AAAS). The workshop themes illustrate the breadth of topics that can be found in
language technology, and we are extremely happy and grateful to the workshop organizers for comple-
menting the main program.

I would like to thank the entire team that made NoDaLiDa/Baltic-HLT possible. I was honored to receive
the invitation to serve as the general chair from Jörg Tiedemann and the NEALT board; thank you
for trusting me in this role. My deepest gratitude goes to the organizing committee. Thank you to
the program chair committee Daniel Hershcovich, Jenna Kanerva, Pierre Lison, and Andrius Utka, for
working hard on putting the program together, especially for your great effort in leading the reviewing
process and shepherding papers from submission to the final decision. Thank you to the program chair
advisors Mark Fišel and Inguna Skadin, a, for your valuable advice about previous editions of NoDaLiDa
and Baltic-HLT. Thank you to Richard Johansson for leading the publication efforts that led to this
volume, as well as the coordination of the workshop proceedings. Thank you to the workshop chairs,
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Normunds Grūzı̄tis and Samia Touileb, for leading the workshop selection. Thank you to Mike Zhang,
our social media chair, for all your posts and for spreading information about the conference. My ultimate
thank you goes to the local organizer team, Helen Kaljumäe, Merily Remma, and Kadri Vare, for a truly
amazing job; the conference wouldn’t have happened without your effort! It was a pleasure to work
together.

On behalf of the organizing committee, we would like to thank the NoDaLiDa/Baltic-HLT sponsors for
their generous financial support that helped us organize an affordable conference. We would also like
to thank all the conference speakers and participants. Your interactions and enthusiasm are what will
make the actual conference into a forum for fruitful conversations and discussions that contribute to
connections for years to come.

Welcome, and I hope you enjoy the Joint 25th Nordic Conference on Computational Linguistics and 11th
Baltic Conference on Human Language Technologies

Sara Stymne
Uppsala
March 2025
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Message from the Local Organizers

When we began planning this event, we initially set out to host Baltic-HLT, a key conference for the
Baltic language technology community. However, it ended up that this year marks the first time that
Baltic-HLT and NoDaLiDa have been brought together, uniting two established traditions into one joint
conference. In an era shaped by rapid advancements in language technologies – especially the rise
of large language models – collaboration across regions and disciplines is more important than ever.
Together we can address common challenges and ensure that every language, large or small, has a place
in the digital future. We are pleased to welcome you to Tallinn, where cultural richness and innovation
come together! We hope your time here brings new ideas, valuable connections, and leaves you with
great memories.

Thank you for everyone for being part of NoDaLiDa/Baltic-HLT 2025, and we wish you a wonderful
conference!
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Andreas Kirkedal, Mare Koit, Tomas Krilavičius, Marco Kuhlmann, Jenny Kunz,
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Invited Talk: Not all Language Models Need to be Large –
Studying Language Evolution and Acquisition with Modern

Neural Networks
Arianna Bisazza

University of Groningen

Why do languages look the way they do? And what makes us so good at learning language as we grow
up? Since the early days of connectionism, outstanding questions about human language have been
investigated by means of simulations involving small neural networks (NNs) and toy languages. Is this
still possible and meaningful in the age of Large pre-trained Language Models (LLMs)?

In this talk, I’ll propose that modern NNs can indeed be a valuable tool to simulate and study processes
of language evolution and acquisition. This, however, requires having control of training data, model
architecture, and learning setup, which is typically not possible with LLMs.

I will then present two lines of research following these principles, namely: (1) simulating language
change using small NN-agents that learn to communicate with pre-defined artificial languages, and (2)
simulating the acquisition of syntax by training LMs on child-directed language. I’ll end with a discus-
sion of the value of interdisciplinarity and the importance of experimenting in controlled setups, rather
than focusing all our research efforts on the evaluation of LLMs.

Invited Talk: The Illusion of Understanding – Unpacking the
True Capabilities of Language Models

Dirk Hovy
Bocconi University

The rapid development of large language models in recent years has transformed the field of NLP. Many
people are concerned that it has trivialized the field or even rendered it obsolete. In this talk, I’ll argue
that neither is true: NLP has a long way to go, and LLMs are the most recent in a long line of methods
that have advanced the field. LLMs have freed us from many of the nitty-gritty details that previously
hampered NLP research, allowing us to focus on larger and more interesting questions.

One of the most fundamental questions is what it means to “understand” language. In a world where AI
can generate anything from translations to poetry and code, it’s easy to believe these models genuinely
understand us. However, despite its linguistic abilities, today’s generative AI still resembles a skilled
mimic rather than a genuine linguist. We will look at thought experiments and real-world examples to
demonstrate the limitations of statistical models’ knowledge, their inability to grasp context and nuance,
and the dangers of overestimating their abilities. I will emphasize the theoretical and practical implica-
tions for future language technology, with a focus on social context. Drawing on philosophy, linguistics,
and NLP history, we will investigate what it truly means to ‘understand’ a language beyond the words
and the implications for safety and utility in LLMs.
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Invited Talk: No Sex, no Future – On the Status of Estonian
in a Changing World

Arvi Tavast
Institute of the Estonian Language

Apart from well-known anecdotes about the absence of gender marking and future tense, the most pecu-
liar feature of Estonian is its number of speakers. Being one of the smallest fully functional languages in
the world, it is a source of pride for its speakers, as well as a central part of their identity. The resulting
puristic attitudes towards language also enjoy strong legal support. One of the enablers of this ideologi-
cal stance is the channel metaphor of communication: that language as a system exists independently of
its speakers, and communication works in virtue of using a shared code to encode and decode messages.
This metaphor is still going strong in folk linguistics despite all evidence to the contrary, including re-
cent advances in language modelling. A completely different reading for the title of the talk is provided
by more recent learning- and prediction-based accounts of why we understand each other. Language,
like any naturally evolving system, is vitally dependent on the random variability that is so conveniently
present in linguistic data. This makes openness to new information a precondition to having a future,
also for languages.
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Abstract

Analyzing direct speech in historical lit-
erary texts provides insights into char-
acter dynamics, narrative style, and dis-
course patterns. In late 19th century Dan-
ish and Norwegian fiction direct speech
reflects characters’ social and geographi-
cal backgrounds. However, inconsistent
typographic conventions in Scandinavian
literature complicate computational meth-
ods for distinguishing direct speech from
other narrative elements. To address this,
we introduce an annotated dataset from the
MeMo corpus, capturing speech markers
and tags in Danish and Norwegian novels.
We evaluate pre-trained language models
for classifying direct speech, with results
showing that a Danish Foundation Model
(DFM), trained on extensive Danish data,
has the highest performance. Finally, we
conduct a classifier-assisted quantitative
corpus analysis and find a downward trend
in the prevalence of speech over time.

1 Introduction

The analysis of direct speech in literary texts pro-
vides valuable insights into narrative style, char-
acter dynamics as well as aesthetic developments
and other broader discourse patterns. In the con-
text of literary history, it has been argued that di-
rect speech, understood as a narrative element that
purports to quote a character’s speech (Cohen and
Green, 2019), is one of the most distinctive com-
ponents of modern Danish fiction from the late
19th century (Kristensen, 1955). Realist authors
of the period use direct speech to reflect charac-
ters’ social and geographical backgrounds through
dialogue rather than explicit description, aiming
to portray the fictional world with verisimilitude,
i.e. a touch of the real. In Scandinavian litera-

ture, typographic marking of speech–such as quo-
tation marks, dashes, and colons–is often incon-
sistent, complicating the task of distinguishing di-
rect speech from narrative text. This is especially
true for Danish and Norwegian novels from the
late 19th century, where typographic conventions
are highly variable. While readers can often in-
tuitively recognize direct speech, computational
approaches require structured annotation to accu-
rately capture these nuanced typographic and lin-
guistic features (Stymne, 2024).

We introduce a newly annotated dataset de-
rived from the MeMo corpus (Bjerring-Hansen
et al., 2022), which includes annotations of speech
markers, speech tags and speech separated from
other narrative elements across Danish and Nor-
wegian novels from the late 19th century. This
dataset, annotated on the word level, facilitates the
segmentation of direct speech from other narra-
tive elements, enabling sequence tagging model
training for the automated detection of these ele-
ments. We evaluate several pre-trained language
models tailored for Danish and Norwegian, in-
cluding the Danish Foundation Models (DFM;
Enevoldsen et al., 2023) and MeMo-BERT (Al-
Laith et al., 2024a), to assess their ability to detect
direct speech in historical Scandinavian texts, and
find DFM particularly effective. Our findings are
of importance to not only literary scholars, but also
(socio)linguists who are allowed an indirect access
to spoken language from before modern recording
technologies (Culpeper and Kytö, 2010).

Our contributions are threefold: (1) we present
an annotated dataset that captures the typographic
and linguistic indicators of direct speech in 19th

century Danish and Norwegian literature, (2) we
conduct an empirical evaluation of state-of-the-art
language models fine-tuned on this dataset, and (3)
we provide insights into the performance and gen-
eralization capabilities of these models for classi-
fying direct speech.
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Author Novel Type Example

Kamillo Karstens Grevinde Danner German quotation marks ”Læs , “udbrød han
Michael Rosing En Romantiker Guillemet-form, Danish ≫Kom Jomfru! lad os faa en Dans til Afsked ≪

Ragnhild Goldschmidt En Kvindehistorie Guillemet-form, French ≪Laura, Din Kjole er vaad; regner det? ≫

Herman Bang Tine Dash — Farvel!
Holger Drachmann Forskrevet Unmarked Jeg husker Dem meget godt ! svarede han

Table 1: Excerpts from five novels from the MeMo corpus with different quotation styles.

2 Related Work

Direct speech identification. Identifying direct
speech in literary texts has been a focal area in
NLP, with various resources and methodologies
addressing typographic and linguistic challenges
across languages. The Swedish Literary corpus
of Narrative and Dialogue (SLäNDa) exemplifies
these efforts, providing annotated excerpts from
Swedish novels between 1809 and 1940 that cap-
ture speech segments, tags, and speaker identi-
fication (Stymne and Östman, 2020, 2022). In
a similar vein, Troiano and Vossen (2024) in-
troduced CLAUSE-ATLAS, a corpus designed to
study narrative structure in 19th and 20th century
English novels, leveraging large language models
for clause-based annotation.

Recent studies have also explored annota-
tion challenges in texts lacking quotation marks.
Stymne (2024) compared manual (gold) and au-
tomated (silver) annotation methods, finding that
gold data yields better model performance at the
token level, while silver data often excels at cap-
turing speech spans. Despite these advancements,
most methods rely on monolingual, genre-specific
corpora that may not extend well to historical
Scandinavian languages.

Historical literary Scandinavian NLP. Our
study builds on recent advances in computa-
tional approaches for analyzing historical Scan-
dinavian literature, emphasizing the need for
tailored datasets and models suited to under-
resourced languages. Allaith et al. (2023); Al-
Laith et al. (2024b) developed NLP methods
specifically adapted to the unique linguistic char-
acteristics of 19th century Danish and Norwegian
texts, addressing challenges such as archaic vo-
cabulary, inconsistent orthography, and noisy data.
Further studies, such as Feldkamp et al. (2024) and
Lindhardt Overgaard et al. (2024), underscore that
models and datasets customized for genre-specific
nuances enhance the analysis of specialized text
types. Bjerring-Hansen et al. (2024) also con-

tributed by distinguishing between contemporary
and historical novels, underscoring the value of
domain-specific resources for genre classification
in historical corpora. These efforts highlight the
importance of customized NLP frameworks for
advancing computational humanities, particularly
in historical Scandinavian literature.

3 Dataset

3.1 Main Corpus
We use the MeMo corpus (Bjerring-Hansen et al.,
2022), comprising 859 Danish and Norwegian
novels spanning the last 30 years of the 19th cen-
tury, with more than 64 million tokens. We refer to
this corpus as the ‘main corpus’. It should be noted
that, until 1907, written Norwegian was practi-
cally identical to written Danish (Vikør, 2022).

3.2 Speech Corpus
Segment extraction. We randomly extract 100
segments, each consisting of three consecutive
paragraphs, from 100 different novels in the
MeMo corpus. For the selection of the target nov-
els, five novels are handpicked by literary experts
specifically to represent diverse quotation styles
(see Table 1), while the remaining 95 are selected
at random, ensuring diverse and comprehensive
coverage of quotation styles.

Annotation guidelines. To address the chal-
lenges described in §1, we develop clear annota-
tion criteria to ensure consistency and accuracy in
identifying speech-related elements:

1. Speech (“SP”): All words and punctuation
that are part of direct speech are labeled as
“SP”. We do not differentiate embedded
speech (e.g., quotations within speech) as
both the outer and inner quotations are la-
beled as “SP”.

2. Speech Marker (“SM”): Any typographi-
cal markers indicating speech, such as quo-
tation marks, colons, or dashes, are labeled
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as “SM”. If a colon appears directly before
quotation marks, it is also labelled “SM”. For
example, in the following:
He shook his head and said: “Certainly, but
the stones must be examined first”,
both the colon and quotation marks are la-
beled as “SM”.

3. Speech Tag (“ST”): Speech tags (or inquit
phrases), such as “he said,” “she asked,” or
“they replied,” are labeled as “ST”. This label
applies only to the verb and subject, exclud-
ing any adverbs or adverbial phrases, e.g., in
And then he whispered almost inaudibly
only “he whispered” is labeled as “ST”.
Punctuation immediately preceding or fol-
lowing the tag is also considered part of the
“ST” if it is not eligible to be marked as
”SM”.

4. Other (“O”): All other words and punctua-
tion not categorized under the above labels
are marked as “O”. This includes indirect
speech and free indirect discourse. Addition-
ally, inner thoughts and citations from letters
or documents are also labelled as “O”.

Annotation process. The annotation is carried
out on the INCEpTION platform (Klie et al.,
2018) by three literary scholars with domain ex-
pertise in late 19th century Scandinavian fiction.
For agreement calculation and in order to obtain a
high-quality testing set, we select 15% of samples
for multiple annotation by all three experts. These
consist of 15 segments from 15 different novels
from the last four years of the period, 1896–1899.
In total, they contain 2,530 words. After separate
annotation by the three experts, these are consol-
idated by word-level label majority vote for the
final testing set. The rest of the segments in the
dataset (75 segments from 75 different novels) are
equally split among annotators to be annotated in-
dividually.

Annotation results. The annotation results
demonstrate a clear prevalence of non-speech
elements in the dataset, with a majority of
words categorized as “Other”. Despite the lower
representation of speech-related annotations,
the presence of direct speech is still significant,
indicating that dialogue plays an important role
in the corpus. The minimal occurrences of
“Speech Marker” and “Speech Tag” highlight

Class #Words %

Speech (“SP”) 7,655 32.6%
Speech Marker (“SM”) 579 2.5%
Speech Tag (“ST”) 363 1.5%
Other (“O”) 14,861 63.4%

Total 23,458 100%

Table 2: Distribution of annotated dataset.

the challenges in identifying these features. This
distribution underscores the complexity of the
dataset, as a result of diversity in both literary
styles and typographical conventions, and the
necessity for careful annotation to capture the
nuances of speech within the text. Table 2 shows
statistics about the manually annotated dataset.

Agreement. We use pairwise Cohen’s Kappa to
assess Inter-Annotator Agreement (IAA) on the
subset annotated by all three experts prior to con-
solidation. The pairwise comparisons between
annotators resulted in an average Cohen’s Kappa
score of 0.92, indicating substantial agreement
among annotators in classifying direct speech
from other narrative elements.

4 Experiments and Results

We model direct speech identification as token
classification, i.e. sequence tagging, with the tags
described in §3. We fine-tune and evaluate pre-
trained language models for token classification.

4.1 Pre-trained Language Models

We select models pre-trained on Danish and Nor-
wegian text, based on their performance on Dan-
ish and Norwegian literary benchmark datasets
(Al-Laith et al., 2024a) and ScandEval (Nielsen,
2023). We experiment with models that are not
primarily trained on historical/literary Danish or
Norwegian. These include DanskBERT and DFM
(Large), the Danish Foundation Models sentence
encoder, both trained on the Danish Gigaword
Corpus; NB-BERT-base, trained on the extensive
digital collection at the National Library of Nor-
way; and MeMo-BERT-03, which was developed
through continued pre-training of DanskBERT on
the MeMo corpus. The following provides an ex-
planation of each model used in this research.
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DanskBERT. DanskBERT,1 a top-performing
Danish language model noted for its success on
the ScandEval benchmark (Snæbjarnarson et al.,
2023), is based on the XLM-RoBERTa architec-
ture and trained on the Danish Gigaword Corpus
(Strømberg-Derczynski et al., 2021). It features 24
layers, a hidden dimension of 1024, 16 attention
heads, and a subword vocabulary of 250,000. The
model was trained with a batch size of 2,000 for
500,000 steps on 16 V100 GPUs over two weeks.

Danish Foundation Models sentence encoder.
A sentence-transformers model (Enevoldsen et al.,
2023) based on the BERT architecture, featur-
ing 24 layers, 16 attention heads, and a hid-
den size of 1024. It incorporates a dropout
rate of 0.1 for attention probabilities and hidden
states, using GELU activation and supporting up
to 512 position embeddings. With a vocabulary
size of 50,000 tokens, this model, referred to as
DFM (Large), excels in some NLP downstream
tasks such as sentiment analysis and named entity
recognition.2

MeMo-BERT-03. Developed by continuing the
pre-training of the pre-trained Transformer lan-
guage model DanskBERT (Al-Laith et al.,
2024a).3 This foundation allows MeMo-BERT-
3 to leverage extensive linguistic knowledge for
NLP tasks in historical literary Danish including
sentiment analysis and word sense disambigua-
tion. The model outperformed different models in
sentiment analysis and word sense disambiguation
tasks (Al-Laith et al., 2024a).

NB-BERT-base. A general-purpose BERT-base
model was developed using the extensive digi-
tal collection at the National Library of Norway
(Kummervold et al., 2021).4 It follows the archi-
tecture of the BERT Cased multilingual model and
has been trained on a diverse range of Norwegian
texts, encompassing both Bokmål and Nynorsk
from the past 200 years. This comprehensive
training allows the NB-BERT-base to effectively
handle a wide array of NLP tasks in Norwegian.
The model achieved the second-highest perfor-

1https://huggingface.co/vesteinn/
DanskBERT

2
https://huggingface.co/KennethEnevoldsen/

dfm-sentence-encoder-large-exp2-no-lang-align
3https://huggingface.co/MiMe-MeMo/

MeMo-BERT-03
4https://huggingface.co/NbAiLab/

nb-bert-base

Figure 1: Proportion of speech tokens, predicted
by fine-tuned DFM (Large), by publication year.

mance ranking in the Norwegian Named Entity
Recognition task compared to other models listed
on the ScandEval benchmark for Norwegian natu-
ral language understanding.

4.2 Experimental Setup

To fine-tune the models, we use a batch size of 32,
and train for 20 epochs with the AdamW optimizer
at a learning rate of 10−3, choosing the best epoch
based on validation loss. For evaluation, we em-
ploy word-level weighted average F1-score. We
select for testing the 15% of the dataset annotated
by all three experts, and randomly split the rest
such that 70% of the overall annotated dataset is
used for training and 15% for development.

4.3 Speech Classification Results

Fine-tuning results in notable performance varia-
tions, as shown in Table 3. DFM (Large) achieves
the best results, indicating strong generalization.
NB-BERT-base follows closely, but DanskBERT
and MeMo-BERT-03 perform moderately, show-
ing a notable drop from validation to test scores,
suggesting less robust generalization. As de-
scribed in §3.2, the testing set consists of segments
from the last four years of the period, while (as
described in §4.2) the validation set is randomly
sampled from the rest of the period. The testing
set therefore represents a time shift from training
and is more challenging.

5 Classifier-assisted Corpus Analysis

We use the top-performing model, DFM (Large),
to tag all unlabeled segments in the main corpus.
This results in 35% of words labeled as speech,
61% as non-speech, 2% as speech markers and
2% as speech tags. Figure 1 shows the propor-
tion of speech and non-speech labels over years,

4

https://huggingface.co/vesteinn/DanskBERT
https://huggingface.co/vesteinn/DanskBERT
https://huggingface.co/KennethEnevoldsen/dfm-sentence-encoder-large-exp2-no-lang-align
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Validation Testing
Model F1-score F1-score Precision Recall

DanskBERT 0.82 0.71 0.71 0.72
DFM (Large) 0.94 0.89 0.89 0.90
MeMo-BERT-03 0.81 0.73 0.73 0.74
NB-BERT-base 0.93 0.87 0.87 0.87

Table 3: Fine-tuned models’ word-level results on validation and testing sets, of 15 segments each.

illustrating a decreasing trend in the proportion of
direct speech over time, with the highest point at
42% in 1874, declining to a low of 29% by 1889.5

This downward trend stands in contrast to findings
from other quantitative studies on direct speech in
novels. For example, in the study of British 19th

century novels by Menon (2019), the overall frac-
tion of dialogue across her entire corpus compares
roughly to ours (36%), but she finds no significant
change over time.

Furthermore, our findings challenge the widely
held critical assumption within literary historiog-
raphy that the use of direct speech increased with
the rise of the realist novel in the late 19th century,
as argued by Kristensen (1955), Allison (2018),
and Cohen and Green (2019). Instead, our analy-
sis seems more consistent with the argument pre-
sented by Cohn (1978) that the French naturalist
aesthetic favored free indirect speech over direct
speech, leading to a decline of the latter. This per-
spective aligns more closely with the downward
trend we observe in 19th century Scandinavian lit-
erature than with the stable levels of direct speech
that Menon (2019) reports in British novels from
the same period. In other words, based on these
quantitative analyses of direct speech, late 19th

century Scandinavian novels appear to align more
closely with conventional ideas of naturalist nar-
rative techniques than with those of more conven-
tional realist aesthetics.

6 Conclusion

We presented a dedicated dataset and methodol-
ogy for annotating direct speech in Danish and
Norwegian novels from the late 19th century, use-
ful for not only literary studies but also for lin-

5These numbers may not be perfectly accurate as they are
a result of an accurate-but-not-perfect classifier, as shown in
§4.3. Moreover, they may be more reliable for some years
than for others, but we are unable to quantify this with our
current dataset, since our testing set consists only of segments
from 1896 to 1899.

guistics by providing access to representations of
19th spoken language. By building on the MeMo
corpus, we systematically annotated typographic
markers, speech tags, and direct speech segments,
addressing the significant variation and inconsis-
tencies in typographic conventions within histor-
ical Scandinavian literature. Through our exper-
iments with multiple language models, including
Danish Foundation Models and MeMo-BERT, we
found that DFM (Large) performed best. Using it
to quantify the proportion of speech in the main
corpus, we observed a decreasing trend over time.

Future work will extend our analysis to include
other variations of speech, namely indirect dis-
course, i.e. reporting of character speech, and free
indirect discourse, namely the incorporation of a
character’s speech within the narrator’s language
(Cohen and Green, 2019). Literary-historical re-
search will examine the lexical variations of the
speech tags within the corpus to address a hypoth-
esis (Allison, 2018) that a narrative development
from “telling” to “showing” in 19th century litera-
ture is manifested in a movement towards greater
nuance and lexical variation in the speech tags.
While ‘telling’ is a narrative style, where events
are explained explicitly (e.g., ‘He was angry’),
‘showing’ uses a more detailed narrative style to
implicitly convey what is at stake in the event, as
in ‘He slammed his fist on the table and shouted
“Enough”’. The hypothesis is that this shift is
reflected in more nuanced speech tags, moving
from simple terms like ‘said’ to varied ones like
‘muttered’ or ‘snarled.’ Our code and data are
in this Github repository: https://github.
com/mime-memo/DirectSpeech.
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Vésteinn Snæbjarnarson, Annika Simonsen, Goran
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Abstract

Phrasal verbs (PVs) are a specific type
of multi-word expression and a specific
feature of the English language. How-
ever, their usage in scientific prose is lim-
ited. Our study focuses on the analy-
sis of phrasal verbs in the scientific do-
main using information theory methods
to describe diachronic phenomena such as
conventionalization and diversification re-
garding the usage of PVs. Thus, we anal-
ysed their developmental trajectory over
time from the mid-17th century to the
end of the 20th century by measuring the
relative entropy (Kullback-Leibler diver-
gence), predictability in the context of the
phrasal verbs particles (surprisal), and the
paradigmatic variability using word em-
bedding spaces. We were able to identify
interesting phenomena such as the pro-
cess of conventionalization over the 20th
century and the peaks of diversification
throughout the centuries.

1 Introduction

Multi-word Expressions (MWEs) are sequences
composed of two or more words that have a de-
gree of conventionality among speakers of the lan-
guage community, holding a strong relationship in
communicating meaning (Siyanova-Chanturia and
Sidtis, 2018). MWEs encompass idioms that are
formally fixed and have a figurative meaning (e.g.,
kick the bucket), compounds (bus ticket), phrasal
verbs (take a ride), and other formulaic expres-
sions that are typically compositional and often
lexically fairly productive (cf. Avgustinova and
Iomdin (2019)).

MWEs contribute to language efficiency due to
the highly predictable transitions from one word
to the next and/or because of their high degree of

conventionalization (i.e., convergence in linguistic
usage over time). Also, MWEs have a strong influ-
ence on register formation, providing conventional
encodings of context-specific meanings.

We are principally interested in MWEs in scien-
tific English from a diachronic perspective (mid-
17th century to today). Scientific English devel-
oped into a recognizable register during the late
modern period and became highly conventional-
ized in modern times (cf. Degaetano-Ortlieb and
Teich (2022)).

However, phrasal verbs (PVs), despite being a
specific type of multi-word expression and one of
the most distinctive features of the English lan-
guage, are less common in academic prose, when
compared to other registers. In the scientific reg-
ister, usually more specialized verbs are preferred
(cf. Biber et al. (2021) and Brown et al. (2015)).

The usage of PVs in English scientific writ-
ing indicates specific lexical choices influenced by
contextual configurations and communicative con-
straints. Thus, our aim is to investigate, using in-
formation theory measures, whether phrasal verbs
contribute to standardization in scientific English
as other types of MWEs and grammatical con-
structions do. Our idea is to analyse if the effects
of conventionalization of phrasal verbs can be ob-
served over time with three different approaches:
1) analysis of PVs temporal dynamics using rel-
ative entropy, 2) study of the predictability in the
context of the PVs particles using surprisal mea-
sure, and 3) examination of the paradigmatic vari-
ability of PVs using embeddings.

The remainder of the paper is organized as fol-
lows. In Section 2 we discuss related work on PVs
in scientific English. Sections 3 and 4 present our
methods and results, followed by a discussion of
the main findings in Section 5. We conclude with
a summary and outlook (Section 6).
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2 Related Work

As previously mentioned, PVs are known for be-
ing less common in scientific texts when compared
to other registers. (Biber et al., 2000) shows that
PVs are mostly used in speech and fiction. News
texts tend to use less than these two genres, but
academic prose is where PVs have the least over-
all frequency per million words.

Regarding diachronic analysis of PVs in scien-
tific English, Alves et al. (2024) showed that com-
pared to other types of MWEs, PVs are the only
ones presenting a decrease in its relative frequency
over time (mid-17th century to end of 20th cen-
tury). Moreover, PVs present a specific behaviour
regarding dispersion and association measures. In
terms of dispersion, most PVs are not homoge-
neously distributed over time, only very specific
ones commonly used in academic texts such as
carried out, pointed out, and depend on. Regard-
ing the association measures, as the verbs and par-
ticles are also found in other contexts, in most
cases, the values were quite low, except for spe-
cific cases where the verb is mostly used with its
particle (e.g., churned up, smoothes out, budded
off ). Although the authors present a preliminary
diachronic analysis of the evolution of the associ-
ation measure, no conventionalization study was
presented.

The diachronic changes of the paradigmatic
variability of different parts-of-speech in scientific
English using word embedding space were anal-
ysed by Teich et al. (2021). Overall, there is a re-
duction of paradigmatic variability over time for
the different grammatical classes. However, PVs
were not analysed separately to see if their be-
haviour is similar or discrepant when compared to
other verbs.

Moreover, there are numerous corpus-based
studies of MWEs in different registers, including
the scientific one (e.g. Biber and Barbieri (2007);
Hyland (2008); Liu (2012)). Some of these de-
scriptions include lists of MWEs used in academic
texts that are freely available as part of English for
Academic Purposes (EAP). However, since PVs
are not commonly used in scientific texts, they are
usually not considered in the analysis.

Regarding computational methods for identify-
ing PVs, the PARSEME initative1 clearly identi-
fies PVs or verb-particle constructions (VPCs) as
one category of verbal MWEs. Multilingual cor-

1https://gitlab.com/parseme/corpora/-/wikis/home

pora annotated following PARSEME guidelines
are available, however, without any diachronic
data.

Finally, in terms of studies regarding the cog-
nitive processing of PVs, most studies concern
L2 learners and the difficulties of learning these
specific MWEs (cf. Alejo-González (2010); Mo-
hammed (2019); Alisoy (2023). In their study,
Perdomo and Kaan (2023) looked at surprisal
measures to analyse the effects in priming of
phrasal verb construction alternations, comparing
native speakers and L2 learners, thus, focusing
on learning difficulties, not in conventionalization
processes as this paper.

3 Methods

3.1 Dataset

As our objective is to investigate the convention-
alization processes of PVs in the development of
English scientific writing, we used the Royal So-
ciety Corpus (RSC) 6.0, which is a diachronic cor-
pus of scientific English covering the period from
1665 until 1996.

It comprises 47,837 texts (295,895,749 tokens),
which are mainly scientific articles covering a
wide range of areas from mathematical, physi-
cal, and biological sciences, and is based on the
Philosophical Transactions and Proceedings of the
Royal Society of London (Fischer et al., 2020).

The RSC 6.0 was parsed using Stanza tool (Qi
et al., 2020) and the combined model for English,
provided by the developers, which was trained
with different Universal Dependencies2 (UD) cor-
pora. To extract the PVs from the RSC, we de-
veloped a Python script using pyconll library3 to
identify and count the PVs4 in the RSC texts per
year. A manual evaluation of 140 sentences (20
per 50-year period of the RSC) showed that the
accuracy of the Stanza parser is 90 regarding PVs.

3.2 Information Theory Measures

To analyse the diachronic phenomena regarding
PVs in Scientific English, we applied three dif-
ferent methods to measure the relative entropy
(Kullback-Leibler divergence), the surprisal of the
particles, and the paradigmatic variability. The

2https://universaldependencies.org/
3https://github.com/pyconll/pyconll
4Phrasal verbs are easily identified in texts parsed with

UD corpora as the dependency label of the PV particle is
compound:prt and its head is the verb.
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workflow is schematized in Figure 4 and further
described in the following sub-sections.

3.2.1 Kullback-Leibler Divergence
To identify evolutionary trends in the use of
phrasal verbs (PVs) within the RSC, we applied
relative entropy, specifically the Kullback-Leibler
Divergence (KLD; Kullback and Leibler (1951)).
This method compares probability distributions by
measuring the additional bits required to encode
dataset A when using a (non-optimal) model based
on dataset B for a given set of elements X, as de-
scribed in Equation 1. In this study, A and B cor-
respond to sub-sets of the RSC (e.g. time slices)
and X, i.e. the ensemble of PVs.

DKL(A∥B) =
∑

x∈X
A(x) log

(
A(x)

B(x)

)
(1)

The KLD measure provides an indication of the
degree of divergence between corpora and identi-
fies the features that are primarily associated with
a difference. Possible discrepancies regarding the
vocabulary size of the subcorpora are controlled
by using Jelinek-Mercer smoothing and lambda
0.05 (cf. Zhai and Lafferty (2004) and Fankhauser
et al. (2014)).

To detect periods of change in the use of PVs
using KLD, we adopt the methodology described
in Degaetano-Ortlieb and Teich (2018)5. We com-
pare 20-year windows of past and present lan-
guage use sliding with a 5-year gap over the time-
line (e.g. t1=1665-1685, t2=1671-1691). Then, by
plotting the divergence for each comparison on the
timeline, we can inspect peaks or troughs which
indicate a change: a peak is an indication that the
divergence of the analysed feature increases, and
is thus typical of the future 20 years in compari-
son to the past 20 years.

Due to the asymmetric characteristic of the
KLD, we are only interested in the direction
from subsequent periods to the preceding ones as
we aim to determine periodization from past to
present in the development of PVs usage in En-
glish scientific writing.

In this study, we examined the KLD at two dif-
ferent levels: a) all PVs combined, to verify if a
conventionalization process can be identified and
b) each PV individually, to identify individual di-
achronic phenomena.

5Degaetano-Ortlieb and Teich (2018) make the code
available at: https://stefaniadegaetano.com/code/

3.2.2 Surprisal
Surprisal is formalized as the negative log proba-
bility of a unit in context which results in bits of
information (Shannon, 1948), as defined in Equa-
tion 2.

Surprisal(uniti) = log2(uniti|Context) (2)

A decrease in the surprisal of a specific term
can indicate a conventionalization phenomenon as
showed by Degaetano-Ortlieb and Teich (2022)
regarding scientific English using a four-gram lan-
guage model. N-grams surprisal models have
limitations, thus, Steuer et al. (2024) propose a
transformer-based surprisal model trained with the
RSC corpus.

Our analysis concerns the diachronic changes of
the surprisal values of the PVs particles. Thus,
using the transformer-based model cited above
trained over the RSC divided into 10-year periods,
we extracted, per year of the RSC, the surprisal
values of the particles identified in the parsed ver-
sion of the dataset.

3.2.3 Paradigmatic Variability
To analyse diachronic changes in the paradigmatic
context of PVs, we apply a context-aware ver-
sion of entropy, paradigmatic variability, based on
word embeddings and the close neighbours of a
word in the vector space within a given radius (Te-
ich et al., 2021). As previously mentioned, a drop
in paradigmatic variability indicates a convention-
alization phenomenon.

Regarding the word embeddings model, we
used structured skip-grams (Ling et al., 2015) as
it presents the advantage of representing each po-
sition in the left and right context separately, not as
a mere bag of words as in simple skip-gram mod-
els.

The paradigmatic variability of a word over
time is calculated by comparing period-specific
word embedding models (i.e., per decade, from
the 1660s to the 1990s). We followed the same
procedure as presented in Teich et al. (2021), with
the initialisation of the first decade being done
with an atemporal embeddings model trained on
the complete corpus as proposed by Fankhauser
and Kupietz (2017). All following decades were
then initialised with the embeddings of the previ-
ous decade. In our study, as our objective is to
analyse PVs, the verbs and particles were joined
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Figure 1: Experimental workflow.

with || in the generation of the embedding space,
thus allowing the differentiation between PVs and
the other verbs.

This choice concerning the initialization pro-
cess has the advantage of better representing low-
frequency words in the embedding space, avoiding
low-frequency words appearing in the centre of the
space in the first few periods, and reducing bias
regarding the movement in the embedding space
over time. The subsequent statistical analysis of
the vector space models only considers words with
a frequency higher than 506.

Once the word embeddings for each decade are
obtained, the paradigmatic variability of a word
x, pvar(x), can be calculated as the entropy over
a probability distribution, which is based on the
probability p(xi|Cx) of a word xi from the neigh-
bourhood Cx being chosen instead of word x.

This is calculated using both the cosine similar-
ity in the vector space between xi and x and the
frequency of xi (freq(xi)).

Thus:

pvar(x) = H(P(.|Cx))

= −
∑

cos(xi,x)>θ

p(xi|Cx) log (p(xi|Cx))

(3)

with p(xi|Cx) =
cos(xi, x) freq(xi)∑
xj

cos(xj , x) freq(xj)
(4)

The θ threshold was set to 0.6 and we con-
sidered a maximum of 30 neighbours. Thus, a

6The other parameters used to generate the embeddings
were: type 3; size 100; negative 10; hs 0; sample 1e-4;
threads 4; binary 0; and iter 5.

word with a homogeneous distribution of neigh-
bours has a high value of pvar(x).

4 Results

4.1 Kullback-Leibler Divergence

Figure 2 presents the relative entropy values (i.e.,
Kullback-Leibler divergence) of PVs in the RSC
corpus over time as described in Section 3.2.1.

Figure 2: KLD measures for phrasal verbs in the
Royal Society Corpus.

It is possible to observe peaks and troughs
around the value of 0.4 from the seventeenth cen-
tury to the end of the nineteenth century. On the
other hand, at the beginning of the twentieth cen-
tury, we clearly see a declining tendency of KLD,
indicating, thus, a conventionalization in the us-
age of this feature, with a stabilization around 0.1
in the second half of this century.

To better understand the diachronic usage of
PVs in scientific English, we also looked at the
point-wise KLD, checking the relative entropy
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shifts for each PV type. For each 20-year pe-
riod used for the KLD calculation, we examined
the number of PVs with positive values of diver-
gence (i.e., PVs that became more typical), and
the number with negative KLD (i.e., PVs that be-
came less distinctive). Figure 3 shows the results
of this analysis.

Figure 3: Number of phrasal verb types having
positive (blue) or negative (red) KLD values per
period of the RSC.

Besides the overall increasing trend in the num-
ber of PV types with positive KLD, it is possible
to notice periods with higher increase, probably
due to the specific textual needs of each period.
Moreover, we can observe that the number of PVs
with negative KLD also increases over time. Fur-
thermore, the periods with more PVs having nega-
tive values of KLD, usually succeed periods where
there is a peak in the number of PVs with positive
values.

The increase in the number of PVs with positive
KLD indicates a cyclical process of diversifica-
tion (i.e., linguistic items acquiring different, more
specific usages/meanings). Even though the over-
all relative frequency of PVs reduces over time,
more different types are being used in specific pe-
riods. However, due to peaks regarding PVs with
negative KLD, it seems that the usage of the new
types does not become conventionalized.

4.2 Surprisal

As described in Section 3.2.2, another way of
identifying possible conventionalization processes
is using surprisal measures. PVs being MWEs, the
surprisal of the particle is expected to be lower
than the measure for the correspondent verbs. A
decrease in time of the mean surprisal value of the

particles indicates a conventionalization regarding
the usage of these grammatical constructions.

Figure 4 presents the plot of the mean surprisal
values of the phrasal verbs present in the RSC per
year.

Figure 4: Mean surprisal value of phrasal verbs
particles per year of the RSC.

Applying the Mann-Kendall trend test (Hus-
sain and Mahmud, 2019), we observe that there is
an overall statistically valid (i.e., a p-value below
0.00001) increasing tendency regarding the sur-
prisal values of the particles.

This result can be correlated with the KLD ob-
servations. We observe that the conventionaliza-
tion of the usage of PVs only happened in the
twentieth century, moreover, throughout the cen-
turies, we notice an increase in the usage of differ-
ent PV types. Moreover, as shown by Alves et al.
(2024), the relative frequency of PVs decreases
over time in the RSC. All these factors contribute
to an increase in the surprisal values.

In addition, it is also possible to notice that,
even though there is an overall increasing ten-
dency, there are periods with a decrease in the sur-
prisal values and others with a more accentuated
increase. When comparing Figures 3 and 4, we
observe that periods with a high increase in the
number of PV types (i.e., 1836-1856 and 1956-
1976) also correspond to periods of accentuated
increase regarding surprisal values.

Another factor that may influence the suprisal
value is the distance between the verb and the par-
ticle. In the RSC, we find examples such as:

1. It suggested that development could be bro-
ken down into series of gene controlled chem-
ical reactions. (d = 1, 1995)

2. . . . which it gently touched with little or no
damage , blowing only off a few tiles. (d = 2,
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1695)

3. . . . but BICHAT was continually holding a
thing up by the wrong end . . . (d = 3, 1823)

4. . . . that his assistance should be sought to
bring the new edition up to the existing state
. . . (d = 4, 1908)

5. . . . and as I wrote many of the 336 them down
from his own dictation . . . (d = 5, 1840)

Thus, we decided to conduct an analysis of the
diachronic evolution of the mean distance between
verbs and particles in the RSC. Figure 5 shows the
plot of the mean distance per 50-year period.

Figure 5: Mean distance between verbs and parti-
cles per 50-year of the RSC.

A statistical analysis of these results showed
that p-value is below 0.001 for the following com-
parisons:

• 1701-1750 and 1751-1800

• 1751-1800 and 1801-1850

• 1901-1950 and 1951-2000

Thus, it is possible to notice a clear decrease in
the mean value from the eighteenth century to the
mid-nineteenth century, followed by a stabiliza-
tion until the mid-twentieth century when a new
increase is observed. The decreasing period re-
garding the mean distance between verbs and par-
ticles corresponds to a period with also a decrease
in surprisal values (4). Moreover, the peak of sur-
prisal (around 1970) is observed when there is also
an increase in the mean distance.

4.2.1 Paradigmatic Variability
As previously explained in Section 3.2.3, us-
ing word embedding spaces, we calculated the
paradigmatic variability of PVs per decade of the
RSC. Figure 6 shows the results and the compari-
son with the variability of other verbs and all parts-
of-speech in the dataset.

As shown by Teich et al. (2021), the paradig-
matic variability of all words (i.e., all parts-of-
speech) decreases over time as a general trend.
This is due to two main mechanisms: convention-
alization — a word becoming the dominant choice
within its neighbourhood by frequency, possibly
replacing other, alternative words — and diversifi-
cation, i.e., words within a neighbourhood becom-
ing more distant, leading to a split into two or more
neighbourhoods.

Regarding non-phrasal verbs, they begin with
a slightly higher paradigmatic variability than all
POS, but end up with a tendency of lower variabil-
ity. On the other hand, PVs start out with similar
values as other verbs, but the paradigmatic vari-
ability decrease is much more accentuated, espe-
cially in the twentieth century, where the KLD
measures already showed signs of conventional-
ization, as shown in Figure 2, and diversification
(Figure 3).

Thus, it is possible to assume that the PVs
have overcome a more accentuated process of con-
ventionalization and diversification over time than
other types of verbs in scientific English.

5 Discussion

In this study, our main objective was to analyse the
contribution of PVs regarding the conventionaliza-
tion processes happening in scientific English.

By analysing three different methods to mea-
sure linguistic shifts over time, we were able to
notice that, although PVs are less common in sci-
entific prose, they have undergone interesting di-
achronic phenomena.

Regarding the relative entropy measures (i.e.,
KLD), it was possible to notice that a conven-
tionalization process occurred only throughout the
twentieth century (Figure 2).

From the seventeenth to the twentieth century,
although some small peaks and troughs can be ob-
served, the KLD values did not change consider-
ably. This tendency is different from what was
observed by Degaetano-Ortlieb and Teich (2018)
who analysed the whole lexicon (i.e., lemmas). In
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Figure 6: Paradigmatic Variability over time of phrasal Verbs compared to other verbs and all parts-of-
speech in the RSC.

their study, the decreasing tendency is relatively
constant throughout time.

Moreover, it was possible to verify that the con-
ventionalization process occurs in parallel with a
peak of diversification, as shown in Figure 3. This
diversification has an impact on the surprisal mea-
sures, increasing the surprisal of the particles.

Both conventionalization and diversification
processes are also confirmed with the paradig-
matic variability analysis (Figure 6). PVs undergo
a more accentuated decrease in their paradigmatic
variability over time when compared to other
verbs, principally during the twentieth century.

To better understand the peaks regarding the di-
versification of PVs, we analysed in detail the re-
sults of the KLD for each PV, per 20-year slice,
present in the RSC.

What is possible to observe is that, throughout
time, there are shifts regarding the PVs with peaks
of KLD, i.e., verbs becoming more distinctive of
specific periods.

Regarding the two main peaks of diversification
identified in Figure 3, around 1846 and 1971, we
can see that the PVs with the highest values of
KLD in these periods differ considerably.

• 1846: carry out, break up, filter off, bring out,
split up, build up, map out, sum up, spread
out, shut off.

• 1971: turn out, point out, rule out, end up,
make up, go on, open up, break down, take
on, bring together.

A clear distinction can be made when analysing
these two periods. In the nineteenth century, most
PVs are linked to the description of experimental
design, while in the twentieth century, there is a
shift towards verbs focusing on the presentation of
results, i.e., on the outcome of the research.

In Figure 3, we showed that the diversification
is cyclic, new phrasal verbs are used in specific
periods due to particular textual needs and, then,
become less typical in future ones, however, in a
more conventionalized way throughout the twen-
tieth century.

Regarding the surprisal analysis, it is possible
to notice that the shifts in the surprisal of the par-
ticles are a complex phenomenon. It is influenced
not only by the peaks regarding the diversification
process, but also by the changes regarding the dis-
tance between the verb and the particle, and, by
the decrease regarding the relative frequency (i.e.,
with the verbs and particles appearing in more var-
ied contexts, not as phrasal verbs).

6 Conclusions and Future Work

In this paper, we presented a multifaceted ap-
proach to characterize diachronic shifts regarding
the usage of PVs in scientific English from the
mid-seventeenth century to the end of the twenti-
eth century by applying different information the-
ory methods to the Royal Society Corpus.

By measuring the Kullback-Leibler divergence,
we showed that the process of conventionalization
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of PVs occurred mostly throughout the twentieth
century. Moreover, we observed that peaks of di-
versification (i.e., increase in the number of PV
types) happened in specific periods, followed by
periods with a high number of PVs becoming less
typical.

In terms of surprisal measure regarding the par-
ticles, we identified an overall tendency of in-
crease, however, it was also possible to notice pe-
riods of accentuated increase, and some periods
of decrease. These phenomena are probably cor-
related to the decrease regarding the relative fre-
quency, to the peaks of diversification, and, to the
distance between the verb and particles.

The analysis of the paradigmatic variability
showed that PVs have a more accentuated de-
crease over time when compared to other verbs.
This is probably due to the usage of PVs in specific
contexts, where they cannot be replaced by similar
terms. Moreover, the highest decrease regarding
this measure was observed during the twentieth
century, when a conventionalization phenomenon
was detected using KLD.

Our findings not only enhance understanding of
PVs in scientific English but also pave the way
for future linguistic research, particularly in lan-
guage evolution and specialized registers. In fu-
ture work, we intend to proceed with the analysis
by conducting a semantic analysis of the PVs with
peaks of divergence to better understand their us-
age throughout time. Moreover, as part of a larger
study, these results will be integrated with other
types of MWEs (e.g., compounds, fixed expres-
sions) to better understand the impact of the usage
of these formulaic expressions in scientific texts
throughout time.
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Abstract

We present results from using Probit mod-
els to classify and rank texts of varying
complexity from multiple sources. We
use multiple linguistic sources including
Swedish easy-to-read books and investi-
gate data augmentation and feature reg-
ularisation as optimisation methods for
text complexity assessment. Multi-Scale
and Single Scale Probit models are im-
plemented using different ratios of train-
ing data, and then compared. Overall, the
findings suggest that the Multi-Scale Pro-
bit model is an effective method for clas-
sifying text complexity and ranking new
texts and could be used to improve the
performance on small datasets as well as
normalise datasets labelled using different
scales.

1 Introduction

Measuring or estimating text complexity is essen-
tial in various fields, including readability research
and the adaptation and recommendation of texts
for different audiences. In this paper, text com-
plexity refers only to the linguistic characteristics
that affect how easy or difficult a text is to read,
without considering the interaction between the
text and any particular reader.

Any comprehensive evaluation of text complex-
ity must include three key components. First, lin-
guistic features must be quantified, such as calcu-
lating the average sentence length. Second, rel-
evant linguistic features need to be selected for
evaluation. Third, the impact of each linguistic
feature on text complexity must be assessed, for
example, determining whether longer sentences
increase or decrease complexity and to what ex-
tent. The distinction between effective and inef-
fective evaluations lies in the execution of these

components. The selection of features and the
methods employed to measure them significantly
affect the quality of the evaluation (Bailin and
Grafstein, 2001).

Moreover, text complexity is not defined by a
single superficial quality; rather, it results from
an interplay of various features, each influencing
complexity in distinct ways (Santini and Jönsson,
2020). Understanding how and to what extent
each linguistic feature contributes to overall text
complexity poses an additional challenge. The ap-
proaches for identifying and selecting linguistic
features vary, ranging from employing theoretical
linguistic frameworks and reasoning about feature
impacts (Ellis, 2020) to training machine learn-
ing models on specific features and assessing their
performance (Falkenjack et al., 2013), or even em-
ploying a combination of these methods.

Another aspect of the assessment of text com-
plexity is the type of output that is produced. De-
pending on the purpose of the evaluation, the re-
sults may be in the shape of a single binary classi-
fication of ”easy to read” or ”not easy to read”.
This type of evaluation is traditionally realised
through simple linear functions, or more recently
using machine learning models like the Support
Vector Machine (SVM) that splits texts into two
classes (Benjamin, 2012). Another common eval-
uation method is to use one or a few linguistic
features in a simple equation (often referred to
as readability formulas) and computing a score to
measure the complexity (e.g. the Flesch Reading
Ease formula (Flesch, 1948)). These methods are
beneficial in several ways, but all share a common
downside. When using a few simple features or
classifying texts in a binary manner, much nuance
of text complexity is lost, and comparisons be-
tween texts are less informative (Bailin and Graf-
stein, 2001).

To solve these problems, we propose creating a
model that uses many complex linguistic features
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and classifies or ranks texts into non-binary lev-
els. This approach would, however, usually re-
quire data that are already labelled according to
class or rank. The more features used in the model
to increase the complexity of the evaluation, the
more data is required in each class or rank (Ben-
gio et al., 2000).

One method that has the potential to resolve
many of the issues mentioned above is the Multi-
Scale Probit model, proposed and first imple-
mented in Falkenjack (2018). The Probit model
is a well established statistical model, introduced
in the 1930s (Bliss, 1934b) and used primarily for
classification. It is closely related to the younger
but somewhat more well known Logit model, or
Logistic regression as it is often called in psycho-
metric contexts, but it has some properties which
make it especially suitable for Bayesian mod-
elling (McCulloch et al., 2000).

The Multi-Scale Probit model is a generalisa-
tion of the Bayesian Ordered Probit model and is
capable of training on data labelled into ordered
levels, such as how hard a text is to read, from
multiple text sources. These sources may use com-
pletely different scales, meaning that the levels
need not correspond in any sense between sources
apart from indicating text complexity. There is no
requirement for a minimum amount of texts per
level, which enables the use of data that would
have to be discarded in other approaches. The
key idea behind the model is the presence of a
latent variable that is shared among all labelling
schemes. In this context, that latent variable is
text complexity, with the assumption that the dif-
ferent labelling schemes used across different data
sources all represent measures of that latent vari-
able. Information about the latent variable is cap-
tured in the features, and the model learns how the
latent variable is affected by the features, making
it able to classify and even rank the text complex-
ity of new texts.

We explore how the Multi-Scale Probit model
performs when trained and evaluated on novel
data, consisting of easy-to-read literature for chil-
dren, teenagers, and adults1.

2 Text complexity analysis

Text complexity generally refers to characteristics
of a text that make it more or less cognitively en-
gaging during reading (Vega et al., 2013). Quan-

1https://www.nyponochviljaforlag.se/om-oss/

titative and qualitative assessments of text com-
plexity are of great value, as they can be used in
many fields such as education (e.g. determining
the appropriate material (Fitzgerald et al., 2015)
or automatic essay grading (Valenti et al., 2003)),
customisable text simplification (e.g. determining
which texts to simplify (Štajner et al., 2012)),
or customising texts based on cognitive require-
ments (e.g. for readers with dyslexia (Santini and
Jönsson, 2020)).

Pinpointing the properties of a text that tells us
about its complexity has been proven to be a diffi-
cult and confusing task. The factors that make up
the complexity of a text can themselves create a
hyperplane that spans across a highly multidimen-
sional space.

Classification is a simplified version of this with
the purpose of assigning texts into one or more
classes such as ”easy to read”. Classification ap-
proaches consist of machine learning algorithms,
statistical methods, and other NLP techniques.

Such approaches need to be trained on differ-
ent text features or combinations of features and
then evaluated on their performance in classifying
texts accurately. As model performance becomes
an indirect measurement of the relevance of the
feature(s) to text complexity analysis, the features
used to train models with better performance are
chosen over the features of models with poorer
performance (Falkenjack, 2018). Another cate-
gory of classification algorithms is logistic regres-
sion and its variants. Compared to SVMs and sim-
ilar methods, cf. Schwarm and Ostendorf (2005);
Pitler and Nenkova (2008); Falkenjack (2018), the
binary outcome is modelled as a probability be-
tween 0 and 1. For instance, a book could be clas-
sified as ”easy to read” with a probability of 0.6,
meaning that there is a 60% probability (accord-
ing to the model) that the book is ”easy to read”.
A common approach for such probability estima-
tion is Logistic regression (Hosmer Jr et al., 2013),
or the Logit model, and in this paper we apply a
version of the closely related Probit model.

3 Text complexity features

The most commonly used method for the analysis
of text complexity is automatic evaluation using
quantifiable features of texts, which are then used
to compute one or more ratings of text complex-
ity. These features measure different aspects of the
text and can be categorised into four ordered levels
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of increasing analytical depth, as outlined below.

Shallow features: The features in the first cate-
gory do not contain information about the content
of the text. They simply consist of letter and word
counts; very little or no knowledge of their mean-
ing is necessary to measure or understand shal-
low features. Nevertheless, they have been proven
to be useful for measuring text complexity and
are very simple to extract. The text is processed
through tokenisation to create tokens out of words
(and other components, e.g. delimiters). The to-
kens can be counted either as they are or by tally-
ing the characters they contain. Several traditional
metrics are based on one or more of these features
or variants thereof, cf. Flesch (1948); Björnsson
(1968).

Lexical composition: The lexical composition
of a text targets frequencies of words based on the
lexical category they belong to. The categorisa-
tion process includes lemmatising all words using
a large vocabulary. For Swedish text, a vocabulary
called SweVoc was developed in 2012 for this pur-
pose by Mühlenbock and Kokkinakis (2012). In
SweVoc, each word is represented as a lemma with
some additional information depending on how it
is used, including which category (or categories)
it belongs to. In this research, the following cat-
egories will be used: SweVocD (words related
to every-day matters), SweVocH (high-frequency
words), and SweVocTotal (the total ratio of words
in the text that are part of SweVoc). Because
the SweVoc vocabulary is a subset of the Swedish
language which excludes some complex or spe-
cialised words, it could be assumed that easy-to-
read texts have a higher ratio of SweVoc words
than more complex texts.

Morpho-syntactic features: Morpho-syntactic
features include tagging words and tokens accord-
ing to their part-of-speech (POS). The POS tags
can then be used in a number of text features. In
this research, UnigramPOS features will be used.
The UnigramPOS features are the probabilities of
a unigram occurring in a text, expressed as the ra-
tio of each POS tag per token. Calculating the un-
igram probabilities of a text is a type of language
modelling that can be effective in measuring the
readability of a text (Heilman et al., 2007).

Syntactic features: Although unigram lan-
guage models are effective in capturing content in-
formation and variations in word usage, they lack
the ability to capture syntactic information. The

analysis of syntactic complexity requires parsing
of the text, which involves mapping words and
phrases and their dependencies based on grammat-
ical structures of a sentence. For this research,
the syntactic text features consist of a subset of
features extracted through dependency parsing on
each sentence. These features are: UnigramDep
(probabilities for each dependency relation type),
RightDep (ratio of total dependencies where the
headword occurs after the dependent word), UVA
(unigram probabilities for verbs with a specific
number of dependants), and Lexical density (ratio
of content words).

4 Text complexity as a latent variable

A key idea behind the use of statistical models for
text complexity assessment is the assumption of
a latent variable. As established, text complexity
cannot be measured directly. Instead, it is esti-
mated using one or more linguistic features. Fur-
thermore, text complexity is assessed and labelled
in various ways. For example, texts may be la-
belled as ”easy to read” (with the implication that
regular texts are less ”easy to read”), rated on a
scale of 1 to 7, or categorised into age groups,
among other methods. Although texts from differ-
ent sources may use varying labels and methods
to measure readability, we assume that they share
the underlying latent variable of text complexity.
In other words, variations in text complexity may
be expressed differently, but the concept is consis-
tently modelled across all sources. If data can be
processed appropriately, it enables the latent vari-
able to be statistically modelled and subsequently
used to classify or rank texts.

4.1 The Probit model

The Multi-Scale Probit model we use is a gener-
alisation of the Ordered Probit model which itself
is a generalisation of the Probit model. The Pro-
bit model can be viewed as a linear binary classi-
fier. It can also be considered a Generalized Lin-
ear Model with the inverse of the cumulative dis-
tribution function (CDF) of the Standard Normal
distribution, the Probit function (Bliss, 1934a), as
link function. In essence, the Probit model takes
a vector of covariates xi of the ith observation and
uses it to predict the outcome, or label, yi. It does
so by estimating a coefficient vector β that repre-
sents the effects of xi on the value of yi. In simple
terms, the model can be expressed as ”what is the
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probability that yi is 1, given the information in
xi?”. Mathematically, the Probit model can be ex-
pressed as

P (yi = 1|xi) = Φ(α+ xi
Tβ), (1)

where Φ is the CDF of the Standard Normal dis-
tribution and α is the intercept, defined as a con-
stant value that represents the baseline probability
of yi being 1 even if all covariates are 0.

In the context of text complexity, xi would con-
sist of measurements of linguistic features and yi

would represent a certain label, for example ”easy
to read”. Furthermore, the Probit model can gen-
erally be conceptualised as a latent variable model,
the latent variable y∗ in our application being text
complexity. By setting a threshold γ = −α and
denoting the two binary outcomes as 1 and 2, the
Probit model can instead be expressed as

yi =

{
2 if y∗i > γ

1 otherwise
where y∗i = xT

i β + ϵi

(2)
where y∗i represents the value of the latent vari-

able and ϵi is the error term for the ith observation.
Under this interpretation, we can view the Probit
model as a linear regression over an unobserved,
or latent, real-valued variable which underlies the
assigned labels in the classification problem. If
class 1 represents ”easy to read” and class 2 ’not
easy to read’, this can be expressed as ”if the com-
plexity of a text is above a certain threshold, it
should be classified as ’not easy to read’, other-
wise it should be classified as ’easy to read’”.

This latent variable formulation can be gener-
alised to the case of an ordinal response variable
with possible outcomes C1...Cm by introducing
further thresholds γ1...γm−1 giving rise to the Or-
dered Probit model:

yi =





C1 if y∗i ≤ γ1,

C2 if γ1 < y∗i ≤ γ2,
...
Cm if y∗i > γm−1

(3)

where y∗i is the same as in Equation 2.
The latent variable interpretation of Probit mod-

els lends itself especially well to a Bayesian ap-
proach. Essentially, a Bayesian approach entails
declaring a prior belief, which is then updated us-
ing Bayes Theorem as new evidence is gathered,

generating a posterior belief based on that evi-
dence. These beliefs are commonly referred to as
simply the prior and the posterior. Bayes’ theorem
can be applied for inference of the posterior prob-
ability distribution of the coefficients vector β and
thresholds γ according to the following formula-
tion

P (β,γ | y,X) ∝ P (y | β,γ,X)P (β,γ), (4)

where X = (x1, ...,xn)
T , y = (y1, . . . , yn)

T ,
P (β),γ is the prior and P (y | β,X) is the like-
lihood function. Although this posterior distri-
bution is mathematically intractable, the Markov
Chain Monte Carlo (MCMC) simulation can be
used to estimate the posterior. Gibbs samplers for
both the binary (Albert and Chib, 1993) and ordi-
nal (Cowles, 1996) versions are well established.

The goal of the sampling process for the for-
mulation in Equation 4 is to approximate the joint
posterior distribution of β by estimating marginal
distributions of individual variables.

4.2 The Multi-Scale Probit model

The formulation for the Probit model as a model
for the latent variable in Equation 3 can be ex-
tended further to fit binary and non-binary data
labelled on different scales. Let us take a practi-
cal example to demonstrate these characteristics.
Say we have books sourced from two publishers,
A and B. Publisher A labels its books on a scale
from ’easy’, ’medium’ to ’hard’ based on readabil-
ity. Publisher B labels its books on a scale from
1 to 5, also based on readability. The publishers
use unknown and possibly different methods for
measuring readability, the difference in complex-
ity between each level within either scale is un-
known, and there is no known function translating
between the scales. The only assumption we make
is that the labels are ordered and that they consti-
tute measures of the same phenomenon, i.e. text
complexity. The Multi-Scale Probit model uses
one set of thresholds to discriminate between lev-
els for each scale such that γ(s) is the set of thresh-
olds for scale s. Using our example, the two sets
would be γ(A) = {γ(Aeasy), γ(Amedium), γ(Ahard)} and
γ(B) = {γ(B1), γ(B2), γ(B3), γ(B4), γ(B5)}. Further-
more, the model fits a single latent variable y∗ to
all data, meaning that only a single coefficient vec-
tor β is estimated. The Multi-Scale Probit model
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can therefore be expressed as

yi =





C
(si)
1 if y∗i ≤ γ

(si)
1 ,

C
(si)
2 if γ(si)1 < y∗i ≤ γ

(si)
2 ,

...

C
(si)
m if γ(si)m−1 < y∗i

(5)

for observation i = 1, . . . , n, where y∗i is the
same as in Equations 2 and 3, the response label
yi is measured on scale si, and C

(si)
1 . . . (C

(si)
m de-

notes the labels for scale si. The complete pos-
terior distribution of the joint is estimated using
a variation of the Gibbs sampling algorithm pro-
posed by Cowles (1996) for the Ordinal Probit
model. The conditional posteriors for all sets of
γ(s), β and the latent variable y∗ can be sam-
pled through the process described above. The la-
tent variable estimated by the Multi-Scale Probit
model can be used to order data samples, enabling
total ranking of all data samples. Essentially, the
Multi-Scale Probit allows us to, from some num-
ber of disjunct and partially ordered sets, estimate
a total order on the union of all sets.

The applicability of the Multi-Scale Probit to
our domain has previously been investigated in
Falkenjack et al. (2018).

4.3 Measures for evaluation

Because the Multi-Scale Probit model can be used
for both classification and ranking, we want to
evaluate it using appropriate measures for each
purpose.

As the data we use are not balanced, i.e. there is
not a consistent number of observations per class,
straight accuracy would not be a suitable metric
if we consider the performance as equally impor-
tant for all classes. In such cases, it is common to
use the macro-averaged F1-score (Murphy, 2012,
p. 185). The F1-score of a single class is the har-
monic mean of the precision and the recall for that
class. The macro-averaged F1-score is the average
of the F1-scores for all classes. This value can be
used as an overall measurement of how well the
model performs in regards to classification.

The Multi-Scale Probit estimates a numeric la-
tent variable and can thus be viewed as a model for
ranking in addition to classification. We evaluate
this performance by computing the Kendall rank
correlation coefficient, τ , between the estimated
latent variable and the known observed variable.

Kendall’s τ assesses the ordinal association be-
tween two variables and gives a score between -
1 and 1 depending on the correlation. Since the
observed variable is an ordinal class, giving rise
to a large number of ties, we use a modified ver-
sion called Kendall’s τB specifically made to han-
dle such situations (Kendall, 1945).

Just as the F-measure uses the harmonic mean
between Precision and Recall, we can combine
the classification performance F1 and ranking per-
formance Kendall’s τB using the harmonic mean.
We use this as a combined performance metric for
both classification and ranking in our figures in
Section 7.

5 Data

The majority of data used in this research con-
sisted of books from a corpus called Nypon-Vilja,
consisting of books from Nypon och Vilja, the
largest Swedish publisher of easy-to-read litera-
ture for children, teenagers, and adults. Swedish
easy-to-read literature is catered to people with
reading difficulties, beginner readers, or non-
native readers learning Swedish.

Books from Nypon and Vilja are (generally)
aimed at two different target groups; Nypon at
’children and young’ and Vilja at ’young adults
and adults’. The publisher uses separate scales
(with their own naming schemes), each consisting
of 6 levels, to indicate how easy or difficult a book
is, where the first level (1 and X-Small) is the eas-
iest and the last level (6 and XX-Large) the most
difficult.

Before processing, all books were manually an-
notated based on their alignment with one of two
narrativity dimensions: informational and narra-
tive (McNamara, 2013). Informational text tends
to be non-fictional, written to inform about or ex-
plain a specific topic. Narrative text on the other
hand is typically fictional and story-driven. In or-
der to minimise the effects of variations in lan-
guage use that affect text complexity between di-
mensions of narrativity, only books classified as
narrative are used. Finally, as level 6 from Nypon
contained only 2 books, they were merged with the
books in level 5. This resulted in a dataset of 356
books with 5 levels in Nypon and 6 levels in Vilja,
summarised in Table 1.

The Stockholm-Umeå Corpus (Ejerhed et al.,
2006) (SUC) is a large collection of annotated
Swedish texts written in the 90’s. It contains
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Nypon Vilja
Level N samples Level N samples

1 48 X-Small 4
2 59 Small 14
3 68 Medium 20
4 46 Large 42
5 13 X-Large 38

XX-Large 4
Sum 234 122

Table 1: Number of data samples from each level.

texts in 10 categories including newspaper re-
portage, popular lore, and imaginative prose, writ-
ten for different audiences and with varying writ-
ing styles. The annotations contain information
about linguistic, structural, and functional infor-
mation. In this research, we used a free-for-
use bag-of-sentences version (SUCX 3.0) publicly
available from Språkbanken2. Thus, no text fea-
tures dependent on sentence order are included in
our analysis. Furthermore, in order to minimise
the effects of variations in language use that af-
fect text complexity between genres (Štajner et al.,
2012; Hiebert, 2012; Dell’Orletta et al., 2014),
only texts from the category ’imaginative prose’
were extracted, giving a total of 127 texts from
SUC. This category was assumed to contain texts
in a style the most similar to those extracted from
Nypon och Vilja, being non-informational. The
purpose of using SUC is to obtain a composition of
data at a level of text complexity above all books
from Nypon och Vilja. This is a key assumption
and is based on the rationale that texts from SUC
are written for typical adult readers and not with
the express purpose of being especially easy to
read, meaning text complexity can be assumed to
be higher compared to the books from Nypon och
Vilja.

To extract all necessary linguistic features, all
texts were processed using the StilLett API Ser-
vice (SAPIS) (Fahlborg and Rennes, 2016). The
API service allows for the tokenization, lemma-
tisation, part-of-speech tagging, and dependency
parsing of any text input. It also allows for text
complexity analysis through the SCREAM mod-
ule (Falkenjack et al., 2013) which computes re-
lated metrics.

2https://spraakbanken.gu.se/

6 Model implementation and evaluation

The Multi-Scale model was implemented using a
modified version of the framework developed by
Falkenjack (2018) and executed using R (version
3.6.3) with RStudio (RStudio Team, 2022). The
model uses a set of covariates as input. These co-
variates are the values of metrics extracted through
the data processing step resulting in a total of 47
features, c.f. (Falkenjack, 2018)

Data containing values for all covariates in the
feature set were split into 5 classes for the Nypon
scale and 6 classes for the Vilja scale ordered ac-
cording to their levels. The data were then first
split into training and test sets 500 times, using
different ratios for training and test data, creating
500 models. The training data were used to esti-
mate the full joint posterior distribution described
in Section 4.2 through sampling according to the
scheme described in Falkenjack (2018). This step
was completed to evaluate the performance of the
models. Then, instead of splitting the data into
training and test sets, all data were used to run 20
chains of the Gibbs sampler resulting in a com-
bined set of samples of a full posterior distribution
of the entire dataset. The number of chains was
based on the number of CPU cores available, us-
ing one core per chain to speed up the sampling
process.

Furthermore, the Multi-Scale model by defini-
tion uses multiple scales, meaning the posterior
distribution is sampled using data from both Ny-
pon and Vilja. However, since the Multi-Scale
Probit is a generalised version of an Ordered Pro-
bit model, which uses only one scale, its perfor-
mance on either scale can be compared with a tra-
ditional Ordered Probit sampled using data from
only that dataset. Such models used the same im-
plementation as the Multi-Scale model, but using
one scale at a time. These models will be referred
to as Single Scale models.

After completing the sampling processes, parts
of the resulting posterior distributions were visu-
alised. The posterior was also used for classifica-
tion and ranking, where the performance was eval-
uated by computing values for several evaluation
metrics. For all evaluation metrics above, a higher
positive value indicates better performance. For
visualisation purposes and to enable easier com-
parison between model distributions, mode val-
ues are also plotted. The mode corresponds to the
point with the highest probability density of a dis-
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tribution, i.e. equivalent to the value that appears
most frequently in a discrete probability distribu-
tion.

7 Model performance

The data was randomly separated into 500 dif-
ferent permutations of training and test data, and
models were trained and evaluated for each such
permutation. To assess whether one model gen-
erally outperforms the other we compute the dif-
ference between the posterior mean performance
(F1-scores and Kendall’s τB correlations, respec-
tively, as well as the harmonic mean of them) be-
tween the models for each permutation. Finally,
to further examine how well the models perform
given varying amounts of training data, two differ-
ent split ratios were used: 2/3 training and 1/3 test
data, and vice versa.

With 2/3 of the data used for training, the mean
posterior modes of the performance metrics F1

and Kendall’s τB can be seen in Table 2.

F
(M)
1 F

(S)
1 τ

(M)
B τ

(S)
B

Nypon 0.35 0.35 0.45 0.45
Vilja 0.27 0.4 0.25 0.27

Table 2: Model performance using 2/3 of the data
for training.

We can see that the choice of model makes lit-
tle difference to the performance on the Nypon
dataset but has a noticeable impact for the Vilja
dataset.

Direct comparison of the models is done by
computing the difference of the posterior mean F1

and Kendall’s τB for each model over the 500 data
permutations. This shows that the Multi-Scale
model outperforms the Single Scale model with
respect to the F1-score 54.4% of the time on the
Nypon dataset and 73.4% of the time on the Vilja
dataset. The same comparison of Kendall’s τB
show that the Multi-Scale model is better 62% of
the time on the Nypon dataset and 89.2% of the
time on the Vilja dataset. Figure 1 plots the distri-
bution of differences in the harmonic mean of F1-
score and Kendall’s τB between the models over
all 500 data permutations, showing that the Multi-
Scale model is better in 58.4% and 85.4% of cases
for Nypon and Vilja respectively when both perfor-
mance metrics are considered.

When the ratio of training to test data is re-
versed (i.e. 1/3 of the data used for training, the

−0.10 −0.05 0.00 0.05 0.10
Nypon

Single Scale (41.6 %)
Multi−Scale (58.4 %)

−0.4 −0.2 0.0 0.2 0.4
Vilja

Single Scale (14.6 %)
Multi−Scale (85.4 %)

Figure 1: The posterior distribution for the differ-
ence in posterior harmonic mean of F1-score and
Kendall’s τB between the Multi-Scale and Single
Scale models. (2/3 of the data used for training.)

rest for testing), we see similar differences in over-
all performance on the Vilja dataset but now, the
the difference in overall performance on the Nypon
also shows a marked difference. Figure 2 illus-
trates this for the harmonic mean of F1-score and
Kendall’s τB . However, as expected, the perfor-
mance of both models is slightly lower with mean
posterior modes, as seen in Table 3.

F
(M)
1 F

(S)
1 τ

(M)
B τ

(S)
B

Nypon 0.3 0.29 0.33 0.3
Vilja 0.25 0.24 0.3 0.24

Table 3: Model performance using 1/3 of the data
for training.

This implies that the Multi-Scale model is espe-
cially useful when the availability of training data
is limited.

Meanwhile, Figure 2 shows that the Multi-Scale
model is better in 78.6% and 84.2% of cases for
Nypon and Vilja respectively when both perfor-
mance metrics are considered.

To summarise, the results show that the Multi-
Scale model generally outperforms the Single
Scale model on both datasets, particularly on the
Vilja texts. Furthermore, this performance differ-
ence was greater when using a data split of 1/3
training data and 2/3 test data compared to a 2/3
training and 1/3 test data split. This implies that
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−0.1 0.0 0.1
Nypon

Single Scale (21.4 %)
Multi−Scale (78.6 %)

−0.3 −0.2 −0.1 0.0 0.1 0.2 0.3
Vilja

Single Scale (15.8 %)
Multi−Scale (84.2 %)

Figure 2: The posterior distribution for the differ-
ence in posterior harmonic mean of F1-score and
Kendall’s τB between the Multi-Scale and Single
Scale models. (1/3 of the data used for training.)

the relative improvement of the Multi-Scale Pro-
bit over the single scale Ordered Probit decreases
with the size of the dataset available for training
a single scale model. In other words, the Multi-
Scale Probit model is especially useful in contexts
with sparse and diverse data for training.

7.1 Results of data augmentation

Augmenting both scales with the SUC corpus
added an additional level to both scales above the
other levels. The results of models using 500 aug-
mented data sets with a data ratio of 2/3 training
and 1/3 testing show that the modes of the pos-
terior F1-score and Kendall’s τB show a marked
improvement with an augmented dataset as shown
in Table 4.

F
(M)
1 F

(S)
1 τ

(M)
B τ

(S)
B

Nypon 0.47 0.47 0.71 0.71
Vilja 0.4 0.32 0.7 0.6

Table 4: Model performance using 2/3 of the aug-
mented data for training.

Figure 3 shows that when considering both F1-
score and Kendall’s τB the Multi-Scale model out-
performs the Single Scale model most of the time
for both datasets.

Using 1/3 of the data for training and 2/3 for
testing, as shown in Table 5, reinforces what we

−0.08 −0.04 0.00 0.04 0.08
Nypon

Single Scale (45.2 %)
Multi−Scale (54.8 %)

−0.2 −0.1 0.0 0.1 0.2
Vilja

Single Scale (6 %)
Multi−Scale (94 %)

Figure 3: The posterior distribution for the differ-
ence in posterior harmonic mean of F1-score and
Kendall’s τB between the Multi-Scale and Single
Scale models. (2/3 of the augmented data used for
training.)

saw with the original data and with the 2/3 train-
ing ratio with augmented data. There is only a
small improvement on the larger Nypon dataset
but a more noticeable improvement on the smaller
Vilja dataset.

F
(M)
1 F

(S)
1 τ

(M)
B τ

(S)
B

Nypon 0.4 0.39 0.68 0.67
Vilja 0.35 0.33 0.68 0.56

Table 5: Model performance using 1/3 of the aug-
mented data for training.

Figure 4 again shows the Multi-Scale model
outperforming the Single Scale model most of the
time for both datasets.

The results show that, just as in the previous
section, the Multi-Scale model generally outper-
forms the Single Scale model, particularly when
tested on the smaller Vilja dataset, and that this
improvement is greater when reducing the ratio of
training data.

7.2 Results of regularisation

The regularisation process consisted of inspecting
the marginal posteriors for each of the original 47
features, removing features with a positive or neg-
ative influence certainty % below specific thresh-
olds (25%, 50% and 75%), and then resampling
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Single Scale (11.8 %)
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Figure 4: The posterior distribution for the differ-
ence in posterior harmonic mean of F1-score and
Kendall’s τB between the Multi-Scale and Single
Scale models. (1/3 of the augmented data used for
training.)

the posterior distributions with each of the three
reduced feature sets. The purpose of the regulari-
sation process was to examine whether the change
of feature set affects the predictive capabilities of
the models.

Using 500 data sets with a ratio of 2/3 train-
ing data and 1/3 testing data, the modes of the
posterior distribution of the harmonic mean align
nearly perfectly for both models across all three
feature sets when tested on the Nypon scale. On
the Vilja scale, the Multi-Scale model slightly out-
performs the Single Scale model across all feature
sets. Furthermore, the modes for both models in-
crease slightly between the first and second feature
sets when tested on both scales. On the Nypon
scale, there is an increase between the second and
third feature sets, but no noticeable increase when
tested on the Vilja scale.

The training/test split was again reversed (1/3
training, 2/3 test) on 500 reduced feature sets of
data. The performance results of the models show
that the modes of the posterior distribution of
the harmonic mean are marginally higher for the
Multi-Scale model compared to the Single Scale
model across all feature sets when tested on the
Nypon scale. On the Vilja scale, the difference in
modes between the two models is greater, approxi-
mately 0.1 higher for the Multi-Scale model across
all feature sets. Furthermore, the modes for both

models increase slightly between the first and sec-
ond feature set when tested on both scales, and a
larger increase between the second and final fea-
ture set when tested on the Nypon scale, but not
the Vilja scale.

8 Conclusion

The purpose of this research was to utilise the
Multi-Scale Probit model in order to enable a stan-
dardised ranking and classification of text com-
plexity, while also exploring how the model can
be optimised. The assessment of text complexity
can be used for a wide range of purposes, making
its development pivotal in the field of natural lan-
guage processing. The results from applying the
Multi-Scale Probit on easy-to-read Swedish books
have indicated that the model outperforms the Sin-
gle Scale model in nearly all cases of classification
and ranking, measured by F1-scores and Kendall
τB correlations. Furthermore, the results accen-
tuate how the output from the Multi-Scale Probit
model can be used in a simple manner to clas-
sify and rank new texts in the same domain, or
adapted to other domains by creating new mod-
els. Through data augmentation and feature reg-
ularisation, the model can be optimised in terms
of computational complexity and performance in
specific contexts. The ability of the Multi-Scale
Probit model to utilise data from different sources,
without the necessity of large data quantities per
category, enables assessments of text complexity
that have previously not been possible. This re-
search has contributed to the goal of developing
methods for classifying and ranking text complex-
ity, with the broader aim of creating a more acces-
sible society for readers with varying needs.
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Abstract

We present the Icelandic Standardization
Benchmark Set: Spelling and Punctuation
(IceStaBS:SP), a dataset designed to pro-
vide standardized text examples for Ice-
landic orthography. The dataset includes
non-standard orthography examples and
their standardized counterparts, along with
detailed explanations based on the official
Icelandic spelling rules. IceStaBS:SP aims
to support the development and evaluation
of automatic spell and grammar checkers,
particularly in an educational setting. We
evaluate various spell and grammar check-
ers using IceStaBS:SP, demonstrating its
utility as a benchmarking tool and high-
lighting areas for future improvement.

1 Introduction

Digital language infrastructure, not least for spell
and grammar checking, is a productive and grow-
ing field within Icelandic Language Technology.
Although various datasets have been produced,
which in turn have been used to develop and im-
prove spell and grammar checking software, there
is a lack of datasets which provide a 1:1 mapping
between spelling errors and formalized rules re-
garding standard orthography (spelling rules).

In this paper, we present the Icelandic Stan-
dardization Benchmark Set: Spelling and Punc-
tuation (IceStaBS:SP, Ármannsson et al. 2024), a
dataset of examples of text standardization along
with thorough explanations of how and why text
has been altered. The dataset is based on the of-
ficial spelling rules for Icelandic.1 Our goal is to
provide a standardized benchmark for evaluating
the performance of spell and grammar checkers,
thereby contributing to the improvement of digital
language tools for Icelandic.

1https://ritreglur.arnastofnun.is/

The paper is structured as follows: Section 2
provides an overview of related work in the field
of Icelandic spell and grammar checking, most im-
portantly existing datasets. Section 3 describes
the structure of the IceStaBS:SP dataset and the
methodology behind it. Section 4 outlines the
evaluation experiment we performed to gauge the
efficacy of the dataset as a benchmarking tool for
orthography. Section 5 presents the results of the
evaluation, Section 6 discusses the limitations of
our approach and Section 7 concludes the paper
with a discussion of the implications of our find-
ings and suggestions for future work.

2 Related Work

The most comprehensive single dataset in the field
of spell and grammar checking for Icelandic is
the Icelandic Error Corpus (IEC, Arnardóttir et al.
2021) and its subsidiary corpus for errors made
by L2 speakers (Glišić and Ingason, 2021). It
uses a fine-grained error categorization system and
has been used for training and evaluating spell
and grammar checkers, specifically the rule-based
GreynirCorrect (Óladóttir et al., 2022).

The Grammatical Error Correction Test Set
(GECTS, Arnardóttir et al. 2024b), a hand-
annotated dataset of Icelandic text with various
spelling and grammatical errors, is annotated on
the document level as opposed to the IEC, where
each individual error is annotated. This, along
with a more general error categorization sys-
tem, makes it more suitable for evaluating recent
sequence-to-sequence error correction models by
testing the models’ context awareness on larger
texts.

3 Suggesting Standardized Orthography

We present the Icelandic Standardization Bench-
mark Set: Spelling and Punctuation (IceStaBS:-
SP), a dataset of text examples containing non-
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standard orthography and their standardized coun-
terparts. Each item in our set corresponds to an
entry in the official spelling rules for Icelandic,
published by the Icelandic Language Council and
applied in Icelandic schools. Each item contains
three examples of standardized text, along with
thorough explanations of how and why each text
has been altered. The dataset is meant to serve as
a key component in the development of automatic
spell checking in an educational setting, providing
handcrafted explanations which can be expanded
or used for instruction tuning.

Both the text examples showing non-standard
orthography and the additional explanations are
constructed and reviewed by the authors of this
paper, all of whom have a background in Ice-
landic linguistics and one of whom is one of the
authors of the most recent version of the offi-
cial spelling rules. The text examples each show
exactly one non-standard text feature in order to
clearly demonstrate the applicable standardization
and in order to check whether that feature has
been correctly captured by a spell-checking sys-
tem. Depending on the orthographic issue being
demonstrated, the text examples range from very
short and simple sentences to short paragraphs,
e.g. to display the prescribed use of punctuation
between whole sentences. They are mostly syn-
thetic (and partly based on the examples included
in the publication of the spelling rules themselves)
but where possible, we have extracted real-world
examples from the IEC using the error codes in
that corpus. This authentic approach was, how-
ever, limited by the need to include only one ex-
ample of non-standard orthography in each exam-
ple, so some of those examples have been slightly
altered.

The official spelling rules consist of 33 main
chapters and numerous subchapters. Some sub-
chapters, as well as all of chapters 30 and 33,
are ignored in our set as they are not applicable
in the context of automatic correction of spelling
and grammar (e.g. some contain only general dis-
cussion of phenomena, rather than concrete exam-
ples). In other cases, subchapters had to be split
into further subsections for our purposes as they
dealt with multiple distinct features. These are
marked with “(a)”, “(b)”, etc. in IceStaBS:SP. In
this way, we define a total of 247 rules over 31
chapters.

For each of these 247 rules, our dataset contains

an entry labeled with a distinct number and con-
sisting of the following parts:

• Short suggestion: A suggested format for
displaying a correction made by a spell-
checker, containing a brief summary of the
applicable spelling rule.

• Long suggestion: A more detailed descrip-
tion of the applicable rule, complete with a
URL to the relevant chapter of the official
spelling rules (in a few cases, links to mul-
tiple rules are included).

• Examples: Three examples of a short text
containing the relevant issue, which show a
potential correction in a hypothetical spell-
correction interface according to the ‘short
suggestion’ format. The proposed changes
are shown both in isolation and in the context
of the whole text.2

• Error Code: The relevant error code in the
IEC.

• URL: The URL of the relevant section of the
official spelling rules.

To illustrate how this information is structured
in the IceStaBS:SP dataset, the entry for rule 1.2.1
(a) is shown in Figure 1.

The aim of the suggestions and explanations in
our set is to provide further assistance to potential
future users of an automatic spellchecker, not least
young people and second language learners of Ice-
landic. Therefore, we try to keep our explanations
accessible to the average speaker, with as little lin-
guistic terminology as possible (especially in the
short suggestions).

To as great an extent as possible, we also try
to include helpful generalizations in the short sug-
gestion format as opposed to only word-specific
corrections. An example would be <villa> á lík-
lega að vera með stórum staf, <leiðrétt>, þar sem
það er örnefni ‘<error> should likely be written
with a capital initial letter, <correction>, as it is
a place name’, rather than simply ‘<error> should
likely be written with a capital initial letter’. This
is sometimes made difficult, however, by rules that
can apply to many different scenarios or are sim-
ply too complex to sum up in one short sentence.

2In a few cases, these entries will be identical. This is
mostly in the case of punctuation, e.g. where rules on appro-
priate marking of a subclause need to take into account the
whole sentence.
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"1.2.1 (a)": {
"short_suggestion": "<villa> á líklega að vera með stórum staf, <leiðrétt>, þar sem það kemur

á eftir punkti.",
"long_suggestion": "Stór stafur er alltaf ritaður í upphafi máls og í nýrri málsgrein

á eftir punkti.
Sjá ritreglu 1.2.1 (https://ritreglur.arnastofnun.is/#1.2.1).",

"examples": {
"1": {

"original_sentence": "Afi og amma ætla að koma í heimsókn. þau koma bráðum.",
"standardized_sentence": "Afi og amma ætla að koma í heimsókn. Þau koma bráðum.",
"suggestion": "<þau> á líklega að vera með stórum staf, <Þau>, þar sem það kemur

á eftir punkti.",
"original_part": "þau",
"standardized_part": "Þau"

},
"2": {

"original_sentence": "Ráðgert er að nýtt hús rísi í vor. vinnan við það er þó ekki hafin.",
"standardized_sentence": "Ráðgert er að nýtt hús rísi í vor. Vinnan við það er þó ekki hafin.",
"suggestion": "<vinnan> á líklega að vera með stórum staf, <Vinnan>, þar sem það kemur

á eftir punkti.",
"original_part": "vinnan",
"standardized_part": "Vinnan"

},
"3": {

"original_sentence": "Margt skiptir máli þegar skáldsögur eru skrifaðar. málfar er t.d.
mikilvægur þáttur.",

"standardized_sentence": "Margt skiptir máli þegar skáldsögur eru skrifaðar. Málfar er t.d.
mikilvægur þáttur.",

"suggestion": "<málfar> á líklega að vera með stórum staf, <Málfar>, þar sem það kemur
á eftir punkti.",

"original_part": "málfar",
"standardized_part": "Málfar"

}
},
"error_code": "lower4upper-initial",
"ritreglur_url": "https://ritreglur.arnastofnun.is/#/1.2.1 (a)"

}

Figure 1: JSON structure of the IceStaBS:SP dataset, showing the entry for rule 1.2.1 (a), which deals
with capitalization after a full stop. The text in the ‘short suggestion’ slot says: ‘<error> should probably
be capitalized, <correction>, as it follows a full stop.’ The text in the ‘long suggestion’ slot says: ‘A
capital letter is always used at the start of a text and the beginning of a new sentence following a full
stop. See spelling rule 1.2.1 [. . . ].’ Examples 1–3 then show text in Icelandic where the start of a sentence
has not been capitalized, with suggested corrections in the ‘suggestion’ slot presented according to the
‘short suggestion’ format.

4 Applying IceStaBS:SP in Evaluation

To gauge the efficacy of the IceStaBS:SP dataset
as a benchmarking tool for orthography, we per-
formed an evaluation experiment, where various
spell and grammar checkers for Icelandic were ap-
plied on our data and then evaluated statistically.
This serves two purposes.

Firstly, it allows us to evaluate the performance
of these tools on a standardized dataset, which can
be used to compare the tools to each other and,
preferably, to other benchmark sets. Secondly, we
standardize our methods for evaluating correction
tools on our benchmark set. The source code of
our evaluation methods is then made available on
GitHub3 for others to use on new tools, as well as
the output of the tools we use in our evaluation.

3https://github.com/
stofnun-arna-magnussonar/IceStabs-eval

4.1 Tools Evaluated

We intend our dataset to be applicable to any tool
which corrects errors in Icelandic text. With this
in mind, we selected 10 tools and models to test.
These include commercial and open-source soft-
ware, with a broad range of effectiveness, from
state-of-the-art to baseline tools.

Our first focus are tools which can be run pro-
grammatically. These were:

Byte-Level Neural Error Correction Model for
Icelandic (Ingólfsdóttir et al., 2023): A fine-tuned
ByT5-base Transformer designed for error correc-
tion in Icelandic text. It functions similarly to a
machine translation model, converting erroneous
Icelandic into correct Icelandic. We evaluate three
versions of this tool, each representing a succes-
sive update: 22-09, 23-12, and 24-03.

GreynirCorrect (Óladóttir et al., 2022): A rule-
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based spell and grammar checker for Icelandic.
The tool is based on Greynir (Þorsteinsson et al.,
2019), a syntactic parser for Icelandic. We eval-
uate the most recent version of this tool: version
4.0.0.4

Icelandic GPT-SW3 for Spell and Grammar
Checking (Arnardóttir et al., 2024a): A GPT-SW3
(Ekgren et al., 2022, 2024) model, fine-tuned on
Icelandic and particularly on the task of spell and
grammar checking. The experimental setup we
use is identical to the example given in the model’s
HuggingFace repository.5

Skrambi: A closed-source rule-based spell
checker for Icelandic.6

In addition to the tools which can be run pro-
grammatically, we evaluated four ‘manual’ tools,
i.e., tools which are first and foremost accessible
through an end-user platform of some kind. These
were:

Hunspell: An open-source spell checker and
morphological analyzer. The Icelandic language
rules7 for Hunspell are accessible via LibreOffice,
where Hunspell is the standard spell checker.

Google Docs Spelling and Grammar check:
Built-in spell and grammar checker of Google
Docs.8

Microsoft Editor: Built-in spell and grammar
checker of Microsoft Word.8

Ritvilluvörnin Púki: Proprietary spell and gram-
mar checker, specifically for Icelandic text.9

With this in mind, the total number of tools and in-
dividual correction models we evaluate is 10. Half
of these (5) are developed by Miðeind,10 a private
language technology company.

In our evaluation experiment, each tool is given
a simplified label, which we will use to refer to
them in the following sections. An alphabetic
overview of these labels is as follows:

4https://github.com/mideind/
GreynirCorrect

5https://huggingface.co/mideind/
icelandic-gpt-sw3-6.7b-gec/blob/main/
handler.py

6https://skrambi.arnastofnun.is
7https://github.com/nifgraup/

hunspell-is
8Publically available versions as of October 27, 2024.
9https://puki.is

10https://mideind.is

1. ByT5 (22-09)
2. ByT5 (23-12)
3. ByT5 (24-03)
4. Google Docs
5. GreynirCorrect
6. Hunspell
7. Ice-GPT-SW3
8. MS Word
9. Púki

10. Skrambi

4.2 Evaluation Metrics
We define three main metrics which can be used to
evaluate the performance of a spell and grammar
checker on our dataset:

Sentence-level accuracy: Direct comparison
between output sentences and standardized ver-
sions. A sentence is considered correct if the out-
put is identical to the standardized sentence.

Token-level F0.5 score: An F-score metric
modified for spell and grammar correction. F0.5 is
a weighted average of precision and recall, where
precision is given twice the weight of the recall. It
is included in the ERRANT toolkit (Bryant et al.,
2017) and was used in the CoNLL-2014 shared
task (Ng et al., 2014).

GLEU score: A modified version of the BLEU
score. BLEU is used to evaluate the quality of ma-
chine translation, while GLEU is used to evaluate
the quality of spell and grammar correction. It is
especially well suited for evaluating sequence-to-
sequence models, as it does not rely on error cate-
gories for evaluation (Napoles et al., 2015, 2016).

As the tools we evaluate are technically and
functionally diverse, it may be inferred that a given
metric may suit one tool better than another. This
is up to analysis, but in our overall evaluation
structure, we use all three metrics to evaluate all
tools.

5 Results

We evaluate the performance of the tools on the
IceStaBS:SP dataset using the three metrics de-
scribed above. The results are shown respectively
in Figures 2, 3, and 4.

5.1 Performance Per Tool
The tool with both the highest proportion of cor-
rect sentences, as shown in Figure 2, and the high-
est F0.5 score, as shown in Figure 3, is Miðeind’s
ByT5 (23-12) with 46.42% sentence accuracy and
a token-level F0.5 score of 0.70.
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Figure 2: Sentence-level accuracy of the tools
evaluated.

Figure 3: Token-level F0.5 scores of the tools eval-
uated.

Figure 4: Dataset-level GLEU scores of the tools
evaluated.

One possible limitation of the results described
here is that not all spell-checking software has
equal coverage when it comes to our predefined
rule chapters. In the case of MS Word, Google
Docs and Púki, various errors are not handled by
the spell-checking features of the platform, but
the respective autocorrect functionality of the plat-
form. This particular issue is beyond the scope of
our current evaluation but will hopefully be con-
trolled for in a future iteration.

We see substantial variance between the highest
scoring tools and the lowest. This is especially in-
teresting when real-world integration and use are
taken into account. Púki, the widely used spell-
checking tool for Icelandic (originally released
in 1987 and iterated upon since then), achieves
the lowest scores on our sentence correctness and
token-level F0.5 score metrics.

The leaders of the evaluation metrics are
the Miðeind ByT5 models, followed closely by
GreynirCorrect. On the one hand, it is interest-
ing that of the three ByT5 models, the newest
iteration (24-03) underperforms compared to the
previous one (23-12). On the other hand, all
the (comparably lightweight) ByT5 models, along
with the rule-based GreynirCorrect, outperform
the compute-heavy Ice-GPT-SW3 model.

As shown in Figure 4, the three ByT5 models
achieve the highest GLEU scores. It should be
noted that of the tools we evaluate, the ByT5 (24-
03) and Ice-GPT-SW3 models have previously
published GLEU scores: ByT5 (24-03) is reported
to achieve GLEU scores of 0.90 and 0.91 when
evaluated on the GECTS and IEC datasets, re-
spectively (Ingólfsdóttir et al., 2023). The GLEU
score for the Ice-GPT-SW3 when evaluated on the
GECTS is 0.93 (Arnardóttir et al., 2024a). These
numbers are different from our results, which may
reflect inherent differences in IceStaBS:SP, com-
pared to the GECTS and IEC datasets. This is not
totally unexpected, as the other two datasets are
corpora, which IceStaBS:SP is not. Further analy-
sis will shed light on these differences.

5.2 Performance Per Rule Chapter

As is to be expected, as the phenomena dealt with
in some chapters are more common or straight-
forward than in others, there is considerable vari-
ance in tool performance across different chapters
of the spelling rules. The highest scores recorded
for each chapter are shown in Tables 1 and 2, in
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terms of F0.5 score and sentence accuracy, respec-
tively. In some cases, the best-performing tools
correct each example in a chapter exactly as in-
tended. These include chapters 9 and 18, both of
which have only three example texts in our dataset
and deal with common and fairly straightforward
issues (chapter 9 concerns words such as hvar
(‘where’) that are spelt with hv and not kv, despite
the h invariably being pronounced [kh] and not [h]
by most speakers, and chapter 18 deals with dou-
ble consonant stems).

More pleasantly surprising is the excellent max-
imal performance achieved on chapters 6 (11 out
of 12 examples correct), 16 (11 out of 12 cor-
rect) and especially 4 (21 out of 21 examples cor-
rect). The top-scoring model for the last of these
chapters proved to be the rule-based and compu-
tationally light Skrambi, which overall placed 8th
out of the ten models in terms of token-level F0.5

score, behind all neural models. It is worth not-
ing that chapter 4 concerns the spelling of vowels
before the consonants clusters ng and nk, where
letters that typically are used to represent monoph-
thongs are pronounced as diphthongs (e.g. banki
(‘bank’) instead of *bánki, even though the rel-
evant sound, [au], is almost always represented
with á and not a) but the opposite can also occur
without any cues in pronunciation in some excep-
tions (e.g. jánka (‘agree’), derived from já (‘yes’),
or rángirni (‘greed’), a compound formed by rán
(‘robbery’) and girni (‘desire’)). This is an exam-
ple of a scenario that seems to lend itself better to
models that are rule-based or include hard-coded
exceptions, as opposed to neural models which
might possibly be thrown off the trail of the over-
arching rule by exceptions found in the training
data.

On the other hand, for chapters 23 (which cov-
ers semicolons) and 27 (which covers parentheses
and square brackets), not a single tool corrected
a single example in accordance with the spelling
rules. Both those rules fall under the punctua-
tion part of the spelling rules, which somewhat
predictably yields generally worse results than the
spelling portion (chapters 1 through 20). After
all, rules on punctuation often depend on some
fairly abstract semantic features (e.g. from rule
23.1: ‘A semicolon represents a stronger break
in a text than a comma but a lesser break than a
full stop’) and deviations from the standard do not
result in non-words, as deviations from spelling

rules might.

Ch. Best Tool F0.5 No. Ex.
1 greynir 0.46 153
2 byt5-23-12 0.60 60
3 skrambi 0.83 12
4 skrambi 1 21
5 word 0.56 75
6 google 0.96 12
7 greynir 0.66 21
8 greynir 0.74 39
9 byt5-22-09 1 3
10 greynir 0.62 21
11 byt5-22-09 0.66 3
12 byt5-23-12 0.85 30
13 google 0.50 12
14 byt5-24-03 0.8 30
15 byt5-22-09 0.57 36
16 greynir 0.91 12
17 hunspell 0.67 9
18 byt5-22-09 1 3
19 google 0.74 21
20 hunspell 1 6
21 ice-gpt-sw3 0.28 42
22 byt5-23-12 0.54 24
23 None 0 3
24 byt5-24-03 0.16 6
25 byt5-22-09 0.66 3
26 ice-gpt-sw3 0.38 33
27 None 0 6
28 byt5-22-09 0.5 6
29 byt5-22-09 0.27 18
30 ice-gpt-sw3 0.17 9
31 byt5-23-12 0.33 12

Table 1: F0.5 score Leaderboard for IceStabs:SP
Evaluation, for each chapter in the spelling rules.

6 Limitations

There are various aspects of the IceStaBS:SP
dataset that could be improved in future iterations.
These range from superficial to inherent issues, the
solutions to which will need further work and dis-
cussion.

As shown in Figure 5, even though the IceS-
tabs:SP data is organized into 31 distinct chapters
(reflecting the 33 chapters of the source material),
the distribution of examples across these chapters
is not uniform. This is due to the fact that some
chapters cover more common and straightforward
spelling rules, while others deal with more com-
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Ch. Best Tool Score Total Ratio
1 byt5-23-12 68 153 44.44%
2 byt5-22-09 34 60 56.66%
3 skrambi 10 12 83.33%
4 skrambi 21 21 100%
5 word 40 75 53.33%
6 byt5-23-12 11 12 91.66%
7 greynir 14 21 66.66%
8 greynir 28 39 71.79%
9 byt5-22-09 3 3 100%
10 google 12 21 57.14%
11 byt5-22-09 2 3 66.66%
12 byt5-22-09 25 30 83.33%
13 greynir 6 12 50%
14 byt5-23-12 23 30 76.66%
15 byt5-22-09 20 36 55.55%
16 greynir 11 12 91.66%
17 hunspell 5 9 55.55%
18 byt5-22-09 3 3 100%
19 google 15 21 71.42%
20 hunspell 6 6 100%
21 ice-gpt-sw3 12 42 28.57%
22 byt5-23-12 13 24 54.16%
23 None 0 3 N/A
24 byt5-24-03 1 6 16.66%
25 byt5-22-09 2 3 66.66%
26 ice-gpt-sw3 12 33 36.36%
27 None 0 6 N/A
28 byt5-22-09 3 6 50
29 byt5-22-09 5 18 27.77%
30 greynir 2 9 22.22%
31 byt5-23-12 4 12 33.33%

Table 2: Sentence-level Accuracy Leaderboard for
IceStabs:SP Evaluation, for each chapter in the
spelling rules.

plex, subjective or less frequent issues. As a result,
the dataset contains a larger number of examples
for the more common rules, which may skew the
evaluation results towards these chapters. In short,
not all chapters of the Icelandic spelling rules are
created equal.

Chapters 1, 2, and 5 have significantly more en-
tries than the other chapters in the dataset, with
chapter 1 (use of upper and lower case letters at
the beginnings of words) being particularly promi-
nent. This discrepancy is due to the fact that
these chapters cover fundamental and frequently
encountered spelling rules in Icelandic orthogra-
phy.

Figure 5: Number of example sentences per main
chapter in the IceStaBS:SP dataset.

On the opposite end of this spectrum are chap-
ters 9, 11, 18, 23 and 25, which all have a sin-
gle rule entry each (giving 3 examples per chap-
ter in the overview in Figure 5). Even though the
dataset structure and evaluation procedure treats
these chapters as equal to the others, they are not
equal in terms of the number of examples.

Currently, the IceStaBS:SP dataset only allows
for a single standardized suggestion for each ex-
ample. This means that the dataset does not ac-
count for the possibility of multiple correct solu-
tions to a given spelling or grammar issue. As
there are sometimes more than one correct way
to write something according to the spelling rules,
some entries in our dataset should allow for mul-
tiple possible correct alterations. An example
would be some non-standard way of writing a spe-
cific time, which could be corrected to e.g. ‘2.30’
or ‘2:30’ as both a full stop and a colon are pos-
sible ways of separating hours from minutes, ac-
cording to spelling rules 22.5 and 29.5, respec-
tively. Even though the number of these occur-
rences is low (variation is found in about 20 rules
out of 247), this is a limitation that will be ad-
dressed in future iterations of the dataset.

34



7 Conclusions and Future Work

We have presented the IceStaBS:SP dataset,
a comprehensive benchmark set for Icelandic
spelling and punctuation. The dataset is based on
the official spelling rules for Icelandic and pro-
vides standardized suggestions for a wide range of
spelling and punctuation issues. As such, it is the
first of its kind for Icelandic.

We have evaluated the performance of ten spell
and grammar checkers on the dataset, using three
main metrics: sentence-level accuracy, token-level
F0.5 score, and GLEU score. The results are
broadly in line with expected performance, which
is encouraging for the utility of the dataset as a
benchmarking tool.

Further work is needed to address limitations in
the dataset and explore additional evaluation met-
rics to provide a more comprehensive assessment
of spell and grammar checkers for Icelandic.
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Abstract

This paper introduces a linguistic bench-
mark for Icelandic-language LLMs, the
first of its kind manually constructed by
native speakers. We report on the scores
obtained by current state-of-the-art mod-
els, which indicate room for improvement,
and discuss the theoretical problems in-
volved in creating such a benchmark and
scoring a model’s performance.

1 Introduction

Large Language Models (LLMs) have in the last
few years become near ubiquitous in the field of
Language Technology (LT) and in their wake fol-
lows a growing need to test their capabilities on all
kinds of tasks, such as language understanding and
generation, mathematics, programming etc. As
English is the dominant language in the field and
the biggest source of training data for these mod-
els, it is only natural that the principal benchmarks
for the models (translations aside) also focus on
English. However, it is vital to also evaluate the
capabilities of the models for lower-resource lan-
guages.

We introduce a standard benchmarking dataset
(Ármannsson et al., 2024) to evaluate LLMs’
grammatical ‘knowledge’ and linguistic accuracy
for Icelandic, a lower-resource language. Such
benchmarks can help LLM developers to improve
their models’ Icelandic proficiency in a measur-
able way and provide researchers with further in-
sight into these models’ output patterns, limita-
tions and unexpected ‘behaviour’. As far as the
authors are aware, this is the first benchmark of
its kind specifically constructed for Icelandic by
native speakers and experts in linguistics and LT
(see Section 2).

Although the models’ capabilities in Icelandic
are under scrutiny, we use English for all of

our prompts in order to facilitate future cross-
linguistic research. As one reviewer points out, it
might be interesting to contrast these results with
the same prompts in Icelandic, but we leave that
for future work. We do not test for proficiency
in standard vs. non-standard Icelandic, for in-
stance the widespread use of dative instead of the
standard accusative as the subject case of vari-
ous psych verbs, like langa ‘want’ or vanta ‘lack,
need’, i.e. mér [dat.] langar instead of mig [acc.]
langar ‘I want’. We rather aim to focus on fea-
tures which should be unanimously agreed to be
grammatical or ungrammatical by native speakers
of Icelandic.1

The published benchmark set contains 1160
hand-written items over 19 subcategories of syn-
tax, morphology and semantics, tested with five
different methods (see Table 1). We also include a
small set of 102 translation tasks to test a model’s
language understanding and grammatical capabil-
ities in producing Icelandic text.

2 Related Work

In constructing our dataset, we partly look to simi-
lar linguistic benchmarks for LLMs that have been
constructed for English. Warstadt et al. (2020)’s
Benchmark of Linguistic Minimal Pairs for En-
glish (BLiMP) is perhaps the most commonly
cited example. It is based around 67,000 mini-
mal pairs, where one example is considered gram-
matical and the other ungrammatical, and mod-
els are tasked with ‘judging’ the grammatical ac-
ceptability of each sentence. (As this was be-
fore instruction-tuned models like ChatGPT-3 and
the tendency towards closed black-box models,

1A comparison study of native human speakers, in order
to confirm or challenge some of the assumptions made in the
construction of this set, is currently a work in progress. Ini-
tial results, focusing only on gender agreement, indicate ef-
fectively unanimous native speaker preference for the correct
answers in this benchmark and rejection of the incorrect ones.
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Method Category No. of items
Sentence grammaticality check (yes/no)* Simple bad/good sentences 40

Attributive agreement 88
Predicate agreement 28
Word order 28
Verb agreement 28
Subject case 28
Island effect sentences 80
wh-movement 20
Topicalization 32
Gapping 120
Reflexivization 40

Well-formedness check of compound nouns (yes/no)* Word formation 280
Fill-in-the-blank Anaphoric reference 20

Coreference resolution 44
Wug test (past tense of verbs) 20

Fragment answering Fragment answers 40
Question answering Coreference resolution 44

Attributive agreement 30
Word sense disambiguation 150

Total 1160

Table 1: The breakdown of items in our main benchmark set. All items were created manually. For
the top two method types, marked with an asterisk, we also double the number of items in order to ask
the inverse question, i.e. “Is this sentence grammatically incorrect (vs. correct)?”. For the word sense
disambiguation task, we consider pairs of sentences that contain the same lexical form and we double
the number of items to ask the same question with the order of the sentence pairs reversed.

the authors simply compared the log probabili-
ties a model assigned to sentences, i.e. making
it easy to contrast how likely input sentence A was
compared to input sentence B for a given model.)
This general blueprint for constructing linguistic
benchmarks for LLMs has been widely followed,
for instance by the makers of the Zorro test suite
(Huebner et al., 2021) and the ScaLa linguistic ac-
ceptability dataset for Scandinavian languages (in-
cluding Icelandic) (Nielsen, 2023).

These test sets all use automatically constructed
examples, which makes it possible for the BLiMP
dataset, for example, to have 1,000 sentence pairs
for each of the 67 grammatical tasks tested. In
terms of size, our benchmark certainly pales in
comparison. On the other hand, it is possible for a
human to have an overview of it, whereas BLiMP
is simply too large and lower-quality pairs get lost
in the masses (see Vázquez Martínez et al. (2023)
for more detailed criticism). In this case, we find
our approach preferable, but we are also aware of
its drawbacks (see Bowman and Dahl (2021) for
arguments that “expert authorship” can be coun-
terproductive, when researchers have direct, fine-
grained control over the data, as it may intention-
ally or unintentionally lead to data “that is oriented
toward linguistic phenomena that are widely stud-
ied and widely known to be important to the task
at hand”).

As far as interesting theoretical work on the
linguistic capabilities and limitations of LLMs is

concerned, there has been an ongoing and inter-
esting debate between researchers that have used
two different approaches to evaluate models in
this regard. One group is represented by Dentella
et al. (2023), who use acceptability judgments,
widely used in traditional linguistic research, that
are elicited with prompts. The other group is rep-
resented by Hu and Levy (2023), who argue that
prompting is not a substitute for probability mea-
surements in LLMs and that such metalinguistic
judgments of acceptability presuppose a model’s
understanding of grammatical acceptability. Their
approach is to compare the log probabilities of a
model’s output on the grounds that this gives a bet-
ter idea of that model’s “linguistic generalization”.
As much as we would have liked to imitate this ap-
proach, it was simply not possible in our one-size-
fits-all setup, as closed models such as the ones
provided by OpenAI and Anthropic offer limited
or no access to their log probabilities.2

We take some inspiration from Weissweiler
et al. (2023), who test the morphological capa-
bilities of ChatGPT via a ‘Wug test’, where a
model is tasked with forming words from non-
sense root forms. We also build on the work
of Sigurðsson and Nowenstein (2023), who test

2At testing time, OpenAI only provided the option of re-
trieving the top 5 ‘logprobs’ for a models’s output, i.e. the top
5 most likely tokens, which we tested in a follow-up work to
this benchmark along with input log probabilities for models
where those probabilities were available (work in progress).
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the capabilities of GPT-4 in Icelandic, partly us-
ing methods we include in our benchmark set.
Lastly, the Icelandic LT company Miðeind main-
tains an LLM leaderboard on HuggingFace, where
a selection of LLMs are evaluated across six
tasks for Icelandic: a reduced Icelandic version
of Winogrande, grammatical error detection, in-
flection, Belebele (multiple-choice reading com-
prehension), machine-translated ARC-Challenge
(multiple-choice question answering) and an Ice-
landic WikiQA dataset.3

3 Benchmark Composition

The benchmark was created by the authors of
this paper, who have an academic background in
the study of Icelandic, theoretical linguistics and
LT. As already mentioned in Section 2, the point
of departure were similar linguistic benchmarks
for English, but we were also inspired by previ-
ous work and studies on Icelandic grammar; we
point out some references below, where applica-
ble. Some of the tasks can be applicable in a mul-
titude of languages (such as the sentence grammat-
icality check), whereas others are more specific to
Icelandic and languages that have more complex
morphology and a richer inflectional system than,
for instance, English (word formation, fill-in-the-
blank and fragment-answering). See Appendix A
for examples of each task.

3.1 Sentence Grammaticality Tasks

We test for acceptability of different syntactic vio-
lations, many of which are tested in similar bench-
marks for English. We do this by using grammat-
icality judgments and prompts of the form: “Is
the following Icelandic sentence grammatically
correct in Icelandic? <Example sentence in Ice-
landic.> Answer only with one word, yes or no.”
Others, such as violations of gender agreement,
are more tailored towards Icelandic grammar. To
try to control for possible yes/no biases, we ask the
inverse question (“[...] incorrect [...]”) for each
item. Grammaticality judgments have frequently
been used in Icelandic syntax research – see, e.g.,
Þráinsson et al. (2013).

3.2 Word-Formation Tasks

Similar to the sentence grammaticality tasks de-
scribed in Section 3.1, we ask about the well-

3https://huggingface.co/spaces/
mideind/icelandic-llm-leaderboard

formedness of compounds in which the first noun
has one of three suffixes, -un, -ing or -uð, all of
which are used in the genitive when they are part
of the first noun in a compound: “Is the following
compound word in Icelandic well-formed? <com-
pound> Answer only with one word, yes or no.”
As with the task in Section 3.1, we ask an in-
verse question, trying to control for yes/no biases.
For further reading on compounding in Icelandic,
see, e.g., Jónsson (1984), Rögnvaldsson (1990)
Bjarnadóttir (2005) and Harðarson (2016).

3.3 Fill-in-the-Blank Tasks

We include three different fill-in-the-blank tasks.
One tests an LLM’s ability in anaphoric reference:
“Fill in the blank in the following Icelandic sen-
tence with the correct pronoun: <Sentence with
a blank.> Answer only with one pronoun in Ice-
landic.” Another task looks at coreference reso-
lution in which the context names two individu-
als. The continuation of each sentence contains a
blank that refers to one of these individuals. The
third task tests the past-tense inflection of made-up
weak verbs in a Wug test (cf. the classic study by
Berko 1958) – for recent studies using Wug tests
with native speakers of Icelandic, see Björnsdóttir
(2023) and Nowenstein (2023).

3.4 Fragment-Answering Tasks

The question Who took my car? does not require
a whole sentence as a reply as we could answer
it with, e.g. a single name, such as Ann. This
is a fragment answer. The benchmark contains
40 wh-questions with context where the task is
to give a single-word answer: “Here is an Ice-
landic sentence, followed by a question: <Context
sentence.> <Question that refers to the context.>
Answer the question with only one word in Ice-
landic.” This task partly builds on previous work
on fragment-answering in native speakers of Ice-
landic (e.g. Sigurðsson and Stefánsdóttir 2014,
Sigurjónsdóttir and Nowenstein 2016 and Örnólfs-
dóttir 2017).

3.5 Question-Answering Tasks

The question-answering part includes direct ques-
tions on coreference resolution (“Which name
does the pronoun <pronoun> refer to in the fol-
lowing Icelandic sentence [...]”), attributive agree-
ment (“Which of the slash-separated options in
the following question forms part of a sentence
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Provider Model Score (%)
Anthropic claude-3-5-sonnet-20240620 77.24
Anthropic claude-3-opus-20240229 71.90
OpenAI gpt-4o-2024-08-06 72.59
OpenAI gpt-4-turbo 62.33
OpenAI gpt-4-0613 63.28
OpenAI gpt-4o-mini-2024-07-18 66.21

Meta Meta-Llama-3.1-70B-Instruct 61.21
Meta Meta-Llama-3.1-405B-Instruct 66.47

Google gemma-2-27b-it 59.57
Mistral AI Mixtral-8x22B-Instruct-v0.1 48.71

Qwen Qwen2-72B-Instruct 55.34
AI-Sweden gpt-sw3-20b-instruct 46.12
AI-Sweden gpt-sw3-20b-instruct-4bit-gptq 43.02

Table 2: Models tested and their overall scores.

that is grammatical in Icelandic [...]”) and word-
sense disambiguation (“Does the word tagged
with <i></i> in the following two Icelandic sen-
tences have the same meaning [...]”).

3.6 Translation Tasks

In addition to our main benchmarking set, we also
include a set of 102 translation-based tasks, which
contains both Icelandic sentences that should be
translated into English and vice versa. These tasks
are based on the assumptions that: a) Both current
and future state-of-the-art models for Icelandic
will be primarily trained on English text; and b)
A fair way to test understanding of some feature
of natural language is to ask the party in ques-
tion to rephrase it in another language in which
they are fluent. Our translation tasks are, as far as
we are aware, a novel method of assessing the lin-
guistic capabilities of LLMs (although similar to
linguistically-oriented test suites for benchmark-
ing machine translation systems, see e.g. Macke-
tanz et al. 2022).

For the translation from Icelandic to English,
we use new garden path sentences, which can
be used to check whether a model has success-
fully parsed the sentence or not. For example, for
the sentence Birta Líf og Heimir niðurstöðurnar
í næstu viku? (‘Will Líf and Heimir publish the
results next week?’), the word birta needs to be
read as a verb meaning ‘publish’ and not as the
woman’s name Birta in order for a reader to com-
prehend the sentence. If the name Birta appears
in the English translation, we argue the model has
not successfully parsed the sentence.

For translation from English to Icelandic, we
include sentences that test: a) Gender agree-
ment in the target output (e.g. for the source
sentence María is a good driver, the translation

of good should agree with the masculine bíl-
stjóri (‘driver’), rather than the feminine María
in order to form a grammatical sentence), and b)
Anaphoric reference in the target output (e.g. for
the source sentence The child poured the milk into
the cup and checked to see whether it had gone
sour, the pronoun it should be translated in the
feminine, hún, to refer to the milk rather than
the cup, bolli, which is a masculine noun in Ice-
landic). As far as the gender agreement is con-
cerned, all sentences have the same structure as
the example above (i.e. <name> is a <adjective>
<noun>) and we try throughout to select adjec-
tives and nouns that should ideally only have one
straightforward translation.

We emphasize that these tasks are not meant as
machine translation test sets but can serve as an in-
dicator of a model’s NLU performance and gram-
matical capabilities in producing Icelandic text.
The output needs to be manually examined, as
we do not include scripts for automatic evalua-
tion, which is why we keep these two tasks sep-
arate from the other tasks in our main benchmark.
We show the results of an automatic evaluation in
Section 4.2.

4 Current Model Performance

4.1 Main Benchmark Set

We show the results on our benchmark set for thir-
teen currently available LLMs to give an idea of
the state of the art for Icelandic.4 The models
we tested are shown along with overall scores in
Table 2; we show a further breakdown of scores
across individual tasks in Appendix B. Anthropic
and OpenAI models were accessed through their
respective APIs; the Meta, Google, Mistral and
Qwen models were all accessed through Together
AI’s API. We ran the quantized version of AI-
Sweden’s GPT-SW3 model locally and the non-
quantized variant through a dedicated Hugging-
Face endpoint.5 For the API requests, we used
default settings with two exceptions, setting the
temperature to 0 and restricting maximum output
tokens to 5 to try and keep the models’ output de-
terministic and brief.

4The models were chosen based on their standing accord-
ing to the Icelandic LLM Leaderboard hosted by Miðeind and
with the aim of including models from different providers.

5All tests were run on the 10th and 11th of October 2024,
except the two models from AI-Sweden which were tested on
the 10th and 13th of January 2025.
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Category Claude-3-5-Sonnet GPT 4-o
Garden path 51.7 56.7
Agreement 68.2 63.6
Anaphora 100.0 95.0
Total score 64.7 65.7

Table 3: The scores on our set of translation tasks.

The top three scorers overall, and the only mod-
els that record over 70% accuracy, are Claude-3-5-
Sonnet, GPT 4-o and Claude-3-Opus. Other mod-
els record between 43.02% and 66.47% accuracy,
indicating considerable room for improvement for
Icelandic-language LLMs. The scores vary con-
siderably, however, between different tasks, as
seen in Appendix B.

When scoring the outputs, we directly compare
the answers obtained from the models with our
reference answer but remove additional periods,
spaces and the like from correct answers. It could
therefore be argued that the scores we present
show the models’ performance in too favourable
a light (see discussion in Section 5). On the other
hand, for some tasks it could have been possible to
mark a greater variety of answers as correct than
we presently do. This is the case for coreference
resolution via the ‘Question-answering’ method,
where the models are prompted to name the noun
to which a particular pronoun refers. Accounting
for the complexities provided by the Icelandic case
system, we consider both the particular morpho-
logical form used in the example sentence and the
nominative form of the word (in those cases where
those two forms are different) to be correct.

4.2 Translation Task Subset

As previously stated, our set of translation tasks
calls for manual evaluation of a model’s output.
We therefore decide to score and show the re-
sults for only two models. We choose the two
highest-scoring models according to our results
in 4.1 (which gives us one model from each of
the two best-performing ‘families’ of models, An-
thropic’s Claude and OpenAI’s GPT). As seen in
Table 3, the models achieve very similar scores
overall, 65.7% for GPT 4-o and 64.7% for Claude-
3-5-Sonnet. Both the garden path sentences and
gender agreement tasks seem to present a chal-
lenge for these models but the anaphora resolution
tasks are near-maximum for both.

5 Limitations

The limitations are a few. Firstly, we tried to find
a suitable base prompt for each task that would be
understood in the same way by different models.
Even though we feel that the uniformness of the
resulting answers reflects that we succeeded in this
respect, we cannot be sure that some “fine-tuning”
of the prompts would not have yielded better re-
sults.

Secondly, although we tried to include clear in-
structions in English in the prompts on what the
output should be, such as “answer only with yes
or no”, there were some deviations in the answers.
These include correct answers in Icelandic, cor-
rect answers with an additional tail (e.g. “Yes.
The correct sentence”), answers that include a full
stop or other additional punctuation etc. To reduce
these deviations, we cleaned the model answers
for scoring. A correct answer in Icelandic, for in-
stance, was therefore considered correct, as well
as answers with a “tail” etc. Even though, as one
reviewer points out, post-processing methods are
fairly common practice and often used by LLM
evaluation frameworks such as Gao et al. (2024),
for human-alignment comparisons in LLMs, such
lenience has been criticized (Leivada et al., 2024),
on the grounds that a human would hardly respond
in such a way. We acknowledge this, but would
again like to stress that this could perhaps have
been avoided with more precise prompts.

It remains an open question how best to score
output. In our setup, a model’s answer that
matches our reference answer gets one point. An
answer that does not, gets none. It could be ar-
gued that this method does not highlight the dif-
ferences in performance between different models
sufficiently, as two models both get the same score
for a wrong answer if one outputs a single pro-
noun in Icelandic as prompted and the other out-
puts gibberish. In this regard, our benchmark per-
haps is better suited to measure the differences of
better-performing models than capturing the dif-
ferences between lesser models. We would like to
encourage the further development of open-source
models, which may require an evaluation that can
provide information on when one of two wrong
answers is more promising than another. Focus-
ing on open-source models would also allow one
to compare model output with input log probabili-
ties of the test examples, following the work of Hu
and Levy (2023). On the other hand, a more for-
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giving scoring metric, based on e.g. Levenshtein
distance, would simply not be applicable for our
benchmark as the difference between a correct an-
swer and an ungrammatical one is often only one
or two letters.

6 Conclusions

We have presented a standard benchmarking
dataset for evaluating the linguistic capabilities of
LLMs for Icelandic, the first of its kind. We pub-
lish the dataset openly and describe its construc-
tion in order to hopefully aid further work in this
respect for both Icelandic and Nordic NLP in a
wider sense. In order to show the current state of
the art for Icelandic, we show the results on our set
for a variety of currently available models, which
indicate considerable room for improvement for
some of the tested phenomena. We also discuss
some of the still-open questions regarding the best
methods for testing the language capabilities of
LLMs.
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A Main Benchmark Set Task Examples

A.1 Sentence Grammaticality Tasks

All prompts in this section are of the form: “Is
the following Icelandic sentence grammatically
correct in Icelandic? <Example sentence in Ice-
landic.> Answer only with one word, yes or no.”
Below we show examples for each category in
the sentence grammaticality tasks accompanied by
English glosses.

A.1.1 Simple Unambiguously
Grammatical/Ungrammatical
Sentences

(1) A simple ungrammatical sentence
Blístrum
whisper.1PL

þið
you.2PL

of
too

mjög?
very

(2) A simple grammatical sentence
Sólin
sun-the

skín.
shines

A.1.2 Attributive Agreement
(3) Violation

María
María(female-name)

er
is

góð
good.FEM

bílstjóri.
driver.MASC

(4) Correct version
María
María(female-name)

er
is

góður
good.MASC

bílstjóri.
driver.MASC

A.1.3 Predicate Agreement
(5) Violation

Þessar
these.FEM.PL

kvikmyndir
films.FEM.PL

eru
are

mjög
very

skemmtileg.
fun.FEM.SG/NEUT.PL

(6) Correct version
Þessar
these.FEM.PL

kvikmyndir
films.FEM.PL

eru
are

mjög
very

skemmtilegar.
fun.FEM.PL

A.1.4 Word Order
(7) Violation

Við
we

ekki
not

sáum
saw

þau
them

í
in

garðinum.
garden-the
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(8) Correct version
Við
we

sáum
saw

þau
them

ekki
not

í
in

garðinum.
garden-the

A.1.5 Verb Agreement
(9) Violation

Af
for

hverju
what

fór
went.1SG/3SG

þú
you.2SG

ekki
not

heim?
home?

(10) Correct version
Af
for

hverju
what

fórst
went.2SG

þú
you.2SG

ekki
not

heim?
home?

A.1.6 Subject Case
(11) Violation

Alexanders
Alexander.GEN

Daníels
Daníel.GEN

langar
wants

oft
often

í
in

bíó
cinema

um
on

helgar.
weekends

(12) Correct version
Alexander
Alexander.NOM/ACC/DAT
Daníel
Daníel.NOM/ACC/DAT

langar
wants

oft
often

í
in

bíó
cinema

um
on

helgar.
weekends

A.1.7 Islands
(13) Violation

Hvaða
what

próf
exam

gefur
gives

kennarinn
teacher-the

Evu
Eva

góða
good

einkunn
grade

ef
if

hún
she

tekur?
takes

(14) Correct version
Hvaða
what

próf
exam

óttast
fears

kennarinn
teacher-the

að
that

Eva
Eva

taki
takes

ekki?
not

A.1.8 Wh-movement
(15) Violation

Hvern
who.ACC

taldir
thought

þú
you

rétt
right

að
to

gefa
give

hærri
higher

laun?
salary

(16) Correct version
Hverjum
who.DAT

taldir
thought

þú
you

rétt
right

að
to

gefa
give

hærri
higher

laun?
salary

A.1.9 Topicalization
(17) Violation

Þessari
this.DAT

bók
book

gætir
could

þú
you

lesið.
read

(18) Correct version
Þessa
this.ACC

bók
book

gætir
could

þú
you

lesið.
read

A.1.10 Gapping
(19) Violation

Þú
you

borðaðir
ate

kökuna
cake-the.ACC

og
and

ég
I

kleinuhringurinn
donut-the.NOM

(20) Correct version
Þú
you

borðaðir
ate

kökuna
cake-the.ACC

og
and

ég
I

kleinuhringinn.
donut-the.ACC

A.1.11 Reflexivization
(21) Violation

Hún
she

vonar
hopes

að
that

ég
I

flýti
hurry

sér.
REFL.DAT

(22) Correct version
Ég
I

vona
hope

að
that

hún
she

flýti
hurries

sér.
REFL.DAT

A.2 Word-Formation Tasks

All prompts in this section are of the form: “Is
the following compound word in Icelandic well-
formed? <compound.> Answer only with one
word, yes or no.” The first part of each compound
is a noun ending in -un, -ing or -uð, all of which
are used in the genitive when they are part of the
first noun in a compound.

(23) Violation
Sýkingþreyta.
infection.NOM-fatigue

(24) Correct version
Sýkingarþreyta.
infection.GEN-fatigue

A.3 Fill-in-the-blank Tasks

The prompts for the anaphoric reference task in
this section are of the form “Fill in the blank in
the following Icelandic sentence with the correct
pronoun: <Example sentence containing a blank.>
Answer only with one pronoun in Icelandic.” The
same prompt is used for the coreference resolution
task, except the models are prompted for a name or
noun instead of a pronoun. The prompts used for
the Wug tests were as follows: “Fill in the blank in
the following Icelandic sentence with the correct
past tense of the verb tagged with <i></i>: <Ex-
ample text showing a verb in the infinitive, tagged
as stated, and then a blank to be filled with the past
tense of the verb.> Answer only with one word.”
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A.3.1 Anaphoric Reference
(25) Hún

she
ætlaði
meant

að
to

telja
count

fuglana
birds-the.MASC

í
in

tjörnunum
ponds-the.FEM

en
but

_
_

voru
were

á
in

flugi.
flight

Incorrect answer
Þær.
they.FEM

Correct answer
Þeir.
they.MASC

A.3.2 Coreference Resolution
(26) Lína

Lína
ætlaði
meant

að
to

sópa
sweep

kjallarann
basement-the

með
with

kústi
broom-the

en
but

_
_

var
was

ekki
not

á
in

sínum
its

stað.
place

Incorrect answer
Kjallarinn.
basement-the
Correct answer
Kústurinn.
broom-the

A.3.3 Wug Verbs
(27) Okkur

we
langaði
wanted

að
to

<i>krata</i>
<i>krata</i>

fiskinn
fish-the

örlítið,
little

þannig
so

að
that

við
we

_
_

hann
it

áður
before

en
than

hann
it

fór
went

í
in

ofninn.
oven-the

Correct answer
Krötuðum.
‘krated’.1PL

A.4 Fragment-Answering Tasks
All prompts in this section are of the form: “Here
is an Icelandic sentence, followed by a question:
<Context sentence.> <Question that refers to the
context.> Answer the question with only one word
in Icelandic.”

(28) Hún
she.NOM

bað
asked

mig
me

um að
to

hjálpa
help

sér
REFL.DAT

og
and

ég
I

gerði
did

það.
that

Hverjum
who.DAT

hjálpaði
helped

ég?
I

Correct answer
Henni.
her.DAT

A.5 Question-Answering Tasks
The prompts for the coreference resolution task
use the same example sentences as in the fill-in-
the-blank tasks. The prompts are on the form:

“Which noun does the pronoun <pronoun> re-
fer to in the following Icelandic sentence: <Ex-
ample sentence in Icelandic.> Answer only with
one noun.” The prompts for the attributive agree-
ment task are on the form: “Which of the slash-
separated options in the following question forms
part of a sentence that is grammatical in Icelandic?
<Example sentence in Icelandic with the word
‘one’ displayed in all three genders.> Answer only
with one word.” Note the attributive agreement
task does not use the same sentences as when the
same feature is tested via grammaticality judg-
ments. The prompts for the word sense disam-
biguation task are on the form: “Does the word
tagged with <i></i> in the following two Icelandic
sentences have the same meaning? <Two exam-
ple sentences in Icelandic containing the same
word form.> Answer only with one word: True or
False.”

A.5.1 Coreference Resolution

(29) Lína
Lína

ætlaði
meant

að
to

sópa
sweep

kjallarann
basement-the.MASC

með
with

kústi
broom-the.MASC

en
but

hann
it.MASC

var
was

ekki
not

á
in

sínum
its

stað.
place

Incorrect answer
Kjallarinn.
basement-the
Correct answer
Kústurinn.
broom-the

A.5.2 Attributive Agreement

(30) Einn/Ein/Eitt
one.MASC/one.FEM/one.NEUT
húðflúranna
tattoos-the.GEN.NEUT

var
was

af
of

stórum
big

dreka.
dragon

Correct answer
Eitt.
one.NEUT

A.5.3 Word Sense Disambiguation

(31) Words used in the same sense
a. Hún

she
<i>nam</i>
studied

lögfræði
law

við
at

Háskólann.
university-the

b. Hún
she

<i>nam</i>
studied

grísku
Greek

við
at

Háskólann.
university-the
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(32) Words used in a different sense
a. <i>Gosið</i>

eruption-the
var
was

kraftlítið.
weak

b. <i>Gosið</i>
soda-the

var
was

sykurlaust.
sugar-free

B Model Scores by Task

We break down the overall scores for each model
by task included in our main benchmark set (see
final page). Note that we use truncated model
names due to space limitations, see Table 2 for full
names.
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Grammaticality checks
Model Simple AA PA WO VA SC Islands wh Top. Gapp. Refl.

Claude-3-5-Sonnet 90.00 55.68 100.0 92.86 71.43 78.57 87.50 45.00 59.38 82.50 77.50
Claude-3-Opus 95.00 39.77 100.0 82.14 71.43 64.29 83.75 45.00 68.75 81.67 85.00

GPT-4o 100.0 39.77 96.43 78.57 85.71 75.00 93.75 40.00 59.38 73.33 80.00
GPT-4-Turbo 95.00 36.36 75.00 82.14 71.43 64.29 78.75 40.00 75.00 81.67 57.50

GPT-4 100.0 38.64 67.86 78.57 57.14 53.57 82.50 60.00 62.50 69.17 75.00
GPT-4o-Mini 90.00 53.41 85.71 85.71 71.43 46.43 86.25 60.00 59.38 75.00 80.00

Llama-3.1-70B 95.00 39.77 60.71 64.29 67.86 60.71 62.50 50.00 50.00 83.33 42.50
Llama-3.1-405B 85.00 30.68 64.29 60.71 60.71 57.14 85.00 50.00 50.00 72.50 80.00
Gemma-2-27B 95.00 37.50 64.29 53.57 64.29 50.00 82.50 30.00 53.13 70.83 77.50
Mixtral-8x22B 90.00 39.77 53.57 64.29 60.71 46.43 80.00 40.00 53.13 68.33 47.50

Qwen2-72B 85.00 45.45 57.14 57.14 57.14 53.57 42.50 60.00 71.88 75.83 62.50
GPT-SW3-20B 58.00 48.86 50.00 46.43 50.00 50.00 50.00 50.00 50.00 50.00 52.50

GPT-SW3-20B-4bit 55.00 51.14 50.00 39.29 50.00 50.00 65.00 40.00 46.88 46.67 45.00

Table 4: A breakdown of the overall scores for the sentence grammaticality tasks: Simple, unambigously
grammatical or ungrammatical sentences (Simple), attributive agreement (AA), predicate agreement
(PA), word order (WO), verb agreement (VA), subject case (SC), island effect sentences (Islands), wh-
movement (wh), topicalization (Top.), gapping (Gapp.) and reflexivization (Reflex.).

Well-formedness check
Model Word formation

Claude-3-5-Sonnet 74.29
Claude-3-Opus 67.14

GPT-4o 62.86
GPT-4-Turbo 38.57

GPT-4 59.29
GPT-4o-Mini 68.21

Llama-3.1-70B 57.14
Llama-3.1-405B 65.00
Gemma-2-27B 65.36
Mixtral-8x22B 42.86

Qwen2-72B 60.00
GPT-SW3-20B 50.00

GPT-SW3-20B-4bit 50.36

Table 5: A breakdown of the overall scores for the
well-formedness check of compound nouns.

Fill-in-the-blank
Model Anaphor. Coref. Wug

Claude-3-5-Sonnet 100.0 61.36 40.00
Claude-3-Opus 90.00 45.45 10.00

GPT-4o 80.00 52.27 40.00
GPT-4-Turbo 85.00 50.00 20.00

GPT-4 75.00 50.00 20.00
GPT-4o-Mini 45.00 27.27 20.00

Llama-3.1-70B 30.00 40.91 20.00
Llama-3.1-405B 65.00 59.09 20.00
Gemma-2-27B 50.00 13.64 10.00
Mixtral-8x22B 0.00 11.36 0.00

Qwen2-72B 25.00 18.18 0.00
GPT-SW3-20B 10.00 20.45 0.00

GPT-SW3-20B-4bit 0.00 20.45 0.00

Table 6: A breakdown of the overall scores for
the fill-in-the-blank tasks: Anaphoric reference
(Anaphor.), coreference resolution (Coref.) and
wug tests (Wug).

Fragment answering
Model Fragment answers

Claude-3-5-Sonnet 100.0
Claude-3-Opus 100.0

GPT-4o 77.50
GPT-4-Turbo 72.50

GPT-4 82.50
GPT-4o-Mini 62.50

Llama-3.1-70B 72.50
Llama-3.1-405B 97.50
Gemma-2-27B 45.00
Mixtral-8x22B 25.00

Qwen2-72B 25.00
GPT-SW3-20B 0.00

GPT-SW3-20B-4bit 2.50

Table 7: A breakdown of the overall scores for the
fragment answering tasks.

Question-answering
Model Coref. AA WSD

Claude-3-5-Sonnet 81.82 73.33 84.00
Claude-3-Opus 63.64 80.00 81.33

GPT-4o 86.36 80.00 90.00
GPT-4-Turbo 68.18 63.33 84.00

GPT-4 77.27 60.00 56.67
GPT-4o-Mini 59.09 50.00 66.67

Llama-3.1-70B 65.91 46.67 75.33
Llama-3.1-405B 63.64 83.33 74.67
Gemma-2-27B 59.09 36.67 62.67
Mixtral-8x22B 43.18 3.33 57.33

Qwen2-72B 47.73 33.33 65.33
GPT-SW3-20B 25.00 66.67 56.67

GPT-SW3-20B-4bit 29.55 43.33 35.33

Table 8: A breakdown of the overall scores for
the question-answering tasks: Coreference resolu-
tion (Coref.), attributive agreement (AA) and word
sense disambiguation (WSD).
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Abstract

A major part of figurative meaning predic-
tion is based on English language training
corpora. One strategy to apply techniques
to languages other than English lies in ap-
plying transfer learning techniques to cor-
rect this imbalance. However, in previous
studies, we learned that the bilingual rep-
resentations of current transformer mod-
els are incapable of encoding the deep se-
mantic knowledge necessary for a trans-
fer learning step, especially for metaphor
prediction. Hence, inspired by second lan-
guage acquisition, we attempt to improve
German metaphor prediction in transfer
learning by modifying the context win-
dows of our input samples to align with
lower readability indices achieving up to
13% higher F1 score.

1 Introduction

Figurative language detection is one of the most
crucial tasks in the current digital conversational
landscape. However, computationally, it remains
also one of the most challenging tasks. Com-
prehensive resources to train computational mod-
els for figurative language detection are generally
rare. Further, most existing work is performed on
English language textual data. Some works in-
vestigate metaphor recognition in languages other
than English (Sanchez-Bayona and Agerri, 2022;
Aghazadeh et al., 2022).

We focus on applying and testing transfer
learning techniques to continuously correct for
this imbalance in figurative language prediction.
We think that, due to the conceptual nature of
metaphors (Lakoff and Johnson, 1980), it is pos-
sible to transfer metaphoric meaning given a suf-
ficient amount of data that is capable of encoding
this conceptual nature.

The study in this paper is designed as follows:
First, we address the motivations of this research
by presenting the readability indices of the pre-
dicted test samples of a prior study (Berger et al.,
2024). Then, we modify the test samples accord-
ing to these insights by trimming the observed
contexts. This means, shortening the input. Last,
we re-apply the multi-lingually pre-trained trans-
former models to determine how the sample modi-
fication affects the performance of the multilingual
classifiers.

2 Related work

Tsvetkov et al. (2013, 2014) use lexical-semantic
word features as well as bilingual dictionaries in
several languages as input data for transfer learn-
ing to recognize metaphorical expressions across
languages. Also, using syntactic patterns or ab-
stractness scores is a common technique to iden-
tify or analyze metaphoric expressions (Tsvetkov
et al., 2013; Clausen and Nastase, 2019).

Clausen and Nastase (2019) investigate the ef-
fect of text simplification on linguistic metaphor
preservation (Wolska and Clausen, 2017; Clausen
and Nastase, 2019). The authors provide an anal-
ysis of parallel text data that are simplified for dif-
ferent grade levels identifying whether metaphors
are either preserved, rephrased, or dropped. They
also investigate which features are capable of dis-
criminating on whether a metaphor is preserved
or dropped and determine that age-of-acquisition
scores, imagine-ability, and concreteness scores
are useful in the tasks.

Berger et al. (2024) perform a comprehen-
sive study on applying transfer learning to Ger-
man metaphor prediction, framing the problem
as both a sequence labeling and sentence clas-
sification task. Several pre-trained transformers
are fine-tuned on English metaphor-labeled data
and tested regarding their capabilities to identify
metaphors cross-lingually. However, multilingual
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classifiers perform only moderately well, because
the cross-lingual semantic knowledge that these
models need to be capable of encoding appears to
be hidden deep within the semantic representation
of a language.

3 Methodology

We already learned that computational approaches
work well in semantically “coarse-grained” tasks
such as semantic similarity prediction (Kenter and
De Rijke, 2015; Moritz and Steding, 2018; Wang
et al., 2020) or authorship attribution (Benze-
bouchi et al., 2018), because they are well capa-
ble to distinguish the meaning of a word in differ-
ent contexts. In figurative language identification,
contextual representation is also a good input for
a classifier to predict whether a word is meant fig-
uratively or literally (Bizzoni and Lappin, 2017;
Bizzoni and Ghanimifard, 2018; Liu et al., 2020).

Transfer learning typically makes use of a well-
resourced source language to train a classifier
on, afterwards, the trained model is applied to
predict metaphors in a low/less-resourced lan-
guage. However, there are two major prob-
lems to make figurative language prediction work
cross-lingually: first, only a few larger (lexicon-
dependent) annotated datasets for training in the
source language are available1; second, the trans-
lation models of today’s transformers are inca-
pable to encode the deep semantic knowledge re-
quired for transfer identification of figurative lan-
guage (Berger et al., 2024).

As syntax is the structural representation of
meaning, one can carefully state that sentences
of more complex syntax usually also entail more
complex semantics. As such, “adding” tokens to a
string also often (not always) means to “add” se-
mantics to the meaning of a phrase or sentence.
This can be partially validated by Batiukova and
Pustejovsky (2013) who investigate the role of
compositionality and lexical semantics in deter-
mining informativeness at the phrasal level.

As we understand that the transformer models
may need to be presented with “easier” (shorter,
less complex) samples because this is the case
when learning a new language, we attempt to
improve German metaphor prediction in transfer
learning by modifying the context windows of

1The VUA Metaphor corpus (Steen et al., 2010), the TroFi
corpus (Birke and Sarkar, 2006), and the MOH datasets (Mo-
hammad et al., 2016) are among the larger ones.

our input samples to align with lower readabil-
ity indices. In particular, trimming the context of
a potential metaphoric expression can aid in the
model’s focus on nearby domain-related context
while long-distance context may be less relevant,
and the preserving of the sentence’s global mean-
ing possibly plays a subordinated role. To backup
the latter assumption, we also test a more sophisti-
cated technique by applying Klöser et al. (2024)’s
GPT2.0-based text simplifier—to the best of our
knowledge the only model, applicable for German
language text—to our test data.

3.1 Transformer models and data (re-)used

We first recapture the zero-shot transferred results
from a former study (Berger et al., 2024) that ap-
plies multilingual transformers mBERT (Devlin
et al., 2018), XLM-RoBERTa (Liu et al., 2019),
and sentence transformers (SBERT) (Reimers and
Gurevych, 2019) to predict German metaphors
from a small German language test set.2

The pretrained transformer models were fine-
tuned on the established English language VUA
metaphor corpus (Steen et al., 2010) and tested
on a smaller German metaphor dataset (Berger
et al., 2024).3 The task was designed as a
sentence classification problem—inspired by Gao
et al. (2018)’s embeddings approach—whereas ev-
ery input was accompanied by the position of a
verb in the sentence and the label whether that verb
was used metaphorically (1) or literally (0) in the
given context.

Note: Typically, metaphoric meaning predica-
tion normally is designed by token labeling or a
word classification problem, not a sentence clas-
sification problem. Linguistically, however, it is
common sense to identify a metaphor based on
its source (image provider) and target (recipient of
an image). The German test data that we use is
a derivative of a linguistically annotated English
language metaphor corpus that initially was an-
notated for lexical representatives of a metaphor

2SBERT is an enhancement of the traditional BERT
model, but it is specialized for problems of semantic sim-
ilarity from sequential input (sentence) embeddings. It is
only about half the size of the other two models and also
trains/tests much faster.

3We use training:validation:testing data splits from
the VUA corpus according to Gao et al. (2018)
(15,516:1,724:5,873). These do not represent the most
recent version of the VUA corpus, but enables us to compare
our results with earlier results. As such, Gao et al. (2018)
reach 58.9% F1 (acc. 69.1%) and 69.7% F1 (acc. 81.4%)
with both their classifiers in a mono-lingual setup.
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Figure 1: correct (blue) and wrong (red) prediction ratios grouped by 6 different ARI ranges

source and its target. This means, it does not
provide labeled metaphoric meaning on the token
level. But for trans-lingual metaphor classifica-
tion (Gao et al., 2018), we can better compare our
results with previous results based on this sentence
classification set-up.

We use freely available bi-directional encoder
representations from transformers instead of the
emerging LLMs, because pre-trained BERT mod-
els are well-investigated and easily applicable for
niche tasks such as transfer-learning for figurative
language prediction in German.

3.2 Applying automated readability index
The grade level by Smith and Senter (1967), also
known as automated readability index (ARI) is a
well-performing measure for text complexity as
it considers word and sentence complexity. We
start by grouping correct and wrong predictions by
the automated readability index (ARI) (Smith and
Senter, 1967). We define five groups ranging the
ARI below 10, lower than 15, lower than 20, lower
than 30 and higher or equal to 30. These ranges
approximately align with elementary school stu-
dents (ARI < 13), junior high school students (13-
19 ARI), senior high school students (ARI 20-27),
college students (<=28).4 Figure 1 shows the
predictions of the multilingual transformer mod-
els mBERT, XLM-RoBERTa and SBERT accord-
ing to the groups of ARI scores the classification
samples belong to. All of them show a strong cor-
relation between false predictions and ARI scores.
SBERT shows the most uniform curves.

3.3 Modifying input representations
As a pre-processing step, we simply trim our test-
ing data to only allow a window of up to 3, 5 and

4We refer to Smith and Senter (1967)’s grade level (GL).
However, ARI score is more often used are common sense
(see also Sec. 5).

10 tokens to both sides of the given verb index,
which results in a text snippet of 7, 11, 21 tokens
respectively. This way we “simplify” our samples
in a computationally easy manner. Because neural
models that encode semantics of sentences as in-
put representations cannot “understand” syntax—
even though they can cope with it (de Dios-Flores
et al., 2023)—it does not matter that our simpli-
fication approach ignores the tree-like structure of
actual sentences. For typical neural classifiers, im-
portant features are mostly given by the contex-
tual, especially sequential representations. Hence,
trimming the surrounding longer-distance context
makes the model stress close-context relations,
which is especially important in figurative mean-
ing prediction. Tab. 1 shows examples to illustrate
how trimming modifies input samples.

Running Klöser et al. (2024)’s simplifier on our
data removes metaphoric expressions or does not
return a representation at all in almost 80% of the
samples. Hence, we test metaphor prediction for
the remaining 193 samples only.

4 Results and Discussion

Tab. 2 shows that the best performance increase
can be reached with trimming the contextual span
for the input representation to 11 tokens. Also, a
context of 7 enables the models to drastically in-
crease on performance while allowing a window
of 10 to each side still results in an increase of up
to 6% in F1 (c.f., upper part of Tab. 2). The neu-
ral simplification (that also preserves a sentence’s
meaning) achieves up to 9% increase in F1 return-
ing the second highest F1 score.

Looking at samples from the SBERT output, we
find that limiting the context can help the model to
better focus on local meaning. For example in the
form of not labeling words as figurative that actu-
ally are not used figuratively. While the following
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text label predicted window
[...] auf der glücklichen Seite des Schweinetrogs stehen, schmeckt Demokratie ziemlich süß. 1 0 orig.
Seite des Schweinetrogs stehen , schmeckt Demokratie ziemlich süß . 1 1 5
[...] on the lucky side of the pork trough, democracy tastes pretty sweet.

Table 1: Sample sentences next to predictions; label 1: metaphorically meant; 0: literally meant

model approach precision recall f1-score accuracy
(+increase)

mBERT original 58 46 52 50
XLM-RoBERTa sentence 58 44 50 50
SBERT length 57 65 61 51
mBERT 67 62 65 (+13) 61
XLM-RoBERTa window 3 65 60 62 (+12) 59
SBERT 67 72 69 (+8) 63
mBERT 66 62 64 (+12) 60
XLM-RoBERTa window 5 66 59 63 (+13) 59
SBERT 66 80 72 (+11) 65
mBERT 63 53 58 (+6) 55
XLM-RoBERTa window 10 60 50 55 (+5) 52
SBERT 60 73 66 (+5) 57
mBERT Klöser et al. (2024) 70 51 59 (+7) 52
XLM-RoBERTa simplified, 71 40 51 (+1) 48
SBERT 193 test samples 70 70 70 (+9) 59
mBERT fine-tuned 91 88 90 88
XLM-RoBERTa on DE metaphor, 81 86 83 81
SBERT 98 test samples 73 92 82 78
mBERT fine-tuned 82 81 82 79
XLM-RoBERTa on EN metaphor, 84 83 84 81
SBERT 908 test samples 64 95 76 66

Table 2: precision, recall, f1, accuracy (%) according to a context of 7, 11, 21 tokens; trained on VUA
corpus with train:val splits 15,516:1,724 tested on 908 DE language samples; upper part: original setup;
mid part: input samples trimmed to window sizes and Klöser et al. (2024)’s simplification approach;
lower part: fine-tuned on EN metaphor, splits: 1360:341:908 and fine-tuned on DE metaphor, splits:
720:90:98 (=908)

example was an FP before, it now is classified as
TN:

“Der Finanzmanager erstellt(TN) Fi-
nanzberichte [...]” [The financial Manager
prepares financial reports [...]]. Some could
argue that “erstellt” might take the role of person-
ification in the following context. This borderline
example was labeled by SBERT as FP before.
With the trimmed context, SBERT labels the
examples as TN.

Regaeding TPs, the following example shows
how SBERT can make better use of unusual re-
lationships learned in the source language it was
trained on. Hence, it interpretes the following ex-
ample correctly in a figurative sense: “[...] auf

der glücklichen Seite des Schweinetrogs stehen,
schmeckt(TP) Demokratie ziemlich süß.” [[...]
on the lucky side of the pork trough, democracy
tastes pretty sweet.]

For comparison, in the lower part of Tab. 2, we
also list the results of fine-tuning in German, based
on the 908 De language samples, which we split
into train, validation and test sets (Berger et al.,
2024). We can see that fine-tuning on target data
and language after training in the VUA data brings
the best results (Berger et al., 2024).

When we test whether fine-tuning on target do-
main English language data improves the test re-
sults in our German language data, we find a posi-
tive effect. Especially, XLM-RoBERTa shows the
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ability to well generalize to language-independent
data points when the source (training) and target
(testing) domain remain the same. This can be
explained by the dynamic masking process dur-
ing RoBERTa’s initial training process. How-
ever, in semantically challenging set-ups, this flex-
ibly rather prevents RoBERTa from retrieving un-
known items, as can be seen in the results of apply-
ing RoBERTa to our German metaphor data after
only training on the VUA corpus (second line of
Tab. 2).

averaged ARI
model window correct wrong
mBERT 8.1 8.9
XLM-RoBERTa 3 7.8 9.4
SBERT 8.1 9.1
mBERT 8.6 9.3
XLM-RoBERTa 5 8.4 9.6
SBERT 8.1 10.3
mBERT 11.1 12.0
XLM-RoBERTa 10 11.1 12.0
SBERT 11.1 12.2
mBERT 13.4 13.5
XLM-RoBERTa simplified 12.8 14.1
SERT 13.5 13.5

Table 3: Averaged ARI score of the correct and
wrong predictions after trimming

Table 3 shows the averaged ARI scores for the
correct and wrong predictions of the three mod-
els. Almost every set-up shows that the averages
of the ARI score are at least one point higher in
the wrong predictions class compared to the cor-
rect predictions class. This inverse relationship
between a model’s ability to predict figurative lan-
guage and ARI scores leads to the insight that cer-
tain lexical and textual properties—independent
from the classifier—challenge the prediction of a
verb’s meaning in a given context. On the other
hand, SBERT—our task-favorite—shows equal
ARI scores in the simplification setup. It also is
the model that reacts not as drastically to the trim-
ming as the other models do. This hints us to in-
vestigate both more deeply, i) a model’s translation
representations, and ii) verbalization of metaphor
in simpler sentence structures.

5 Remarks

ARI was initially designed for English language
text: A possible weakness of this approach may

be that the automated readability index (Smith and
Senter, 1967) was originally designed to test stu-
dents’ capability to understand and comprehend
the content of an English language text that also
meets certain structural conditions. Because char-
acters per word and words per sentence distribu-
tion differ across different languages, the grade-
levels defined in 3.2 may not apply to our German
language test data. However, Senter & Smith’s
score was used before to estimate the complexity
reduction of text in languages other than English.
For example in Moritz et al. (2016) and Tillman
and Hagberg (2014). In the current study, we use
the ARI score to obtain an understanding of pre-
diction difficulty, and we think that applying the
ARI score in this context is appropriate.

Shortening is not simplification: It is not al-
ways the case that a metaphor is difficult to extract
because a sentence is syntactically complex, nor
is it always true that humans understand shorter
sentences better than longer ones. But, sentence
simplification usually divides up complex content
into many shorter sentences and this also improves
metaphor recognition for a computational model.
Further, our trimming approach is technically sim-
ple and streamlined and shows already good re-
sults. We further will elaborate on a quantitative
approach that incorporates advanced syntax-tree
rules into our window-trimming technique.

6 Conclusion

We demonstrated a computationally simple ap-
proach to correct input representation to make
them shorter, hence, easier for the model to un-
derstand, because—as in second language acqui-
sition, we learned that the translation representa-
tions of transformer models have some difficulty
in “understanding” the deep semantics required
for figurative meaning classification. We also ap-
plying a GPT-based simplifier. We achieve an in-
crease of up to 13% (11-token context) and up to
9% (neural simpl.) in F1 and find that the sentence
transformer models perform best in metaphor pre-
diction. In future, we plan to apply didactically-
informed approaches that utilize linguistic, com-
parative, and didactic knowledge while being ap-
plicable to quantitative methods as well.
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Abstract

In this paper, we present a series of meth-
ods used to quantify the soundness of us-
ing the same names to annotate cases in
different languages. We follow the idea
described by Martin Haspelmath that de-
scriptive categories and comparative con-
cepts are different objects and we look at
the necessary simplification taken by the
Universal Dependencies project. We thus
compare cases in closely related languages
as belonging to commensurable descrip-
tive categories. Then we look at the cor-
responding underlying comparative con-
cepts. We finally looked at the possibility
of assigning cases to adpositions.

1 Introduction

There is a fundamental distinction be-
tween language-particular categories of
languages (which descriptive linguists
must describe by descriptive categories
of their descriptions) and comparative
concepts (which comparative linguists
may use to compare languages).

Martin Haspelmath in (Haspelmath,
2018)

Language description and language compari-
son are two intertwined yet distinct endeavours.
Language description is often done in a lan-
guage different from the one being described
(many grammars have been written in English,
French, Russian, Spanish and Portuguese for ex-
ample) and often uses a conventionalised descrip-
tive meta-language associated with a given de-
scriptive school. Language comparison relies on
the previous step of language description as it

main data source but also needs a common meta-
language to name the various phenomena under
study.

In his paper, Haspelmath (2018) warns us
against the confusion of the different meta-
languages (the descriptive languages used in each
individual description and the common compara-
tive meta-language). He advocates for a careful
choice of terms when describing similar categories
across multiple languages, even when the similar-
ities compel us to use the same term. That is,
one should avoid using a single term to describe
two categories from two different languages. Even
more so, when this term is also used as a compar-
ative concept which then further increases the risk
of cross-meta-language confusion.

With all its qualities, the Universal Depen-
dencies (UD) project (Zeman et al., 2024) puts
itself exactly in this somewhat uncomfortable
situation. One of the main aims of the project
is to foster linguistic typological research, and
thus it proposes a common annotation scheme
for creating treebanks for all natural languages
(de Marneffe et al., 2021). Figure 1 depicts the
dependency tree of a Turkish sentence as an exam-
ple. While the scheme has means to accommodate
language specific phenomena, its core is language
agnostic and treebank creators are compelled
to reuse previously defined language specific
extensions when annotating similar structures in
new languages as a mean to increase the overall
consistency and comparability of the corpora. In
the dependency tree, the labels of the edge going
out of a node is called its dependency relation and
the target of the edge it the governor of the node.
However, the annotation also needs to be sound
from the point of view of each annotated language
(see points 1 and 2 of the presentation page
at https://universaldependencies.
org/introduction.html). Each individual
treebank can thus be seen as a kind of description
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of its language. Indeed, that is exactly what
Herrera et al. (2024) do in their work, where
they use sparse representation methods to try to
extract a grammar sketch for a language from its
annotated treebank. In UD, the same terms are
thus used both as comparative concepts and as
descriptive categories for all the languages that
express that category.

In this study, we investigate the descriptive-
comparative confusion arising from UD’s anno-
tation scheme at the morphosyntactic level. We
especially focused on the category of case and its
different realisations across several languages with
the following question in mind: Do cases shar-
ing their name have the same value across differ-
ent languages? The main reason to focus on the
case category, is that it has both strongly syntac-
tic and strongly semantic values. For example, in
languages with a case marking the subject of both
transitive and intransitive verbs, this case is usu-
ally called NOMINATIVE1 based on its syntactic
properties. If the same language has another case
marking the ”together with” relation, it will usu-
ally be called COMITATIVE on semantic ground.

This study should provide insight on the extent
to which one can transfer information about a fea-
ture from a language to another simply by reusing
the same name (using the same descriptive cate-
gory). In the end, it could help improve cross-
lingual learning scenarios where we want to use
as much information from other languages as we
can, even at the morphological and syntactic lev-
els.

This paper is organised as follows. Section 2
gives an overview of UD’s guidelines on case an-
notation and how these are realised in practice.
Section 3 describes how we assign representations
to cases. Section 4 looks at the similarity between
cases from different languages as if they were de-
scriptive categories. Section 5 then turns to look-
ing at cases as comparative concepts applied to
each individual treebank. Section 6 takes an in be-
tween look directly at the cases from all the tree-
banks. Section 7 investigates the possibility of as-
signing cases directly to adpositions. Eventually,
Section 8 concludes this paper.

1In this paper, we use faces to distinguish between DE-
SCRIPTIVE CATEGORIES, COMPARATIVE CONCEPTS and
UD’s annotation scheme.

1.1 Theoretical Note

In this work, we decided to question the relevance
of using the same name to refer to cases in dif-
ferent languages. This assumes the existence of a
commensurable case category in each language of
interest. There is however no reason to take it for
granted.

We decided to take a very pragmatic stance.
Universal Dependencies (and indeed, many lin-
guists) assumes a commensurable case category
existing across languages. So, we acknowledge
this choice. We neither question the existence of
a case category in different languages, nor do we
question the number of values displayed by said
category in each language of interest. We question
the relevance of the names given to the different
values in different languages.

2 The Case Feature across Treebanks

While realising this study, we stumbled upon a
number of incongruities in the way the different
corpus use the Case feature.

There are essentially three ways the feature
Case is used in the UD treebanks. The first and
by far the most common use is to annotate in-
flected forms of nouns, pronouns and proper nouns
in languages where these words inflect according
to their role in a clause, as well as determiners,
adjectives and participles in languages where they
inflect to match the case of their governor.

The second use that is documented in UD’s
guidelines2, is to annotate adpositions with the
case they give to their nominal phrase, especially
so in languages without over case marking on
nouns. This annotation principle indicates that
UD leans more toward the application of compar-
ative concepts to individual languages. Indeed, if
a language does not use the case category, then
the “case” represented by an adposition can only
be inferred either by comparing its distribution to
the distribution of actual cases in languages that
possess that category, or by applying formal com-
parative definitions.

However, this is not always how this feature
is used, as in Czech CLTT treebank (Krı́ž and
Hladká, 2018) for example, adpositions are anno-
tated with the Case feature and their value always
match that of their governing noun. This is all the

2See the page of the Case feature: https:
//universaldependencies.org/u/feat/Case.
html.
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Eşeklerin sırtlarına yüklenmiş sepetlerle taşınırdı üzümler .
NOUN NOUN VERB NOUN VERB NOUN PUNCT

Case=Gen Case=Dat Case=Ins Case=Nom
Number=Plur Number=Plur Number=Sing Number=Plur Number=Sing

root

nmod:poss obl acl obl nsubj

punct

Figure 1: Representation of the dependency graph of the Turkish sentence ”Eşeklerin sırtlarına yüklenmiş
sepetlerle taşınırdı üzümler.” from UD’s Turkish BOUN corpus, meaning ”Grapes were carried in baskets
loaded on donkeys’ backs.”

more surprising that Czech adpositions are invari-
able and can license several case values.

This indeed points to another problem with case
annotation on adpositions. Like languages exhibit-
ing case syncretism3, adpositions can in principle
also be used to mark different syntactic and se-
mantic roles. It becomes then even less clear how
one should proceed in assigning cases to adposi-
tion.

The third and most divergent use of the Case
feature can be seen in the Persian Seraji treebank.
In this treebank, we only find three case values :
Case=Loc, Case=Tem and Case=Voc. The
first two values are exclusively used to annotate
adverbs of place and adverbs of time respectively.
The third value is used to annotate an interjection
used to create vocative noun phrase.

3 Case Representation

In order to compare cases from different lan-
guages, we need to find a shared representation
that should be as language agnostic as possible.
We decided to use the syntactic profile of a case
defined as the probability distribution4 over the de-
pendency relations to its governors. This choice is
both theoretical since core cases are usually de-
fined in terms of syntactic relations to the other
constituents of a sentence, and practical since UD
treebanks are annotated with dependency labels.

In order to make the representations even more
language agnostic, we decided to ignore rela-

3A given word form can be ambiguous as to its morpho-
logical features. For example, the Latin form rosae can be
either a genitive or dative singular or a nominative or voca-
tive plural.

4This may be better thought of as normalized frequency
distributions, since the case of a word is not a random vari-
able but rather the result of its use in context. But mathemat-
ically, normalized frequencies can be viewed as probability
distributions.

tion sub-types since they are not consistently
used across languages and corpora. So, both
flat:foreign and flat:name are counted
as flat.

We give two representations to each case in a
language. The first is the empirical probability dis-
tribution of the relation of a word displaying that
case to its governor.

However, there are several mechanisms under-
lying case assignment, and not all are as infor-
mative. For example, when determiners inflect
for case, they usually inherit their value from
their head noun, which therefore does not teach
us much about that case since a determiner can
in principle take any case that way. Similarly, it
would artificially separate cases from languages
with articles (a high proportion of det relations)
from those of languages without.

Furthermore, as mentioned in the previous sec-
tion, UD also allows annotation of the Case fea-
ture on adpositions, which is quite different from
the way cases are generally assigned to nouns. For
all these reasons, we thus decided to have a part-
of-speech based representation too.

The second representation is thus the syntactic
profile of the nouns (NOUN) which bear the said
case. This gets rid of less informative dependency
relations such as case, amod or det and we fur-
ther decided to ignore the conj relation for simi-
lar reasons.

The relation distributions are computed from
the concatenation of the three parts (train, dev
and test) of each treebank from UD version 2.14
(Zeman et al., 2024), except when precised other-
wise.
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4 Sharing Descriptive Categories

With our case representations, we first look at
cases used in different treebanks as representing
the values of a descriptive category. We want to
know how relevant is to apply the same name to
values of a similar category in different languages.

First, we compare case labels from two closely
related languages, namely Czech and Russian5.
To do so we compute the euclidean distance be-
tween each case in the first language and each case
in the second language. Then, we generate a 1-
nearest neighbour graph assuming the neighbours
of a node must come from the other language. This
gives us an idea of the way cases could be mapped
in a transfer learning setting for example.

Figure 2 represents the 1-nearest neighbour
graph of Czech and Russian cases when represen-
tations are computed over all the words marked for
case. We see that the Czech and Russian NOMINA-
TIVES are each other’s nearest neighbour and such
is the case for the two genitives. However, for the
other cases, the picture is less clear. This is likely
due to the fact that when we compute the repre-
sentations using all the parts-of-speech at once, we
confuse the different types of case assignment.

Figure 3 which represents the 1-nearest neigh-
bour graph of Czech and Russian cases when
representations are computed only on nouns, is
clearer. On top of the NOMINATIVES and GENI-
TIVES, the ACCUSATIVES and INSTRUMENTALS

are also each other’s nearest neighbours. Only the
DATIVES, LOCATIVES and Russian PARTITIVE are
still entangled. Looking directly at the data, we re-
alize that the iobj relation is never used in the
Czech CLLT corpus. The increased probability
of seeing a noun in the DATIVE descending from
an obl relation makes the Czech DATIVE more
distinct from the Russian DATIVE and the Czech
LOCATIVE is.

The distance matrices for these two graphs can
be found in the appendix, along with distance
matrices for Czech - Turkish. In the latter, we
might for example see that the equative be-
haves erratically on nouns, but that simply comes
from the fact that only one noun is annotated with
equative in the Turkish BOUN corpus.

Note that not all pairs of languages are as well
behaved as Czech and Russian, as we shall see in
Section 6.

5We tried a number of pairs and decided to just present
Czech and Russian for space reason.

Case Description DepRel

NOMINATIVE Subject of a clause. nsubj

ACCUSATIVE Direct object of tran-
sitive verbs.

obj

ABSOLUTIVE Subject of intransitive
verbs and object of
transitive verbs.

nsubj
obj

ERGATIVE Subject of transitive
verbs.

nsubj

GENITIVE Noun complement,
typically possessor.

nmod

DATIVE Indirect object of
verbs, typically recip-
ient of giving verbs.

iobj

Table 1: Ideal description of a few cases and cor-
responding UD’s dependency relations.

5 Applying Comparative Concepts

In the previous section we have compared cases
from two languages as if they were from a com-
mensurable descriptive category. In this section,
we take the other view that Universal Dependen-
cies defines comparative concepts and that the var-
ious treebanks are annotated with these concepts.
This means that each case has a language agnostic
definition and that it is then applied to each lan-
guage accordingly. Here, the data used is only
from the dev part of the treebanks, for computa-
tional time reasons.

Since we do not have language agnostic mathe-
matical representations of the various grammatical
cases used in UD’s annotations, we need to extract
them from the available annotated corpora. Since
a case profile depends not only on the choice of a
language, but also on the sentences in the corpus
(replacing a few sentences will generally slightly
affect the frequency distribution), we model each
comparative case with a random variable taking
values from the probability distributions (or nor-
malized frequency distributions) over the set of de-
pendency relations to a word’s governor.

Formally, let c be a case, d a dependency re-
lation and T a treebank. We note fT (c, d) the
frequency at which a word inflected in case c is
attached to its governor via a relation of type d in
corpus T . Let πT (c, d) = fT (c, d)/

∑
d′ fT (c, d

′)
be the corresponding probability, and πT (c, ·) the
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Russian Par
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Figure 2: Nearest neighbour graph for Czech CLTT and Russian GSD case profiles.
The corresponding distance matrices are Tables 5, 7 and 9 in the appendix.
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Figure 3: Nearest neighbour graph Czech CLTT and Russian GSD case profiles of
nouns. The corresponding distance matrices are Tables 6, 8 and 10 in the appendix.
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corresponding probability distribution. We model
the case c as a random variable over the probabil-
ity distributions π·(c, ·).

We know each of these random variables
through a number of realisations: the vector repre-
sentations of the considered case across all corpora
where it is present (which are exactly the probabil-
ity distributions representations πT (c, ·) for each
corpus T ). That is, this random variable maps a
language/corpus to a probability distribution over
the dependency relations reaching words marked
with that case.

Then, to compute the profile of the compara-
tive cases, we compute the expected value of the
random variables associated to each case. Since
the values of the random variables are distributions
we also compute the barycenter of the realisations
of each variable for the Wasserstein 1-distance (or
Earth Mover’s Distance). We will denote the latter
by Wasserstein barycenter.

Table 2 gives the representations of the expected
distributions of a few selected comparative cases.
The representations are mostly aligned with our
expectations. But we can still notice a few interest-
ing facts. The ERGATIVE is much more strongly
associated with being a subject than the NOMI-
NATIVE is. There may be a few different rea-
sons to that. First, some language like Turkish
use the nominative/accusative distinction also to
mark a definite/indefinite distinction on the object,

with the accusative being kept for definite objects.
Another possibility is that when a language has
case marking but does not make distinction be-
tween subjects and objects such as Irish, it is by
default assumed to be nominative-accusative, with
the nominative assuming both syntactic roles6.

Another interesting fact is that the DATIVE’s
main role is not that of indirect object but rather
of oblique. This comes from the strong limitations
that UD imposes on the use of the iobj relation.
But still, DATIVE is virtually the only case to as-
sume that role.

However, while this representation allows us
to distinguish many cases syntactically, it doesn’t
allow to distinguish all cases. More specifi-
cally, some cases work in the same syntactic
constructions and thus are mostly distinguished
through their semantic properties. For example,
the Finnish ELLATIVE and ILLATIVE are used to
signify that a movement respectively comes from
a place or into a place. In the sentence “I went into
his house”, house would be in illative in finnish,
while in “I come back from his house”, house
would be in ellative.

This is exactly what we see for non-core cases.
LOCATIVE, INSTRUMENTAL and ABLATIVE have
very similar profiles, essentially distributed be-
tween oblique complements of verbs and nominal

6In the eventuality that it would be considered an ergative-
absolutive language, the default case would likely be called
absolutive rather than ergative anyway.
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Case Average iobj nmod nsubj obj obl

ABS
Uniform 0.1 3.3 27.2 36.7 22.4

Wasserstein 0.0 1.6 28.6 52.2 11.2

ERG
Uniform 0.0 0.7 92.4 0.5 5.9

Wasserstein 0.0 0.5 97.6 1.4 0.3

NOM
Uniform 0.1 8.0 55.6 7.4 5.0

Wasserstein 0.0 4.9 65.4 9.3 3.8

ACC
Uniform 0.6 7.8 3.8 62.5 20.5

Wasserstein 0.0 7.2 1.9 57.6 25.9

GEN
Uniform 0.9 67.4 3.9 5.6 14.9

Wasserstein 0.0 72.9 3.1 4.5 17.9

DAT
Uniform 14.4 14.9 1.9 0.0 57.2

Wasserstein 19.0 16.4 0.5 0.0 60.5

LOC
Uniform 0.0 16.6 0.9 1.7 69.6

Wasserstein 0.0 18.8 0.0 0.0 76.2

INS
Uniform 0.0 17.2 1.4 0.0 66.0

Wasserstein 0.0 21.3 0.0 0.0 73.8

ABL
Uniform 0.0 16.5 1.3 1.0 70.0

Wasserstein 0.0 17.2 0.0 0.0 78.5

Table 2: Distributions of the most representative dependency relations for a few cases as computed on
nouns. Uniform corresponds to the average profile assuming uniform weighting of each corpus profile.
Wasserstein corresponds to barycenters computed with the Wasserstein metric taking into consideration
that case profiles are not any vector, but actual probability distributions.

modifiers or nouns.
To check the representativeness of a compara-

tive case P of its realisations across treebanks, we
compute also compute its energy E.

P = argmin
µ

E
(
µ, (ρi)i∈J1,nK

)
(1)

E
(
µ, (ρi)i∈J1,nK

)
=

1

n

n∑

i=1

d(µ, ρi) (2)

The energies associated to the two barycenters
are of the same magnitude, with the Wasserstein
barycenter being more exacerbated as can be seen
in Figure 4 for the ACCUSATIVE case. Here, the ρi
are ℓ1-normalized vectors representing cases, and
d is the metric used to define the geometry of the
space (here, we use the ℓ2-metric and the Wasser-
stein 1-distance).

The x-axis represents the different dependency
relations leading to nouns in the accusative, the ex-
act list is given in the appendix for convenience.

It represents in red the uniform mean of distribu-
tions (the expectancy of the variable), in yellow
the barycenter of the distributions associated to
the Wasserstein 1-distance and in purple the (un-
normalized for graphical purposes) apparition fre-
quency.

We can notably see that for uniform mean some
relations are represented because very present in
a few languages while this is not the case for the
Wasserstein barycenter, which is more centered on
the dependency relations present in a lot of lan-
guages.

6 Case Clustering

In this section we apply data visualisation tech-
niques as a mean to look at the general landscape
of case across languages. This is a way to ex-
plore similarity between cases for many languages
at once and without assuming a prototypical rep-
resentation for each case.

From a practical annotation perspective, this
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Figure 4: Representation of the uniform barycen-
ter in red and the Wasserstein barycenter in yellow
for the comparative ACCUSATIVE case. In purple
is represented the proportion of treebanks that as-
sociate a given dependency relation with nouns in
the accusative from the set of treebanks that inflect
their nouns for case.

is interesting since it is more likely too capture
the underlying structure of UD’s annotations. In-
deed, UD’s guidelines are sometimes underspeci-
fied, which is expected from an annotation scheme
whose aim is to be applicable to as many lan-
guages as possible. Not all use cases and lan-
guage specific phenomena will have been thought
of during the creation of the guidelines. Therefore,
when annotators stumble upon a new structure that
does not lend itself to a straightforward analysis,
they will both turn to the guidelines and to other
treebanks in order to see how similar phenomena
might have been annotated in other languages.

We first used a t-SNE analysis (van der Maaten
and Hinton, 2008) with the hope of seeing well
defined clusters. However, plotting all the cases at
once proved unmanageable and so we resorted to
visualising only a pair of cases each time.

The algorithm consists in looking at the prob-
ability distribution generated by the high dimen-
sional vectors7 representing each instance of the
cases and generating a distribution over pairs of
those vectors in a way that pairs of close vec-
tors are assigned higher probabilities. Then t-SNE
defines a probability distribution on pairs of 2D
points that minimizes the Kullback-Leibler diver-
gence between the two distributions.

Figures 5 and 6 represents the t-SNE applied to
all the NOMINATIVES and GENITIVES using either
the profiles computed on all the words, or just on
nouns. It seems that the two cases make for clus-
ters, in the sense they can be grouped along dis-
tinct directions. While this is not enough for us
to have a classification algorithm, it hints towards

7Here the vectors are normalized for the ℓ1-norm, but we
do not consider them as probability distributions
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Figure 5: Representation of 2D t-SNE analysis of
GENITIVE and NOMINATIVE profiles gathered on
all the words marked for these cases.
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Figure 6: Representation of 2D t-SNE analysis
of GENITIVE and NOMINATIVE profiles gathered
only on the nouns inflected for these cases.

possible ways to visualise the difference between
cases.

To confirm this hunch we tried to use ToMATo
(Chazal et al., 2011), a persistence based clus-
tering algorithm, which uses sub-level sets of a
function to design a persistence diagram and de-
rive clusters. The implementation that was used
comes from Maria et al. (2014). The idea behind
ToMATo is to compute the density at each point in
the representation space and to cluster points us-
ing geodesics: every point above a certain eleva-
tion and inside the same geodesic belongs in the
same cluster (the same hill) and every point below
is ignored.

By repeating the process for different eleva-
tions8 we can see clusters appear and merge.

8ToMATo considers the evolution of the topology of
superlevel-sets for α of the density function as α decreases
and especially their path-connectivity (or 0-persistence in ho-
mological terms).
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When two clusters merge, the one with the high-
est elevation absorbs the other and we say that the
lowest one dies. One can then represent on a dia-
gram the birth and death time of each cluster. This
is depicted in Figure 7 for GENITIVES and NOM-
INATIVES. The closer a cluster is to the diagonal
the shorter its life and therefore the more likely it
is to represent random noise rather than an actual
cluster.

150 200 250 300 350 400 450 500 550

200

300

400

500

Tomato Algorithm Clusters for Gen, Nom

1Figure 7: Representation of the ToMATo algo-
rithm for GENITIVE and NOMINATIVE profiles.

In Figure 7 the algorithm proposes multiple
clusters, which could not be combined to form bet-
ter defined clusters. This suggests, as already sug-
gested by Figures 5 and 6 that the possible clus-
ters are not well defined and might overlap with
each other. To try and measure the overlap of the
clusters, we computed a confusion matrix by the
method of the k-nearest neighbours.

Pred.
Target

Acc Gen Loc Nom

Acc 130 62 51 34
Gen 69 156 16 42
Loc 35 57 29 34
Nom 29 28 9 227

0 50 100 150 200 250

Table 3: Confusion matrix for k-NN with k = 11
on Acc, Gen, Loc, Nom. Rows correspond
to the prediction and columns to the expected
value.

As we can see in Table 3, while cases that are
present in many languages (NOMINATIVE, AC-
CUSATIVE, GENITIVE) are quite recognisable, it
is definitely not obvious, especially when throw-
ing on other less common cases such as loca-

tive. In fact, changing the parameter k does not
lead to significantly better results. The more com-
mon cases are less recognisable with decreasing k,
leading to a worse classification, and the less com-
mon cases are even more blurred when increas-
ing k, since they are flooded in the total number
of samples. Moreover, whatever the parameter,
there are always samples from common core cases
that are classified as other cases. It appears that
the portion of space occupied by each case is nei-
ther fully distinct from the others, causing confu-
sion when trying to cluster cases with the same
names as well as limiting our ability to distinguish
smaller cases from ones that take more space, nor
is it well connected, given the fact some samples
are always closer to other cases.

7 Adposition Annotation

As discussed in Section 2, some corpora in UD
make use of the Case feature on adpositions and
it is recommended by UD’s guidelines.

Given the postulate according to which all nat-
ural languages are equally expressive, one could
indeed see case marking and the use of adposi-
tions as two means of achieving the same linguis-
tic goals. Two means that are by no mean exclu-
sive since languages that use case tend to have a
rather limited inventory and use adpositions to ex-
press a broader range of meanings and relations.

Following Kirov et al. (2017), we have applied
the methods described above to represent certain
adpositions and to give them a syntactically equiv-
alent case representation. This could partially
prove the postulate, as well as help justifying the
way some corpora annotate adpositions for case.

To do so, we counted the dependency relations
leading to the governors of each adposition. This
gave us a distribution on syntactic usage of adpo-
sitions similar to a profile, and allowed us to com-
pare adpositions to cases.

Table 4 represents the uniform means of the rep-
resentations of a few French adpositions across all
French corpora. As we can see, and could be pre-
dicted by French speakers, most adpositions are
used in a similar way in French, mainly as LOCA-
TIVES (dans, par, sur, sous, vers. . . ) or INSTRU-
MENTALS/COMITATIVE (avec). For the other ad-
positions, we see that there is a non-negligible pro-
portion of usage that leads to advcl. This comes
from infinitive constructions marking goal (pour),
intent (à), avoidance (sans) or gerundive construc-
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Adpos advcl nmod nsubj obj obl

À 16.7 17.3 0.04 0.38 63.4

DANS 0.46 13.8 0.19 78.7

PAR 0.26 13.7 0.10 0.18 74.6

POUR 29.5 15.9 0.02 41.2

EN 8.13 17.1 0.36 54.1

VERS 0.26 35.7 62.1

AVEC 0.61 32.4 62.6

DE 2.10 68.0 0.14 1.31 14.3

SANS 24.4 21.1 0.78 43.8

SOUS 0.21 22.9 0.02 72.8

SUR 0.47 36.3 0.10 59.4

SAUF 10.7 22.6 38.1

Table 4: Dependency relation profiles of the gov-
ernors irrespective of its part-of-speech of a few
French adpositions.

tions marking manner (en).
This justifies the idea of giving a case to ad-

positions as a reasonable supposition, and con-
firms our postulate that adpositions replace some
cases in language without cases (French actually
has cases on personal pronouns; but not for any
of the cases replaced by adpositions). We believe
that this method could be extended to any other
part of speech with adequate semantics and syn-
tactic constructions.

8 Conclusion

In this paper, we have investigated the
comparative-descriptive confusion that Haspel-
math warned us about using Universal Depen-
dency data. We have compared cases between
different languages as is it was a commensurable
descriptive category and seen that at least for some
closely related languages the alignment stands at
least for core cases. We then tried to represent
archetypal cases as if case was a comparative
concept applied onto each treebank, and saw that
core cases mostly align with our expectations.
However, this asks for a more principled analysis
of the use of the term nominative for the default
case especially so when the nominative-accusative
distinction does not exist or when it does not sim-
ply mark a syntactic role but also definiteness for
example.
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Appendix

List of the dependency relations used for the x-
axis in 4:

; acl; advcl; advmod; amod;
appos; aux; case; cc; ccomp;
clf; compound; conj; cop; csubj;
dep; det; discourse; dislocated;
expl; fixed; flat; iobj; list;
mark; nmod; nsubj; nummod; obj;
obl; orphan; parataxis; punct;
reparandum; root; vocative; xcomp
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0 0.5 1 1.5 2

Cs

Ru
Acc Dat Gen Ins Loc Nom Par

Acc 0.3 0.45 0.49 0.26 0.51 0.41 1.03

Dat 0.49 0.44 0.55 0.38 0.46 0.51 0.92

Gen 0.5 0.4 0.2 0.32 0.47 0.52 1.05

Ins 0.43 0.39 0.47 0.28 0.42 0.44 0.95

Loc 0.53 0.48 0.54 0.43 0.5 0.55 0.96

Nom 0.49 0.55 0.59 0.38 0.59 0.25 1.11

Table 5: Distances between Czech CLTT and Rus-
sian GSD case profiles.

Cs

Ru
Acc Dat Gen Ins Loc Nom Par

Acc 0.25 0.63 0.7 0.42 0.78 0.78 1.03

Dat 0.67 0.36 0.64 0.46 0.44 0.83 0.72

Gen 0.92 0.63 0.09 0.64 0.82 1.01 1.17

Ins 0.65 0.42 0.63 0.41 0.55 0.75 0.82

Loc 0.66 0.25 0.49 0.41 0.36 0.84 0.71

Nom 0.81 0.82 0.93 0.68 0.96 0.18 1.16

Table 6: Distances between Czech CLTT and Rus-
sian GSD noun case profiles.

Acc Dat Gen Ins Loc Nom

Acc 0 0.32 0.37 0.26 0.35 0.38

Dat 0.32 0 0.39 0.17 0.15 0.51

Gen 0.37 0.39 0 0.32 0.38 0.49

Ins 0.26 0.17 0.32 0 0.26 0.41

Loc 0.35 0.15 0.38 0.26 0 0.56

Nom 0.38 0.51 0.49 0.41 0.56 0

Table 7: Distances between Czech CLTT case pro-
files.

Acc Dat Gen Ins Loc Nom

Acc 0 0.61 0.76 0.55 0.6 0.71

Dat 0.61 0 0.65 0.18 0.28 0.81

Gen 0.76 0.65 0 0.66 0.5 0.98

Ins 0.55 0.18 0.66 0 0.33 0.74

Loc 0.6 0.28 0.5 0.33 0 0.82

Nom 0.71 0.81 0.98 0.74 0.82 0

Table 8: Distances between Czech CLTT noun
case profiles.

Acc Dat Gen Ins Loc Nom Par

Acc 0 0.44 0.55 0.32 0.46 0.51 0.92

Dat 0.44 0 0.44 0.3 0.27 0.53 0.77

Gen 0.55 0.44 0 0.39 0.51 0.58 1.07

Ins 0.32 0.3 0.39 0 0.39 0.39 0.94

Loc 0.46 0.27 0.51 0.39 0 0.59 0.6

Nom 0.51 0.53 0.58 0.39 0.59 0 1.07

Par 0.92 0.77 1.07 0.94 0.6 1.07 0

Table 9: Distances between Russian GSD case
profiles.

Acc Dat Gen Ins Loc Nom Par

Acc 0 0.65 0.87 0.5 0.72 0.87 0.9

Dat 0.65 0 0.62 0.39 0.34 0.84 0.64

Gen 0.87 0.62 0 0.59 0.82 0.96 1.17

Ins 0.5 0.39 0.59 0 0.61 0.72 0.89

Loc 0.72 0.34 0.82 0.61 0 0.97 0.35

Nom 0.87 0.84 0.96 0.72 0.97 0 1.16

Par 0.9 0.64 1.17 0.89 0.35 1.16 0

Table 10: Distances between Russian GSD noun
case profiles.
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Abl Acc Dat Equ Gen Ins Loc Nom

Acc 0.69 0.62 0.66 0.54 0.74 0.74 0.76 0.43

Dat 0.62 0.83 0.6 0.51 0.78 0.67 0.67 0.52

Gen 0.74 0.86 0.71 0.6 0.81 0.78 0.8 0.57

Ins 0.63 0.81 0.61 0.47 0.76 0.69 0.68 0.49

Loc 0.66 0.85 0.64 0.56 0.81 0.71 0.72 0.57

Nom 0.8 0.81 0.77 0.6 0.73 0.84 0.84 0.43

Table 11: Distances between Czech CLTT and
Turkish BOUN case profiles.

Abl Acc Dat Equ Gen Ins Loc Nom

Acc 0.86 0.49 0.75 1.14 0.88 0.82 0.91 0.53

Dat 0.57 1.06 0.5 1.16 0.92 0.55 0.6 0.64

Gen 1.03 1.22 0.96 1.3 1.09 1 1.07 0.89

Ins 0.66 1.01 0.57 1.1 0.85 0.64 0.69 0.56

Loc 0.56 1.07 0.49 1.16 0.93 0.53 0.6 0.65

Nom 1.01 0.98 0.91 1.17 0.75 0.99 1.04 0.46

Table 12: Distances between Czech CLTT and
Turkish BOUN nouns case profiles.

Abl Acc Dat Equ Gen Ins Loc Nom

Abl 0 0.93 0.11 0.4 0.87 0.14 0.12 0.65

Acc 0.93 0 0.87 0.88 0.94 0.96 1.01 0.68

Dat 0.11 0.87 0 0.41 0.88 0.14 0.16 0.63

Equ 0.4 0.88 0.41 0 0.83 0.48 0.44 0.57

Gen 0.87 0.94 0.88 0.83 0 0.94 0.96 0.41

Ins 0.14 0.96 0.14 0.48 0.94 0 0.11 0.71

Loc 0.12 1.01 0.16 0.44 0.96 0.11 0 0.73

Nom 0.65 0.68 0.63 0.57 0.41 0.71 0.73 0

Table 13: Distances between Turkish BOUN case
profiles.
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Abstract
Data Augmentation (DA) and Contrastive
Learning (CL) are widely used in NLP, but
their potential for NER has not yet been
investigated in detail. Existing work is
mostly limited to zero- and few-shot sce-
narios where improvements over the base-
line are easy to obtain. In this paper, we
address this research gap by presenting a
systematic evaluation of DA for NER on
small, medium-sized and large datasets with
coarse and fine-grained labels. We report
results for a) DA only, b) DA in combination
with supervised contrastive learning, and c)
CL with transfer learning. Our results show
that DA on its own fails to improve results
over the baseline and that supervised CL
works better on larger datasets while con-
trastive transfer learning (CTL) is beneficial
if the target dataset is very small. Finally,
we investigate how contrastive learning af-
fects the learned representations, based on
dimensionality reduction and visualisation
techniques, and show that CL mostly helps
to separate named entities (NEs) from non-
entities.

1 Introduction
Named Entity Recognition (NER) has been widely
studied in NLP and has many applications in the
computational social sciences and the digital hu-
manities. Many of these applications, however,
require the adaptation to new languages or genres
for which no or only small amounts of annotated
data are available. A major disadvantage of super-
vised NER systems is their dependence on large
and representative datasets for training (Li et al.,
2022b). Consequently, the scarcity of labelled data
has become one of the major challenges impeding
the performance of NER systems, especially in
highly specialised domains.

Data Augmentation (DA) seems like a com-
pelling solution to address this problem. By ap-
plying transformations to the data, new training in-
stances can be generated, thus reducing the amount
of manually annotated data needed to train the
model (Perez and Wang, 2017). Many studies have
applied DA to text classification tasks, summarisa-
tion, or question answering (Li et al., 2022a; Pellicer
et al., 2023), with a focus on low-resource scenar-
ios. We are not aware of any studies that report
improved results for DA over strong baselines, such
as transformers, for medium to large data sizes.

Furthermore, there is a lack of research on DA
for token-level tasks such as NER, where the inte-
gration of DA presents a unique challenge. Several
DA techniques apply transformations directly to
tokens, thus changing their contextual information.
As a consequence, this process may inadvertently
modify the associated entity labels, disrupting the
correspondence between tokens and their intended
NEs (Dai and Adel, 2020). This challenge under-
scores the necessity of developing augmentation
strategies that preserve the entity labels while en-
hancing the diversity and robustness of the training
data for improved NER model performance.

Another promising approach to improve model
performance is contrastive learning (CL), where
the model learns to position representations of
instances from the same class closer together in
the embedding space while representations for data
points that belong to different classes are pushed
further apart. CL can be used on its own but can
also be combined with DA and transfer learning.

In the paper, we address the question of which of
the techniques described are effective in improving
results for NER on small, medium-sized and large
datasets.1 Our main contributions include:

• a systematic evaluation of DA, CL and transfer
learning for NER,

1Our source code is openly available at https://codebe
rg.org/noelchia/NER-Aug
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• an adaptation of supervised contrastive learn-
ing for token-level tasks, and

• a visual analysis of the learned representations.

2 Related Work

2.1 Data Augmentation for NER
Only a few studies have applied DA techniques to
NER, focussing mostly on low-resource settings.
One possible reason for this is that DA reduces
overfitting and thus improves the generalisability of
the model. Since overfitting is most common and
severe for small datasets, we can expect the greatest
benefit of DA in this context.

Dai and Adel (2020) explore simple data aug-
mentations such as label-wise token replacement,
synonym replacement, mention replacement and
shuffle the order of tokens within segments on data
from the biomedical and materials science domain.
Their transformer-based tagger obtains improve-
ments only for small dataset sizes (≤ 500 instances)
but not when training on the full data. Ding et al.
(2020) introduce an approach dubbed DAGA where
they generate training examples for NER and other
token-level NLP tasks using language models. In-
stead of producing unlabelled text, they generate
new labelled training examples.

Zhou et al. (2022) propose Masked Entity Lan-
guage Modelling (MELM) where they train a lan-
guage model to generate NEs, conditioned on a
masked sentence with NE tags. The main differ-
ence between DAGA and MELM is that DAGA
generates the entire sentence, while MELM uses
pre-existing instances and only replaces existing
NEs by masking them and generating a new en-
tity of the same class. Both approaches have been
evaluated in low-resource scenarios.

Instead of low-resource NER, Chen et al. (2021)
focus on DA for cross-domain NER, using an ap-
proach that learns textual patterns and transforms
the text from a high-resource to a low-resource
domain. based on denoising reconstruction, de-
transforming reconstruction and domain classifica-
tion. Cai et al. (2023) leverage graph propagation
to create new data points, based on the relation-
ship between labelled data and unlabelled natural
texts, and evaluate their method in low-resource
and cross-domain settings.

Zhang et al. (2022) develop two data augmenta-
tion methods for a BART based generative NER
model. Theirs is the only work we are aware of that

addresses the problem of DA in in-domain settings
with medium and large data sizes.

2.2 Contrastive Learning for NER

Contrastive learning (CL) is a discriminative ma-
chine learning technique that aims to create similar
representations for data points that belong to the
same class while pushing samples from different
classes further apart in distributional space (Kumar
et al., 2022). CL can be used in (semi)-supervised
and unsupervised settings and is very popular be-
cause it allows the application of self-supervised
learning to tasks that were previously only possible
in supervised environments (Le-Khac et al., 2020;
Liu et al., 2023). However, only few papers apply
CL to NER, and most of these focus on few-shot
learning.

Huang et al. (2022) introduce COPNER, a
method to create prototypical tokens that repre-
sent each class. During contrastive training, the
token representing the class forms positive pairs
with NE tokens from that class while class tokens
paired with words from other classes are considered
as negative pairs. He et al. (2023) use a similar
idea to develop a template-free prompting method
for few-shot NER. Using external knowledge like
textual descriptions of entity types, they generate
anchors to represent the entity type. These anchors
are then appended to the end of the input sentence.
The authors use CL to train the encoder to pro-
duce representations of words that are similar to
the corresponding entity type.

Das et al. (2022) use contrastive learning to
train a model dubbed CONTaiNER, which models
the distribution of token classes using Gaussian
Embeddings. Tokens from the same class are
considered as positive pairs, and all other valid
pairs are assumed to be negative. Li et al. (2023)
also use Gaussian embeddings, but add a cross-
domain attention layer based on HaloNet (Vaswani
et al., 2021). Si et al. (2022) propose Span-based
Contrastive Learning with Retrieval Augmented
Inference (SCL-RAI). Their model focusses on NEs
that have been mislabelled as negative instances by
the system.

All of the papers above either focus on few-shot
scenarios or train their CL method on small data
sizes of less than 5,000 instances.
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3 Experimental Settings
The last section has shown that there is a severe
lack of research regarding the effectiveness of DA
and CL for NER in scenarios where ample training
data is available. We address this gap by providing
a systematic investigation of both techniques in
different settings and comparing their impact in
isolation and in combination with transfer learning.

Datasets We select three different-sized English
datasets with coarse and fine-grained entity type
distinctions. CoNLL 2003 (Tjong Kim Sang and
De Meulder, 2003) is the smallest dataset with 14
thousand training examples consisting of 301 thou-
sand tokens, encoding four NE types only (Person,
Location, Organisation, Miscellaneous). The sec-
ond dataset, OntoNotes Release 5.0 (Weischedel
et al., 2013), is medium sized with 82 thousand
instances, over 2 million tokens and encodes 18 dif-
ferent NE types. The largest dataset is Few-NERD
(Ding et al., 2021) with more than 131 thousand
sentences, 4.6 million tokens and 66 fine-grained
NE types. The fine-grained NE types are further
grouped into 8 coarse-grained NE types. We use the
original train, dev and test splits for CoNLL 2003
and Few-NERD. The authors of OntoNotes Release
5.0 did not release the dataset with predefined train,
dev and test splits, so the splits suggested in Pradhan
et al. (2013) were used.

Baseline Model We chose RoBERTa (Liu
et al., 2019) as our baseline model, as it
yields competetive results at reasonable train-
ing costs. Our implementation uses the
RobertaForTokenClassification architecture
from the Huggingface Transformers library (Wolf
et al., 2020) which adds one additional linear layer
on top of RoBERTa.

3.1 Data Augmentation Methods
We adapt three common approaches to data aug-
mentation for NER, namely round-trip translation,
paraphrasing and masking.2

Round-Trip Translation Sennrich et al. (2016)
proposed to augment monolingual training data
with automatic backtranslations to increase the size
of the data. Inspired by this, we performed round-
trip translation, where we translate a sentence into
another language and then back to the original

2More detailed information on the different DA techniques
and settings, including the number of augmented instances for
each method and dataset, are provided in appendix A.1.

language create a different sentence. We check
the round-trip translated output by string matching
every NE in the original sample to the augmented
sample. If all NEs are found, then the entities are
labelled based on the assumption that all string
matches represent the same NE, and all other words
are not NEs. The neural machine translation model
chosen is No Language Left Behind (NLLB) (NLLB
Team et al., 2022) and we use translations to/from
German. We also experimented with French and
Zulu, with very similar results.

For a task like NER that is sensitive to token-
level changes, round-trip translation might result
in missing or modified NE labels. Hence, checks
are performed to ensure that all NE tokens are
preserved before adding the augmented data to the
training set (for details, see appendix A.1).

Paraphrasing We use T5 (Raffel et al., 2020)
to generate paraphrases for our data (also see ap-
pendix A.2). The model has been fine-tuned by
Vorobev and Kuznetsov (2023b) on the ChatGPT
paraphrases dataset, which includes the Quora Ques-
tion Pairs (QQP) (Iyer et al., 2017), the Stanford
Question Answering Dataset (SQuAD) version 2.0
(Rajpurkar et al., 2018) and the CNN / DailyMail
Dataset (Hermann et al., 2015). ChatGPT was used
to create five paraphrases for each example in the
three datasets to train the T5 model.

Masking Inspired by Shen et al. (2020), we ran-
domly mask tokens to produce augmented data.
Masking aims to reduce overfitting by forcing the
model to learn to predict NEs even when the token
or its context is masked. We add a consistency loss
to the loss function to encourage the model to make
similar predictions for both the original and masked
instances (Eq. 1 below).

L = Lce (𝒙, 𝒚) + Lce (𝒙masked, 𝒚) + LKL (𝒙, 𝒙masked) (1)

Lce denotes the cross-entropy loss, and LKL
the Kullback-Leibler (KL) divergence loss. For
each example 𝒙 with target labels 𝒚, an augmented
sample 𝒙masked will be generated, where every token
in 𝒙masked will have a 15% probability of being
replaced by a [MASK] token (also see appendix A.3
for more details).

3.2 Supervised Contrastive Learning for NER
Khosla et al. (2020) propose the supervised con-
trastive (SupCon) loss for computer vision, a su-
pervised variation of contrastive learning that also
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makes use of labelled images of the same class
as additional positive pairs. This approach allows
us to integrate contrastive learning into the down-
stream task, thus reducing the time requirements
for task-specific fine-tuning after the CL step.

We adapt supervised contrastive learning for
NER by considering each contextualised token
embedding generated by RoBERTa as a training
example and add two fully connected layers to
the model. The objective of this training step is
to maximise the similarity of the contextualised
representations for tokens that belong to the same
NE type, and to minimise the similarity otherwise.
After the contrastive learning step, we add a new
fully connected layer to the model and perform
task-specific fine-tuning.

Adapting the SupCon loss for NER Tian et al.
(2023) show that SupCon is similar to calculating
the cross-entropy loss. Let 𝑖 ∈ 𝐼 := {1, 2, ..., 𝑁} be
the index of a sample, and 𝑎 ∈ 𝐴(𝑖) := 𝐼 \ {𝑖} be the
index of a different sample. 𝒙𝑖 is a training example
with its corresponding label 𝑦𝑖, and is mapped to
projection 𝒛𝑖 by the contrastive model. 𝜏 ∈ ℝ+ is
a scalar temperature variable. First, a contrastive
categorical distribution 𝒒𝑖 is constructed to describe
how closely 𝒛𝑖 matches 𝒛 𝑗 for 𝑗 ∈ 𝐴(𝑖) (see Eq. 2).

𝑞𝑖, 𝑗 =
exp(𝒛𝑖 · 𝒛 𝑗/𝜏)∑

𝑎∈𝐴(𝑖) exp(𝒛𝑖 · 𝒛𝑎/𝜏) (2)

If there is at least one element in 𝐴(𝑖), then
the weighing term of the contrastive loss can be
calculated similarly to the cross entropy ground-
truth categorical distribution 𝒑𝑖 as shown in Eq. 3
where the indicator function 𝟙match(𝑖, 𝑗) indicates
whether there is a match (𝑦𝑖 = 𝑦 𝑗).

𝑝𝑖, 𝑗 =
𝟙match(𝑖, 𝑗)∑

𝑎∈𝐴(𝑖) 𝟙match(𝑖, 𝑎) (3)

The supervised contrastive loss is the cross en-
tropy between the ground-truth distribution 𝒑𝑖 and
the contrastive distribution 𝒒𝑖 , as shown in Eq. 4.

L =
∑︁
𝑖∈𝐼

𝐻 ( 𝒑𝑖 , 𝒒𝑖) = −
∑︁
𝑖∈𝐼

∑︁
𝑗∈𝐽

𝑝𝑖, 𝑗 log 𝑞𝑖, 𝑗 (4)

We implement the loss function in Eq. 4 for
contrastive learning for NER. The projection head
used for supervised learning consists of a hidden
layer with ReLU activation before the final linear
projection, as Chen et al. (2020) showed that this

performs better than the single linear projection
layer used in some contrastive learning models.

3.2.1 Contrastive Learning with DA
We test combinations of DA and CL, using masking
(see section 3.1). This augmentation was chosen
because of its computational efficiency, requiring
only a random number generator to select words for
random masking. In contrast, round-trip translation
and paraphrasing both require a separate model to
generate the input, making it difficult to perform
the augmentation during training.

3.2.2 Contrastive Transfer Learning
Experiments on contrastive learning in other do-
mains, such as computer vision (Chen et al., 2020),
suggest that the representations produced by CL
tend to be highly adaptable across different tasks
and domains. We will test the hypothesis that the
representations produced by training on one NER
dataset can be applied to another NER dataset to
improve the model’s performance.

This could be useful for practical applications, es-
pecially for cases where only a small set of labelled
data is available. By first performing contrastive
learning on a larger dataset and then fine-tuning
the learned representations on the smaller dataset,
better performance could be achieved. This might
be an alternative to data augmentation or could
be used in combination with data augmentation to
further improve results. To assess the effectiveness
of CTL for NER and explore how different dataset
properties affect the results, we test all six possible
combinations of datasets.

4 Results
Data Augmentation We first look at the results
for the three DA methods, i.e., round-trip translation,
paraphrasing and masking (Table 1). All results are
averaged over five runs, with the standard deviation
(stdev) shown in subscript. Statistically significant
improvements over the baseline are underlined.

As shown in Table 1, the three data augmen-
tation methods mostly fail to produce statistically
significant improvements. Paraphrasing is the worst
performer, often producing similar or sometimes
even worse results than the baseline. One reason
for this lack of improvement might be that the T5
model used for paraphrasing is trained on similar
data as RoBERTa, so the paraphrased results rep-
resent a distribution of the data that RoBERTa has
already seen during pre-training. Hence, the model
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Dataset Size (Sentences) 100 500 1000 5000 Full

CoNLL-2003 (4 NE types) Mean F1 Score% ± STDEV

Baseline 83.32± 0.36 88.23 ± 0.60 89.84 ± 0.46 91.15 ± 0.23 91.98 ± 0.43
DA Translate 83.66 ± 0.81 88.40 ± 0.45 90.01 ± 0.36 91.38 ± 0.36 92.23 ± 0.39
DA Paraphrase 83.37 ± 0.65 88.21 ± 0.47 89.81 ± 0.52 91.22 ± 0.32 92.19 ± 0.61
DA Mask 80.83 ± 0.38 88.47 ± 0.33 90.48 ± 0.33 91.34 ± 0.30 92.47 ± 0.37
CL 82.52 ± 0.77 88.86 ± 0.49 90.06 ± 0.26 91.53 ± 0.30 92.49 ± 0.29
DA Mask + CL 80.90 ± 0.58 88.12 ± 0.59 89.95 ± 0.39 91.56 ± 0.38 92.20 ± 0.26

OntoNotes v5 (18 NE types) Mean F1 Score% ± STDEV

Baseline 66.01 ± 1.58 77.90 ± 0.55 82.21 ± 0.32 85.58 ± 0.42 89.28 ± 0.25
DA Translate 66.03 ± 0.73 77.37 ± 0.50 81.63 ± 0.53 85.24 ± 0.41 89.21 ± 0.33
DA Paraphrase 66.02 ± 1.16 77.28 ± 0.66 81.58 ± 0.55 84.97 ± 0.30 88.34 ± 0.41
DA Mask 60.65 ± 0.99 77.26 ± 0.51 82.16 ± 0.33 85.80 ± 0.45 88.83 ± 0.74
CL 65.82 ± 0.79 78.71 ± 0.33 82.42 ± 0.32 86.51 ± 0.46 89.76 ± 0.25
DA Mask + CL 65.89 ± 1.52 78.76 ± 0.56 82.12 ± 0.37 86.02 ± 0.39 89.65 ± 0.55

Few-NERD (66 NE types) Mean F1 Score% ± STDEV

Baseline 38.77 ± 0.82 54.07 ± 0.89 58.17 ± 0.67 62.09 ± 0.41 67.90 ± 0.59
DA Translate 38.22 ± 1.69 54.27 ± 0.37 57.93 ± 0.38 62.42 ± 0.41 67.95 ± 0.70
DA Paraphrase 38.87 ± 0.72 54.16 ± 0.53 57.95 ± 0.33 62.36 ± 0.41 67.42 ± 0.97
DA Mask 35.85 ± 0.64 52.89 ± 0.57 56.66 ± 0.41 62.01 ± 0.30 63.72 ± 0.87
CL 38.46 ± 0.70 54.93 ± 0.63 58.85 ± 0.43 63.04 ± 0.34 68.65 ± 0.24
DA Mask + CL 36.84 ± 0.86 53.15 ± 0.45 57.36 ± 0.32 62.37 ± 0.56 68.62 ± 0.23

Table 1: Mean F1 scores over five runs for every data augmentation/contrastive training and dataset size
combination. Underlined results show statistically significant increases over the baseline (Student’s t-test,
𝛼 = 5%).

struggles to learn new generalisable information
from the examples, and this is reflected in the lack
of improvement in the results.

Round-trip translation performs slightly better,
but the improvements are also not statistically signif-
icant. Both paraphrasing and round-trip translation
generate augmentations with tokens that are not
NEs as we apply string matching between the NEs
in the original data and the augmented examples to
ensure that the labels are still valid. This means that
our augmentations provide the model with different
contexts for known NEs but do not actually show the
model new NEs. The lack of improvement raises
the question whether a more successful approach
would present the model with augmented data that
includes new NEs. This, however, is difficult to
perform automatically without the risk of changing
the NE type.

Masking, on the other hand, can be applied to
both NEs and context tokens. However, the results
are mixed and do not allow us to draw reliable
conclusions. While we see statistically significant
improvements for the CoNLL data on the full dataset
and on a sample of 1000 sentences, no significant
improvements were obtained on the other sample
sizes or on the OntoNotes and FewNERD data.

A possible explanation could be that while mask-

ing reduces the chances of overfitting, it also in-
creases the difficulty of the task as the model now
needs to guess the NE of the masked tokens. There-
fore, the technique might be better suited to easier
problems with a high risk of overfitting, such as
datasets with fewer NE types like CoNLL with its
four coarse NE classes.

Contrastive Learning CL shows the most con-
sistent results. At dataset sizes of above 5,000,
we see statistically significant improvements for all
three datasets. While data augmentation methods
tend to work better on smaller datasets, our results
show that contrastive learning needs more data to be
beneficial. Instead of providing the model with new
instances, contrastive learning improves the repre-
sentations produced by the model. To learn robust
and generalisable representations, large datasets are
necessary to avoid overfitting.

Combining DA and CL As both approaches
seem complementary, we also test the combination
of DA and CL, using masking for data augmentation
(Table 1, Mask + CL). While the model occasion-
ally produces statistically significant results, the
improvements are rather small. This does not nec-
essarily mean that combining contrastive learning
with data augmentation does not work in general.
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Dataset Size (Sentences) 100 500 1000 5000 Full

CoNLL-2003 (4 NE types) Mean F1 Score% ± STDEV

Baseline 83.32 ± 0.36 88.23 ± 0.60 89.84 ± 0.46 91.15 ± 0.23 91.98 ± 0.43
CL only 82.52 ± 0.77 88.86 ± 0.49 90.06 ± 0.26 91.53 ± 0.30 92.49 ± 0.29
CTL + OntoNotes 83.75 ± 1.23 87.91 ± 0.44 89.43 ± 0.21 91.23 ± 0.14 92.19 ± 0.32
CTL + Few-NERD (coarse) 85.46 ± 0.39 89.23 ± 0.39 90.16 ± 0.20 91.39 ± 0.21 92.35 ± 0.36
CTL + Few-NERD (fine) 85.26 ± 0.65 89.02 ± 0.66 90.67 ± 0.21 91.68 ± 0.25 92.15 ± 0.28

OntoNotes v5 (18 NE types) Mean F1 Score% ± STDEV

Baseline 66.01 ± 1.58 77.90 ± 0.55 82.21 ± 0.32 85.58 ± 0.42 89.28 ± 0.25
CL only 65.82 ± 0.79 78.71 ± 0.33 82.42 ± 0.32 86.51 ± 0.46 89.76 ± 0.25
CTL + CoNLL 65.73 ± 1.67 78.58 ± 0.42 82.39 ± 0.81 85.71 ± 0.27 89.28 ± 0.23
CTL + Few-NERD (coarse) 68.47 ± 2.44 79.64 ± 0.16 83.07 ± 0.01 86.14 ± 0.44 88.87 ± 0.29
CTL + Few-NERD (fine) 67.55 ± 0.88 79.66 ± 0.63 83.17 ± 0.22 86.23 ± 0.55 89.48 ± 0.27

Few-NERD (66 NE types) Mean F1 Score% ± STDEV

Baseline 38.77 ± 0.82 54.07 ± 0.89 58.17 ± 0.67 62.09 ± 0.41 67.90 ± 0.59
CL only 38.46 ± 0.70 54.93 ± 0.63 58.85 ± 0.43 63.04 ± 0.34 68.65 ± 0.24
CTL + CoNLL 36.34 ± 0.61 54.45 ± 0.30 58.43 ± 0.41 62.45 ± 0.20 68.26 ± 0.28
CTL + OntoNotes 37.79 ± 1.58 54.79 ± 0.67 58.32 ± 0.34 62.57 ± 0.24 68.33 ± 0.21

Table 2: Mean F1 scores over five runs with and without contrastive training for different dataset sizes.
The underlined results are statistically significant increases over the baseline (𝛼 = 5%). Few-NERD
(coarse) uses the 8 coarse-grained labels, Few-NERD (fine) refers to the 66 fine-grained NE types.

More work is needed to explore data augmentations
for NER to answer that question.

Contrastive Transfer Learning Table 2 shows
results for CTL for all possible dataset combina-
tions. We observe two clear trends. First, CTL
works better when the target data is small. This
is not surprising, given that there is more room
for improvement when the baseline is low. The
second observation is that CL needs sufficiently
large source data to work well. This also makes
sense as a larger transfer learning dataset allows the
model to learn more useful representations of the
data for the downstream task.

To investigate the impact of the number of entity
types in the contrastive training set, we report results
for two different settings. In the first setting, we use
the eight coarse-grained NE types in Few-NERD
that have some overlap with the entity inventory
in CoNLL and OntoNotes,3 the second setting
includes Few-NERD’s 66 fine-grained NE types.

Results show that the coarse-grained entity labels
only yield statistically significant improvements
when the target training data is small (500 or less
sentences) but fail to improve results for larger
fine-tuning datasets with 1,000 or more sentences.
This indicates that CL has learned more useful
representations from the fine-grained information

3The coarse-grained entity types are Person, Location,
Organization, Art, Building, Product, Event, Miscella-
neous.

in the transfer data which is somewhat surprising,
given that the coarse-grained entity types overlap
with the labels in the respective target data.

5 Analysis and Visualisation
To better understand the effect of CL, we visu-
alise the learned representations before and af-
ter the CL step. As we cannot directly plot the
768-dimensional word embeddings produced by
RoBERTa on a two-dimensional graph, we apply di-
mensionality reduction techniques in order to obtain
informative two-dimensional representations.

A popular dimensionality reduction technique is
principal component analysis (PCA), which tries to
reduce the dimensionality by choosing the linear
combination of variables that explain the variance
in the data (Jolliffe and Cadima, 2016). While PCA
is quite efficient, it can only be applied when all
components are linear. A method that can perform
non-linear dimensionality reduction is t-SNE (van
der Maaten and Hinton, 2008). However, t-SNE
still has a high computational cost compared to
PCA, especially when dealing with large datasets
of high dimensionality. To resolve this problem,
we use a combination of PCA and t-SNE for di-
mensionality reduction. We first apply PCA to
reduce the dimensionality of the word embeddings
from 768 to 50. Then, t-SNE is used to reduce
the dimensions from 50 to two (see appendix B for
more details).
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(a) Contextual token embeddings before contrastive training.

(b) Contextual token embeddings after contrastive training.

Figure 1: Visualisation of CoNLL 2003 token embeddings using a combination of PCA and t-SNE for
dimensionality reduction.

Figure 1 shows the visualisations of the embed-
dings for the CoNLL dataset, using CL only. Results
for OntoNotes and FewNERD are similar, and can
be found in appendix C. For all three datasets, the
separation between non-entities and NEs is greater
than the separation of the representations for neigh-
bouring NE classes. While a possible reason for
this could simply be that the difference between

NEs and non-entities is greater and therefore easier
to learn, a more likely reason is the distribution of
NEs and non-entities in the data where the latter
significantly outnumber the former. In CL, this
means that the model can minimise the loss by in-
creasing the difference between the non-entities and
NEs even if this comes at the expense of decreasing
the difference between two different NE classes.
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Hence, the lack of separation between the different
NE classes can most probably be explained by the
class imbalance in the data.

6 Discussion
While we found no evidence that the proposed data
augmentations are effective, related work has shown
that DA can be beneficial in low-resource scenarios
(Dai and Adel, 2020; Ding et al., 2020; Cai et al.,
2023). We also observed consistent increases in
results for CL for datasets with sizes of at least 5,000
sentences. Our best results for a RoBERTa-base
model with CL on OntoNotes (89.75% F1) are only
slightly below the ones reported for much larger
models (cf., 89.76% F1 for BART-large (Yan et al.,
2021) and 90.42% F1 for a T5-base model with DA
(Zhang et al., 2022)). These results are promising,
given the severe lack of methods for improving the
performance on larger datasets, as DA has only
been successful when applied in low-resource and
few-shot scenarios (Dai and Adel, 2020; Ding et al.,
2020; Zhou et al., 2022; Cai et al., 2023), and the
same also applies to work on contrastve learning
for NER.

Our experiments failed to show that CL works
for smaller datasets. However, when combined
with transfer learning, the results are improved.
CTL works best when the fine-tuning data size is
small, making it a good complement to CL without
transfer learning. Figure 2 summarises our results,
showing which method might work best in different
scenarios.

While the improvements we obtained are small,
they are still important given that increasing the
performance of a model that is already performing
quite well tends to be much harder than improving
the performance of a poorly performing model. In
addition, data augmentation and CL can be com-
bined, as often done in related fields like computer
vision (Chen et al., 2020; He et al., 2020). This
might be a promising avenue for future work on
developing CL methods that work well for smaller
datasets. Our experiments demonstrate that com-
bining DA and CL is possible (see Mask + CL in
Table 1) but might require more sophisticated data
augmentation techniques to improve results.

Addressing Data Imbalance in CL for NER In
section 5, we showed that a major problem for apply-
ing CL to NER is the data imbalance as the majority
of the token labels are non-entities. One approach
to address this problem could include a modifca-

Size of
train dataset

Suitable transfer
learning dataset

Suitable transfer
learning dataset

Contrastive learning
+ transfer learning

Contrastive
learningData Augmentation

Small Medium

Large

No Yes Yes No

Figure 2: Recommendations for selecting the best
approach for different-sized datasets.

tion of the CL loss function to account for the
imbalance (Cao et al., 2019; Fernando and Tsokos,
2022; Wang et al., 2020; Rezaei-Dastjerdehei et al.,
2020). Assuming that equation (4) is used for the
loss function, a modified loss function that includes
weights is shown in equation (5), where 𝑤𝑖 ∈ ℝ+ is
the weight for class 𝑖.

L = −
∑︁
𝑖∈𝐼

𝑤𝑖

∑︁
𝑗∈𝐽

𝑝𝑖, 𝑗 log 𝑞𝑖, 𝑗 (5)

There are many ways to set𝑤𝑖 , but one possibility
is to set it to the ratio of the frequency of non-
entities to the frequency of the class. This is shown
in equation (6), where 𝑛𝑖 is the frequency of class 𝑖
and 𝑛𝑂 is the frequency of the non-entity class.

𝑤𝑖 =
𝑛𝑂
𝑛𝑖

(6)

This scales the loss function so that different
classes can have different weights which might
help encourage the model to differentiate between
various types of NEs. There are many alternatives
for the loss and weight functions, and the functions
proposed above might not be optimal. Development
and testing of a weighted loss function will be left
to future work.

7 Conclusion
We presented a systematic investigation of the effect
of DA, CL, and CTL for NER. Our main results
can be summarised as follows. First, while DA has
been shown to be effective in low-resource scenarios
(specifically for pre-transformer-based taggers), we
failed to demostrate an improvement in results in our
experiments. CL, on the other hand, can effectively
improve results over a strong RoBERTa baseline
when medium to large datasets are available for fine-
tuning, but has a weaker performance on smaller
datasets. For small dataset sizes, contrastive transfer
learning is the most promising approach but requires
the existence of suitable data for transfer learning.
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We hope that the insights from our experiments
will foster more work on DA and CL for NER es-
pecially for medium and large datasets. To address
the problem of data imbalance for NER, where the
majority of the labels are non-NEs, we proposed a
modification to the loss function, which we plan to
explore in future work.
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Appendices

A Details for Data Augmentation
Table 3 shows how the different DA techniques
affect the size of the training data in our experiments.
Please note that the dataset size for Masking and
CL always remains constant.

A.1 Consistency Checks for Round-Trip
Translation

We check the round-trip translated output by string
matching every named entity in the original sample
to the augmented sample. If all named entities
are found, then the entities are labelled based on
the assumption that all string matches represent
the same named entity, and all other words are not
named entities. The neural machine translation
model chosen is No Language Left Behind (NLLB)
(NLLB Team et al., 2022) and we use round-trip
translation to/from German. We also experimented
with French and Zulu, with very similar results.

A.2 Paraphrasing
The model used for paraphrasing is T5 (Raffel et al.,
2020). To generate the augmented sentence, “para-
phrase: ” is prepended to each original example and
given to the T5 model as input. The model has been
fine-tuned by Vorobev and Kuznetsov (Vorobev and
Kuznetsov, 2023b) on the ChatGPT paraphrases
dataset (Vorobev and Kuznetsov, 2023a), which
uses the Quora Question Pairs (QQP) dataset (Iyer
et al., 2017), Stanford Question Answering Dataset
(SQuAD) version 2.0 (Rajpurkar et al., 2018) and
the CNN / DailyMail Dataset (Hermann et al., 2015).
ChatGPT was used to create five paraphrases for
each example in the three datasets to train the T5
model.

A.3 Masking
The masking rate is selected based on the design
of BERT, which uses the same masking rate for
its mask language modelling training. However,
this masking method is not exactly the same as
that performed by BERT, which only replaces the
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Dataset Size Original 100 500 1000 5000 Full

Round-Trip Translation via German

CoNLL-2003 (4 NE types) 14,041 158 785 1,587 7,966 22,348
OntoNotes (18 NE types) 82,122 167 872 1,714 8,638 141,314
Few-NERD (66 NE types) 131,767 165 837 1,689 8,394 219,969

Paraphrasing

CoNLL-2003 (4 NE types) 14,041 177 898 1,801 9,051 25,310
OntoNotes (18 NE types) 82,122 177 896 1,782 8,911 146,041
Few-NERD (66 NE types) 131,767 173 909 1,791 9,056 238,500

Table 3: Number of augmented instances used for training for the different DA techniques ( round-trip
translation, paraphrasing) and dataset sizes (100, 500, 1,000, 5,000, full dataset).

chosen token with [MASK] 80% of the time. There
is a 10% chance the token will be replaced by a
random token and a remaining 10% chance the
token will remain unchanged. This is not done
because the initial tests show that replacing with
the [MASK] token is already a complicated enough
task, and the addition of random tokens might cause
the model to perform slightly worse.

B Visualising Word Embeddings with
PCA and t-SNE

A problem faced when creating the scatter plots
after dimensionality reduction is that every word
in the test set becomes a point on the plot, so
there is a huge number of points found on the
plot. This causes the points in the plot to overlap
and block each other, making the plot difficult to
read. Increasing the transparency of the points
and making them slightly smaller was sufficient to
make the CoNLL 2003 plot readable. However, a
random sample of 50,000 points needed to be taken
from the OntoNotes v5 and Few-NERD test set,
because these sets were much bigger. The sampling
was only done right before plotting to avoid any
information loss when performing PCA or t-SNE.

C Visualisations for OntoNotes and
FewNERD

The OntoNotes v5 and Few-NERD datasets contain
18 and 66 entity classes respectively. This makes it
impossible to find different colours that have good
contrast for every entity class, and on the scatter
plot, it is difficult to tell so many classes apart. To
solve this problem, only five named entity types
will have a unique colour, and the rest are grouped
together as “other entities”. One of the five selected
has a good F1 score after supervised fine-tuning,
and another has very poor scores. These two classes

ensure that the best and worst-case scenarios are
shown in the plot. The remaining three entity types
are randomly selected to give a more representative
picture of the rest of the entity types.
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No entity
Geopolitical
Time
Percentage
Cardinal
Events
Other entities

(a) Contextual token embeddings before contrastive training.

(b) Contextual token embeddings after contrastive training.

Figure 3: OntoNotes v5 token embeddings using a combination of PCA and t-SNE for dimensionality
reduction.

78



No entity
Athlete
Election
Politician
Education
God
Other entities

(a) Contextual token embeddings before contrastive training.

(b) Contextual token embeddings after contrastive training.

Figure 4: Few-NERD token embeddings using a combination of PCA and t-SNE for dimensionality
reduction.
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Abstract

The evaluation of Large Language Mod-
els (LLMs) is one of the crucial cur-
rent challenges in the field of Natural
Language Processing (NLP) and becomes
even more challenging in the multilingual
setting. Since the majority of the commu-
nity’s benchmarks exist only in English,
test sets are now being machine trans-
lated at scale into dozens of languages.
This work explores the feasibility of that
approach, comparing a Finnish machine
translation (MT) of ARC-Challenge with
a new human translated version. Our find-
ings suggest that since absolute scores are
fairly close and model size rankings are
preserved, machine translation is adequate
in this case. Surprisingly, however, the
datasets reverse the order of base models
compared to their chat-finetuned counter-
parts.

1 Introduction and Background

Generative Large Language Models (LLMs) have
made significant progress in the past few years and
their usefulness is being explored in many appli-
cations. This exploration is occurring world-wide,
and as such there are many multilingual models
available which have been trained with data in sev-
eral languages simultaneously. However, a central
challenge in building multilingual models is that
access to quality data in languages except for the
largest ones is limited, and this challenge crucially
extends to evaluation datasets.

Our ability to train acceptably performing
LLMs in new languages has far outpaced our abil-
ities to create high-quality evaluations for those
languages, in part because training can rely on
transfer effects, where competence acquired in one
language generalises to another language to some

extent (e.g., Gogoulou et al., 2021). Constructing
new test sets in the language under consideration
allows for controlling the quality as well as cul-
tural validity of test items, but translating existing
test sets (usually in English) to a target language
involves less effort, less cost, and provides a basis
to compare results across languages.

Translating entire test suites involves consider-
able human effort, so using automatic translation
tools is an obviously attractive option. Given the
immediate need to evaluate multilingual models,
these machine translations of evaluation datasets
have started proliferating — for example, Lai et al.
(2023) automatically translate the popular bench-
marks HellaSwag (Zellers et al., 2019), MMLU
(Hendrycks et al., 2020) and ARC (Clark et al.,
2018) into 26 languages.

However, these strategies carry a certain risk of
systematic bias and introduced error into the test,
and very little work has been done to verify that
the resulting evaluations can be trusted. Besides
actual translation errors, sometimes the objectives
of the test are rendered moot by linguistic differ-
ences: for instance, tests that exploit structural
ambiguities translate poorly from an isolating lan-
guage to an agglutinative one.

This work investigates how automatically trans-
lated tests compare to manually translated tests.
We study the case of ARC-Challenge, the chal-
lenging subset of ARC, a four-way multiple-
choice task that has become a popular English
LLM benchmark. We compare the performance of
several Finnish LLMs on an automatically trans-
lated version (ARC-C-fi-MT) with a new manu-
ally translated version (ARC-C-fi-HT), which we
release publicly. We find that in this task setup,
LLMs perform comparably on the machine- and
human-translated versions, so that machine trans-
lation may actually suffice in this case. One sur-
prising caveat is that when considering model or-
derings, base models outperform their chat-tuned
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counterparts on human data, while the chat-tuned
models are stronger on machine translation data.

2 Datasets and Translation Methods

2.1 ARC-Challenge

Our investigation uses versions of ARC-
Challenge, the more challenging portion of
the ARC dataset (Clark et al., 2018), one of
the most popular evaluation datasets for LLMs.
ARC is a four-way multiple-choice Question
Answering (QA) dataset, drawn from grade-
school science questions designed for human
test takers. For example, the question “Which of
these objects is translucent?”, with choices “A
student’s notebook”, “A mirror on the bus”, “A
brick wall of the school”, “A student’s sunglass
lenses”, would have the correct answer D). The
Challenge portion of the corpus consists of only
those questions that are answered incorrectly by
an Information Retrieval (IR) system and a word
co-occurrence system1. We translate the test split,
consisting of 1172 samples.

2.2 ARC-C-fi-MT

For the machine translated version of ARC-
Challenge, we use the Finnish version released
by LumiOpen (2024a), also containing trans-
lations into twelve other European languages.
Samples were translated using the DeepL API
(DeepL, 2025a) through the DeepL Python Li-
brary (DeepL, 2025b) using default parameters.

One noteworthy limitation is that answers were
translated without the context provided by the
question. This carries the drawback that some an-
swers may have an altered meaning without the
context or may contain unresolvable ambiguities,
although in most cases answers are long enough
for correct word sense disambiguation. For ex-
ample, sample Mercury 7086520 contains the
choice “be in the same period.”, which carries a
significantly different meaning in the context of
the question “Copper and gold have similar reac-
tive properties. On the Periodic Table of the Ele-
ments, these elements are most likely to”2.

Example 1: Incorrect semantics
E: When making observations in nature, what is the best
way for students to show respect for the environment?
F1: Miten opiskelijat voivat parhaiten huolehtia
ympäristöstä ollessaan maastossa tekemässä havaintoja?
F2: Miten opiskelijat voivat parhaiten kunnioittaa
ympäristöä ollessaan maastossa tekemässä havaintoja?
Example 2: Non-idiomatic translation
E: Which action would increase the
amount of oxygen in a fish tank?
F1: Mikä toimi lisäisi hapen määrää akvaariossa?
F2: Mikä näistä lisäisi akvaariossa olevan hapen määrää?

Table 1: Examples: original English (E) initial in-
accurate translations (F1) and revisions (F2).

2.3 ARC-C-fi-HT

Human translation data was acquired from a lead-
ing translation company that specializes in Nordic
languages. The data was produced in two stages.
The first version ARC-C-fi-HTv1 underwent a
rigorous evaluation process by a native Finnish
speaker with experience in translation and local-
ization business. Surprisingly, a significant por-
tion of the initial delivery was found to be of poor
quality despite our guidelines. To improve trans-
lation quality, we provided detailed feedback and
requested revision of the complete dataset, leading
to an improved second version that we consider
the gold standard, ARC-C-fi-HT.

Our feedback process focused on various dif-
ficulties, including sentence structure, semantic
misinterpretations, and style. We ensured that cul-
tural references were accurately preserved and ad-
ditionally requested that a number of literal trans-
lations be corrected to more idiomatic Finnish ex-
pressions. Some indicative examples are found in
Table 1. In Example 1, the first attempt F1 uses the
word huolehtia, which translates to take care of.
The corrected version F2 uses kunnioittaa, a more
precise translation of to show respect. In Example
2, the inaccurate F1 translates action as toimi, a
more formal term that usually refers to actions by
organizations. The revised version F2 uses a more
idiomatic phrasing (literally which of these), with
the word for action omitted.

To ensure overall quality, we also established
standards for capitalization, punctuation, dates,
numbers, and names. The complete dataset, along

1As in sample VASoL 2009 5 30 mentioned above.
Commonsense sentences like “A student’s sunglass lenses are
translucent” are unlikely in corpora, so basic strategies are
less successful.

2DeepL chooses the translation samalla ajanjaksolla, a
different sense of period.
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with ARC-C-fi-HTv1 and an alternate normalized
version, is available here.

3 LLM Families

We evaluate three model families, Poro, Viking
and Ahma, chosen because they are effectively the
only LLM families trained especially for Finnish.
Note that although FinGPT (Luukkonen et al.,
2023) is absent, it can be viewed as a predeces-
sor of Poro, since Poro uses an extended version
of the same training data, and the models use an
identical architecture.

3.1 Poro

The Poro base model (Luukkonen et al., 2024) is
a 34 billion parameter decoder-only Transformer
that uses the BLOOM architecture (Le Scao et al.,
2023). It was trained on 1T tokens, of which
54.5% was English, 31.7% program code, 13.0%
Finnish, and 0.8% English-Finnish translation
pairs.

Poro 34B Chat (Silogen, 2024; LumiOpen,
2024b) is a version of Poro 34B trained to fol-
low instructions in both English and Finnish using
full-parameter supervised finetuning. The instruc-
tion data consists of roughly 40% English, 40%
Finnish, and 20% cross-lingual examples. Be-
cause such data is not readily available in Finnish,
Poro 34B itself was used to translate English in-
struction data into Finnish.

3.2 Viking

The Viking family of models (SiloAI, 2024) is
another open-source model family that covers
Finnish. The models are trained on 2T tokens,
which includes further Nordic languages in Dan-
ish, Icelandic, Norwegian and Swedish, along
with program code. Viking uses a similar archi-
tecture as Llama 2 (Touvron et al., 2023b). In this
work we experiment with the 7B and 13B vari-
ants, for which the finetuned versions are not yet
released.

3.3 Ahma

The Ahma model family (Tanskanen and Toiva-
nen, 2024) is the only family of LLMs pre-trained
exclusively on Finnish data. They consist of
decoder-only transformer models based on Meta’s
first Llama architecture (Touvron et al., 2023a).
We evaluate both Ahma-7B and Ahma-3B, as well
as Ahma-3B-Instruct. Note that the 7B-Instruct

Human Translation Machine Translation
1: Poro 34B .414 Poro 34B-C .391
2: Poro 34B-C .397 Poro 34B .369
3: Viking 13B .387 Viking 13B .329
4: Viking 7B .363 Ahma-7B .327
5: Ahma-7B .358 Viking 7B .326
6: Ahma-3B .324 Ahma-3B-I .310
7: Ahma-3B-I .323 Ahma-3B .307

Table 2: Model rankings for ARC-C-fi-HT and
ARC-C-fi-MT (acc norm scores).

version is not available at the time of writing.
Ahma-3B is trained for 139B tokens, while Ahma-
7B was trained for 149B tokens, on a varied col-
lection of deduplicated and detoxified Finnish text
sources.

4 Methodology

We use EleutherAI’s LM-evaluation-harness (Gao
et al., 2024) to run the evaluations. For each
of the datasets, we use the default parame-
ters of English ARC-Challenge. In particular,
we evaluate using the multiple choice
setting, with doc to text: “Question:
{{question}}\nAnswer:” and num fewshot
= 0. This means that answers are obtained
using logprobs instead of running inference. For
each possible choice, the logprob of the choice
text given doc to text is computed, and the
model’s answer is the maximum logprob choice.

We compute both acc (accuracy) and
acc norm. The latter metric computes ac-
curacy when logprobs are normalized by answer
length, so that longer answers are not deemed less
likely only due to their length. To guarantee that
results are tokenizer-agnostic, normalization is
performed using number of characters rather than,
for example, number of tokens.

5 Experimental Results and Analysis

One straightforward way of analyzing the trans-
lated datasets is through comparing absolute
scores per model. However, the datasets can also
be compared in terms of whether they preserve
the ranking between two sets of evaluated mod-
els. The model rankings (Table 2) reveal two main
effects. Firstly, the ordering between model sizes
remains effectively constant between the different
translations: clearly scores follow the expected or-
dering 34B > 13B > 7B > 3B. The Ahma and
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HT MT EN
Poro 34B-C acc norm .397 .391 .485

acc .376 .374 .452
Poro 34B acc norm .414 .369 .462

acc .361 .341 .424
Viking 13B acc norm .387 .329 .402

acc .346 .312 .359
Viking 7B acc norm .363 .326 .366

acc .308 .301 .340
Ahma-7B acc norm .358 .327 .275

acc .302 .276 .248
Ahma-3B-I acc norm .323 .310 .250

acc .290 .259 .220
Ahma-3B acc norm .324 .307 .255

acc .278 .270 .195

Table 3: Results across ARC Challenge variants
with Human Translation (HT), Machine Transla-
tion (MT) and English (EN)

Viking 7B models show similar performance on
Finnish — it is unlikely their change in ranking
between datasets is significant.

Secondly, however, for both Poro 34B and
Ahma-3B, we see a change in ordering of the
base model and chat model variants (note that for
other base models the finetuned versions are not
yet available). The base completion models rank
higher when evaluated using human translation,
while the chat models rank higher for the machine
translated version.

Table 3 shows full results on the three dataset
versions. Here we include the accuracy results
next to acc norm for completeness. A clear ini-
tial result is that across the board for every model
family, size and training method (as well as for acc
and acc norm) the absolute performance on hu-
man translated data is at least slightly higher than
on machine translated data.

Still, the size of these differences varies per
model. One result worth noting is that the
chat models perform similarly between the two
datasets in absolute terms (.397 and .391 for Poro
34B Chat; .323 and .310 for Ahma-3B-Instruct).
However, and particularly for Poro, there is a
larger difference for the base models (.414 and
.369 for Poro 34B; .324 and .307 for Ahma 3B).
Thus the chat models seem more robust across the
datasets, but at a cost to performance (.369 for
Poro 34B Base < .391 for Poro 34B Chat on the
machine translation condition).

We also find that the Poro and Viking mod-
els, trained on both English and Finnish, perform
better on the English dataset than on the Finnish
datasets. This is unsurprising given that in the
case of Poro, there were more than four times as
many English tokens in the training distribution.
The Ahma models, lacking English training data,
reach the expected performance of around 25% on
English given 4-way multiple-choice.

6 Discussion

We propose a technique to find particularly inter-
esting examples by 1) filtering for cases where the
model is correct on one dataset and incorrect on
the other and 2) sorting by the difference in log-
probs on the prediction for the correct answer. In
this way, we find samples where the difference in
translation has the greatest effect on model predic-
tion and performance.

This reveals some clear mistakes in
machine translation. For instance, in
Mercury SC 414274 the correct choice is
The Moon is covered with many craters. Here
the human translation is Kuun pinnalla on paljon
kraattereita whereas machine translation outputs
Kuu on monien kraatterien peitossa, a more literal
and less fluent translation. As a result it is only
on the human translation data that Poro-Chat-34B
manages to select the correct answer (with a
logprob of −10.2 instead of −36.0). Question
Mercury 7165218 about geology provides a
more egregious error, where the choice rift is left
untranslated as rift.

There are also cases, however, where flaws
in machine translation actually increase model
scores. In question Mercury SC 406710 about
chameleons, the choice hunt for food is translated
correctly by humans as Saalistaa ruokansa, us-
ing the verb reserved for predators, but is ma-
chine translated as metsästää ruokaa, using the
verb for human hunting3. However, perhaps since
metsästää is more common, Poro-34B-Chat cor-
rectly chooses this as the answer, whereas it fails
to do so for saalistaa. Thus the human translation
reveals the incomplete semantics of the model in
this case, while the machine translation does not.

A similar case occurs in MCAS 2014 8 6,
where Poro-34B-Chat makes the correct choice
only for the machine translated answer con-

3Note the unresolvable ambiguity for the MT model in
this case, given that it has not seen the context chameleon.
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taining the phrase tektonisten laattojen (tectonic
plates). The human translation uses the phrase
litosfäärilaattojen (lithospheric plates), which is
heavily discounted by the model at a logprob
of -73.0. Both translations are correct, but
litosfäärilaattojen is a slightly more scientific and
technical term in Finnish. tektonisten (of tecton-
ics) is perhaps more common in layman’s lan-
guage, which would explain both its generation
by the MT system and its higher logprob in the
LLM’s answer. In such cases, machine translated
evaluations assign an inflated accuracy to the mod-
els, which should be able to respond positively to
both the common and rarer scientific terms. For an
agglutinative case-based language such as Finnish,
similar cases would be possible when a human
translator chooses a more accurate but less com-
mon grammatical case.

There are many future research avenues here.
One option is to further investigate the chat and
completion model reordering. This is possibly ex-
plained by an alignment of the fine-tuning train-
ing data with machine translation data — in both
cases, models are trained using curated sentence
pairs (whereas base model pre-training data con-
sists of large chunks of text from massive corpora
that tend to be less curated). Perhaps, then, fine-
tuning a base model pulls it in the direction of
the machine translation model distribution. Future
work that compares more pairs of base and chat
models, along with extended logprob analyses of
both models types, may elucidate the picture.

Future work will also investigate the complex
set of benefits and drawbacks of human transla-
tion. Human subjectivity and inconsistencies in
judgment may introduce bias, and from a practical
standpoint manual reviews can be time-consuming
and expensive. One concrete direction is to com-
pare the gold standard to ARC-C-fi-HTv1 and ver-
sions with alternative choices of normalization.
It would also be worthwhile to explore alternate
MT solutions, especially ones in which the mod-
els have access to the question as context when
translating the answers.

7 Conclusion

Following the recent trend to machine translate
English evaluation datasets at scale, this work
compares a new human translation of ARC-
Challenge into Finnish with a machine translated
version. Our results indicate that for Finnish ARC-

Challenge, the machine translated dataset rivals
the usefulness of the HT dataset for comparative
evaluation of LLMs.

This is observed through the small absolute dif-
ferences between scores (with models perform-
ing slightly more favorably on human translations
as expected), as well as through the preserva-
tion of ordering of model sizes. One interesting
caveat is that while chat-finetuned models outper-
form base models on machine-translated evalua-
tion data, base models actually outperform their
chat-finetuned counterparts on the human trans-
lated data, warranting further investigation.

Thus although there are drawbacks to using ma-
chine translation, especially for literature or other
longer-form data, this work reveals that for com-
parative evaluation of Finnish language models on
short multiple-choice questions, MT is sufficient.
Future work can continue to reveal distributions
of evaluation data, language translation pairs and
model classes where this holds. It is clear that
the intersection of translation and LLM evaluation
provides unique challenges and opportunities that
now deserve more attention than ever.
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Abstract

We present GliLem—a novel hybrid
lemmatization system for Estonian that
enhances the highly accurate rule-based
morphological analyzer Vabamorf with an
external disambiguation module based on
GliNER—an open vocabulary NER model
that is able to match text spans with text la-
bels in natural language. We leverage the
flexibility of a pre-trained GliNER model
to improve the lemmatization accuracy of
Vabamorf by 10% compared to its origi-
nal disambiguation module and achieve an
improvement over the token classification-
based baseline. To measure the impact
of improvements in lemmatization accu-
racy on the information retrieval down-
stream task, we first created an informa-
tion retrieval dataset for Estonian by au-
tomatically translating the DBpedia-Entity
dataset from English. We benchmark
several token normalization approaches,
including lemmatization, on the created
dataset using the BM25 algorithm. We ob-
serve a substantial improvement in IR met-
rics when using lemmatization over sim-
plistic stemming. The benefits of improv-
ing lemma disambiguation accuracy man-
ifest in small but consistent improvement
in the IR recall measure, especially in the
setting of high k.1

1 Introduction

Lemmatization plays an important role in natural
language processing by reducing words to their
base or dictionary forms, known as lemmas. This
process is especially crucial for morphologically
rich languages such as Estonian, where words can

1A demo of the system is available at https://
huggingface.co/spaces/adorkin/GliLem

exhibit a multitude of inflected forms. Effective
lemmatization enhances various downstream NLP
tasks, including information retrieval based on lex-
ical search and text analysis. Although dense vec-
tor retrieval is gaining traction in information re-
trieval, lexical search methods remain highly rele-
vant, particularly in modern hybrid systems. Lexi-
cal search excels as a first-stage retriever due to its
efficiency with inverted indices, and provides reli-
able exact term matching that dense retrievers may
miss (Gao et al., 2021). Recent research demon-
strates that lexical and dense retrieval are comple-
mentary, lexical matching providing a strong foun-
dation for precise word-level matches, while dense
retrieval captures semantic relationships and han-
dles vocabulary mismatches. The complementary
nature of these approaches has led to state-of-the-
art hybrid systems that outperform either method
alone (Lee et al., 2023).

Vabamorf (Kaalep and Vaino, 2001) is a rule-
based morphological analyzer for the Estonian
language. It provides one or more morphological
analysis (including lemma) candidates for each to-
ken in a text, where the token can be a word or a
punctuation mark. The Vabamorf’s analyzer func-
tionality aims to generate all possible morpholog-
ical analysis and lemma candidates for each word,
regardless of its context. However, in order to find
the appropriate analysis together with the lemma
in a particular textual context, the analyzer out-
put needs to be disambiguated. Vabamorf em-
ploys a built-in Hidden Markov Model (HMM)
based disambiguator that can only look at the
word’s immediate context to rank the analysis can-
didates by their likelihood scores. Thus, despite
its high precision in generating lemma candidates,
Vabamorf’s ability to disambiguate these candi-
dates in context is limited due to its weak repre-
sentational power.

Previously, Dorkin and Sirts (2023) have shown
that, when evaluated on the Estonian Universal
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Dependencies corpus, Vabamorf’s disambiguation
abilities reach to ca 89% for lemmatization. How-
ever, when evaluated in the oracle mode, where a
prediction is considered correct if the true lemma
appears among the candidates, it achieves an ac-
curacy above 99%.2 This significant difference
highlights the limitations of the Vabamorf’s cur-
rent disambiguator and underscores the need for
improving its disambiguation component.

Recent methods to neural lemmatization gener-
ally follow two approaches: pattern-based token
classification (Straka, 2018; Straka et al., 2019)
and generative modeling (Kanerva et al., 2018,
2021). The pattern-based approach predicts for
each word a transformation pattern that can be
used to transform the word token into correspond-
ing lemma. When built on top of contemporary
BERT-based encoders, the pattern-based lemma-
tizer makes use of the contextual token represen-
tations directly to make the prediction. The gen-
erative approach uses a character-based sequence-
to-sequence model to generate the lemma condi-
tioned on the word, relying on disambiguated mor-
phological information as context. While both of
these approaches have shown good results on Es-
tonian (Dorkin and Sirts, 2023), neither of them
is well suited for developing a new disambigua-
tor for Vabamorf. First, the pattern-based token
classification approach operates with a limited pat-
tern vocabulary extracted from a training set and
cannot handle previously unseen patterns that may
be output by Vabamorf. Secondly, the genera-
tive model already assumes the presence of disam-
biguated morphological analyses making the dis-
ambiguation problem circular.

Recently, an open vocabulary model GliNER
for Named Entity Recognition (NER) was pro-
posed by Zaratiana et al. (2024) which can be
used to match arbitrary text labels with input text
spans. In the lemmatizer disambiguation setting,
the GliNER approach can be used to match the
transformation patterns extracted from Vabamorf
analysis candidates to the spans of sub-word to-
kens making up words in the text, making it suit-
able for scoring a limited number of lemma candi-
dates for each word.

Our first aim in this paper is to investigate

2For instance, if Vabamorf outputs three distinct lemma
candidates for a given token, the oracle considers the predic-
tion correct if one of these candidates is correct. This ap-
proach is unusable in a practical scenario, because the pre-
dictions have to be disambiguated.

whether GliNER method can be used to disam-
biguate the Vabamorf’s lemma candidates. For
that, we modify the GliNER implementation to
predict the transformation patterns of Vabamorf’s
generated lemma candidates, using the Estonian
Universal Dependencies corpus (Zeman et al.,
2023) for training. We find that using this ap-
proach boosts the disambiguation accuracy from
the HMMs 89% to 97.7%, significantly narrowing
the gap between the disambiguator and the oracle.

Our second research question examines the
impact of the improved lemma disambigua-
tion accuracy on a downstream information re-
trieval (IR) task. Due to the lack of suit-
able Estonian datasets, we first translate the En-
glish DBpedia-entity dataset (Hasibi et al., 2017)
into Estonian, employing the NLLB translation
model (NLLB Team et al., 2022). We compare
the performance of stemming, Vabamorf HMM-
disambiguated lemmatization, and Vabamorf
GliNER-disambiguated lemmatization in a BM25
retrieval setup. The results indicate ca 10%
improvement in retrieval metrics when using
Vabamorf lemmatization over stemming, with an
additional 1% gain achieved through GliNER-
enhanced disambiguation.

Overall, our contributions in this paper are
threefold:

1. We implement a new neural disambiguator
based on an open-vocabulary span-labeling
method for the Estonian rule-based morpho-
logical analyzer Vabamorf (henceforth re-
ferred to as GliLem) and show that it con-
siderably improves the lemmatization results
over the existing HMM-based disambiguator.

2. We produce and release the first IR dataset for
Estonian by machine translating the English
DBpedia-entity dataset.3

3. We demonstrate the efficacy of the proper
lemmatization over stemming for the IR task
in Estonian, showing also that improved dis-
ambiguation translates into up to 1% im-
provement in the IR metrics.

2 Vabamorf and GliNER

In this section, we first give an overview of both
the Estonian morphological analyzer Vabamorf
and the open-vocabulary NER model GliNER.

3https://huggingface.co/datasets/
adorkin/dbpedia-entity-est
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2.1 Vabamorf

Vabamorf (Kaalep and Vaino, 2001) is a com-
prehensive, rule-based morphological analyzer
specifically developed for the Estonian language.
It leverages extensive morphological rules to gen-
erate all possible morphological analyses, includ-
ing lemma candidates, for each analyzed word to-
ken. The analyzer accounts for the rich inflec-
tional patterns of Estonian, which include numer-
ous cases, tenses, and degrees of comparison.

Because many Estonian words can have sev-
eral morphological analyses, Vabamorf includes a
built-in HMM-based disambiguator, which aims
to rank these candidates based on the contextual
likelihood. However, under the HMM formula-
tion, the disambiguation context is very limited,
with the analysis of the current word only being
dependent on the analysis of the previous word.
Therefore, the performance of the HMM-based
disambiguator is more than 10% lower than the
oracle accuracy that can be obtained on the Es-
tonian UD dataset (Dorkin and Sirts, 2023). We
used Vabamorf via EstNLTK, which is a library
that provides an API to various Estonian language
technology tools (Orasmaa et al., 2016).

2.2 GliNER

GliNER (Zaratiana et al., 2024) is an open-
vocabulary Named Entity Recognition (NER)
model that extends traditional NER capabilities by
allowing the labels to be specified in natural lan-
guage (as opposed to nominal labels represented
as integer indices in traditional classification mod-
els). Unlike conventional NER models that rely on
a fixed set of entity types, GliNER can handle an
arbitrary number of labels, making it highly adapt-
able for tasks requiring flexible label sets.

GliNER is based on an encoder-only BERT-like
architecture, which is expanded with span repre-
sentation and entity representation modules (see
Figure 1). The modules are used to produce span
and entity embeddings, accordingly. Span and en-
tity embeddings are then used to measure pairwise
similarity to identify entities in the input text. En-
tity types are expressed in natural language and
separated from each other with the special [ENT]
token. The entity types and input text are separated
from each other with a [SEP] token, and they are
processed in the model simultaneously in a cross-
encoder fashion.

To implement GliNER, Zaratiana et al. (2024)

take an existing pre-trained encoder model as a
basis for both the span and entity representation
modules, and add two blocks of feed-forward lay-
ers on top of the encoder to process the spans and
entities separately. Finally, entities are assigned to
spans by scoring the similarities between the out-
put representations from both the span and entity
modules.

GliNER was pretrained on Pile-NER4 (Zhou
et al., 2023), which is a synthetically annotated
large scale NER dataset derived from the Pile cor-
pus (Gao et al., 2020) that has ca 13K distinct en-
tity types. Such pretraining is expected to give the
GliNER model an ability to generalize to very dif-
ferent types of labels.

3 Adapting GliNER for Vabamorf
Lemma Disambiguator

We observe that the GliNER architecture is flexi-
ble enough to be used for essentially any kind of
token classification task, including part-of-speech
tagging and morphological analysis. To be appli-
cable for lemmatization, we adopt the approach
proposed by Straka (2018) that expresses each ex-
ample of form→ lemma as a transformation rule.
Each transformation rule comprises the minimal
sequence of character-level edits—commonly re-
ferred to as a shortest edit script—such as adding,
removing, or replacing characters, required to
transform a given form into its lemma. The trans-
formation rules are represented simply as string la-
bels, which are then used in token classification.
For specific examples of transformation rules re-
fer to Table 1.

While in theory it would be possible to use
lemmas directly as “entities” to be scored in-
stead of transformation rules, that would inflate
the number of “entity types” to be learned con-
siderably. Effectively, each token type would
have to have its own lemmatization label. Mean-
while, the transformation rules proposed by Straka
(2018) are abstract enough to allow for compact
representation of similar transformations, and, ac-
cording to Toporkov and Agerri (2024a), they
offer stronger generalization than alternative ap-
proaches to shortest edit script generation. For in-
stance, some common rules, such as “do nothing”
and “upper case the first character”, are easily ap-
plicable to any surface form.

4https://huggingface.co/datasets/
Universal-NER/Pile-NER-type
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Figure 1: Schematic representation of the GliNER architecture applied to lemmatization.

The total number of unique transformation rules
relevant for Estonian is too large to be used as in-
put to GliLem. However, we only aim to score
and rank the lemma candidates that the rule-based
Vabamorf outputs for each token in the text. This
limits the total number of possible “entities” to be
scored by the number of tokens in the text, but usu-
ally it is much lower than that, mainly because the
“do nothing” rule is the most common by far even
in morphologically rich Estonian (see Table 1).
According to Toporkov and Agerri (2024b), the
“do nothing” rule is also the most common rule in
diverse languages such as Basque, English, Rus-
sian, and Spanish. In Estonian, major contribu-
tors to the frequency of this rule, in addition to
punctuation marks, include conjunctions, adverbs,
some types of adjectives, postpositions, and in-
flected forms homonymous with the base form.

For each input token Vabamorf outputs at
least one morphological analysis (together with
lemma). Accordingly, to prepare Vabamorf out-
puts for disambiguation, a transformation rule is
found for each token and all of its lemma candi-
dates. The set of strings representing the obtained
unique transformation rules are given as entities in

the GliLem input. GliLem outputs a list of spans,
each accompanied by a proposed matching trans-
formation rule and its score. The obtained rules
are then applied to the respective spans to get the
lemmas. The overall GliLem architecture, i.e., the
GliNER architecture applied to lemmatization dis-
ambiguation, is schematically represented in Fig-
ure 1.

4 Enhancing Disambiguation with
GliLem

We implement the GliLem for disambiguating
lemma candidates generated by Vabamorf. To as-
sess the effectiveness of the GliLem approach we
evaluate the following approaches:

1. Vabamorf lemmatization using the built-in
HMM-based disambiguator;

2. Vabamorf lemmatization in the Oracle mode
(the prediction is considered correct if the
correct lemma is in the proposed non-
disambiguated candidates);

3. Pattern-based token classification model for
lemmatization;
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% Rule Description

49.6 ↓0;d¦ Do nothing
7.0 ↓0;d¦- Remove the last letter
4.8 ↓0;d¦-- Remove two last letters
3.7 ↑0¦↓1;d¦ Upper case the first letter
3.3 ↓0;d¦-+m+a Replace the last letter with ma
3.2 ↓0;d¦--- Remove three last letters

Table 1: Top 6 most common transformation rules
present in the train split of the EDT dataset.

4. Vabamorf lemma candidates disambiguated
with GliLem.

4.1 GliLem training
We conducted experiments using the Estonian
Universal Dependencies EDT corpus version 2.14,
using the pre-defined splits. During training we
do not make use of Vabamorf. Instead, we con-
vert the token/lemma pairs provided in the corpus
into respective lemmatization labels (transforma-
tion rules) and format the data according to the
GliNER convention.

GliNER annotation schema differs from the
BIO scheme typically used in the NER task. In
GliNER, entire token spans with corresponding la-
bels are used as inputs, and more importantly for
our case, non-entities, i.e., the most common “de-
fault” class, are not labeled. Correspondingly, we
do not use the “do nothing” rule as a label, and
instead consider it the default state of the token.
That means, we only score cases where the lemma
is different from the surface form.

For training the GliLem, we use the GliNER
training script provided by the authors5 using the
default parameters and our lemmatization data to
train the multilingual version of the pretrained
model. The reason for using this model as a base
model instead of initializing span and entity mod-
ules from scratch is that we expect to benefit from
multilingualism of the backbone encoder, and also
from the learned span representations of the NER
model itself.

4.2 Token Classification Baseline
To contextualize the effect of Vabamorf disam-
biguation with GliLem, we reproduce the exper-
iments by Dorkin and Sirts (2023) with some dif-
ferences. We reduce the amount of preprocessing
applied to the dataset: we do not lowercase the

5https://github.com/urchade/GLiNER/
blob/main/train.py

data and do not remove the derivational symbols
present in some lemmas. We also use the more
recent UD version (2.10→ 2.14).

The token classification model is a simple, effi-
cient, and computationally cheap baseline to off-
set the complexity of the GliNER-based approach.
For that reason we do not directly reproduce the
token classification approach of Dorkin and Sirts
(2023), but rather use the adapter-based parameter
efficient fine-tuning (Houlsby et al., 2019), which
reduces the training time down to minutes.

We do not reproduce the results of the genera-
tive character-level transformer model (Wu et al.,
2021) that Dorkin and Sirts (2023) reported as the
highest scoring approach, because it requires addi-
tional morphological annotation as input. Essen-
tially, it needs the data to be disambiguated first
which is contradictory to our goals in this work.

4.3 Results

The lemmatization results are shown in Table 2.
The GliLem model achieves the lemmatization
accuracy of 97.7% on the test, which signifi-
cantly outperforms Vabamorf’s disambiguator that
scores only 89.2% on the same set, demonstrating
the efficiency of a more advanced disambiguation
approach.

The pattern-based token classification model
that does not utilize Vabamorf’s candidates
reached 96.2% accuracy. While the difference
with the GliLem disambiguation is modest (only
ca 1.2% in absolute), it suggests that lever-
aging Vabamorf’s morphological analysis com-
bined with GliLem’s disambiguation capabilities
provides a performance advantage. Moreover,
lemmatization accuracy scores are skewed to-
wards higher values due to the majority of corpus
tokens requiring no changes to transform the ini-
tial word form into the lemma, and that is gener-
ally not very difficult for any model to learn and
predict.

In the Oracle mode, Vabamorf achieves an ac-
curacy over 99%, showing that the disambiguator
module has still room for improvement. However,
the gap with the GliLem is less than 2% in abso-
lute that can be hard to close.

5 Impact on Information Retrieval

The problem of lemmatization is usually evaluated
in isolation, separately from an actual application.
While lemmatization can be a useful step in some
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Method Dev Test

Vabamorf 0.878 [0.877, 0.883] 0.892 [0.889, 0.895]
Oracle Vabamorf 0.992 [0.992, 0.993] 0.993 [0.992, 0.994]
Pattern-based Token Classification 0.962 [0.960, 0.964] 0.966 [0.964, 0.968]
GliLem 0.974 [0.973, 0.976] 0.977 [0.975, 0.978]

Table 2: Bootstrap estimates of the lemmatization accuracy on the Estonian UD EDT dev and test sets
with 95% confidence intervals. Oracle Vabamorf considers the prediction correct if the correct lemma
appears in non-disambiguated Vabamorf predictions, thus making it unusable in a practical scenario
where no labels are available.

realistic scenarios, the impact of the improvement
in the lemmatization accuracy on the improvement
of the downstream task can be difficult to esti-
mate. To emulate the realistic scenario, we evalu-
ate both the original Vabamorf disambiguator and
the GliLem disambiguator in an information re-
trieval (IR) task. While the IR task is nowadays
often addressed with dense vector retrieval, hybrid
methods that, as a first step, adopt lexical search
methods are still highly relevant. Input normal-
ization via lemmatization is also more important
in morphologically complex languages that typi-
cally have less resources than English. In partic-
ular, there is currently no IR benchmark dataset
available in Estonian that would allow to evaluate
the effect of different text normalization methods
to the IR task. The only previous work in Estonian
related to information retrieval that we are aware
of is by Dorkin and Sirts (2024). However, this
work addressed the problem of retrieving dictio-
nary words based on their definitions using dense
IR methods and did not deploy hybrid methods ne-
cessitating lexical normalization in the first steps.
For this reason, we first translate an existing En-
glish information retrieval dataset to the Estonian
language.

5.1 Dataset Preparation and Translation

DBpedia-Entity v2 (Hasibi et al., 2017) is a test
collection for entity search evaluation, consisting
of 467 queries with graded relevance judgments
for entities from the DBpedia 2015-10 dump.
In this work, we refer to the test collection to-
gether with the DBpedia dump as DBpedia-Entity.
The collection comprises several distinct types of
queries:

1. Short, ambiguous queries searching for one
particular entity;

2. Information retrieval-style keyword queries;

3. Queries seeking a list of entities;

4. Natural language questions answerable by
DBpedia entities.

For each query there is a list of a variable num-
ber of documents and their relevance judgments:
highly relevant (2), relevant (1), irrelevant (0).
Each document in the corpus represents an en-
tity which has an ID, a title in natural language,
and a variable length description. The dataset
corpus—DBpedia 2015-10 dump—comprises ap-
proximately 4.5 million documents. We chose this
dataset due to its general domain, the variety of
query types it contains, and its focus on retrieving
information from a very large collection of docu-
ments.

To evaluate the effect of lemmatization ac-
curacy on information retrieval quality in Esto-
nian, we translated the DBpedia-Entity dataset
into Estonian using the NLLB (NLLB Team et al.,
2022) translation model. We translated both doc-
uments and queries using the NLLB 3B,6 which is
the largest available dense version of the NLLB.
We adopted the CTranslate27 library for efficient
translation at large scale. Translating the entire
dataset took approximately two days on a single
A100 GPU on the University’s High Performance
Cluster (University of Tartu, 2018).

At this time, we did not perform any quantita-
tive quality evaluation of the resulting translations.
Based on the manual examination of a small sam-
ple of examples, we note that while the transla-
tion quality is far from perfect, it generally pre-

6https://huggingface.co/facebook/
nllb-200-3.3B

7https://github.com/OpenNMT/
CTranslate2
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serves the meaning well enough to be useful for
our benchmark.

5.2 Retrieval Experiments

The BM25 algorithm (Robertson et al., 1995) is
considered a strong information retrieval baseline
to this day even when compared to modern dense
retrieval models (Karpukhin et al., 2020; Thakur
et al., 2021). BM25 relies on sparse lexical repre-
sentations of documents and queries, with word-
level tokens most commonly used for these repre-
sentations. The tokens usually undergo additional
preprocessing to account for surface form varia-
tion. For example, in sparse lexical representation,
the present simple and the present participle forms
of the word “run” (“run” and “running”) are con-
sidered entirely unrelated. That makes it difficult
for the user to formulate queries because they have
to guess in what form the desired term appears in
the documents. For English, applying a stemming
algorithm such as PorterStemmer is generally suf-
ficient to deal with this problem.

Meanwhile, stemming algorithms do not per-
form well for morphologically rich languages like
Estonian due to significant variation in stem sur-
face forms in many words. This scenario high-
lights a practical application of lemmatization—
improving the quality of lexical search in such lan-
guages. While it is intuitive to expect that lemma-
tization can help, there are no previous works
showing that for the Estonian language. Moreover,
it needs to be clarified what effect the additional
lemmatization accuracy obtained from better dis-
ambiguation of Vabamorf outputs has on informa-
tion retrieval.

For our experiments we used the recent BM25s
library8 (Lù, 2024) that provides a fast implemen-
tation of BM25. For indexing, we used the default
parameters and omitted the preprocessing done by
the library—we input the corpus preprocessed by
us directly.

We preprocessed the Estonian translation of the
DBpedia-Entity corpus by applying the following
four preprocessing approaches to the dataset doc-
uments:9

1. Identity (only tokenization is applied);

8https://github.com/xhluca/bm25s
9We exclude the token-classification baseline because we

are interested in gauging the effect of improved lemmatiza-
tion disambiguation on IR specifically.

2. Stemming using the Estonian Stemmer avail-
able in Apache Lucene;10

3. Vabamorf lemmatization with the built-in
HMM disambiguation;

4. Vabamorf lemmatization with the GliLem
disambiguation.

The output from each preprocessing resulted in
each document being represented as a list of to-
kens, which were then concatenated with whites-
pace, the expected input format for BM25. The
entire corpus was then passed to the indexer imple-
mentation. The indexing process took about three
minutes, regardless of the preprocessing type.

Finally, we applied the same preprocessing op-
tions to the translated queries and, for each query,
retrieved 100 most relevant documents from the
corpus. Then, we employed relevance judgments
from the original DBpedia-entity dataset to obtain
the ground truth documents for each query (we
selected only the documents deemed relevant or
highly relevant) to calculate several retrieval met-
rics explained in the next section.

5.3 Evaluation Metrics

Success@k measures whether a user’s informa-
tion need is satisfied by at least one result in the
top k retrieved items (Karpukhin et al., 2020;
Khattab et al., 2021). It is a coarse-grained metric
that does not distinguish how well the user’s
information need was satisfied.

Recall@k measures what percentage of all
relevant items for a query appear within the top k
retrieved results (Buttcher et al., 2016). The met-
ric is suitable for our case, because only a small
proportion of the total number of documents is
annotated with relevance judgments and therefore
the Recall will be upper bounded only with very
small k values.11

Mean Average Precision (MAP)@k measures
both the precision and ranking quality of the re-
sults up to position k, averaged across all queries.

10https://lucene.apache.org/core/8_11_
0/analyzers-common/org/apache/lucene/
analysis/et/EstonianAnalyzer.html

11Consider for instance the case where there are 1000 rel-
evant documents per query. In this case, for instance with k
of 100, the Recall will be upper bounded by 0.1.
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Metric Baseline Stemming Vabamorf GliLem

Recall@1 0.0269 0.0260 0.0218 0.0278
Recall@5 0.0633 0.0627 0.0702 0.0734
Recall@100 0.2212 0.2167 0.2831 0.2935

MAP@1 0.2077 0.2120 0.2527 0.2591
MAP@5 0.1201 0.1312 0.1596 0.1577
MAP@100 0.0874 0.0856 0.1057 0.1115

Success@1 0.2077 0.2120 0.2527 0.2591
Success@5 0.3704 0.4004 0.4925 0.4797
Success@100 0.6681 0.6767 0.7901 0.7837

Table 3: Retrieval metrics for the proposed token normalization approaches on the translated DBpedia-
Entity dataset.

It captures not just whether relevant items were re-
trieved, but also how high they were ranked, giv-
ing more weight to relevant items appearing higher
in the results (Buttcher et al., 2016). This metric
prioritizes results that group relevant results closer
to the top.

5.4 Results and Discussion

The IR performance measures at several k-s are
shown in Table 3. First, we observe that the base-
line of using word forms is on the same level
with stemming on all measures, which is due to
the Apache Lucene stemmer, although Estonian-
specific, being very weak for Estonian.

When looking at the setting with k equal to 1,
the Recall does not change considerably, but both
MAP and Success rate (that are by definition equal
in this setting) improve more than 4% when using
lemmatization over stemming, although enhanced
disambiguation with GliLem gives only a minor
improvement over the default Vabamorf disam-
biguation.

In the k equal to 5 setting, Recall improves
about 1%, MAP about 3%, and the Success rate,
which is the most lenient measure, improves about
9%, when comparing Stemming to lemmatiza-
tion with Vabamorf. In this setting, only the Re-
call measure shows a small positive impact of the
more complex disambiguation with GliLem over
the default Vabamorf disambiguation, while for
the MAP and Success rate, the baseline Vabamorf
gives better results.

Finally, in the k equal to 100 setting, when
comparing lemmatization to stemming, Recall im-
proves ca 7%, MAP about 2% and Success rate
improves about 11%, with GliLem disambigua-

tion showing an additional improvement of ca 1%
in both Recall and MAP over the Vabamorf default
disambiguation.

We conclude that proper lemmatization can
considerably improve IR results compared to
stemming. At the same time, even large improve-
ments in lemmatization accuracy, obtained by re-
placing the simple HMM-based disambiguation
component with a more complex GliNER-based
disambiguation do not easily translate into signif-
icantly better IR results. However, when compar-
ing the baseline Vabamorf with the GliLem dis-
ambiguation, we observe a small but consistent
improvements in Recall for all values of k, with
the improvement being the most pronounced in the
highest k setting. Using a high k is typical in hy-
brid IR systems, where the lexical retrieval is the
first step to reduce the number of potentially rele-
vant documents. Thus, the relatively small lemma-
tization improvement can have a positive effect in
the downstream IR task.

Upon manual inspection of the original
DBpedia-Entity corpus, we observed that it is
somewhat noisy. Some entries have little to no
content, while others are comprised of large
listings. Many entries have characters from
diverse writing systems. This results in additional
noise introduced during the imperfect translation
process. Moreover, there are translation errors
in the translated queries (such as the presence
of non-existent words), as well. We believe that
the positive effect of the improved lemmatization
being somewhat small can be at least partially
attributed to these issues. Accordingly, some
future work could be dedicated to improving the
translated dataset, e.g., manually correcting the
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query translations, performing translation quality
estimation to redo or filter out low quality docu-
ment translations, and filtering out entries with no
useful content. Consequently, we would expect a
larger positive effect of improved lemmatization
on a corrected dataset. However, we believe that
the noisiness of the dataset affects each approach
similarly, and thus the relative ranking between
the preprocessing methods remains stable.

We also note that both disambiguation ap-
proaches are somewhat computationally intensive.
In the current implementation of GliNER, the
batch processing does not allow different sets of
labels for each example, and thus each example
must be processed separately, which makes it diffi-
cult to make use of GPU acceleration during infer-
ence. The Vabamorf disambiguator, on the other
hand, cannot be accelerated at all. Applying both
disambiguation approaches to the large corpus of
4.5M documents took over 50 hours for each, us-
ing parallelization with approximately 30 concur-
rent processes on CPU hardware.

6 Conclusion

This study demonstrates that integrating an ex-
ternal disambiguation model like GliLem with a
rule-based morphological analyzer can substan-
tially improve the accuracy of lemmatization in
Estonian. The enhanced lemmatization bridges
the accuracy gap caused by the limitations of
Vabamorf’s built-in disambiguator. This proves
our initial hypothesis that the main weakness of
Vabamorf is in fact its inability to correctly select
the lemma candidate in context.

Additionally, we estimated the effect of im-
proved lemmatization accuracy on an information
retrieval downstream task. Although the precise
effect is difficult to estimate due to the noisiness
of the original data and additional noise intro-
duced by imperfect machine translation, we ob-
served small consistent improvements in Recall,
and especially in the setting with a high k, suggest-
ing that improved lemmatization might translate
into actual improvements in a hybrid information
retrieval setting.
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iğit, Flavio Massimiliano Cecchini, Giuseppe G. A.
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Gunta Nešpore-Bērzkalne, Manuela Nevaci, Lu-
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Abstract

Optical Character Recognition (OCR) is
crucial to the National Library of Nor-
way’s (NLN) digitisation process as it con-
verts scanned documents into machine-
readable text. However, for the Sámi
documents in NLN’s collection, the OCR
accuracy is insufficient. Given that
OCR quality affects downstream pro-
cesses, evaluating and improving OCR for
text written in Sámi languages is nec-
essary to make these resources accessi-
ble. To address this need, this work
fine-tunes and evaluates three established
OCR approaches, Transkribus, Tesseract
and TrOCR, for transcribing Sámi texts
from NLN’s collection. Our results show
that Transkribus and TrOCR outperform
Tesseract on this task, while Tesseract
achieves superior performance on an out-
of-domain dataset. Furthermore, we show
that fine-tuning pre-trained models and
supplementing manual annotations with
machine annotations and synthetic text im-
ages can yield accurate OCR for Sámi lan-
guages, even with a moderate amount of
manually annotated data.

1 Introduction

Optical Character Recognition (OCR) converts
scanned documents into machine-readable text,
which is crucial for making digitised materials
available for search and analysis. For the Na-
tional Library of Norway (NLN), the OCR out-
put, among others, facilitates search for the on-
line library (Nettbiblioteket1) and underpins analy-
sis tools like the DH-Lab toolbox (Birkenes et al.,
2023). However, while OCR quality is high for
most Norwegian documents, it falls short for Sámi

1https://www.nb.no/search

documents. The resulting text is insufficient for
both search and for use in research or as a basis
for language technology.

NLN has material in five Sámi languages: North
Sámi, South Sámi, Lule Sámi, Inari Sámi and
Skolt Sámi. Thus, developing an accurate OCR
model for Sámi texts is important for NLN’s mis-
sion to store and disseminate the materials in the
library collection. Furthermore, for languages
with limited resources, like Sámi languages, it is
vital that the available resources are accessible to
be searched and used for research. This paper de-
scribes a twofold contribution towards this goal:

1. Developing an OCR model for Sámi lan-
guages that improves the transcription accu-
racy of Sámi text in NLN’s collection.

2. Comparing different OCR approaches in
terms of transcribing smaller languages such
as languages in the Sámi family.

2 Background

2.1 Sámi languages in the National Library
of Norway’s collection

Of the around 650 000 books and 4.6 million
newspaper issues in NLN’s digitised collection,
about 3000 and 4500 are classified as Sámi, re-
spectively. The classification generally means that
the texts are written in Sámi, though some may
just address Sámi-related topics.

With more than 20 000 speakers North Sámi is
the most widely spoken Sámi language in Nor-
way, Sweden and Finland, and it makes up the
largest part of the Sámi collection at NLN. The
other Sámi languages in NLN’s collection all have
less than 500 speakers. South and Lule Sámi are
spoken in Norway and Sweden, and the collection
contains a good amount of South and Lule Sámi
books. Skolt Sámi, previously spoken in Nor-
way and Russia, is now mainly spoken in Finland,
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along with Inari Sámi, which has only ever been
spoken in Finland. There is much less material in
these languages in the collection (< 20 books in
total).

All five languages have standardised orthogra-
phies that were made or revised in the 1970s, 80s
or 90s (Laakso and Skribnik, 2022; Olthuis et al.,
2013; Magga, 1994), but the collection also in-
cludes earlier works that predate the standardised
norms. To some extent these books contain non-
standard letters or glyph-shapes and most words
are spelled in ways differing from contemporary
orthographies.

The Sámi written languages have letters not
found in the Norwegian alphabet, but it varies
from language to language which letters and how
many. The alphabets have some letters in com-
mon, but none are identical. See Table 1 for an
overview of these characters.

North South Lule Inari Skolt

Áá Áá Áá
Ââ Ââ
Ää Ää

Ïï
Õõ

Öö
Čč Čč Čč
Đđ Đđ Đđ
Ŋŋ Ŋŋ Ŋŋ Ŋŋ
Šš Šš Šš
Ŧŧ
Žž Žž Žž

Ʒʒ
Ǥǥ
Ǧǧ
Ǩǩ
Ǯǯ
ʹ
ʼ
ˈ

Table 1: Overview of non-Norwegian characters
used in the contemporary orthographies of the
Sámi languages in the collection

2.2 Related work

While early OCR approaches often relied on
hand-crafted image features combined with shape-
and text-analysis (Smith, 2007), modern solu-
tions use deep learning based models to learn in-
formative features from the data itself. In par-

ticular, developments like convolutional neural
networks (CNNs), bidirectional long-short-term-
memory (LSTMs) (Hochreiter and Schmidhuber,
1997) and the Connectionist Temporal Classi-
fication (CTC) loss (Graves et al., 2006) has
yielded state-of-the-art results (Shi et al., 2016;
Puigcerver, 2017; van Koert et al., 2024; Tarride
et al., 2024). Recently, transformer-based machine
learning advancements have led to transformer-
based OCR models such as TrOCR (Li et al.,
2023).

OCR pipelines have also been developed for
collections of digitised documents: Tesseract
(Smith, 2007) is an open-source OCR framework
for line segmentation and text recognition which
includes pre-trained OCR models for several lan-
guages2 and training scripts for training and fine-
tuning on custom data. Since 2018, Tesseract has
also supported LSTMs.

Another example is Transkribus, a proprietary
platform for the recognition of printed and hand-
written documents with a built-in interface for
(semi-)manual transcription. The platform sup-
ports layout analysis and text recognition, us-
ing pre-existing or custom-trained models. The
text recognition models are based on PyLaia
(Puigcerver, 2017; Tarride et al., 2024), which
uses a combination of CNNs and bidirectional
LSTMs. Transcriptions can be exported, though
models are restricted to use within the platform.

A recent advancement is transformers-based
OCR. TrOCR is a state-of-the-art text recognition
model that combines powerful transformer models
for vision and language (Li et al., 2023). Specif-
ically, TrOCR combines the “encoder” of a vi-
sion transformer (ViT) (Dosovitskiy et al., 2021),
with the language generating “decoder” of a ro-
bustly optimised Bidirectional encoder represen-
tations from transformers approach (RoBERTa)
model (Liu et al., 2020). TrOCR is specialised
for text recognition, and will not perform ancil-
lary tasks, like layout analysis. Moreover, while
TrOCR is shown capable of outperforming Tran-
skribus and Tesseract (Ströbel et al., 2023; Li et al.,
2023), it is still a relatively recent algorithm, and
there is still a need to assess its accuracy for low-
resource languages.

OCR quality greatly impacts downstream pro-
cesses (Lopresti, 2008; Järvelin et al., 2016; Ev-
ershed and Fitch, 2014). Consequently, parts of

2but none for the Sámi languages
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a digitised collection with challenges like unusual
fonts, bad scan quality or text in a low-resource
language, will be less accessible. Several works
have, thus, focused on improving OCR quality for
texts with such challenges by e.g. using an ensem-
ble of image preprocessing transforms (Koistinen
et al., 2017), comparing various OCR- or hand-
written text recognition (HTR)-models for smaller
languages (Maarand et al., 2022; Memon et al.,
2020; Tafti et al., 2016; Koistinen et al., 2017; He-
liński et al., 2012) or post-correcting outputs (Pon-
celas et al., 2020; Duong et al., 2021).

OCR for low-resource languages is particularly
challenging. Not only is there much less labelled
data for training, but this problem is exacerbated
further by potential changes in orthographies. Ri-
jhwani et al. (2023) showed that including OCR
in a semi-automatic annotation suite can aid anno-
tation – even for a low-resource language such as
Kwak’wala, where automatic annotation is diffi-
cult. Similarly, Yaseen and Hassani (2024) trained
a Tesseract-based OCR system for Kurdish, an-
other low-resource language. Agarwal and Anas-
tasopoulos (2024) presented a concise survey of
OCR for low-resource languages with a focus
on Indigenous Languages of the Americas. Fi-
nally, Partanen and Rießler (2019) presented an
OCR model for the Unified Northern Alphabet,
used in the Soviet Union between 1931 and 1937
for Northern Minority languages (which includes
Kildin Sámi).

3 Methods

3.1 Data

The main source for the data used in this work is
NLN’s digitised collection. Our goal was to create
an OCR model for all languages in the collection,
rather than one for each language, as this would
allow for the most efficient integration into NLN’s
digitisation pipeline. However, we realised early
that including Skolt Sámi would be difficult be-
cause of the three apostrophe characters that indi-
cate pronunciation. This makes transcription dif-
ficult without a certain level of language profi-
ciency. Thus, we proceeded with North, South,
Lule and Inari Sámi.

In addition to data from NLN, we also used text-
data data from the GiellaLT corpora3 as basis for
synthetic text images and data from the Divvun &

3https://giellalt.github.io/

South North Lule Inari

D
oc

s

GT 5 3 2 3
Pred 265 1810 235 0
Val 2 8 2 3
Test 4 7 4 5

L
in

es

GT 208 5572 81 280
Pred 7082 70413 6781 0
Synth 76971 76949 76970 76497
Val 53 1837 36 109
Test 195 353 137 163
OOD 0 122 0 0

Table 2: Distribution of documents and lines
in each of the Sámi languages in the different
datasets. GT, Val and Test refer to the data splits
of the manually annotated data. Pred is the auto-
matically annotated dataset, Synth is the synthetic
dataset (natural language text but generated im-
ages) and OOD is the OOD Giellatekno test set.

Giellatekno fork of tesstrain4 as basis for an out-
of-domain (OOD) test set.

Training data

We trained OCR models using manually tran-
scribed data, machine transcribed data, and syn-
thetic data5. See Table 2 for an overview.

Manually transcribed data We used Tran-
skribus6 (Kahle et al., 2017) to create the train-
ing data from the images of scanned pages. We
used the platform’s layout analysis, manually ad-
justing the results where necessary, then applied
text recognition to the documents. Initially, we
used a standard model provided by Transkribus.
As we progressively corrected the recognised text,
we trained new models, which were applied to
recognise text in new documents, which we man-
ually corrected to create the manually transcribed
data.

Following this procedure, we transcribed 58
Sámi book and newspaper pages to create a manu-
ally transcribed training set, henceforth referred to
as Ground Truth Sámi (GT-Sámi).

4https://github.com/divvungiellatekno/
tesstrain/tree/main/training-data/nor_
sme-ground-truth

5As these texts contain copyrighted materials, the tran-
scribed data sets can not be shared openly.

6We used the Transkribus Expert Client v1.28.0 and
https://app.transkribus.org v4.0.0.150
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Additionally, we already had 82 pages with
2998 manually transcribed Norwegian text lines
(produced similarly as for GT-Sámi) that we in-
cluded as training data. We refer to this data as
Ground Truth Norwegian (GT-Nor).

Synthetic data To add more annotated Sámi text,
we created synthetic data, which we refer to as the
Synthetic Sámi dataset (Synth-Sámi). We used the
SIKOR Sámi text corpus (SIKOR, 2021) as a ba-
sis of well-formed Sámi text, and generated im-
ages for the text lines (adding an uppercase version
for ≃ 10% of the lines), using CorpusTools7

to parse the XML files in the converted-
directory of the corpus-sma8, corpus-sme9,
corpus-smj10 and corpus-smn11 reposito-
ries. The images were created with Pillow12 and
Augraphy (Groleau et al., 2023), with variation
in fonts and colours, and a varying degree of im-
perfections and noise added, resulting in 307 387
lines13.

Automatically transcribed data As mentioned
earlier, we trained Transkribus models incremen-
tally while annotating data. Eventually, our Tran-
skribus model14 performed well on North, South
and Lule Sámi, and we decided to automatically
transcribe a larger amount of Sámi text with this
model. We extracted page 30 from North, South
and Lule Sámi books in NLN’s collection and
transcribed them automatically, which resulted in
2380 pages forming the Predicted Sámi (Pred-
Sámi) dataset. This boosted the amount of data,
but naturally, the transcriptions may not be correct.

Validation data
To evaluate during training and to select the best
performing models for each architecture, we cre-
ated a validation dataset. This dataset consists
of 25 pages manually transcribed following the
procedure described for GT-Sámi. Lines were

7https://github.com/divvun/CorpusTools
8https://github.com/giellalt/

corpus-sma/
9https://github.com/giellalt/

corpus-sme/
10https://github.com/giellalt/

corpus-smj/
11https://github.com/giellalt/

corpus-smn/
12https://python-pillow.org/ (Version 10.4.0)
13Code to generate synthetic data is on GitHub: https:

//github.com/Sprakbanken/synthetic_text_
images

14Transkribus modelID 115833, publicly available in Tran-
skribus

selected from different books than the GT-Sámi
training data while keeping a similar language dis-
tribution.

Test data
To compare the OCR approaches we used two test
sets: one from NLN’s collection and one from
Divvun & Giellatekno’s tesstrain data.

NLN test data As a goal of this work was to
improve the transcriptions of Sámi documents in
NLN’s collection, we created a test set based on
current transcriptions (baseline) of 21 pages from
18 books and 2 newspapers provided by NLN15.
NLN stores these transcriptions as Analyzed Lay-
out and Text Object-Extensible Markup Language
(ALTO-XML) files with line segmentations and
transcriptions. By matching the ALTO-XML tran-
scriptions with manually annotated data, we cre-
ated a test-set containing 848 text-lines.

Giellatekno test data The Giellatekno test data
nor-sme was made for evaluating OCR reading of
dictionares. It consists of 122 lines of dictionary
data, thus text both in Norwegian and (contempo-
rary) North Sámi. The dataset is available on Giel-
latekno’s GitHub16 We refer to this dataset as the
OOD Giellatekno test set.

3.2 Evaluation metrics

Following previous work (Neudecker et al., 2021;
Agarwal and Anastasopoulos, 2024), we used the
character error rate (CER) and word error rate
(WER) evaluation metrics. Specifically, we calcu-
lated collection level CER and WER (concatenat-
ing lines, with a space to separate them for WER)
with Jiwer17.

We also calculated an F1 score for characters
specific to the different Sámi languages, and an
overall F1 score for all non-Norwegian Sámi char-
acters. The F1 score is given by F1 = 2TP/(2TP+
FN + FP), where TP, FP and FN is the number

15We chose distinct books for the train, validation and test
sets. However, due to few Inari Sámi books, 1 book is in both
the train and test sets and 2 are in both the validation and test
sets, but there is no page-overlap.

16https://github.com/divvungiellatekno/
tesstrain/tree/main/training-data/nor_
sme-ground-truth. We have corrected four transcrip-
tions and used our corrected version of the test set which can
be found on https://github.com/MarieRoald/
tesstrain/tree/fix-transcriptions/
training-data/nor_sme-ground-truth

17https://github.com/jitsi/jiwer (Version
3.0.4)
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of true positives, false positives and false nega-
tives, respectively. To measure TP, FP and FN
in an OCR-setting, we only considered character
counts, not location. Thus, for a given charac-
ter, c, we set TPc = min(n

(true)
c , n

(pred)
c ), FN =

max(n
(true)
c − n

(pred)
c , 0) and FP = max(n

(pred)
c −

n
(true)
c , 0), where n

(true)
c and n

(pred)
c are the number

of c characters in the ground truth and predicted
transcriptions, respectively. To compute an over-
all F1, we combined the TP, FN, and FP across all
lines and characters-of-interest.

To examine the types of errors our models
made, we calculated the most common errors.
Specifically, we used Stringalign (Moe and Roald,
2024), which implements optimal string align-
ment. Note that, in theory, multiple alignments
can exist (e.g. if two letters are swapped), in which
case Stringalign picks one.

3.3 Models and training

A goal of this work was evaluating different state-
of-the-art OCR frameworks for Sámi text recog-
nition. Specifically, we compared Transkribus,
Tesseract and TrOCR. For each approach, we
trained on several dataset combinations and chose
the model based on mean(CER, WER) on the val-
idation data for test-set evaluation.

Transkribus
We used Transkribus Expert for training Tran-
skribus models18. We used standard parameters,
but opted “Using exsisting line polygons for train-
ing”, and changed the batch size from 24 to 1219.
We set 100 as maximum numbers of epochs, and
20 as early stopping. We used Transkribus print
M120 as base model for 4 of the 5 models. All
Transkribus models were run with the setting “Use
language model”21.

Tesseract
We used the official tesstrain repository22 and
Tesseract 5.4.1 for training. We experimented with
both training models from scratch and fine-tuning

18https://help.transkribus.org/
model-setup-and-training

19We changed this parameter after advice from the Tran-
skribus team due to problems with the training stopping with
exitCode = 1

20Transkribus ModelID 39995
21Which uses PyLaia’s n-gram model functionality to in-

form character predictions (Tarride et al., 2024).
22https://github.com/tesseract-ocr/

tesstrain (Version 1.0.0, commit hash 45cacc5)

existing models. During early experiments, we
tried fine-tuning Norwegian, Finnish, and Esto-
nian models using our Sámi dataset, and observed
that the model with the Norwegian base adapted
faster and performed better on our validation set.
Thus, we continued training with the Norwegian
base23.

As tesstrain does not support dynamic learning
rate and only exposes a few training hyperparam-
eters to the user, we trained our models in 1-20
epoch increments, updating the learning rate until
the model checkpoints no longer showed improve-
ments on the validation set.

TrOCR
We used Huggingface Transformers (Wolf
et al., 2020) to fit the TrOCR models,
initialising with the parameters from the
microsoft/trocr-base-printed reposi-
tory. This model is pre-trained on both synthetic
and printed text (Li et al., 2023). For fine-tuning,
we had an initial learning rate of 10−6, decreasing
it by a constant amount for each iteration until it
reached 10−7 at the final iteration. For models
fine-tuned without Pred-Sámi, we trained for 200
epochs, evaluating and storing model parameters
every fifth epoch. However, due to the data size
and hardware limitations, models that included
Pred-Sámi were only fine-tuned for 100 epochs,
evaluating and storing model parameters every
second epoch and selecting the checkpoint with
the lowest validation CER.

Pre-training with synthetic data
We trained additional TrOCR and Tesseract mod-
els using synthetic data to assess the effect of
adding such data24. After training all models with-
out synthetic data, we retrained with the small-
est amount of hand-annotated data (GT-Sámi) and
best performing data combination, this time ini-
tialising with a model pre-trained on Synth-Sámi.

In particular, due to time and hardware limita-
tions, we trained models on synthetic data in two
stages inspired by the two-stage procedure in e.g
(Li et al., 2023). For the first stage, we trained for
five epochs on Synth-Sámi. For the second stage,
we initialised with the best checkpoint from the

23https://github.com/tesseract-ocr/
tessdata_best/blob/main/nor.traineddata

24We did not train Transkribus models with synthetic data
as it does not support an easy way to train based on line im-
ages and because of its page-based pricing model.
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Transkribus Tesseract TrOCR
CER WER mean CER WER mean CER WER mean

✓ ✓ 1.59 5.67 3.63 5.53 24.70 15.11
✓ 1.28 4.34 2.81 2.05 9.84 5.95 1.98 9.29 5.64
✓ ✓ 1.31 4.35 2.83 2.37 11.39 6.88 1.95 8.88 5.42
✓ ✓ 1.48 4.02 2.75 1.85 8.17 5.01 1.28 5.00 3.14
✓ ✓ ✓ 1.07 3.58 2.33 1.81 7.96 4.89 1.32 5.14 3.23
✓ ✓ 1.78 8.78 5.28 1.15 5.04 3.09
✓ ✓ ✓ 1.08 4.29 2.69
✓ ✓ ✓ ✓ 1.79 7.70 4.75

Table 3: CER, WER, and mean(CER, WER) on the validation set. The checkmarks indicate whether
models were trained from scratch (i.e. not fine-tuning an existing base model) (first column) and what
datasets were part of the training data

first stage (lowest CER) and continued training on
real data.

4 Results

Code for training Tesseract and TrOCR models,
creating synthetic data and more detailed dataset
information is available through the supplement
on GitHub25.

4.1 NLN validation data

Transkribus models

As shown in Table 3, CER and WER decreased
when we used the Transkribus Print M1 as the
base model in addition to GT-Sámi. Hence, we
continued to use the base model in the subsequent
training. Supplementing GT-Sámi with GT-Nor
did not improve performance, while supplement-
ing with Pred-Sámi increased CER but decreased
WER. However, adding both GT-Nor and Pred-
Sámi led to the best-performing model on the val-
idation set.

Tesseract models

From Table 3, we see that the model trained on
GT-Sámi with a Norwegian base model greatly
outperformed the corresponding model without
a base model. We therefore continued training
all Tesseract models from the Norwegian base
model. Adding GT-Nor to the training data wors-
ened the validation performance. However, adding

25https://github.com/Sprakbanken/
nodalida25_sami_ocr

Pred-Sámi to the training data improved valida-
tion performance, and adding both further im-
proved the performance. Using Synth-Sámi also
improved performance, and the model performed
best in terms of mean(CER, WER) when all train-
ing datasets were used.

TrOCR models
For TrOCR, we observed that including GT-Nor
in the training had a slight improvement when
only training with GT-Sámi and no improvement
when training with GT-Sámi and Pred-Sámi (see
Table 3). Moreover, while including Pred-Sámi
improved performance, pre-training with Synth-
Sámi had a larger effect. The overall best-
performing model was trained with both Synth-
Sámi and Pred-Sámi in addition to GT-Sámi.

4.2 NLN test data

Table 4, shows that while Transkribus achieves a
lower CER for most languages, it obtains a higher
WER and a lower special character F1-score com-
pared to TrOCR. Tesseract performed worst on
this dataset. However, all models greatly improve
compared to the baseline, with the CER and WER
being reduced by factors between 3.8 and 5.6.

The special character F1-score in Table 4 shows
that the baseline struggles with non-Norwegian
Sámi characters. While the F1 score does not
take letter position into account, we also see the
same pattern reflected in Table 5, which shows
that seven of the ten most common mistakes for
the baseline are replacing a non-Norwegian Sámi
special character. In contrast, we see that our three
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Transkribus Tesseract TrOCR Baseline

CER ↓ [%] Overall 0.61 0.89 0.74 3.38
South 0.33 1.09 0.33 2.05
North 0.53 0.73 1.20 3.99
Lule 0.34 0.26 0.66 2.46
Inari 1.22 1.43 0.43 4.36

WER ↓ [%] Overall 3.19 4.65 2.96 18.71
South 2.42 7.45 2.33 15.98
North 1.66 2.90 3.41 20.08
Lule 3.27 1.84 3.47 13.27
Inari 6.18 7.13 2.40 22.62

Sámi letter F1 ↑ [%] Overall 96.03 93.81 96.97 52.54
South 90.24 83.02 93.92 24.52
North 98.57 97.13 97.27 55.85
Lule 97.91 97.88 97.06 51.75
Inari 94.70 93.22 98.84 68.61

Table 4: CER, WER and Sámi letter F1 on NLN test data. The score for each language and overall score
across languages are listed. Transkribus, Tesseract and TrOCR refer to the best performing model on
the validation set for each model type. Baseline is the current OCR output in the online library. The
downward arrows indicate that a low score is better, while the upward arrow indicates that a high score
is better.

models make fewer mistakes, and their ten most
common mistakes are less systematically replac-
ing distinctive Sámi characters and include, e.g.
insertions and deletions.

4.3 Giellatekno test data
In contrast to the NLN test data, the Tesseract
model performed the best on the OOD test data
from Giellatekno for all metrics (see Table 6).
Transkribus was worst in terms of CER and WER,
while TrOCR was worst in terms of the F1 score.

In Table 7, we see the most common errors on
the Giellatekno test set. The Transkribus model
seems to have a tendency to add punctuation
marks, and mistake the letter ø for e. All mod-
els fail to transcribe ü (of which there are only two
in the Giellatekno test set). This is not surprising,
as the letter rarely appears in the training data 26.

5 Discussion and conclusions

From Tables 3 and 4, we observe a jump in perfor-
mance for the test set compared to the validation
set. This increase is expected, as the test set an-
notations are of higher quality (more accurate line
segmentations).

26The letter ü appears 59 times in Synth-Sámi, 9 times in
Pred-Sámi and 5 times in GT-Nor.

We see that applying a two-stage training using
synthetic data for the first stage always improved
the results. As such, if manual annotations are lim-
ited, the addition of synthetic data is worth con-
sidering. Furthermore, while the Pred-Sámi im-
proved performance, its effect was less than in-
cluding synthetic data. It would, thus, be interest-
ing to investigate if further training on Synth-Sámi
could eliminate the effect of Pred-Sámi. Finally,
we note that including GT-Nor had a minimal ef-
fect when combined with Pred-Sámi. This find-
ing, combined with the effect of pre-trained base
models, suggests that language-independent fea-
tures are already learned by the base models and
highlights the value of language-specific data for
fine-tuning on low-resource languages.

Unfortunately, as this work focuses on low-
resource languages, few digitised texts exist.
There is, therefore, a slight overlap between the
books (but not pages) in the test set and the valida-
tion and training sets for Inari Sámi which could
bias our results for the Inari Sámi language. Still,
Inari Sámi obtained the worst CER and WER for
Transkribus and the worst CER and second worst
WER for Tesseract. Despite low amount of Inari
Sámi, we included it in our analysis as there is
an overlap between this alphabet and the North
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Transkribus Tesseract TrOCR Baseline
Error ne nm nc Error ne nm nc Error ne nm nc Error ne nm nc

‘â’�‘á’ 16 35 287 ‘ï’� ‘i’ 24 27 160 ‘Á’�‘A’ 9 11 28 ‘á’�‘å’ 313 418 1136
‘â’�‘a’ 14 35 287 ‘â’�‘á’ 22 29 287 ‘’ � ‘l’ 7 – – ‘ï’� ‘i’ 137 139 160
‘Á’�‘A’ 9 10 28 ‘d̄’�‘d’ 12 14 173 ‘Š’�‘S’ 6 6 6 ‘â’�‘å’ 103 180 287
‘/’� ‘ ’ 9 9 10 ‘Á’�‘A’ 10 11 28 ‘’ � ‘i’ 5 – – ‘–’�‘-’ 75 77 82
‘i’� ‘ï’ 7 13 3299 ‘’ �‘d’ 8 – – ‘’ � ‘ ’ 4 – – ‘š’�‘s’ 72 95 215
‘d̄’�‘d’ 7 11 173 ‘’ �‘á’ 7 – – ‘i’ � ‘ï’ 4 21 3299 ‘d̄’�‘d’ 48 61 173
‘š’� ‘’ 6 6 215 ‘’ � ‘i’ 7 – – ‘á’� ‘å’ 4 14 1136 ‘á’�‘a’ 46 418 1136
‘ä’�‘á’ 5 6 150 ‘s’�‘S’ 7 8 1509 ‘Č’�‘C’ 4 4 8 ‘â’�‘á’ 30 180 287
‘ï’� ‘i’ 5 5 160 ‘â’�‘å’ 6 29 287 ‘á’� ‘a’ 3 14 1136 ‘â’�‘ä’ 26 180 287
‘’ �‘-’ 4 – – ‘.’ � ‘’ 5 6 509 ‘a’�‘u’ 3 8 3247 ‘č’�‘c’ 26 62 163

‘a’�‘b’: model transcribed “a” as “b” ne: Error count
‘a’� ‘’ : model incorrectly deleted “a” nm: Misses of the character left of �
‘’ �‘b’: model incorrectly inserted “b” nc: Occurrences of the character left of �

Table 5: Top ten most common errors on the NLN test data. Transkribus, Tesseract and TrOCR refers to
the best performing model on the validation set for each model type. Baseline is the current OCR output
in the online library.

Transkribus Tesseract TrOCR

CER ↓ [%] 0.70 0.12 0.43
WER ↓ [%] 5.85 1.02 3.31
F1 ↑ [%] 100.00 100.00 98.33

Table 6: CER, WER and Sámi letter F1 on the
OOD Giellatekno test set. The downwards arrows
indicate that a low score is better, while the up-
wards arrow indicates that a high score is better.

Sámi alphabet, and our OCR models could im-
prove upon NLN’s transcription for Inari Sámi.

All models improved considerably compared to
the baseline and are good candidates for a re-OCR
process. If transcription accuracy is the main fo-
cus, then Transkribus appears to perform the best.
However, while Tesseract achieved the worst per-
formance for the NLN test set, it performed the
best on the OOD Giellatekno test set. Tesseract
also has other benefits: it is available as open-
source software and requires less compute than a
TrOCR model.

While language-specific annotations are valu-
able, they are demanding to create, particularly for
low-resource languages without good base mod-
els for semi-automatic annotations. However, our
results show that by fine-tuning pre-trained mod-
els and augmenting manually annotated data with
machine-annotated data and synthetic text images,

we can achieve accurate OCR for Sámi languages,
even with modest amounts of manual annotations.

6 Further work

As NLN’s collection includes works predating
the standardised Sámi orthographies, a more ac-
curate evaluation of the OCR could be gained
by examining performance across different time
periods. Moreover, training specialised models
to transcribe non-standard letters or glyph-shapes
could enable more detailed down-stream studies
of changes in orthographies. Another gap is train-
ing OCR for other Sámi languages, such as Skolt
Sámi.

Given that our results show that initialising on a
dataset of synthetic text images was beneficial, it is
worth exploring further. The models in this work
are only trained on synthetic data for five epochs,
indicating that potential improvements could be
made by training on synthetic data for longer, i.e.
until convergence. Moreover, creating a larger
synthetic dataset with greater variation of text,
fonts and augmentations (e.g. additional scan-
ning augmentations or simulating non-standard or-
thographies), could improve the results further.

As this study focuses on the text recognition
step of the OCR pipeline and compares three mod-
els, future research should explore additional OCR
components and models. E.g. examining the ef-
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Transkribus Tesseract TrOCR
Error ne nm nc Error ne nm nc Error ne nm nc

‘’ � ‘.’ 12 – – ‘ü’� ‘i’ 1 2 2 ‘ü’� ‘ï’ 2 2 2
‘ø’�‘e’ 4 5 13 ‘ü’� ‘u’ 1 2 2 ‘’ � ‘,’ 1 – –
‘’ � ‘,’ 2 – – ‘t’� ‘f’ 1 1 220 ‘t’ � ‘l’ 1 2 220

‘ü’�‘u’ 2 2 2 ‘n’�‘m’ 1 1 164 ‘te’�‘s’ 1 2 28
‘’ �‘k’ 1 – – ‘l’ � ‘’ 1 1 169

‘ø’�‘o’ 1 5 13 ‘o’�‘n’ 1 1 149
‘c’� ‘’ 1 1 23 ‘m’�‘n’ 1 1 69

‘c’ �‘e’ 1 1 23
‘-’ �‘–’ 1 1 18
‘N’ �‘ž’ 1 1 9
‘=’�‘2’ 1 1 4
‘x’�‘s’ 1 1 2

‘a’�‘b’: model transcribed “a” as “b” ne: Error count
‘a’� ‘’ : model incorrectly deleted “a” nm: Misses of the character left of �
‘’ �‘b’: model incorrectly inserted “b” nc: Occurrences of the character left of �

Table 7: Top ten most common errors on the OOD Giellatekno test data. Transkribus, Tesseract and
TrOCR refers to the best performing model on the validation set for each model type.

fect of different line segmentation models and as-
sessing if performance can be improved by fine-
tuning the line segmentation or using end-to-end
models. Additionally, extending the range of mod-
els examined — to include tools such as PyLaia
(Puigcerver, 2017; Tarride et al., 2024) (which
is part of Transkribus’ pipeline), Loghi (van Ko-
ert et al., 2024), GOT-OCR (Wei et al., 2024)
or larger TrOCR models — could yield improve-
ments. Lastly, including post processing, e.g. with
tools from GiellaLT (Pirinen et al., 2023), could
improve OCR quality.
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Abstract
This paper evaluates the language under-
standing capabilities of various large lan-
guage models (LLMs) through an anal-
ysis of 112 translated and human-edited
questions from the Multitask Language
Understanding (MMLU) dataset, focusing
specifically on two underrepresented lan-
guages: Latvian and Giriama. The study
compares the performance of six state-of-
the-art (SOTA) models, with OpenAI’s
o1-preview model demonstrating superior
performance across all languages, signifi-
cantly outperforming non-proprietary mod-
els in Latvian and Giriama. Human edit-
ing of automated translations from English
to Latvian yielded only a small, statisti-
cally insignificant improvement in perfor-
mance estimates, suggesting that machine-
translated benchmarks may be sufficient
for comparing model performance in lan-
guages with established digital resources
like Latvian. However, automated trans-
lation to Giriama proved infeasible, and
model performance in Giriama remained
poor, highlighting the persistent challenges
LLMs face with low-resource languages.
These findings underscore the need for
high-quality datasets and improved ma-
chine translation capabilities for underrep-
resented languages, emphasizing the im-
portance of localized benchmarks and hu-
man evaluation in addressing cultural and
contextual limitations in AI models.

1 Introduction

The potential benefits of advanced artificial intelli-
gence (AI) are vast, but to ensure these advantages
are globally accessible, it’s crucial that AI systems
perform well across multiple languages. Previous
research has highlighted a significant disparity be-
tween the performance of frontier large language

models (LLMs) in English compared to other lan-
guages, particularly those with limited resources
(Cohere For AI team, 2024; OpenAI, 2024; Dubey
et al., 2024).

Recently, there has been growing interest in as-
sessing the capabilities of LLMs, with studies such
as HELM (Liang et al., 2022), BIG-Bench (Sri-
vastava et al., 2022), LAMBADA (Paperno et al.,
2016) evaluating various model functions. How-
ever, these evaluations mostly focus on English,
leaving a gap in assessing LLMs’ multilingual per-
formance. As new language technologies based
on LLMs rapidly emerge, evaluating their multilin-
gual effectiveness is crucial (Blasi et al., 2021).

As AI models continue to evolve, it’s essential to
monitor how this language gap is narrowing. Users
working with models in various languages could
greatly benefit from comparative performance anal-
yses across different linguistic contexts. However,
evaluating model performance in non-English lan-
guages presents challenges, for example manual
translation is time-consuming, and this has forced
the NLP community to focus on a selection of tasks
and languages only. Moreover, it has become stan-
dard practice to machine translate the training set
but use human translation for test sets (Choenni
et al., 2024). While automated translation of bench-
marks is cost-effective, it raises concerns about
quality. Conversely, human translations, though
potentially more accurate, can be prohibitively ex-
pensive. Driven by these considerations this study
aims to address the following key questions:

• Q1: Which LLM performs best in both Lat-
vian and Giriama tasks?

• Q2: How do model performance levels differ
between English, Latvian, and Giriama?

• Q3: How does human post-editing of transla-
tions affect benchmark quality compared to
pure machine translation?

In our work, we utilize the Massive Multitask
Language Understanding (MMLU) benchmark,
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which covers 57 subjects ranging from STEM to
humanities and social sciences. Our goal is to en-
hance the understanding of LLMs performance in
low-resource languages, with a specific focus on
Latvian and Giriama, and to contribute to the devel-
opment of AI systems that are both linguistically
and culturally inclusive.

2 Related works

2.1 Multilingual models across cultures and
languages

State-of-the-art (SOTA) massively multilingual lan-
guage Models (MMLMs) such as mBERT (Devlin,
2018), XLMR (Conneau, 2019), and mT5 (Xue,
2020) support 100+ languages worldwide and have
shown exceptional proficiency in both understand-
ing and generating text across diverse linguistic
contexts. Additionally, generative models like
GPT-4 (Achiam et al., 2023), LLaMA (Touvron
et al., 2023) and BLOOM (Le Scao et al., 2023)
are also gaining world recognition for their contri-
butions to advancing natural language generation
and understanding. Significant challenges remain
in ensuring cultural sensitivity and language equity
(Dawson et al., 2024).

Studies have shown that multilingual models
perform well on high-resource languages like En-
glish, French, and German, but struggle with low-
resource languages (Li et al., 2024; Hedderich
et al., 2020; Ranathunga and De Silva, 2022), par-
ticularly in Africa (Adelani et al., 2021; Alabi et al.,
2022; Adebara et al., 2024) and South Asia (Lahoti
et al., 2022; Baruah et al., 2021), due to limited
training data (Adebara et al., 2024; Magueresse
et al., 2020). Challenges such as cultural nuances
(Romero et al., 2024; Winata et al., 2024), dialectal
variation (Faisal et al., 2024), and code-switching
(Winata et al., 2021) further hinder model per-
formance. While efforts like cross-lingual trans-
fer learning and culturally relevant datasets have
been made to address these issues (Hu et al., 2020;
Winata et al., 2022; Liu et al., 2021), performance
gaps persist in underrepresented languages.

2.2 Datasets, benchmarks, or libraries for
evaluating multi-lingual models

Most existing multilingual NLP benchmarks such
as (Hendrycks et al., 2020; Hu et al., 2020; Wang,
2018; Wang et al., 2019; Guzmán et al., 2019) are
heavily skewed toward high-resource languages,
particularly those in the Indo-European language
family, and reflect predominantly Western cultural

contexts. As a result, these benchmarks fail to
capture the linguistic and cultural diversity of the
global population, making them less reliable in as-
sessing the performance of multilingual language
models (MMLMs) across underrepresented lan-
guages and cultures (Bender, 2019).

Recent works have focused on expanding mul-
tilingual datasets to better reflect the linguistic
and cultural diversity across the world. Projects
such as (Romero et al., 2024; Winata et al., 2024;
Kirby et al., 2016; Miquel-Ribé and Laniado, 2019;
Moran et al., 2022; Adebara et al., 2024; Ife-
oluwa Adelani et al., 2024; Costa-jussà et al., 2022)
are making strides in enhancing the representa-
tion of multilingual models, leveraging community-
driven initiatives to build localized datasets. These
efforts have highlighted the importance of under-
standing the cultural context in which language
is used, rather than relying solely on translation-
based approaches (Tiedemann, 2020).

2.3 Human evaluation of multilingual and
multicultural aspects of models

Human ability to understand language is general,
flexible, and robust (Wang, 2018; Lin and Och,
2004). Hence, human evaluations are typically
considered the gold standard in natural language
generation to assess the effectiveness of multilin-
gual models (Clark et al., 2021; Chiang and Lee,
2023), particularly in evaluating their ability to gen-
erate text that aligns with diverse linguistic and cul-
tural contexts. Automatic metrics such as BLEU
(Papineni et al., 2002) and ROUGE (Lin, 2004)
even though commonly used, often fail to capture
cultural nuances, making human evaluation essen-
tial for a more comprehensive assessment (Kocmi
et al., 2021).

Human evaluations are essential for assessing
how well multilingual models handle grammatical,
syntactical, and contextual differences, particularly
in low-resource languages where machine models
often struggle with culturally specific terms (Costa-
jussà et al., 2022). Evaluating multicultural aspects
is even more challenging due to cultural references,
social norms, and context-dependent meanings.
Human raters are better at identifying these nu-
ances, using criteria such as appropriateness, bias
detection, and cultural sensitivity (Choenni et al.,
2024)
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Language Question and Answers (Question subject: miscellaneous)
English According to the children’s nursery rhyme what type of ocean did Columbus sail in 1492?

A: calm X, B: blue ✓, C: windy X, D: really big X
Giriama Kulingana na wira wa kitalu cha ahoho ni aina yani ya bahari ambayo Columbus wasafiri

makathi ga 1492?
A: Kuhurira X, B: buluu ✓, C: peho X, D: bomu jeri X

Latvian Saskan, ā ar bērnu bērnudārza atskan, u, kāda veida okeānu Kolumbs ku ‘goja 1492. gadā?
(autotranslated) A: Mierı̄gs X, B: zils ✓, C: Vējains X, D: L, oti liels X
Latvian Saskan, ā ar bērnudārza pantin, u, kāda veida okeānu Kolumbs ku ‘goja 1492. gadā?
(autotranslated & edited) A: Mierı̄gu X, B: Zilu ✓, C: Vējainu X, D: L, oti lielu X

Table 1: Sample question translated into Giriama and Latvian (AT: autotranslated, AT+E: autotranslated and edited)
with correct answers marked (✓) and incorrect answers marked (X). The correct answer "blue" in English refers to the
popular children’s rhyme "In 1492, Columbus sailed the ocean blue," which is a cultural reference that may not resonate
in Latvian or Giriama without further explanation.

3 Methodology

3.1 Datasets
The MMLU dataset (Hendrycks et al., 2021) in-
cludes 57 subjects spanning various disciplines
such as mathematics, history, computer science,
law, and more. The dataset features over 15,000
questions from publicly available sources such
as practice tests for exams like the GRE and
USMLE. These questions are categorized by dif-
ficulty, from elementary to advanced professional
levels. The benchmark is designed to evaluate mod-
els in zero-shot and few-shot settings, aiming to
assess their world knowledge and problem-solving
ability across diverse subjects.

3.2 Languages covered
Our benchmarks encompass Latvian and Giriama,
two languages that are quite distinct both in their
geographic origins and linguistic structures:

• Latvian (lav): spoken by approximately 1.75
million people primarily in Latvia, belongs to
the Baltic branch of the Indo-European lan-
guage family and is closely related to Lithua-
nian, though they are not mutually intelligible.
Latvian has lower digital resources as com-
pared to high-resource languages like English,
German, or Chinese and limited representa-
tion in widely used multilingual benchmarks.
The complexity of Latvian, such as its rich
morphology (seven cases, gender system, and
inflectional forms), further adds to the diffi-
culty of processing it with LLMs, which often
struggle with the intricate grammatical struc-
tures of low- and medium-resource languages.
It remains underrepresented in many NLP ap-
plications (Darg̀is et al., 2024).

• Giriama (nyf): Giriama, or Kigiryama, is a
Bantu language spoken by around 700,000
people, primarily in Kilifi County, Kenya. It

is one of the nine (9) Mijikenda languages,
classified under the Northeastern Bantu sub-
group of the Niger-Congo family. Like many
Bantu languages, Giriama is agglutinative, us-
ing affixes to express grammatical relations,
and features a complex noun class system
that affects agreement with verbs and adjec-
tives. Predominantly oral, Giriama has lim-
ited written texts, though recent efforts have
promoted literacy using the Latin alphabet.
Despite these efforts, Giriama remains under-
resourced in linguistic and digital documenta-
tion.

3.2.1 Dataset collection
We created our dataset by randomly selecting 112
questions and answers from the MMLU (Massive
Multitask Language Understanding) benchmark
(Hendrycks et al., 2021). The dataset preparation
involved three versions:

1. The original English questions (baseline)
2. Machine translations of these questions into

Latvian using MyMemory API (MyMemory,
2024)

3. Human-edited translations in both Latvian
and Giriama

For Giriama, we skipped machine translation
since automatic translation systems frequently
misidentified the language as Swahili. This three-
version approach enabled us to compare LLM per-
formance across machine-translated and human-
edited content.

3.2.2 Translations and annotation process
We recruited one language coordinator, who also
doubled as a translator for the Giriama language.
The translator holds a master’s degree in computer
science and is a native speaker of the language,
with extensive experience as a translator. As a to-
ken of appreciation, we provided compensation for
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Figure 1: Frontier LLMs in Latvian and Giriama Dataset and Benchmarking pipeline

the work completed. For the Latvian translations,
a Latvian-fluent annotator reviewed and edited the
machine-translated questions. The focus was on
correcting any errors that could hinder comprehen-
sion or lead to misinterpretations of the answer op-
tions. This human-edited process ensured a higher
level of accuracy in both the Giriama and Latvian
translations.

3.3 Task covered

Our work focuses on evaluating the multilin-
gual understanding of LLMs by assessing their
ability to process translated questions from the
MMLU benchmark across three languages: En-
glish, Latvian, and Giriama. The translation
tasks involve both machine-generated and human-
annotated translations. Specifically, the task ex-
amines how well the models comprehend and an-
swer 112 questions from English into Latvian and
Giriama. The objective is to compare the perfor-
mance of LLMs in handling machine translations
versus human-annotated versions, thereby explor-
ing the necessity and impact of human involvement
in translation tasks, particularly in low-resource
languages like Giriama.

4 Evaluation metrics

We evaluated the performance of six LLMs on four
distinct language tasks: English, Latvian, machine-
translated Latvian, and Giriama using an accuracy
score. A uniform temperature setting of 0.5 was ap-
plied across all models, except for the o1-preview,
for which only a fixed temperature of 1 was sup-
ported.

For each model, accuracy was computed as the
proportion of correct outputs from a test set com-
prising 112 samples. To account for uncertainty in
the performance estimates, we employed the Wil-
son score interval. This method provides a more
accurate estimation of confidence intervals for bi-
nomial proportions p such as model accuracy by
considering the sample size n and desired confi-
dence level (typically set at z = 1.96 for a 95%
confidence interval). The Wilson interval is pre-
ferred over traditional intervals like Wald due to its
robustness, particularly with smaller sample sizes,
ensuring more reliable confidence bounds around
the accuracy metric.

We tested statistical significance using a two-
proportion z-test, comparing each model’s perfor-
mance against the highest-performing model in its
respective task category. This approach allowed us
to ascertain whether differences in accuracy were
statistically significant or occurred due to random
chance. The evaluation process leveraged the UK
AISI Inspect framework (AI Safety Institute, 2024),
which provided a standardized structure for imple-
menting and automating our assessment.

5 Experiment

5.1 Model choice
We employed a combination of six (6) closed and
open large LLMs to evaluate their performance
across English, Latvian, and Giriama translations.1

The closed models selected for this study include

1Specifically: claude-3-5-sonnet-20241022, gemini-1.5-
pro-002, gpt-4o-2024-08-06, Meta-Llama-3.1-405B-Instruct-
Turbo, mistral-large-2407, and o1-preview-2024-09-12.
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o1-preview, GPT-4o, and versions of Claude and
Gemini, all of which are proprietary models known
for their SOTA performance and extensive use in
commercial applications. These models were cho-
sen due to their established capabilities in handling
a wide range of tasks, particularly in high-resource
languages like English.

In contrast, open models such as Llama and Mis-
tral were also included in the evaluation due to the
transparency regarding their underlying architec-
ture and training data, hence valuable for our use
case. We aim to provide a comprehensive com-
parison of their effectiveness in low-resource lan-
guages, while also exploring the potential trade-
offs between proprietary solutions and more cus-
tomizable, open models.

6 Results and discussions

6.1 Model performance on languages

Table 2 presents the performance results of six
LLMs across four languages—English, Latvian,
machine-translated Latvian (denoted as Latvian
(AT)), and Giriama. The results reflect varying de-
grees of proficiency across these languages, with
a notable performance disparity between high-
resource (English) and low-resource (Latvian and
Giriama) languages.

The o1-preview model demonstrated superior
performance across all three languages, achieving
an accuracy of 87.5% in English, 84.8% in Latvian,
and 82.1% in machine-translated Latvian. While
the model’s performance declined in Giriama, it
still led the other models with an accuracy of
64.3%, suggesting relative robustness in handling
lower-resource languages. The relatively small per-
formance gap between English and Latvian shows
the model’s effectiveness in transferring knowledge
to a non-English, medium-resource language.

Mistral showed the weakest performance across
all languages, with English accuracy at 76.8% and
a sharp decline in Latvian (57.1%**) and Giriama
(34.8%**). This underscores the challenges of Mis-
tral model in processing low-resource languages
and its inability to maintain consistent accuracy
across diverse linguistic contexts.

o1-preview model demonstrates the highest per-
formance in Giriama, though the differences be-
tween o1, GPT-4o, Claude 3.5 Sonnet, and Gemini
1.5 Pro are statistically insignificant. In contrast,
Llama 3.1 405B and Mistral Large 2 show notably
lower performance, struggling to handle Giriama
and Latvian

6.2 Cross-language performance gaps
The performance disparities observed between En-
glish (Figure 2), Giriama (Figure 3) and Latvian
(Figure 4) underscore the challenges faced by cur-
rent LLMs in processing both medium- and low-
resource languages.

The average gap between English and Latvian
performance across all models is 9.3%, which is
comparable to approximately two-thirds of the per-
formance difference between GPT-3.5 and GPT-4
in English (OpenAI et al., 2024). However, this
gap narrows for higher-performing models like o1-
preview, where the difference becomes less pro-
nounced. Large differences in this gap are primar-
ily observed in the performance of Mistral.

In contrast, Giriama—a low-resource Bantu lan-
guage—exhibits a much more pronounced perfor-
mance gap, with average model accuracy dropping
sharply to (47.6%), underscoring the limitations
of cross-lingual transfer learning in handling lan-
guages with limited digital resources and complex
linguistic structures.

The results reveal a consistent performance gap
between more resourced languages and less re-
sourced languages. On average, the models per-
form best in English (83.6%), followed by Latvian
(74.3%) and machine-translated Latvian (71.3%),
with the lowest performance observed in Giriama
(47.6%).

Figure 2: Model performance in English. Error
bars represent 95% Wilson confidence intervals.

6.3 Impact of human-edited vs.
machine-translated Data

For Latvian translations, human editing provided
a modest improvement over machine translation,
with accuracy increasing by 3.0% on average (see
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Model English Latvian Latvian (AT) Giriama
o1-preview-2024-09-12 0.875 0.848 0.821 0.643
claude-3-5-sonnet-20241022 0.866 0.804 0.777 0.482∗

gemini-1.5-pro-002 0.846 0.786 0.732 0.509∗

Meta-Llama-3.1-405B-Instruct-Turbo 0.839 0.688∗∗ 0.643∗∗ 0.411∗∗∗

gpt-4o-2024-08-06 0.821 0.759 0.723 0.464∗∗

mistral-large-2407 0.768∗ 0.571∗∗∗ 0.580∗∗∗ 0.348∗∗∗

AVG 0.836 0.743 0.713 0.476

Table 2: Model performance across languages. AT: autotranslated. Each model: n=112; AVG: n=672. Boldface indicates
the highest score in each column. Asterisks indicate statistically significant differences from the highest-scoring model
within each language variant (*: p<0.05, **: p<0.01, ***: p<0.001), computed using two-proportion z-test.

Figure 3: Model performance in Giriama. Error
bars represent 95% Wilson confidence intervals.

Table 2). While this difference is not statistically
significant, it suggests that human involvement re-
mains valuable for languages with complex mor-
phology and syntax. However, we note that our
baseline used a free translation service - SOTA
machine translation might further narrow this gap.

Giriama presented more significant challenges.
The language was consistently misidentified as
Swahili by translation systems, making automatic
translation infeasible. This technical limitation,
combined with uniformly poor model performance
across all tested models, emphasizes the need for
increased linguistic resources and human exper-
tise when working with low-resource African lan-
guages.

6.4 Impact of the temperature setting

As noted previously, we used a temperature set-
ting of 0.5 for all models except for o1-preview,
which only permits temperature=1. To assess
whether this non-uniform temperature setting sig-
nificantly affected our results, we conducted addi-

Figure 4: Model performance in Latvian. Error
bars represent 95% Wilson confidence intervals.

tional tests on the edited Latvian translations. We
ran the five other models at temperature=1 and
compared their performance against the temper-
ature=0.5 runs. The results were similar across
models, with only Llama 3.1 405B showing slight
improvement (+0.9%). On average, performance
marginally declined (-0.4%), but none of the differ-
ences were statistically significant. We conclude
that the non-uniform temperature settings did not
materially impact our findings.

6.5 Implications for multilingual LLM
development

The substantial performance drop from English to
Giriama across all models reflects the broader chal-
lenges in scaling LLMs for low-resource languages.
While advancements in multilingual modeling have
closed some gaps for medium-resource languages
like Latvian (Darg̀is et al., 2024), this study high-
lights the considerable distance yet to be covered
in adequately supporting low-resource languages,
particularly African languages like Giriama. These
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results underscore the importance of developing
more inclusive benchmarks and expanding the
availability of high-quality training data to ensure
that LLMs are more equitable across diverse lin-
guistic contexts.

6.6 Bias and considerations for future
Research

Anecdotal evidence showed that some of the tested
models were much better at translating questions
and answers than the free translation service. Fu-
ture research could make use of the LLM transla-
tion capabilities. However, it is important not to
bias the results in favor of one model or another:
it is not inconceivable that a given model finds
its own translations easier to interpret than those
of other models (which is another hypothesis to
explore). Alternatively, it is possible to use other
translation services and human translation services
together or separately.

These, as other benchmark results, may be sub-
ject to bias due to potential data contamination.
(Bean et al., 2024). The English MMLU dataset is
more likely to have been included in or influenced
the models’ training data. This could lead to an
overestimation of the performance gap between
languages, as models might have prior exposure to
the English questions.

Cultural context introduces another potential
source of bias and reduced relevance in this study.
For example, Professional Law questions are based
on the U.S. legal system, not Kenyan or Latvian
law, which may lead to less accurate responses
when questions are presented in Giriama or Lat-
vian. This mismatch between the source material’s
cultural context and the target languages could af-
fect model performance independently of linguistic
factors. Future research could assess the impact of
cultural context by using a larger sample size and
analyzing model performance in culturally sensi-
tive subcategories like Professional Law. However,
U.S.-centric legal questions are inherently limited
in evaluating legal expertise within other contexts.
Adapting such questions to local contexts is crucial
but may require costly specialist knowledge.

Expanding the sample size in future studies
could yield more robust results. The scope of
this investigation was primarily constrained by two
factors: the human resources required for editing
translations and the available resources for model
API access.

7 Conclusion

Our evaluation of six frontier LLMs across En-
glish, Latvian, and Giriama reveals several critical
insights about the current state of multilingual AI
capabilities:

1. Model-specific language gaps: While all
models showed performance degradation in
non-English languages, proprietary models
(particularly o1-preview with only a 2.7%
English-Latvian gap) maintained relatively
consistent performance compared to open-
source alternatives (up to 19.7% gap). This
suggests that recent advances in commercial
AI systems are beginning to address historical
English-centric bias, though significant gaps
remain in open-source alternatives.

2. Translation quality impact: For Latvian, hu-
man editing of machine translations improved
accuracy by only 3.0% on average, indicating
that automated translations may be sufficient
for benchmark creation in languages with es-
tablished digital infrastructure. This finding
could significantly reduce the cost and effort
of developing multilingual evaluations.

3. Low-resource language challenges: The dra-
matic performance drop in Giriama (average
accuracy 47.6% vs 83.6% in English) reveals
fundamental limitations in current approaches
to low-resource language support. The failure
of machine translation for Giriama highlights
how technological gaps compound the chal-
lenges of language accessibility.

These findings have immediate implications for
both research and deployment. For research, they
highlight the viability of using machine transla-
tion for creating benchmarks in medium-resource
languages and the need for better methods to sup-
port low-resource languages. For deployment, our
results suggest that while LLMs are becoming vi-
able for medium-resource languages like Latvian,
significant work remains before they can reliably
serve low-resource language communities.

Future work should prioritize two key areas: (1)
developing more efficient methods for extending
LLM capabilities to low-resource languages with-
out requiring extensive compute or data resources,
and (2) creating evaluation frameworks that ex-
plicitly measure both linguistic accuracy and cul-
tural appropriateness. The substantial gap in low-
resource language performance emphasizes that
achieving truly equitable AI requires not just tech-
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nical advancement, but sustained investment in
linguistic resources and community engagement.

8 Limitations

Our work presents several limitations that should
be acknowledged. First, no formal quality control
measures, such as inter-annotator agreement (IAA)
or Cohen’s Kappa, were employed to assess the
consistency and reliability of the translations in our
dataset. This could affect the overall validity of the
translation quality.

The dataset size is relatively small, consisting
of only 500 questions per language. While this
dataset provides preliminary insights, the dataset
size limits the generalizability of the results, and
larger datasets would be necessary to draw more
robust conclusions.

This study’s scope was limited to six language
models and two non-English languages due to API
access costs. A more comprehensive evaluation
would require greater financial resources to test
additional models and languages.

Finally, Giriama, as a low-resource language,
faces unique challenges due to limited linguistic
resources, which may lead to oversimplified trans-
lations and insufficient validation, affecting the
dataset’s quality. Unlike Latvian, which has more
established digital resources, Giriama may lack the
tools for thorough quality control, increasing the
risk of inaccuracies.

9 Ethical considerations

Native speakers translated the MMLU dataset into
Giriama and Latvian to ensure linguistic and cul-
tural accuracy. However, several potential ethical
concerns arise in this process:

• Cultural Relevance and Sensitivity: While
linguistic fidelity was prioritized, the dataset
contains many questions grounded in Western,
specifically American, cultural contexts such
as historical references to Columbus or moral
standards in the US. When translating such
questions into Latvian or Giriama, there is a
risk of imposing culturally foreign concepts
onto the target audience, potentially alienating
speakers or distorting meaning. For instance,
some questions may have no direct equivalent
in Giriama or Latvian law and moral philos-
ophy. This can lead to mistranslation or mis-
understanding, as the target audience may not
relate to or fully grasp the original cultural
context.

• Linguistic Complexity and Vocabulary
Gaps: Many questions in the dataset involve
highly technical and specialized terminology
from subjects such as law, science, and ethics
(such as "neurotransmitters," "Pauli exclu-
sion principle"). Low-resource languages like
Giriama may not have established vocabulary
for such specialized terms, resulting in chal-
lenges for accurate translation. Translators
must decide whether to borrow terms from En-
glish or create new ones, both of which have
ethical implications that could undermine lin-
guistic purity or lead to confusion or lack of
consistency in the target language Cultural
Bias in Translation: The MMLU dataset
reflects Western-centric knowledge and per-
spectives, which pose ethical challenges when
translating into low-resource languages like
Giriama or Latvian. Without careful adapta-
tion, cultural differences in political ideolo-
gies, social norms, or gender roles may be
misrepresented, leading to misunderstandings.
These biases can hinder the performance of
language models by failing to accurately cap-
ture the nuances of the target cultures, reduc-
ing their effectiveness in real-world applica-
tions.
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lie Pavlick, Suzana Ilić, Daniel Hesslow, Roman
Castagné, Alexandra Sasha Luccioni, François
Yvon, Matthias Gallé, et al. 2023. Bloom: A
176b-parameter open-access multilingual lan-
guage model.

Zihao Li, Yucheng Shi, Zirui Liu, Fan Yang,
Ninghao Liu, and Mengnan Du. 2024. Quan-
tifying multilingual performance of large lan-
guage models across languages. arXiv preprint
arXiv:2404.11553.

Percy Liang, Rishi Bommasani, Tony Lee, Dim-
itris Tsipras, Dilara Soylu, Michihiro Yasunaga,
Yian Zhang, Deepak Narayanan, Yuhuai Wu,
Ananya Kumar, et al. 2022. Holistic eval-
uation of language models. arXiv preprint
arXiv:2211.09110.

Chin-Yew Lin. 2004. ROUGE: A package for auto-
matic evaluation of summaries. In Text Summa-
rization Branches Out, pages 74–81, Barcelona,
Spain. Association for Computational Linguis-
tics.

Chin-Yew Lin and Franz Josef Och. 2004. OR-
ANGE: a method for evaluating automatic eval-
uation metrics for machine translation. In COL-
ING 2004: Proceedings of the 20th International
Conference on Computational Linguistics, pages
501–507, Geneva, Switzerland. COLING.

Zihan Liu, Genta I Winata, Samuel Cahyawijaya,
Andrea Madotto, Zhaojiang Lin, and Pascale
Fung. 2021. On the importance of word order in-
formation in cross-lingual sequence labeling. In
Proceedings of the AAAI Conference on Artificial
Intelligence, volume 35, pages 13461–13469.

Alexandre Magueresse, Vincent Carles, and Evan
Heetderks. 2020. Low-resource languages: A
review of past work and future challenges. arXiv
preprint arXiv:2006.07264.

Marc Miquel-Ribé and David Laniado. 2019.
Wikipedia cultural diversity dataset: A complete
cartography for 300 language editions. In Pro-
ceedings of the International AAAI Conference
on Web and Social Media, volume 13, pages
620–629.

Steven Moran, Christian Bentz, Ximena Gutierrez-
Vasques, Olga Pelloni, and Tanja Samardzic.
2022. Teddi sample: Text data diversity sam-
ple for language comparison and multilingual
nlp. In Proceedings of the Thirteenth Language
Resources and Evaluation Conference, pages
1150–1158.

MyMemory. 2024. Mymemory trans-
lation memory - api documentation.

118



https://mymemory.translated.
net/doc/spec.php. Accessed: 2024-10-
15.

OpenAI. 2024. O1 system card. Technical report,
OpenAI. Accessed on October 16, 2024.

OpenAI, Josh Achiam, Steven Adler, Sandhini
Agarwal, Lama Ahmad, Ilge Akkaya, Flo-
rencia Leoni Aleman, Diogo Almeida, Janko
Altenschmidt, Sam Altman, Shyamal Anad-
kat, Red Avila, Igor Babuschkin, Suchir Bal-
aji, Valerie Balcom, Paul Baltescu, Haiming
Bao, Mohammad Bavarian, Jeff Belgum, Irwan
Bello, Jake Berdine, Gabriel Bernadett-Shapiro,
Christopher Berner, Lenny Bogdonoff, Oleg
Boiko, Madelaine Boyd, Anna-Luisa Brakman,
Greg Brockman, Tim Brooks, Miles Brundage,
Kevin Button, Trevor Cai, Rosie Campbell, An-
drew Cann, Brittany Carey, Chelsea Carlson,
Rory Carmichael, Brooke Chan, Che Chang, Fo-
tis Chantzis, Derek Chen, Sully Chen, Ruby
Chen, Jason Chen, Mark Chen, Ben Chess,
Chester Cho, Casey Chu, Hyung Won Chung,
Dave Cummings, Jeremiah Currier, Yunxing
Dai, Cory Decareaux, Thomas Degry, Noah
Deutsch, Damien Deville, Arka Dhar, David Do-
han, Steve Dowling, Sheila Dunning, Adrien
Ecoffet, Atty Eleti, Tyna Eloundou, David Farhi,
Liam Fedus, Niko Felix, Simón Posada Fish-
man, Juston Forte, Isabella Fulford, Leo Gao,
Elie Georges, Christian Gibson, Vik Goel, Tarun
Gogineni, Gabriel Goh, Rapha Gontijo-Lopes,
Jonathan Gordon, Morgan Grafstein, Scott Gray,
Ryan Greene, Joshua Gross, Shixiang Shane Gu,
Yufei Guo, Chris Hallacy, Jesse Han, Jeff Harris,
Yuchen He, Mike Heaton, Johannes Heidecke,
Chris Hesse, Alan Hickey, Wade Hickey, Pe-
ter Hoeschele, Brandon Houghton, Kenny Hsu,
Shengli Hu, Xin Hu, Joost Huizinga, Shantanu
Jain, Shawn Jain, Joanne Jang, Angela Jiang,
Roger Jiang, Haozhun Jin, Denny Jin, Shino
Jomoto, Billie Jonn, Heewoo Jun, Tomer Kaf-
tan, Łukasz Kaiser, Ali Kamali, Ingmar Kan-
itscheider, Nitish Shirish Keskar, Tabarak Khan,
Logan Kilpatrick, Jong Wook Kim, Christina
Kim, Yongjik Kim, Jan Hendrik Kirchner, Jamie
Kiros, Matt Knight, Daniel Kokotajlo, Łukasz
Kondraciuk, Andrew Kondrich, Aris Konstan-
tinidis, Kyle Kosic, Gretchen Krueger, Vishal
Kuo, Michael Lampe, Ikai Lan, Teddy Lee, Jan
Leike, Jade Leung, Daniel Levy, Chak Ming

Li, Rachel Lim, Molly Lin, Stephanie Lin,
Mateusz Litwin, Theresa Lopez, Ryan Lowe,
Patricia Lue, Anna Makanju, Kim Malfacini,
Sam Manning, Todor Markov, Yaniv Markovski,
Bianca Martin, Katie Mayer, Andrew Mayne,
Bob McGrew, Scott Mayer McKinney, Christine
McLeavey, Paul McMillan, Jake McNeil, David
Medina, Aalok Mehta, Jacob Menick, Luke
Metz, Andrey Mishchenko, Pamela Mishkin,
Vinnie Monaco, Evan Morikawa, Daniel Moss-
ing, Tong Mu, Mira Murati, Oleg Murk, David
Mély, Ashvin Nair, Reiichiro Nakano, Ra-
jeev Nayak, Arvind Neelakantan, Richard Ngo,
Hyeonwoo Noh, Long Ouyang, Cullen O’Keefe,
Jakub Pachocki, Alex Paino, Joe Palermo, Ash-
ley Pantuliano, Giambattista Parascandolo, Joel
Parish, Emy Parparita, Alex Passos, Mikhail
Pavlov, Andrew Peng, Adam Perelman, Filipe
de Avila Belbute Peres, Michael Petrov, Hen-
rique Ponde de Oliveira Pinto, Michael, Poko-
rny, Michelle Pokrass, Vitchyr H. Pong, Tolly
Powell, Alethea Power, Boris Power, Elizabeth
Proehl, Raul Puri, Alec Radford, Jack Rae,
Aditya Ramesh, Cameron Raymond, Francis
Real, Kendra Rimbach, Carl Ross, Bob Rotsted,
Henri Roussez, Nick Ryder, Mario Saltarelli,
Ted Sanders, Shibani Santurkar, Girish Sas-
try, Heather Schmidt, David Schnurr, John
Schulman, Daniel Selsam, Kyla Sheppard, Toki
Sherbakov, Jessica Shieh, Sarah Shoker, Pranav
Shyam, Szymon Sidor, Eric Sigler, Maddie
Simens, Jordan Sitkin, Katarina Slama, Ian
Sohl, Benjamin Sokolowsky, Yang Song, Na-
talie Staudacher, Felipe Petroski Such, Natalie
Summers, Ilya Sutskever, Jie Tang, Nikolas
Tezak, Madeleine B. Thompson, Phil Tillet,
Amin Tootoonchian, Elizabeth Tseng, Preston
Tuggle, Nick Turley, Jerry Tworek, Juan Fe-
lipe Cerón Uribe, Andrea Vallone, Arun Vi-
jayvergiya, Chelsea Voss, Carroll Wainwright,
Justin Jay Wang, Alvin Wang, Ben Wang,
Jonathan Ward, Jason Wei, C. J. Weinmann, Ak-
ila Welihinda, Peter Welinder, Jiayi Weng, Lilian
Weng, Matt Wiethoff, Dave Willner, Clemens
Winter, Samuel Wolrich, Hannah Wong, Lauren
Workman, Sherwin Wu, Jeff Wu, Michael Wu,
Kai Xiao, Tao Xu, Sarah Yoo, Kevin Yu, Qim-
ing Yuan, Wojciech Zaremba, Rowan Zellers,
Chong Zhang, Marvin Zhang, Shengjia Zhao,
Tianhao Zheng, Juntang Zhuang, William Zhuk,
and Barret Zoph. 2024. GPT-4 Technical Report.

119



_eprint: 2303.08774.

Denis Paperno, Germán Kruszewski, Ange-
liki Lazaridou, Quan Ngoc Pham, Raffaella
Bernardi, Sandro Pezzelle, Marco Baroni,
Gemma Boleda, and Raquel Fernández. 2016.
The lambada dataset: Word prediction requir-
ing a broad discourse context. arXiv preprint
arXiv:1606.06031.

Kishore Papineni, Salim Roukos, Todd Ward, and
Wei jing Zhu. 2002. Bleu: a method for auto-
matic evaluation of machine translation. pages
311–318.

Surangika Ranathunga and Nisansa De Silva. 2022.
Some languages are more equal than others:
Probing deeper into the linguistic disparity in
the nlp world. arXiv preprint arXiv:2210.08523.

David Romero, Chenyang Lyu, Haryo Ak-
barianto Wibowo, Teresa Lynn, Injy Hamed,
Aditya Nanda Kishore, Aishik Mandal, Alina
Dragonetti, Artem Abzaliev, Atnafu Lambebo
Tonja, et al. 2024. Cvqa: Culturally-diverse mul-
tilingual visual question answering benchmark.
arXiv preprint arXiv:2406.05967.

Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao,
Abu Awal Md Shoeb, Abubakar Abid, Adam
Fisch, Adam R Brown, Adam Santoro, Aditya
Gupta, Adrià Garriga-Alonso, et al. 2022. Be-
yond the imitation game: Quantifying and ex-
trapolating the capabilities of language models.
arXiv preprint arXiv:2206.04615.

Jörg Tiedemann. 2020. The tatoeba transla-
tion challenge–realistic data sets for low re-
source and multilingual mt. arXiv preprint
arXiv:2010.06354.

Hugo Touvron, Thibaut Lavril, Gautier Izacard,
Xavier Martinet, Marie-Anne Lachaux, Timo-
thée Lacroix, Baptiste Rozière, Naman Goyal,
Eric Hambro, Faisal Azhar, et al. 2023. Llama:
Open and efficient foundation language models.
arXiv preprint arXiv:2302.13971.

Alex Wang. 2018. Glue: A multi-task benchmark
and analysis platform for natural language un-
derstanding. arXiv preprint arXiv:1804.07461.

Alex Wang, Yada Pruksachatkun, Nikita Nangia,
Amanpreet Singh, Julian Michael, Felix Hill,

Omer Levy, and Samuel Bowman. 2019. Super-
glue: A stickier benchmark for general-purpose
language understanding systems. Advances in
neural information processing systems, 32.

Genta Winata, Shijie Wu, Mayank Kulkarni,
Thamar Solorio, and Daniel Preoţiuc-Pietro.
2022. Cross-lingual few-shot learning on un-
seen languages. In Proceedings of the 2nd Con-
ference of the Asia-Pacific Chapter of the Asso-
ciation for Computational Linguistics and the
12th International Joint Conference on Natural
Language Processing (Volume 1: Long Papers),
pages 777–791.

Genta Indra Winata, Samuel Cahyawijaya, Zi-
han Liu, Zhaojiang Lin, Andrea Madotto, and
Pascale Fung. 2021. Are multilingual models
effective in code-switching? arXiv preprint
arXiv:2103.13309.

Genta Indra Winata, Frederikus Hudi,
Patrick Amadeus Irawan, David Anugraha,
Rifki Afina Putri, Yutong Wang, Adam
Nohejl, Ubaidillah Ariq Prathama, Nedjma
Ousidhoum, Afifa Amriani, et al. 2024. World-
cuisines: A massive-scale benchmark for
multilingual and multicultural visual question
answering on global cuisines. arXiv preprint
arXiv:2410.12705.

L Xue. 2020. mt5: A massively multilingual pre-
trained text-to-text transformer. arXiv preprint
arXiv:2010.11934.

120



Proceedings of the Joint 25th Nordic Conference on Computational Linguistics and 11th Baltic Conference on Human Language Technologies
(NoDaLiDa/Baltic-HLT 2025), pages 121–135

March 3-4, 2025 ©2025 University of Tartu Library

Better Benchmarking LLMs for Zero-Shot Dependency Parsing

Ana Ezquerro, Carlos Gómez-Rodríguez, David Vilares
Universidade da Coruña, CITIC

Departamento de Ciencias de la Computación y Tecnologías de la Información
Campus de Elviña s/n, 15071

A Coruña, Spain
{ana.ezquerro, carlos.gomez, david.vilares}@udc.es

Abstract

While LLMs excel in zero-shot tasks, their
performance in linguistic challenges like
syntactic parsing has been less scrutinized.
This paper studies state-of-the-art open-
weight LLMs on the task by comparing
them to baselines that do not have ac-
cess to the input sentence, including base-
lines that have not been used in this con-
text such as random projective trees or
optimal linear arrangements. The results
show that most of the tested LLMs cannot
outperform the best uninformed baselines,
with only the newest and largest versions
of LLaMA doing so for most languages,
and still achieving rather low performance.
Thus, accurate zero-shot syntactic parsing
is not forthcoming with open LLMs.

1 Introduction

Autoregressive large language models (LLMs)
and instruction-based variants (Jiang et al., 2023;
OpenAI, 2024; Dubey et al., 2024) are known
for their zero-shot and few-shot abilities (Radford
et al., 2019). In practical terms, they can serve as
versatile systems whose behavior is easily adapted
through prompting. Beyond what we experience
as everyday users, documented examples in the
context of natural language processing (NLP) in-
clude question answering (Baek et al., 2023; Li
et al., 2024), summarization (Wang et al., 2023),
machine translation (Johnson et al., 2017; Wang
et al., 2021; Zhang et al., 2023) and informa-
tion retrieval (Zhuang et al., 2023; Adeyemi et al.,
2024; Qin et al., 2024), among many other tasks.

Related, syntactic parsing has long explored
few-shot learning approaches. Prior to the devel-
opment of current LLMs, various methods were
studied to perform zero-shot or few-shot pars-
ing, and many of these approaches achieved com-

petitive results. These methods focused on fac-
tors such as the quality and quantity of annota-
tions (Meechan-Maddon and Nivre, 2019), cross-
lingual learning (Xu and Koehn, 2021), mul-
tilingual pre-training (Tran and Bisazza, 2019),
and treebank difficulty (Søgaard, 2020; Anderson
et al., 2021). However, the effectiveness of zero-
shot parsing with LLMs remains a topic of de-
bate. Recent work has showed how state-of-the-art
LLMs exhibit low performance in syntactic pars-
ing (Bai et al., 2023; Lin et al., 2023), even when
designing manual specific prompts (Li et al., 2023;
Blevins et al., 2023). Nonetheless, these results
have been deemed sufficient to categorize LLMs
as potential zero-shot parsers. While some studies
(Tian et al., 2024) suggest that multi-stage com-
plex approaches can yield a competitive zero-shot
performance, in this work we will focus on sin-
gle prompt approaches – similar to what works
for other NLP tasks – to evaluate to what extent
LLMs can perform the task on their own without
externally-provided planning. Studies covering
these approaches leave a substantial gap in evalu-
ating LLMs on low-resource setups and often omit
comparison with uninformed baselines, which are
essential for determining whether LLMs achieve
accuracy levels meaningfully above chance.

Contribution We address the lack of compar-
ison against uninformed baselines, and include
some that have not been proposed before but of-
fer a higher standard than traditional blind base-
lines, such as left- or right-branching trees. These
baselines provide more robust benchmarks and of-
fer a fairer evaluation of LLMs’ potential as zero-
shot parsers. We prioritize depth over breadth by
evaluating a wide range of LLMs to identify any
substantial differences across them - a contribution
that, to our knowledge, has not been thoroughly
explored in previous work.1

1Code available at github.com/anaezquerro/naipar
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2 Zero-shot dependency parsing

Next, we review the notation, benchmarks, unin-
formed baselines, and introduce the LLMs used.
Dependency parsing is the task of obtaining the
syntactic structure of a sentence as a set of la-
beled directed relations (dependencies) between
words. In zero-shot parsing (whether relying on
LLMs or other models), the core idea is to perform
the dependency parsing task without using task-
specific labeled data during either the pre-training
or fine-tuning steps. This approach contrasts with
the standard setup for training dependency parsers,
where task-specific labeled data is integral to ex-
plicitly teaching models syntactic structures in a
supervised learning framework. Instead, zero-shot
parsing leverages the model’s general pre-trained
knowledge to infer syntactic relationships in un-
seen data. Before the emergence of large autore-
gressive generative models, pre-training largely
avoided task-specific annotations, aligning closely
with the zero-shot paradigm. However, given the
extensive and diverse nature of the data these mod-
els are trained on, it is plausible that some ex-
posure to annotated dependency parsing examples
has occurred. This possibility will be examined
further in subsequent sections.

Notation Let W=(w1, ..., wn) be a sentence, a
dependency graph is defined as G = (W,A),
where W is the set of nodes and A the set of arcs.
Each arc in A is a tuple (h, d), where h ∈ [0, n] is
the position of the head node, and d ̸= h ∈ [1, n]
the position of the dependent node.2 G is a tree T
iff (i) is a connected acyclic graph, (ii) each word
wi has only one head, so A = {(h, d) : d =
1...n}, and (iii) there is only one arc of the form
(0, d), and wd is designated as the root of the sen-
tence. This work only studies trees.

2.1 Zero-shot (uninformed) baselines

Previous work has reported results on parsing us-
ing LLMs (Lin et al., 2023), classifying LLMs
as potentially zero-shot parsers. We revisit this
claim by proposing a comprehensive benchmark
and comparing against uninformed baselines (i.e.,
baselines that generate an output tree without
looking at the contents of the input, although
sometimes with access to its length). Uninformed
baselines are useful to determine whether the

2Graphs have arcs labeled with syntactic functions, but we
ignore them here as our evaluation is unlabeled.

models are meaningfully processing the input or
just generating outputs that could be obtained by
chance or by using properties that are not specific
to the input sentence (e.g. the common trend to-
wards projectivity in human syntax). We use both
conventional uninformed baselines that have been
used previously in related contexts (e.g. Klein and
Manning, 2004) and more sophisticated, though
still uninformed, baselines that, to our knowledge,
have not yet been applied for this purpose.

2.1.1 Conventional baselines
We now describe baselines that have been used as
naive approaches to build simplistic yet valid trees.

Randomized root-based tree generation Our
most basic baseline randomly selects a root node,
denoted as d′, and creates a dependency from d′ to
the rest of nodes. Formally, Â = {(0, d′), (d′, d) :
d = (1, ..., n) ̸= d′}.

Right- and left-branching tree generation
This method assigns each word as a dependent
of the previous (next) word, with the first (last)
word as the root. Right-branching trees are a clas-
sic baseline for unsupervised English dependency
parsing (Klein and Manning, 2004), as English
syntax is predominantly right-branching. The left-
branching baseline is included as some languages
are predominantly left-branching.

Uniformly random tree generation Another
parsing baseline (Klein and Manning, 2004). We
use the Aldous (1990) algorithm to guarantee gen-
eration of a uniformly random dependency tree.

Sampling from a reference treebank We build
the tree distributions of different lengths from a
reference treebank. For a sentence, we sampled a
dependency tree from the distribution of length n.
Note that this is the only one among our baselines
that has access to a treebank, although it is still
uninformed with respect to the input sentence.

2.1.2 Novel uninformed baselines
We refine random tree generation by taking into
account observed properties of human language:
the scarcity of crossing dependencies (Ferrer-i-
Cancho et al., 2018) and dependency distance
minimization, i.e., the tendency of syntactic struc-
tures to minimize the distance between syntacti-
cally related words (i.e. the length of dependen-
cies) in order to reduce cognitive processing ef-
fort (Liu et al., 2017; Ferrer-i Cancho et al., 2022).
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Uniformly random projective tree generation
The goal is to generate a projective tree (where de-
pendencies do not cross) uniformly at random. As
rejection sampling is too slow, we use Nijenhuis
and Wilf (1978)’s algorithm to generate a random
unlabeled rooted tree and then assign a random
projective arrangement following (Futrell et al.,
2015; Alemany-Puig and Ferrer-i Cancho, 2024).3

Uniformly random (projective) optimal-
distance tree generation Again, we start from
a uniformly random unlabeled rooted tree. In
this case, we give it the linear arrangement that
minimizes the sum of dependency distances,
using Shiloach (1979)’s algorithm, as well as the
minimum-distance projective arrangement, with
the algorithm by Alemany-Puig et al. (2022).3

2.2 Zero-shot parsing with LLMs

Prompting setup Adopting a strategy similar to
Lin et al. (2023), we query LLMs using simple
prompts. The prompt includes an introductory
sentence requesting output in CoNLL format, fol-
lowed by a basic example from a reference tree-
bank, where only the ID, HEAD, and DEPREL fields
are populated. We selected a random sentence of
length 4 to 7 to avoid longer sequences, maintain-
ing a zero-shot setup. Although this may resemble
a one-shot setup, the example is intentionally sim-
ple, serving only to reduce formatting errors rather
than offering linguistic content. Figure 1 breaks
down the specific prompt we used.

Postprocessing We account for possible cor-
rupted outputs, such as column mismatches, miss-
ing nodes, or multiple roots. From the model’s
raw output, we applied two post-processing steps:
first, filtering tabular lines and filling fields to
match the CoNLL format with correct row and
column counts for sentences of length n. Second,
we resolved cycles, enforced a unique-root con-
straint, and replaced out-of-range arcs with root
connections to ensure a single-rooted, connected
tree. Figure 1 also shows an example of the input
and output after the first post-processing step.

3 Experiments

We conduct an in-depth evaluation of LLMs as
zero-shot dependency parsers by generating out-
puts in CoNLL format and comparing them to

3We used the implementation of these algorithms in the
LAL library (Alemany-Puig et al., 2021).

Prompt example
In dependency parsing the CoNLL format for the sentence <The
trial begins again Nov 28 .> is:
1 The _ _ _ _ 2 det _ _
2 trial _ _ _ _ 3 nsubj _ _
3 begins _ _ _ _ 0 root _ _
4 again _ _ _ _ 3 advmod _ _
5 Nov. _ _ _ _ 3 obl:tmod _ _
6 28 _ _ _ _ 5 nummod _ _
7 . _ _ _ _ 3 punct _ _
Now return the CoNLL format for the sentence: <What if Google
Morphed Into GoogleOS ?>
(1) Well-formatted output
1 What _ _ _ _ 0 nsubj _ _
2 if _ _ _ _ 4 mark _ _ _
3 Google _ _ _ _ 4 nsubj _ _
4 Morphed _ _ _ _ 0 root _ _
5 into _ _ _ _ 6 case _ _
6 GoogleOS _ _ _ _ 8 nmod _ _
7 ? _ _ _ _ 4 punct _ _

Figure 1: Prompt and output after the first post-
processing. See Figure 3 for step-by-step process.

uninformed baselines. Unlike Lin et al. (2023),
who evaluated only ChatGPT-3.5 due to limited
system availability, our work expands the anal-
ysis to a broader set of models across a select
few languages, albeit on a smaller subset of tree-
banks. This approach, while time-intensive due
to the extensive input and output token require-
ments, offers a more comprehensive understand-
ing of model performance across different LLMs.

Datasets We selected 4 treebanks from UD 2.14
(Zeman et al., 2024) to conduct experiments in
different languages, specifically in EnglishEWT,
FrenchGSD, GermanGSD, and HindiHDTB.

Evaluation We use the unlabeled attachment
score (UAS) and unlabeled exact match (UM)
as our primary metrics. For the zero-shot de-
pendency parsers, we report performance after
the first post-processing step (ensuring that the
CoNLL format file contains all columns) and the
second (confirming that the tree is well-formed).

Models We selected several instruction-based
models from the Gemma (Gemma Team et al.,
2024a,b), LLaMA (Touvron et al., 2023; Dubey
et al., 2024), and Mistral (Jiang et al., 2023, 2024)
series. Appendix B (Table 3) breaks down the
links to all models. All reported results were ob-
tained limiting the inference to half precision.3

4 Analysis of results

Table 1 compares the performance of the tested
models with uninformed baselines. We see that
only the latest and largest versions of LLaMa (i.e.,

3Preliminary experiments indicated that reduced infer-
ence precision had minimal impact on performance.
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English EWT French GSD German GSD Hindi HDTB
UAS UM %w UAS UM %w UAS UM %w UAS UM %w

A 20.74 13.91 100.00 5.99 0.24 100.00 9.79 2.05 100.00 5.92 0.06 100.00
R 23.30 12.13 100.00 10.67 0.00 100.00 11.59 1.23 100.00 25.34 0.00 100.00
L 34.41 9.39 100.00 29.78 0.00 100.00 29.59 1.43 100.00 21.34 0.00 100.00
RD 20.10 10.78 100.00 5.93 0.00 100.00 9.64 1.13 100.00 5.67 0.00 100.00
RD* 21.45 12.42 100.00 6.06 0.00 100.00 9.38 1.74 100.00 5.59 0.00 100.00
LI 28.09 11.75 100.00 16.81 0.00 100.00 19.24 1.64 100.00 19.99 0.06 100.00
LI* 26.99 10.98 100.00 17.08 0.00 100.00 20.53 1.84 100.00 20.06 0.00 100.00
S 31.14 15.55 100.00 19.43 0.96 100.00 20.02 2.46 100.00 17.92 0.30 100.00
v1-2b 15.80 5.23 5.54 7.22 7.17 6.51 0.52 0.00 0.00 0.48 9.66 0.91 1.02 0.92 2.15 11.96 -1.03 0.00 0.00 6.92
v1-7b 21.26 5.17 6.93 6.88 24.84 14.93 -0.66 0.00 0.00 7.69 16.61 0.99 0.82 1.13 10.75 9.78 -0.08 0.00 0.00 8.43
v2-9b 20.20 3.35 6.79 6.50 15.17 13.32 -1.34 0.00 0.72 4.81 14.75 -0.68 0.92 1.13 5.32 12.18 -0.77 0.00 0.06 3.27
v2-7b 12.9810.38 3.1811.12 24.22 18.20 -1.45 0.00 0.24 1.92 18.70 0.19 0.10 2.05 4.09 10.64 -1.74 0.00 0.00 5.82
v2-13b 18.95 4.01 5.83 8.96 14.59 13.64 -0.81 0.00 0.00 22.12 19.40 -1.78 0.00 0.00 32.89 14.77 -1.77 0.00 0.06 18.71
v2-70b 13.7811.38 4.0010.98 46.89 19.05 -1.42 0.24 0.00 13.70 25.88 -2.41 1.43 0.20 23.34 15.27 -2.33 0.00 0.00 7.47
v3-8b 18.34 6.56 7.41 8.09 49.01 14.80 -2.84 0.00 0.00 4.81 29.51 -2.26 1.74 0.10 22.42 17.03 -1.54 0.00 0.06 0.48
v3-70b 38.30 0.98 16.37 1.44 58.69 29.20 -0.61 0.96 0.48 33.41 33.91 -1.16 3.17 0.41 28.25 14.24 -1.54 0.00 0.00 26.14
v3.1-8b 28.83 -1.31 11.75 2.07 34.38 24.61 -6.35 0.72 0.00 5.29 26.93 -4.67 1.64 0.20 12.90 18.86 -2.11 0.00 0.12 2.43
v3.1-70b 39.69 1.46 15.65 2.41 65.86 34.62 -1.30 0.96 0.24 42.79 36.75 -1.14 3.48 0.20 46.57 14.37 -0.69 0.00 0.00 26.14
v3.2-1b 15.07 7.35 4.53 8.33 16.75 8.05 -0.65 0.00 0.24 11.06 12.61 -0.9 0.41 1.64 10.03 7.20 -1.9 0.00 0.0 8.37
v3.2-3b 18.51 3.98 6.64 6.55 18.68 10.22 -1.1 0.24 0.0 12.74 17.69 0.34 1.13 1.13 10.44 13.84 0.03 0.00 0.0 14.90
v1-7b 18.59 3.83 6.55 6.55 16.85 10.32 -0.54 0.00 0.00 5.29 16.37 -1.31 1.23 0.61 5.94 10.63 -0.44 0.00 0.00 0.12
v2-7b 23.02 2.10 6.93 6.07 15.12 18.73 -3.28 0.24 0.00 3.85 20.49 -2.90 1.13 0.61 5.02 13.80 -1.11 0.00 0.06 0.36
v3-7b 25.04 2.49 7.66 5.39 28.17 27.36 -5.52 0.24 0.48 11.06 28.34 -4.98 1.13 0.51 19.55 19.41 -3.15 0.00 0.00 0.71
x1-7b 15.46 3.21 2.63 4.17 26.22 13.00 -1.06 0.24 0.00 3.37 16.67 0.00 0.00 0.00 25.00 13.68 -0.67 0.06 0.00 1.25
x1-22b 32.91 0.85 13.72 3.32 57.74 23.75 0.13 0.68 0.24 36.73 22.48 -0.19 2.76 0.92 38.44 19.37 -0.67 0.09 0.26 37.84
nemo 20.96 3.89 7.56 7.03 15.74 15.85 -1.49 0.00 0.00 3.61 14.10 -0.57 1.23 0.72 4.09 9.59 -0.06 0.00 0.00 0.48
large 28.71 0.81 10.01 4.77 18.25 15.21 -0.58 0.83 0.42 5.00 17.66 0.58 1.74 0.92 7.88 14.46 -1.4 0.00 0.00 26.14

Table 1: Performance on the test sets. The baselines are: all-to-root (A), left (L) and right (R) branching,
random generation (RD), optimal linear arrangement (LI) and sampling (S). The symbol (*) indicates
if projectivity is fixed as a constraint. %w is the ratio of outputs that did not require post-processing.
We also report results with Gemma ( ), LlaMA ( ), and Mistral models( ), with versions (v, x) and
parameter counts. Subscripts indicate performance boost from the second post-processing step.

the 70B versions of Llama 3 and 3.1) consistently
outperform all the baselines in most languages in
terms of UAS and UM, and only do so barely (e.g.,
with the best result on English being about 5.5
points above the left-branching baseline without
postprocessing, and close to 7 points with post-
processing). The rest of the models clearly fall
behind, showing that they are not doing any mean-
ingful parsing at all. In the case of Hindi, no model
at all reaches the best baselines. Among our base-
lines, traditional left (or right in the case of Hindi)
branching baselines are the most competitive in
terms of UAS,4 although baselines based on op-
timal linear arrangement come close, and the sam-
pling baseline is better in terms of English UM. In
Appendix B (Tables 4 to 7) we also include tables
showing the individual scores of each model based
on the PoS tag of the head in each treebank.

Figure 2 complements Table 1 by illustrating

4Superiority of the left-branching baseline on English can
be surprising, as right-branching has often been deemed bet-
ter on English unsupervised parsing (Klein and Manning,
2004; Li et al., 2020); but these papers do not use UD.

the performance of a representative subset of mod-
els in terms of dependency displacements (i.e.,
performance taking into account the difference be-
tween the position of the dependent and its head)
for the EnglishEWT. treebank. We observe that
LLaMa v3.1 70B consistently performs better than
the sampling and optimal linear arrangement base-
lines, not only on short dependencies but also on
longer rightward dependencies. However, for the
rest of the models, the differences with respect to
uninformed baselines become subtler. Similar fig-
ures for the other evaluated treebanks can be found
in the Appendix (Figures 4, 5, and 6).

Overall, the results show that open-weight
LLMs are far from being potential zero-shot de-
pendency parsers, contrary to claims about Chat-
GPT (Lin et al., 2023). Considerable scaling or
other improvements would be required for this sit-
uation to change.

5 Limitations

Memorization Memorization refers to the
LLM’s ability to recall specific patterns, struc-
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Figure 2: F-score across displacements in the
EnglishEWT test set.

tures, or dependencies encountered during
pre-training, rather than generalizing to unseen
cases (Hartmann et al., 2023). This poses a risk
of generalization issues or the regurgitation of
chunks of text, which could affect our evaluation
but is difficult to quantify (Sainz et al., 2023).
Although this is beyond the main scope of our
work, we have attempted to briefly analyze this
phenomenon. To do so, we crawled a few hundred
recent news articles from the New York Times
Archive API.5 The aim was to collect new text,
guaranteeing that no annotations for it were
available online when the models were trained.
We then produced silver annotations by using a
trained graph-based model (Dozat et al., 2017)
– a state-of-the-art dependency parser – to parse
these articles. In Table 2, we present the results
of a few representative models against these silver
annotations. The results are consistent with those
for UD in Table 1: while UAS scores are lower
across the board, this happens both for LLMs and
baselines, and likely stems from NYT sentences
being longer on average. In relative terms, the
same trends as in UD stand, with only LLaMa
3.1-70B clearly outperforming all baselines, so
we do not detect evidence of our main results
being overestimated due to data contamination.

Prompting The prompting approach used in this
study followed a straightforward design. We ac-
knowledge that there may be room for improv-
ing parsing performance through more advanced
prompt engineering techniques. Our goal was
methodological, establishing a set of uninformed
baselines rather than optimizing prompt configu-
rations. In this context, approaches such as in-

5developer.nytimes.com/docs/archive-product/1

UAS UM %w
A 6.46-14.27 1.69-12.22 100
R 24.31 1.01 0.70-11.43 100
L 20.15-14.25 2.32 -7.07 100
RD 5.51-14.59 0.91-11.51 100
RD* 7.32-14.13 1.51-10.91 100
LI 16.39-11.70 1.77 -9.98 100
LI* 19.54 -7.45 1.40 -9.58 100
S 22.24 -8.89 2.55-13.00 100
v3.1-70b 28.83-12.32 0.00-18.06 38.72-27.14
v3.2-3b 8.14-14.35 0.00-13.19 11.04 -7.64

x1-22b 20.37-13.39 1.00-16.04 58.92 1.18
large 25.37 -4.15 3.00-11.78 13.24-5.01

Table 2: Performance on silver annotations. Sub-
scripts denote the performance drop from Table 1.

context learning (Brown et al., 2020; Chen et al.,
2021), chain-of-thought prompting (Wei et al.,
2022), and self-consistency (Wang et al., 2022)
have shown promise in improving performance by
fostering more structured reasoning.

Language selection Our selection of languages
was limited to a small set, three of which belong to
the Indo-European family. This choice was driven
by two key factors. First, although we had the
exclusive access to a few 24GB RTX 3090, these
were insufficient for running larger models effec-
tively. We also had access to CESGA, the super-
computing center of Galicia; but it was limited to
queuing systems, making it difficult to estimate
running times and prioritize experiments given the
large number of models involved. Additionally,
although many models claim to be multilingual,
their performance tends to be skewed toward a
subset of widely spoken languages. We there-
fore selected languages that have the most support
across models to ensure consistent evaluations.6

6 Conclusion

We revisited the potential of autoregressive LLMs
as zero-shot dependency parsers. Taking a more
conservative approach than previous studies, we
compared several LLMs with simple baselines to
establish minimal performance benchmarks. Our
results show that most LLMs performed on par
with uninformed baselines, indicating comparable
performance to toy approaches that operate with-
out any access to the input sentence.

6Note that not all languages are supported by all models
(Table 9). Our selection aims to include widely supported
languages to ensure fair comparisons across models.
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A Post-processing

Figure 3 breaks down the process of obtaining a
valid dependency tree (fully connected, no cycles
and only one root) from the raw output of the
LLMs. In the second post-processing step, to en-
force the unique-root constraint we randomly se-
lected a root from the subset of outgoing arcs from
node 0, or just a random node if there are no such
arcs. Out-of-range arcs were resolved by replacing
the head with the root node. To break cycles and
connect all components, our post-processing algo-
rithm performs a breadth-first search from the root
node, removing those arcs that create cycles and
connecting disconnected nodes to the root node.

Prompt example
In dependency parsing the CoNLL format for the sentence <The
trial begins again Nov 28 .> is:
1 The _ _ _ _ 2 det _ _
2 trial _ _ _ _ 3 nsubj _ _
3 begins _ _ _ _ 0 root _ _
4 again _ _ _ _ 3 advmod _ _
5 Nov. _ _ _ _ 3 obl:tmod _ _
6 28 _ _ _ _ 5 nummod _ _
7 . _ _ _ _ 3 punct _ _
Now return the CoNLL format for the sentence: <What if Google
Morphed Into GoogleOS ?>
Raw output
Sure! This is the CoNLL format for the sentence <What if
Google Morphed Into GoogleOS ?>
1 What _ _ _ 0 nsubj _ _
2 if _ _ _ _ 4 mark _ _ _
3 Google _ _ _ _ 4 nsubj
4 Morphed _ _ _ _ 0 root _ _
5 into _ _ _ _ 6 case _ _
6 GoogleOS _ _ _ _ 8 nmod _ _
7 ? _ _ _ _ 4 punct _ _
Let me know if (...)
(1) Well-formatted output
1 What _ _ _ _ 0 nsubj _ _
2 if _ _ _ _ 4 mark _ _ _
3 Google _ _ _ _ 4 nsubj _ _
4 Morphed _ _ _ _ 0 root _ _
5 into _ _ _ _ 6 case _ _
6 GoogleOS _ _ _ _ 8 nmod _ _
7 ? _ _ _ _ 4 punct _ _
(2) Valid dependency tree
1 What _ _ _ _ 4 nsubj _ _
2 if _ _ _ _ 4 mark _ _ _
3 Google _ _ _ _ 4 nsubj _ _
4 Morphed _ _ _ _ 0 root _ _
5 into _ _ _ _ 6 case _ _
6 GoogleOS _ _ _ _ 4 nmod _ _
7 ? _ _ _ _ 4 punct _ _

Figure 3: Dependency parsing prompt and the re-
sulting tree after the second post-processing step.
Figure 1 showed the original tree.

B Additional results

Table 3 shows the reference to each model used
in our experimental study. All of them are pub-
licly available in HuggingFace. Tables 4 to 7
show the performance of each approach aggregat-
ing the prediction by its part-of-speech tag and
Table 8 breaks down the ratio of post-processing

Abbrv. Repository
v1-2b google/gemma-2b
v1-7b google/gemma-7b
v2-9b google/gemma-2-9b
v2-27b google/gemma-2-27b
v2-7b meta-llama/Llama-2-7b-chat-hf
v2-13b meta-llama/Llama-2-13b-chat-hf
v2-70b meta-llama/Llama-2-70b-chat-hf
v3-8b meta-llama/Meta-Llama-3-8B-Instruct
v3-70b meta-llama/Meta-Llama-3-70B-Instruct
v3.1-8b meta-llama/Llama-3.1-8B-Instruct
v3.1-70b meta-llama/Llama-3.1-70B-Instruct
v3.2-1b meta-llama/Llama-3.2-1B-Instruct
v3.2-3b meta-llama/Llama-3.2-3B-Instruct
v1-7b mistralai/Mistral-7B-Instruct-v0.1
v2-7b mistralai/Mistral-7B-Instruct-v0.2
v3-7b mistralai/Mistral-7B-Instruct-v0.3
x1-7b mistralai/Mixtral-8x7B-Instruct-v0.1
x1-22b mistralai/Mixtral-8x22B-Instruct-v0.1
nemo mistralai/Mistral-Nemo-Instruct-2407
large mistralai/Mistral-Large-Instruct-2407

Table 3: HuggingFace reference to the instruction-
based models used in our experiments.
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Figure 4: F-score across displacements in the
FrenchGSD test set.

steps performed in each experiment. Figures 4
to 6 display the performance on the FrenchGSD,
GermanGSD and HindHDBT treebanks with respect
to dependency displacement (signed dependency
distance), following the definition of Anderson
and Gómez-Rodríguez (2022), i.e., dependent in-
dex minus head index.

C Official language support

Table 9 shows which of our four target languages
are supported by each of the models we used,
according to the official documentation provided
with each model.
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ADJ ADP ADV AUX CCONJ DET INTJ NOUN NUM PART PRON PROPN PUNCT SCONJ SYM VERB X
A 9.45 6.05 7.74 6.35 5.16 6.96 25.00 8.56 10.70 6.32 6.43 13.29 9.27 3.65 16.51 6.33 5.13
L 6.26 5.90 14.80 1.94 0.14 0.58 24.17 6.16 22.14 11.56 13.47 23.11 21.12 1.04 14.68 8.41 53.85
R 51.06 36.28 43.62 44.72 46.68 55.67 30.00 16.00 26.57 73.50 37.34 22.29 15.28 16.67 25.69 2.19 2.56
RD 8.56 6.29 8.84 6.35 5.70 6.06 18.33 8.53 9.41 6.63 7.50 12.37 10.50 3.39 21.10 6.79 20.51
RD* 8.95 6.00 8.42 6.74 5.56 5.80 21.67 7.88 11.62 7.70 6.43 13.00 10.66 4.95 11.93 6.18 10.26
LI 23.94 15.88 25.00 22.62 14.79 22.83 30.83 12.11 22.14 29.74 24.85 20.65 15.12 11.72 11.93 7.68 25.64
LI* 25.11 19.03 25.26 23.59 19.13 26.20 25.83 11.34 19.56 28.97 27.12 17.62 14.41 9.11 14.68 3.72 15.38
S 24.94 23.70 20.49 24.11 22.25 24.78 35.83 14.74 17.71 27.43 21.52 21.52 18.38 11.72 18.35 9.75 17.95
v1-2b 9.45 7.23 8.16 9.92 6.24 8.43 15.83 7.64 11.07 10.94 9.02 12.18 9.04 5.47 6.42 8.18 10.26
v1-7b 10.40 6.59 9.35 10.95 7.19 9.17 14.17 7.83 8.12 10.48 11.61 9.82 9.63 7.81 12.84 8.45 5.13
v2-9b 15.10 7.62 11.14 10.24 8.01 10.86 16.67 10.95 7.38 8.94 9.90 14.16 6.75 4.69 9.17 19.65 2.56
v2-7b 8.22 4.57 10.54 12.70 3.80 5.69 10.00 8.34 4.06 9.71 8.75 9.39 6.94 3.91 8.26 14.55 2.56
v2-13b 10.46 1.92 6.46 5.57 1.49 2.11 15.00 10.80 2.40 5.39 3.93 14.68 6.23 2.34 6.42 27.06 0.00
v2-70b 10.07 7.42 14.88 14.32 4.34 7.64 10.00 12.79 4.80 14.33 12.36 10.21 10.14 5.73 4.59 13.90 7.69
v3-8b 9.56 5.31 11.56 12.70 4.21 6.54 16.67 9.86 4.43 11.40 9.81 10.83 10.59 3.65 9.17 13.28 10.26
v3-70b 36.13 13.82 38.69 16.59 8.68 38.22 42.50 30.41 11.62 36.52 33.83 27.15 24.64 8.33 15.60 30.67 17.95
v3.1-8b 16.00 16.08 25.17 12.96 23.20 19.93 27.50 15.93 9.78 20.65 21.29 24.03 17.44 7.29 19.27 14.40 30.77
v3.1-70b 42.28 20.26 43.45 23.46 21.98 40.48 45.83 29.68 11.44 51.00 37.90 28.50 28.97 11.46 16.51 30.63 12.82
v3.2-1b 7.94 5.56 11.56 12.96 5.16 6.48 13.33 8.22 5.17 10.32 9.53 9.87 9.27 5.47 11.01 9.71 10.26
v3.2-3b 8.22 3.83 9.10 9.53 3.26 4.53 20.83 9.02 8.12 7.86 7.91 12.61 11.18 3.39 13.76 9.52 10.26
v1-7b 10.85 4.77 8.50 9.40 4.48 5.06 20.00 9.79 4.61 8.17 8.65 11.94 6.17 2.34 5.50 16.47 5.13
v2-7b 21.09 16.91 16.33 18.02 16.69 24.30 22.50 13.85 8.67 19.72 17.95 17.38 10.53 11.98 13.76 11.09 5.13
v3-7b 30.76 24.68 27.81 27.28 24.42 30.89 15.00 13.85 8.67 37.60 21.84 17.00 13.15 11.72 19.27 9.79 12.82
x1-7b 13.40 10.75 13.53 12.57 12.25 12.68 15.22 9.15 10.70 15.57 14.64 11.87 8.39 4.50 11.96 10.53 12.90
x1-22b 27.57 18.78 31.21 22.88 18.72 29.20 30.83 18.01 13.10 31.12 24.62 23.06 18.86 14.58 18.35 16.51 28.21
nemo 13.42 7.62 10.29 9.07 7.33 9.80 20.00 11.31 6.27 8.17 9.16 15.50 8.59 3.65 9.17 19.23 20.51
large 21.48 5.31 15.99 9.27 6.78 10.12 25.83 18.27 10.52 10.48 11.01 22.82 11.95 2.60 19.27 38.85 15.38

Table 4: UAS aggregated by universal part-of-speech tag in the EnglishEWT test set.

ADJ ADP ADV AUX CCONJ DET INTJ NOUN NUM PRON PROPN PUNCT SCONJ SYM VERB X
A 4.27 3.65 3.70 5.01 3.61 3.85 22.22 4.50 3.98 4.83 2.65 4.47 1.56 0.00 4.14 0.00
L 51.23 1.08 23.82 0.84 0.00 0.81 22.22 5.57 19.03 4.47 25.92 11.80 10.94 5.13 9.62 42.86
R 19.38 36.49 36.55 55.43 29.72 89.79 0.00 1.61 44.25 39.00 2.24 15.09 3.91 23.08 0.00 3.57
RD 4.60 4.53 4.93 4.18 5.22 3.92 0.00 4.39 3.98 5.01 5.71 4.97 1.56 2.56 4.38 3.57
RD* 3.28 4.46 5.54 2.51 2.41 3.85 11.11 4.18 3.10 4.11 4.29 4.47 3.91 0.00 5.36 3.57
LI 28.41 15.74 23.41 21.73 11.65 30.22 0.00 5.47 20.35 20.21 13.67 10.46 5.47 15.38 5.24 17.86
LI* 27.09 18.38 22.18 23.40 14.46 35.63 0.00 4.98 25.22 21.11 14.90 11.21 6.25 15.38 4.26 28.57
S 13.79 24.73 21.15 26.46 18.88 34.28 0.00 9.00 21.24 21.11 9.39 12.56 7.81 15.38 7.43 14.29
v1-2b 10.67 6.82 11.50 10.58 6.43 12.24 0.00 5.79 12.39 8.59 9.39 6.75 3.91 10.26 9.01 10.71
v1-7b 10.84 9.05 11.91 9.47 5.62 13.52 0.00 4.93 9.29 9.84 7.35 5.99 3.12 5.13 7.92 14.29
v2-9b 16.42 9.86 11.29 11.42 7.23 19.27 11.11 9.38 3.10 11.45 8.57 6.32 2.34 7.69 17.78 3.57
v2-7b 10.67 16.15 17.25 26.46 13.25 40.70 22.22 4.72 19.91 22.00 5.10 8.77 2.34 17.95 2.56 0.00
v2-13b 9.85 11.82 17.45 14.21 8.84 27.86 0.00 5.31 11.50 15.56 5.10 8.35 3.12 10.26 5.72 3.57
v2-70b 30.71 8.18 21.77 6.69 3.21 24.95 11.11 17.42 6.64 15.38 21.84 8.26 6.25 12.82 19.37 21.43
v3-8b 13.79 12.30 16.43 17.55 6.83 28.06 11.11 4.02 20.35 17.17 9.18 9.02 1.56 10.26 7.67 3.57
v3-70b 41.05 19.73 28.34 8.64 6.43 47.73 11.11 26.74 9.73 22.00 34.08 15.01 5.47 5.13 21.92 28.57
v3.1-8b 32.02 17.30 28.95 25.63 22.49 53.75 11.11 11.36 13.72 25.04 11.02 13.58 3.12 12.82 14.86 7.14
v3.1-70b 53.20 27.91 37.78 13.93 14.46 59.77 0.00 27.49 15.49 28.09 26.12 23.44 5.47 15.38 29.23 21.43
v3.2-1b 7.22 5.41 6.16 3.90 3.61 9.87 11.11 5.47 8.85 8.77 4.69 4.81 3.91 12.82 10.96 0.00
v3.2-3b 10.84 5.81 8.21 9.75 2.41 12.24 11.11 7.18 6.64 7.51 10.00 7.00 3.91 5.13 9.01 14.29
v1-7b 11.82 6.69 10.06 4.46 4.42 12.17 0.00 6.22 6.19 8.94 9.80 5.90 2.34 7.69 14.98 14.29
v2-7b 21.35 19.05 17.45 14.48 12.05 33.60 0.00 11.74 7.96 19.32 11.43 10.12 3.12 20.51 12.55 21.43
v3-7b 26.44 29.39 31.62 31.20 21.29 70.05 11.11 10.40 16.37 29.34 13.27 12.14 3.12 17.95 11.21 14.29
x1-7b 16.09 6.42 9.03 6.69 4.02 15.89 22.22 10.93 6.64 7.69 7.76 6.16 5.47 5.13 27.65 0.00
x1-22b 29.23 20.61 26.28 14.76 17.27 38.54 22.22 14.47 18.58 21.29 17.76 13.24 7.03 23.08 14.98 7.14
nemo 17.24 10.34 14.17 8.64 6.43 20.76 11.11 11.95 4.42 11.63 13.88 8.94 3.91 5.13 19.12 10.71
large 12.97 13.38 14.99 16.43 11.24 25.42 0.00 5.63 16.37 16.28 8.37 8.60 5.47 7.69 6.21 7.14

Table 5: UAS aggregated by universal part-of-speech tag in the FrenchGSD test set.
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ADJ ADP ADV AUX CCONJ DET INTJ NOUN NUM PART PRON PROPN PUNCT SCONJ SYM VERB X
A 5.36 4.61 4.36 5.51 3.46 5.26 0.00 4.85 6.01 5.24 3.83 6.26 4.52 4.35 0.00 4.07 16.00
L 1.75 1.18 12.31 23.77 3.68 0.80 25.00 2.28 9.87 10.48 19.72 30.04 23.13 0.00 25.00 1.58 28.00
R 69.43 29.95 34.35 6.23 43.29 68.97 0.00 15.49 63.52 47.62 17.16 8.51 10.49 1.86 50.00 2.64 24.00
RD 4.77 5.73 6.85 5.80 6.49 4.95 25.00 6.33 4.72 4.76 5.25 6.36 6.22 5.59 0.00 6.18 16.00
RD* 6.33 5.04 5.92 6.23 5.84 5.31 0.00 6.62 4.29 5.71 5.39 7.44 5.88 8.07 0.00 5.35 12.00
LI 26.39 15.13 18.07 16.23 16.88 28.69 25.00 9.58 34.33 11.43 15.60 18.10 17.25 1.24 0.00 5.05 24.00
LI* 27.85 15.75 22.12 17.97 16.67 31.83 0.00 8.39 31.76 20.00 20.71 18.59 14.08 1.86 0.00 3.77 20.00
S 29.11 18.56 18.69 12.03 16.45 26.57 0.00 12.18 24.46 25.71 15.60 10.67 11.63 3.73 25.00 7.69 20.00
v1-2b 17.33 10.46 13.71 6.23 9.96 20.78 0.00 7.68 17.60 10.00 11.91 9.39 9.43 4.97 0.00 6.93 8.00
v1-7b 26.29 11.71 14.95 3.33 16.02 27.94 0.00 8.07 11.16 16.67 9.50 7.63 6.22 0.00 50.00 20.12 12.00
v2-9b 18.31 10.40 12.85 5.65 8.66 18.52 0.00 7.39 8.15 13.33 8.09 10.67 5.96 3.11 25.00 22.76 16.00
v2-7b 32.23 16.56 19.39 6.38 21.21 35.15 0.00 10.03 25.75 17.62 12.77 9.00 9.22 1.24 50.00 4.90 4.00
v2-13b 34.54 18.22 23.13 5.58 18.94 36.85 0.00 10.17 28.10 18.10 12.19 9.81 9.32 0.00 0.00 4.35 15.38
v2-70b 42.16 18.24 28.12 11.74 21.43 46.82 0.00 14.01 12.88 24.29 18.44 18.49 13.83 1.24 0.00 13.26 28.00
v3-8b 58.13 25.34 29.36 6.96 30.74 58.49 0.00 13.47 23.18 29.52 18.72 11.94 13.95 1.24 50.00 17.41 28.00
v3-70b 48.69 24.22 31.78 7.25 11.26 47.92 0.00 25.81 18.45 32.38 24.26 29.75 17.93 1.86 0.00 30.22 32.00
v3.1-8b 45.86 20.55 28.35 9.28 27.92 47.44 0.00 13.79 17.17 30.00 21.70 20.35 15.43 1.86 25.00 13.79 28.00
v3.1-70b 60.76 26.40 34.19 16.38 23.81 53.80 25.00 27.19 20.60 39.52 23.40 27.50 24.36 1.86 0.00 27.51 24.00
v3.2-1b 10.42 6.54 9.66 6.38 5.41 14.32 0.00 6.88 10.30 7.14 12.34 8.02 8.54 2.48 25.00 10.85 12.00
v3.2-3b 30.19 15.88 18.07 6.81 21.86 28.65 25.00 10.77 23.61 20.00 12.62 10.37 8.54 2.48 25.00 9.27 20.00
v1-7b 21.71 13.14 13.24 4.35 14.29 23.43 0.00 8.13 9.44 11.43 11.77 10.27 7.23 1.24 0.00 16.28 20.00
v2-7b 33.79 18.12 21.81 4.64 19.48 35.06 0.00 11.06 15.45 18.57 12.77 13.21 9.30 1.24 0.00 14.32 12.00
v3-7b 62.51 27.90 31.31 7.97 37.88 61.54 0.00 13.95 24.89 37.62 18.01 10.47 11.59 0.62 25.00 8.89 12.00
x1-7b 11.11 0.00 30.00 8.33 0.00 30.43 13.51 0.00 0.00 22.22 0.00 18.75 0.00 0.00 0.00
x2-22b 30.19 18.80 21.88 9.42 16.23 32.40 0.00 13.02 19.31 20.48 19.29 17.03 13.49 3.11 0.00 13.34 32.00
nemo 11.88 6.54 10.20 5.36 6.93 13.04 0.00 9.03 4.29 9.52 6.81 11.06 6.43 0.62 25.00 27.51 20.00
large 21.81 7.60 11.99 4.78 6.49 14.90 25.00 12.63 6.87 11.90 8.09 12.23 10.23 0.62 25.00 36.17 24.00

Table 6: UAS aggregated by universal part-of-speech tag in the GermanGSD test set.

ADJ ADP ADV AUX CCONJ DET NOUN NUM PART PRON PROPN PUNCT SCONJ VERB X
A 4.56 4.88 4.93 4.77 5.83 5.77 4.99 2.89 6.06 5.39 4.44 5.41 2.29 4.48 11.11
L 6.34 83.96 0.66 68.81 0.00 0.00 0.09 0.00 40.32 0.29 0.09 16.78 0.76 4.97 11.11
R 73.13 0.07 22.37 0.13 27.09 83.09 25.65 75.32 28.06 32.87 31.70 13.55 0.00 5.03 55.56
RD 5.40 4.58 3.29 5.73 3.78 4.70 4.99 4.76 5.47 5.90 4.15 4.96 3.82 4.97 0.00
RD* 4.84 4.68 3.29 5.64 5.51 6.44 4.68 4.91 5.02 5.76 4.19 5.04 3.97 5.66 0.00
LI 28.98 27.87 8.55 38.46 10.08 40.13 11.14 30.30 25.11 15.89 16.34 17.02 0.76 7.08 22.22
LI* 30.20 28.24 9.87 32.94 12.44 37.85 12.12 27.99 23.93 16.69 15.93 13.22 0.92 7.71 33.33
S 23.91 23.91 11.84 27.97 10.71 24.83 13.80 19.19 19.79 15.52 13.36 16.20 4.89 11.70 11.11
v1-2b 9.77 23.07 5.26 15.43 3.15 12.62 4.74 8.23 13.59 6.78 6.35 8.02 1.83 5.58 11.11
v1-7b 16.16 8.24 6.25 4.85 6.77 21.34 6.26 11.69 8.12 8.82 8.54 4.71 0.00 15.75 0.00
v2-9b 13.76 17.97 7.89 13.34 5.35 16.11 6.63 11.54 12.11 8.82 8.18 4.30 1.22 18.00 22.22
v2-7b 14.51 12.82 5.92 11.08 5.51 21.34 5.86 12.41 10.49 9.55 9.08 7.81 1.37 5.14 0.00
v2-13b 9.91 32.48 4.61 22.66 2.68 18.12 3.96 7.22 16.10 9.91 6.17 9.34 1.83 5.26 0.00
v2-70b 10.77 28.76 7.32 20.89 4.60 22.68 3.77 10.00 19.72 9.14 8.22 10.45 0.00 3.94
v3-8b 20.81 28.20 13.16 23.91 5.51 28.99 6.97 12.70 24.52 11.88 8.29 6.86 0.15 16.32 11.11
v3-70b 20.61 16.79 11.51 13.01 8.92 22.76 10.29 17.99 16.13 14.98 12.95 8.22 1.03 5.70 0.00
v3.1-8b 25.27 30.57 12.50 32.86 7.87 38.79 9.83 22.37 20.09 17.42 11.69 7.02 0.00 13.55 11.11
v3.1-70b 17.67 18.19 6.47 15.46 11.52 22.44 10.38 12.95 18.28 13.69 12.79 9.01 2.40 4.19 0.00
v3.2-1b 8.08 6.87 2.96 6.19 5.98 11.14 4.23 6.49 5.17 8.75 5.36 6.40 1.07 7.25 0.00
v3.2-3b 7.56 35.68 5.92 22.49 1.26 8.46 2.86 3.46 16.25 4.74 4.53 7.07 1.07 8.84 11.11
v1-7b 9.53 19.55 4.28 6.44 2.68 13.42 3.68 5.63 9.16 7.14 6.08 2.15 0.15 17.74 0.00
v2-7b 15.88 22.49 11.51 9.49 4.88 22.01 7.14 10.53 17.58 8.45 8.29 3.88 0.46 18.64 0.00
v3-7b 29.64 30.29 16.12 18.31 8.98 44.56 11.01 26.84 21.42 14.58 14.98 6.16 0.46 16.73 22.22
x1-7b 29.64 30.29 16.12 18.31 8.98 44.56 11.01 26.98 21.42 14.58 14.96 6.16 0.46 16.73 22.22
x1-22b 28.64 33.08 9.83 20.04 13.70 33.33 11.79 27.62 17.60 16.85 15.19 10.49 1.53 9.16 16.67
nemo 9.58 11.84 4.61 7.90 3.31 10.07 4.99 7.36 11.37 4.96 5.16 5.12 0.92 20.69 11.11
large 25.37 14.66 11.51 9.14 12.64 29.81 10.38 21.94 16.49 13.20 13.77 8.02 1.03 5.43 0.00

Table 7: UAS aggregated by universal part-of-speech tag in the HindiHDTB test set.
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enEWT frGSD deGSD hiHDTB
NP P1 P2 NP P1 P2 NP P1 P2 NP P1 P2

v1-2b 13.38 16.18 70.44 7.45 14.90 77.64 7.06 12.90 80.04 6.06 16.27 77.67
v1-7b 14.44 16.51 69.04 6.97 10.82 82.21 10.75 0.00 89.25 8.43 0.12 91.45
v2-9b 15.17 0.05 84.79 4.81 0.00 95.19 5.32 0.00 94.68 3.27 0.00 96.73
v2-7b 24.22 0.00 75.78 1.92 2.64 95.43 4.09 8.70 87.21 5.82 5.23 88.95
v2-13b 14.59 0.00 85.41 22.12 10.58 67.31 32.89 5.12 61.98 18.71 13.18 68.11
v2-70b 46.89 0.00 53.11 13.70 0.00 86.30 23.34 0.10 76.56 7.47 8.71 83.82
v3-8b 49.01 0.00 50.99 4.81 6.25 88.94 22.42 0.00 77.58 0.48 0.00 99.52
v3-70b 58.69 0.10 41.21 33.41 0.00 66.59 28.25 0.00 71.75 24.76 12.72 62.52
v3.1-8b 34.38 0.00 65.62 5.29 0.48 94.23 12.90 0.00 87.10 2.43 0.00 97.57
v3.1-70b 65.86 0.05 34.09 42.79 0.24 56.97 46.57 0.00 53.43 26.14 11.34 62.52
v3.2-1b 5.63 14.06 80.31 2.16 8.41 89.42 1.84 9.72 88.43 1.37 8.19 90.44
v3.2-3b 5.15 14.68 80.16 2.40 10.58 87.02 3.99 9.01 87.00 2.73 12.17 85.10
v1-7b 16.85 0.00 83.15 5.29 0.00 94.71 5.94 0.00 94.06 0.12 0.00 99.88
v2-7b 15.12 0.00 84.88 3.85 0.00 96.15 5.02 0.00 94.98 0.36 0.00 99.64
v3-7b 28.17 0.05 71.79 11.06 0.00 88.94 19.55 0.00 80.45 0.71 0.00 99.29
x1-7b 26.22 13.27 60.51 3.37 0.00 96.63 25.00 12.50 62.50 1.25 0.06 98.69
x1-22b 41.98 29.22 28.79 32.69 26.92 40.38 37.46 26.41 36.13 30.88 33.02 36.10
nemo 15.74 0.00 84.26 3.61 0.00 96.39 4.09 0.00 95.91 0.48 0.00 99.52
large 18.25 0.00 81.75 22.84 15.14 62.02 7.88 0.00 92.12 18.26 11.20 70.54

Table 8: Distribution of the amount of post-processing steps performed in each zero-shot parser. NP
represents the ratio of generated trees that did not require post-processing (only removing non-tabular
lines), P1 for those trees that only required the first post-processing step (e.g. removing extra columns)
and P2 for those trees that required of the full post-processing step (e.g. breaking cycles).

Model English French German Hindi
v1-2b ✓
v1-7b ✓
v2-9b ✓
v2-7b ✓
v2-13b ✓
v2-70b ✓
v3-8b ✓ ✓ ✓
v3-70b ✓ ✓ ✓
v3.1-8b ✓ ✓ ✓ ✓
v3.1-70b ✓ ✓ ✓ ✓
v3.3-1b ✓ ✓ ✓ ✓
v3.3-3b ✓ ✓ ✓ ✓
v1-7b ✓ ✓
v2-7b ✓
v3-7b ✓
x1-7b ✓ ✓ ✓
nemo ✓ ✓ ✓ ✓
large ✓ ✓ ✓ ✓

Table 9: Language support across different models. A tick symbol (✓) indicates that the model supports
the respective language, while empty cells indicate lack of support.
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Figure 5: F-score across displacements in the
GermanGSD test set.
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Abstract

This paper presents an approach for generating
high-quality, same-language subtitles for Estonian
TV content. We fine-tune the Whisper model on
human-generated Estonian subtitles and enhance it
with iterative pseudo-labeling and large language
model (LLM) based post-editing. Our experiments
demonstrate notable subtitle quality improvement
through pseudo-labeling with an unlabeled dataset.
We find that applying LLM-based editing at test
time enhances subtitle accuracy, while its use dur-
ing training does not yield further gains. This ap-
proach holds promise for creating subtitle quality
close to human standard and could be extended to
real-time applications.

1 Introduction

Same-language subtitles for video material, like
TV talk shows, investigative pieces, and educa-
tional content serve as a valuable resource for the
deaf and hard-of-hearing community, non-native
speakers and native speakers alike. For instance,
recent studies (Mykhalevych and Preply, 2024;
Kim et al., 2023) have revealed that 50% of Amer-
icans and 85% of the Netflix users overall fre-
quently watch TV and streaming video content
with subtitles. Studies show that subtitles can en-
hance understanding and memory retention. A lot
of viewers choose to enjoy their content quietly
at home, keeping subtitles on to avoid disturbing
their roommates or family.

Subtitles differ from verbatim (word-by-word)
transcripts in many aspects. Subtitles represent
typically a condensed version of the speech, de-
signed to convey the essential meaning without
capturing every word. They may omit filler
words, repetitions, and non-verbal sounds, and
may rewrite phrases, focusing on clarity and read-
ability for viewers. Since subtitles are displayed
on-screen during playback, they are formatted to
fit within a limited time frame and limited line
length, ensuring they are easy to read while the
viewer is watching.

This paper outlines the development of an ac-
curate offline same-language subtitle generation
model for Estonian TV content. Using exist-
ing human-created subtitles, we fine-tune Whis-
per (Radford et al., 2022) and explore further
improvements with semi-supervised learning and
LLM-based post-editing techniques. Our find-
ings demonstrate that Whisper can be trained to
closely replicate human subtitling style, creating
well-segmented and often rephrased subtitles. Ad-
ditionally, we find that iterative pseudo-labeling of
a large unlabeled dataset improves subtitle quality
across all metrics. While a state-of-the-art com-
mercial LLM (OpenAI gpt-4o1) can enhance sub-
title quality during test time, it’s use at training
time to improve pseudo-labeled subtitles through
post-editing is not effective.

2 Related Work

Both iterative pseudo-labeling and LLM-based
post-editing have been an active area of re-
search in the context of verbatim automatic speech
recognition (ASR). Pseudo-labeling based semi-
supervised learning in ASR has been studied since
at least (Zavaliagkos et al., 1998) and has been
later investigated in several works, e.g. by Veselỳ
et al. (2013); Xu et al. (2020).

To the best of our knowledge, Ma et al. (2023)
was the first to show the potential of zero-shot and
few-shot LLM-based ASR error correction. This
approach has been later extended to take into ac-
count uncertainty estimation of ASR outputs (Pu
et al., 2023) and retrieval-augmented generation
for correcting speech recognition entity name er-
rors (Pusateri et al., 2024).

Xi et al. (2024) showed that LLM-based error
correction and data filtering can be also used for
refining the pseudo-label transcripts during semi-
supervised learning. This work is similar to ours,

1We used a regular version of GPT-4o, which was ac-
cessed on October 14, 2024.
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however, it is applied in the context of a code-
switched Mandarin-English ASR task.

3 Method

Our method for developing an automated subti-
tle generation system involves several steps: train-
ing with supervised data, using iterative pseudo-
labeling, and applying LLM-based error correc-
tion.

We start by training the Whisper large-v3 model
(Radford et al., 2022) on a supervised dataset.
This dataset consists of audio recordings paired
with their subtitles.

Next, we use an unsupervised dataset to per-
form two iterations of pseudo-labeling. In this
step, we generate pseudo-labels using the last
trained model and combine them with the origi-
nal supervised dataset, followed by training a new
model on this data.

We also apply LLM-based post-editing of the
generated subtitles, by instructing the LLM to fix
the mistakes in the subtitles and giving it a seg-
ment of generated subtitle file. We experiment
with applying this LLM-based post-editing in two
distinct phases: at test time (i.e., to generated sub-
titles of the test data) and during training time (i.e.,
to generated subtitles of the unsupervised dataset).

4 Experiments

4.1 Datasets
As a supervised dataset2, we used recordings and
the corresponding subtitles from the Estonian na-
tional TV. The subtitles had been produced for
the deaf and hard-of-hearing community by ex-
pert subtitlers. The supervised dataset consists of
993 audio-subtitle pairs, totaling 778 hours of au-
dio, corresponding to 10 different TV show series
(multi-party talk shows on various topics, political
debates, infotainment programs). We randomly
selected 17 recordings out of this set for testing.

The unsupervised dataset contains 7128 audio
recordings, amounting to 3923 hours of audio. It
contains similar material as the supervised dataset
but also contains news program recordings, which
the supervised dataset doesn’t include.

4.2 Evaluation metrics
While evaluating ASR outputs using word er-
ror rate (WER) is relatively straightforward, find-

2https://cs.taltech.ee/staff/tanel.
alumae/data/etv-subtitles/

ing an appropriate metric for evaluating automatic
subtitling systems is more complicated. Since sub-
titles often rephrase spoken content to enhance
clarity and readability, WER may not accurately
reflect the quality of the subtitles. WER does also
not account for the formatting and timing of subti-
tles, which are crucial for viewer comprehension.

In our work, we use three metrics for com-
paring machine-generated subtitles against refer-
ence subtitles: subtitle edit rate (SubER) (Wilken
et al., 2022) and two variations of BLEURT (Sel-
lam et al., 2020). SubER is based on a modified
version of edit distance that incorporates shifts.
This allows it to account for the specific prop-
erties of subtitles, such as timing and segmen-
tation. However, SubER doesn’t take into ac-
count that the same meaning can be conveyed with
different words or phrases. Thus, we also use
BLEURT for evaluation. BLEURT is a learned
metric, trained on subjective human evaluations
scores of machine translation references and the
corresponding candidate sentences. BLEURT out-
puts scores that usually in the range of 0..1 (with
1 being a perfect match) and is found to be better
correlated with human judgments in several lan-
guages than BLEU scores. We used the multi-
lingual BLEURT-20-D12 model introduced by Pu
et al. (2021). Furthermore, we use two variations
of BLEURT: t-BLEURT and AS-BLEURT, which
differ in the way generated subtitles are aligned
to references. AS-BLEURT splits the reference
subtitles into sentences, aligns generated subtitles
to the references (Matusov et al., 2005) and then
computes BLEURT score for each sentence, while
t-BLEURT does the alignment based on the timing
information in the subtitles (Cherry et al., 2021).

4.3 Baseline Model
As a baseline model, we finetuned Whisper on
our supervised dataset using a cross-entropy ob-
jective. The model was trained for 4 epochs us-
ing the AdamW optimizer (Loshchilov and Hut-
ter, 2019) with a learning rate of 1 × 10−5. We
used an effective batch size of 32 audio chunks
and applied Stochastic Weight Averaging (SWA)
(Izmailov et al., 2018) after the first epoch.

During decoding, we use the Silero VAD model
(Silero Team, 2021) to remove non-speech parts.

4.4 Iterative Pseudo-Labeling
Next, to improve performance of the baseline
model we used iterative pseudo-labeling (IPL)
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Figure 1: Pseudo-labels generated by model are
either passed through LLM or used as as is.

— a semi-supervised learning technique that en-
ables model refinement on unlabeled data. Start-
ing with an initial model trained on supervised
data, we generate pseudo-labels for unlabeled
samples and use these to retrain the model itera-
tively.

Our approach, which we illustrate in Figure 1,
explores two strategies for refining pseudo-labels:

• Direct Pseudo-Labeling: Using pseudo-
labels generated by the model itself.

• LLM-Enhanced Pseudo-Labeling: Refin-
ing pseudo-labels with a LLM to correct po-
tential errors and ensure alignment with hu-
man subtitling standards.

In both approaches, we combine pseudo-labeled
data with the original supervised dataset, mod-
ified by applying speed perturbation. To make
the model more robust we applied SpecAugment
(Park et al., 2019) on spectrogram level.

We did two iterations of training with pseudo-
labels, the training setup was similar to the one
with supervised data. Additionally, we incorpo-
rated weighted loss function:

Ltotal = (1− λ) · Lsupervised + λ · Lpseudo-labels

where λ = 0.35 was chosen empirically using
Optuna (Akiba et al., 2019).

System Instruction:
You are tasked with correcting Estonian subtitles in
a subtitle file. YOU MUST NOT create, remove,
or modify block numbers and timestamps. ONLY
correct the text within the existing blocks.

Input:
1
00:00:00,000 --> 00:00:02,760
Tere õhtust kõigile, algamas
on vestlussaade kahekõne.
2
00:00:02,760 --> 00:00:07,340
Uued rahva poolt palavalt oodatud jõud
on toompeal justkui killustunud.

LLM Output:
1
00:00:00,000 --> 00:00:02,760
Tere õhtust kõigile, algamas
on vestlussaade ”Kahekõne”.
2
00:00:02,760 --> 00:00:07,340
Uued rahva poolt palavalt oodatud jõud
on Toompeal justkui killustunud.

Figure 2: Example of an LLM instruction used for
refining Estonian subtitles. The model corrected
the spelling of the TV show name ”Kahekõne” and
the historical place name ”Toompea” in Estonia.

Table 1: Comparison of different LLMs for their
performance in error correction.

LLM SubER↓
- 35.1
GPT-4o 34.2
Llama 3.1 405B (FP8 quant.) 35.5
Qwen 2.5 72B 36.4
Gemma 2 27B 38.4

4.5 LLM-based post-editing
To ensure fast and efficient correction of subtitles
using an LLM, we split the generated subtitles into
chunks of 40 subtitle blocks. This approach al-
lows for great parallelization without exceeding
the maximum token limit per request. An exam-
ple of the request format is shown in Figure 2.

In the development phase, we evaluated several
different LLMs for their suitability for this task.
Table 1 shows the SubER results on test data, af-
ter applying LLM-based error correction with dif-
ferent LLMs. We compared OpenAI GPT-4o and
three of the best open source LLMs from different
vendors. As can be seen, only GPT-4o was able to
improve SubER-based subtitle accuracy. Based on
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Table 2: Results of different models, with or without test-time LLM post-editing.
Finetuning data Pseudo-label

LLM-post-editing?
Test-time

LLM-post-editing?
SubER↓ t-BLEURT↑ AS-BLEURT↑

- 59.8 .563 .728
Verbatim transcripts 51.5 .526 .770

Subtitles (A) 35.1 .545 .799
Subtitles (B) ! 34.2 .582 .810

Pseudo-labeling, iteration 1

Subtitles + pseudo-labels 34.5 .526 .808
Subtitles + pseudo-labels ! 33.9 .529 .815
Subtitles + pseudo-labels ! 34.4 .525 .810
Subtitles + pseudo-labels ! ! 33.9 .528 .816

Pseudo-labeling, iteration 2

Subtitles + pseudo-labels 33.4 .529 .853
Subtitles + pseudo-labels (C) ! 33.1 .598 .858
Subtitles + pseudo-labels ! 33.6 .570 .854
Subtitles + pseudo-labels ! ! 33.3 .571 .856

these results, we used GPT-4o in our experiments.
During our experiments, we observed that

LLMs often struggle to output the exact times-
tamps and block numbers correctly. To address
this, we verified these details against the original
subtitles to ensure accuracy and re-requested the
LLM to fix the issue, if necessary. We also exper-
imented with one-shot and few-shot prompts but
did not observe any significant quality improve-
ment, so we opted not to include them. Addition-
ally, we set a threshold on the number of allowable
reference check failures: if the model failed more
than 3 times, we reverted to the original subtitle.

4.6 Results

Table 2 lists evaluation results of the native Whis-
per model (not fine-tuned on additional data),
Whisper fine-tuned on 1066 hours of verbatim
transcripts from the TalTech Estonian Speech
Dataset 1.0 (Alumäe et al., 2023), and after fine-
tuning with different sets of subtitle datasets. The
table also highlights the effects of LLM-based
post-editing applied during both the training and
testing phases.

The results indicate that fine-tuning on subtitle
data yields notably lower SubER values compared
to fine-tuning on verbatim transcripts, demonstrat-
ing the different nature of subtitles and verba-
tim transcripts. However, the BLEURT scores
for both the native Whisper model and the ver-
sion fine-tuned on verbatim transcripts are surpris-
ingly high. This outcome may be attributed to
BLEURT’s design as a semantic similarity metric,

which effectively maps both verbatim transcripts
and subtitle-like compressed transcripts to proxi-
mate points in its semantic space.

To support our interpretation of the achieved
results, we computed Wilcoxon signed-rank test
(Wilcoxon, 1945) between models A, B and C
highlighted in the Table 2. P-value achieved from
comparing model A to B is 0.000, B to C is 0.004
and A to C is 0.000. These p-values are all below
common significance thresholds (e.g., 0.05), indi-
cating that the differences between the models are
statistically significant.

Given that, findings suggest that iterative semi-
supervised learning enhances subtitle quality, as
evidenced by improvements across all test met-
rics. LLM-based post-editing applied to de-
coded subtitles provides additional benefits in
most cases. However, contrary to findings in (Xi
et al., 2024), applying LLM-based post-editing
to pseudo-labeled subtitles in the unsupervised
dataset does not yield further improvements.

Although a formal human evaluation of the
generated subtitles was not conducted, the au-
thors’ subjective assessment suggests that min-
imal manual post-editing would be required to
achieve error-free subtitles, particularly for in-
domain TV data. A sample video from our
test dataset, featuring both reference subtitles
and subtitles generated by our best model3 is
available at https://www.youtube.com/
watch?v=bEow5vGIgZc. A smaller version of

3https://huggingface.co/TalTechNLP/
whisper-large-v3-et-subs
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this model based on Whisper large-v3-turbo can
be freely used via a simple web application4.

5 Conclusion

In this work, we presented an approach to auto-
mated subtitle generation, leveraging the multi-
lingual Whisper model, semi-supervised learning,
and LLM-based post-editing. By utilizing super-
vised and unsupervised datasets, we demonstrated
that iterative pseudo-labeling can indeed improve
the quality of subtitles. Our results show that ap-
plying an LLM during test time has a more signif-
icant impact on the results across all the key met-
rics than during training time. Future work will
focus on adapting our approach to real-time sce-
narios.
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Abstract

We explore the relationship between
stylistic and sentimental complexity in lit-
erary texts, analyzing how they interact
and affect overall complexity. Using a
dataset of over 9,000 English novels (19th-
20th century), we find that complexity at
the stylistic/syntactic and sentiment lev-
els tend to show a linear association. Fi-
nally, using dedicated datasets, we show
that both stylistic/syntactic features – par-
ticularly those relating to information den-
sity – as well as sentiment features are re-
lated to text difficulty rank as well as aver-
age processing time.1

1 Introduction

Literary texts exemplify language operating at its
most refined and demanding: they are capable
of generating an experience – often emotional or
evocative (Bizzoni and Feldkamp, 2024) – through
the sheer force of words (Starr, 2013; Girju and
Lambert, 2021; Miall and Kuiken, 1994). In this
domain, language’s capacity to evoke emotions,
construct worlds, and create experiences is pushed
to its limits. To do so, literary texts explore the
boundaries of what human language can achieve
in terms of expressiveness, depth, and evocative
power. It manipulates form and meaning for its
effects in a way that seems unmatched in other do-
mains – exhibiting complexity at multiple levels,
for example, matching an information-dense style
with an unpredictable narrative.

Multidimensional complexity might also be the
reason why traditional stylistic metrics for gaug-
ing the difficulty of a text – often developed for

1To ensure reproducibility, all code and raw
data are available at: https://github.com/
centre-for-humanities-computing/
literary_complexity

nonfiction – such as readability formulae, do not
adequately capture the level of complexity of lit-
erary texts (Dalvean and Enkhbayar, 2018a); and
might be a factor in why literary texts are asso-
ciated with longer human processing times than
nonfiction (Zwaan, 1991; Brysbaert, 2019).

This complexity, however, might not manifest
uniformly at all levels: a literary story may be
emotionally complex while maintaining a simpli-
fied syntax. This is why the problem of modeling
complexity at different linguistic levels in literary
language presents a particularly intriguing chal-
lenge. Understanding how linguistic complexity
affects reader experience and whether there are
trade-offs between formal and emotional aspects
is critical in unraveling the cognitive demands and
rewards associated with literary reading.

While many recent studies have sought to gauge
the effect of stylistic and syntactic features of com-
plexity for forms of reader appreciation (Brot-
trager et al., 2022; Barré et al., 2023; Wu et al.,
2024; Bizzoni et al., 2023b; Wang et al., 2019;
Koolen et al., 2020), the sentiment and emotional
dimension has been an overlooked aspect of liter-
ary complexity. Complexity at this level is difficult
to define. While a metric like simple sentiment
standard deviation can be used to gauge the width
of the ‘sentiment palette’ that authors are using in
a novel, some more sophisticated measures for the
complexity of novels’ sentiment arcs – i.e., the tra-
jectory of positive and negative valences across a
story – have been developed in recent years, like
the approximate entropy or the Hurst exponent of
sentiment arcs (Bizzoni et al., 2021, 2022).

Very little work has explored the connection be-
tween these different levels of complexity: the re-
lation between complexity at the stylistic level and
complexity at the sentiment level. Moreover, little
work has tested whether sentiment complexity be-
haves similar to stylistic and syntactic complexity
in relation to reader experience. To address this
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gap, we pose two research questions. Firstly:
RQ1: What is the relationship between complex-
ity features at different textual levels (e.g., stylis-
tic/syntactic, and sentiment levels)? We hypoth-
esize two possible relationships between different
levels of complexity:
H1a: There is a trade-off between complexity at
different levels, where, e.g., increased stylistic and
syntactic complexity leads to “simplification” at
the sentiment level.
H1b: Complexity features at different levels co-
occur, so that, e.g., higher stylistic and syntac-
tic complexity is associated with greater sentiment
complexity.2

The first two hypotheses carry different conse-
quences. The first hypothesis (H1a) draws from
the concept of ‘cognitive compensation’ observed
in other domains, which suggests that optimized
communication requires distributing readers’ cog-
nitive load across linguistic layers. For exam-
ple, when lexical complexity increases, syntactic
structures may simplify to balance cognitive de-
mands (Degaetano-Ortlieb and Teich, 2022). In
this scenario, complexity at one level could func-
tionally balance complexity at another – for in-
stance, syntactic complexity might work alongside
sentimental simplicity. In contrast, H1b derives
from the idea that aesthetic phenomena function
as ‘supernormal stimuli’, intentionally amplifying
complexity across levels to heighten engagement,
eliciting amplified responses (Dubourg and Bau-
mard, 2022; Costa and Corazza, 2006). This sce-
nario also carries the interesting possibility that
works with high stylistic and syntactic complex-
ity also embrace challenging sentiment profiles.
Heightened complexity at multiple levels would
impose a higher cognitive load on readers, yet
could foster a more compelling aesthetic experi-
ence.

Secondly, we seek to probe the relation of each
feature level to actual reader experience:

RQ2: What is the relationship between com-
plexity features at different levels of a text and cog-
nitive load experienced by readers?
H2a: Features at the sentiment level behave like
stylistic and syntactic features in increasing read-
ers’ cognitive load, impacting the reader’s ability
to process the text.
H2b: Features at the sentiment level have an in-

2The null hypothesis (1) would naturally be that these lev-
els bear no relation to each other, i.e., are independent.

verse behavior to stylistic and syntactic features,
so more complexity at the sentiment level de-
creases readers’ cognitive load.3

Through these questions, we aim to explore how
complexity at different linguistic levels might en-
hance or compromise one another. In a first part
of this study, we investigate the relationship be-
tween stylistic/syntactic and sentiment complex-
ity (RQ1) in a large corpus of novels. In the sec-
ond part, we assess whether sentiment complex-
ity mirrors stylistic/syntactic complexity in its im-
pact on readers’ cognitive load (RQ2), using ded-
icated datasets on reading time and novels’ diffi-
culty rank.

2 Related Works

Computational literary analyses have long at-
tempted to model textual complexity by analyz-
ing both stylistic and syntactic features. As early
as 1893, Sherman used sentence length to study
textual complexity. The increasing prominence of
Digital Humanities in recent decades has greatly
expanded this field. Recent studies have focused
on canonical literature (Barré et al., 2023; Brot-
trager et al., 2022; Wu et al., 2024; Algee-Hewitt
et al., 2016), showing that such texts exhibit a
higher level of complexity across various dimen-
sions. For example, studies have demonstrated
that canonical works tend to have denser nomi-
nal styles, lower readability levels, and less pre-
dictable sentiment arcs (Wu et al., 2024; Bizzoni
et al., 2023b).

Much of the focus on stylistic and syntactic
complexity can be traced to formalist literary the-
ory, which emphasizes stylistic discomfort as a
hallmark of the literariness of texts. This theory
argues that literary texts slow down reading by cre-
ating linguistic unfamiliarity or “foregrounding”
(Mukařovský, 1964; van Peer, 1986). While some
work has found reader consensus on foreground-
ing phenomena (van Peer, 1986), no comprehen-
sive taxonomy of such features exists. Still, such
features have been implicitly assumed to be formal
or stylistic. This aligns with a long-standing de-
bate on formalism in literary analysis, where a su-
perficial focus on form has been claimed to over-
shadow content (Eagleton, 1983). As an excep-
tion, the experimental study of Miall and Kuiken
(1994) found that reading times increased with the

3The null hypothesis (2) would naturally be that sentiment
features bear no relation to readers’ cognitive load.
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frequency of foregrounding features, including af-
fective features in their taxonomy.

Other, more theoretical studies have suggested
that the extended processing time associated with
literary texts (Zwaan, 1991) is linked to emotional
and emphatic engagement (Scapin et al., 2023;
László and Cupchik, 1995) and to increased re-
flection on non-literal meaning distinctive to lit-
erary reading (Hakemulder, 2020). In short, the
complexity of literary texts may evoke more cog-
nitively demanding affective processes than non-
fiction, echoing the idea of literary texts as en-
hanced stimulus objects (Dubourg and Baumard,
2022). Moreover, recent psycholinguistic research
has also emphasized how sentiment and emotional
engagement affect readers’ cognitive load, show-
ing that negative valence and emotional features
can increase reading times and that readers re-
spond rapidly to valence cues (Pfeiffer et al., 2020;
Lei et al., 2023; Arfé et al., 2023). These stud-
ies suggest that sentiment plays a critical role in
reader experience, yet few works have explored
the intersection of stylistic, syntactic, and com-
plexity at the sentiment level.

While sentiment analysis (SA) has become a
popular method for gauging emotional content in
texts (Rebora, 2023), its application in literary
analysis remains conceptually and theoretically
underdeveloped. Some recent work has applied
complexity measures such as approximate entropy
and the Hurst exponent to sentiment arcs, suggest-
ing that these measures provide insight into the
complexity of narratives at the level of feelings or
emotions evoked (Bizzoni et al., 2021, 2022). Yet,
the connection between complexity at the stylistic
level and the complexity in sentiment trajectories
measured by these metrics remains largely unex-
plored.

We seek to fill this gap by investigating the re-
lationship between stylistic/syntactic complexity
and complexity at the sentiment level in literary
texts, contributing to the broader understanding of
how complexity at different linguistic levels inter-
acts to shape the complexity profile of literature
and its readers’ cognitive experience.

3 Methods

3.1 Data
The Chicago Corpus
For our investigation on the relation between
features, we use the Chicago Corpus of novels in

Figure 1: Chicago Corpus, temporal distribution
of novels.

English (n = 9, 089) from the period 1880-2000
(see the distribution of the corpus over time in
Fig. 1). The novels in our corpus are predom-
inantly by anglophone authors, selected based
on the number of worldwide library holdings,4

favoring those with broader representation. Since
library holdings capture both popular demand and
prestigious, curated literature, the corpus spans a
diverse range of genres – from Agatha Christie to
James Joyce.56

Beyond the Chicago Corpus, we use two dedi-
cated datasets for part II of our study, where we
gauge the relation between features at different
levels with proxies of perceived complexity – i.e.,
reading time from the Natural Stories corpus and
a list of the difficulty rank of novels (Dalvean and
Enkhbayar, 2018a).

Natural Stories Corpus
The Natural Stories corpus consists of 10 En-
glish stories, each approximately 1,000 words
long, totaling 485 sentences. These publicly
available narratives, which includes tales by the
Brothers Grimm, were revised to incorporate
low-frequency and psycholinguistically interest-
ing constructions while maintaining fluency. Self-
paced reading (SPR) data was collected from 181
native English speakers, recording reaction times
(RTs) for each word in a moving window setup.
The dataset was filtered for control comprehen-
sion questions and outlier RTs (< 100ms or >

4As indexed in worldcat.org
5See Bizzoni et al. (2024c) for details on the corpus. Re-

cent studies of literary complexity have also used it, such as
Wu et al. (2024).

6The feature dataset – though not full texts
– is available at: https://github.com/
centre-for-humanities-computing/chicago_
corpus
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3000ms).7 Note that our analysis operates at the
story level, using average sentence RT, as we ex-
amine sentiment features based on broader con-
texts. Average sentence RT per story was calcu-
lated from the word RTs.

Figure 2: Distribution of Difficulty Rank across
the 26 novels.

Difficulty rank of novels
With the aim of matching books to appropriate
reader levels, Dalvean and Enkhbayar (2018a) cu-
rated a list of 200 novels, each assigned a diffi-
culty rank. This rank is derived from a model
trained on a binary prediction task (accuracy 89%)
based on 48 linguistic and psycholinguistic fea-
tures. We use these scores to estimate text com-
plexity for the subset of books extant in the list and
in the Chicago corpus, i.e., 26 novels (see Fig. 2).
For the titles of the 26 novels, see Table 6 in Ap-
pendix B.

3.2 Features

The features utilized in this study have been used
in previous works to distinguish textual profiles of
different types of literature. The details on each
measure can be found in Appendix D (Table 10).
We focus on features that supposedly reflect stylis-
tic or syntactic complexity, and have been widely
used in recent computational literary studies. Fea-
tures at the sentiment level were chosen to focus
on overall variation and local and global complex-
ity of the sentiment arc (Bizzoni et al., 2023b,
2022).

The sentiment dynamics central to our study are
captured by both simple and complex measures.
First, sentiment standard deviation (SD) repre-
sents the “palette” of sentiment in a novel, quanti-
fying the overall variation in valence scores across

7The Natural Stories data is available at: https://
github.com/languageMIT/naturalstories

sentences to reflect sentiment range. Beyond this,
two advanced measures – approximate entropy
and the Hurst exponent – are applied to model
more nuanced sentiment arcs linearly within a nar-
rative.

Approximate entropy (ApEn) assesses the lo-
cal complexity and unpredictability within senti-
ment flows, where lower values signal a repeti-
tive, predictable structure, and higher values indi-
cate intricate, less predictable patterns in the nar-
rative (Mohseni et al., 2022). To capture global
coherence, we estimate the Hurst exponent (H)
with adaptive fractal analysis (AFA) instead of the
more commonly used detrended fluctuation anal-
ysis (DFA), avoiding the boundary errors and seg-
ment discontinuities common to DFA (Hu et al.,
2021; Gao et al., 2011). By accounting for non-
linear trends, AFA enables a smooth global trend,
with higher H values suggesting sustained narra-
tive coherence and lower values indicating more
abrupt sentiment shifts across scales (Hu et al.,
2021; Bizzoni et al., 2023d).8

For all sentiment features, which are derived
from valence scores, we first annotated all novels
at the sentence level for sentiment valence (where
1 represents the positive and -1 the negative po-
larity) using the Syuzhet package (Jockers, 2015).
This tool was developed explicitly for literary lan-
guage, and has shown the best performance for
English in the literary domain, also compared to
transformer-based models (Bizzoni et al., 2023a).
We then calculated the standard deviation, ApEn,
and Hurst exponent of sentiment arcs for all 9,000
Chicago Corpus novels, as well as stories of the
Natural Stories dataset – taking these features to
represent the variance, as well as the local and
global predictability – in other words, complexity
– of novels’ sentiment profile.

In the following first part of this study, we jux-
tapose stylistic/syntactic and these sentiment fea-
tures of complexity across all novels, gauging the
correlation between them. We then assess the link
between stylistic/syntactic and sentiment levels by
trying to predict individual sentiment variables us-
ing all the stylistic/syntactic features. This is done
on the whole set of over 9,000 novels, making it
the largest-scale experiment in this study, as well
as the most comprehensive diachronically (end of
19th – 20th century).

8See, recently, Bizzoni et al. (2024b) for the details on the
computation of these sentiment measures.
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Figure 3: The correlation (Spearman’s ρ) between stylistic/syntactic features and sentiment features. See
table 10 in Appendix D for details on the computation of these features and for the label explanations.

3.3 Reading time & Difficulty rank
Features such as readability formulae are es-
tablished indicators of textual complexity, but
sentiment-based features are less studied and their
impact on reading time remains unclear. Therefore
we relate these features to perceived complexity,
taking both reading time and text difficulty rank
as proxies of perceived complexity associated with
increased cognitive load for the reader.

To assess the relationship between the analyzed
features and reader processing time, we first evalu-
ate how well these features correlate with reaction
times (RTs) from the Natural Stories corpus. This
initial step provides indicators of how these fea-
tures may influence cognitive processing and per-
ceived text complexity.

As a second check, we address the absence of
RTs for the novels in the Chicago Corpus by using
a scoring list of 200 novels (Dalvean and Enkhba-
yar, 2018a).9 This list assigns a difficulty rank
to 26 Chicago Corpus novels, which serves as a
proxy for perceived difficulty. By predicting dif-
ficulty rank with our feature sets, we aim to fur-
ther assess the role of sentiment features in the
perceived difficulty of literary texts.

4 Results & Discussion

4.1 Part I: Relations between
stylistic/syntactic & sentiment features

In part I of this study, we examined feature re-
lations in the novels. We observe a strong cor-
relation between sentiment-level features and a
subset of stylistic/syntactic features, as shown
in Fig. 3. Notably, readability formulas, word
and sentence length, dependency length, lexical
richness (‘MSTTR’), indicators of heavy nomi-
nal style (e.g., frequency of ”of” and nominal

9The list is available in Appendix 2 of Dalvean and
Enkhbayar (2018b), and in the repository of our paper.

verb ratio), and LLM perplexity – all features
commonly associated with harder-to-process and
information-rich text – show a particularly strong
correlation with sentiment standard deviation. Ap-
proximate entropy also displays a similar pattern
of correlation with these features, while it ap-
pears less correlated with LLM-based perplexity.
Additionally, the Hurst exponent, which captures
global uncertainty, shows a relationship with these
complexity metrics – not least do the sentiment
features exhibit correlations internally (.19 < ρ >
.64).

Most correlations across sentiment features
align in the same direction; for instance, lower
Flesch Ease readability (indicating lesser readabil-
ity) correlates with higher sentiment arc entropy
(ApEn) (ρ = −.35), higher sentiment standard
deviation (ρ = −.69), and a tendentially higher
Hurst exponent (ρ = −.13). For a more compre-
hensive view of correlation co-directionality, see
the visualizations in Appendix A, Fig. 7.

Note that all sentiment features show a cor-
relation with sentence length, which may partly
explain their relationship with sentence-length-
dependent metrics, such as readability indices (R
Flesch Ease and R Dale-Chall). However, senti-
ment features are also clearly related to features
that bear no relation to sentence length, such as
the frequency of the use of “of”, indicating a more
nominal (viz. information dense) writing style
(Wu et al., 2024), or average and SD of the de-
pendency length.

Given these strong correlations, we employed
a linear regression model to determine whether
stylistic/syntactic complexity features could pre-
dict sentiment-level complexity, particularly sen-
timent standard deviation. Results show that tex-
tual complexity features are indeed predictive of
sentiment complexity (Table 1), with sentiment
standard deviation exhibiting the strongest predic-
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Feature F-stat R2 adj. R2

Sentiment SD 1803.0 0.787 0.786
ApEn 364.2 0.427 0.426
Hurst 123.1 0.201 0.2

Table 1: Linear regression of sentiment features
based on stylistic/syntactic features. Here for all,
p < 0.01.

Figure 4: Linear fit between the predicted and ac-
tual sentiment SD based on the stylistic/syntactic
complexity features.

tive relationship (Fig. 4). Interestingly, this rela-
tionship is bidirectional: sentiment features also
demonstrate predictive power for stylistic and syn-
tactic complexity features, with sentence length,
readability formulae, dependency length (avg. &
SD) and features like the frequency of “of”, indi-
cating nominal style, displaying the strongest pre-
dictive relationships. See a few selected features
in Table 2, and a full table in Appendix A, Ta-
ble 5. This finding underscores a tightly coupled
relationship between stylistic/syntactic complex-
ity and sentimental variability, reinforcing hypoth-
esis H1b: higher stylistic and syntactic complex-
ity is associated with increased complexity at the
sentiment level. This suggests that stylistic and af-
fective dimensions in literary texts are interdepen-
dent, potentially amplifying each other’s complex-
ity in ways that may shape readers’ engagement.

4.2 Part II: Relation of features to proxies of
perceived complexity

In part II of this study, to examine the relation-
ship between features and perceived complexity,
we conducted two experiments. The first used RTs
(reading times) from the Natural Stories corpus,

Feature F-stat R2 adj. R2

Flesch Ease Readability 2717.0 0.481 0.481
Dependency Length 4166.0 0.587 0.587
Nominal Ratio 1117.0 0.276 0.275

Table 2: Linear regression based on sentiment
features to predict a stylistic/syntactic feature.
Here, all p < 0.01.

compared to the same features as before,10 com-
puted across the dataset’s ten stories. The second
experiment involved analyzing the difficulty rank
of 26 novels from the Chicago Corpus. In both
cases, we aimed to predict reading time and diffi-
culty rank by exploring correlations between the
features and these variables. We employed lin-
ear regression based on stylistic/syntactic and sen-
timent feature sets, using each set separately and
then jointly.

Given the relatively small sample sizes in both
experiments (10 and 26 data points, respectively),
we aimed to strengthen our findings by reducing
collinearity in the feature set. To achieve this, we
first applied PCA to the entire Chicago Corpus
to capture the covariance structure and scaling of
variables in a larger, more representative dataset.
We then applied this PCA model to reduce dimen-
sionality in our smaller dataset, minimizing the
risk of overfitting to limited data. Details on this
sanity check using PCA for collinearity reduction
are presented in Appendix C: for difficulty rank in
table 8 and for reading times in table 9.

4.2.1 Reading time
In relating features to reading times, we find that
only some stylistic/syntactic and sentiment fea-
tures exhibit linear correlations with reading time
of the stories. These include lexical richness
(‘MSTTR’), word entropy, and nominal ratio.

This scarcity of correlation might be due to in-
sufficient datapoints. In a setting with augmented
datapoints, the mentioned features remain signifi-
cantly correlated, while we also see the p-value of
sentiment SD and compressibility rising above the
significance threshold (.05). For the augmented
data setting, see Appendix B, Fig. 9. We show the
correlation of the original data for lexical richness,
nominal ratio and sentiment SD in Fig. 5.

10We excluded perplexity, as we could not ensure that
publicly available stories were excluded from model train-
ing data. For the Chicago Corpus, perplexity derives from a
self-trained model controlling for overlap (Wu et al., 2024).
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Figure 5: Correlation of selected features with RT, with Spearman’s ρ at the top of plots. Note that for
sentiment SD, p > .05.

Moreover, correlations between features and
RTs tend to be nonlinear, as some features, like
readability formulae seem to show clustering both
in the original and augmented data setting (see
Appendix B, Figs. 8 and 9), but no linear cor-
relation. Fig. 5 shows the correlation of RT and
selected features. Note that while the correlation
has p > .05, a tendential association of sent SD
and RT can be observed. A larger corpus of an-
notated fiction is required to robustly confirm this
tendency.

Features F-stat R2 adj. R2 p-val

Styl/Synt 15.38 0.902 0.844 < 0.01
Sentiment 2.01 0.547 0.275 0.231
All 28.76 0.945 0.912 < 0.01

Styl/Synt Bigram entropy, Nominal ratio, TTR Noun
Sentiment All sentiment features used
All Nominal ratio, Frequency “of”, Sent SD

Table 3: Linear regression predicting RTs of
the Natural Stories using two feature sets, the
three sentiment features, the three selected stylis-
tic/syntactic features, and three selected features
among all features. Below, the selected features in
each category using RFE.

As the sample was too scarce, linear regres-
sion could not be carried out using the full feature
set. Instead, we used Recursive Feature Elimina-
tion (RFE) to determine 3 features in the stylis-
tic/syntactic category, and 3 out of all features.11

We thus stay at the number of features correspond-
ing to our number of sentiment features. Results
of using linear regression to predict RT are shown
in table 3. Notably, RFE leads to selecting sen-
timent SD as one of the overall top 3 significant
features. Considering the scarce data, we con-
sider this a means of comparing feature categories

11RFE was performed using sklearn: https://
scikit-learn.org/dev/modules/generated/
sklearn.feature_selection.RFE.html

rather than an accurate model, i.e., for predicting
RTs on unseen samples.

4.2.2 Difficulty rank
Using the 26 books in Chicago that had an as-
signed score in the difficulty ranking list, we
sought to use different feature categories to pre-
dict the score of the novel. Results are shown
in table 4. Note that visualizations of the pre-
dicted/actual values in Fig. 6 reflect an appar-
ent improvement in our models’ predictive power
when adding sentiment features to it. As in the
reading time experiment, we do not claim any pre-
dictive power of this model but observe the effect
of adding sentiment features for gauging difficulty
rank.

Features F-stat R2 adj. R2 p-val

Styl/Synt 3.234 0.873 0.603 0.048
Sentiment 2.469 0.252 0.150 0.089
All 3.413 0.932 0.659 0.089

Table 4: Linear regression predicting difficulty
rank using two feature sets, and all features.

Note that the p-value tends to be high when
using all features, probably due to the limited
amount of datapoints (table 4). However, pre-
dicted and actual difficulty rank in the sentiment-
based model still exhibit a relation (Fig. 7(b)) and
the model seems to improve when sentiment fea-
tures are added (Fig. 7(c)). As in the previous ex-
periment with RT, we also selected features with
RFE (see Appendix B, table 7). Here, the fea-
tures: frequency “of”, nominal ratio, word en-
tropy, and perplexity appeared to be the most im-
portant, without sentiment features showing up
among the 3 selected features.

5 Conclusion

Our results pertaining to our first question (RQ1)
support H1a. Rather than a balance between dif-
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(a) Predicted/actual difficulty rank using
stylistic/syntactic features.

(b) Predicted/actual difficulty rank using
sentiment features.

(c) Predicted/actual difficulty rank using
all features.

Figure 6: Comparison of the predicted vs actual difficulty rankings using different feature sets.

ferent aspects of language, we find that, at least
over the whole Chicago Corpus, complexity at the
stylistic and syntactic level tends to correspond to
complexity at the sentimental level.

Regarding our second question (RQ2), our find-
ings support H2a: it seems that both the stylis-
tic/syntactic and the sentimental complexity im-
pact the cognitive load of the readers, not only
when measuring whole novels but even within
much shorter stories. We should thus assume that
the novels that push both levels to higher com-
plexity are indeed asking more from the read-
ers, and are providing a more challenging expe-
rience. It’s not obvious that features like overall
variance in sentiment (sentiment SD) and the lo-
cal and global linear dynamics of the sentiment
arc (ApEn, Hurst) would relate to perceived com-
plexity, making this finding particularly intriguing.

The question then remains as to why these two
levels of complexity are tendentially intensified to-
gether, rather than showing a trade-off. In other
words, why do works that offer a wider sentimen-
tal palette or a less predictable story arc also have,
in general, a higher noun-to-verb ratio and a wider
vocabulary?

Such literature – complex on multiple levels –
may offer higher-quality reading experiences by
amplifying both emotional and stylistic profiles.
In this way, our findings suggest that literature
may function as a “supernatural stimulus”, where
every element is intensified simultaneously – a
phenomenon that, while possibly engaging in fic-
tion, would be counterproductive in nonfiction or
more didactic texts, where clarity and ease are of-
ten prioritized. This distinction potentially sets
literary texts apart from other domains, though
future studies should more rigorously test differ-
ences between literary and nonliterary texts with

regard to multidimensional complexity.
The possibility of a trade-off between these di-

mensions of language is not off the table: it might
occur within specific groups of texts with varying
degrees of difficulty; and it is also possible that
specific works of literature strike a balance differ-
ently, depending on their intended audience and
the author’s specific style. But in general, our find-
ings suggest that rather than being independent di-
mensions, style and “content” – taking sentiment
here as a semantic element – might have a strong
relation in literary texts. The style of the texts
might have to align with its semantics, at least
at the sentimental level. In this sense, the rele-
vance of linguistic traits associated with the “nom-
inal style” is particularly intriguing. Degaetano-
Ortlieb and Teich (2022) has shown that this style
is developed and applied in scientific and tech-
nical language to convey semantic information
more efficiently while requiring a higher degree
of concentration and preparation from the reader.
This “optimal” strategy of linguistic communica-
tion might not be limited to technical prose but be
exploited, despite their completely different aims,
by literary works as well. In other words, it is pos-
sible that some aspects of complexity at the stylis-
tic level are necessary for most works of art to con-
vey the complexity of the sentimental level in a
manner that is most effective to the creation of a
powerful reading experience.

In the future, we intend to explore the relation-
ship between these levels of complexity in liter-
ary language further, better formalizing the rela-
tion and role of each of the selected components.
We would also examine the relationship between
the perceived complexity or difficulty of a text and
these features in an experiment setting.
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A Relation between features

We attach the visualization of some correlations of
stylistic/syntactic features with all three sentiment
features (Fig. 7).

Additionally, the results of the extended lin-
ear regression are presented in table 5, where we
sought to predict each stylistic/syntactic feature
individually by sentiment features.

Styl/synt. feature F-stat R2 adj. R2

Sentence length 6862.0 0.7 0.7
Dependency SD 4295.0 0.594 0.594
Dependency Length 4166.0 0.587 0.587
Flesch Ease Readab. 2717.0 0.481 0.481
Dale-Chall Readab. 2655.0 0.475 0.475
“Of” Frequency 1651.0 0.36 0.36
Word length 1326.0 0.311 0.311
Nominal Verb Ratio 0.612 0.276 0.275
MSTTR 754.5 0.204 0.204
TTR Noun 494.0 0.144 0.144
TTR Verb 442.2 0.131 0.131
“That” Frequency 249.0 0.078 0.078
Bigram Entropy 225.9 0.071 0.071
Compressibility 166.0 0.054 0.053
Perplexity 147.3 0.048 0.047
Function words 146.0 0.047 0.047
Word Entropy 35.65 0.012 0.012

Table 5: Linear regression based on sentiment
features to predict a stylistic/syntactic feature.
The table is ordered by decreasing R2. Here for
all, p < 0.01.

B Reading time & difficulty rank

Here we present the full results of our analysis on
the relationship between features and both reading
times (RTs) and difficulty rank.

For the reading time (RT) experiment, addi-
tional correlation coefficients, including stylistic
and syntactic feature levels, with RTs from the
Natural Stories corpus are provided and visualized
in Fig. 8. To increase data points, we further split
the stories with a 90% overlap between segments,
effectively duplicating the data points. This ap-
proach retains as much of the global structure of
the stories as possible – a crucial factor for fea-
tures like the Hurst exponent, which is sensitive to
structural changes. A visualization of these corre-
lations is shown in Fig. 9.

For relating features to difficulty rank (DR),
we took the overlap of titles between the list of
novels in Dalvean and Enkhbayar (2018a) and the
Chicago Corpus. These are listed in table 6.

Author Title DR

Aldous Huxley Brave New World 2.45
Isaac Asimov Second Foundation 2.12
Ayn Rand Atlas Shrugged 1.56
Djuna Barnes Nightwood 1.47
Thomas Pynchon Gravity’s Rainbow 1.15
George Orwell Nineteen Eighty-Four 0.99
Evelyn Waugh The Loved One 0.94
Philip K. Dick Do Androids Dream of Electric Sheep? 0.86
Edith Wharton The Age of Innocence 0.79
James Joyce Ulysses 0.76
Henry James The Portrait of a Lady 0.70
Annie Proulx The Shipping News 0.64
F. Scott Fitzgerald The Great Gatsby 0.62
Toni Morrison Tar Baby 0.52
Saul Bellow The Adventures of Augie March 0.43
E.L. Doctorow Ragtime 0.39
John Grisham The Runaway Jury 0.32
William Golding Lord of the Flies 0.14
Sylvia Plath The Bell Jar 0.09
Alice McDermott Charming Billy -0.05
Eleanor H. Porter Pollyanna -0.18
Raymond Chandler The Big Sleep -0.19
Kate Douglas Wiggin Rebecca of Sunnybrook Farm -0.43
Ernest Hemingway The Old Man and the Sea -0.51
William Faulkner As I Lay Dying -0.60
P.L. Travers Mary Poppins -1.03

Table 6: difficulty rank (DR)(not normalized) of
26 novels in the Chicago Corpus. difficulty rank
descending.

As in the RT experiment, we carried out lin-
ear regression with Recursive Feature Elimination
(RFE) for predicting DR, these results are pre-
sented in table 7.

Features F-stat R2 adj. R2 p-val

Styl/Synt 8.908 0.548 0.487 < 0.01
Sentiment 2.469 0.252 0.150 0.09
All 7.955 0.52 0.455 < 0.01

Styl/Synt Freq “of”, Perplexity, Word Entropy
Sentiment All sentiment features used
All Freq “of”, Nominal Ratio, Word Entropy

Table 7: Linear model predicting difficulty rank
of novels using two feature sets, the three sen-
timent features, three selected stylistic/syntactic
features, and three selected features among all fea-
tures. Below, the selected features in each cate-
gory using RFE.

C Collinearity reduction

To avoid overfitting our feature selection method
to the small datasets in the regression models
above, we fitted a PCA on the Chicago Corpus
and projected features in the smaller regression
datasets to its first 3 principal components. PCA
also helps us avoid the curse of collinearity in re-
gression models, therefore the reported statistics
might be more representative of the features’ true
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predictive strength. For reading times, results are
in table 8; for difficulty rank in table 9.

Features F-stat R2 adj. R2 p-val

Styl/Synt 13.0 0.629 0.581 < 0.01
Sentiment 6.050 0.441 0.368 < 0.01
All 12.74 0.624 0.575 < 0.01

Table 8: Linear model predicting difficulty rank
of novels using feature sets reduced for collinear-
ity by fitting it to the Chicago Corpus PCA (3
components).

Features F-stat R2 adj. R2 Prob. F-stat

Styl/Synt 84.56 0.977 0.965 < 0.01
Sentiment 18.81 0.904 0.856 < 0.01
All 78.24 0.975 0.963 < 0.01

Table 9: Linear model predicting reading time of
stories using feature sets reduced for collinearity
by fitting it to the Chicago Corpus PCA (3 com-
ponents).

D Features

The full set of features with corresponding labels
is indexed in table 10.
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(a) Correlation between Sentiment SD and stylistic/syntactic features.

(b) Correlation between ApEn and a few stylistic/syntactic features.

(c) Correlation between Hurst exponent and a few stylistic/syntactic features.

Figure 7: Correlation between sentiment complexity features and a few stylistic or syntactic complex-
ity features. Note Spearman’s ρ at the top of plots.
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(a) Correlation between RT and sentiment features.

(b) Correlation between RT and stylistic/syntactic features.

(c) Correlation between RT and stylistic/syntactic features.

(d) Correlation between RT and stylistic/syntactic features.

Figure 8: Full visualization of the correlation of features and RTs (10 stories).
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(a) Correlation between RT and sentiment features.

(b) Correlation between RT and stylistic/syntactic features.

(c) Correlation between RT and stylistic/syntactic features.

(d) Correlation between RT and stylistic/syntactic features.

Figure 9: Correlation features and RT, augmented datapoints. We split stories in two with a 90%
overlap. This duplication of datapoints serve to show that the scarcity of correlations between features
and RT may be due to a low number of datapoints (10 stories).
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Feature Description Type Reference

Type-Token
Ratio
(MSTTR-100), TTR
Noun, TTR Verb

Measures lexical diversity by comparing the variety of words (types) to
the total number of words (tokens), indicating a text’s vocabulary com-
plexity and inner diversity. A high TTR represents a richer prose: a higher
diversity of elements and a lower lexical redundancy (Torruella and Cap-
sada, 2013). TTR of nouns or of verbs quantifies the diversity within these
Parts-of-Speech categories.a

Stylistic Forsyth (2000)*, Kao and Jurafsky
(2012)*, Algee-Hewitt et al. (2016),
Maharjan et al. (2017), Koolen et al.
(2020), Brottrager et al. (2022), Ja-
cobs and Kinder (2022), Bizzoni et al.
(2023c)

Readability
(R Flesch Ease, R
Dale Chall)

Estimate reading difficulty based variously on sentence length, syllable
count, and word length/difficulty. Assessed using five different classic
formulae that remain widely used (Stajner et al., 2012).b

Stylistic Martin (1996), Garthwaite (2014), Ma-
harjan et al. (2017), Febres and Jaffe
(2017), Zedelius et al. (2019)*, Berger
et al. (2021)*, Brottrager et al. (2022),
Bizzoni et al. (2023b)

Compressibility Measures the extent to which the text can be compressed, serving as an in-
direct indicator of redundancy and lexical variety (Ehret and Szmrecsanyi,
2016).c

Stylistic van Cranenburgh and Bod (2017),
Koolen et al. (2020), Bizzoni et al.
(2023c)

Word and bigram
entropy

Measures the unpredictability in word choices and combinations, with
higher entropy indicating greater variety and stylistic complexity.

Stylistic Algee-Hewitt et al. (2016)

Normalized De-
pendency Distance,
mean & SD
(NDD Mean, NDD
STD)

Quantifies the mean and SD in dependency length, following the proce-
dure proposed in Lei and Jockers (2020) .

Stylistic/
Syntactic

Lei and Jockers (2020)

Nominal verb ratio Quantifies the proportion of nouns and adverbs (over verbs) in the text, re-
flecting the nominal tendency in style, which is often associated with com-
plex linguistic structures, denser communicative code, expert-to-expert
communication (McIntosh, 1975; Bostian, 1983).

Stylistic/
Syntactic

Charney and Rayman (1989)*, Crossley
et al. (2014)*, Wu et al. (2024)

“Of”/“that”
frequencies

Frequency of these function words have been seen to indicate, in the case
of “of”, a more nominal prose, and in the case of “that”, a more declarative
and verb-centered prose.

Stylistic/
Syntactic

Wu et al. (2024)

Function words Frequency of function words (normalized for text length), suggesting a
more information-rich prose when lower.

Stylistic/
Syntactic

Bizzoni et al. (2024a)

Perplexity Represents the predictability of the prose through a self-trained large lan-
guage models (GPT), as outlined in Wu et al. (2024).d Higher values
indicate greater complexity or unpredictability.

Hybrid Sheetz (2018), Wu et al. (2024), Wu
et al. (2024)

Sentiment SD
(SD Sent)

Represents the average variability in sentiment, indicating the range of
sentiment within the narrative.e

Narrative/
Sentiment

Berger et al. (2021)*, Bizzoni et al.
(2023c)

Hurst
exponent

Quantifies the long-term auto-correlation of the sentiment arc,e with
higher values suggesting a more complex, self-similar structure across
different scales.f

Narrative/
Sentiment

Mohseni et al. (2021), Bizzoni et al.
(2021), Bizzoni et al. (2023d)

Approximate en-
tropy
(APEN)

Assesses the predictability of sequences of the sentiment arc,e with lower
values indicating greater regularity or simplicity.f

Narrative/
Sentiment

Hu et al. (2020), Mohseni et al. (2022),
Bizzoni et al. (2023c)

Table 10: Used features related to stylistic and sentiment complexity. “References” refer to studies
that have used the complexity feature showing some relation between it and reader appreciation. *
Denotes studies in domains other than established prose fiction (e.g., online stories, movies).
a We used a common method insensitive to text length: the Mean Segmental Type-Token Ratio (MSTTR). MSTTR-100 repre-
sents the overall average of the local averages of 100-word segments of each text.
b Flesch Reading Ease and New Dale–Chall Readability Formula.
c We calculated the compression ratio (original bit-size/compressed bit-size) for the first 1500 sentences of each text using
bzip2, a standard file-compressor.
d All perplexity calculations were via gpt2 models, done on the byte pair encoding tokenization used in the series of gpt2
models. To get the mean perplexity per novel, we used a sliding window due to maximum input length. For details on the
computation, see Wu et al. (2024).
e All sentiment analysis was performed using the Syuzhet implementation on a sentence-basis (compound score).
f For details on the measure, please refer to Bizzoni et al. (2023d).
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Abstract

This paper examines the effect of pre-
processing techniques on spoken dialect
classification using raw audio data. We
focus on modifying Root Mean Square
(RMS) amplitude, DC-offset, articulation
rate (AR), pitch, and Harmonics-to-Noise
Ratio (HNR) to assess their impact on
model performance. Our analysis deter-
mines whether these features are impor-
tant, irrelevant, or misleading for the clas-
sification task. To evaluate these effects,
we use a pipeline that tests the significance
of each acoustic feature through distortion
and normalization techniques.
While preprocessing did not directly im-
prove classification accuracy, our findings
reveal three key insights: deep learning
models for dialect classification are gener-
ally robust to variations in the tested au-
dio features, suggesting that normaliza-
tion may not be necessary. We identify
articulation rate as a critical factor, di-
rectly affecting the amount of information
in audio chunks. Additionally, we demon-
strate that intonation, specifically the pitch
range, plays a vital role in dialect recogni-
tion.

1 Introduction

In the realm of deep learning, preprocessing plays
a crucial role in optimizing model performance.
While many studies focus on text, like (Uysal
and Gunal, 2014), others concentrate on Environ-
mental Sound Classification (ESC) or Automatic
Speech Recognition (ASR) (Pfau et al., 2000). For
instance, Bansal and Garg (2022) are exploring ex-
isting papers on preprocessing for ESC. Addition-
ally, some studies focus on using spectrograms for
audio processing (Chaiyot et al., 2021). Moreover,

some research has attempted to enhance speech
recordings for dialect identification, leading to im-
proved subjective quality (Kakouros et al., 2020).
However, these studies did not evaluate whether
such preprocessing techniques actually improve
the performance in downstream tasks.
Furthermore, despite studies such as (Lounnas
et al., 2022), which incorporate noise reduction
as a preprocessing step for dialect identification,
a comprehensive study on the key aspects of
audio preprocessing for dialect identification re-
mains lacking. Often, only individual aspects of
preprocessing are considered, as seen in (Pfau
et al., 2000), where vocal tract length normaliza-
tion (VTLN) and speech rate normalization (SRN)
are examined.
Large-scale systems such as Whisper (Radford
et al., 2023) and Meta’s Massively Multilingual
Speech (MMS) project (Pratap et al., 2024) high-
light the power of extensive and diverse datasets
in advancing ASR and language identification.
Whisper, trained on 680,000 hours of multilingual
and multitask supervised data, achieves improved
robustness to accents, background noise, and tech-
nical language, demonstrating the impact of its
large dataset. Similarly, Meta’s MMS project tack-
les the lack of ASR systems for many languages
by using religious texts, translated into numer-
ous languages, to build a diverse training dataset.
These projects showcase the importance of large
datasets for robustness and inclusivity. In con-
trast, this study addresses the challenges of work-
ing with smaller, constrained datasets.
Notably, no paper has been found that investigates
the effects of preprocessing raw audio on language
or dialect classification. This gap is particularly
significant in the context of deep learning-based
dialect identification (DID), where understanding
the fundamental aspects of audio preprocessing
tailored specifically for dialect classification re-
mains under-explored. This issue resonates with
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findings in music information retrieval research,
where deep learning efforts often prioritize opti-
mizing hyperparameters that define network struc-
ture, while the audio preprocessing stage is often
not optimized (Choi et al., 2018).
This study aims to bridge this gap by investigat-
ing how preprocessing adjustments affect the per-
formance of dialect classification models trained
on German audio data. We concentrate on the
raw waveform and underscore the importance of
different audio features in dialect classification.
Specifically, we aim to determine whether adapt-
ing audio inputs improves model performance and
whether certain features are misleading for the
model, causing it to learn irrelevant patterns. Ad-
ditionally, we explore if deep learning models in-
herently learn to ignore such variations or if per-
formance even worsens, indicating that these fea-
tures are important for dialect recognition in Ger-
man.
Our contributions are threefold:

• We demonstrate that deep learning models
for dialect classification are immune to varia-
tions in the tested audio features, suggesting
that normalizations are not necessary.

• We reveal that the amount of information in
an audio chunk is related to the Articulation
Rate, impacting model performance.

• We show that intonation, specifically the
pitch range within an audio chunk, is impor-
tant for dialect recognition.

To achieve these contributions, we employ a
pipeline that analyzes the significance of various
acoustic features, representing a novel approach in
the field.
By focusing on these aspects, our work not only
fills a significant gap in the existing literature
but also provides valuable insights for future re-
search and applications in dialect classification us-
ing deep learning.

2 Used Acoustic Features

Used Acoustic Features are Root Mean Square
(RMS) amplitude, DC-offset, Articulation Rate
(AR), Pitch, and Harmonics-to-Noise Ratio
(HNR).
RMS amplitude of a digital audio signal repre-
sents its perceived loudness and is simultaneously
the mean absolute value of the signal. While RMS
measures the average power of a signal, intensity
in decibels (dB) quantifies the power relative to a

reference level, typically the threshold of human
hearing, on a logarithmic scale. As these met-
rics are correlated, only RMS is considered in this
study.
RMS amplitude reflects both the speaker’s vocal
effort and external factors such as the recording
equipment and the recording environment, includ-
ing background noise and microphone distance.
DC-offset (also known as DC-bias), determined
by the average amplitude of a segment of the sig-
nal, indicates a deviation from the symmetrical na-
ture of a normal voice signal. In a typical sym-
metric sine signal, the high peak equals the low
peak, resulting in an average value near zero over
time. However, when a DC offset is present, the
symmetry is disrupted, and the average value de-
viates from zero1. Despite being imperceptible, it
reduces the available dynamic range, limiting the
signals amplitude variation. DC-offset is primarily
influenced by the recording equipment rather than
the speaker.
Articulation Rate (AR) measures syllables per
second during speech, excluding pauses, whereas
Speech Rate (SR) includes pauses in its calcula-
tion. In this study, AR is emphasized over SR, as
the audio data has been preprocessed to exclude
pauses and non-articulatory elements. Also Otto
(2012) states that variations in articulation speed
between speakers may be more indicative of indi-
vidual speaking styles than differences in overall
speech tempo. The AR regarding to regional dis-
tribution has been minimally investigated thus far.
Hahn and Siebenhaar (2016) found that there are
differences in AR, but also suggest that this may
correlate with other processes such as the elision
of segments. They conclude that there must be
different sound duration ratios in the different re-
gions.
Pitch, often referred to synonymously as F0,
stands for the fundamental frequency of a sound
wave. F0 refers to the physical oscillation, while
pitch denotes the perceived tonal height of the
sound. In tools such as Praat (Boersma and
Weenink, 2021), the pitch refers to F0. Pitch nor-
malization, akin to Vocal Tract Length Normal-
ization (VTLN), aims to mitigate speaker-specific
variations in speech signals attributed to differ-
ences in vocal tract lengths, which are influenced
by physiological factors such as sex. In explor-

1https://solicall.com/
dc-offset-and-audio-filtering/
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ing the connection between pitch and dialects, it’s
noteworthy that the typical fundamental frequency
doesn’t always align directly with dialect varia-
tions. Instead, phenomena such as variations in
voice quality due to dialectal influences can affect
pitch.
The Harmonics-to-Noise Ratio (HNR) quantifies
the relationship between periodic components and
noise in a signal. It measures acoustic periodicity
by comparing the energy of harmonics to that of
noise, with the result expressed in decibels (dB),
indicating the dominance of periodic components
over noise: an HNR of 20 dB signifies 99% of en-
ergy in periodic components and 1% in noise, cal-
culated as 10 ∗ log10(99/1). An HNR of 0 dB in-
dicates equal energy distribution between harmon-
ics and noise2. In speech analysis, HNR is favored
over Signal-to-noise ratio (SNR) for its ability to
capture voiced sounds periodicity. HNR primar-
ily reflects characteristics of the speaker’s voice,
such as vocal cord vibration regularity and voice
quality, but can also be affected by the recording
equipment and environmental noise.

3 Experimental Setup

3.1 Used Corpus

This study utilizes automatically segmented au-
dio files (Fischbach, 2024) sourced from the “Re-
gionalsprache.de” (REDE) corpus (Schmidt et al.,
2020ff.). The REDE corpus, which consists exclu-
sively of recordings from male speakers, includes
recordings from three age groups: young (18-
23 years), middle-aged (45–55 years), and older
(65+ years) speakers, captured across five differ-
ent recording situations3.
However, for the purposes of this study, only data
from the older generation (65+ years) is analyzed.
They are chosen due to their presumed higher di-
alect competence and to save computing time us-
ing only one generation. Furthermore, we only uti-
lize the so-called dialectal “Wenker Sentences”4

from the corpus. In this recording situation, an in-
terviewer reads 40 sentences in Standard German,
and the dialectal speakers translate these sentences

2https://www.fon.hum.uva.nl/praat/
manual/Harmonicity.html

3Additional information about the recording situations,
the recording locations and the project itself can be found on
https://rede-infothek.dsa.info/

4https://www.uni-marburg.de/en/fb09/
dsa/research-documentation-center/
wenkersaetze

into their local dialect. In total there are around 18
hours of audio data from the older generation and
this recording situation, consisting of audios fea-
turing only the dialectal speakers.
For classification we analyze a total of 20 different
German dialects, classified according to Wiesinger
(1983) without the transition areas between di-
alects. Dialects with insufficient variance (less
than 3 speakers per dialect) are not further con-
sidered.

3.2 Classification Pipeline
The described pipeline is available and visualized
on GitHub5. Initially, all audio files are prepro-
cessed to standardize their format by converting
them to mono, adjusting the bit-depth to 16 bits,
and setting the sampling rate to 16 kHz, in line
with the specifications of Google’s TRILLsson
models (Shor and Venugopalan, 2022), which is
used for embedding extraction. The audio files are
then divided into 10-second chunks for the extrac-
tion of these embeddings. Prior tests have shown
this duration to be optimal. Shorter chunks yielded
significantly poorer results, likely due to insuf-
ficient contextual information, whereas longer
chunks offered no further gains, as the additional
information in extended audio segments made 10
seconds sufficient. The resulting embeddings are
processed through a small convolutional neural
network (CNN) consisting of three dense layers
with LeakyReLU activations and dropout layers
to prevent overfitting. The network is trained us-
ing the Adam optimizer (Kingma and Ba, 2015).
For model validation and testing, ⌈#SD

10 ⌉ speak-
ers are randomly selected from each dialect, where
#SD represents the total number of speakers in
the respective dialect. To account for variability
in results due to different speaker selections, we
employ a Monte Carlo cross-validation approach,
repeating the data splitting and model evaluation
process 250 times with new random speaker selec-
tions in each run. This number of iterations was
chosen based on prior tests demonstrating its ef-
fectiveness in detecting significant differences be-
tween experiments. The mean of the weighted
F1-score across runs is calculated, and the Mann-
Whitney U test (Mann and Whitney, 1947) is
used to assess the statistical significance of per-
formance differences between runs.

5https://github.com/WoLFi22/
DialectClassificationPipeline
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Figure 1: Visualization of the procedure.

3.3 Procedure

The entire procedure is summarized in the pipeline
diagram shown in Figure 1, which outlines the
steps involved in evaluating the significance of dif-
ferent features for dialect classification. Initially,
we conduct analyses to determine significant dif-
ferences in the distribution of feature values be-
tween two groups of audio chunks: those with a
high misclassification rate (misclassified in 95%-
100% of 250 runs, referred to as ”wrongly classi-
fied”) and those that are frequently classified cor-
rectly (correctly classified in 65%-100% of 250
runs, referred to as ”correctly classified”). These
thresholds are chosen to ensure a balanced rep-
resentation of both incorrect and correct chunks.
This can be inferred from the diagram in Figure
2. The diagram illustrates how many chunks are
classified correctly and incorrectly at which per-
centage threshold, and the ratio of the number of
incorrect to correct chunks.
Model performance is evaluated using the
weighted F1-score to account for the imbalanced
class distribution. If a significant difference is
found between the distributions of features (such
as pitch) for incorrectly and correctly classified
chunks — determined using the Mann-Whitney U
test, where a p-value < 0.05 indicates a signifi-
cant difference — all chunks are normalized ac-
cording to that specific feature. If the difference
is not significant, the chunks are deliberately dis-
torted to assess whether this manipulation affects
the model’s performance. This approach helps to
identify whether a particular feature is important,
irrelevant, or even misleading for the deep learning
model in classifying (German) dialects. The ratio-
nale behind these assessments, such as why fea-
ture distortion resulting in decreased model perfor-
mance indicates the feature’s importance, is sum-
marized in Table 1.

Figure 2: Ratio and number of wrongly and cor-
rectly classified chunks with percentage threshold
values.

3.4 Feature Extraction

The features are computed using Praat (Boersma
and Weenink, 2021) via the Parselmouth Python
interface (Jadoul et al., 2018), which facilitates
Praat script execution in Python, as detailed
below:
RMS Amplitude Extraction: The RMS
value is computed using Praat’s Get
root-mean-square function.
DC-Offset Extraction: The DC-offset is calcu-
lated as the mean value of the audio chunk.
AR Extraction: We employ a multi-step process
to extract the articulation rate. Initially, all audio
chunks are peak-normalized to standardize inten-
sity levels, enhancing the accuracy of the syllable
recognition algorithm. Following normalization,
we use a Praat script from the Praat Vocal Toolkit
(Corretge, 2012-2024), which identifies syllable
nuclei while discarding non-voiced peaks, to mark
syllables in the audio segments. This Praat script
is described by De Jong and Wempe (2009). The
articulation rate is then extracted as the ratio of
the number of syllables to the phonation time.
Peak normalization before AR extraction is
needed, to address the incorrect detection of
pauses in audio chunks where none should exist.
As illustrated in Figure 3 a), many pauses were
falsely identified in places where speech is present
due to fluctuations in intensity, highlighting the
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Feature Distortion Feature Normalization
- = + - = +
Distortion
degrades
performance
as the model
relies on the
original distri-
bution.

The Feature is
irrelevant; dis-
tortion has no
effect.

Distortion
removes
misleading
information,
improving
performance.

Normalization
removes
useful dis-
tinctions,
degrading
performance.

Differences in
distribution
are irrelevant;
no effect.

Normalization
reduces noise
or bias,
improving
performance.

Table 1: Effects of Feature Distortion and Normalization on model performance (+ improved, - degraded,
= unchanged), indicating the role of the Feature in the model, as in Figure 1.

(a) Original chunk with syllable detection and annotated
pauses.

(b) Same chunk after peak normalization with syllable detec-
tion and annotated pauses.

Figure 3: Audio chunk and its detected sylla-
bles/pauses.

algorithm’s sensitivity to sound levels. Peak
normalization improves syllable recognition by
stabilizing these fluctuations, which is particularly
beneficial for speech rate (SR) detection, as it is
more affected by misclassified pauses compared
to AR, but it also improves AR performance.
Figure 3 b) shows the same audio chunk after
peak normalization was applied before running
the syllable recognition algorithm. Although
some incorrect pauses remain, the results are
significantly more accurate. Across all chunks,
this process reduced the standard deviation of the
ratio of speaking duration to audio length (which
ideally should be close to 1 for our dataset, as
there should be no or only very short pauses),
bringing more values closer to 1 and minimizing
extreme deviations.
Additionally, our use of 10-second chunks ensures
a stable extraction of AR, aligning with findings
from Arantes and Lima (2017), where they state
that both SR and AR stabilize after approximately
9 seconds.

Pitch Mean and Pitch Standard Deviation
Extraction: We calculate both the mean pitch
and the standard deviation of the pitch restricting
the analysis to a range of 80 Hz to 170 Hz. Pitch
values are extracted using the To Pitch function in
Praat, followed by the computation of either the
mean or the standard deviation.
The pitch range of 80-170 Hz is selected, because
Praat’s default settings for pitch extraction often
result in high pitches values (up to 240 Hz) and
large fluctuations (up to 100 Hz within a chunk),
leading to a high standard deviation (±44.74 Hz).
This issue is likely due to flaws in the underlying
algorithm (Boersma et al., 1993). Adjusting
the pitch range to match the typical frequency
range for the speaker’s sex (and age) can mitigate
this problem and ensures more accurate pitch
detection.
The default pitch range in Praat is set between
75 Hz and 600 Hz. This range can be narrowed
to 80-170 Hz, which corresponds to the normal
pitch range for male speakers. For instance, a
study involving 2472 German-speaking men aged
40–79 years found that the mean fundamental
frequency of the conversational speaking voice
was 111.9 Hz, with specific averages of 112.9 Hz
(±17.5) for ages 60–69 and 120.6 Hz (±19.8) for
ages 70–79 (Berg et al., 2017). Another study
reported a mean pitch of 120 Hz (±18 Hz) for
the German male reading voice (Andreeva et al.,
2014). Our adjusted pitch range of 80–170 Hz is
therefore well-supported by these findings.
With the new settings, the largest deviation within
a chunk decreased by nearly one-third to 34.13
Hz, and the standard deviation was reduced by
more than half to 19.09 Hz. Figure 4 visualizes
the results of pitch extraction using the two
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Figure 4: Extracted Pitch with Praat for different
pitch ceilings: 75-600 Hz (blue) and 80-170 Hz
(green).

ranges: the extracted pitch using standard settings
(75-600 Hz) is shown in blue and in green with
adjusted settings (80-170 Hz). It is evident that
the blue pitch values are often too high, while the
green ones are much more stable. By narrowing
the pitch range, the algorithm is constrained to
estimate the pitch within these plausible bounds,
thereby providing results closer to the true pitch.
HNR Extraction: The HNR gets extracted using
Praat’s To Harmonicity (cc) function.

4 Results

Table 2 summarizes the feature importance analy-
sis. The p-val column displays the p-values from
Mann-Whitney U tests, comparing feature values
between correctly and wrongly classified chunks;
a p-value below 0.05 indicates a statistically sig-
nificant difference. The Norm./Dist. column indi-
cates whether the audio chunks were normalized
or disturbed, with the Method column detailing the
specific processing method. The new Perf. column
presents the mean weighted F1-Score of the model
with altered audio chunks, compared to the origi-
nal score of 0.228. The Perf. p-val column con-
tains the p-value from the Mann-Whitney U test
comparing the model’s performance with original
versus altered chunks, indicating the feature’s im-
pact on performance, as shown in the Feat. Imp.
column.

4.1 RMS

In the analysis of Root Mean Square (RMS) am-
plitude, statistically significant distinct distribu-
tions can be observed between wrongly and cor-
rectly classified chunks with a lower mean RMS
for wrongly classified chunks. So RMS gets nor-
malized for each chunk to assess the impact of
RMS values on classification results. Peak nor-
malization, which adjusts audio signals relative to
their loudest point and has been set so that the
highest peak reaches -0.2, and loudness normal-
ization, which aims to standardize perceived loud-

ness, are explored. Where for loudness normaliza-
tion there is a risk of clipping if the target value is
set to high. Both normalization methods resulted
in an overall increase in loudness, as depicted in
Figure 5 a), with loudness normalization demon-
strating a notably reduced standard deviation due
to its uniform adjustment to a target loudness level
of -14dB.
Neither of the two methods yields a significant dif-
ference in classification performance. In both nor-
malization methods, approximately the same er-
rors are observed in assigning chunks to dialects
as without normalization.
This finding supports the theory that the initially
different distribution of correctly and incorrectly
classified chunks was coincidental. Further tests
have shown that speakers with almost the same
misclassification rate from the same dialect can
have very different RMS, likely due to varying
recording conditions and consequently different
RMS levels. Therefore, the differences in the dis-
tributions of correctly and incorrectly classified
chunks are likely due to variations in the classifi-
cation performance of individual speakers, rather
than differences in RMS levels. Therefore, it is
reasonable to conclude that the volume of individ-
ual chunks does not influence the model’s perfor-
mance, rendering this feature irrelevant.

4.2 DC-Offset
There is a significant difference in distributions of
wrongly and correctly classified chunks. To ad-
dress this, a normalization technique called Mean
Centering is employed by subtracting the mean of
each chunk, effectively minimizing the DC-Offset.
However, this normalization yields no difference
in classification performance.
Yet, since even the largest offset in our data is min-
imal (-0.0007), it should be tested again whether a
disturbance of the DC-Offset leads to a deterio-
ration in classification performance. Each chunk
gets a randomized disturbance within the range of
[-0.1, 0.1], which also can be seen in Figure 5 b)
at the bottom. However, this perturbation fails to
yield any discernible difference in model perfor-
mance, suggesting that the DC-offset holds little
relevance to classification performance, as long as
it is in normal ranges.
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Feature p-val Norm./Dist. Method new Perf. Perf. p-val Feat. Imp.

RMS 0.000 Norm.
RMS von -14dB 0.287 0.104 =
Peak of -0.2 0.283 0.306 =

DC-Offset 0.000
Norm. Mean Centering 0.280 0.635 =
Dist. [-0.1, 0.1] 0.283 0.321 =

AR 0.936
Dist. [2.5, 6] Syll./Sec. 0.259 0.000 -
Norm. 4.3 Syll./Sec. 0.277 0.870 =

Pitch mean 0.235 Dist. [90, 160] Hz 0.276 0.626 =

Pitch std 0.012 Norm.
Half orig. Std. 0.236 0.001 -
Monotonized 0.241 0.000 -
Std. of 18 0.269 0.087 =

HNR 0.000 Norm.
Praat 0.283 0.127 =
Noisereduce 0.270 0.419 =

Table 2: Summary of feature importance analysis, including p-values from Mann-Whitney U tests com-
paring feature values between correctly and incorrectly classified chunks (p-val), processing methods
applied to normalize or disturb features (Norm./Dist. and Method), mean weighted F1-Score with altered
audio chunks, p-values comparing model performance with original and altered audio chunks (Perf. p-
val), and the resulting feature importance (Feat. Imp.).

4.3 AR

The distributions of the wrongly and correctly
classified chunks are similar, so AR perturbation
is conducted to assess its impact on model perfor-
mance. AR values are intentionally disturbed be-
tween 2.5 and 6 syllables per second, derived from
extreme measurements from all chunks as can be
seen in the top box plot of Figure 5 c). Model
performance significantly declines with disturbed
AR chunks compared to normal conditions. To
ascertain whether this decline stems solely from
extreme differences between chunks or generally
from extreme AR values, additional tests are con-
ducted. These involve assessing the model’s be-
havior with only slow (AR of 3.0) or fast (AR
of 6.0) chunks. When the articulation rate is
reduced, resulting in slower audio, the chunks
are still formed with a fixed length of 10 sec-
onds. As a result, there are more chunks over-
all, but each chunk contains less information due
to the lower tempo. With higher AR, there are
fewer chunks, but each chunk contains more in-
formation. Chunks with lower AR lead to a
44% increase in length and degraded model per-
formance. Conversely, chunks with higher AR,
approximately 71.36% shorter than the original
recordings, are showing no significant difference.
Considering that longer chunks generally contain

more information, this could explain why the clas-
sification performance did not deteriorate or im-
prove with a faster AR, as the model’s perfor-
mance in earlier tests also did not benefit from
chunks longer than 10 seconds. Moreover, reduc-
ing the length of chunks with the higher AR up to
8 seconds does not yield a significant difference in
model performance. However, caution should be
exercised not to increase the AR too much. An-
other test using chunks of 7 seconds with double
the AR compared to the original mean, resulting in
an AR of 8.734, shows a significant deterioration.
These findings suggest that, to a certain extent,
manipulating AR to increase chunk speed can
be effective in shortening chunk length for re-
duced computational workload without compro-
mising classification performance. This approach
has the potential to conserve computational re-
sources during classification tasks. Nevertheless,
the tradeoff between increased AR and reduced
audio length is limited. If the speech speed is too
slow, longer chunks should instead be used to en-
sure sufficient information is captured. Therefore,
it is assumed that AR does not influence dialect
classification, but rather the amount of informa-
tion contained in each chunk. This also agrees
with De Jong and Wempe (2009) where they state
that speech recognizers perform relatively poorly

165



when speech rate is very fast or very slow.
Nevertheless, we aim to normalize the AR, as sug-
gested by Pfau et al. (2000), where Speech Rate
Normalization resulted in a reduction of word er-
ror rate. To normalize the AR, all chunks are
speed-manipulated based on their original AR.
The median AR across all audio chunks is 4.36
and the mean is 4.37. Therefore, all audios should
have an articulation rate of approximately 4.3. To
achieve that, first, the factor between the current
and the desired AR is determined using factor =
ARold/ARnew, and then the original audio chunk
is speed-manipulated by this factor (factor < 1 re-
sults in the audio being faster). Through this ap-
proach, the AR is slightly reduced on average, re-
sulting in a slowdown of most audios, as can be
seen at the lower mean in Figure 5 c). Normal-
izing the AR had no impact on the classification
performance.

4.4 Pitch

Since there is no significant difference between
wrongly and correctly classified chunks where val-
ues are extracted with the adjusted pitch range,
further testing is conducted to determine if the
model’s performance would degrade when the
pitch is randomly altered. The pitch is varied be-
tween 90-160 Hz, a range considered normal for
male speaking voice and providing headroom in
both directions for pitch extraction with Praat. De-
spite this manipulation, no significant difference in
classification performance can be observed. These
findings indicate that pitch does not significantly
impact classification.
Additionally, we investigate how the model be-
haves when adjusting the pitch range by alter-
ing the standard deviation. The distribution of
pitch standard deviations between correctly and
incorrectly classified chunks differs significantly.
Specifically, the mean standard deviation of pitch
is higher for incorrectly classified chunks. To ad-
dress these differences, we normalize the pitch
range of each chunk. We test several approaches:
halving the pitch range, monotonizing the pitch,
and normalizing it to a standard deviation of 18
Hz. The model’s performance significantly dete-
riorate when the pitch range is halved or mono-
tonized, while normalization to 18 Hz standard de-
viation shows no impact on performance. These
results, depicted in Figure 5 e), suggest that pitch
variation is important for dialect classification, but

only its intonation (the variance in pitch) rather
than its exact magnitude.
The importance of pitch in language and dialect
classification is further highlighted by Vicenik and
Sundara (2013), where features such as minimum,
maximum, and mean pitch, as well as the number
and characteristics of pitch rises, were used to dis-
tinguish between German and American English
with an accuracy of 86%. Notably, these features
primarily captured pitch variance rather than ab-
solute values, emphasizing the significance of in-
tonation. The study also demonstrated that these
pitch features could differentiate between varieties
of English, such as American and Australian En-
glish, achieving an accuracy of 79%. Their study
also concludes that intonation plays a crucial role
in helping listeners distinguish between different
languages.

4.5 HNR
Statistically significant differences in the distribu-
tions of HNR values are observed between cor-
rectly and wrongly classified chunks, with the
mean HNR slightly higher for the latter. As il-
lustrated in Figure 5 f), the majority of our au-
dio chunks have a mean HNR value indicating ap-
proximately 90% harmonic content, though some
chunks exhibit lower HNR values with around
70% harmonic content. Due to the absence of
stationary background noises applying a constant
bandpass filter is not feasible. Furthermore, since
the recordings were downsampled to 16 kHz, any
noise above 8 kHz is already filtered out.
Attempts to reduce noise using Praat’s spectral
subtraction method, as defined by Boll (1979),
yields no significant changes in HNR or improve-
ments in classification performance. We also ap-
plied the noisereduce library (Sainburg et al.,
2020; Sainburg, 2019). Non-stationary noise re-
duction is applied due to the absence of specific
interfering noises, yet this also results in minimal
changes in HNR and no significant difference in
classification. This result is consistent with find-
ings from Lounnas et al. (2022), where noise re-
duction using noisereduce showed no notable
effect on classification performance when using
Convolutional Neural Networks (CNNs). Thus, it
can be concluded that non-stationary noises have
little to no influence on the performance of dialect
classification, as long as they do not obscure the
speech signal.
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(a) original RMS and after normalization.

(b) original Mean chunk, after normalization and
with random disturbance.

(c) original AR, with normalization, with random
disturbance and high AR (6.0) and low (3.0) AR.

(d) original Pitch and with random disturbance.

(e) original STD of Pitch, original STD reduced by
half, monotonized and normalized STD of Pitch to
18.

(f) original HNR, HNR reduced with Praat and
HNR reduced with noisereduce.

Figure 5: Boxplots for different Audio-chunk fea-
tures.

5 Discussion

The study’s results indicate that pitch variation did
not impact model performance among the used
group of older males, suggesting its potential ap-
plicability across different age groups. However,
it’s uncertain if pitch normalization would have the
same effect in a diverse group, where sex and age
may introduce more pitch variation. Future stud-
ies should explore the impact of pitch normaliza-
tion on mixed demographics and evaluate broader
techniques such as voice conversion techniques to
standardize all audio inputs.
Although the analysis focused on a German dialect
dataset, these insights could extend to other cor-
pora. Nonetheless, it is essential to conduct a thor-
ough evaluation of each dataset’s features to en-
sure that preprocessing techniques are well-suited
to its specific characteristics and contribute to the
classification tasks coherence and relevance.
The precise feature extraction values may vary de-
pending on the extraction methods and parame-
ters used. However, RMS and DC-offset measure-
ments should consistently yield the same results,
as these values can be accurately calculated. In
contrast, when extracting pitch features, parame-
ters such as the pitch floor and ceiling should be
adjusted according to the age and sex of the speak-
ers to obtain more accurate estimations of the true
pitch.
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Abstract
The manosphere is a loose group of
online communities centralised around
the themes of anti-feminism, misogyny,
racism, and hetero-masculinity. It has
gained a reputation for violent extremism,
particularly from members of the invol-
untary celibate (incel) community. Swe-
den sees one of the highest volumes of
online traffic to well-known incel forums
in all of Europe. In spite of this, there
is little information on manosphere/incel
cultre in Swedish. This paper uses
posts from Flashback’s manosphere subfo-
rum automatically annotated with Swedish
FrameNet to analyse the language com-
munity in a Swedish context. To do so, a
lexicon for the Swedish manosphere was
created and terms of interest were iden-
tified in the Swedish discourse. Analy-
sis of prominent semantic frames linked to
these terms of interest presents a detailed
look into the language of the Swedish
manosphere.

1 Introduction

The ‘manosphere’ is a collection of online com-
munities, including involuntary celibates (incels),
Men’s Rights Activists (MRAs), pick-up artists
(PUAs), and Men Going their Own Way (MG-
TOW) (Ging, 2017; Cottee, 2020; Schmitz et al.,
2016). Such communities function as online
spaces for men to discuss topics related to femi-
nism, masculinity, and relationships through a lens
of misogyny and racism (Gajo et al., 2023). Invol-
untary celibates or ‘incels’ are defined as men who
experience frustration at their inability to find a ro-
mantic/sexual partner despite desiring one and ex-
press this frustration by blaming and denigrating
others. Despite several acts of mass violence per-
formed by self-identified incels, the community

itself maintains that the link between inceldom
and violence is a result of media pigeonholing.1

Concern over the risk of violence perpetrated by
members of the manosphere, particularly by in-
cels, continues to deepen among the public and
law enforcement (Matza, 2023; Baele et al., 2024).

According to the Swedish Defence Research In-
stitute (FOI), Sweden ranks among the top coun-
tries for traffic to the largest incel forums (Fern-
quist et al., 2020; European Commission, 2021).
It is estimated that Sweden sees 240 visits per mil-
lion residents compared to the U.S.A.’s 43 per mil-
lion (Stenavi and Bengston, 2020). In incel dis-
course, Sweden is described as the most ‘cucked’2

country due to its perceived feminist influence
(Wiklund, 2020; Fernquist et al., 2020). The seem-
ingly sudden increase of traffic to incel commu-
nities from Sweden has caused both scholars and
security agencies to monitor the situation closely.

Although Swedish incels are acknowledged as
a substantial demographic in the manosphere, rel-
atively little is known about them. Furthermore,
the Swedish manosphere has been overlooked in
NLP thus far. This paper aims to bridge the gap
between the qualitative research on the Swedish
manosphere and NLP by investigating the lan-
guage of the manosphere through semantic frames
automatically annotated with Swedish FrameNet
(SweFN). Frame Net is a set of labels devel-
oped by Baker et al. (1998) based on the the-
ory of semantic frames by Fillmore (1985) (§
4.2). The findings of this paper are intended help
expand the current SweFN annotations with se-
mantic frames for societal issues related to the
manosphere in Sweden. Additionally, it con-
tributes a non-Anglocentric analysis to the body of

1“Are incels violent?” via Incel Wiki FAQ: https://
incels.wiki/w/Inceldom_FAQ

2An insult implying humiliation of men by women. De-
rived from ‘cuckold’ - one’s partner having consensual sex
with other men.
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research on discourse in the manosphere. In doing
so, it yields the following contributions:

• Creation of a comprehensive lexicon for the
Swedish manosphere

• Identification of terms of interest and their
prominent frames

• An analysis of language in the Swedish
manosphere through semantic frames

2 Background

Psycho-social aspects of the manosphere, in-
celdom, misogyny, and sexual violence have been
the subject of numerous studies. Henley et al.
(1995) used semantics of the passive voice to
study newspaper articles featuring sexual vio-
lence. Results indicated that the passive voice was
used to obscure agency in reports of sexual vi-
olence against women. Minnema et al. (2022b)
proposed a framework for studying responsibility
framing in reports of violence against women in
Italian news. It was observed that roles corre-
sponding to victims were expressed much more
frequently than those corresponding to agents.
Schmitz et al. (2016) studied twelve MRA web-
sites from the perspective of hegemonic masculin-
ity. Two distinctive groups, both featuring anti-
feminist discourse, were revealed. One group pro-
moted the ideology of men’s rights through de-
monization of feminism and aggression towards
women, while the other took a political approach
and focused on providing evidence of anti-male in-
stitutional prejudice and discrimination.

In a study featuring interviews from former in-
cels, participants reported that feelings of isola-
tion, low self-worth, and romantic frustration led
them seeking support online (Maryn et al., 2024).
Many of these men indicated that feelings of isola-
tion and low self-worth dependent on appearance
and success were caused by masculine norms.
Maxwell et al. (2020) studied comments on Red-
dit’s r/Braincels subforum and identified several
themes of which the concept of social isolation
was present. In Sweden, many men also claim to
suffer from loneliness, especially those living in
rural communities (Lindström, 2024; Novak et al.,
2023).

Discourse analysis has been a popular method
for studying language in the manosphere. Ging
(2017) used Critical Discourse Analysis (CDA) to

highlight ideological tropes in a selection of con-
tent from frequently cross-referenced sites with a
baseline of anti-feminism. Focus on the concept of
evolutionary biology gave rise to a deeply misog-
ynist, heterosexist, and racist lexicon. The com-
munity itself was also found to have moved away
from activism toward personal attacks on femi-
nists. A study of 700 posts from five of the top
incel forums found several topics related to the
themes of ‘incel-culture’ and ‘incel-identity’ (Ax-
elsson and Lindgren, 2021). Discussion of who
an incel is and what inceldom entails were preva-
lent topics. Along with this came discussions of
appearance, self-worth, and race. While language
was described as negative, encouragement of vio-
lence was uncommon.

The link between inceldom and violent extrem-
ism has also featured heavily in the body of re-
search. In a study of incel discourse on the Ply-
mouth shooting incident,3 Lounela and Murphy
(2024) examined several threads on English incel
forums and observed competing discourses around
incel violence. While some attempted to justify
the Plymouth attack, others condemned all vio-
lence. Baele et al. (2021) investigated the incel
world-view on the now defunct Incels.me forum
and found that violent events elicited hope that
they may lead to society’s recognition of the al-
leged excesses of feminism. Members engaged in
fantasising graphic scenarios centred on the suf-
fering of women and encouraged each other to do
so as well. In another study of incel subforums
on Reddit, Baele et al. (2024) found that online
discussion in the Reddit incelosphere presented an
increasing proportion of dehumanising labels and
words depicting violence.

In a linguistic analysis of the Incels.me forum,
Jaki et al. (2019) identified common keywords.
The top 100 keywords largely referenced gender
and physical traits, while the top 1000 also con-
tained references to sexuality, violence, and hate
speech. Yoder et al. (2023) used text analysis to
investigate identity construction on the forum In-
cels.is by comparing identity mentions with the
white supremacist forum Stormfront. For this, an
English lexicon was created by combining mul-
tiple sources then expanded using nearest neigh-
bours in the word embedding space. The most fre-
quent identity mentions are for women and minor-

3A mass shooting in Plymouth (UK) where the perpetrator
held incel views.
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ity/racialised identities, including many deroga-
tory neologisms.

While previous research on the manosphere has
been viewed largely through an Anglophone con-
text, several studies have investigated the Italian
incel community (Gajo et al., 2023; Gemelli and
Minnema, 2024; Minnema et al., 2022a). Gemelli
and Minnema (2024) established a dataset labelled
with semantic frames for the Italian incel com-
munity. The highest-ranked and most informative
frames were identified for each subcorpus. To de-
tect hate speech in incel communities, Gajo et al.
(2023) used masked language modelling (MLM)
with BERT and mBERT adapted to the English
and Italian incel domain.

Research on the manosphere in Sweden has
largely focused on English forums, even when
studying Swedish incels (Fernquist et al., 2020;
Axelsson and Lindgren, 2021). In the Swedish
context, Lindmark and Kindblom (2021) analysed
threads from the Swedish forum Flashback con-
taining the word ‘incel’ or ‘incels’ with techniques
from CDA. Users discussed the topic of immigra-
tion in relation to a surplus of men in Sweden
and how this negatively impacts the white Swedish
man (Lindmark and Kindblom, 2021). Swedish
incels also commonly express that they feel less
desirable than men of colour (Lindström, 2024).
Swedish women are described as privileged and
positioned as the opposition in a power struggle
with men (Lindmark and Kindblom, 2021; Wik-
lund, 2020; Fernquist et al., 2020). Through dis-
course analysis and personal communication with
Stefan Krakowski, a media expert and scholar
of Swedish incels, Wiklund (2020) analysed dis-
course surrounding incels on Flashback. Search
terms, including ‘incel’ and ‘misogyny’, were
used to identify threads for analysis. Wiklund
(2020) observed that feminism is used to legit-
imise dehumanisation of women and increased
immigration is portrayed as societal problem. The
Flashback manosphere was also found to be in-
credibly sensitive to its portrayal in the media, di-
recting personal attacks at female writers on the
Swedish manosphere.

The following sections will outline the meth-
ods used to identify terms of interest in the
Swedish manosphere and their prominent frames,
the means through which they were analysed, and
the data used in the analysis.

3 Data

The analysis in this paper focuses on the
Manosfärer, Maskulinism, och Mansrörelser
“Manospheres, Masculinism, and Men’s move-
ments” subforum on Flashback. The hobby sub-
forum was also collected for comparison, as it was
the closest in size of the other Lifestyle subforums.
Flashback data is collected and annotated in yearly
updates which are stored in xml format. The ver-
sion used in this analysis was collected in March
2024 and contains all threads created between Oc-
tober 2012 and March 2024 (Språkbanken Text,
2024a). Threads have been scrambled to preserve
user privacy and copyright. Additionally, user-
names have been removed. A total of 12,943 posts
were from the manosphere subforum and another
16,565 from the hobby subforum were used in the
analysis. Each thread has been automatically an-
notated with semantic frames from SweFN with
the Sparv pipeline (Språkbanken Text, 2024b;
Hammarstedt et al., 2022). Only the posts from
the manosphere subforum are used in the discus-
sions in §5.

4 Methods

4.1 Lexicon

The Swedish manosphere lexicon was created in
two steps. In the first step, a base wordlist of
English words from the manosphere was used.
As there was no existing lexicon for the Swedish
manosphere, a generic lexicon was created follow-
ing Yoder et al. (2023). A combination of several
English sources were utilised for a comprehensive
base lexicon (Moonshot, 2020; Klein and Gol-
beck, 2024; Fernquist et al., 2020). This helped
identify words within the Swedish manosphere
borrowed directly from English without transla-
tion, as well as Swedish-English compounds. Any
terms from the base list with zero instances in the
data were discarded from the Swedish lexicon.

The second step expanded on the results of the
first step by identifying native Swedish or Swedish
translations of manosphere terminology. Sen-
tences were lemmatized and stopwords removed
to calculate word frequencies. To capture words
unique to the Swedish manosphere, the binary
log ratio of relative frequencies was calculated for
the manosphere and hobby forums. Binary log
ratio of relative frequencies, or ‘log ratio’, is a
means of comparing the relatives frequencies of
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Figure 1: Relative frequencies of the Swedish terms of interest. Words which are direct synonyms or
refer to similar concepts have been grouped together in the analysis. Additionally, words with a frequency
lower than 25 have been excluded from the graph for space.

words in two corpora (Klein and Golbeck, 2024;
Hardie, 2014). It represents how big the difference
in frequency is for a keyword between two cor-
pora, where the score is represented as powers of
2 and each point is a doubling in size of the differ-
ence between the two corpora. Both the Swedish
and combined English wordlists, along with the
Swedish lexicon, are available on Github.

Both words from the lexicon and words not spe-
cific to the manosphere, but overrepresented in
the manosphere forum, were identified as terms of
interest. The terms of interest were further nar-
rowed down based on topics presented in the lit-
erature from §2 which are considered important to
the manosphere in general and in Sweden. These
terms of interest were grouped into five themes,
discussed further in §4.2 and 5. Figure (1) shows
the terms of interest by frequency of mentions.

This is a warning for sections 4.2 to 5.5, as
examples contain offensive language and refer-
ences to violence, sexual abuse, and self-harm.

4.2 Semantic Frames

The analysis in §5 of this paper relies on the con-
cept of semantic frames originally proposed by
Fillmore (1985). Semantic frames, indexed in

lexical databases such as FrameNet (Baker et al.,
1998), are labels which provide conceptual infor-
mation grounded in human understanding. Look-
ing at frames allows one to gain insight on how
members of a language community understand the
world around them. One can determine not only
what is said, but how it is understood and what
is required for that understanding by interlocutors.
Using an example from the data, in the sentence
“women are therefore at high risk of being mur-
dered by their husbands”, the lexical unit mur-
dered triggers the KILLING frame and women
which triggers the PEOPLE frame fills the ‘vic-
tim’ role while husbands with the KINSHIP frame
would receive the ‘killer’ role.4 From repeated in-
stances of sentences expressing KINSHIP in the
killer role, it may be inferred that the discourse
sees women as victims of domestic homicide.

Similar to Gemelli and Minnema (2024) and
Minnema et al. (2022a), the most prominent
frames were identified for each term of interest
and the context in which they were triggered was
analysed. Frames frequently triggered by words
which commonly serve a grammatical function,

4Capitalised words represent frames used in FrameNet
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such as EXISTENCE tagged with ‘be’ verbs, were
discarded as they add little to the analysis. Promi-
nent frames were found by calculating ff-icf.5 This
is done with a modification of tf-idf to compare a
frame’s relative frequency in a subcorpus to the
larger corpus, giving a score between 0 and 1
(Grootendorst, 2022; Remijnse et al., 2021). The
highest ranked frames are considered most repre-
sentative of the theme.

As only the semantic frame is annotated in the
corpus, roles and interactions with other frames in
the same sentence were examined manually. ‘In-
teractions’ are identified as frames which had a
higher frequency of co-occurrence with the promi-
nent frame relative to other frames. Thus, frequen-
cies of words which trigger the prominent frame,
other frames which occur in the same context, the
words which fill its core roles, and the semantic
frames of those roles (if available) were calculated
for each prominent frame. As it is not feasible to
discuss all 63 terms of interest within the scope of
this paper, the discussion will focus on the two or
three most important words to the theme.

For each theme, two types of results are pre-
sented: (1) an identification of frames most rep-
resentative of the terms of interest for that theme;
(2) an analysis of what words are associated with
the common frames and what roles they fill in the
discourse.

5 Results and Discussion

The prominent frames identified for each term
are used to connect related concepts to FEs.
Analysing the posts containing these related
frames, the words they are triggered by, and the
words around them allows one to gain insight into
what entities fill which roles.

Frames were ranked from lowest to highest
based on their ff-icf score with the highest two (or
more, if scores were equal) scores being most typi-
cal. In the following sections, numbers in brackets
indicate the relative frequency of the entity which
either triggered the frame or fills one of the frame’s
roles in the context of the specific term of inter-
est. As an example, in §5.1, of the instances of
RECEIVING for the term ‘bluepill’, 50% had a
theme of sympathy or hope. Similarly, in §5.4, of
the instances of the frame ORIGIN, 36% were the
word ‘Swedish’.

The terms of interest introduced by Figure (1)
5frame frequency - inverse corpus frequency

can be categorised by five themes: inceldom
and mental health, feminism and LGBTQ+, race
and origin, immigration and male surplus, power
and violence. These themes have been chosen
based on the close interaction between these words
within each category, such as the claimed ‘cause
and effect’ relationship between immigration and
‘male surplus’ discussed in §5.4. All examples
have been translated to English from the original
Swedish.

5.1 Inceldom and Mental Health

Incel discourse uses the analogy of pills to talk
about different world-views. Pill theory is coined
from the movie The Matrix, where the protagonist
is given the option to accept reality by swallowing
a red pill or return to an illusion with the blue pill.
One prominent frame associated with these terms
is RECEIVING. Recipients in the context of the
RECEIVING frame for the bluepill are typically
men or man ‘one’, while the entity that is received
tends to be sympathy or hope (0.5).

For the blackpill, a fatalistic philosophy fo-
cused on external solutions and physical appear-
ance, the frames CAUSATION, EMPLOYED, and
COMING TO BELIEVE were most prominent.
With CAUSATION, the most common word was
‘therefore’ (0.5) with the effect being blackpill be-
lievers ‘losing hope’ or ‘giving up’. The EM-
PLOYED frame was always triggered by jobba
för “work for” when users discuss ‘working to-
ward’ something or having ‘nothing to work for’
(0.6). For COMING TO BELIEVE, the content
role tends to be realising blackpill theory (0.75).
It also commonly appeared with the EMPLOYED
frame, where the content of the realisation is filled
by‘nothing to work for’ (0.4).

For Chads,6 the prominent frames were PEO-
PLE and REQUIRED EVENT. The PEOPLE
frame was triggered by ‘women’ or ‘girls’ (0.51),
often with POSSESSION or PERSONAL RE-
LATIONSHIP frame to state having ‘women’,
‘partners’, or ‘friends’ (0.35). The REQUIRED
EVENT frame was always triggered by behöva
“need”, such as when contrasting what incels and
Chads do or do not need to do within the required
situation role (0.71). In the example below, ‘an
incel’ and ‘become friends...’ fill the required sit-
uation role of the first instance of ‘need to’, while

6A ‘Chad’ is defined as the archetypal white male who
contrasts with incels in both physicality and access to sex.
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‘a Chad/Normie’ and ‘do any of this’ fill the same
role for the second. As noted by Maxwell et al.
(2020), incels believe there are different rules for
Chads.

(1) “Why should an incel need to become
friends with everything and everyone, or go
to the gym or go to dance classes when
a Chad/Normie doesn’t need to do any of
this?”

Autism is a common theme in manosphere dis-
course, especially among incels given that autism
is significantly more common in the incelosphere
compared to the rest of the population (Lindström,
2024; Whittaker et al., 2024; Moskalenko et al.,
2022). The frames of RECEIVING, LOCATING,
PEOPLE BY DISEASE, and KILLING were
prominent in relation to this term. autist/autister
“autistic people” always triggered the PEOPLE
BY DISEASE frame. When RECEIVING is trig-
gered, the entity that is received is typically sex,
women, or personal relationships where the recip-
ient is ‘an autist’ or ‘incels’ (0.5). The LOCAT-
ING frame is triggered in similar contexts, where
the perceiver role is autistic men or incels and the
sought entity is women or a personal relationship
(0.43). KILLING is often triggered by ‘suicide’
(0.43), with the victim role filled by men (0.67).
When triggered by verbs like ‘murder’, women are
the victims and men killers (0.57).

As incels are the most frequently discussed
topic, many prominent frames emerged. Of these,
COLOR, PEOPLE BY ORIGIN, KILLING, VIO-
LENCE, and CAUSE MOTION were the most no-
table. COLOR is often triggered as a descriptor of
the PEOPLE frame to describe race, such as ‘black
men’ (0.33), ‘black women’ (0.32) and ‘white
men’ (0.16). When frames related to violence are
triggered, such as mörda “murder” or slå “beat”,
the perpetrator role is filled by ‘incels’ or ‘black
men’ with the COLOR frame (0.31). The COLOR
and PEOPLE BY ORIGIN frames often appear
when debating which race is most incel (0.83).
The ORIGIN frame was often triggered by Svensk
“Swedish”, Kinesisk “Chinese”, or Amerikansk
“American” as a descriptor of ‘men’ or ‘women’
when comparing incels of different demograph-
ics and discussing which group is preferred by
Swedish women (0.54). This observation is con-
sistent with Lindström (2024). As noted by Axels-
son and Lindgren (2021), debate over who or what

an incel is constitutes a large part of the dialogue
in the manosphere. In Ex.(2), “black” and “white”
triggered the COLOR frame, while “Asian” trig-
gered PEOPLE BY ORIGIN in Ex.(3).

(2) “Black men are more incel than white.”

(3) “Asian men are the most incel.”

CAUSE MOTION was often triggered by dra
“draw” when bringing up arguments and “drawing
conclusions” (0.43).

5.2 Feminism and LGBTQ+
Feminism and feminists on Flashback are often
discussed along with anti-feminsim. The TEXT
and TEXT CREATION frames were triggered of-
ten by bok “book” or böcker “books” (0.3), typ-
ically in reference to reading and writing femi-
nist and anti-feminist literature. The POINT OF
DISPUTE frame is usually attached to ‘problem’,
where the context is problems related to femi-
nism and feminist countries/society (0.59). The
dispute frame also appears with the MORAL-
ITY EVALUATION frame triggered by ‘evil’ and
‘virtue’, where feminists are the ones evaluated
in the evaluee role (0.54). Again, the ORIGIN
frame is often triggered as a descriptor for women
or feminists in the form of Svenska “Swedish”
or västerlandska “western” (0.52). POSTURE
was triggered by stå “stand” in discussions on
what feminists “stand for” along with ARCHI-
TECTURAL PART frames in the location role
(0.33), as in Ex.(4). These appeared comments
attributed to anti-feminists on stereotypical gen-
der roles that ‘women belong in the kitchen’, an
observation also noted by Ging (2017); Wiklund
(2020).

(4) “Anti-feminist men, with their rumination,
want to achieve that women should stay
home, stand in the kitchen and take care of
the children.”

HBTQ “LGBTQ”, particularly lesbians, are
frequently featured in Swedish manosphere dis-
course. LGBTQ often appears with the INTOX-
ICANTS frame. LGBTQ persons are often users
in sentences where INTOXICANTS is triggered
by droger “drugs” (0.5). The KILLING and
DEATH frames also came up frequently in associ-
ation with queer people, but the protagonist role of
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the DEATH frame is typically men and the cause
of KILLING is drugs or suicide (0.6). A com-
mon claim was that the ‘increase’ in queer people
has contributed to male drug related deaths. For
lesbisk “lesbian”, the KINSHIP frame was often
evoked with PEOPLE BY AGE (0.39), triggered
by pojkar “boys” (0.15), flickor “girls” (0.13),
or döttrar “daughters” (0.11). Lesbians typically
fill the parental role within the KINSHIP frame.
These two frames usually appear with GETTING
and REQUIRED EVENT as users discuss the chil-
dren of LGBTQ parents. In Ex.(5), ‘daughters’
triggered the KINSHIP frame with “lesbians’ in
the parental role, along with GETTING triggered
by ‘get’.

(5) “I think lesbians should get daughters,
mainly because one can assume boys will not
see much purpose in life in a lesbian family.”

5.3 Race and Origin

Immigration from Africa and the Middle East
makes up a significant portion of newcomers to
Sweden in recent years (Eurostat Statistics, 2016),
so it is unsurprising that Araber “Arabs” and Mus-
limer “Muslims” appear in a large part of the
Swedish manosphere’s discourse on race and ori-
gin. ORIGIN, PEOPLE BY ORIGIN, and PEO-
PLE BY RELIGION often appear together as de-
scriptors, typically triggered by svensk “Swedish”
(0.57) and “Muslim” (0.97) in discussions on
the effect of Islam on Western countries and
Sweden. Many comments express a fear that
Swedish/European people and culture is being re-
placed by Muslims and Islam (0.57), often with
the BECOMING frame in claims that Muslims
will ‘become the majority’ or Sweden will ‘be-
come Muslim’. In the following example, PEO-
PLE BY ORIGIN was triggered by “Swedes”,
“Arabs”, and “Afghans”, PEOPLE BY RELI-
GION was triggered by “Muslims”, and ORIGIN
was triggered by “Swedish”. These frames appear
with BECOMING triggered by “become”, where
Swedes (we) fill the entity role which becomes the
final category filled by Muslims (them).

(6) “When Swedes are good Muslims, we will
also avoid getting harassed by Arabs and
Afghans as we become one of ”them” and
with Swedish Sharia law we can be tough on
crime in society.”

COLOR, ORIGIN, and PEOPLE BY RELI-
GION sometimes appear with POSSESSION, typ-
ically in posts where ‘Arab’, ‘Muslim’ and ‘black
men’ are in the owner role in posts comparing
what Muslim/Arab men have in Swedish society
versus Islamic society (0.46). When ORIGIN or
COLOR are a descriptor for women, they often de-
note ‘white’ or ‘Swedish’ women (0.54) who are
experiencers of the DESIRING frame with Arab
and black men as the objects of desire. ‘Swedish
women’ also commonly appears with the SEX
frame, where the other participant is ‘black’ or
‘Arab’ expressed with a racial epithet (0.5). As ob-
served by Lindström (2024), the discourse claims
that Arab and black men ‘take’ Swedish women
because these men are more masculine and sexu-
ally promiscuous. When COLOR is used to de-
scribe women of colour, as mentioned in §5.1,
they are the victims of religious society or violence
(0.45).

Hispanics, Latinos, and Latinamerikaner
“Latin Americans”, specifically in the U.S.A.,
are another frequently mentioned demographic
marked by PEOPLE BY ORIGIN (0.77). The
frames COLOR and DEATH were the most
prominent in relation to this group. COLOR is
always used as a descriptor of the PEOPLE frame
with vit “white” (0.65) and svart “black” (0.35) to
denote race. COLOR and PEOPLE BY ORIGIN
often appear with DEATH and DEAD OR ALIVE
frames as users compare life expectancy and
living conditions between Latinos and other
demographics (0.75). In Ex.(7), ‘whites’ and
‘blacks’ triggered the COLOR frame with DEAD
OR ALIVE triggered by ‘live’.

(7) “Hispanics in the US live longer than Whites
and Blacks.”

As the focus is on Latin Americans in the U.S.,
the REGARD, READING, CAUSE TO PER-
CEIVE frames usually appear with TEXT trig-
gered by ‘article’ or ‘newspaper’ when users claim
to have gained some information about Latin
Americans through a source (0.6).

The DEGREE and MEASURABLE AT-
TRIBUTES frames also appear with COLOR and
PEOPLE BY ORIGIN, often triggered by‘Latin
Americans’ (0.77) or ‘Asians’ (0.2). When PEO-
PLE BY ORIGIN is triggered by asiatisk/asiater
“Asian/Asians”, they are being compared to other
demographics in terms of desirability and incel
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status (0.67). In this context, DEGREE and
MEASURABLE ATTRIBUTES are triggered by
högre “higher” and mest “most”. Many posts
mentioning Asians argue that they are either the
‘most incel’ group or have ‘higher’ popularity
(0.27), particularly among black women.

5.4 Immigration and the Male Surplus

Invandring “immigration” is a significant topic in
the Swedish manosphere. ORIGIN and COLOR
are triggered by ‘Swedish’ (0.36) or ‘white’ (0.28)
and act as descriptors for the PEOPLE frame
(0.64). These commonly appear in discussion on
how ‘Swedish/white’ men and women are affected
by immigration (0.5), typically debating whether
Swedish women benefit from and support immi-
gration. This observation is consistent with previ-
ous research by Lindmark and Kindblom (2021).
When ORIGIN is slaviskt “Slavic”, it is always a
descriptor of ‘women’.

The MEASURABLE ATTRIBUTES and
CHANGE POSITION SCALE INCREASE
triggered by frames were often evoked in the
context of immigration as the item/entity that
‘increases’ or is ‘high’ in statements about the
state of immigration in Sweden (0.41). These
frames are also used in several posts discussing
an increase in criminals and incels as a conse-
quence of immigration (0.32). LAW triggered
by invandringpolitik “immigration policy” and
CHANGE OF LEADERSHIP with TEMPORAL
SUBREGION are frequently evoked together
in discussions about Swedish politics (0.87). In
Ex.(8), ‘last election’ triggered the TEMPORAL
SUBREGION and CHANGE OF LEADERSHIP
frames, while ‘immigration policy’ triggered the
LAW frame in the result role for the election.

(8) “A minority of voting women in Sweden
voted for continued generous/irresponsible
immigration policies in the last election..”

As observed by Wiklund (2020), the con-
cepts of immigration and male surplus are
linked. Överskott “surplus”, more specifically
mansöverskott “surplus of men”, is another sig-
nificant topic unique to the Swedish manosphere.
The CHANGE POSITION SCALE INCREASE
frame is triggered by öka “increase” where the at-
tribute being increased is ‘surplus’ or ‘surplus of
men’ (0.47). The COLOR frame appears most of-
ten when discussing black men (0.47) and women

(0.35). COLOR appears with‘surplus’ and PEO-
PLE BY ORIGIN triggered by amerikaner “Amer-
icans’ as users discuss a supposed surplus of men
among black Americans (0.23). It also appears
as a descriptor for ‘black women’, commonly
with frames related to violence such as ABUSING
(0.23).

One prevalent narrative is that both Sweden and
the U.S.A. are experiencing an increasing surplus
of men, a point which also came up in Lind-
ström (2024); Lindmark and Kindblom (2021).
Male surplus is also linked to the KILLING
and DEATH frames (0.67). KILLING is typi-
cally triggered by självmord “suicide” with men
in the protagonist role (0.67). With DEATH,
men are the protagonists and the cause is usually
droger “drugs” tagged with INTOXICANT (0.67).
Swedish manosphere discourse claims that male
suicide and drug overdose are a consequence of
male surplus. In Ex.(9), ‘suicide’ triggered the
KILLING frame with ‘drugs’ tagged as INTOX-
ICANT in the killer role and ‘men in the U.S.’ be-
ing the protagonists.

(9) “The percentage of men in the U.S. who be-
come mentally destroyed has increased by
the same amount, they take their life with
drugs or suicide. And all this with the
world’s highest surplus of men.”

5.5 Power and Violence

Makt “power” and its ownership is a central is-
sue in Sweden’s manosphere (Lindmark and Kind-
blom, 2021; Wiklund, 2020; Fernquist et al.,
2020). By investigating the combination of the
PEOPLE and POSSESSION frames, it is observed
that ‘women’ are typically in the owner role with
‘power’ being the possession (0.41). When men
are in the owner role (0.29), ‘power’ is usually
mentioned along with ‘money’ and ‘women’. In
this narrative, power is seen as something women
have over others and society, but a requirement for
men to ‘get’ women. In the following example,
‘women’ are the owners with POSSESSION trig-
gered by ‘have’ and ‘power to decide ...’ is the
possession.

(10) “I don’t understand why flashbackers think
women have the power to decide that we
should have more crime and more trans
people.”
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The final term of interest is våld “violence”.
The most prominent frames for this term are VI-
OLENCE triggered by våld “violence” and RAPE
triggered by våldtäkt “rape”. Looking at PEOPLE
combined with the aforementioned frames, ‘men’
tend to fill the role of perpetrators of violence and
rape (0.27) while ‘women’ are in the victim role
(0.36). VIOLENCE and RAPE also commonly
appear with ‘immigration’ or ‘surplus’ (0.20) as
users link these issues to violence and rapes ins
society. The VIOLENCE and RAPE frames are
also evoked in discussions on violence in Swe-
den (0.14). In Ex.(11), ‘immigration’ appears with
‘rape’, where ‘women’ and ‘children’ are in the
victim role. Although ‘robbery’ and ‘social un-
rest’ are not tagged with a prominent frame, they
also represent violent vocabulary typical of discus-
sions including the term ‘immigration’.

(11) “Welfare society does not work with mass
immigration like this for long - plus social
unrest, insecurity for women and children
who are raped and robbed.”

Many users draw a connection between an im-
balance of men and women to increased violence
and rape in society, especially in Sweden. The nar-
rative is that a gender imbalance leads to men feel-
ing devalued and leads to more incels and violence
because men are unable to secure a partner, an ob-
servation consistent with Maryn et al. (2024) and
Lindström (2024).

5.6 Discussion

Overall, the results of this analysis are consistent
with previous literature using CDA techniques to
study both the English and Swedish manosphere.
The topic of incel identity remains a strong fea-
ture of manosphere discourse, within which the
concepts of race and origin play a significant part
(Yoder et al., 2023; Ging, 2017). The Swedish
manosphere is also characterised by an opposition
to feminist philosophy (Ging, 2017; Schmitz et al.,
2016). Users often express their frustration of
feminism and feminists through insults (Wiklund,
2020; Ging, 2017). Violence is portrayed largely
as something perpetrated by men upon women,
or men upon themselves (Jaki et al., 2019; Baele
et al., 2021; Minnema et al., 2022b). However,
while violence against women is a common topic
in the manosphere community on Flashback, there

is little evidence that users actually promote acts of
violence.

Other salient issues in the Swedish manosphere
include immigration and a surplus of men. Immi-
gration, especially people of African and Middle
Eastern origin, is seen as a big contributor to Swe-
den’s sex imbalance (Lindström, 2024; Lindmark
and Kindblom, 2021). While Swedish women
are seen as benefitting from immigration, white
Swedish men in the manosphere feel their social
value is negatively impacted. As Sweden is often
described in the English incelosphere as ‘cucked’,
it is of no surprise that ownership of power is
attributed to women in the Swedish manosphere
(Fernquist et al., 2020; Wiklund, 2020).

Some unexpected findings also arose in this
analysis. The narrative that queer people, par-
ticularly lesbians, are drug users and that an in-
crease of LBTQ+ people contributes to male sui-
cide has not been mentioned in previous research.
The argument that lesbian women should have
daughters, for which different justifications are
given, is also one that seems unique to Flashback’s
manosphere discourse. Furthermore, users also
appear to discuss and compare how immigration
and racial demographics influence men’s value in
society in the U.S.A. and Sweden.

6 Conclusion

In this paper, the language of the Swedish
manosphere was investigated through the lens of
semantic frames. As there was no list of terms
specific to Swedish, relative frequencies were used
with log ratio to develop a lexicon for the Swedish
manosphere. Words with high frequency and/or
high log ratio were used to identify terms of inter-
est, which were further narrowed down based on
topics observed in previous research. These terms
were separated into five general categories with in-
terrelated and overlapping contexts.

By analysing the terms of interest and their
prominent frames, it was possible to determine
which narratives are shared by the Swedish and
English manospheres and which are unique to
Sweden. Additionally, it links Swedish incel terms
with frames and roles which enables the expansion
of existing frame annotation with SweFen. Map-
ping words from the manosphere which currently
lack FrameNet annotations to frames and roles can
be used to build upon the current semantic frame
schema for Swedish frames for societal issues.
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7 Limitations and Future Work

The main limitation of this study was the incom-
plete annotations of the data. This meant that some
frames which appeared frequently were often not
directly adjacent to or situated close to the term
under investigation. This was largely overcome by
manually review frames in context.

Another limitation of this research is that data
is limited to one forum. As a consequence, the
results of this analysis may be biased toward the
language of Flashback users in regards to the
manosphere. Unfortunately, there is currently no
other source of discourse on the manosphere in
Swedish. As Swedish speakers are typically also
competent English speakers, it is likely that many
serious participants of the manosphere in Sweden
gravitate toward established online communities
operating in English. Thus, a need to create a ded-
icated space to discuss the manosphere in Sweden
outside of established manosphere communities is
low.

In the future, it will be helpful to apply depen-
dency parsing to automatically associate frames
with their roles. In addition, it will be necessary to
create a semantic frame annotation schema based
on the results of this paper that covers discourse in
the Swedish manosphere.
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Abstract

This paper presents Hotter and Colder, a
dataset designed to analyze various types
of online behavior in Icelandic blog com-
ments. Building on previous work, we
used GPT-4o mini to annotate approxi-
mately 800,000 comments for 25 tasks, in-
cluding sentiment analysis, emotion detec-
tion, hate speech, and group generaliza-
tions. Each comment was automatically
labeled on a 5-point Likert scale. In a sec-
ond annotation stage, comments with high
or low probabilities of containing each ex-
amined behavior were subjected to man-
ual revision. By leveraging crowdworkers
to refine these automatically labeled com-
ments, we ensure the quality and accuracy
of our dataset resulting in 12,232 uniquely
annotated comments and 19,301 annota-
tions. Hotter and Colder provides an es-
sential resource for advancing research in
content moderation and automatically de-
tectiong harmful online behaviors in Ice-
landic. We release both the dataset1 and
annotation interface2.

1 Introduction

The rapid growth of online communication plat-
forms has led to an increase in harmful behav-
iors and, subsequently, an increased need for con-
tent moderation (Mathew et al., 2019). Inappro-
priate comments targeted at specific individuals or
groups of people can even go so far as qualifying
as hate speech, but more subtle ways of spread-
ing these prejudiced ideas may, for instance, in-
clude fear speech, where attempts are made to in-
cite fear about a target community (Saha et al.,

1https://repository.clarin.is/
repository/xmlui/handle/20.500.12537/352

2https://github.com/icelandic-lt/
annotation_if_sentiment

2023). Recent work has focused on detecting
these toxic behaviors automatically, thereby less-
ening the cost and workload for human moderators
(see Dehghan and Yanikoglu (2024), Nagar et al.
(2023) and Mittal (2023) for instance).

This paper addresses limitations in previous
work on sentiment analysis in Icelandic (Friðriks-
dóttir et al., 2024), using a new methodology to
improve class imbalance and low annotator agree-
ment in some tasks. Our approach first uses GPT-
4o mini to analyze approximately 800,000 Ice-
landic blog comments across 25 tasks, including
sentiment analysis, emotion detection, hate speech
detection, and group generalizations. For most
tasks, we employ focused binary annotation, tar-
geting only the extreme cases (highly likely or
highly unlikely to exhibit the behavior), rather
than using rating scales which have been shown
to present challenges in maintaining consistent
annotation quality (Kiritchenko and Mohammad,
2017). The exception is sentiment analysis, where
we maintain the standard negative, neutral, and
positive categories.

This targeted approach allows us to efficiently
identify rare but important cases (the proverbial
needles-in-a-haystack) such as hate speech com-
ments, which would be resource-intensive to lo-
cate through random sampling as used in previous
work. To ensure dataset quality, we then employ
crowd workers to manually verify the model’s
predictions, focusing particularly on comments
flagged as highly likely or highly unlikely to con-
tain problematic content. This human verification
step is crucial for maintaining accuracy and creat-
ing a high-consensus dataset.

Our contributions are as follows:

• We present Hotter and Colder, a dataset of
12,232 Icelandic blog comments annotated
for 25 tasks including sentiment, emotions,
hate speech, and group generalizations
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• We introduce a two-phase annotation
methodology combining GPT-4o mini silver
labels with targeted human verification
to address class imbalance and improve
annotation agreement

• We release both the annotated dataset and an-
notation platform to support research in con-
tent moderation for low-resource languages3

2 Methodology

Our approach combines AI and human efforts in a
two-phase annotation process designed to create a
high-quality dataset for tasks where the phenom-
ena of interest are often rare. This scarcity poses
a significant challenge for dataset creation - ran-
dom sampling would require extensive human an-
notation effort to find sufficient positive examples
while focusing only on suspected positive cases
could bias the dataset. Our methodology aims to
balance these concerns by using AI to efficiently
identify potential cases across the full spectrum,
followed by targeted human verification.

In the first phase (silver labeling), an LLM an-
alyzes a large dataset of comments. For this ini-
tial screening, we use GPT-4o mini with a prompt
designed for structured output (see Section 2.1).
While the model was instructed to consider it-
self an expert in Icelandic blog analysis to main-
tain consistent task framing across annotations,
we acknowledge this is a common but debatable
prompting practice that warrants further investiga-
tion. For all tasks except sentiment analysis, the
LLM uses a 5-point scale for labeling to capture
nuanced assessments.

In the second phase (gold labeling), human an-
notators review selected comments, focusing pri-
marily on those the LLM rated at the extremes
of the scale (1 or 5). This design choice reflects
our priority of establishing a foundational dataset
with clear, agreed-upon examples of each phe-
nomenon. While this approach may not capture
all nuanced edge cases, it serves several impor-
tant purposes: (1) it enables efficient identification
of clear positive examples for rare phenomena,
(2) it helps establish reliable baseline annotations
for model evaluation, and (3) it aligns with find-
ings that human annotators achieve higher agree-
ment on clear cases (Kiritchenko and Mohammad,
2017). We acknowledge this as a limitation - fu-

3[links redacted]

ture work should explicitly target borderline cases
to improve model robustness.

Human annotators perform binary (yes/no) an-
notations4 for a single task at a time to reduce task
switching fatigue. The simplified binary choice
for humans, compared to the LLM’s 5-point scale,
reflects our focus on identifying clear instances
while acknowledging that intermediate cases may
require more nuanced future investigation.

This method of using a language model to iden-
tify potential candidates for gold labeling builds
on established practices. For instance, when com-
piling their GoEmotions dataset, Demszky et al.
(2020) used a BERT-based model to filter out
comments that contained high levels of neutrality,
leaving the more emotional comments for humans
to annotate.

2.1 Silver Labeling Phase

To automate the initial labeling process, we cre-
ated a prompt for the AI model that instructed the
model to perform all of the 25 annotation tasks on
a given blog comment in Icelandic5. The prompt
included a JSON schema that instructed the model
on how to label a given comment. The context pro-
vided to the model also included the previous com-
ments and the beginning of the blog post on which
the comments were posted. We used strictly struc-
tured outputs to guarantee that the GPT-4o mini
model always labeled each comment for each of
the 25 tasks and to make sure that it could only
output values that aligned with the Likert scale6.

2.2 Data Selection

Following the previous work of Friðriksdóttir
et al. (2024), the blog comments used in this
work all derive from the Icelandic blog platform
blog.is. As one of the oldest and still active
blogging platforms in Iceland, this website of-
fers a valuable collection of online communica-
tion, generating a wide range of debates between
people with different perspectives, which is partic-
ularly useful for our purposes. However, it should
be noted that the gender distribution of the site’s
users appears to be quite skewed. Blog.is has
no obvious demographics accessible for users. In

4Hick’s law states that increasing the number of choices
will increase the time it takes a person to make a decision
logarithmically (Hick, 1952).

5https://gist.github.com/Haffi112/
8813b738637fc9a678f524fdf9b5a5d9

6See information on OpenAI’s website here.
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his master thesis, however, Ásmundsson (2024)
used a heuristic approach to determine the gen-
der of the users based on their patronyms (tra-
ditionally, women’s last names in Icelandic end
with dóttir (e. daugther) and men’s last names
end with son). Similarly, we observed that out of
24,193 unique author names, 2,374 ended in “dót-
tir”, 7,539 ended in “son” and 14,280 user names
did not match these endings.

2.3 Task Overview

The LLM was provided with the context of the
blog post, previous comments, and the specific
comment to be analyzed. The system prompt for
the model was “You are an expert at analyzing Ice-
landic blog comments. Analyze the last comment
shown and provide insights based on the given
schema.” For a given input, the model gener-
ated its analysis according to a predefined JSON
schema, ensuring consistency across all evaluated
comments.

The analysis began with an overall sentiment
classification (positive, negative, or neutral) of
each comment. The LLM then evaluated a wide
range of attributes, including toxicity, politeness,
hate speech, social acceptability in various con-
texts, emotional content, sarcasm, constructive-
ness, encouragement, sympathy, trolling behavior,
mansplaining, and group generalizations. For hate
speech, the model identified specific target groups
and aggression levels when present. The analysis
of group generalizations included assessing senti-
ment, factual validity, and whether the mentioned
groups were marginalized.

Most attributes were rated on a 5-point Lik-
ert scale, where 1 indicated strong disagreement
and 5 indicated strong agreement with the pres-
ence or intensity of the attribute7. For some at-
tributes, such as sentiment (“positive”, “neutral”,
“negative”) and gender (“male”, “female”, “non-
binary”, “n/a”), predefined categories were used
instead.

We selected our emotion categories based on
the foundational work of Ekman (1992); Ekman
and Heider (1988), who identified seven basic
emotions that appear to be universal across cul-
tures: fear, happiness, sadness, surprise, disgust,
anger, and contempt. To this set, we added in-
dignation as it represents a distinct social emotion

7Rubric: 1 - Strongly Disagree, 2 - Disagree, 3 - Neither
Agree nor Disagree, 4 - Agree, 5 - Strongly Agree

particularly relevant to online discourse and con-
tent moderation. Social acceptability was assessed
across various contexts, including conversations
with strangers, acquaintances, and close friends,
in educational settings with different age groups,
and in parliamentary speeches.

The LLM also inferred the author’s gender and
we further performed a majority vote over all an-
notations of a given username to assign a gender to
the author’s name. We note that gender inference
in online spaces presents significant challenges.
While traditional Icelandic naming conventions
can provide gender cues through patronymic suf-
fixes (-son/-dóttir), we acknowledge several im-
portant limitations in our approach to gender in-
ference:

1. Users may choose pseudonyms that do not
reflect their actual gender, particularly given
documented patterns of gender-based harass-
ment online.

2. The relationship between usernames and ac-
tual gender identity is complex and cannot be
reliably determined through automated anal-
ysis.

3. Some users may intentionally obscure their
gender or choose gender-neutral identifiers.

We emphasize that the inferred gender labels
should be treated as approximations of perceived
rather than actual gender, particularly in analyses
of gendered interaction patterns like mansplain-
ing. Future work should explore alternative ap-
proaches to studying gendered communication
patterns that do not rely on automated gender in-
ference.

2.4 Human Annotation Process

To evaluate Icelandic blog comments, we devel-
oped a comprehensive annotation scheme cov-
ering various aspects of online discourse. Hu-
man annotators were provided with detailed in-
structions in Icelandic, emphasizing that their per-
sonal judgment was crucial and that there were no
strictly right or wrong answers. Annotators were
instructed to base their decisions on the content of
the comments rather than the authors’ names, of
which only initials and inferred gender were pro-
vided.

For most tasks, annotators were asked to make
binary decisions (yes/no) about whether a com-
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ment exhibited specific characteristics. The excep-
tion was sentiment analysis, which used a three-
way classification. Annotators could view preced-
ing comments and the original blog post for con-
text, although some images were no longer avail-
able. They were also given the option to skip an-
notation for comments containing minimal infor-
mation or those in languages other than Icelandic.

2.4.1 Sentiment Analysis
Following the approach of Wankhade et al. (2022),
we conducted sentiment analysis at the comment
level. Annotators classified each comment as pos-
itive, negative, or neutral based on their personal
interpretation. Positive sentiment was defined
as expressing approval, happiness, satisfaction,
or optimism. Negative sentiment indicated dis-
satisfaction, criticism, anger, or disappointment.
Neutral sentiment was characterized by a lack of
strong emotion or a balanced view, often seen in
informational or factual statements.

2.4.2 Toxicity
We adopted the definition of toxicity in online
discussions from Klein and Majdoubi (2024), de-
scribing it as behavior that is rude, disrespectful,
or unreasonable, potentially making users feel un-
welcome or discouraged from participating in the
discussion. Annotators were instructed to identify
comments containing insults, aggressive language,
or content likely to incite conflict. This approach
acknowledges the potential of toxic comments to
disrupt constructive dialogue and decrease user
engagement, as observed in studies of online fo-
rums (Young Reusser et al., 2024).

2.4.3 Hate Speech
Our hate speech annotation scheme was based on
Basile et al. (2019) and aligned with Article 233
(a) of the Icelandic penal code, an approach also
used by Friðriksdóttir et al. (2024). Annotators
identified comments containing threats, defama-
tion, or denigration based on protected character-
istics such as nationality, color, race, religion, sex-
ual orientation, disabilities, or gender identity.

2.4.4 Social Acceptance
To gauge social acceptability, annotators evalu-
ated whether it would be appropriate to make the
comment in question in various real-life contexts.
These included interactions with strangers, ac-
quaintances, and close friends, as well as in ed-
ucational settings (for both young children and

teenagers) and in parliamentary speeches. This
multi-context approach allowed for a nuanced un-
derstanding of perceived social norms across dif-
ferent situations.

2.4.5 Emotion Detection

Our emotion detection task was inspired by the
work of Friðriksdóttir et al. (2024) and Demszky
et al. (2020). We simplified the task by asking an-
notators to detect the presence of a single emotion
at a time in a binary fashion. In other words, to
answer whether or not a comment contained the
given emotion. The emotions included were based
on basic emotions identified by Ekman (1992) and
Ekman and Heider (1988): fear, happiness, sad-
ness, surprise, disgust, anger, and contempt. We
also included indignation.

2.4.6 Sarcasm

Following the approach of Ptáček et al. (2014), we
asked the annotators to label whether a given com-
ment was sarcastic or ironic. In Icelandic, there is
a tendency to lump these two meanings together in
one (ice. kaldhæðni).

2.4.7 Constructiveness

We employed a simplified version of the annota-
tion scheme from Kolhatkar et al. (2020), asking
annotators to determine whether comments were
constructive. This binary classification focused on
identifying comments that provided useful feed-
back or contributed positively to the discussion.

2.4.8 Encouragement and Sympathy

Inspired by Sosea and Caragea (2022), we asked
annotators to identify encouragement and sympa-
thy in comments in a binary fashion. Encourage-
ment was defined as inspirational words or support
and sympathy was defined to be compassion, pity,
or understanding of the situation of another per-
son.

2.4.9 Additional Annotations

We included several other classification tasks to
capture various aspects of online discourse:

Politeness: Annotators assessed whether com-
ments were polite, providing a measure of civility
in online interactions.

Trolling: Following the definition used by
Friðriksdóttir et al. (2024), we asked annota-
tors to identify comments that were intentionally
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provocative, offensive, or off-topic, aimed at elic-
iting strong emotional responses or disrupting nor-
mal discussion.

Mansplaining: The term has been defined by
Bridges (2017) as “a man explaining something to
a woman in a tone perceived as condescending,”
but has since been expanded to cover a broader
range of communicative behaviors (Smith et al.,
2022). Annotators were instructed to identify
instances where comments exhibited unsolicited,
patronizing explanations based on the assumption
that the recipient is ignorant. Key characteristics
of mansplaining include:

• Persistence even when the recipient demon-
strates expertise.

• Maintenance of an oversimplified approach.

• Unwarranted confidence, sometimes even
when factually incorrect.

While mansplaining can occur between individu-
als of any gender, annotators were instructed to use
the label only for male-to-female interactions. The
gendered term highlights the frequency of this dy-
namic in male-female conversations, particularly
in fields where women may have equal or superior
expertise. This annotation task aimed to reveal on-
going societal assumptions about gender, knowl-
edge, and competence, illustrating how gender-
based power dynamics continue to shape interper-
sonal and professional communications.

Group Generalizations: Annotators were
asked to identify comments containing broad, of-
ten oversimplified statements about entire groups
of people. These generalizations could be based
on characteristics such as race, gender, nationality,
or political views. Importantly, annotators were
instructed to note that these generalizations could
be positive, negative, or neutral in nature. This
task aimed to capture instances where comments
reflected biases, stereotypes, or assumptions about
groups, providing insight into how these general-
izations manifest in online discourse.

2.5 Agreement Measures
To evaluate annotation quality and reliability, we
employed multiple agreement metrics. For tasks
with two or more annotations per comment, we
calculated pairwise agreement (PA) as the propor-
tion of agreeing annotation pairs across all pos-
sible pairs. For assessing inter-annotator relia-
bility, we utilized Krippendorff’s alpha (K’s α),

which accounts for chance agreement and can
handle missing data — a common occurrence in
crowdsourced annotations. To evaluate the GPT-
4o mini’s performance against human judgments,
we computed Cohen’s kappa (C’s κ) between the
model’s predictions and the human consensus la-
bels that were computed through a majority vote
(examples with ties were dropped). For the senti-
ment analysis task, which involved three-way clas-
sification, we adapted these measures to account
for the additional category whilst maintaining the
same computational framework.

2.6 Annotation Interface

The annotation interface was designed to facili-
tate efficient and accurate labeling of blog com-
ments while providing contextual information to
annotators. The interface presents one comment
at a time, along with metadata such as the au-
thor’s initials, inferred gender, and timestamp. To
enhance context, annotators can optionally view
the full blog post and previous comments in the
thread where the same type of metadata is shown
for each author. Tasks are presented sequentially,
with clear instructions and the option to skip com-
ments when necessary. To maintain engagement
and provide feedback, the interface incorporates
gamification elements such as progress tracking
and achievement badges.

To ensure data quality, the interface implements
several key features. First, it allows annotators to
review task-specific guidelines at any point dur-
ing the annotation process. Second, the interface
offers an optional real-time feedback mechanism
that compares human annotations to predictions
from GPT-4o-mini, though annotators are explic-
itly instructed to rely on their own judgment rather
than attempting to match the model’s output. This
design balances the need for comprehensive con-
textual information with the goal of maintaining
annotator focus and efficiency throughout the task.

3 Results

3.1 Distribution of AI labels

Before selecting comments for human annota-
tions, we labeled all comments in the 25 different
tasks using the GPT-4o mini model. The distri-
bution of labels for each task that was labeled ac-
cording to a Likert scale is shown in Figure 2 and
the distribution of labels in the sentiment task is
shown in Figure 3. For sentiment analysis, we ob-
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Figure 1: Key components of the annotation platform: (left) The landing page introducing the project and
its importance; (middle) The task overview dashboard displaying user progress and available annotation
tasks; (right) An example of a specific annotation task (politeness assessment) showing the comment to
be annotated, contextual information, and annotation options.

serve a somewhat balanced distribution of labels
with over 180,000 labels in each sentiment cate-
gory. For tasks that were rated on a Likert scale,
we see great variability in the label distributions.
Some tasks, such as toxicity, social acceptability
(teacher to young children in an educational en-
vironment, parliament speeches), emotion (anger,
contempt, indignation), and constructiveness have
a somewhat balanced distribution with a signifi-
cant number of comments in each label category.
Tasks such as politeness and social acceptability
(strangers, acquaintances, close friends, teacher
to teenagers in an educational environment) are
skewed to the right and have few comments rated
as not having the property of the task. Other tasks
are skewed to the left with few comments having
the property. For example, 6,672 comments were
labeled as having hate speech with strong agree-
ment. The most problematic tasks were “surprise”
and “fear” with only 27 and 668 comments respec-
tively labeled as having the properties with strong
agreement.

Our sampling strategy balanced the need for
cross-task analysis with the goal of maximiz-
ing dataset diversity. We began by creating a
shared evaluation set of 100 comments selected
uniformly at random from the full corpus. These
comments were set as annotation candidates for all
25 tasks, providing a consistent benchmark for an-
alyzing relationships between different aspects of
online discourse, such as how toxicity relates to
emotion or constructiveness.

For each task, we then selected an additional
1,100 comments that showed strong signals for
that specific behavior based on the LLM’s ratings
(600 comments rated "5" and 500 rated "1"). To
maximize dataset diversity and reduce annotator
fatigue, we excluded these task-specific comments

from the selection in other tasks. This decision re-
flects the distinct nature of our annotation tasks –
a comment exhibiting strong hate speech, for in-
stance, might be uninformative for tasks like en-
couragement or constructiveness. By presenting
annotators with fresh content for each task, we
aimed to maintain their engagement and avoid po-
tential biases from repeated exposure to the same
comments. Additionally, since we focus on ex-
treme cases, reusing comments across tasks could
lead to redundancy, as comments rated extreme in
one dimension often represent neutral or irrelevant
cases for other dimensions.

The resulting dataset of comment candidates8

for human evaluation contains 1,200 comments
per task (100 shared + 1,100 task-specific). While
this design limits comprehensive cross-task analy-
sis to the shared set of 100 comments, it provides
rich, focused data for developing robust classifiers
for each individual task. Future work could ex-
plore the possibility of annotating a larger shared
set of comments across all tasks, which would
enable more comprehensive analysis of task rela-
tionships while potentially sacrificing some task-
specific coverage.

3.2 Annotator Statistics

The dataset comprises annotations from 170
unique annotators with an average age of 37.61
years. The educational background of the annota-
tors is diverse, with the majority holding advanced
degrees: 36.5% have a master’s degree, 22.9%
have a bachelor’s degree, and 5.9% have a PhD.
The gender distribution is nearly balanced, with
47.6% male and 49.4% female annotators, while a
small percentage identify as other (2.4%) or pre-

8Note that not all comments were fully annotated in all
task categories.
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Figure 2: Distribution of AI labels on tasks that
were rated from 1 to 5 on a Likert scale.

Figure 3: Distribution of AI labels for the senti-
ment analysis task.

fer not to say (0.6%). In terms of participation,
there is a notable disparity between the average
and median number of annotations per user (113.7
and 27.5 respectively), suggesting that while some
annotators contributed extensively, the typical an-
notator provided a more modest number of anno-
tations.

The recruitment and motivation of crowdwork-
ers for annotation tasks can be a challenge. Most
of our participants were recruited through targeted
Facebook groups, with advertisements highlight-
ing the potential societal benefits of training mod-
els to detect hate speech and toxic online behav-
ior. This framing likely contributed to the rela-
tively high number of annotations in these cate-
gories. However, task participation decreased for
tasks presented later in the annotation sequence,
leading to an uneven number of annotations across
tasks and a potential annotator bias in those that
had a lower number of total annotations. This sug-
gests that fatigue or prioritization may have influ-
enced the workers’ engagement with certain tasks,
particularly those positioned further down the task
list. In future work, this issue could be mitigated
by randomizing the order in which tasks are pre-
sented to each crowd worker, thereby ensuring a
more balanced distribution of participation across
tasks.

3.3 Agreement

Table 1 presents an overview of the annotation
statistics and agreement measures for each task in
our study. We report several metrics to provide a
comprehensive view of the annotation quality and
the performance of our AI model compared to hu-
man annotators.

To assess the reliability of the annotations,
we calculated Krippendorff’s alpha (Krippendorff,
2018, K’s α) for inter-annotator agreement. The
results varied considerably across tasks, with some
showing strong agreement (e.g., disgust: 0.92,
sympathy: 0.83) and others showing weaker
agreement (e.g., mansplaining: 0.07, fear: 0.24).
This variability suggests that some concepts were
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more challenging to annotate consistently than
others. It may be noted that the instructions for
mansplaining were more specific for the human
annotators than for GPT-4o mini as they explic-
itly mentioned that the comment should be from
a man to a woman. However, that is often an im-
plicit understanding of the word.

To evaluate the performance of our AI model
against human consensus, we computed Cohen’s
kappa (Cohen, 1960, C’s κ) between the AI pre-
dictions and the aggregated human labels. The
AI model showed moderate to substantial agree-
ment with human annotators on several tasks, in-
cluding politeness (0.82), social acceptability in
educational settings (0.74), and emotion detec-
tion for anger and joy (both 0.68). However, the
model struggled with more nuanced tasks such as
mansplaining (0.17) and sarcasm detection (0.23).

Interestingly, some tasks exhibited a discrep-
ancy between human inter-annotator agreement
and AI-human agreement. For instance, the sym-
pathy task had high human agreement (K’s α =
0.83) but low AI-human agreement (C’s κ = 0.24),
suggesting that while humans consistently identi-
fied sympathy, the AI model had difficulty captur-
ing this concept accurately. However, it should
be noted that while certainly a valid translation
for “sympathy”, the Icelandic term “samúð” has
a tendency to be linked exclusively to condolences
made on the occasion of the death of a person’s rel-
ative or friend. It is therefore conceivable that our
human annotators have a more narrow understand-
ing of the word than that used by the AI model.

The sentiment analysis task, which involved a
three-way classification, showed moderate agree-
ment both among human annotators (K’s α = 0.64)
and between the AI and human consensus (C’s κ
= 0.59).

The results highlight the varying degrees of
difficulty in annotating different aspects of on-
line discourse. While some tasks, particularly
those related to basic emotions and clearly defined
concepts, showed high agreement, others involv-
ing more nuanced or context-dependent judgments
proved more challenging for both human annota-
tors and our AI model. Most of the time, if a task
has low inter-annotator agreement, the human-AI
agreement will also be low, indicating that con-
cepts like sarcasm and trolling are simply diffi-
cult to detect in text. It is, however, interesting
to note the cases where inter-annotator agreement

is high but human-AI agreement is low. For in-
stance, GPT-4o mini does not seem to have a good
grasp of the emotions disgust and surprise.

4 Discussion

The gold standard, human annotated Hotter and
Colder dataset is relatively small. While its main
purpose is to serve as validation for the AI-labeled
silver dataset, it can also be used as training
data for few-shot learning models. The silver
dataset offers considerable flexibility, supporting
the training of models for individual tasks, such as
the automated detection of hate speech. However,
the utility of both datasets extends beyond single-
task applications. Multi-Task Learning (MTL)
allows a model to tackle multiple tasks simulta-
neously, drawing on shared representations and
insights across tasks to improve overall perfor-
mance. In sentiment analysis, for example, an
MTL framework enables a more nuanced under-
standing of human communication. Tan et al.
(2023) demonstrate how sarcasm detection can
significantly enhance the performance of senti-
ment analysis models, particularly in identifying
negative sentiment in sarcastic contexts. Our re-
sults indicate that sarcasm detection remains a
challenge, likely contributing to the suboptimal
performance of the model in the sentiment anal-
ysis task. Given that Icelandic humor often relies
on sarcasm, this cultural factor may explain some
of the difficulties the model encounters in this task.
Consequently, it is plausible that an Icelandic sen-
timent analysis model would benefit from an MTL
approach, particularly one that integrates sarcasm
detection as a complementary task.

When working with multilingual LLMs, cul-
tural norms exhibited by the model might not
always match those of the country in ques-
tion (Meadows et al., 2024). Rather, these mod-
els reflect the cultural, legal, and ideological val-
ues of their creators. Tao et al. (2024) show-
cased that GPT-4o mini generally mirrors values
that are commonly found in English-speaking and
Protestant European countries. While this cultural
bias may not be inherently problematic for our
purposes, it could lead to reduced agreement be-
tween human annotators and AI models in culture-
specific annotations. For instance, ethical align-
ment performed during model training may influ-
ence the model’s ability to judge appropriateness
in social contexts. A model might consistently
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Task Count A ≥ 2 AAPC K’s α C’s κ

Emotion disgust 355 32 1.09 0.86 0.53
Social acceptability acquaintances 395 44 1.11 0.77 0.71
Emotion contempt 342 37 1.11 0.77 0.63
Emotion surprise 359 23 1.07 0.75 0.35
Encouragement presence 448 69 1.17 0.74 0.66
Emotion joy 525 127 1.28 0.69 0.69
Emotion sadness 381 49 1.13 0.68 0.50
Emotion anger 547 106 1.22 0.67 0.72
Politeness 749 286 1.49 0.67 0.80
Social acceptability educational young 448 68 1.16 0.65 0.73
Group generalization presence 585 156 1.32 0.64 0.62
Social acceptability strangers 526 129 1.29 0.62 0.76
Hate speech presence 877 429 1.70 0.61 0.60
Sentiment 1099 837 2.64 0.61 0.61
Social acceptability educational older 390 51 1.14 0.58 0.75
Constructiveness 464 71 1.16 0.53 0.53
Sympathy 460 63 1.15 0.53 0.25
Toxicity 981 585 2.01 0.52 0.65
Social acceptability close friend 381 33 1.09 0.44 0.36
Emotion fear 384 48 1.13 0.43 0.60
Social acceptability parliament 404 58 1.15 0.39 0.51
Trolling behavior 511 111 1.25 0.38 0.47
Emotion indignation 354 26 1.08 0.33 0.56
Sarcasm 507 89 1.19 0.29 0.26
Mansplaining 572 136 1.29 0.28 0.21

Average 521.76 146.52 1.30 0.58 0.56

Table 1: Overview of the annotations by task. The count column represents the number of comments
annotated for each task. The A ≥ 2 represents the number of comments with two or more annotations.
AAPC represents the average number of non-skipped annotations per comment. K’s α corresponds to
Krippendorff’s α amongst the human annotators in the task. Finally, C’s κ refers to Cohen’s κ between
the AI model and a human consensus label. The last row shows the total for the first two numerical
columns and a macro average for the other columns.

classify toxic or hateful comments as unaccept-
able, even when human annotators might tolerate
such comments in specific contexts, such as in pri-
vate conversations among friends or informal par-
liamentary discourse. These nuances in cultural
and ethical standards may hinder the model’s per-
formance in tasks requiring a deep understanding
of social norms and context.

On the flip side of the coin, Hotter and Colder
additionally offers invaluable insight into the soci-
olinguistic patterns of a small online community.
Future research will i.a. include an analysis of how
discourse changes in liaison with current events,
which communities are most affected by toxic be-
haviors and hate speech, and the characteristics of
toxic users.

5 Conclusion

This study presents Hotter and Colder, a dataset
annotated for 25 tasks that examine various types
of online behaviors. By leveraging both AI-based
silver labeling and human-in-the-loop gold label-
ing, we ensure a comprehensive approach to anno-
tating toxic behaviors, emotions, sentiments, and
more in Icelandic blog comments. This dual-

phase annotation methodology enabled the iden-
tification of rare but critical instances of harmful
speech while maintaining high annotator agree-
ment across a variety of tasks.

The introduction of a Multi-Task Learning
framework as a future direction holds promise for
improving the detection of complex phenomena,
such as sarcasm, which remains a challenge for
both AI models and human annotators, particu-
larly in culturally specific contexts. By integrat-
ing tasks such as sarcasm detection with sentiment
analysis, future models may achieve greater accu-
racy and nuanced understanding in detecting vari-
ous forms of harmful and toxic speech.

Hotter and Colder lays the foundation for fu-
ture work on mitigating bias and improving ethical
alignment in AI models for Icelandic, hopefully
fostering safer and more inclusive online environ-
ments.

6 Ethical Considerations

In our efforts to recruit crowd workers, we ap-
pealed mostly to their desire to fight against toxic
online behavior and to help aid in the eventual
creation of an automatic content moderation tool.
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Recruiting crowd workers without offering com-
pensation for their work can be considered prob-
lematic. We acknowledge that this fact is the
likely cause for the relatively unbalanced annota-
tions across tasks. In our case, participants were
informed during the recruitment process that a ran-
dom participant would receive a prize. However,
with sufficient financing, it would be more sustain-
able and fair towards the participants to pay each
annotator based on their contributions.

Furthermore, the content in question is inher-
ently problematic in nature. We instructed users
to only participate in tasks they were comfortable
with and warned them about potential triggers in
the content. One user pointed out to us that only
being able to label one task at a time for each
comment can be unpleasant. For instance, a com-
ment can both have a positive sentiment and ex-
hibit hate speech at the same time. Furthermore,
several of the comments will likely be of mixed
valence but the annotators were only able to label
the comments on either a binary or a 3-class label-
ing scheme. We acknowledge this limitation.

We also acknowledge that we studied gender
from a binary perspective. We decided to go for
that approach since non-binary gender identities
can be significantly harder to infer based on user-
names. We encourage future researchers to be
more inclusive in their research.

We acknowledge the significant computational
resources and associated carbon footprint involved
in using GPT-4o mini to analyze 800,000 com-
ments, especially given the final dataset size of ap-
proximately 12,000 annotated comments. While
this approach may appear computationally ineffi-
cient at first glance, it served a crucial method-
ological purpose: identifying rare but important
cases of problematic content that would have been
extremely resource-intensive to locate through
random sampling alone. Traditional approaches
requiring human annotators to sift through hun-
dreds of thousands of comments to find relatively
rare instances of hate speech or other harmful
content would have been prohibitively expensive
and potentially more damaging to annotator well-
being through extended exposure to toxic con-
tent. Future work should explore more environ-
mentally sustainable approaches, such as using
smaller, task-specific models for initial filtering or
developing more efficient sampling strategies that
could achieve similar results with less computa-

tional overhead.
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Abstract

Modern ASR systems require massive
amounts of training data. While ASR
training data for most languages are scarce
and expensive to transcribe, a practical
solution is to collect huge amounts of
raw untranscribed speech and pre-train
the ASR model in a self-supervised man-
ner. Unfortunately, for many low-resource
minority languages, even untranscribed
speech data are scarce. In this paper, we
propose a solution for the Northern Sámi
language with 22,400 hours of speech ex-
tracted from the Finnish radio and tele-
vision archives. We evaluated the model
performance with different decoding al-
gorithms and examined the models’ in-
ternal behavior with interpretation-based
techniques.

1 Introduction

Self-Supervised Learning (SSL) has caused a
paradigm shift in Automatic Speech Recognition
(ASR), enabling the development of highly ac-
curate End-to-End models even with a limited
amount of data. Low-resource languages also
benefited from this advancement, as models pre-
trained on other languages proved to be a good

foundation for the development of ASR models
using small supervised corpora (Bogdanoski et al.,
2023; Gilles et al., 2023). Northern Sámi, a lan-
guage spoken by only about 20,000 people has
also seen rapid advancements in speech technol-
ogy (Hiovain-Asikainen and De la Rosa, 2023;
Getman et al., 2024a).

While fine-tuning speech foundation models
such as wav2vec 2.0 (Baevski et al., 2020) can
now be considered standard procedure, choos-
ing the right pre-trained system is still very crit-
ical. Several works have reported that monolin-
gual pre-training tends to produce the best foun-
dation (Evain et al., 2021; Lehečka et al., 2024;
Parcollet et al., 2024), which could be impossible
without access to large speech-only corpora. Al-
ternatively, continuing the pre-training of an exist-
ing model could adapt it to new languages (Javed
et al., 2022). In this work, we build speech founda-
tion models for Northern Sámi with about 22,400
hours of speech from radio broadcasts, which puts
them on par with most publicly available monolin-
gual speech foundation models for high-resource
languages (Evain et al., 2021; Wang et al., 2021;
Javed et al., 2022; Malmsten et al., 2022; Getman
et al., 2024b; Parcollet et al., 2024; Sawada et al.,
2024).

In the past, various training methods have been
explored for wav2vec 2.0. Still, its inference is
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most commonly done via a greedy decoding al-
gorithm. Here, we explore whether a more ad-
vanced technique called prefix beam search (Han-
nun et al., 2014) could lead to better results. The
main issue with the standard greedy algorithm
stems from the blank symbol, which usually re-
ceives a considerable portion of the probability
mass (Jung et al., 2022), thus leading to spiky out-
puts and many deletion errors. To avoid this un-
wanted effect, prefix beam search merges multiple
paths that would result in the same output, less-
ening the suppression effect of the blank output.
While this technique was originally proposed to
be used with recurrent models, its variants have
been successfully utilized with large SSL mod-
els (Jung et al., 2022) and encoder-decoder-based
architectures (Zhao et al., 2024) too, albeit those
works also employ an external LM during the de-
coding procedure. In contrast, we only utilize pre-
fix beam search to decode the wav2vec 2.0 model
without any LM parts, as low-resource languages
often lack in terms of text data too, which prevents
the development of a good LM.

Besides the training and decoding algorithms,
we also take a closer look at our models’ mistakes
and propose a new interpretation-based solution to
learn more about the reasons for the misrecogni-
tion. One of our main observations revealed sys-
tematic, repeating mistakes, which we hypothe-
sized were due to the dominance of the Internal
LM developed by the model during the finetuning
phase (Zeyer et al., 2021a). To validate this hy-
pothesis, we utilized the Integrated Gradients (IG)
technique (Sundararajan et al., 2017) to investigate
whether the model behaves differently when it pre-
dicts various characters. Our experiments revealed
that several characters which caused the problems
were predominantly outputted by using mainly the
long-term information embeddings while ignoring
the current acoustic information. Furthermore, we
have found that the model dedicated considerably
more neurons towards detecting the rare Sámi-
specific characters compared to the common Latin
characters.

In summary, in this paper, we made the follow-
ing contributions:

• Developed the first Northern Sámi speech
foundation models 1.

1https://huggingface.co/collections/GetmanY1/wav2vec2-
sami-22k-66ead12fe465d6302b63d11b

• Compared the greedy decoding algorithm
with the prefix beam search algorithm with-
out any LM component.

• Proposed a model interpretation technique to
investigate why the model makes certain mis-
takes.

2 Methods

2.1 Continued Pre-Training
While standard pre-training of wav2vec 2.0 im-
plies random initialization of the model weights,
another training option is utilizing weights of an
existing foundation model from a closely related
language(s). Getman et al. (2024a) has demon-
strated that continued pre-training on a small, 100-
hour dataset can improve the downstream out-of-
domain ASR performance. In this work, we take a
step further and analyze whether this technique is
useful even when a sufficient amount of unlabeled
in-domain data is available.

Continued pre-training differs from pre-training
from scratch only during the model initialization
phase; otherwise, it follows the same standard
training pipeline. A side effect of this approach
is catastrophic forgetting (McCloskey and Cohen,
1989), which hinders the models’ performance on
language(s) they have been originally pre-trained
on (Qian et al., 2024). However, one of the goals
of this work is to develop monolingual foundations
for a low-resource minority language rather than
expand the mono- and multilingual models’ capa-
bilities to a new language.

2.2 Prefix Beam Search
End-to-end ASR models like wav2vec 2.0 are
often trained with the Connectionist temporal
classification (CTC) algorithm in the finetuning
phase (Graves et al., 2006). While CTC offers
a convenient way of training, the resulting mod-
els are well-known to suffer from various prob-
lems; namely, the blank label introduced by CTC
usually obtains very high probabilities dominating
the sequence of outputted symbols, and non-blank
outputs display a peaky behavior (Zeyer et al.,
2021b). These problems together mean that CTC-
trained models often have high deletion errors, as
the blank label could easily suppress the emission
of actual characters, especially when the model is
uncertain.

Prefix Beamsearch (Hannun et al., 2014) of-
fers an alternative to the standard greedy decod-
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ing algorithm by considering multiple paths that
would result in the same output and combining the
probabilities of these paths to gain a more accu-
rate estimate of character emission probabilities.
For example, if we consider a short window of 4
timesteps in which the model should recognize the
character "a", then the greedy decoding would re-
quire that the output unit linked to "a" would get
the maximum probability at least in one frame. In
many cases, this assumption is not true. Thus, the
character is deleted if the probability of the blank
(H) is high. In the beam search algorithm, all pos-
sible combinations of H and "a" are considered,
and the probabilities of these paths (e.g. HHaH,
or HaaH, or HHaa, etc.) are added together, of-
ten surpassing the probability of purely H output,
preventing the character deletion problem.

The algorithm was originally proposed for re-
current models, and RNN-T architectures, but here
we demonstrate that it is applicable even with
wav2vec 2.0 models, without any LM. In practice,
we fix all the LM probabilities as 1 and feed the
logit values of wav2vec 2.0 after a softmax layer
to the decoding algorithm.

2.3 IG-based error analysis

For a long time, large foundation models, like
any other deep neural network, were considered
a black box. With the advancement made in
the field of model explainability (Schwalbe and
Finzel, 2021), it is now possible to peak inside
these huge models and investigate their internal
functions. In this work, we selected the tech-
nique called Integrated Gradients (IG) (Sundarara-
jan et al., 2017) to learn more about the inter-
nal representations of our systems. IG belongs to
the family of gradient-based posthoc interpretation
tools, meaning that no modifications of the train-
ing algorithm or the model architecture are needed
to gain insight. In essence, IG estimates the gra-
dients of the relevant output units with respect to
certain hidden neurons, and these values are called
attributions. In Grósz et al. (2023), it was demon-
strated that IG can be used to filter out the irrele-
vant neurons of various foundation models, with-
out any significant performance loss. Inspired by
these findings, here we employed IG to unveil how
our models predict certain characters.

Our primary goal was to understand when
the model makes decisions mainly based on
acoustic information, and when the Internal LM

(ILM) (Zeyer et al., 2021a) becomes dominant.
Several techniques have already been proposed
to estimate the ILM developed during supervised
training. In Zeyer et al. (2021a); Chen et al.
(2023), the authors suggest masking out the en-
coder (acoustic) output to find the ILM scores or
employing the so-called density ratio method. Un-
fortunately, these techniques are not applicable in
our case as our model does not have a decoder part,
and it is not autoregressive, thus we developed an
alternative IG-based solution.

In our experiments, we choose to focus on
two specific layers of the wav2vec 2.0 model;
namely the feature embeddings of the CNN com-
ponent, which can be considered as acoustic fea-
tures, and the convolutional positional embedding
layer’s output, where temporal information is in-
troduced to the model. Using IG, we estimated the
attributions of each neuron in these two layers per
output units. Here we used the predicted (most
probable) output at each timestep to estimate the
attributions. Next, to approximate the importance
of each layer, we calculated the sum of the ab-
solute attributions of neurons inside the two lay-
ers. Our motivation for using the absolute values
was simple; we did not want to lose valuable in-
formation if some neurons had both large negative
and positive attributions at different times. Lastly,
once the overall attribution of the two layers’ was
known, the attribution ratio was calculated by di-
viding the positional embedding layer’s attribution
by the feature embedding layer’s. In this context,
an attribution ratio of 1 means that the positional
embedding layer has the exact same information
as the feature embeddings (i.e. it has no extra in-
fluence on the outputs), while a ratio of 2 means
that the new temporal information introduced by
the positional embedding layer is equally impor-
tant compared to the acoustic one. Naturally, a ra-
tio above 2 implies that the temporal information
is valued more than the acoustic features, which is
a sign of the ILM dictating the final output.

3 Data

For pre-training the Sámi models, we extracted
35,614 hours of radio broadcasts of Yle Saa-
men Radio. The broadcasts have been originally
recorded by the Radio and Television Archive
(RTVA) since 2009 and provided for research
by the Finnish National Audiovisual Institute
(KAVI).
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Since the raw dataset also contained a consider-
able amount of non-speech events, including mu-
sic and silence, we pre-processed it with a neural
voice activity detector (VAD) (Bredin, 2023). Af-
ter that, continuous speech segments longer than
30 seconds were split into shorter utterances. The
final size of pre-training data was 22,415 hours,
meaning that nearly 37% of the audio was recog-
nized as non-speech.

For the ASR fine-tuning, we used the Sámi
Parliament data 2 featuring about 20 hours of
transcribed speech. For testing the ASR models,
1 hour of out-of-domain read-aloud and sponta-
neous speech of varying audio quality was used.

4 Experiments

We pre-trained the foundation models with the
Fairseq toolkit (Ott et al., 2019). Pre-training was
done on 512 GPUs of the LUMI supercomputer 3

for 125,000 steps (approx. 115 epochs) for the
Base models (95M parameters) and 167,000 steps
(approx. 100 epochs) for the Large ones (317M
parameters). The models were then fine-tuned
on the Sámi Parliament data for 60 epochs with
Huggingface Transformers (Wolf et al., 2020). In
continued pre-training, we adapted models orig-
inally pre-trained on European Parliament ple-
nary session recordings (Wang et al., 2021). The
Base model was a monolingual Finnish founda-
tion, while the Large one also included speech
from two other Uralic languages (Hungarian and
Estonian).

We evaluated the models with the standard ASR
performance metrics such as word and character
error rate (WER and CER) and compared them to
existing ASR solutions, including Whisper (Rad-
ford et al., 2023) fine-tuned on 34 hours of sponta-
neous Northern Sámi (Hiovain-Asikainen and De
la Rosa, 2023) and XLS-R (Babu et al., 2022) first
fine-tuned on high-resource Finnish data and then
adapted to Northern Sámi with the Sámi Parlia-
ment data (Getman et al., 2024a).

Table 1 summarizes the ASR results. Compared
to the previously developed solutions, the Base-
sized models provided lower WER but higher
CER. In contrast, when switching to the Large
models, more considerable improvements can be
observed.

Next, we performed statistical significance tests

2https://sametinget.kommunetv.no/archive
3https://www.lumi-supercomputer.eu/

on both the word and character levels using the
Matched Pair Sentence Segment approach. To run
the tests, we employed the SCTK toolkit 4. Look-
ing at the models with continued pre-training,
models of both sizes gave significantly (p ď
0.001) lower CER compared to pre-training from
scratch, but only the Large one significantly (p ď
0.05) outperformed its counterpart pre-trained
from scratch on the word level.

Switching from greedy decoding to prefix beam
search further improved the CER. On the word
level, however, a significant improvement can be
observed only for the Large model pre-trained
from scratch, while it insignificantly changed the
error rate in either direction for the rest of the
models. A more detailed analysis of the results
revealed that the prefix beam search always in-
creased the number of substitutions and insertions
but decreased the number of deletions compared
to greedy decoding.

Overall, the best results were obtained by con-
tinued pre-training of the Large model. It gave a
noticeable improvement on a character level over
pre-training on the same data from scratch (14%
relative CER reduction), which may suggest that
continued pre-training allowed the model to ben-
efit from acoustic patterns learned from other lan-
guages and combine them with the newly learned
acoustic information of the target language. On
the other hand, minor changes in the WER and the
distribution of error rates in Figure 1 may indicate
that the gained language knowledge was still not
sufficient enough to properly recognize complete
words.

5 Analysis of the results

To better understand how our best model (Large-
22K CPT + Prefix Beam Search) works, and why
it makes certain mistakes, we first inspected the
character-level confusion matrix on the test data,
see Figure 2. Overall, most characters could be
recognized with relatively good accuracy, and only
a few rare characters like å, ä, x, ö have extremely
low recognition rates. While these mistakes can be
explained by the lack of training data, we also no-
ticed other systematic problems on the word level.
One such issue was related to the word "na" (in
English: "well"), which was quite common in the
training data. Interestingly, in the test set other
similar words, like "ni" and "no" were almost al-

4https://github.com/usnistgov/SCTK
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System WER, % CER, %
XLS-R EFT (Getman et al., 2024a) 47.70 15.15
Whisper (Hiovain-Asikainen and De la Rosa, 2023) 43.15 14.05

Base-22K 43.07 16.50
Base-22K + Prefix Beam Search 43.12 16.20˚˚˚

Base-22K CPT 43.04 15.76
Base-22K CPT + Prefix Beam Search 42.74 15.51˚˚˚

Large-22K 33.32 12.76
Large-22K + Prefix Beam Search 32.94˚˚ 12.51˚˚˚

Large-22K CPT 32.28 10.83
Large-22K CPT + Prefix Beam Search 32.29 10.76˚˚

Table 1: WER and CER on the 1-hour out-domain test set. EFT = extended fine-tuning; CPT = continued
pre-training. Statistically significant improvements of the prefix beam search over the greedy decoding
are marked ***p ď 0.001, **p ď 0.01

Figure 1: The distribution of the WER and CER
per utterance of our best model (Large-22K CPT
+ Prefix Beam Search) on the test set. Utterances
with more than 100% error rates were pooled to-
gether for the visualization.

ways replaced by the word "na", which implied
that the model developed a strong internal LM,
which forced it to predict the character "a" after
the letter "n", especially at the beginning of the
sentence, when the model has limited context.

To validate this hypothesis about the internal
LM, we employed our proposed solution to bet-
ter understand why our best wav2vec 2.0 made
certain mistakes. Our first observation was that
the overall attribution ratio on the whole set was
above 1.3, proving that the temporal information
introduced by the positional embedding layer was
indeed utilized by the model, but acoustic features

Figure 2: The character confusion matrix of
our best model (Large-22K CPT + Prefix Beam
Search) on the test set.

were valued considerably more. Furthermore, we
saw that the blank and the word boundary sym-
bols have the lowest ratios, signaling that they
were predicted mostly based on acoustic informa-
tion. Looking at the actual characters, we saw
that the average ratio was approximately 2, sug-
gesting that, on average, the temporal information
introduced in the positional embedding layer was
as useful as the acoustic features extracted by the
CNN component.
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(a) Continued pre-training.

(b) Pre-training from scratch.

Figure 3: The attribution ratios between the posi-
tional and features embeddings per character.

After a closer look at the ratios per character
(see Figure 3a), we identified two groups; in the
first one, the ratio was below 2, suggesting that
these were predicted mainly using acoustic fea-
tures. This group includes characters such as "h",
"i", "n", etc. On the other hand, we can see sev-
eral characters, including "a", which were primar-
ily predicted by the influence of the internal LM.
These results imply that for some characters the
acoustic component of the model was not good
enough, and it would benefit from seeing addi-
tional training material with more diverse textual
content in order to force the model to rely more on
the acoustic information.

Next, we investigated the counterpart of the best
model, trained from scratch (Large-22K), see Fig-
ure 3b. This model demonstrated a quite dif-
ferent behavior: all tokens except the blank la-

bel had an attribution ratio above 2, meaning that
the system’s output was determined mostly by the
temporal information added by the positional em-
beddings. The average attribution ratio for non-
blank characters was 2.7, signaling that the acous-
tic component had a considerably smaller attribu-
tion towards the output than the internal LM. Con-
sidering that the model was pre-trained only with
a relatively small dataset, we can conclude that
the acoustic component produced by the continued
pre-training is more appropriate and extracts more
relevant information. The purely Northern Sámi
model’s overreliance on temporal information in-
dicates that it most probably obtained most of
its knowledge by simply memorizing parts of the
training transcripts during the fine-tuning phase,
as large models are prone to do so (Huang et al.,
2022; Wang et al., 2024). Validating this theory
is out of the scope of this paper, but remains an
important future task.

Lastly, we also investigated individual neurons
in the two selected layers. Here, we aimed to find
out which character needed the most actively con-
tributing neurons. We looked at each neuron’s at-
tribution values per character. First, we calculated
the average and standard deviation of the attribu-
tions in each layer. Our first observation at this
stage was that the majority of the neurons had an
attribution close to the mean (which was approx-
imately 0 in all cases), and only a few neurons
displayed large attributions similar to the findings
of (Grósz et al., 2023). Based on these observa-
tions, we decided to separate the neurons into two
groups; the highly contributing ones, whose accu-
mulated attribution was farther than one standard
deviation from the mean, and the rest categorized
as low-contributing.

Figure 4 illustrates the amount of highly at-
tributing neurons in each investigated layer of the
best model. The first observation is that common
characters like "r", "b" and "k" required only a few
dedicated neurons, while special Sámi characters
like "·" and "æ" were predicted based on a large
number of neurons. In general, many latin char-
acters required less than a 100 highly contributing
neurons, while many Sámi charaters needed more
units. This implies that the acoustic features of the
CPT model were quite good for most Latin char-
acters that were well represented in the original
pre-training corpus, while some ("d", "c" and "t")
required more units, perhaps due to non-standard

197



Figure 4: Number of highly attributing neurons in
the best model. Acoustic neurons refer to units in
the feature embedding layer, while Temporal ones
can be found in the positional embedding layer.

pronunciation. Additionally, we can see that the
model dedicated a larger portion of neurons to the
Sámi specific outputs, implying that despite the
language adaptation via CPT and finetuning, it still
has difficulties recognizing them well.

6 Limitations

While experimental results suggest that prefix
beam search is beneficial on the character level,
its WERs proved to be quite similar to the greedy
decoding algorithm’s. As the lower CER suggests
better quality output, testing its readability by hu-
mans and comparing it to the greedy alternative
remains an important future task. Additionally,
we should mention that here, we utilized the prefix
search without any modifications, but it might ben-
efit from adjustments in terms of hyperparameters
and vocabulary usage of wav2vec 2.0, especially
regarding the word separator symbol.

While our model interpretation experiments
have revealed interesting facts about the internal
functions of the models, they should be rigorously
tested and validated. On the one hand, interpreta-
tion techniques are known to be fragile (Ghorbani
et al., 2019). Thus, our experiments should be re-
peated with other attribution estimation methods
to ensure that our observations hold. Furthermore,
we made several simplifications in this work, in-
cluding the decision to accumulate the attributions
over time, thus ignoring their changes in differ-
ent contexts. In the future, we intend to investi-
gate how the attributions’ trajectories change over
time and in different contexts to gain a deeper un-
derstanding of when temporal information is val-
ued more than acoustic information. Lastly, all
of our findings should be validated by the use of

a reliable ILM estimation method. Unfortunately,
currently, no such technique is available for non-
autoregressive models.

7 Conclusions

In this work, we presented the first speech foun-
dation models for Northern Sámi. In addition to
standard greedy decoding, we tested prefix beam
search, which showed a slight improvement in
terms of CER by reducing the number of deletions.
Although continued pre-training of a multilingual
foundation did not bring a considerable improve-
ment in downstream ASR performance compared
to pre-training from scratch, deeper IG-based anal-
ysis demonstrated differences in the internal be-
havior of these two models and revealed that the
one pre-trained from scratch was heavily influ-
enced by the temporal information (internal LM),
while its counterpart with continued pre-training
relied more on its acoustic component when pre-
dicting certain characters.
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Abstract
In this work, we introduce OpusDis-
tillery, a novel framework to streamline
the Knowledge Distillation (KD) process
of multilingual NMT models. OpusDis-
tillery’s main features are the integra-
tion of openly available teacher models
from OPUS-MT and Hugging Face, com-
prehensive multilingual support and ro-
bust GPU utilization tracking. We de-
scribe the tool in detail and discuss the
individual contributions of its pipeline
components, demonstrating its flexibil-
ity for different use cases. OpusDis-
tillery is open-source and released un-
der a permissive license, aiming to fa-
cilitate further research and development
in the field of multilingual KD for any
sequence-to-sequence task. Our code is
available at https://github.com/
Helsinki-NLP/OpusDistillery.

1 Introduction

Neural Machine Translation (NMT) has contin-
uously improved, offering higher-quality trans-
lations and supporting an ever-increasing num-
ber of languages. However, these advancements
come with significant computational costs. The
resources required for both training and, more crit-
ically, using these models can be quite expensive.
As a response to this trend, there has been a grow-
ing effort in the field to optimize these large sys-
tems by producing smaller models that are easier
to deploy in practical settings. Knowledge Dis-
tillation (KD) (Hinton et al., 2015) is a compres-
sion technique that allows to build such systems.
In KD, a powerful large model, referred to as the
teacher, is distilled into a more compact model,
faster and smaller in size, known as the student,
that tries to match the performance of the teacher
by mimicking its output.

In this work, we introduce OpusDistillery, a
novel open-source toolkit for performing distil-
lation of open NMT models in multilingual sce-
narios. We leverage publicly available tools and
release our code in our Github repository under
the Mozilla Public License 2.0. We intend our
pipeline to serve researchers as well as industry
players in NMT or any sequence-to-sequence task.

2 Background and Motivation

Our tool implements both standard Sequence-
Level Knowledge Distillation (Seq-KD) and its
enhanced version, interpolated Seq-KD. Seq-KD,
first introduced by Kim and Rush (2016), trains a
student model on the sentence-level outputs pro-
duced by a teacher model. This process involves
two main steps: (1) generating a synthetic dataset
by forward translating the source text using the
teacher model, and (2) training the student model
on this generated data. Despite its simplicity, Seq-
KD has been shown to outperform more sophis-
ticated methods for multilingual NMT (Gumma
et al., 2023).

Building on Seq-KD, Kim and Rush (2016) fur-
ther introduced Sequence-Level Interpolation. It
enhances Seq-KD by using beam search to gener-
ate multiple translations (K-translations) and se-
lecting the most similar sentence to the ground
truth for distillation, based on smoothed sentence-
BLEU (Chen and Cherry, 2014). This interpo-
lated approach has been demonstrated to surpass
the performance of standard Seq-KD; however,
the ground truth may not always be available, as
distillation can also be performed using monolin-
gual data only.

The challenge of applying KD in multilingual
settings is still underexplored. Several studies
have attempted to address this task (Tan et al.,
2018; Sun et al., 2020; Dabre and Fujita, 2020;
Diddee et al., 2022; Do and Lee, 2023), yet there
is no standard framework available. To the best of
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Figure 1: Overview of the OpusDistillery pipeline. CE stands for Cross-Entropy.

our knowledge, there exists only one other open
toolkit to perform multilingual Seq-KD. Stopes
(Andrews et al., 2022) is a framework of modular
pipelines developed within the NLLB project that
allows to recreate their distilled models for repro-
ducibility purposes, but provides little flexibility.

Our motivation for developing OpusDistillery is
driven by the need to address this limitation. First,
our pipeline provides a versatile toolkit that is easy
to configure to perform systematic distillation for
NMT in any kind of multilingual setting. Second,
we emphasize the use of external, openly avail-
able pre-trained teacher models, similar to the ap-
proach in Galiano-Jiménez et al. (2023). We ad-
vocate for the reuse of public models as a prac-
tical and economical solution. This approach not
only leverages the continuous publication of new
models in open-source repositories such as Hug-
ging Face (HF)1, but also significantly reduces the
costs associated with training from scratch.

3 The OpusDistillery Pipeline

OpusDistillery is an extension of the Firefox
Translation Training pipeline (FTT)2. The FTT
tool trains bilingual NMT teacher models and dis-
tills them to produce student models. It was orig-
inally developed within the Bergamot project3 for
training efficient NMT models that can run locally
in a web browser on CPU. The final student is a
quantized model, fast at decoding and ready to be
fed to the Bergamot-translator application.4

The pipeline works by feeding a YAML config-
uration file to Snakemake (Mölder et al., 2021),
a workflow management system that enables the
definition of computational pipelines through rules
specifying their input and output files. When the

1https://huggingface.co/
2https://github.com/mozilla/

firefox-translations-training
3https://browser.mt/
4https://github.com/browsermt/

bergamot-translator

expected output files of a particular rule are absent,
Snakemake systematically backtracks to identify
and execute the necessary preceding rules in se-
quence to produce the required outputs. The tool
uses the Marian toolkit (Junczys-Dowmunt et al.,
2018) for training and SentencePiece (Kudo and
Richardson, 2018) for segmentation.

3.1 Main features

Our work implements the use of public pre-trained
models as teachers, multilinguality support and
the tracking of GPU utilisation.

Use of Open Models as Teachers OpusDis-
tillery allows to distill an open-source pre-trained
model. We have added support for using OPUS-
MT models5 and models from the HF hub. We
chose to implement OPUS-MT models because of
their broad selection, which includes both bilin-
gual and multilingual variants, as well as their free
availability. We have added rules for subword
segmentation since OPUS-MT models use their
own SentencePiece tokenizers. Furthermore, we
support HF systems, allowing the user to choose
from a wide range of pre-trained models available
on the hub. This seamless integration with our
pipeline ensures flexibility and ease of use, en-
abling users to leverage the diverse and continu-
ously updated models within both ecosystems.

Multilinguality Support Multilingual NMT
has been shown to be highly beneficial, especially
for low-resource languages that lack sufficient
training data (Arivazhagan et al., 2019). Opus-
Distillery enables the training and distillation of
NMT models in any multilingual scenario. This
covers two aspects: the ability to use any combi-
nation of bilingual and multilingual teachers, as
well as the flexibility to train either bilingual or
multilingual students. Regarding multilinguality,

5https://github.com/Helsinki-NLP/
OPUS-MT-train
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we have included support for many-to-one (m2o),
one-to-many (o2m) and many-to-many (m2m)
settings.

GPU Tracking With the goal of moving to-
wards a greener NLP field and for the sake
of transparency, we have added GPU utilisation
tracking along all steps so that users can report the
amount of hours and energy consumed by their ex-
periments. The GPU tracking records the output
of roc-smi (for AMD GPUs) or nvidia-smi
(for Nvidia GPUs), depending on the environment,
every 10 seconds; monitoring both energy con-
sumption and GPU usage.

3.2 Configuration Files

The pipeline takes a YAML definition file as in-
put, containing all the relevant information for the
current experiment. The essential descriptors are
the teacher model(s) we want to distill from, as
well as the data for training and evaluation. For
multilingual scenarios and OPUS-MT models, we
have to specify whether the teacher and the stu-
dent model are multilingual at the target side. In
that case, the corresponding language tag will be
automatically added. Specific training arguments
for SentencePiece and Marian can be overwritten
in the configuration file, as for example, a specific
architecture for the student model.

experiment:
dirname: baseline
name: eng-zle
langpairs:

- en-uk
- en-ru
- en-be

opusmt-teacher: "best"
opusmt-backward: "best"

one2many-teacher: True
one2many-backward: False
one2many-student: True

datasets:
train:

- tc_Tatoeba-Challenge-v2023-09-26
devtest:

- flores_dev
test:

- flores_devtest

Figure 2: Sample YAML configuration file for
OpusDistillery.

3.3 Main Steps

Our pipeline can be divided in five major steps:
data preparation, synthetic dataset generation, stu-
dent training, exporting and evaluation. A high-
level overview of the steps is shown in Figure 1.
A detailed summary can be consulted in Table 2.

Data Preparation This step includes download-
ing monolingual and parallel data from public
repositories like MTData (Gowda et al., 2021) and
OPUS (Tiedemann and Thottingal, 2020), or using
custom datasets. We have added support for using
the Tatoeba Challenge data (Tiedemann, 2020), a
collection of all datasets available in OPUS, de-
duplicated and shuffled. Next, data cleaning is
performed, an essential step to filter noisy internet
data (Kreutzer et al., 2022), with options for ba-
sic filtering (e.g., removing sentences by length)
and advanced filtering using OpusFilter (Aulamo
et al., 2020).

Synthetic Dataset Generation After preparing
the data, the pipeline generates the synthetic
dataset via forward translation with the teacher.
Users can specify pre-trained models, or choose
the best available OPUS-MT model6. By default,
translations are generated using interpolated Seq-
KD following Bogoychev et al. (2020). We pro-
duce the 8-best translations and keep the most sim-
ilar output to the ground truth based on smoothed
sentence-BLEU (Chen and Cherry, 2014). Reduc-
ing the beam to 1 removes the interpolation step
and reduces the procedure to standard Seq-KD.
Optionally, Cross-Entropy (CE) filtering Junczys-
Dowmunt (2018) can reduce noise by removing
the 5% lowest-scoring translations with a back-
ward model.

Student Training The student model is trained
on the filtered dataset with guided alignment. This
step includes training the tokenizer with Senten-
cePiece, extracting word alignments using eflo-
mal (Östling and Tiedemann, 2016),7 and gener-
ating lexical shortlists for faster decoding. The
pipeline supports running multiple experiments ef-
ficiently, training compact models based on the

6The top-scoring model on a given benchmark (our cur-
rent implementation uses the Flores-200 (Goyal et al., 2022)
and the OPUS-MT Dashboard (Tiedemann and De Gibert,
2023) as a reference point).

7The experiments for this paper were run with fast align
(Dyer et al., 2013) that was part of the earlier implementa-
tion, which is now replaced by eflomal due to its better per-
formance.
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tiny architecture from Bogoychev et al. (2020).
The student’s resulting size has 16.9M param-
eters and occupies 65MB, 12.6 times smaller
than transformer-big and 3.8 times smaller than
transformer-base architectures.

Exporting The exporting step creates the final
student. First, the student is fine-tuned by emulat-
ing 8bit quantization during training to make the
model more robust. Then, the fine-tuned student
is quantized to 8 bits to further reduce its size. Fi-
nally, the export step which saves the model so it
is ready for deployment. On average, the exported
model translates 3119,3 words per second on a sin-
gle AMD MI250x GPU.

Evaluation The last step is to evaluate all of our
models trained (student, fine-tuned, quantized).
Evaluation is performed using sacreBLEU (Post,
2018), ChrF (Popović, 2015), and COMET met-
rics (Rei et al., 2020).

We can illustrate the pipeline steps for a given
configuration file as a Directed Acyclic Graph
(DAG). OpusDistillery automatically generates
the DAG. Figure 3 illustrates the final steps of
the pipeline before evaluation. When dealing with
multiple languages, the graphs become very com-
plex quickly, as there are so many steps involved.
A toolbox and workflow management system like
the one we are presenting in this work is very use-
ful for handling such convoluted procedures.

4 Experiments

To showcase the versatility and capabilities of the
presented pipeline, we conduct a series of exper-
iments. We train multilingual student models up
until the student training step, without exporting,
to showcase the impact of different components.
Specifically, we trained student models using the
complete pipeline and perform ablation studies by
excluding CE filtering, alignment, and both.

Languages Following Do and Lee (2023), we
perform our experiments focusing on selected lan-
guage groups from and into English. For each
group, we distill a student model from multiple
teachers. We test three language families paired
with English, each of them containing three lan-
guages and with diverse linguistic characteristics:

• Finno-Ugric languages (fiu):
Finnish (fi), Estonian (et), Hungarian (hu).

Figure 3: DAG of the OpusDistillery for the final
steps before evaluation.

• Romance languages (rom):
Catalan (ca), Spanish (es), Occitan (oc).

• East Slavic languages (zle):
Ukrainian (uk), Russian (ru), Belarussian
(be).

Data We use the parallel Tatoeba Translation
Challenge dataset, sampling up to 10 million sen-
tence pairs per language pair when available. Occ-
itan, being a low-resource language, had a smaller
dataset of approximately 200k sentences. We ap-
plied default cleaning and used the Flores-200 de-
velopment and test sets for evaluation.

Teacher models For each language pair, we se-
lected the best OPUS-MT teacher available using
the implemented feature of best teacher selection.
Each teacher model was also used as a backward
model for the opposite translation direction for CE
scoring. Their performance is reported in Table 1
for reference.

4.1 Results

Results are shown in Table 1. “Student” refers to
the student model trained with all the steps in the
pipeline, including CE filtering and guided align-
ment. Overall, student models generally perform
5 BLEU points lower than teacher models due to
their reduced capacity. However, our objective in
this work is to introduce the tool and demonstrate
its application. OpusDistillery will enable future
research to optimize multilingual student models
further.

Performance across student models was con-
sistent, with minimal variation. In some cases,
removing CE filtering produced better results,
though its overall impact was minimal. Students
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Finno-Ugric–English Romance–English East Slavic–English

et-en fi-en hu-en ca-en es-en oc-en be-en ru-en uk-en

Teacher 38.59 35.72 34.60 45.40 29.86 46.64 18.10 35.21 39.23
Type big-bi big-bi big-bi big-m2o big-m2o big-m2m big-m2o big-m2o big-m2o

Student 28.92 26.86 27.79 40.89 25.41 32.67 15.36 30.31 33.51
w/o CE-filtering 29.97 27.65 28.23 41.17 25.24 32.17 15.80 30.12 33.80

w/o Alignment 29.95 27.32 29.05 40.72 25.48 32.78 15.83 30.39 33.66
w/o CE & A 29.36 27.54 28.42 40.93 25.42 32.49 15.80 30.00 33.15

English–Finno-Ugric English–Romance English–East Slavic

en-et en-fi en-hu en-ca en-es en-oc en-be en-ru en-uk

Teacher 28.27 27.58 29.58 41.52 28.45 31.60 11.23 32.66 32.14
Type big-bi big-bi big-bi big-bi big-bi base-o2m big-o2m big-o2m big-o2m

Student 22.56 19.55 23.13 38.79 25.28 27.73 10.19 26.54 25.95
w/o CE-filtering 23.09 20.06 23.51 38.70 24.58 27.98 10.32 26.27 27.02

w/o Alignment 23.20 19.95 23.99 39.05 25.26 28.35 10.43 26.58 27.29
w/o CE & A 22.98 19.89 23.42 38.58 24.84 26.72 10.34 25.97 26.48

Table 1: Results of our distillation experiments in BLEU. We include the performance of the teacher as a
reference, as well as its size (transformer-big or transformer-base) and its multilinguality: bilingual (bi),
many-to-one languages (m2o), one-to-many (o2m) and many-to-many (m2m).

trained without guided alignment slightly outper-
formed the baseline. Omitting both CE filter-
ing and alignment resulted in comparable perfor-
mance, suggesting that these steps can be skipped
without significant quality loss while reducing the
number of pipeline steps.

5 Conclusions and Future Work

In this work, we have presented OpusDistillery, an
end-to-end pipeline to perform systematic multi-
lingual distillation of open NMT models. Through
our experiments, we demonstrated its effective-
ness and versatility by training English-centric
models for three distinct language groups using
the Tatoeba Challenge dataset. We explored the
individual contributions of the CE filtering and
guided alignment steps, revealing that simplifying
the pipeline can slightly enhance student model
performance.

OpusDistillery is open source and distributed
under a permissive license. We hope that our re-
search benefits the community by enabling them
to perform distillation of publicly available mod-
els and to contribute to the development of more
efficient and accessible language technologies.

In future work, we plan to extend the pipeline to
better accommodate multilingual scenarios by in-
tegrating additional tools, such as employing Bi-
cleanerAI (Zaragoza-Bernabeu et al., 2022) and
incorporating monolingual data, which is now not
implemented. Furthermore, we aim to explore

the use of Large Language Models (LLMs) to en-
hance performance. Additionally, we intend to im-
plement alternative distillation strategies, such as
word-level distillation (Kim and Rush, 2016).

Ethics Statement

With the goal of moving towards a greener NLP
field, the OpusDistillery pipeline automatically re-
ports GPU and energy usage. This allows us to
measure the carbon footprint used in this work.
The four main steps of the pipeline that use GPU
are listed below, together with their average GPU
hours, energy consumed (kWh), and GPU usage
(%):

• Translation: 10.37 h 15.17 kWh 86.74 %
• CE scoring: 0.57 h 0.98 kWh 78.27 %
• Training: 32.88 h 49.87 kWh 77.10 %
• Evaluation: 0.05 h 0.02 kWh 0.45 %

As expected, training accounts for the highest
energy consumption, while scoring and evaluation
require the least. The GPU usage of the evaluation
step is rather low, since the experiments were run
only using sacreBLEU. We anticipate that the re-
cent implementation of COMET will improve the
utilization of the GPU during evaluation, leading
to both a more efficient use of resources and a
more comprehensive performance assessment.
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A Detailed Overview of OpusDistillery Main Steps

Main Step Step Resource Optional Configurable

Data Processing Data Download CPU ✗ ✓
Data Cleaning CPU ✗ ✓

Synthetic Dataset
Generation

Teacher Model Download CPU ✗ ✓
Forward Translation GPU ✗ ✗
Backward Model Download CPU ✓ ✓
Cross-Entropy Scoring GPU ✓ ✗
Cross-Entropy Filtering CPU ✓ ✓

Tokenizer Training CPU ✗ ✓

Student Training
Alignment Extraction CPU ✓ ✗
Student Training GPU ✗ ✓

Exporting
Fine-tuning GPU ✓ ✓
Quantization CPU ✓ ✗
Export CPU ✓ ✗

Evaluation Evaluation GPU ✓ ✗

Table 2: Summary of OpusDistillery main steps. For each step, we report the compute resource used
(CPU or GPU), whether the step is optional, and whether it is configurable or hard-coded.
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Abstract
We present fast Neural Machine Trans-
lation models for 17 diverse languages,
developed using Sequence-level Knowl-
edge Distillation. Our selected languages
span multiple language families and
scripts, including low-resource languages.
The distilled models achieve comparable
performance while being 10x times faster
than transformer-base and 35x times faster
than transformer-big architectures. Our
experiments reveal that teacher model
quality and capacity strongly influence
the distillation success, as well as the
language script. We also explore the
effectiveness of multilingual students.
We release publicly our code and mod-
els in our Github repository: https:
//github.com/hplt-project/
bitextor-mt-models.

1 Introduction

Neural Machine Translation (NMT) has seen sig-
nificant advancements with the advent of Large
Language Models (LLMs; Zhu et al., 2024). Al-
though LLMs often perform exceptionally well
on high-resource languages, their performance
on low-resource languages lags behind (Stap and
Araabi, 2023; Kocmi et al., 2023; Robinson et al.,
2023). Nevertheless, recent advancements suggest
that this gap may be narrowing (Enis and Hopkins,
2024).

Despite their high quality performance, LLMs
come with substantial computational costs, requir-
ing significant amount of traning data, high-end
hardware and extensive energy consumption (Rae
et al., 2021). These limitations make LLMs un-
suitable for many real-world scenarios where re-
sources are constrained, such as on-device trans-
lation, low-latency requirements, or environments
with privacy concerns.

Teacher

src text

tgt text

tgt pred
Training dataset Inference

Distillation dataset

src text

tgt pred*
Student

Training

tgt pred

tgt pred

…

Figure 1: Conceptual overview of interpolated
Sequence-Level Knowledge Distillation.

The traditional sequence-to-sequence (seq2seq)
Transformer architecture (Vaswani et al., 2017),
though not as versatile as LLMs, offers consid-
erable advantages in terms of computational ef-
ficiency. These models can be optimized to run
faster, consume less memory, and require fewer
resources, making them a practical solution for
many NMT applications (Kim et al., 2019; Aji and
Heafield, 2020).

In this work, we leverage Knowledge Distilla-
tion (KD) (Hinton et al., 2015; Kim and Rush,
2016) to train compact seq2seq NMT models. KD
allows the transfer of knowledge from a large,
high-performing teacher model to a smaller, more
efficient student model.

We present fast NMT models for 17 diverse lan-
guages with English as the target language. The
selected languages vary widely in terms of script,
language family, and resource availability, includ-
ing low-resource languages like North Azerbaijani
and high-resource languages like Hindi.

In our experiments, we address the following
Research Questions (RQ): RQ1: How does the ca-
pacity gap affect the distillation quality?, RQ2: To
what extent does script influence the transfer of
knowledge? and RQ3: Can we train multilingual
students effectively?.
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2 Related Work

We use Sequence-level KD (Seq-KD, Kim and
Rush, 2016), which has which has proven to be
effective to do KD for NMT (Gumma et al., 2023;
Team et al., 2024). In Seq-KD, the teacher model
is used to forward-translate all the sentences in
the training data to create a distilled dataset. In
the interpolated Seq-KD variant, the teacher gen-
erates K-candidate translations, selecting the one
with the highest smoothed sentence BLEU (Chen
and Cherry, 2014) with the reference. Then, the
student model is trained on the synthetically gen-
erated data. Figure 1 illustrates this procedure. In
this way, the lightweight student retains much of
the teacher’s performance while being optimized
for speed and efficiency.

Several studies explore how to build compact
NMT models. With the motivation of testing the
time-efficiency of NMT systems, a shared task on
NMT efficiency was organized for several years
within the Workshop on Neural Generation and
Translation (Hayashi et al., 2019; Heafield et al.,
2020, 2021). Research has focused on various as-
pects, including compressing multilingual systems
(Tan et al., 2018), investigating different architec-
tures for student models (Bogoychev et al., 2020),
and understanding the effectiveness of KD (Zhou
et al., 2020). One widely adopted approach is
the thin and deep architecture (Gala et al., 2023;
Gumma et al., 2023), characterized by a deep en-
coder and a shallow decoder (Mohammadshahi
et al., 2022; Kasai et al., 2020), which has become
a standard for compressing NMT models. We fol-
low that approach in this work.

3 Methodology

Next, we describe the selected languages, datasets,
tools, and teacher and student architectures used
for our experiments.

Languages The 17 selected languages are listed
in Table 1. To highlight their diversity, we provide
the language family (spanning 13 distinct families)
and the script, representing seven different scripts:
Arabic (Arab), Latin (Latn), Hebrew (Hebr), De-
vangari (Deva), Japanese (Jpan), Cyrillic (Cyrl),
Hangul (Hang). We also include the taxonomy
class proposed by Joshi et al. (2020) to classify
languages according to their available resources.
It ranges from 1 (resources for that language are
limited) to 5 (rich-resource languages).

Language Family Class Data (M)

Arabic (arb Arab) Semitic 5 10.44
Basque (eus Latn) Isolate 4 6.40
Catalan (cat Latn) Romance 4 29.23
Galician (glg Latn) Romance 3 7.78
Hebrew (heb Hebr) Semitic 3 28.90
Hindi (hin Deva) Indo-Iranian 4 13.62
Japanese (jpn Jpan) Japonic 5 15.81
Kazakh (kaz Cyrl) Turkic 3 21.28
Korean (kor Hang) Koreanic 4 7.56
Latvian (lvs Latn) Baltic 3 24.73
Lithuanian (lit Latn) Baltic 3 34.70
Slovak (slk Latn) Slavic 3 53.66
Swahili (swh Latn) Bantu 2 6.27
Malay (zsm Latn) Austronesian 3 42.65
N. Azerbaijani (azj Latn) Turkic 1 44.46
N. Uzbek (uzn Latn) Turkic 3 17.55
Vietnamese (vie Latn) Austro-Asiatic 4 2.83

Table 1: Overview of the selected languages, in-
cluding their script, language family, class as de-
fined by Joshi et al. (2020) and training data (in
millions of sentences).

Datasets We use the Tatoeba Challenge dataset,
a compilation of all datasets available in OPUS
(Tiedemann et al., 2024), de-duplicated and shuf-
fled. Other datasets include: MaCoCu (Bañón
et al., 2022, 2023) for Catalan; CLUVI (Uni-
versidade de Vigo, 2012) for Galician; SAWA
(De Pauw et al., 2009) and Gourmet (Sánchez-
Martı́nez et al., 2020) for Swahili. We use a com-
bination of OpusCleaner (Bogoychev et al., 2023)
and OpusFilter (Aulamo et al., 2020) for cleaning
the corpora. We list the clean training data sizes
for each language pair in Table 1. For development
and evaluation, we use Flores-200 (Goyal et al.,
2022).

Tools We train our models with interpolated
Seq-KD with three different tools: we follow
recipes from the Bergamot project1, the Firefox
Translations training pipeline2 and its extended
multilingual version, OpusDistillery (de Gibert
et al., 2025). All tools perform a forward trans-
lation of the training data to create the distilled
dataset, generating an 8-best list of candidate
translations, as illustrated in Figure 1. Using
the distilled dataset, we train a new, shared 32k
subword vocabulary with SentencePiece (Kudo
and Richardson, 2018), alignments with fast align
(Dyer et al., 2013) and lexical shortlists for faster

1https://github.com/browsermt/
students/tree/master/train-student

2https://github.com/mozilla/
firefox-translations-training
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decoding with extract lex3. Then, we train the
student with guided alignment using the Marian
NMT toolkit (Junczys-Dowmunt et al., 2018). Fi-
nally, we quantize the student models using an 8-
bit integer representation, which significantly re-
duces memory usage while maintaining transla-
tion quality.

OPUS-MT teacher models All teachers are
OPUS-MT transformers (tf). We use one single
teacher for each student model. Five teachers are
tf-base (∼70M parameters) while the remaining
are tf-big (∼209M params). We show the size
of each teacher in Table 3. We train our own tf-
big teachers for Galician and Swahili. For the
other languages, we use the OPUS-MT dashboard
(Tiedemann and De Gibert, 2023) to choose the
best available teacher.

Tiny student models Our student models adopt
the tiny architecture proposed by Bogoychev et al.
(2020), consisting of a transformer encoder with
6 layers and a lightweight RNN-based decoder
with the Simpler Simple Recurrent Unit (SSRU,
Kim et al., 2019) with 2 layers. In a pilot study,
we initially trained both small and tiny student
models, with a detailed comparison of their archi-
tectures provided in Table 2. Results from this
study showed that the translation quality loss in
tiny models was minimal compared to the small
models. Consequently, we opted to focus exclu-
sively on the tiny models, which offer substantial
inference speedups. After training, we quantize
the model. On average, the tiny architecture
is 10x times faster than tf-base and 35x times
faster than tf-big architectures.

We train bilingual student models for all lan-
guage pairs except for the Baltic and Turkic fami-
lies, for which we train multilingual many-to-one
students.

Evaluation We use COMET4 (Rei et al., 2020)
and spBLEU (Goyal et al., 2022) for evalua-
tion. COMET is a neural metric that demonstrates
the highest correlation with human judgments in
translation quality assessment. It covers all tested
languages. Additionally, we use SacreBleu (Post,
2018) to compute spBLEU, which refers to the
BLEU (Papineni et al., 2002) metric on the tok-
enized text with SentencePiece.

3https://github.com/marian-nmt/
extract-lex

4We use the model Unbabel/wmt22-comet-da.

Teachers Students
big base small tiny

Nenc 6 6 6 6
Ndec 6 6 2 2
demb 1024 512 512 256
dff 4096 2048 2048 1536
h 16 8 8 8

Params (M) 213 65 39 17
Size (MB) 798 277 42 17
Speed (tok/s) 814.8 2758.5 18649.5 28854.7

Table 2: Comparison of tf architectures used for
teachers (big, base) and students (small, tiny).
The table lists the number of encoder and decoder
layers (Nenc and Ndec), embedding dimensions
(demb), feed-forward dimensions (dff ), number of
attention heads (h), parameters in millions, model
size in MB, and decoding speed in tokens per sec-
ond. Speed values are averaged across all models
on 32 CPU cores.

4 Results

Tables 3 and 4 summarize the results of our distil-
lation experiments in COMET scores for bilingual
and multilingual settings, respectively. We report
spBLEU scores in Tables 5 and 6 in the Appendix.

On average, the students exhibit a drop of 2.9
COMET points compared to their teachers. In
general, we observe that our students maintain
competitive performance, with high scores for sev-
eral languages, including Catalan, Galician, He-
brew, Slovak, and Malay. These results indicate
that, despite the reduction in model size and com-
plexity, these students still capture a significant
portion of the teacher’s knowledge. However,
for languages like Arabic, Korean and Japanese,
the scores drop significantly. For Japanese, Ta-
ble 5 reveals that the teacher model performs the
worst among all selected languages, with a sp-
BLEU score of 19.2. This suggests that a low-
performing teacher is not capable of knowledge
transfer. Therefore, we exclude Japanese from
our analysis in the next section.

We expect that our students do not outperform
their teachers, due to the capacity limitations of the
students when compared to their larger teachers,
known as the capacity gap problem (Jafari et al.,
2021). However, our Catalan student achieves a
COMET score 1.1 point higher than its teacher,
correlating with a 90% human agreement that it
outputs better translations (Kocmi et al., 2024).
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Language ara cat eus glg heb hin jpn kor slk swh vie zsm

Teacher
Params (M) 76.4 69.4 235.4 209.1 238.1 75.9 77.5 209.2 235.5 209.1 63.9 237.1
Performance 83.7 84.3 83.8 87.6 86.2 81.9 80.3 85.3 85.1 82.9 79.2 85.6

Student
Compression 4.5 4.1 13.9 12.4 14.1 4.5 4.6 12.4 13.9 12.4 3.8 14.0
Performance 76.7 85.4 80.6 84.4 85.2 81.8 62.8 78.9 85.2 79.3 79.8 85.6

∆ -7.0 +1.1 -3.3 -3.2 -1.0 -0.1 -17.6 -6.4 +0.1 -3.6 +0.6 +0.1

Table 3: COMET score results of our bilingual distillation experiments. For the teacher models, we
report parameters in millions and performance. We provide results for the students, as well as their
compression ratio. ∆ shows the difference in COMET scores with the teacher.

Family Baltic Turkic
Language lit lvs azn kaz uzj

Teacher
Params (M) 236.9 236.9 238.8 238.8 238.8

Performance 83.5 84.0 82.0 81.7 81.7

Student
Compression 14.02 14.02 14.13 14.13 14.13
Performance 82.7 83.7 80.2 78.5 78.9

∆ -0.8 -0.3 -1.8 -3.2 -2.7

Table 4: COMET score results of our multilingual
distillation experiments.

We also find an improved score for Vietnamese,
Slovak and Malay, though these improvements
were less significant.

5 Discussion

In this section, we address the research questions
(RQs) posed in the introduction based on the re-
sults of our distillation experiments.

RQ1: How does the capacity gap between the
teacher and student models affect the distillation
quality? The capacity gap between the teacher and
student models is a critical factor in distillation
quality. We find that larger teachers (tf-big) lead to
a more significant performance drop, with an aver-
age COMET reduction of 2.2 compared to tf-base
teachers, which exhibit an average of 1.1 COMET.
This directly correlates with the capacity gap
problem: the smaller the gap in model size, the
better the distillation. The compression ratios for
tf-big teachers are 3.2 times larger, underscoring
the complexity of transferring knowledge from a
high-capacity teacher to a smaller student.

RQ2: To what extent does script influence the
transfer of knowledge? We compare Latin vs.
non-Latin scripts because English (the target lan-
guage in all models) is in the Latin script. Stu-
dents trained for Latin script languages have an
average of 1.2 COMET, while non-Latin script
languages have a similar average of 3.5 COMET.
This difference indicates that script plays a role

in the transfer of knowledge during distillation.
With a fixed vocabulary size, a shared script be-
tween source and target lets SentencePiece build
longer, more semantically rich subwords. In con-
trast, non-Latin script languages yield shorter sub-
words, making knowledge transfer more difficult
and reducing translation quality.

RQ3: Can we train multilingual students effec-
tively? The student models for the language fami-
lies in Table 4 maintain relatively high scores. For
example, Lithuanian and Latvian demonstrate that
multilingual training can compensate for some of
the limitations of model compression, particularly
for closely related languages. The Turkic fam-
ily has a combination of scripts that may hinder
knowledge transfer. Even with the reduced size
of the tiny model, we are able to fit multiple lan-
guages into a single student.

6 Conclusions and Future Work

In this paper, we introduced fast MT models for
17 diverse languages, leveraging interpolated Seq-
KD to compress large teacher models into more ef-
ficient students. Our experiments reveal that low-
performing teachers struggle to transfer knowl-
edge effectively. We also demonstrate that the ca-
pacity gap between teacher and student models, as
well as language script, significantly affect distil-
lation performance. Additionally, our results high-
light the effectiveness of multilingual distillation
for related languages.

For future work, we plan to develop student
models for additional languages. We also aim to
expand our approach by distilling from a broader
range of teacher models available on the Hugging-
Face Hub5 and to further investigate cross-script
knowledge transfer.

5https://huggingface.co/
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Vázquez, and Sami Virpioja. 2024. Democratizing
neural machine translation with opus-mt. Language
Resources and Evaluation, 58(2):713–755.

Jörg Tiedemann and Ona De Gibert. 2023. The opus-
mt dashboard–a toolkit for a systematic evaluation
of open machine translation models. In Proceed-
ings of the 61st Annual Meeting of the Association
for Computational Linguistics (Volume 3: System
Demonstrations), pages 315–327.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, volume 30.

Grupo de investigación TALG Universidade de Vigo.
2012. Cluvi parallel corpus.

Chunting Zhou, Jiatao Gu, and Graham Neubig.
2020. Understanding knowledge distillation in non-
autoregressive machine translation. In International
Conference on Learning Representations.

Wenhao Zhu, Hongyi Liu, Qingxiu Dong, Jingjing Xu,
Shujian Huang, Lingpeng Kong, Jiajun Chen, and
Lei Li. 2024. Multilingual machine translation with
large language models: Empirical results and anal-
ysis. In Findings of the Association for Computa-
tional Linguistics: NAACL 2024, pages 2765–2781.

215



A spBLEU results

Language ara cat eus glg heb hin jpn kor slk swh vie zsm

Teacher
Params (M) 76.4 69.4 235.4 209.1 238.1 75.9 77.5 209.2 235.5 209.1 63.9 237.1
Performance 37.6 45.1 33.6 44.5 46.5 32.1 19.2 30.1 43.2 41.0 28.7 44.4

Student
Compression 4.5 4.1 13.9 12.4 14.1 4.5 4.6 12.4 13.9 12.4 3.8 14.0
Performance 29.7 43.3 26.7 39.5 41.2 29.8 7.4 22.2 38.4 35.4 29.9 41.4

∆ -7.9 -1.8 -6.9 -5.0 -5.3 -2.3 -11.8 -7.9 -4.8 -5.6 +1.2 -3.0

Table 5: spBLEU score results of our bilingual distillation experiments. For the teacher models, we
report parameters in millions and performance. We provide results for the students, as well as their
compression ratio. ∆ shows the difference in spBLEU scores with the teacher.

Family Baltic Turkic
Language lit lvs azn kaz uzj

Teacher
Params (M) 236.9 236.9 238.8 238.8 238.8

Performance 34.0 36.2 24.2 30.0 32.0

Student
Compression 14.02 14.02 14.13 14.13 14.13
Performance 31.3 32.9 20.2 24.3 26.1

∆ -2.9 -3.3 -4.0 -5.7 -5.9

Table 6: spBLEU score results of our multilingual distillation experiments.
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Abstract

This paper explores the use of various lin-
guistic features to develop models for au-
tomatic classification of language profi-
ciency on the CEFR scale for Icelandic, a
low-resourced and morphologically com-
plex language. We train two classifiers to
assess skill level of learner texts. One is
used as a baseline and takes in the origi-
nal unaltered text written by a learner and
uses predominantly surface features to as-
sess the level. The other uses both sur-
face and other morphological and lexical
features, as well as context vectors from
transformer (IceBERT). It takes in both the
original and corrected versions of the text
and takes into account errors/deviation of
the original texts compared to the cor-
rected versions. Both classifiers show
promising results, with baseline models
achieving between 62.2-67.1% accuracy
and dual-version between 75-80.3%.

1 Introduction

Language skill level assessment is a critical com-
ponent in language education and testing, and ac-
curate and scalable methods for assessing skill
levels can facilitate personalized learning, en-
hance testing systems, and contribute to linguis-
tic research. However, automating this process
presents significant challenges, especially for low-
resourced languages such as Icelandic. In this pa-
per, we present findings from an ongoing study fo-
cused on using linguistic features to train models
for automatic skill level assessment in Icelandic as
a second language (L2) texts on the CEFR scale,
a widely adopted framework in language educa-
tion. By focusing on Icelandic we aim to con-
tribute to the growing body of work on underrep-
resented languages in natural language processing

(NLP) and highlight the importance of broadening
research efforts beyond high-resourced languages.

The Icelandic L2 Error Corpus (IceL2EC), pub-
lished in 2022 (Ingason et al., 2022), has served
as a foundational dataset for analyzing features
associated with the CEFR skill level. In partic-
ular, manually corrected text versions and error
annotation have shown a high value in predict-
ing proficiency levels through machine learning
approaches (Glišić, 2023). To explore automatic
assessment further, this study builds on IceL2EC
and includes additional unpublished texts sourced
from the University of Iceland. Using this com-
bined dataset, several models were trained to test
the efficacy of various features for the assessment
of the CEFR skill level. We present the results of
baseline models using K-nearest neighbors (KNN)
algorithm which uses the learners’ original texts
and basic linguistic features, and “dual-version”
models (logistic regression - LR) which integrate
the corrected versions of the data, and more com-
plex features.

Key research questions addressed in this study
include: (1) How accurately can linguistic fea-
tures predict writing skill levels in Icelandic L2
texts, and (2) To what extent do corrected texts
and advanced models like IceBERT (Snæbjarnar-
son et al., 2022) contribute to improved classifi-
cation performance? We incorporate surface fea-
tures, morphological and lexical elements, and
IceBERT-derived context vectors to provide a
comprehensive approach to automatic skill level
assessment.

The paper is organized as follows: Section 2
provides a background on L2 Icelandic, the CEFR
scale, and automatic skill level detection. Sections
3 and 4 detail our models and evaluation metrics,
while Section 5 presents the experimental results.
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2 Background

Icelandic stands out among lesser spoken lan-
guages for its relatively robust digital resources
(Nikulásdóttir et al., 2020; Nikulásdóttir et al.,
2022). However, the resources available for Ice-
landic as a learner language (L2) are sparse mainly
due to L2 Icelandic being a relatively recent phe-
nomenon and collecting written data for L2 Ice-
landic is challenging. However, in recent years the
number of foreign nationals in Iceland has surged.
In the mid-1990s, only 2% of Iceland’s popula-
tion were first-generation immigrants; by early
2023, this number reached approximately 17.3%.
(Hagstofa Íslands, 2023). This demographic shift
has heightened the importance of developing re-
sources for L2 Icelandic. An essential aspect of
teaching and assessing a second language is mea-
suring learner skill level. The CEFR standardizes
skill level assessment with a six-level scale (A1
to C2), focusing on communicative competencies
rather than specific linguistic structures (Council
of Europe, 2018). IceL2EC, developed under a
government-sponsored language technology ini-
tiative (see Nikulásdóttir et al., 2020), is the pri-
mary resource available for investigating CEFR-
labeled learner errors and interlanguage features;
data for a new learner corpus is currently being
collected to build on these foundations.

Automatic classification of skill level in written
texts remains challenging due to the subjective na-
ture of language proficiency scales like the CEFR.
A critical component in skill assessment involves
the selection of linguistic features that effectively
capture learners’ proficiency. Thus, with learner
corpora and error tagging, researchers can iden-
tify relevant linguistic patterns that correspond to
specific CEFR levels. In English, for example,
accuracy rates for automatic CEFR classification
range from 62.7% to 83.8% (Kerz et al., 2021).
Using features derived from lexical, morpholog-
ical, and syntactic patterns, classifiers like logis-
tic regression and more advanced approaches have
achieved promising results in multilingual profi-
ciency assessment tasks, as seen in studies with L2
German, Swedish, and Estonian (Kerz et al., 2021;
Vajjala and Lõo, 2014). Importantly, model evalu-
ation metrics must consider the proximity between
CEFR levels, recognizing that misclassifications
between adjacent levels (e.g., C1 and B2) are less
severe than those between distant levels (e.g., C1
and A1). Additionally, language proficiency as-

sessment carries significant implications, as its re-
sults can influence the learner’s educational and
professional opportunities. In this context, pre-
dicting a higher level is generally less harmful to
the learner than predicting a lower one.

3 Model training

This study establishes preliminary models for au-
tomated skill level classification. Baseline mod-
els, utilizing only original texts, are compared with
dual-version models that use both original and
corrected texts. Feature-based approaches yield
high prediction accuracy, especially for morpho-
logically rich languages (see Weiss et al., 2021,
Reynolds, 2016), and this study combines sur-
face, morphologic, and lexical features, as sug-
gested in recent research (see Pilán and Volod-
ina, 2018, Yekrangi, 2022, Curto et al., 2015), as
well as combining context vectors from transform-
ers and perplexity score, typically used to evalu-
ate the performance of language models. For Ice-
landic proficiency classification, we adapt repre-
sentative models for these approaches, whose es-
tablished performance in other languages provides
additional context for the results we observe in
Icelandic. In this section we introduce the dataset,
models and features selected for our task.

3.1 Dataset

Training data consists of IceL2EC, the first pub-
lished corpus of L2 Icelandic which has 101 stu-
dent essays categorized by skill level, manually
corrected and annotated for errors. Initial CEFR
level labels were made based on the students’
academic progress and assessment by a human
annotator (Glišić and Ingason, 2022). To vali-
date these levels, inter-annotator agreement was
reached with five experienced Icelandic L2 in-
structors, and the final level assignments reflect
the averaged ratings from this team. The corpus
includes writing assignments of varying lengths,
from 150–200 word beginner texts to several thou-
sand words advanced essays, leading to an uneven
distribution of data across skill levels. To cre-
ate a more balanced dataset for model training,
83 additional unpublished texts from the Practi-
cal Diploma Program in Icelandic (A1/A2) were
added. Additionally, the texts were cleaned by
removing all non-Icelandic sentences, and longer
texts (in particular full BA and MA theses) were
chunked into 40–50 sentences segments to fit
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BERT maximum token length, resulting in a to-
tal of 276 texts with a more even training support
across levels.

Level Texts Total Words Sentences
A1 73 7,820 913
A2 38 10,204 913
B1 37 21,960 1,229
B2 31 22,457 1,052
C 97 84,730 3,873

Table 1: Distribution of data for each level

Given that the ongoing project on Icelandic
CEFR alignment currently emphasizes levels A1
through B2, the advanced levels C1 and C2 were
merged into a single advanced category, labeled
"C." The final dataset thus spans a five-level scale,
with A1 and A2 representing beginner, B1 and B2
intermediate, and C advanced levels, as depicted
in Table 1.

3.2 Feature selection for baseline

Baseline models used only features that can be
computed from shallow analysis of the text. Min-
imal feature sets were selected from those sug-
gested by (Yekrangi, 2022), inspired by older for-
mulas for assessing text complexity. The total
length of the text, along with features like type-
token ratio that are considered excessively influ-
enced by it according to consensus in cross lin-
guistic literature (McCarthy and Jarvis, 2010),
were excluded from baseline models as con-
founds.

Baseline-Minimal uses two features: average
word length, the number of letters per token; and
HD-D, the hypergeometric distribution of lexical
(word) diversity, an alternative to type-token ratio
(McCarthy and Jarvis, 2010).

Baseline-Lemma requires lemmatisation (stem-
ming) (Ingason et al., 2008) and a frequency list
of the language’s vocabulary (Arnardóttir and In-
gason, 2023), but no further language process-
ing technology or resources. PoS-tagging and
lemmatization for all models tested was conducted
with ABL Tagger (Steingrímsson et al., 2019) and
the Nefnir lemmatizer (Ingólfsdóttir et al., 2019).
Some features expect CEFR aligned vocabularies,
but lacking one for Icelandic, this implementation
assigns the 1000 most frequent words to A1, and
so on, following the teaching resource RÚV Orð1.

1https://ord.ruv.is/

The features included are: average word length
and HD-D as in Baseline-Minimal; ATTR; CLI;
average vocabulary level of tokens’ lemmas, ad-
vanced vocabulary percentage, the percentage of
the text’s lemmas not in CEFR A or B invento-
ries; and Dale-Chall readability score (DCRS), a
formula combining the proportion of "difficult" to-
kens (lemmas not in A-B1) with the average num-
ber of words per sentence.

3.3 Feature selection for dual version models

The dual-version models incorporate two versions
of the data — original and corrected — and in-
clude surface features, morphological features de-
rived from PoS-tagging and lemmatization, lex-
ical diversity metrics (word frequencies, tf-idf
weighted words), and NLP-based features like
contextual embeddings from transformers and text
perplexity extracted from originals. Key features
that highlight differences between text versions
are cosine similarity and average error count per
sentence.

Dual-ling uses linguistic features primarily in-
spired by Pilán and Volodina’s feature set (2018),
with several adaptations. Key features include av-
erage sentence length, percentage of long words
(over six characters), average error counts per
sentence, and cosine similarity between original
and corrected texts; morphological features in-
clude proportions of pronouns, past participles,
conjunctions, articles, and subjunctive forms; lexi-
cal features include average lemma count, average
vocabulary level of lemmas, and tf-idf weighted
terms for uni-, bi-, and trigrams in both original
text and PoS tags.

Dual-expand is supplemented by incorporat-
ing IceBERT, an Icelandic language model based
on the BERT architecture, which estimates word
probability given its context (Snæbjarnarson et al.,
2022). The IceBERT-igc feature selection pipeline
was applied to derive embeddings and extract rel-
evant features from the dataset, and the model
was used to calculate the perplexity of the origi-
nal texts.

4 Evaluation

Both baseline and dual-version models were tested
on several algorithms, including linear regression,
SVM, KNN, LR, and MLP. After initial testing, K-
nearest neighbors (K=10) was viewed for baseline
evaluations, while logistic regression was selected
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for the dual-version evaluations. Each model and
feature set was assessed using an 80/20 train-test
split, with stratified sampling. It was repeated
1000 times with different random splits, and the
reported metrics represent averages of these runs.
Accuracy, as the percentage of correct classifi-
cations, is sensitive to data distribution and may
overlook false positives, disproportionately affect-
ing smaller classes. Additionally, accuracy does
not account for the “distance of prediction,” where
predicting C1 instead of B2, for example, is a less
severe error than predicting A1 instead of B2. For
a more comprehensive evaluation, F1 scores were
also calculated to provide a balance between pre-
cision and recall. Alongside exact accuracy, we
assessed adjacent accuracy, i.e. also viewing pre-
dictions within one level above or below the true
level (e.g., A2 predicted as either A1, A2, or B1)
as correct. This metric reflects the CEFR scale’s
flexibility and the frequent disagreements between
human evaluators.

5 Results

Baseline models showed varied performance,
with the highest exact accuracy achieved by the
Baseline-Lemma KNN model, which recorded
67.1% exact accuracy and 89.7% with adjacent ac-
curacy. Interestingly, the linear regression model,
although performing lower on exact matches at
63.5%, had the highest adjacent accuracy among
all models, achieving 97.6%. This suggests that
while linear regression may struggle with precise
classification, it is particularly effective at cap-
turing a close approximation to the true level.
All tested models varied in performance between
CEFR levels, with levels A1 and C showing better
performance across the board, as seen in Tables 2
and 3.

Class Precision Recall F1 Support
A1 0.79 0.97 0.87 15
A2 0.59 0.36 0.43 8
B1 0.33 0.30 0.30 7
B2 0.42 0.23 0.28 6
C 0.75 0.84 0.79 20

Table 2: Average Performance Statistics for the
Baseline-Lemma KNN Model

Table 4 presents a comparative overview of the
average accuracy (exact and adjacent) across mod-
els. The Dual-Ling model, which combines orig-

Class Precision Recall F1 Support
A1 0.89 1.00 0.94 16
A2 0.75 0.50 0.60 6
B1 0.78 0.70 0.74 10
B2 1.00 0.11 0.20 9
C 0.62 1.00 0.77 15

Table 3: Average Performance Statistics for Dual-
expand LR Model

inal and corrected text features without IceBERT
embeddings, achieved the highest exact accuracy
at 80.3% and 96.4% when including the one-level
deviation. In addition, the introduction of lexi-
cal features, especially tf-idf weights, notably im-
proved the models’ performance, with tf-idf for
PoS tags alone contributing an average 4% boost
in accuracy.

Model Exact(%) Adjacent(%)
Baseline-Minimal 62.2 85.9
Baseline-Lemma 67.1 89.7
Dual-Ling 80.3 96.4
Dual-Expand 75.0 94.6

Table 4: Comparative accuracy of KNN and LR
models, exact and adjacent

6 Discussion

Findings from this study show that baseline mod-
els can achieve moderate classification accuracy,
with the Baseline-Lemma KNN model reaching
the highest baseline performance (67.1% exact,
89.7% adjacent). Models performed best at A1
and C levels, likely due to both their highest data
support as well as distinctiveness, while B1 and
B2 had lower F1 scores, reflecting their similarity
to adjacent levels and greater classification diffi-
culty. This level of performance aligns with accu-
racy rates reported for other languages, suggesting
that even simple feature sets can yield effective re-
sults for Icelandic, despite the limited resources
available for L2. We also note that these results
are robust to variation in the feature set, as e.g.
other two-feature models with different lexical di-
versity measures in place of HD-D perform about
as well as Baseline-Minimal, without clear prefer-
ence among a few reasonable alternatives at least
within present statistical power.

Enhanced models using dual versions and
more sophisticated linguistic features outper-
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formed baseline models, with the exception of
the linear regression baseline model’s strong ad-
jacent accuracy (97.6%). The Dual-ling model
demonstrated the highest exact accuracy at 80.3%
and 96.4% for adjacent. This supports the hy-
pothesis that including corrected versions can im-
prove classifier accuracy by providing insights
into corrective changes that reveal interlanguage
patterns. Additionally, incorporating lexical fea-
tures, specifically tf-idf weights for both lexical
terms and PoS tags, proved influential in boost-
ing accuracy, underscoring the importance of lex-
ical diversity and usage patterns in prediction.
The absence of IceBERT embeddings in the top-
performing Dual-ling model suggests that raw
contextual embeddings may not be essential for
achieving strong performance in this task. How-
ever, it remains a question for future research
whether using IceBERT for classification or ex-
tracting embeddings comparatively could improve
results in a more balanced dataset or with a larger
corpus.

7 Conclusion

We have demonstrated that integrating surface and
deeper linguistic features is notably effective in
skill level classification, showing that a blend of
lexical, morphological, and contextual data can
meaningfully reflect learner proficiency. We found
that baseline models performed moderately well,
with the Baseline-Lemma KNN model achieving
the highest exact accuracy (67.1%) and 89.7%
when adjacent accuracy was considered. The
Dual-Ling model, relying on both original and
corrected text features, achieved the highest over-
all performance with 80.3% exact and 96.4% ad-
jacent accuracy. These findings have significant
implications for future automated tools assessing
Icelandic learners’ skill levels. However, a chal-
lenge with the CEFR lies in its broad descrip-
tors, which lack specific grammatical and lexi-
cal competencies for each level, making it diffi-
cult to map concrete linguistic features directly
to skill levels. The forthcoming Icelandic learner
corpus, specifically designed for skill level anal-
ysis with balanced data, marks an important step
forward. It promises to provide an empirically
grounded dataset for further development of au-
tomated tools, enabling more accurate skill level
assessments.
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Abstract

Current language models (LMs) mostly
exploit subwords as input units based on
statistical co-occurrences of characters.
Adjacently, previous work has shown
that modeling morphemes can aid perfor-
mance for Natural Language Processing
(NLP) models. However, morphemes
are challenging to obtain as there is no
annotated data in most languages. In this
work, we release a wide-coverage Danish
morphological segmentation evaluation
set. We evaluate a range of unsuper-
vised token segmenters and evaluate the
downstream effect of using morphemes
as input units for transformer-based LMs.
Our results show that popular subword
algorithms perform poorly on this task,
scoring at most an F1 of 57.6 compared to
68.0 for an unsupervised morphological
segmenter (Morfessor). Furthermore,
evaluate a range of segmenters on the task
of language modeling.1

1 Introduction

Although there is no exact consensus on the defi-
nition of morphemes (e.g. Nida, 1948; Bolinger,
1948), they are commonly described as the
smallest meaning-carrying units in natural lan-
guage (Sinclair, 1996). Morphemes are useful for
linguistic analysis, language understanding, lan-
guage learning and potentially as input units for
NLP models. Traditionally, characters or words
were used as inputs for NLP models, but contextu-
alized Language Models (LMs) popularized sub-
words (Devlin et al., 2019), which are often based
on a trained vocabulary obtained with statistical
methods. Morphemes, however, are a promising

1Data and code are available on https:
//bitbucket.org/robvanderg/morsed

Input: frakkeskåner lærte

MorSeD: frakke-skån-er lær-te

TinyBERT: fra-kk-es-kan-er l-æ-rte
BPE: frakke-skå-ner lærte
WordPiece: fra-kke-sk-åne-r lærte
Unigram: fra-kke-skån-er lærte
Morfessor: frakke-skån-er lært-e

Figure 1: Two examples from our dataset, with the
input words, gold morpheme annotation (morsed),
and the outputs of: a baseline English language
model segmenter (TinyBERT), three Danish sta-
tistical segmenters, and a Danish unsupervised
morphological segmenter (Morfessor).

alternative as they are of similar granularity but
are linguistically motivated. In NLP, morphemes
have been successfully used in machine transla-
tion models (Clifton and Sarkar, 2011; Popović,
2012), RNN LMs (Blevins and Zettlemoyer, 2019;
Schwartz et al., 2020), for static word embed-
dings (Üstün et al., 2018), and as an auxiliary task
in character-level models (Matthews et al., 2018).

Although there have been large multilingual
benchmarking efforts for morphological tag-
ging (Zeman et al., 2018) and reinflection (Cot-
terell et al., 2018), data for morphological segmen-
tation is more scarce, Especially for mid-resource
languages, like Danish (Joshi et al., 2020). There-
fore, we create a small yet high-coverage bench-
mark to evaluate unsupervised segmenters for
Danish morphological segmentation and provide
an extensive evaluation of existing models.

There has been some work that incorporating
morphemes as input to LMs. For English, Hof-
mann et al. (2021) showed that derivational seg-
mentation aids LM interpretation of complex
words, and Bostrom and Durrett (2020) showed
that using units that closer resemble morphemes
improves language modeling (although the mor-
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TYPE DESCRIPTION

Root Morphemes The root of a word is its stem, the shortest meaning-bearing part. A root is also called a free
morpheme, as it makes sense on its own and often has a concrete meaning.

Compounds New words in Danish can be formed by combining existing words, creating new meanings.
These are compound words and are considered complex. Many compounds are formed solely
from root morphemes, which are often nouns, but also adverbs and adjectives.

Compounds with Linking Some roots in compound words are connected using linking letters, commonly ”-e” and ”-s.”
Linking letters are often used when the first root is a verb.

Prefixes A prefix is a derivative added to the beginning of a word, altering its meaning but not its word
class. Prefixes cannot form words on their own.

Suffixes A suffix is also a derivative, added to the end of a word, typically changing its word class. Like
prefixes, they cannot form words on their own.

Inflections Inflectional morphemes are mainly associated with nouns, verbs, and adjectives. They add in-
formation such as gender, definiteness, tense, and mood, but do not form words independently.

Table 1: Description of each type of morphological segmentation we use in our study.

phemes are of relatively low accuracy). Lim-
isiewicz et al. (2024) use morphemes in a multi-
lingual LM. They transforms unsupervised mor-
phemes to byte sequences which are used as in-
put sequence to an LM, but they do not evaluate
the quality of the morphemes. Our work differs
by focusing on Danish, including a wider range of
morphemes, evaluating more segmenters, evaluat-
ing morpheme performance, and obtaining inputs
closer to true morphemes.

Our contributions are: 1 We present
MORSED, an evaluation dataset for Dan-
ish morphological segmentation, including
morpheme-level categories and labels. 2 We
evaluate various segmenters on the task of mor-
phological segmentation: 3 subword algorithms
and an unsupervised morphological segmenter.
3 We examine the impact of training data and

vocabulary size on tokenizers by training them
on 11 different data sources. 4 We assess our
tokenizers for language model training using
small discriminative transformer-based models.

2 MORSED

Here, we introduce MORSED, to the best of
knowledge the first publicly available dataset an-
notated for morphological segmentation of Dan-
ish. We follow the guidelines and categories de-
fined in Jensen (2021). Our main annotator (au-
thor of Jensen (2021)) has 35 years of experience
as a Danish teacher, with a degree in Teaching
and a postgraduate diploma in Adult Literacy Ed-
ucation. The dataset contains 800 words.2 The

2Morphological segmentation/labeling datasets are typi-
cally smaller than other NLP datasets, even for English. We

words were selected by our main annotator, focus-
ing on diversity and good coverage for each cat-
egory. In Table 1, we describe each type of mor-
phological segmentation.

A second native Danish annotator without a
linguistic background annotated 300 words from
MORSED by following the same guidelines.
Since inter-annotator scores (e.g., Cohen’s Kappa)
are challenging to compute for segmentation tasks,
we use F1 score on the morpheme level for com-
parison. The resulting F1 is 0.991, indicating well-
defined guidelines and a clear task definition.

3 Setup

Segmentation Methods. We adopt (1)
BPE (Shibata et al., 1999), which merges
frequent character pairs into subwords until
a fixed vocabulary size is reached; (2) Word-
Piece (Sennrich et al., 2016), which iteratively
builds subwords based on likelihood, optimizing
for unseen words; (3) Unigram (Kudo, 2018),
which applies a probabilistic model to select the
best subword units from an initial large set; and
(4) Morfessor (Virpioja et al., 2013), which uses
methods for unsupervised learning to perform
morphological segmentation. We compare these
segmenters to the Leave-As-Is (LAI) baseline,
which simply returns the word unchanged.

Raw Text Data. For training the segmenters and
the LMs, we use raw text data. We collect data
from 8 different resources (Table 2). We filter the

believe that due to the diversity of selected words and the
relatively morphological simplicity of Danish, the variety of
phenomena within each category is well-represented in our
data.
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DATASET DOMAIN SOURCE

Bookshop Books Tiedemann (2012)
CC-100 Webscrape Wenzek et al. (2020)
CulturaX Webscrape Nguyen et al. (2023)
Gigaword Mixed Strømberg-Derczynski et al. (2021)
OpenSubtitles5 Subtitles Lison and Tiedemann (2016)
Reddit Social Chang et al. (2020)
Twitter Social archive.org/details/twitterstream

Wiki Wiki Attardi (2015)

Table 2: List of datasets. From the multi-lingual
datasets, we only consider the Danish part.

data using the FastText language classifier (Joulin
et al., 2017)3 and shuffle the lines before taking the
first 40M characters from each source. With these,
we create two multi-domain datasets of 40M and
320M characters respectively by evenly mixing
the 8 individual datasets.

Language model evaluation Due to computa-
tional constraints, we choose to train a model with
the same architecture as TinyBERT (Jiao et al.,
2020). We did a hyperparameter search with its
default tokenizer on the English data from the
BabyLM challenge (Warstadt et al., 2023) to find
reasonable settings (details are available in the
repository).4 We use the Adam optimizer, with a
learning rate of 1 × 10−3, a batch size of 512, and
1 epoch over the mixed 320M dataset (Section 2),
of which we keep 1% separate for evaluation.

We use a 15% masking strategy during train-
ing and evaluation, because perplexity is affected
by the segmentation. We use Bits Per Character
(BPC) to evaluate the language models. Bits per
character represents the average number of bits
needed to encode each character in the dataset.
Furthermore, we use accuracy on the token level.
Even though the accuracy is affected by the seg-
mentation, it is highly interpretable, and since
none of our models is tuned to optimize on this
metric we expect it to correlate to language model
quality.

4 Results

4.1 Morphological Segmentation.
Although there is a variety of metrics available for
evaluating morphological segmentation (Virpioja
et al., 2011), we opt for the interpretable precision,
recall, and F1 score based on found morphemes
(not split points). We start with finding the best

3We keep all text with a confidence above .6 for Danish.
4We did this on English, as there is more consensus on

which tokenizer/data to use.
5http://www.opensubtitles.org/
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Figure 2: F1 of each algorithm for different vo-
cabulary sizes for the multi-domain dataset.

vocabulary size of each segmenter on the mixed
datasets, as it has the broadest coverage, and then
we compare the effect of training on each individ-
ual data source.

We evaluate a vocabulary size of 1K-30K sub-
words with intervals of 1K (Figure 2). Results
show that performance for all algorithms follows
a similar trend; performance improves strongly in
the beginning (i.e., small vocabulary size), until a
size of around 10K, after which performance re-
mains in a similar range. For Morfessor and Un-
igram performance slowly drops, while for BPE
and WordPiece it remains rather stable. Morfes-
sor outperforms the other segmenters by a large
margin, scoring a maximum F1 of 67.96, show-
ing that the task is still far from unsolved.6 The
segmenters trained on 320M characters often per-
form slightly worse compared to the 40M charac-
ter training data (especially for smaller vocabulary
sizes). In the following sections, we use 40M char-
acters for training segmenters, and use the best vo-
cabulary size for each method: BPE 26K, Word-
Piece 30K, Unigram 11K, Morfessor 12K.

Next, we compare the effect of the data source
on the performance of the segmenters (Figure 3).
Results show that while the mixed dataset leads
to robust performance across segmenters , dif-
ferent segmenters have different best-performing
datasets. As MORSED is composed of well-
formed, general-domain words, we would expect
that corpora that resemble this (i.e., books, sub-
titles, wiki, subtitles corpora) would lead to bet-
ter performance. This trend is loosely reflected in
the scores, as the Twitter and Reddit dataset per-

6It should be noted that higher scores can be obtained in
(partially) supervised settings (Kohonen et al., 2010).
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MORSED MELFO Lang. Modeling
MODEL Root Comp. Link. Pref. Suff. Infl. Prec. Rec. F1 Acc. F1 ↓BPC Acc.

TinyBERT 48.40 16.64 7.76 20.32 29.43 15.12 27.60 29.27 28.41 14.00 11.74 9.84 3.12
LAI 100.00 0.66 15.83 4.42 1.12 12.10 23.33 57.45 33.18 32.25 3.68
BPE 90.42 45.85 24.45 30.93 10.80 9.37 47.91 62.39 54.20 46.50 25.79 5.25 4.11
WordPiece 83.23 23.93 9.85 13.96 8.94 8.35 38.88 49.81 43.67 26.00 12.87 3.62 27.37
Unigram 82.37 54.82 46.20 39.65 17.29 21.16 53.02 63.13 57.63 46.12 35.20 5.96 5.41
Morfessor 87.93 68.41 50.09 56.86 22.40 44.03 65.00 71.20 67.96 59.75 44.06 6.98 54.04

Table 3: Metrics for Language Modeling and Morphological Segmentation. For the language model-
ing experiments, we show BPC and accuracy (Acc.). For the morphological segmentation experiments
on MORSED, we show performance in F1 on Root morphemes (Root), Compounds (Comp.), Linking
elements (Link.), Prefixes (Pref.), Suffixes (Suff.), Inflections (Infl.) and average performance over the
whole dataset: Precision (Prec.), Recall (Rec.), F1 on morphemes, Accuracy (Acc.) on the word level.
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Figure 3: Comparison of the effect of data source,
all with 40M characters, and the best vocabulary
size for each algorithm.

form relatively poor. However, the Bookshop and
FTSpeech also leads to quite low performance,
which is probably due to topic bias, FTSpeech
contains parlemental data and Bookshop contains
quite some technical data (e.g., legal and politi-
cal topics), which leads to a larger coverage of
domain-specific words, but lower performance on
MORSED.

4.2 Language Modeling.

For each segmentation algorithm, we used the seg-
menter trained on the mixed dataset (40M) with
the best size from the morphological segmenta-
tion results (Section 4) for evaluation on language
modeling (Table 3, Language Modeling column).
The BPC scores of the Danish tokenizers out-
perform the original TinyBERT tokenizer (9.2)
trained on the Danish corpus. Across the Dan-
ish tokenizers, the BPC scores show minimal vari-
ance, with the WordPiece tokenizer achieving the
best score of 3.62. Morfessor shows a higher BPC

score than the other tokenizers (6.98). We hy-
pothesize that, since BPC correlates directly with
cross-entropy, Morfessor’s more granular “sub-
word” units (morphemes) lead to less probability
mass being concentrated on the most likely token.
This results in higher entropy, as the model dis-
tributes the probability mass across a larger set of
possible tokens, reducing certainty in its predic-
tions. Manual inspection of the output distribu-
tions revealed that the Morfessor based language
model more often has the correct candidate ranked
high, but its confidence scores are less well al-
ligned (i.e. more often scores ¿0.5 for incorrect
predictions, and lower scores for the best candi-
date when it is correct). Therefore, we also calcu-
late the subword (i.e. morpheme) accuracy, where
only the highest ranking candidate is used. Our
results show that the Morfessor tokenizer achieves
the highest accuracy by a large margin, indicating
that it performs best among all models.

5 Analysis

Quantitative. Our results show that recall is
higher than precision for all methods (Table 3).
This indicates that most models under-segment.
The difference between accuracy and F1 score
(between 6-8 absolute points) shows that there are
cases where a word is segmented partially correct.

Models perform especially well on root mor-
phemes, which are not segmented in our task defi-
nition (Section 2). A clear trend is that Morfessor
and Unigram underperform on root morphemes,
but perform better on the other categories. This is
because of their smaller optimal vocabulary size
(12,000 and 11,000 versus 26,000 for BPE and
30,000 for WordPiece), which leads to oversplit-
ting on the root morphemes Overall, Morfessor
outperforms all other segmenters on all classes ex-
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cept root morphemes and suffixes. For the latter,
TinyBERT performs better on some word-endings
that overlap with English (e.g. ‘-er’, ‘-ing’), which
are kept attached to the words by Morfessor.

Qualitative. To get a more fine-grained picture
of the difficulties for the segmentation models, we
spot-check cases where at least three of the seg-
menters were incorrect. Our analysis reveals that
tokenizers frequently missegment in the categories
compounds and compounds with linking elements.
The segmentation of morphemes such as “-e” and
“-s” is especially challenging, underscoring tok-
enizers’ difficulties with complex morphological
structures such as “sygeplejeskole” (syg-e-plej-e-
skole; en: “nursing school”), “gulerod” (gul-e-
rod; en: “carrot”) and “landsholdstrup” (land-s-
hold-s-trup; en: “national team”). Furthermore,
as morpheme length increases, the error rate in-
creases, highlighting the tokenizers’ limitations in
handling more complex word formations.

MELFO data After our experiments, we man-
aged to get access to morphological segmentation
data from the MELFO (Mobil e-læring for ord-
blinde) project7. This data is not publicly avail-
able, but we used it to evaluate the robustness of
each segmenter on another dataset with different
guidelines and annotators. Upon manual inspec-
tion, we found that the main difference between
the datasets is the choice of words (there are 8
overlapping words) and that the segmentation of
MORSED leads to more splits and smaller ele-
ments (e.g. fri-tid-s-hjem versus fritid-s-hjem).
The results show a similar trend (i.e. ranking of
models), but lower performances overall, which
is partially due to tuning (of vocabulary size) on
MORSED, but also due to the structure of the data:
MELFO has a longer average word length (12
characters versus 8) and a larger average amount
of morphemes per word (2.6 versus 1.9).

6 Conclusion

We introduced MORSED, a broad-coverage,
expert-annotated dataset for subword segmenta-
tion in Danish. We used MORSED to show that an
unsupervised segmenter outperforms statistical-
based subword segmenters on the task of morpho-
logical segmentation for Danish by 10.3 points ab-
solute F1 score on our novel Danish benchmark.

7https://laes.hum.ku.dk/centerets_
forskning/melfo/

We also show that the tokenizer that performs best
at morphological segmentation also performs well
on language modeling (accuracy).

Acknowledgments

We would like to thank Arzu Burcu Güven for
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Abstract

We introduce opinion units, a contribution
to the field Aspect-Based Sentiment Analy-
sis (ABSA) that extends aspect-sentiment
pairs by including substantiating excerpts.
The goal is to provide fine-grained in-
formation without sacrificing succinctness
and abstraction. Evaluations on review
datasets demonstrate that large language
models (LLMs) can accurately extract opin-
ion units through few-shot learning. The
main types of errors are providing incom-
plete contexts for opinions and and mischar-
acterising objective statements as opinions.
The method reduces the need for labelled
data and allows the LLM to dynamically
define aspect types. As a practical evalua-
tion, we present a case study on similarity
search across academic datasets and pub-
lic review data. The results indicate that
searches leveraging opinion units are more
successful than those relying on traditional
data-segmentation strategies, showing ro-
bustness across datasets and embeddings.

1 Introduction

We propose opinion units as a representation for
subjective viewpoints in text. An opinion unit con-
sists of (i) an aspect such as price, quality, or lo-
cation, (ii) an excerpt, which may be lightly para-
phrased to only include relevant text, that contex-
tualises the opinion (iii) and a sentiment such as
positive, negative or neutral. The structured nature
of opinion units makes them suitable for applica-
tions requiring fine-grained aspect-based sentiment
analysis (ABSA), such as the mining and retrieval
of opinions. ABSA goes beyond the surface level
of traditional sentiment analysis. Instead of as-
signing a sentiment to an entire text, ABSA iden-
tifies opinions expressed about particular features

of, for instance, a product, service or event. This
multi-faceted analysis provides valuable insights
for those seeking to understanding public opinion
on a particular topic. For example, for retailers,
ABSA of customer reviews or interactions can sug-
gest areas for improvement, personalise marketing
strategies, and gauge overall customer satisfaction.

Initial ABSA research focused on classifying
reviews into predefined aspect- and sentiment cate-
gories (Zhang et al., 2022). Over time, this came to
include the extraction of aspect- and sentiment key-
words (Zhang et al., 2022; Gao et al., 2021). While
the reduction of a text to keywords is helpful for
many applications, it also lead to information loss.
In contrast, opinion units offer a structured repre-
sentation that retains more of the original nuance.
The emergence of generative LLMs, with their ca-
pacity for longer sequence-to-sequence outputs, en-
able the flexible extraction of phrases required for
creating opinion units. For concisely expressed
opinions, as in the short-sentence examples used
in keyword-extraction benchmarks like SEMEVAL
Res-15 & 16 (Pontiki et al., 2016), opinion units
closely resembles keyword extraction. However,
in real-world reviews, customer opinions often in-
volve descriptions and motivations spanning longer
passages. Phrase extraction provides a more natural
and expressive method for capturing these nuanced
opinions. For instance keyword extraction would
overlook subtlety in a sentence like: “The outdoor
area is delightful, especially in the evening, with
its soft lighting and comfortable chairs creating a
cozy atmosphere”. Moreover, phrases provide bet-
ter interpretability for end users, allowing them to
identify which sections of the raw text influenced
the decisions made by downstream applications.

The extraction of opinion units can serve as a
standalone chunking strategy for applications re-
quiring detailed information. However, it can also
be made as preprocessing step before keyword ex-
traction (Siddiqi and Sharan, 2015), because the
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Last Sunday we went to brunch and I had a muffin. It was
amazing! We loved our waiter Stephanie she was so friendly
however the service could have been a little quicker. But on
the whole, we had a great time!
➤ Muffin: I had a muffin. It was amazing. {positive}
➤ Staff friendliness: We loved our waiter Stephanie, she was

so friendly. {positive}
➤ Service speed: The service could have been a little quicker.

{negative}
➤ Overall brunch experience: On the whole, we had a great

time. {positive}

Figure 1: Four opinion units extracted from a re-
view, each representing an opinion in the text and
consisting of an aspect label, an excerpt from the
text, and a sentiment label. The colour purple indi-
cates aspects, and orange indicates sentiment terms.

atomic nature of opinion units—each representing
a single opinion about one aspect—simplifies anal-
ysis. This is advantageous compared to analysing
“raw text”, which often contains intertwined opin-
ions and unrelated non-opinionated content.

In this article, we explore how opinion units can
be extracted from subjective commentary, specifi-
cally customer reviews, by large language models
(LLMs). The models are prompted in a way that
allows them to dynamically generate aspect cat-
egories not explicitly mentioned in the text, and
to choose and paraphrase motivating text excerpts
that retain only the most relevant information. An
example of how opinion units are formed is given
in Figure 1 and a formal definition is provided in
Section 3. The main benefit opinion units is that
they provide a structured representation of the opin-
ions expressed in a text, while retaining much of
the nuance through the supportive excerpt.

Language models excel at many of the tasks in-
volved in the generation of opinion units, including
information extraction, text summarization, entity
recognition, and sentiment analysis. Previous work
has successfully applied LLMs to extract propo-
sitions, that is, atomic factual statements, to facil-
itate question answering in a dense retrieval set-
ting where both the query and documents are trans-
formed into embeddings (Chen et al., 2024). We
transfer this method to the ABSA domain, demon-
strating that LLMs can effectively identify opinion
aspects, extract concise snippets of text expressing
the opinion, and accurately classify the sentiment
of the excerpt. An important advantage of extract-
ing opinion units with LLMs stems from the few-
shot approach. Unlike traditional ABSA methods

that often rely on pre-defined categories or require
labeled training data, LLMs can extract opinion
units without such constraints. This opens doors
for broader application across diverse domains and
allows for more efficient and scalable analysis.

In the following sections, we first investigate the
ability of LLMs in generating opinion units by eval-
uating GPT-4-turbo, GPT-3.5-turbo, and Llama2-
70B. This evaluation is conducted on subsets of SE-
MEVAL restaurant review sentence dataset (Pon-
tiki et al., 2016) as well as a Yelp dataset (Yelp,
2015) containing complete restaurant reviews. Fur-
thermore, we categorize the errors produced by the
LLMs, where providing incomplete context, miss-
ing aspects and the conflation of objective state-
ments with opinions turn out to be the most serious
sources of error. Finally, we demonstrate the effec-
tiveness of opinion units in dense similarity search,
where words are represented by embeddings. In
particular, we show that opinion units outperform
the competing chunking strategies of sentence and
passage chunking. These positive results suggest
that opinion units are potentially useful also for
dense retrieval, retrieval-augmented generation and
clustering applications. For example, in topic mod-
eling, opinion units can reveal which topics cus-
tomers discuss in reviews.

The experiments conducted in this article serve
to answer the following research questions:

RQ1. To what extent can LLMs extract accurate
opinion units?

RQ2. What are the types and frequencies of errors
made by the LLMs in this process?

RQ3. How does the performance of opinion units
in dense similarity search for opinions compare
to other data-segmentation strategies?

2 Related Work

This section recalls related work on ABSA, sum-
marisation, and information retrieval.

2.1 Aspect-Based Sentiment Analysis
Aspect-based sentiment analysis is a specialized
area within the broader field of sentiment analysis.
Its focus is on identifying and extracting sentiment
in relation to specific aspects in a given text (Zhang
et al., 2022). The analysis typically involves es-
tablishing some or all of the following sentiment
elements: The aspect category c which is the gen-
eral concept to which the sentiment pertains; the
aspect term a which is the entity being referred
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to; the opinion term o which conveys the aspect
sentiment; and the sentiment polarity p which is
the valance of the emotion expressed (Zhang et al.,
2022). Given the sentence “the tiramisu was amaz-
ing”, these elements could be mapped accordingly:
c = ‘dessert’, a = ‘tiramisu’, o = ‘amazing’, and
p = ‘positive’. We note that the construction of
opinion units involves all four sentiment elements:
The opinion label corresponds to the aspect cate-
gory, although in our case it is generated on the
fly by the LLM rather than chosen from a set of
predefined categories. The excerpt in opinion units
includes both aspect and opinion terms. Finally,
each opinion unit includes a sentiment polarity.

Earlier works concentrated on solutions for iso-
lated sentiment elements, such as aspect term ex-
traction (Liu et al., 2015; Li and Lam, 2017) or
aspect category detection (Zhou et al., 2015; Luo
et al., 2019). Later studies extract several factors at
once, capturing both the opinion aspect and expres-
sion (Peng et al., 2020; Gao et al., 2021). The main
challenge in these tasks is the accurate pairing of
aspect-sentiment elements (Zhang et al., 2022).

We are now seeing significant advancements in
the implementation of multifaceted analysis tasks.
A salient example is sequence-to-sequence models
which output the result of the analysis as a natural-
language statement. This approach has been shown
to outperform classification methods and exhibits
particular strengths in scenarios with limited train-
ing data thanks to few-shot and zero-shot learn-
ing (Ma et al., 2019; Zhang et al., 2022).

2.2 Summarisation

Opinion mining benefits from both extractive
and abstractive summarization (Anand Babu and
Badugu, 2023). The former produces a summarisa-
tion by concatenating informative segments from
the source document, whereas the latter generates
a summary based on the semantics of the source,
which at a superficial level can be very different
from the original text. Extractive summarisation is
needed because it provides evidence in the source
material for the generated opinion units (Priya and
Umamaheswari, 2020), but to keep the excerpts
short and self-contained, a degree of abstractive
summarisation is also necessary.

Yang et al. (2019) evaluate ChatGPT on abstrac-
tive summarization. Even with a zero-shot ap-
proach, the model performs on par with smaller
LMs fine-tuned for the task. This stands in con-

trast to the case for aspect-based sentiment analy-
sis discussed above, where the smaller, fine-tuned
models were more successful (Zhang et al., 2023).
A related task is key-point extraction (Bar-Haim
et al., 2020a,b, 2021), where the objective is to
extract salient viewpoints from a text. Also here
LLM-enabled aspect-based approaches have been
successfully applied (Tang et al., 2024) and reduce
the number of partially overlapping key points.

2.3 Information Retrieval

Dense retrievers are a common type of modern
retrieval systems where a dual-encoder architec-
ture transforms documents and queries into dense
embeddings for similarity comparison (Ni et al.,
2022). These similarity functions, also used for
embedding-based clustering (Chandrasekaran and
Mago, 2021), have limitations in understanding
complex semantics and can be misled by irrele-
vant information (Chen et al., 2024). Chen et al.
(2024) explored using propositions, factual state-
ments distilled from text using LLMs (GPT-4), as
retrieval units for Wikipedia passage retrieval and
retrieval-augmented LLM question answering. Us-
ing propositions to segment and index the retrieval
corpus outperformed traditional methods like sen-
tence or fixed-length passage chunking. In their
context of fact retrieval, each proposition repre-
sented a single atomic fact with relevant context,
phrased concisely in natural language (Chen et al.,
2024). Corpus segmentation using propositions is
described as an orthogonal strategy that can be used
in conjunction with other methods for improving
dense retrieval such as supervised retrievers (Chen
et al., 2024), data augmentation (Wang et al., 2022)
or mixed-strategy retrieval (Ma et al., 2023).

Propositions offers a high information density
with complete context. Comparatively, passage
chunking constitutes a coarse information unit, of-
ten containing unrelated and multiple aspects. This
lack of conciseness can distract downstream ap-
plications such as retrieval relying on similarity
comparison (Yu et al., 2023). Sentence chunking
provides more fine-grained information. However,
sentences can include multiple aspect and lack nec-
essary context when dependencies span multiple
sentences (Yang et al., 2019).

3 Opinion units

As stated in Section 1, an opinion unit is composed
of three elements: i) an aspect label, ii) a text ex-
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Challenge Example of review and extracted opinion units Benefits of opinion units

Passages expressing
multiple opinions

The food is great but the drinks sucked.
➤ Food: The food is great {positive}
➤ Drinks: The drinks sucked {negative}

Unlike passage and sentence chunking, opinion units separate
aspects which avoids noisy and non-concise segments.

Opinions spanning
multiple sentences

We had margaritas. They tasted absolutely wonderful!
➤ Margaritas: We had margaritas. They tasted absolutely

wonderful. {positive}

Opinion units provide full context spanning several sentence.
Sentence chunking provides incomplete context and passage
chunking could be incomplete or include noise, depending
on the length of the relevant passage.

Lack of contextual
information

The restroom was not ADA compliant.
➤ Disabled persons accessibility: The restroom was not

ADA compliant. {negative }

The opinion label generated by the LLM provides helpful
context for later processing steps. In the example, ADA
stands for Americans with Disabilities Act which ensures
equal access for people with disabilities.

Insufficient sentiment
understanding and
filtering

The portion size was perfect... for an ant.
➤ Portion size: The portion size was perfect... for an ant.

{negative}

LLMs are more adept at understanding sentiments or irony
compared to word embeddings at inference time. Opinion
units can be filtered by sentiment.

Figure 2: Examples and summary of four challenges when segmenting opinionated texts for downstream
applications where opinion units provide advantages compared to passage- and sentence chunking.

cerpt substantiating a subjective viewpoint on the
aspect, and iii) a sentiment label that quantifies the
sentiment expressed according to some set scale.
Additionally, we outline four key principles that
together characterize opinion units. These are in-
spired by the factual propositions of Chen et al.
(2024) described in Section 2.3, but are tailored for
the ABSA domain. The principles are as follows:

Atomicity. Every opinion unit should represent
exactly one opinion (i.e., aspect-sentiment pair).

Injectivity. No two opinion units should represent
the same opinion.

Completeness. Collectively, the set of extracted
opinion units should encompass all the opinions
expressed in the text.

Contextuality. The excerpt associated with each
opinion unit should give sufficient contextual
information to motivate the inferred sentiment.
If needed, the excerpt may refer to other aspects
or sentiments.

When used for data segmentation in applications
such as customer-satisfaction surveys or brand stud-
ies, LLM-enabled generation of opinion unit over-
comes a number of challenges (see Figure 2). First
of all, opinion units can handle sentences and pas-
sages with multiple opinions, and as well as opin-
ions spanning multiple sentences. In these cases,
traditional segmentation strategies such as sen-
tence and passage chunking (which we benchmark
against in Section 4), create irrelevant or uninfor-
mative chunks. Opinion units, in contrast, isolate
opinions and adapt the excerpt length to match the
coverage of the aspect in the source text.

Another benefit is that the aspect label gener-

ated by the LLM facilitate the clustering of opinion
units that refer to the same concept, even though the
terms and wording used in the source text may vary.
Similarly, the sentiment label can be used to filter
opinion units based on sentiment polarity. This
approach leverages the LLM’s high performance
in sentiment analysis (Zhang et al., 2023) while en-
suring efficient inference (see Section 5.2). Incor-
porating other metadata than sentiment, or a finer
sentiment scale would also possible and could be
beneficial for specific applications. For chunking
strategies like passage- or sentence chunking, the
presence of multiple opinions or non-opinionated
text within a single chunk can make sentiment la-
beling less straightforward and precise.

Finally, the LLM can be prompted to disregard
sections of the source text that do not express
opinions, which is valuable because also subjec-
tively written texts can have strictly objective pas-
sages. For example, in the context of restaurant
reviews, as statement such as “I went with my two
friends and sat in a corner booth” may not have
much bearing on the writer’s assessment of the
food. In passage- or sentiment chunking, these
non-opinionated texts cannot be avoided and add
noise to the analysis process.

4 Method

The experimental evaluation of opinion units com-
prises two parts. First, we evaluate the performance
of three LLMs (GPT-4 turbo, GPT-3.5 turbo, and
Llama2-70B) in generating well-formed opinion
units. Second, we perform a case study on opinion
retrieval, comparing data segmentation based on
opinion units to traditional chunking strategies.
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4.1 Generation of Opinion Units

We generate opinion units using LLMs in a few-
shot approach. The prompt template, provided in
Figure 3, instructs the LLM to perform ABSA,
extracting the three components of an opinion
unit. An example review with opinion units is
provided in the template. The examples are de-
signed to address issues discussed in Section 3,
such as non-opinionated text and opinions span-
ning multiple sentences. If the generated opinion
units deviate from the format defined in the prompt
template—for instance, by producing an incorrect
JSON object— the generation is repeated (this hap-
pens approximately 5% of the time). For all LLMs
we use a temperature of 1.0.

Perform aspect-based sentiment analysis for the restaurant review provided as the input.
Return each aspect-sentiment pair with a label and a corresponding excerpt from the text.
Also mark the sentiment of aspects as negative or positive.
Aspect-sentiment pairs should not mix opinions on different aspects. Make sure to include
all aspects. An aspect should be independent and not have to rely on other aspects to be
understood.
If an opinion in the review is about the restaurant or experience in general then label
this aspect as “overall experience”. Opinions not related to the restaurant should not be
included.
Example input: I just left Mary’s with my lovely wife. The gorgeous outdoor patio
seating was fantastic with a nice view of the ocean. We came for brunch and were blown
away! We split dozen oysters. They were the best I had in my life! FRESH! Delicious!
The avocado toast was excellent as were the crab cakes. Altogether, we had a great
experience. Almost 5 stars! but the staff could have been a little friendlier and the tables
cleaner.
Example output:
[[“Outdoor patio seating”, “The gorgeous outdoor patio seating was fantastic with a nice
view of the ocean”, “positive”],
[“View”, “a nice view of the ocean”, “positive”],
[“Brunch”, “We came for brunch and were blown away”, “positive”],
[“Oysters”, “We split a dozen oysters. They were the best I had in my life! FRESH!
Delicious!”, “positive”],
[“Avocado toast”, “the avocado toast was excellent”, “positive”],
[“Crab cakes”, “the crab cakes were excellent”, “positive”],
[“Overall experience”, “Altogether, we had a great experience. Almost 5 stars!”, “positive”],
[“Staff friendliness”, “the staff could have been a little friendlier”, “negative”],
[“Table cleanliness”, “the tables could have been cleaner”, “negative”]]
Input: Review to be processed
Output:

Figure 3: Prompt template: opinion unit generation

4.2 Opinion Unit Evaluation

To assess the correctness of the generated opin-
ion units, we conduct evaluations on subsets of
SEMEVAL Res15 and Res16, which consist of
restaurant-review sentences (Pontiki et al., 2016),
as well as full Yelp restaurant reviews (Yelp, 2015).
We compare the performance of GPT-3.5-turbo,
GPT-4-turbo and Llama2-70B. For these subsets,
we created solution keys of correct opinion units by
manually identifying aspects and their sentiments
in each text. For the SEMEVAL subset, sentiment
labels followed the ASTE annotations provided by
(Zhang et al., 2021). In the solution keys, we se-
lected approved LLM-generated aspect labels and
excerpts to serve as examples of correct opinion
unit components. For the SEMEVAL subset we

select reviews from the Res15 and Res16 test sets
that, according to (Zhang et al., 2021)’s annota-
tions, include multiple aspects. The subset used
for SEMEVAL evaluation consists of 565 opinion
units in the solution key, stemming from 238 re-
view sentences. A similar size subset was randomly
subsampled from the Yelp dataset, constituting 505
opinion units from 96 reviews.

We evaluate opinion units according to the princi-
ples outlined in Section 3. These principle include,
ensuring that each unit reflects a single opinion,
provides enough context to motivate its sentiment
and that the sentiment classification and identified
aspects align with the solution key. We classify
errors into the categories listed below; an opinion
unit is considered correct only if it avoids all these
errors. The evaluation was conducted by the two
authors and was not blind to which LLM gener-
ated the opinion units. Disagreements that arose
during the evaluation were revisited and resolved
through careful re-examination in accordance with
the established error and evaluation guidelines.

Atomicity error. An opinion unit lacks atomicity,
providing context for multiple opinions.

Injectivity error. Collectively, opinion units are
redundant, lacking injectivity.

Missing aspect. Collectively, the opinion units
lack completeness, meaning that not all opinions
in the review were captured.

Missing context. An opinion unit is not contextu-
alized, i.e., does not provide sufficient contextual
information to motivate the inferred sentiment.

Non-opinion. A non-opinionated excerpt from the
text is incorrectly classified as an opinion.

Sentiment error. The sentiment label is incorrect.
Aspect-label error. The aspect label does not ade-

quately describe the opinion.
Hallucination. The LLM invents aspects or ex-

cerpts that are not part of the review.

To quantify the results, we use three metrics:
Precision, the ratio of correct generated units to
total generated units; recall, the ratio of correct
generated units to total opinion units in the solution
key; and F1-score, the harmonic mean of preci-
sion and recall. In the scoring, certain cases were
handled with special consideration. For the short
SEMEVAL reviews, the LLMs in addition to in-
dividual aspects, sometimes created instances of
“overall experience” which combined multiple as-
pects as a characterization of the overall experience.
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When considered reasonable reflections of overall
sentiment, these were excluded from scoring and
did not impact the precision and recall values.

Our evaluation inherently involves a degree of
subjectivity. For example, differing human assess-
ments may arise about whether an extracted phrase
provides full context or if an aspect label is descrip-
tive enough to capture the opinion. This subjec-
tivity, though typical for many NLP annotations
(Röttger et al., 2021) and perhaps especially for
unstructured generative LLM outputs, makes the
evaluation unsuitable as a strict benchmark, like
ABSA benchmarks for classification and keyword
extraction (Pontiki et al., 2016). Despite these lim-
itations, we believe this evaluation to be crucial
for understanding the performance of opinion unit
generation in isolation and not just through its im-
pact on downstream tasks. Additionally, the error
classification offers important insights for future
work on using LLMs for opinion extraction.

4.3 Case Study: Opinion Retrieval

Whereas the experiment just described tests the vi-
ability of LLM-extracted opinion units, the follow-
ing case study evaluates the method’s usefulness.
For this opinion retrieval task, opinion units were
generated using GPT-3.5-turbo, selected for its bal-
ance of performance (as demonstrated in Section
5.1) and cost-efficiency.

Retrieval Tasks. We designed 50 similarity
search tasks for restaurant reviews. The goal of
the retrieval system is to return reviews that contain
opinions that are similar to the opinion provided
as the query. We categorized the 50 tasks into 10
general tasks and 40 detailed tasks. General tasks
correspond to common and overarching opinions
found in restaurant reviews, such as overall experi-
ence, value for money, and staff friendliness. For
instance, Task 1 has the query: “All in all, we had
a great time.” For returned reviews to be consid-
ered correct, they must express satisfaction with the
overall experience. Task 4 seeks reviews that high-
light staff friendliness, using the query: “The staff
were very friendly. Detailed tasks focus on specific
aspects mentioned in fewer reviews. For example,
the query for Task 24 is: “The food was cold when
we received it.” Returned reviews must detail nega-
tive experiences related to receiving cold food at the
restaurant. Out of the 50 tasks, half entail a positive
sentiment, and the remaining a negative sentiment.
The returned reviews were assessed by a team of 4

evaluators who were blind to the chunking strate-
gies used. On average, each returned review re-
ceived 2.3 annotations. Conflicts were resolved
through majority voting; in cases of equal votes, an
additional evaluator was consulted for final assess-
ment. The reviews were presented in a randomized
order to eliminate a potential source of bias. The
full list of review tasks, including queries and task
descriptions are available online. Implementations
of opinion unit generation, retrieval and passage
and sentence chunking are also provided1.

Evaluation Groups. We compare dense retrieval
based on opinion units to the conventional ap-
proaches of passage- and sentence chunking
(Chen et al., 2024). In sentence chunking, each
sentence serves as a retrievable unit, whereas
in passage chunking, we employ Langchain’s
RecursiveCharacterTextSplitter with param-
eters size=200 and overlap=20. The retrievable
units in passage chunking are on average longer
(avg. 28.2 words in Yelp dataset) compared to sen-
tence chunking (avg. 12.9 words) and opinion units
(14.9 words). In addition to standard opinion units,
we also use opinion units with sentiment filtering
as a retrieval unit (denoted opinion + sf in results
tables). In this approach, only opinion units labeled
with the specific sentiment demanded by the task
are considered by the retrieval system. For each
retrieval strategy, we extract 20 unique reviews.
Precision @5, 10, and 20 is used to evaluate results
by measuring the percentage of relevant reviews
among the top k returned reviews for each task.

The primary dataset used for evaluating the opin-
ion retrieval case study is the Yelp dataset (Yelp,
2015), which contains millions of authentic re-
views. We refine this dataset to include only restau-
rant reviews, extracting the first 20 000 reviews of
restaurants located in California to serve as our re-
trieval corpus. As a secondary dataset, we use a
concatenation of the SEMEVAL Res15 train and
test datasets and the Res16 test dataset (exclud-
ing the Res16 train dataset, as it duplicates the
Res15 train and test reviews). This dataset is con-
siderably smaller than the Yelp dataset, containing
2 280 reviews. On average, each review spans ap-
proximately 14.49 words and 1.75 opinion units.
In contrast, the average Yelp review contains 92.7
words and 5.5 opinion units, with the 95th per-
centile extending to 257 words and 10.0 opinion
units. The 50 retrieval tasks are designed to ask for

1https://github.com/emilhagl/Opinion-Units
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increasingly specific topics. When evaluating on
the SEMEVAL dataset, we omit the 20 most spe-
cific tasks (i.e., Task 31–50) because the scope of
the dataset is so limited that these fine-grained tasks
do not contribute to the evaluation in a meaningful
way. For similar reasons we only report Precision
@5 and @10 as our evaluation metrics.

To ascertain the robustness of retrieval re-
sults we perform the evaluation using two dif-
ferent embedding models from the sentence-
transformers framework: all-mpnet-base-v2
and all-MiniLM-L6-v2 (Transformers, 2024).
Both embedding models are optimized for gen-
eral tasks, including sentiment analysis, how-
ever all-mpnet-base-v2 is a considerably larger
model (80MB vs. 420MB). For our dense retrieval
implementation, we used the Faiss package and its
function similarity_search (Langchain, 2024).

5 Results and Discussion

5.1 Opinion Unit Evaluation

We evaluate the opinion units generated for the
SEMEVAL and YELP subsets with respect to the
methodology described in Section 4.1. Our analy-
sis reveals that GPT-4-turbo achieves the best per-
formance across datasets (YELP: Precision = 85.3,
Recall = 87.4; SEMEVAL: Precision = 89.3, Recall
= 92.7). GPT-3.5-turbo shows slightly lower per-
formance (YELP: Precision = 87.0, Recall = 82.2;
SEMEVAL: Precision = 87.5, Recall = 89.6), while
Llama2 exhibits a more pronounced drop in per-
formance (see Table 1). Notably, recall values are
lower for the YELP dataset, where longer reviews
result in a greater number of overlooked aspects.
Overall, the strong performance of the GPT-models
is promising for downstream tasks.

Furthermore, we categorize the errors accord-
ing to the classification described in Section 4.1,
to understand the types of problems the LLMs en-
counters when generating opinion units. The fre-
quency of these errors is presented in Figure 4. The
most common errors are missing context or cat-
egorizing non-opinion statements like “we went
to sit at the bar” as opinions (see Figure 4). For
the Yelp dataset with long text reviews, missing
aspects were a frequent error. Although issues like
missing context, injectivity, or atomicity are less
than ideal in terms of error severity, an opinion unit
could still function reasonably well as a retrieval
unit. In contrast, missing aspects and the character-
izing non-opinions as opinions have a more certain

Yelp SEMEVAL
P R F1 P R F1

GPT-4-turbo 85.3 87.4 86.3 89.3 92.7 91.1
GPT-3.5-turbo 87.0 82.2 84.6 87.5 89.6 88.5
Llama2-70B 76.9 74.5 75.7 75.6 88.8 81.6

Table 1: Precision (P), Recall (R) & F1-scores for
evaluation on Yelp and SEMEVAL subsets.

negative impact on downstream tasks.
A few hallucinations were identified, primarily

produced by Llama2, where the LLM invented an
excerpt not present in the review. These mostly
occurred when the LLM added an “overall expe-
rience" label with an invented excerpt, an artefact
of the prompt template’s instructions for “overall
experience.", (see Figure 3).

5.2 Case Study: Opinion Retrieval

In our case study we compare the performance
of alternative chunking strategies on 50 different
retrieval tasks, each of which consists in retrieving
reviews which include some specific opinions (see
Section 4.3). The retrieval results, presented in
Table 2, delineate the performance across datasets
(Yelp and SEMEVAL-Rest) and the two different
word embedding models. The larger embedding
model, all-mpnet-base-v2, leads to better results
than the smaller all-MiniLM-L6-v2.

Consistently, across all experimental conditions,
opinion units outperform passage- and sentence
chunking, with sentence chunking being most com-
petitive. This implies that opinions in reviews are
often expressed within a single sentence. The re-
sults show the benefit of the opinion units ability
to provide a concise and structured representation
in opinion retrieval. The increased retrieval preci-
sion stems from the ability to address challenges
highlighted in Section 3 such as passages with in-
tertwined opinions and opinion spanning multiple
sentences detailed.

It is worth noting the large performance gap be-
tween standard opinion units and opinion units with
sentiment filtering (opinion unit + sf). In our evalu-
ation tasks, the objective is to retrieve reviews with
certain combinations of aspects and sentiments. Fil-
tering by the LLM-generated sentiment labels thus
contributes towards an important subgoal. The
resulting gains in precision also highlights the limi-
tations of word embeddings in sentiment compre-
hension (Yu et al., 2017), where words with similar
vector representations can exhibit contrasting senti-
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Figure 4: Error type frequency in generated opinion units for SEMEVAL and Yelp subsets.

(a) Yelp Restaurant, all-mpnet-base-v2

Tasks Chunking strategy Precision
@5 @10 @20

All Passage 61.6 54.4 56.0
(Task 1-50) Sentence 76.4 70.6 63.3

Opinion unit 81.6 74.4 69.5
Opinion unit + sf 88.0 82.2 77.9

General Passage 78.0 76.0 70.5
(Task 1-10) Sentence 90.0 86.0 81.5

Opinion unit 94.0 90.0 86.0
Opinion unit + sf 96.0 92.0 89.5

Detailed Passage 57.7 54.0 52.4
(Task 11-50) Sentence 73.0 66.8 58.8

Opinion unit 78.5 70.5 65.4
Opinion unit + sf 86.0 79.8 75.0

(b) Yelp Restaurant, all-MiniLM-L6-v2

Tasks Chunking strategy Precision
@5 @10 @20

All Passage 54.4 53.6 49.3
(Task 1-50) Sentence 65.6 62.8 54.6

Opinion unit 70.8 65.0 61.1
Opinion unit + sf 82.0 80.4 76.1

General Passage 68.0 68.0 63.5
(Task 1-10) Sentence 78.0 74.0 70.0

Opinion unit 78.0 78.0 76.5
Opinion unit + sf 84.0 89.0 88.5

Detailed Passage 51.0 50.0 45.8
(Task 11-50) Sentence 62.5 60.0 50.8

Opinion unit 69.0 61.7 57.2
Opinion unit + sf 81.5 78.2 73.0

(c) SEMEVAL Res15+Res16, all-mpnet-base-v2

Tasks Chunking strategy Precision
@5 @10

All Passage 53.3 41.7
(Task 1-30) Sentence 53.3 42.0

Opinion unit 67.3 56.7
Opinion unit + sf 74.0 60.3

General Passage 78.0 63.0
(Task 1-10) Sentence 78.0 64.0

Opinion unit 80.0 81.0
Opinion unit + sf 84.0 85.0

Detailed Passage 41.0 31.0
(Task 11-30) Sentence 41.0 31.8

Opinion unit 61.0 44.5
Opinion unit + sf 69.0 48.0

(d) SEMEVAL Res15+Res16, all-MiniLM-L6-v2

Tasks Chunking strategy Precision
@5 @10

All Passage 46.0 42.3
(Task 1-30) Sentence 46.0 42.3

Opinion unit 54.7 46.7
Opinion unit + sf 72.0 62.3

General Passage 58.0 55.0
(Task 1-10) Sentence 60.0 54.0

Opinion unit 68.0 64.0
Opinion unit + sf 78.0 77.0

Detailed Passage 40.0 36.0
(Task 11-30) Sentence 39.0 36.5

Opinion unit 48.0 38.0
Opinion unit + sf 69.0 55.0

Table 2: Precision results for different combinations of dataset and embedding model

ment polarities, e.g., “friendly” and “unfriendly”.
Refining word embeddings to better reflect both
semantics and sentiment is therefore an important
avenue for future work (Yu et al., 2017).

6 Summary and Conclusion

We have presented opinion units as a structured rep-
resentation for subjective viewpoints, enhancing
traditional aspect-sentiment pairs by incorporating
substantiating excerpts that retain detailed informa-
tion. Opinion units can function as an independent
chunking strategy for applications that require de-
tailed information or be utilized as a preprocessing
step that allows for further abstractions such as
category classification or keyword extraction. Our

findings demonstrate the ability of LLMs to accu-
rately extract opinion units from restaurant review
datasets datasets. The most frequent errors were
insufficient excerpt context and misclassifying non-
opinion statements as opinions. Furthermore, a
case study showcased the effectiveness of opinion
units in opinion retrieval using dense embeddings,
outperforming traditional segmentation methods.

The few-shot approach allows the LLM to iden-
tify aspects without annotated data or predefined
aspect categories. Each opinion unit represents a
single opinion, consisting of an aspect label, a text
excerpt that provides context, and a sentiment la-
bel that conveys the expressed sentiment. These
units facilitate downstream applications, e.g., clus-
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tering and retrieval. The excerpt generation handles
difficulties such as intertwined opinions, where dis-
cussions interleave opinions with other topics, and
multi-sentence opinions. Furthermore, the senti-
ment label allows for filtering at inference time,
mitigating the issue with word embeddings where
words with contrasting sentiment polarities have
similar vector representations (Yu et al., 2017).

7 Limitations and Future Work

In this study, we did not fine-tune the LLMs for the
opinion unit generation task. While demonstrating
that LLMs can perform well on this task without
the requiring additional training data is a strength
in itself, fine-tuning has the potential to improve ac-
curacy and enable the use of smaller, more efficient
models. Exploring the potential improvements in
performance through fine-tuning, particularly with
regard to specific error, is an intriguing avenue for
future research.

Our study implemented a baseline dense retrieval
system to isolate the impact of opinion units on
retrieval performance. However, we do not demon-
strate the effectiveness of opinion units in refined
downstream applications. A more refined imple-
mentation could integrate various techniques. For
instance, sentiment refined word embeddings (Yu
et al., 2017), supervised retrievers (Chen et al.,
2024), data augmentation (Wang et al., 2022), hy-
brid sparse-dense retrieval (Luan et al., 2021) or
mixed strategy retrieval (Ma et al., 2023). These
methods should be synergistic with opinion units,
where the segmentation of the retrieval corpus into
structured opinion is a separate pre-processing step.
Additionally, it would be interesting to cluster opin-
ions based on the corresponding opinion units, to
learn how groups of aspects and sentiments corre-
spond to overall ratings or buying decisions, and
how the principles of atomicity and contextuality
(see Section 3) affect the results.

The next group of limitations stem from the need
for a larger labelled ABSA dataset. The current
SEMEVAL datasets are restricted not only by the
number of reviews, but primarily by the brevity
and inauthenticity of these reviews, as they con-
sist of individual sentences rather than complete
review texts. A larger annotated dataset would
facilitate the evaluation of opinion units with re-
duced reliance on custom annotation and assess-
ment. Such a dataset should ideally include a sig-
nificant amount of non-opinionated texts and of

opinions that require multi-hop reasoning to under-
stand, challenges that LLMs are known to struggle
with (Chen et al., 2024). Such datasets could serve
as a direct benchmark or foundational basis for
evaluation.

Another dataset-related limitation is the absence
of annotated retrieval datasets specifically for opin-
ion mining. To address this, we designed 50 cus-
tom retrieval tasks to simulate opinion retrieval and
evaluated the top-ranked reviews returned by these
tasks. Annotated datasets, akin to those used in the
QA domain (Chen et al., 2024) or TREC challenges
(Grossman et al., 2016), contain pre-annotated rel-
evant documents for each task and would facilitate
a more comprehensive assessment using recall and
F1 metrics. Such datasets would provide a more
holistic understanding of retrieval performance,
complementing the precision@k-based evaluation
we currently employ.

Finally, our evaluation of opinion units as a
structure for opinions focused on customer re-
views. Other opinionated texts, such as longer
political writings, could present additional chal-
lenges. These texts may make it more difficult to
extract excerpts that contextualize an opinion, and
they may require a greater degree of abstractive
summarization to accurately capture the context.
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Abstract

The integration of language models in the
legal domain holds considerable promise
for streamlining processes and improving
efficiency in managing extensive work-
loads. However, the specialized termi-
nology, nuanced language, and formal
style of legal texts can present substan-
tial challenges. This study examines
whether preference-based training tech-
niques, specifically Reinforcement Learn-
ing from Human Feedback and Direct
Preference Optimization, can enhance
models’ performance in generating Ice-
landic legal summaries that align with
domain-specific language standards and
user preferences. We compare mod-
els fine-tuned with preference training to
those using conventional supervised learn-
ing. Results indicate that preference train-
ing improves the legal accuracy of gener-
ated summaries over standard fine-tuning
but does not significantly enhance the
overall quality of Icelandic language us-
age. Discrepancies between automated
metrics and human evaluations further un-
derscore the importance of qualitative as-
sessment in developing language models
for the legal domain.

1 Introduction

The development of language models (LMs) for
use in specialized, professional domains has the
potential to create time-saving, value-adding pro-
cesses. This may benefit various fields such as
law, healthcare, and engineering, where much of
the work involves analyzing and writing domain-
specific texts and documents.

This is particularly relevant in the legal domain.
An analysis of the legal systems in the USA and

Germany from 1998 to 2019 reported a monolithic
growth in these systems (Coupette et al., 2021).
Massive volumes of text data are a byproduct of
most modern legal systems (Katz et al., 2020),
leading to an environment with an ever-increasing
amount of source material. Consequently, lawyers
and attorneys must devote more time to analyz-
ing and reviewing legal documents while prepar-
ing their casework, resulting in a growing work-
load in an already overburdened profession (Jóns-
dóttir, 2023; Nickum and Desrumaux, 2023).

A comprehensive awareness and understanding
of relevant laws and precedents is paramount to
success in legal arguments. Therefore, the ability
to quickly summarize legal sources may signifi-
cantly reduce the time spent reviewing pertinent
material (Jain et al., 2021). Summaries can also
serve as references for justifying claims and build-
ing cases. This is an area where generative LMs
can be particularly useful, by processing and ana-
lyzing the bulk of the text needed.

In Iceland, there are substantial requirements
within the legal domain that the quality of text
meets the linguistic standards of the domain, both
in terms of domain-specific terminology and gen-
eral Icelandic language proficiency. Consequently,
LMs must adhere to the professional standards of
the domain in which they are applied. The legal
domain is also characterized by a specialized vo-
cabulary, particularly formal syntax, and seman-
tics based on extensive domain-specific knowl-
edge (Tiersma, 1999). This makes the task of
aligning LMs to the specific language of the legal
domain a non-trivial issue.

The most common method to enhance the capa-
bilities of a pre-trained generative LM is instruc-
tion fine-tuning, where the model receives an in-
struction as input and the correct response as the
target label (Radford and Narasimhan, 2018; Liu
et al., 2019). Under this paradigm, the model
is rewarded for correctly following the instruc-
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tions; however, this does not necessarily entail
that it captures the linguistic nuances within the
target texts. Reinforcement Learning from Hu-
man Feedback (RLHF) is one such method that
uses algorithms and reward-based methods from
reinforcement learning (RL) to directly optimize
a LM based on data collected from human feed-
back (Stiennon et al., 2020), aiming to help the
model align better with both subjective and com-
plex texts. Another more recent approach, based
on the same principle, is Direct Preference Opti-
mization (DPO) (Rafailov et al., 2024), which op-
timizes the model by transforming the RL reward
maximization problem into a more simple classi-
fication problem. Though the complexity of the
DPO method is less than that of RLHF, it is un-
clear which method is best suited to align LMs for
summarizing Icelandic legal text.

This paper addresses the following research
question:

RQ: Can preference training methods, such as
DPO and RLHF, enhance the ability of LMs to
generate domain-specific Icelandic texts that users
prefer, compared to LMs fine-tuned solely with
supervised learning?

We compared the quality of text summaries
generated for the Icelandic legal domain by mod-
els fine-tuned with preference training to those
fine-tuned solely through supervised learning. Our
findings indicate that applying either RLHF or
DPO on top of domain-specific pre-training and
instruction fine-tuning can improve the legal ac-
curacy of the generated summaries. However, no
similar improvements were observed in the gen-
eral quality of Icelandic language usage. Addi-
tionally, there were discrepancies between auto-
mated numerical evaluations and qualitative hu-
man assessments.

2 Background and Related Work

Transformer-based language models (LMs) have
become central to text generation and NLP tasks,
largely due to their adaptability when fine-tuned
on specific tasks (Vaswani et al., 2017; Wolf et al.,
2020). These models, typically containing bil-
lions of parameters (Touvron et al., 2023), excel
at few-shot or zero-shot tasks that previously re-
quired supervised fine-tuning (Brown et al., 2020).
However, languages with smaller speaker popu-
lations, such as Icelandic, face challenges due to

limited representation in training data. Efforts to
address this include IceBERT, a masked LM for
Icelandic (Snæbjarnarson et al., 2022), and GPT-
SW3, a multilingual model covering most Nordic
languages (Ekgren et al., 2024). These initia-
tives align with ongoing government initiatives in
Iceland to preserve the Icelandic language midst
the rapid advancements in language technology
(Nikulásdóttir et al., 2020) and with the govern-
ment’s partnership with OpenAI. 1

Recent LM advancements emphasize RLHF to
improve performance. Initial work by OpenAI ex-
plored human feedback to refine RL reward func-
tions for complex tasks (Christiano et al., 2017).
Stiennon et al. (2020) applied RLHF in NLP, train-
ing models for improved text summaries. Ouyang
et al. (2022) extended this approach with Instruct-
GPT, producing outputs that were preferred over
those from larger models like GPT-3. RLHF-
trained models have shown advantages in common
sense reasoning and world knowledge (Glaese
et al., 2022). A more streamlined approach, Di-
rect Preference Optimization (DPO), optimizes
the model directly via preference-based compar-
isons, showing similar performance to RLHF with
faster results (Rafailov et al., 2024; Tunstall et al.,
2024).

Given the powerful text processing capabili-
ties of modern LMs, numerous studies have ex-
plored their applications in the legal domain, in-
cluding judgment prediction (Trautmann et al.,
2022), statutory interpretation (Blair-Stanek et al.,
2023), legal reasoning (Yu et al., 2022), and using
large models like ChatGPT as proxy legal advi-
sors (Oltz, 2023). Research has also assessed per-
formance on legal exams to gauge legal reasoning
capabilities (Choi et al., 2022).

For domain-specific improvements, LEGAL-
BERT (Chalkidis et al., 2020) demonstrates the
advantages of pre-training a LM specifically for
legal tasks, finding that additional domain-specific
pre-training on legal corpora improved perfor-
mance compared to using general-purpose BERT.
Building on this work, Licari and Comandè (2024)
developed Italian LEGAL-BERT, which they used
in experiments for legal text summarization (Li-
cari et al., 2023). Another Italian research, The
PRODIGIT Project (Pisano et al., 2024), is a large-
scale initiative aiming to support tax lawyers by

1https://openai.com/index/
government-of-iceland/
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utilizing LMs for summarization. In a similar line
of work, Schraagen et al. (2022) applied a BART-
based LM for summarization of Dutch case ver-
dicts. The LM-generated summaries were consid-
ered useful in human evaluations, although they
still fall short of the quality of human-generated
summaries.

3 Methods

We selected two open-source models for experi-
mentation in generated Icelandic legal summaries.
The first model, a 1.3B parameter version of GPT-
SW3, has been pre-trained on Nordic languages
using the Nordic Pile, a large corpus of approx-
imately 1.2 TB, containing data in Swedish, En-
glish, Norwegian, Danish, and Icelandic (Ekgren
et al., 2024; Öhman et al., 2023). The second
model was a 7B parameter version of Llama2
(Touvron et al., 2023), mostly pre-trained on
English texts.2 With this setup, we compared
the effectiveness of language-specific pre-training
(GPT-SW3) to the general learning capacity of a
larger model (Llama2).

To better understand the effect of pre-training
on Icelandic texts, we created a sub-corpus of
the Icelandic Gigaword Corpus (IGC) (Barkarson
et al., 2022; Steingrímsson et al., 2018) that con-
tained 10% of its data sampled at random. We then
created a version of Llama2 (called Ice-Llama2)
that was pre-trained on this sub-corpus.

All models were trained in three phases. In the
first phase, the models were further pre-trained on
domain-specific Icelandic legal text (see Section
3.1) and in the second phase, the models were
fine-tuned to perform the supervised court case
summarization task. After this training phase, the
model able to produce the highest ROUGE score
(Lin, 2004) – a commonly used metric for summa-
rization tasks – was used to create summaries for a
pairwise comparison dataset. Finally, in the third
phase, this data was then used to perform prefer-
ence training with DPO and RLHF.

3.1 Datasets

The datasets used for the training process are
based on case rulings from the Icelandic supreme
court, publicly available on the court’s website3.
One row of data consists of a court ruling and a

2Llama2 was the most powerful available open source
models at the time of experimentation for this research.

3https://www.haestirettur.is/domar/

summary made by a lawyer or attorney.
Many of the court rulings are too long to fit the

context window of the chosen models. We there-
fore split the data into two parts: 1) long court rul-
ings only (R); 2) court rulings that fit the window
and their summaries (RS). The R dataset was used
for the first phase of training, namely for further
pre-training the models on domain-specific Ice-
landic legal text. The RS dataset was thus used for
the second phase, fine-tuning the models to per-
form the summarization task. After splitting the
data in this manner, the R dataset contained 5677
rows, split into 5077 rows (90%) of training data,
300 rows (5%) of test data and 300 rows (5%) of
validation data. This left the RS dataset with 2,613
rows of data, further split into 2013 rows (78%) of
training data, 300 rows (11%) of test data and 300
rows (11%) of validation data4.

3.2 Domain Specific Further Pre-Training

To investigate the importance of further pre-
training on domain-specific text, the models were
trained on the R dataset of court rulings only. As
auto-regressive models, they were trained using
self-supervised learning by shifting the input se-
quence forward by one token, creating target la-
bels for predicting the next token in the sequence.
The legal text in the dataset was processed by
packing chunks of text together and dividing them
into fixed-size blocks of 512 tokens. To measure
the improvement in domain-specific text genera-
tion, the perplexity of both models on Icelandic le-
gal text was estimated before and after fine-tuning,
and the results were compared.

3.3 Instruction Fine-Tuning

Following the domain-specific training step, the
models were fine-tuned using supervised learning
to generate summaries. This was done using the
RS dataset, where the models were given an input
consisting of an instruction to create a summary,
followed by the ruling text, and a token to mark the
start of the summary. The corresponding label was
the human-generated summary of the ruling from
the court’s website. Due to the sequence length,
the data was fed to the models in mini-batches
of single rulings, but to ensure more stable train-
ing, the models processed eight sequences before
calculating the gradient and updating the weights.

4https://huggingface.co/datasets/
thorirhrafn/domar_data
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To evaluate the models’ ability to generate sum-
maries and the impact of supervised fine-tuning,
the ROUGE score was computed both before and
after training.

3.4 Preference Training
The third phase of training was to apply preference
training on top of the instruction fine-tuning to de-
termine if it would improve performance. DPO
requires a specialized dataset where the model is
presented with two responses: one marked as pre-
ferred and the other as rejected. Then, it uses a loss
function to compare these responses, directly pe-
nalizing the model for generating outputs that re-
semble the rejected data, increasing the likelihood
of the model producing outputs that align with the
preferred responses.

Implementing RLHF first involves training a re-
ward model that serves as a reward function dur-
ing training by classifying generated summaries
and assigning scalar values based on its evalua-
tion. This reward model was fine-tuned using a bi-
nary classification task on the dataset of preferred
and rejected responses, which was also used for
the DPO training. Training was carried out us-
ing Proximal Policy Optimization (PPO), a pol-
icy gradient algorithm that directly optimizes the
policy guiding the model’s behavior. The goal is
to maximize the probability of actions (i.e., gen-
erating summaries) that yield high rewards from
the environment, given the current state. PPO
limits the policy changes allowed at each train-
ing step, thereby ensuring greater stability and im-
proving convergence to an optimal solution. Care
must be taken that the values produced by the re-
ward model need to be scaled appropriately. If
the reward model’s interpretation of preferences is
inconsistent or inaccurate, it can produce unsta-
ble reward signals, leading to conflicting feedback
which can cause divergence during training (Sti-
ennon et al., 2020).

As before, performance was assessed by calcu-
lating the ROUGE score both before and after the
RLHF training.

3.5 Human Evaluation
The final evaluation involved having legal experts
rank the generated summaries. Using the test split
of the RS dataset, the trained models were used
to generate summaries which were then presented
to human experts for ranking. One primary le-
gal expert, an attorney with over five years experi-

ence and that has proceeded dozens of court cases,
ranked summaries generated from 25 court rul-
ings, selected to represent a wide variety of cases.
To assess agreement, two additional legal experts
ranked summaries for five of these cases. The pri-
mary expert also evaluated each generated sum-
mary by assigning two separate scores, each on
a scale of 1 to 5: one score for the quality of the
summary as a legal text, and another for the quality
of the Icelandic used in the generated text. Here,
the scores represent the quality expected within
the legal domain, with a score of 5 meaning com-
plete legal accuracy, and a near perfect use of the
Icelandic language. A score of 1 would indicate a
total misunderstanding of the legal argument and
a totally unacceptable quality of Icelandic.

4 Results

To optimize training efficiency and make the best
use of available resources, all models were trained
using Low-Rank Adapters (LoRA) (Hu et al.,
2022). The first parameter to be tuned and an-
alyzed during pre-training was the adapter rank
value. During the first phase of further pre-training
on the R dataset (Icelandic court rulings only), in-
creasing the rank consistently led to a lower loss.
This suggests that increasing the number of train-
able parameters helps the model to learn better
from the training data.

Based on these findings, a relatively large
adapter with a rank of 1024 was used for train-
ing Llama2-7B on the IGC sub-corpus data and a
rank of 256 for phase one (further pre-training on
the R data, court rulings only), and a rank of 128
for phase two (training for the summarization task
on the RS data, court rulings and summaries).

To assess the impact of phase one, all mod-
els were evaluated by calculating their perplexity
scores on the test split of the dataset.

Model Perplexity
GPT-SW3-1.3B 5.281

Llama2-7B 9.283
Ice-Llama2-7B 5.048

Table 1: Perplexity evaluation on legal text in
Icelandic before using further pre-training on le-
gal data.

As shown in Table 1, the base Llama2 model
initially scored significantly higher in perplex-
ity compared to both GPT-SW3 and Ice-Llama2,
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which had been pre-trained on the ICG sub-corpus
data. After the phase one training process, how-
ever, both Llama2 variants achieved lower per-
plexity scores than GPT-SW3.

Model Perplexity
GPT-SW3-1.3B 4.844

Llama2-7B 2.981
Ice-Llama2-7B 2.900

Table 2: Perplexity evaluation on legal text in Ice-
landic after further pre-training on Icelandic court
rulings data.

4.1 Instruction Fine-Tuning
The second phase of training was supervised in-
struction fine-tuning using the RS dataset (see Sec-
tion 3.1), along with the corresponding instruc-
tion text and summaries. To determine the op-
timal number of training epochs, the GPT-SW3
1.3B model was trained for 1, 3, and 5 epochs,
with performance evaluated using 10 summaries
from the validation set. The model trained for 5
epochs achieved the highest ROUGE scores, so all
models were subsequently trained for 5 epochs on
the training split of the dataset.

After fine-tuning, the models were evaluated by
generating summaries for all 300 entries in the test
set. The generated summaries were compared to
human-generated baselines using ROUGE scores.
As shown in Table 3, both Llama2-7B variants
achieved higher scores than GPT-SW3-1.3B:

Model Rouge1 Rouge2 RougeL
GPT-SW3-1.3B 0.2829 0.1136 0.1796

Llama2-7B 0.3055 0.1112 0.1872
Ice-Llama2-7B 0.3005 0.1121 0.1861

Table 3: ROUGE-score evaluation using all 300
summaries in the test dataset after further pre-
training on legal data and instruction fine-tuning.

4.2 Preference Training
4.2.1 Direct Preference Optimization
In the third phase of training, investigating the
impact of additional preference training, we first
looked at using the DPO method. Since both
Llama2-7B variants achieved nearly identical
ROUGE scores after instruction fine-tuning, fur-
ther training was only applied to the base Llama2-
7B model and GPT-SW3-1.3B to highlight the dif-

ferences between larger models and those with ex-
tensive language-specific pre-training.

Following the method used by Tunstall et al.
(2024) for training the Zephyr 7B model with
DPO, all models were initially fine-tuned for 1, 3,
and 5 epochs and then further trained with DPO
for an additional 1, 2, and 3 epochs. The resulting
ROUGE scores were evaluated to assess the effect
of preference training on top of varying levels of
supervised fine-tuning. GPT-SW3-1.3B achieved
its best improvements after 2 epochs of DPO train-
ing, following 5 epochs of fine-tuning. However,
performance plateaued after 3 epochs, and in some
cases began to degrade, likely due to overfitting.

For the Llama2-7B model, the best improve-
ments were observed after 2 epochs of DPO train-
ing but with only 1 epoch of prior fine-tuning.
Given the larger parameter count and higher learn-
ing capacity of Llama2-7B, the risk of overfitting
was more pronounced. To mitigate this, training
was conducted with a low starting learning rate of
7 e−07, as even slight increases led to overfitting.

After completing this training process, the
best-performing versions of GPT-SW3-1.3B and
Llama2-7B were evaluated on the entire test set of
summaries. This resulted in significant improve-
ments for GPT-SW3-1.3B and modest gains for
Llama2-7B, as shown in Table 4:

Model Rouge1 Rouge2 RougeL
GPT-SW3-1.3B 0.3381 0.1637 0.2263

Llama2-7B 0.3143 0.1226 0.1963

Table 4: ROUGE-score evaluation on generating
300 summaries for court rulings in Icelandic after
further pre-training on legal data, supervised in-
struction fine-tuning, and DPO.

4.2.2 Reinforcement Learning from Human
Feedback

The second preference training method evaluated
was RLHF. As outlined in Section 3, RLHF in-
volves first training a reward model to classify
the output of the policy model and return a scalar
reward based on the likelihood that the gener-
ated output aligns with human preferences. The
same pairwise dataset used during the DPO train-
ing phase was utilized to train this reward model.
Initial attempts revealed a high susceptibility to
overfitting, necessitating training for just a single
epoch with a relatively low learning rate of 2e−06.
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Early efforts to use the reward model to train a
policy using PPO resulted in highly unstable train-
ing. The policy quickly learned to exploit the
reward model by generating sequences of empty
lines, random characters, or incomplete word end-
ings, leading to a spike in KL divergence and in-
flated rewards.

To stabilize the training, the output of the re-
ward model was normalized such that the rewards
had a mean of µ = 0 and a standard deviation of
σ = 1 at the start of training. This normaliza-
tion led to a much more stable training process.
However, the PPO algorithm’s conservative policy
updates resulted in slow learning progression, as
shown in Figure 1:

Figure 1: Mean reward and KL-divergence for
GPT-SW3 1.3B after 20 epochs of training using
the PPO reinforcement learning algorithm.

Due to the substantial GPU resources required
for RLHF, this training method was only applied
to the smaller GPT-SW3 model. As with previ-
ous evaluations, the model’s performance was as-
sessed by calculating the ROUGE score. How-
ever, in contrast to its DPO-trained counterpart,
the RLHF model did not exhibit performance im-
provements, as can be seen in Table 5:

Model Rouge1 Rouge2 RougeL
GPT-SW3-1.3B 0.2690 0.1058 0.1769

Table 5: ROUGE-score evaluation on generating
300 summaries for court rulings in Icelandic after
further pre-training on legal data, instruction fine-
tuning, and reinforcement learning.

4.3 Human Evaluation

As a final evaluation step, the results generated
from 25 court rulings by five model variations
were ranked by a human expert in the legal do-

main, tasked with ranking the summaries from 1st

place to 5th:

Model Order Average
GPT-SW3-RLHF 1 2.20
GPT-SW3-SFT 2 2.36
Llama2-DPO 3 3.24
Llama2-SFT 4 3.52

GPT-SW3-DPO 5 3.68

Table 6: Average rank for five model variations
after being ranked on summary generation for 25
court rulings by a legal expert. The model names
have an ending that marks if they were addition-
ally fine-tuned using either DPO or RLHF, or if
they were only instruction fine-tuned using super-
vised learning (SFT).

As can be seen in Table 6, the version of GPT-
SW3-1.3B that had only been instruction fine-
tuned and the version that had also been addition-
ally trained with RLHF were most often chosen as
the preferred models, despite having achieved the
lowest scores during evaluation. Two other experts
also ranked the first five of the 25 chosen rulings
to get an assessment on the agreement between hu-
man legal experts, the results of which can be seen
in Table 7:

Model Primary Comparison
GPT-SW3-SFT 1.6 2.3

GPT-SW3-RLHF 2.2 2.6
Llama2-DPO 3.0 3.0
Llama2-SFT 4.0 4.0

GPT-SW3-DPO 4.2 3.2

Table 7: Average rank for five model variations
after being ranked on summary generation for the
first 5 court rulings from the list of 25. Rank scores
from the primary expert compared to the average
from two other legal experts to assess agreement.

To further assess the models’ capabilities, the
primary evaluator assigned each model a score on
a scale of 1 to 5, where 1 represented the lowest
performance and 5 the highest. The models were
evaluated based on two criteria: the quality of the
Icelandic language used in the generated text and
the legal accuracy in relation to the court ruling
being summarized.

Looking at the results in Table 8, both variations
of GPT-SW3-1.3B that were ranked in the top two
positions also achieved the highest scores for Ice-
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Model Icelandic Legal Accuracy
Baseline 4.96 4.8

GPT-SW3-SFT 4.04 2.68
GPT-SW3-RLHF 3.96 2.56

Llama2-DPO 2.88 2.52
Llama2-SFT 2.92 2.04

GPT-SW3-DPO 3.24 1.96

Table 8: Average scores for five model variations
on the quality of the Icelandic used and the legal
accuracy after being assessed by a legal expert on
summaries generated for 25 court rulings.

landic language quality and legal accuracy. The
two Llama2-7B variations exhibited similar scores
for language quality, but the DPO version scored
higher in legal accuracy. In contrast, the GPT-
SW3-1.3B DPO variant received notably lower
scores for Icelandic language quality compared
to the other GPT-SW3 versions and had the low-
est score for legal accuracy, despite achieving the
highest ROUGE score overall. When compared
to human-generated summaries, all models scored
significantly lower, particularly in terms of legal
accuracy.

5 Discussion

5.1 Language Specific Pre-training
After the self-supervised training on the legal text
in the R dataset, the Ice-Llama2 model, which
had also previously been trained on Icelandic texts
from the IGC, was expected to achieve the best
scores. However, the results (see Table 3) indicate
otherwise, showing only a marginal difference be-
tween the two Llama2-7B models. This suggests
that when fine-tuning a model intended for further
domain-specific training, it might be more benefi-
cial to utilize more curated high-quality domain-
specific datasets, even if this means training on
less data. Such an approach allows the model to
more effectively capture the relevant words and
phrases it will encounter while performing down-
stream tasks within the specific domain, increas-
ing the likelihood of accurately predicting the nec-
essary tokens. Further evidence can be observed
in the ROUGE score results after the summary
generation training using instruction fine-tuning,
where no significant difference was found between
the two Llama2-7B models. The ROUGE scores
for the model-generated summaries are generally
modest. However, caution is needed when inter-

preting these results, as summaries of court rulings
are often concise descriptions of the outcomes,
which may not include much of the ruling’s text
and can be phrased differently. Consequently, as-
sessing the quality of the generated text, based
solely on N-gram overlap, can sometimes be chal-
lenging.

5.2 Model Evaluation
While numerical evaluations are valuable for as-
sessing the training process, they may overlook
important nuances and subjective qualities in lan-
guage. This discrepancy is evident in Table 9,
which compares the models’ standings based on
perplexity scores with the subjective assessments
of domain experts regarding the quality of the Ice-
landic text generated by the models.

Rank Perplexity Score Qualitative Analysis
1 Llama2-DPO GPT-SW3-SFT
2 Llama2-SFT GPT-SW3-RLHF
3 GPT-SW3-SFT GPT-SW3-DPO
4 GPT-SW3-RLHF Llama2-SFT
5 GPT-SW3-DPO Llama2-DPO

Table 9: Ranking of evaluated models compar-
ing perplexity scores with results from qualitative
analysis on the use of Icelandic by a domain ex-
pert.

The same limitations can also be observed in in
Table 10, comparing the rankings of these models
based on their ROUGE scores against the subjec-
tive analysis of domain experts on the legal accu-
racy of generated summaries:

Rank ROUGE Score Qualitative Analysis
1 GPT-SW3-DPO GPT-SW3-SFT
2 Llama2-DPO GPT-SW3-RLHF
3 Llama2-SFT Llama2-DPO
4 GPT-SW3-SFT Llama2-SFT
5 GPT-SW3-RLHF GPT-SW3-DPO

Table 10: Ranking of evaluated models comparing
ROUGE-scores with results from qualitative anal-
ysis on the legal accuracy in generated summaries
by a domain expert.

The ROUGE scores and analyses by domain
experts for both variations of the Llama2-7B
model suggest that improvements can be achieved
through preference training, such as DPO. In
contrast, the results for the GPT-SW3-1.3B-DPO
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model present a different narrative. While this
model demonstrates a significant improvement in
ROUGE scores compared to other GPT-SW3-
1.3B variants, it is frequently rated as the least pre-
ferred option by domain experts.

A detailed analysis of the legal accuracy scores
reveals that the GPT-SW3-1.3B-DPO model is the
only one of the model variations evaluated to re-
ceive full marks for legal accuracy in its sum-
maries. However, it also frequently garnered low
scores of 1 or 2. These contradictory results sug-
gest that the model might have over-fitted, en-
abling it to sometimes produce relatively high-
quality summaries while most often failing to gen-
eralize effectively.

Despite the shortcomings of DPO regarding
over-fitting, its user-friendliness compared to
RLHF makes it a preferable starting point for ex-
ploring whether preference training can enhance
performance, as achieving stable RLHF training
without divergence can present a significant chal-
lenge. Additionally, RLHF demands more compu-
tational resources than DPO. However, it cannot
be overlooked, as evidenced by the results show-
ing that the RLHF model outperformed both DPO
variations in evaluations by human experts. Fur-
thermore, RLHF offers greater flexibility in devel-
oping the reward model, as it is not limited to pair-
wise comparisons, which could be advantageous
for specific applications.

Overall, none of the models matched the capa-
bilities of human experts in the evaluation, espe-
cially with regard to legal accuracy. Furthermore,
the discrepancy in the quality of Icelandic text be-
tween Llama2-7B and GPT-SW3-1.3B highlights
the importance of language-specific pre-training,
as GPT-SW3-1.3B consistently produced higher-
quality text in Icelandic.

5.3 Qualitative Analysis

The main domain expert reviewed the output of
the models and found that they performed reason-
ably well overall in generating sentences that re-
flect the expected language and phrasing found in
court rulings and summaries. However, the con-
textual flow between individual sentences was in-
consistent, with some examples displaying a lack
of cohesion and contradictory statements within
the same summary, such as “the Supreme Court
dismissed the case” and then “the Supreme Court
denied the request for dismissal of the case”. The

models also struggled to adapt their summaries to
the predetermined text length; with some being
noticeably incomplete, while others including un-
necessary sentences added to an otherwise com-
plete summary.

While the models successfully identified essen-
tial components, such as the case subject and the
court’s decision, the expert found that they fre-
quently overlooked key arguments and relevant
statutes that influenced the outcome. The factual
accuracy was mediocre, with several instances of
contradictory statements, e.g., one correctly stat-
ing the outcome while another contradicting it.
Additionally, the model occasionally confused the
roles of the parties involved in a case, leading to
inaccuracies about which party appealed the case
or made specific claims or arguments. This some-
times carried over in the use of pronouns, creating
circular sentences, such as ‘the claimant requested
that his [own] claim be dismissed’.

This review highlights that preference training
can produce legal summaries in Icelandic that are
useful to some extent, but more work needs to be
done before such software can be used in practice.

6 Conclusions

We evaluated the effect of language-specific and
preference training to enhance the ability of LMs
in generating Icelandic legal text summaries, com-
pared to LMs fine-tuned solely with supervised
learning. An analysis of the evaluation results re-
veals that models further trained using either DPO
or RLHF can exhibit improved performance in
domain-specific language generation compared to
those solely fine-tuned through supervised instruc-
tion; however, not consistently. Notably, this addi-
tional preference training did not lead to a general
improvement in the quality of Icelandic used in the
generated text. This underscores the critical role
of language-specific pre-training in establishing a
robust foundation for language generation.

A notable finding was the gap between ROUGE
scores and expert preferences, suggesting earlier
integration of human feedback could be beneficial.
The dataset for pairwise comparison was based
on responses with top ROUGE scores post fine-
tuning. A more effective approach might involve
gathering human feedback at this stage to identify
which model is best suited for generating data for
further training. However, this approach is con-
strained by the high costs associated with obtain-
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ing feedback from professional experts. While the
expert feedback gathered provides valuable insight
into their preferences, achieving significant im-
provements driven by human feedback will likely
require additional resources and investment.

Future work should emphasize language-
specific pre-training on Icelandic legal texts, fo-
cusing on laws, bills, and resolutions. This could
enhance Icelandic quality while expanding legal
knowledge. Leveraging newer models with ex-
tended context windows, such as the now avail-
able Llama3 family, could enable better utiliza-
tion of training data by processing longer rul-
ings. This capability would allow the inclusion of
more training samples, potentially leading to im-
provements in performance. In addition to this,
Retrieval-Augmented Generation (RAG) (Lewis
et al., 2020) could be used to give models ac-
cess to external knowledge when generating sum-
maries, helping to increase factual accuracy in the
responses. Moreover, a greater variety of LMs
should be evaluated, as well as a larger cohort of
legal experts.

7 Limitations

A limitation of this research was the dataset size,
capped at 2,600 rows, while comparable studies
used about 120,000 rows (Stiennon et al., 2020).
Expanding with public court rulings and lower
court summaries could improve outcomes, as a
larger dataset of quality data is crucial for suc-
cessfully training viable models. Additionally, the
models selected were only a subset of the models
available, and we had a limited number of legal ex-
perts participating in our experiments. These lim-
itations may affect the generalization of our find-
ings to other domains and languages.
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2Paris Télécom, 19 place Marguerite Perey, 91120 Palaiseau, France
{johannes.heinecke,frederic.herledan}@orange.com

maria.boritchev@telecom-paris.fr

Abstract

Abstract Meaning Representation (AMR)
is a graph-based formalism for represent-
ing meaning in sentences. As the an-
notation is quite complex, few annotated
corpora exist. The most well-known and
widely-used corpora are LDC’s AMR 3.0
and the datasets available on the new AMR
website. Models trained on the LDC
corpora work fine on texts with similar
genre and style: sentences extracted from
news articles, Wikipedia articles. How-
ever, other types of texts, in particular
questions, are less well processed by mod-
els trained on this data. We analyse how
adding few sentence-type specific annota-
tions can steer the model to improve pars-
ing in the case of questions in English.

1 Introduction

Abstract Meaning Representation (Banarescu
et al., 2013) provides a framework to model the
meaning of a sentence, notably actions, events or
states and their participants. AMR relies heavily
on (verbal) concepts defined in PropBank (Kings-
bury and Palmer, 2002; Palmer et al., 2005), e.g.
bear-02 in figure 1, PropBank’s sense -02 for
the verb “to bear”. Instances are indicated by a
following “/”, e.g., p being an instance of the
concept person. The names of the variables
do not have any other semantics than being dis-
tinct. Relations are indicated by an initial colon
(e.g. :ARG1, :time). Literals (strings and num-
bers) lack a preceding instance and “/” (c.f. “Eliz-
abeth” and 1926 in the example in figure 1). This
serialised format, shown in figure 1 left, is called
PENMAN (Kasper, 1989).

The largest available corpus used to train mod-
els capable of parsing sentences from natural
languages into AMR graphs, called AMR 3.0,

(b / bear-02
:ARG1 (p / person

:name (n / name
:op1 "Queen"
:op2 "Elizabeth"))

:time (d / date-entity
:year 1926))

Figure 1: AMR graph for “Queen Elizabeth was
born in 1926” in PENMAN format.

LDC2020T021, is provided by the Linguistic Data
Consortium (LDC). This corpus is composed of
nearly 59 000 sentences and corresponding AMR
graphs. The data contains discussions from fo-
rums (partly technical), news reels, translations to
English of Chinese news broadcasts, along with
a part originating from English Wikipedia pages
and Aesop’s fables (see LDC2020T02 documen-
tation).

The problem we address in this article is the
following: the gold data currently available for
AMR parsing is very homogeneous in form as it
is composed of declarative, informative sentences.
Training models on such data yields lower-than-
expected results for parsing of questions in AMR.
We add a small dataset of questions to the training
data to bypass this problem. Even if we were intu-
itively expecting this kind of result, we were able
to confirm it and measure improvement.

2 Related Work

Domain type adaptation research for AMR has
been attempted in several contexts and perspec-
tives, one of the most well-known leading to the
development of Bio-AMR2. Bio-AMR includes
texts from the biomedical domain, extracted from
PubMed3. Vu et al. (2022) conducted a research

1Knight et al. (2020), https://catalog.ldc.upenn.edu/
LDC2020T02

2Available on the new AMR webpage: https://github.com/
flipz357/AMR-World

3https://pubmed.ncbi.nlm.nih.gov/
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on AMR of data outside news article excerpts, fo-
cusing on the legal documents domain, using a
gold dataset. The parsing results were not very
conclusive, and the authors provide a detailed dis-
cussion of this result. Among the explanations for
the models not-so-good performances, two stand
out: first, legal documents contain mostly sen-
tences longer than the ones from LDC datasets;
then, the models faced out-of-vocabulary (OOV)
issues, as some concepts, specific to the legal do-
main, were not defined in PropBank. This latter
issue comes from the semantic difference between
the news and the legal documents domains.

Lee et al. (2022) experimented on sentence-
type adaptation through both algorithmic and data-
based research. They created and released the
QALD-9-AMR corpus, built on top of QALD-9
data (Usbeck et al., 2018). It contains AMR anno-
tations for natural language questions in English,
originally provided for executable semantic pars-
ing. Lee et al. (2022) further mention one unavoid-
able difficulty for domain adaptation which is out-
of-vocabulary named entities and their types, that
cannot be solved without using domain-specific
corpora. The authors compare the usage of silver
data with that of human annotation for QALD-9.

3 AMR Parsing of Short Questions

In this section, we present our data and our pars-
ing methods, followed by first observations and
hypotheses.

Corpora The AMR 3.0 corpus mainly contains
sentences from newspapers and a small part of
Wikipedia. There is almost no real question in this
corpus (apart from a few rhetorical ones). Our hy-
pothesis is that a model trained on this data will
not perform well on question parsing. Thus, our
research question is to see whether it is possible
to improve the model’s performance on questions
by adding a small corpus of short questions to its
training data (i.e. AMR 3.0 train).

The data we used in this article is the following:

a. AMR 3.0, about 55 000 sentences for train-
ing, 1 722 sentences for validation and 1 898
sentences for test.

b. QALD-9 Lee et al. (2022)4, contains 400
(train) and 150 (test) questions taken from the
QALD-9 project and annotated using AMR.

4https://github.com/IBM/AMR-annotations

The test set of QALD-9 contains 13 sentences
which are also in the train corpus and in the
QALD-7 and QALD-8 data which served as
input for QUEREO. We deleted them from
the QALD-9 test set, and use only the 137 re-
maining sentences. (c.f. fig. 2).

c. QUEREO: a corpus we created, which con-
tains 406 (training) short, quiz-like ques-
tions of the same type as the ones in
QALD-9, coming amongst other sources
from QALD-7, QALD-8. The 406 sentences
are equally divided between questions and
the corresponding answers.

About 25% of the questions and all answers in
QUEREO were formulated prior to the AMR an-
notation by human annotators from our team5 (cf.
fig. 3 and 4). Table 1 details the size of the cor-
pora. An answer can often be formulated in vari-
ous ways: “Edinburgh is the capital of Scotland”
and “the Scottish capital is Edinburgh”, yielding
very similar AMR graphs.

QUEREO was created by two annotators
by correcting AMRlib’s output annotations and
checking PropBank concepts and associated ar-
guments. The computation of pairwise Smatch
scores shows a relatively good quality of annota-
tion with an inter-annotator agreement of 87.37%.
In case of disagreement, the best annotation was
chosen manually by a third annotator.

corpus training dev. test
AMR 3.0 55 635 1 722 1 898
QALD-9 AMR 357 51 137
QUEREO 358 48 0

Table 1: Number of sentences in the used corpora.
QALD-9 only comes with a train and a test set.
We split 51 sentences from the training corpus in
order to have a development set as well.

Parser We use a slightly modified version of the
AMRlib6 parser, which can use as an underlying
language model models other than T5. In our case,
we adapted AMRlib to use the multilingual ver-
sion MT5 and FLAN-T5. The base data is the

5The annotators used the official AMR annotation guide-
lines available at https://github.com/kevincrawfordknight/
amr-guidelines/blob/master/amr.md. The AMR annotation
was undertaken using metAMoRphosED (https://github.com/
Orange-OpenSource/metamorphosed/) (Heinecke, 2023)

6https://github.com/bjascob/amrlib
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(e / erupt-01
:ARG1 (v / volcano

:mod (a / amr-unknown)
:location (c / country

:name (n / name
:op1 "Japan")))

:time (s / since
:op1 (d / date-entity

:year 2000)))

“Which volcanos in Japan erupted since 2000?”

Figure 2: Example question from QALD-9 test
corpus

(g / game
:name (n / name

:op1 "Winter"
:op2 "Olympic"
:op3 "Games")

:time (d / date-entity
:year 2010)

:location (c / city
:mod (a / amr-unknown)))

“In which city did the 2010 Winter Olympic
Games take place?”

Figure 3: Example question from our corpus

AMR 3.0 corpus, which we augment with datasets
containing short questions. We trained the mod-
els using either T5 (Raffel et al., 2020), FLAN-T5
(Chung et al., 2022) or MT5 (Xue et al., 2021) as
underlying language model (base size in all four
cases). For evaluation, we use the Smatch pack-
age (Cai and Knight, 2013)7.

Observations We have noticed that models re-
lying on the AMR 3.0 corpus perform less well
in terms of Smatch F1 when it comes to ques-
tions and answer sentences, both in QALD-9 and
our own data. Questions in QALD-9 are mostly
short sentences, so generally a better performance
would be expected. Table 2 shows these initial
results on models trained by fine-tuning different
language models.

Even though the results for QALD-9 are bet-
ter than the ones for AMR3.0, we were expect-
ing a larger difference in figures. The sentences
in QALD-9 are much shorter compared to the
ones from AMR3.0: 43.6 characters/sentence for
QALD-9, 112.0 characters/sentence for AMR3.0.

Hypotheses This under-performance could be
due to two factors: the slightly different syntax
of questions with respect to declarative sentences
(e.g. “to do” periphrasis in English or the “est-

7https://github.com/snowblink14/smatch

(g / game
:name (n / name

:op1 "Olympic"
:op2 "Winter"
:op3 "Games")

:time (d / date-entity
:year 2010)

:location (c / city
:name (n2 / name

:op1 "Vancouver")))

“The 2010 Olympic Winter Games took place in
Vancouver.”

Figure 4: Example answer from our corpus

LM AMR 3.0 QALD-9
T5 81.8 87.2
FLAN T5 82.2 86.4
MT5 (en-fr) 81.6 85.7

Table 2: Results on the AMR3.0 test corpus and
the QALD-9 test corpus. All models were trained
on AMR3.0 train corpus only.

ce que” construction in French), or the missing
coverage of vocabulary used in QALD-9 and our
questions compared to the AMR 3.0 training cor-
pus (for instance the concepts abbreviate-01,
skateboard-01 or novelist). Therefore, if
the parser encounters an unknown concept, a so-
lution is to use a fake concept appending “-01”
to the concept’s name. However, we do not en-
counter this particular problem in our setting yet.

In the remainder of this paper we describe our
AMR parsing based on our version of AMRlib, the
additional data and the obtained results.

4 Effect of Adding Questions to the
Training Data

After our first observations, we trained models us-
ing different combinations of augmented data.

Experimental setup In a first step we trained
three models using the AMR 3.0 training corpus.
This gives us our baseline results (table 2), for the
AMR 3.0 test corpus and the QALD-9 test corpus.

We then extended the training data with the
QALD-9 training data, with our data, and finally
with both. The QALD-9 AMR comes in two files,
a training and a test corpus. We took 51 sentences
from the training corpus to have a development
corpus (see table 1). We used QALD-9 AMR’s
test corpus to test our model for the sake of repro-
ducibility of our research results.
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LM lg. train data test data
AMR 3.0 QALD-9

T
5

E
ng

lis
h baseline 81.8 87.2

+ QUEREO 82.0 (+0.2) 86.8 (–0.4)

+ QALD-9 81.9 (+0.1) 90.0 (+2.8)

+ QR. + Q9 82.0 (+0.2) 89.5 (+2.3)

FL
A

N
-T

5

E
ng

lis
h baseline 82.2 86.4

+ QUEREO 82.4 (+0.2) 86.8 (+0.4)

+ QALD-9 82.1 (–0.1) 89.7 (+3.3)

+ QR. + Q9 82.1 (–0.1) 89.6 (+3.2)

M
T

5

E
n

+
Fr

baseline 81.6 85.7
+ QUEREO 81.4 (–0.2) 86.6 (+0.9)

+ QALD-9 81.8 (+0.2) 89.8 (+4.1)

+ QR. + Q9 81.8 (+0.2) 89.6 (+3.9)

Table 3: Test results: Best figures for a test cor-
pus with the same language model (T5, FLAN-
T5, MT5) in italics, best overall score in bold.
QR stands short for QUEREO, Q9 stands for
QALD-9. The baseline is a corpus trained only on
the AMR 3.0 training data, the difference with re-
spect to the baseline is shown in small digits. The
baseline is taken from table 2.

Results The results are shown in table 3. The
baseline (already shown in table 2) is given by the
models trained only on AMR 3.0 training data pro-
vided by LDC. Adding a little additional data to
the AMR 3.0 training corpus we were able to im-
prove significantly the parsing results, even for the
AMR 3.0 test data. This is independent of the un-
derlying language model.

5 Discussion

In this paper we showed that even minor additions
to the standard AMR 3.0 training corpus can have
big impacts on the performance of an AMR parser
for a new sentence type, syntactic in the case of
questions. Next, we plan on taking our studies fur-
ther by annotating a domain specific corpus in the
domain of artificial intelligence) or noisy data.

We are aware of the problems of Smatch-based
evaluation, and we follow the other algorithms for
AMR comparison that have been proposed, in par-
ticular semantic Smatch such as S2match (Opitz
et al., 2020). In future work, we would like to
broaden our exploration of the benefits of adding a
small corpus of specialised examples through dif-
ferent dimension of AMR, using different types of
evaluation metrics.

The exploration conducted in this paper has fo-

cused on one method of parsing, the one provided
by our extended version of AMRlib. It would be
interesting for us to test whether the data augmen-
tation results presented here are coherent through-
out the different parsing methods, in particular in
using the most efficient parsing methods for AMR
such as MBSE (see Lee et al. (2022)).

We would also like to conduct an exploration
of errors similar to the one presented in Boritchev
and Heinecke (2023) to be able to quantify and
qualify the remaining percentages of mistakes.
The goal then would be to use pre- and post-
processing methods to accommodate these errors
when possible.

We only worked with short questions, quiz-like,
since we were not (yet) able to annotate corpora
with longer questions or more complex types of
questions. The questions in the additional cor-
pora (QALD-9 and QUEREO) are given with-
out a proper context. If we were to parse dia-
logues, coreference resolution and ellipsis resolu-
tion should be considered.

6 Further Work: Beyond English

The work presented in the current article only con-
cerns English, since gold AMR data is only avail-
able for this language. Another problem is that the
AMR3.0 training corpus is translated to other lan-
guages using machine translation, so errors in this
translation may influence the results.

Even though AMR has explicitly not been de-
veloped to be an interlingua for multi-lingual pro-
cessing, it is in fact used exactly for this. A man-
ual translation of the AMR test corpus sentences
into Chinese, German, Italian and Spanish is pro-
vided by LDC (LDC2020T078). In order to an-
notate non-English text in AMR, two variants for
multi-lingual AMR can be found in the literature:
1) annotating non-English sentences using a lan-
guage specific set of concepts, i.e. instead of the
(English) PropBank, concepts from language spe-
cific thesauri are used (e.g. Chinese AMR, (Li
et al., 2016), Spanish (Migueles-Abraira et al.,
2018), Turkish (Oral et al., 2022) amongst others)
or 2) English AMR graphs represent the mean-
ing of non-English sentences (Damonte and Co-
hen, 2018; Blloshmi et al., 2020; Uhrig et al.,
2021; Cai et al., 2021; Heinecke and Shimo-
rina, 2022). We followed the latter approach by
machine-translating the sentences of the AMR 3.0

8Damonte and Cohen (2020)

255



corpus into French and training baseline models
using this translation. We used Google Machine
Translation (Wu et al., 2016) and No Language
Left Behind (NLLB, Costa-jussà et al. (2022)).

For the training of the French corpus we only
finetuned MT5. In addition we created a multi-
lingual model (based on MT5) by concatenating
and shuffling the English and French training and
validation corpora. In this case we have an En-
glish and a French sentence for each AMR graph.
The first results look very similar to the results de-
scribed in this paper as shown in table 4 for French
on QALD-9. Table 5 shows the results for French
(similar to table 3 for English).

Another approach we would like to explore is
the transition from AMR to Uniform Meaning
Representation (UMR) (Bonn et al., 2024). As
UMR is designed to be “cross-linguistically plau-
sible”, the multilanguage considerations are inher-
ent to the UMR annotations, making them partic-
ularly interesting for our type of investigations.

LM AMR 3.0 QALD-9
MT5 (fr) 74.8 81.4
MT5 (en-fr) 74.6 80.8

Table 4: French: Results of the AMR3.0 test cor-
pus and the QALD-9 test corpus.

LM lg. train data test data
AMR 3.0 QALD-9

M
T

5

Fr
en

ch

baseline 74.8 81.4
+ QUEREO 74.8 (±0.0) 82.3 (+0.9)

+ QALD-9 74.7 (-0.1) 84.4 (+3.0)

+ QR. + Q9 75.0 (+0.2) 84.6 (+3.2)

M
T

5

E
n

+
Fr

baseline 74.6 80.8
+ QUEREO 74.5 (–0.1) 81.6 (+0.8)

+ QALD-9 74.9 (+0.3) 85.5 (+4.7)

+ QR. + Q9 74.9 (+0.3) 85.5 (+4.7)

Table 5: French test results: Best figures for a test
corpus with the same language model (MT5) in
italics, best overall score in bold. QR stands short
for QUEREO, Q9 stands for QALD-9.
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Abstract

Data quality is crucial for training Large
Language Models (LLMs). Traditional
heuristic filters often miss low-quality text
or mistakenly remove valuable content.
In this paper, we introduce an LLM-
based line-level filtering method to en-
hance training data quality. We use GPT-
4o mini to label a 20,000-document sam-
ple from FineWeb at the line level, al-
lowing the model to create descriptive la-
bels for low-quality lines. These labels are
grouped into nine main categories, and we
train a DeBERTa-v3 classifier to scale the
filtering to a 10B-token subset of FineWeb.
To test the impact of our filtering, we train
GPT-2 models on both the original and
the filtered datasets. The results show that
models trained on the filtered data achieve
higher accuracy on the HellaSwag bench-
mark and reach their performance targets
faster, even with up to 25% less data.
This demonstrates that LLM-based line-
level filtering can significantly improve
data quality and training efficiency for
LLMs. We release our quality-annotated
dataset, FinerWeb-10BT, and the codebase
to support further work in this area.

1 Introduction

In recent years, the size of large language models
(LLMs) and their training datasets has expanded
tremendously, as companies and researchers strive
to build increasingly capable models. In fact, if
current trends continue, we may run out of human-
generated text data within a decade (Villalobos
et al., 2024). This has led to a growing interest
in data quality over quantity: rather than only ex-
panding datasets, researchers are exploring ways

*These authors contributed equally.

to achieve high performance with smaller, cleaner
datasets. Recent studies suggest that removing
low-quality text from training data can improve
model performance, even when the overall size of
the dataset is reduced (Longpre et al., 2023).

Furthermore, training state-of-the-art (SOTA)
language models requires significant computa-
tional resources, which are expensive and, depend-
ing on the power source, can contribute to climate
change. For example, the carbon emissions from
training GPT-3 have been estimated at 552 tCO2e
(Patterson et al., 2021), while Meta reports that
training the 405 billion parameter Llama 3.1 emit-
ted 8,930 tCO2e (Meta-Llama, 2024). Smaller, but
higher quality datasets will speed up training and,
thus, high-quality data are necessary to train not
only better models but also greener ones.

While several publicly available datasets are
used for training LLMs, many recent datasets are
still cleaned using simple heuristic filters, which
often leave substantial amounts of low-quality text
while potentially discarding clean text. Machine-
learning techniques offer a promising alternative,
as they enable models to identify patterns re-
lated to data quality. However, labeling data to
train such models is a tedious and time-consuming
process. In this paper, we address these issues
by investigating the following research questions
(RQs):

RQ1: How well can an LLM identify low-quality
content missed by heuristic filters?

RQ2: Does LLM-based quality filtering of train-
ing datasets improve model performance?

To examine these questions, we analyze
FineWeb, a dataset that claims to provide “the
finest text data at scale” (Penedo et al., 2024).
Using GPT-4o mini (OpenAI, 2024a), we label a
20,000-document sample from FineWeb, classify-
ing each line as either Clean or belonging to one
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of several low-quality categories, such as copy-
right notice, programming code, or formatting el-
ements. Instead of defining a label taxonomy our-
selves, we allow the model to generate its own la-
bels as needed, resulting in 547 unique low-quality
labels. After refining these labels, we group them
into nine broader categories for easier classifica-
tion. Next, we train a DeBERTa-v3 (He et al.,
2021) classifier using the labeled data to scale the
filtering process. This classifier allows us to au-
tomatically detect low-quality content in a larger
10B-token sample of FineWeb. Finally, we evalu-
ate the impact of LLM-based filtering by training
GPT-2 models (Radford et al., 2019) on both the
filtered and unfiltered datasets.

We release our quality-annotated
dataset, FinerWeb-10BT, available at
https://huggingface.co/datasets/TurkuNLP/finerweb-
10bt. The code to replicate our
experiments is also provided at
https://github.com/TurkuNLP/finerweb-10bt.

2 Background

A recent survey by Albalak et al. (2024) discusses
the many steps involved in selecting data for train-
ing LLMs, including language filtering, dedupli-
cation, removal of toxic or explicit content, and
heuristic-based data quality filtering. Our focus
here is on the latter two—data filtering and heuris-
tic approaches—using an LLM-driven approach
to refine data quality more precisely. As Albalak
et al. (2024) note, there is no universal standard
for “high-quality” data. In this work, we define
it as human-written, continuous English text from
the main content of a website, reflecting natural
language use across diverse contexts and domains.
Examples include core text from interviews, fo-
rum posts, news articles, blogs, and recipes. In
contrast, low-quality content includes recurring el-
ements like navigational menus, copyright notices,
programming code, and metadata.

Given that LLMs require vast amounts of text
data for training, the Internet has become a pri-
mary source for these data. Since 2008, Common-
Crawl has collected a corpus of approximately
10 petabytes of web content (Baack, 2024). De-
spite its size, CommonCrawl is neither a com-
plete nor fully representative sample of the In-
ternet, but it serves as a foundational source for
building refined datasets used in LLM training.
Here, we focus on three major datasets sourced

from CommonCrawl: C4 (Raffel et al., 2023),
RefinedWeb (Penedo et al., 2023), and FineWeb.
These datasets use different preprocessing tech-
niques to filter out unwanted material, each with
its strengths and weaknesses. We discuss these
datasets because their preprocessing methods are
well-documented, which allows us to make mean-
ingful comparisons.

All three datasets extract plaintext from HTML
documents. C4 uses the WET files provided by
CommonCrawl, which come with pre-extracted
plaintext, whereas RefinedWeb and FineWeb use
trafilatura1 to extract text directly from HTML.
Although trafilatura and similar tools remove
much of the unwanted noise, further preprocess-
ing is often required. For instance, Penedo et al.
(2023) note that “many documents remain inter-
laced with undesirable lines” despite using trafi-
latura. Deduplication and language filtering are
also important aspects of document cleaning but
we do not focus on them in this paper, as they are
specialized techniques not directly related to line-
level text quality.

Existing filtering methods can be grouped into
three levels based on their precision: document
level, line level, and character level. By far the
most common method is document level filtering,
which removes entire documents based on simple
rules. Examples include filtering documents with
phrases like “lorem ipsum”, documents with fewer
than three sentences, or documents with excessive
repetition. Line level filtering targets specific lines
within documents, removing lines that contain
terms like “javascript”, consist solely of numbers,
or fall below a certain length threshold. Character
level filtering is less common and is only applied
in one of the three datasets: in C4, citation mark-
ers commonly found in Wikipedia, such as “[1]”
and “[citation needed]”, are removed.

Document level heuristic filtering is efficient for
quickly removing large volumes of low-quality
data, but it can result in the loss of substantial
high-quality text. In contrast, line and character
level filtering provide more precision by targeting
specific content but they require significantly more
computational resources at scale. Simple heuris-
tics, such as removing lines that contain the word
“javascript” can be hit or miss, sometimes discard-
ing valuable data along with the low-quality con-
tent. Given the vast size of datasets like Com-

1https://trafilatura.readthedocs.io/en/latest/
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monCrawl, creating a simple filtering system that
only removes undesirable content without impact-
ing valuable data is nearly impossible. The fil-
ters that are used are also often dataset and lan-
guage specific. For example, FineWeb applies a
heuristic that removes documents where “the frac-
tion of lines shorter than 30 characters is >= 0.67”
(Penedo et al., 2024, p. 7), but this threshold was
determined through extensive manual testing and
is specific to that dataset.

An ideal quality filter would work across lan-
guages and datasets, avoiding trial-and-error by
focusing on actual text quality rather than prox-
ies like line length or keywords. It should also
be efficient, removing only low-quality content
while keeping valuable data intact. LLMs bring
us closer to this goal: rather than using heuris-
tics, they assess text quality directly, enabling
granular filtering, even within mostly clean docu-
ments. Since LLMs are effective at producing flu-
ent and readable text, they are likely well suited to
identifying high-quality text across different lan-
guages and datasets. However, it should be noted
that while SOTA LLMs are fluent in English and
other high-resource languages, their performance
in low-resource languages is consistently worse
(Li et al., 2024). In this study, we only analyze
English documents, and care should be taken be-
fore generalizing the results to other languages or
multilingual datasets.

The use of LLMs for quality filtering is a rel-
atively new approach, and best practices are still
emerging. For instance, Dubey et al. (2024) utilize
Llama 2 to assess the quality of web documents
for training Llama 3, but details of their method-
ology are vague. The recent trend of withholding
full training datasets for SOTA models has made
it difficult to understand the extent to which LLMs
are currently used in data preprocessing (Nguyen
et al., 2024; Maini et al., 2024). Other efforts, such
as those by Wettig et al. (2024), involve ranking
documents based on quality using GPT-3.5, evalu-
ating factors such as style, educational value, and
factuality. Similarly, Llama 3 was used to create
the FineWedEdu dataset by evaluating educational
content quality, and Gunasekar et al. (2023) em-
ploy GPT-4 to annotate code datasets based on ed-
ucational value.

Our approach differs from prior work by fo-
cusing on general-purpose data quality improve-
ments rather than curating specialized datasets.

We aim to broadly enhance training data quality
through LLM-driven filtering that removes low-
quality lines with minimal manual intervention.
This allows us to assess how automated filtering
can improve training data and, ultimately, model
performance in foundation model training.

3 Methods

Our data source is FineWeb (Penedo et al.,
2024), a 15-trillion-token collection of English
text sourced from CommonCrawl and prepro-
cessed with standard heuristics. The preprocess-
ing includes steps such as length thresholds, string
matching, language and URL filtering, and dedu-
plication. Despite these measures, the authors of
FineWeb acknowledge that the dataset could ben-
efit from further refinement. For more details
on the preprocessing steps, see the original pa-
per (Penedo et al., 2024). In our study, we use
a 10B-token (1̃5 million documents) sample from
FineWeb, FineWeb-10BT2.

Our preprocessing pipeline consists of several
steps. First, we use GPT-4o mini (OpenAI, 2024a)
to label a sample of 20,000 documents from
FineWeb at the line level. The model is tasked
with generating descriptive labels for each line,
categorizing them as either high-quality (Clean) or
into low-quality categories. This labeling process
is data-driven, allowing the model to create a dy-
namic labeling scheme rather than relying on pre-
defined categories. Previous research has shown
that LLMs can be used to annotate data and create
label taxonomies (Wan et al., 2024).

Next, we use OpenAI’s o1-preview model
(OpenAI, 2024c) to group the numerous labels
generated by GPT-4o mini into a smaller, more
manageable set. This forms the basis of a clas-
sification system, which we use to train a small
encoder-based classifier. This classifier scales
the labeling process by assigning quality scores
throughout the FineWeb-10BT dataset, enabling
line-level filtering of low-quality content.

To evaluate our filtering, we train GPT-2 mod-
els (Radford et al., 2019) on both the cleaned and
original versions of FineWeb-10BT. We compare
model performances using the HellaSwag bench-
mark (Zellers et al., 2019), a widely used test for
commonsense reasoning in language models. This
allows us to assess whether the filtering improves

2https://huggingface.co/datasets/HuggingFaceFW/
fineweb/viewer/sample-10BT
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training data quality and model performance.
Given the complexity of Internet text data

(Laippala et al., 2023), defining low-quality cat-
egories in advance is challenging. Our data-driven
approach, by contrast, allows the LLM to dynam-
ically create labels based on the content it en-
counters, rather than relying on fixed categories.
We believe this approach enables a more flexi-
ble and detailed analysis of low-quality content in
FineWeb compared to rule-based methods or pre-
defined categorizations.

4 Experiments and results

4.1 Labeling FineWeb using GPT-4o mini

We begin by labeling a 20,000-document sam-
ple from FineWeb-10BT using the GPT-4o mini
model. The model is prompted to classify each
line as either Clean (high quality and suitable for
training large language models) or assign a de-
scriptive label if the line contains low-quality con-
tent, such as HTML tags or random symbols. Ini-
tially, the model generates its own descriptive la-
bels, which are then added to a list for subsequent
classification. As the model processes more doc-
uments, it selects labels from the existing list or
creates new ones if necessary. To avoid bias from
label order, the list is shuffled after each iteration.

We split the documents into batches of up to 15
consecutive lines. The model receives a prompt,
a list of labels, and a batch of lines. Since the
lines are consecutive, each one is evaluated in con-
text, providing the model with more information
for accurate labeling. For documents containing
a single line longer than 200 characters, the line
is split into segments of no more than 200 char-
acters, using sentence-ending punctuation as the
split point. This prevents output errors, which we
observed when processing excessively long lines
during preliminary tests. Segmenting these lines
also enables more precise analysis.

This process results in quality labels for
328,472 lines. Of these, 274,343 lines (83%) are
labeled as Clean. For low-quality lines, the model
generates 547 unique descriptive labels. However,
we find that many of these labels are assigned
to one line only; in fact, 142 labels appear only
once. Upon inspection, we notice many of the
lines could be considered high-quality and, thus,
to streamline the label set, we map all these infre-
quent labels to Clean. For the remaining labels,
we take a sample of lines and manually verify that

they represent genuinely low-quality content. If
the majority of lines for a particular label are of
high quality, we remap that label to Clean. After
this refinement, the number of descriptive labels is
reduced to 382, with 45,205 lines (14%) classified
as low-quality. Conversely, 86% of the dataset is
now labeled Clean.

To visualize the distribution of these classes, we
generate a 2D UMAP projection (McInnes et al.,
2018) of the 50 most frequent label embeddings,
created using the Stella-en-400M-v5 model (Stel-
laEncoder, 2024) (see also Section 4.3 below).
The UMAP projection reduces the original 1024-
dimensional embeddings to 2D, as shown in Fig-
ure 1, with each dot scaled to represent the relative
frequency of each class.

incomplete sentence

date reference

grammatical errors

contextual fragment

incoherent content

promotional language

minor grammatical errors

informal language

url reference

technical description

citation reference

phone number reference

non-english content

copyright notice

author attribution

numerical data

inappropriate content

excessive symbols

technical requirement

spelling errors

excessive length

personal opinion

offensive content
offensive language

email reference

terms and conditions reference

contact information

informational content

pricing information

incomplete information

promotional communication

formatting elements

call to action

address reference

title reference

document reference

programming code reference

company reference
excessive informality

location reference

emotional content

promotional content
personal name reference

legal disclaimer

photo credit

programming code

adult content reference

time reference

legal reference

technical reference

Figure 1: UMAP plot of embeddings of the 50
most frequent LLM-generated label names, cre-
ated using the Stella-en-400M-v5 model.

Inspecting the plot, we observe that certain
types of low-quality content tend to occupy dis-
tinct regions in the space. For instance, legal texts
appear in the top-left, adult and toxic content in the
top center-right, and bibliographic references near
the bottom. Contact information, such as times,
dates, and phone numbers, is loosely grouped on
the left, while technical content, like programming
code, appears in the center. These patterns suggest
that the LLM-generated labels capture meaningful
line quality distinctions and form a useful basis for
our final class set.

4.2 Grouping the labels

The next step in our pipeline is to group the
382 detailed labels into a more concise set of
broader, more manageable categories, which sim-
plifies training the encoder classifier. We use Ope-
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nAI’s o1-preview, a newly released “reasoning”
model (OpenAI, 2024b), to organize the labels.
We instruct the model to create clear, distinct cat-
egories that assign each label to only one group.
The goal is to produce a set of classes that the clas-
sifier can learn and differentiate easily.

Category Lines %

Clean 283,267 86.24

Formatting, Style & Errors 13,150 4.00

Bibliographical & Citation References 8,768 2.67

Promotional & Spam Content 7,339 2.23

Contact & Identification Information 3,898 1.19

Navigation & Interface Elements 3,327 1.01

Technical Specifications & Metadata 3,298 1.00

Legal & Administrative Content 2,992 0.91

Offensive or Inappropriate Content 2,433 0.74

Total 328,472 100

Table 1: Label categories and the number of lines
in each category.

After manually inspecting the output, we find
that the groupings are mostly accurate, though
some manual corrections are necessary. For ex-
ample, the model occasionally fails to assign all la-
bels or places some labels into multiple categories.
After fixing these issues, we finalize a classifica-
tion scheme with 9 broader categories, as shown
in Table 1.

To verify that the labels match human intuition,
we conduct a manual inter-annotator agreement
(IAA) evaluation on a random sample of 50 docu-
ments (726 lines). Two human annotators, famil-
iar with the 9-label class set, assess whether they
agree or disagree with the LLM-generated labels.
In cases of disagreement, they provide corrected
labels. We compute Cohen’s Kappa scores com-
paring human ratings with the LLM’s for both the
full label set and a simplified binary classification
(Clean vs. Non-clean).

A1 A2 Avg.

All labels 0.79 0.60 0.70

Clean vs. Non-clean 0.78 0.67 0.73

Table 2: Cohen’s Kappa scores for human annota-
tors (A1 and A2) vs. the GPT-4o mini generated
labels (LLM).

As shown in Table 2, Cohen’s Kappa for the full

label set is 0.788 for Annotator 1 (A1) and 0.604
for Annotator 2 (A2), with an average of 0.70, in-
dicating moderate to substantial agreement. For
the binary classification, Kappa scores improve
slightly, with A1 at 0.78 and A2 at 0.67, averaging
0.73. This suggests that while agreement varies,
the LLM-based classification generally produces
acceptable labels for the FineWeb texts.

These results address RQ1, which examines
how well an LLM can identify low-quality con-
tent that heuristic filters miss. The LLM’s classifi-
cations align well with those of human annotators,
showing that it succees to detect low-quality lines
overlooked by earlier heuristic methods applied to
FineWeb data. While there is some variability in
the IAA scores, the overall performance supports
our LLM-driven approach.

4.3 Training a classifier

To scale our labeling process for the FineWeb-
10BT dataset, we use encoder-based models,
which are faster, more cost-effective, and often
better suited to classification than large gener-
ative LLMs. We experiment with four mod-
els: DeBERTa-v3 (base and large variants) (He
et al., 2021), Stella-en-400M-v5 (currently the top
model of its size for English text clustering on the
MTEB leaderboard (Muennighoff et al., 2023)3),
and XLM-RoBERTa-base (Conneau et al., 2019).
The first three models are English-only, while
XLM-RoBERTa is multilingual.

For line-by-line classification, we first extract
individual lines from the documents, treating each
as a separate example. The data is then shuf-
fled and split into training (70%), development
(10%), and test (20%) sets using stratification. We
add a classification head to each model to gen-
erate probabilities across the 9 classes for each
line and fine-tune both the classification head and
base model. Preliminary tests showed that this ap-
proach yielded better results than training only the
classification head with a frozen base model.

For training, we use bfloat16 precision, a learn-
ing rate of 1e-5, and a batch size of 16. Early stop-
ping is applied with a patience of 5 based on evalu-
ation loss, with a maximum of 5 epochs; however,
models typically converge after the first epoch.
We also apply label smoothing (0.1) to the cross-
entropy loss to improve generalization. Training
is done on a single A100 GPU.

3https://huggingface.co/spaces/mteb/leaderboard
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µ F1 M F1 Clean

P R F1

DeBERTa-v3-base 0.81 0.66 0.88 0.91 0.90
DeBERTa-v3-large 0.81 0.65 0.87 0.92 0.89
Stella-en-400M-v5 0.81 0.67 0.87 0.92 0.89
XLM-RoBERTa-base 0.80 0.63 0.86 0.92 0.89

Table 3: Comparison of Classifiers on Multiclass
Classification using the held-out test set. µ F1:
Micro F1, M F1: Macro F1, P: Precision, R: Re-
call, F1: F1 score for the Clean class.

Table 3 presents the evaluation results of the
models on the test set. We report micro and macro
F1 scores for all classes, along with precision, re-
call, and F1 for the Clean class. The results show
that the models perform similarly, with micro F1
scores ranging between 0.80 and 0.81, and macro
F1 scores between 0.63 and 0.67. For the Clean
class, precision ranges from 0.86 to 0.88, recall
from 0.91 to 0.92, and F1 between 0.89 and 0.90.
These metrics indicate strong performance in dis-
tinguishing between high- and low-quality con-
tent, though the lower macro F1 score suggests
some classes are less easily distinguishable. Ad-
ditionally, newer or larger models do not signifi-
cantly improve performance. Thus, for subsequent
analyses, we select the DeBERTa-v3-base model.
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Confusion Matrix with Percentages

Figure 2: Confusion matrix of predictions from
our line quality classifier on the test set.

To further examine the performance of the clas-
sifier and spot common misclassifications, we
evaluate its predictions on the held-out test set us-
ing DeBERTa-v3-base and display the results in a
confusion matrix (Figure 2). Most misclassifica-
tions fall into the Clean class, indicating strong
separation between the other classes. The least

distinct class is Offensive or Inappropriate Con-
tent, likely due to the inherent difficulty in defin-
ing clear boundaries for offensive material in LLM
training datasets. In contrast, Bibliographical and
Citation References stands out as the most distinct
class, likely due to its easily recognizable format-
ting and content.

We note that it is preferable for the classifier to
err on the side of labeling low-quality lines Clean
(as shown in the confusion matrix and evalua-
tion scores) rather than mistakenly tagging high-
quality lines as low-quality. This bias helps re-
duce the risk of discarding valuable data from the
dataset.

4.4 Cleaning FineWeb

Given our classifier’s promising evaluation results,
we now label the 10B-token subset of FineWeb
using our DeBERTa-v3-base classifier. For this
task, we simplify to binary classification by focus-
ing only on the probability of the Clean class ver-
sus all other classes combined, where probabilities
closer to 1 indicate high-quality content.

Although the classifier performs well, the Clean
class makes up 86% of the data, which may cause
the model to produce overconfident predictions for
this class. To correct for this imbalance, we ap-
ply Platt scaling (Platt et al., 1999) to adjust the
predicted probabilities, aiming for a more accu-
rate reflection of the true probability distribution
and more reliable thresholding. Specifically, we
train a Platt logistic regression model on the held-
out test set and apply it on top of the classifier
when predicting quality scores for the FineWeb-
10BT dataset.

We predict the quality labels for the FineWeb-
10BT dataset in shards of 100,000 documents.
Within each shard, we process batches of 128
lines, grouping lines by length to speed up pro-
cessing. We then add a “quality_score” key to
each document, with each item scored from 0 to
1 to four decimal places.

Figure 3 shows a histogram of the quality scores
for a 1-million-line sample from FineWeb-10BT,
with calibrated probabilities binned in 10% inter-
vals on a logarithmic scale. The distribution is
bimodal, with most lines receiving high-quality
scores. About 75% of lines score above 0.90,
while 8% score below 0.50. Most of the data is
concentrated in the highest quality bin (90–100%),
with a smaller cluster confidently assigned very
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Figure 3: Quality probabilities for a 1M-line sam-
ple from FineWeb-10BT, binned in 10% intervals
(log scale). A total of 8% of lines fall below the
0.50 quality threshold, and 25% fall below the
0.90 threshold.

low scores, indicating that the classifier effectively
separates high-quality from low-quality lines.

Table 4 shows examples of lines with the high-
est and lowest quality scores according to our
classifier. The highest-scoring lines are coherent,
context-rich sentences, while the lowest-scoring
lines contain metadata, copyright symbols, tags,
and formatting artifacts, demonstrating that the
method performs as intended.

4.5 Evaluation with GPT-2 and HellaSwag

Finally, we evaluate our data cleaning process by
pre-training small GPT-2 models (124M parame-
ters) on three versions of the dataset: (1) the orig-
inal 10B-token sample from FineWeb, (2) a fil-
tered version with a 0.50 quality score threshold,
reducing the dataset by 8%, and (3) a version with
a 0.90 quality score threshold, reducing data by
25%. The training code is adapted from Khajavi
(2024), with modifications specific to our experi-
mental setup.

The models are trained for 18,994 steps (a sin-
gle epoch on the full FineWeb-10BT dataset) us-
ing four A100 GPUs. Every 200 steps, we eval-
uate model performance on the HellaSwag bench-
mark (Zellers et al., 2019), which is widely used to
assess the ability of language models to complete
sentences in commonsense reasoning contexts. To
account for inherent randomness, we repeat the
training on all datasets five times each, with each
run lasting approximately 5 hours and 30 minutes.

Figure 4 shows the evaluation results, which

Line Score

Lines with highest quality scores

She hopes taking part in the 5K will encourage
others to become or stay active.

0.9674

I’d love it if you’d visit and give me your
impressions and/or suggestions.

0.9659

We aim to make the ceremony an enjoyable
celebration.

0.9657

prayerfully seek peace for our partners in
Nigeria.

0.9655

I loved the way this shirt looked and thought it
would be cool to wear it.

0.9655

Lines with lowest quality scores

|Also published as||US20040168193| 0.0057

|Tags:||Anglesey, Beach, General, Landscape,
Landscape / travel, Lighthouse, Llanddwyn,
Sea, Sunrise, Wales, Water|

0.0056

|FOR IMMEDIATE RELEASE||PRESS
RELEASE #MR12-003881|

0.0055

|©Sunwest Bank|||||Equal Housing
Lender|||||Member FDIC|

0.0051

- ©- copyright & copy; or & #169; or & #xA9; 0.0050

Table 4: Examples of highest and lowest quality
lines from a 1M-line FineWeb-10BT sample, with
their probabilities of being Clean.
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Figure 4: Average HellaSwag accuracy over 5 runs
for three models: the original FineWeb-10BT and
two cleaned versions with quality thresholds of
0.50 (8% data reduction) and 0.90 (25% data re-
duction). Dot markers indicate epoch ends for
each dataset run. GPT-2 (124M) checkpoint ac-
curacy is shown for reference.

indicate a clear positive impact from our data
cleaning process. Models trained on the cleaner
FinerWeb-10BT datasets—both the 8% and 25%
reduced versions—consistently outperform those
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trained on the original FineWeb-10BT data. By
the end of 18,994 training steps, both cleaned ver-
sions show an average HellaSwag evaluation score
that is 0.1 points higher than that of the original
dataset. This improvement is robust, as shown
by the shaded areas around the lines, represent-
ing standard deviations that suggest the effect is
unlikely due to random variation across runs.

Additionally, both cleaned models achieve
slightly higher HellaSwag accuracy than the orig-
inal FineWeb-10BT model at their respective
epoch ends, as indicated by the colored dots in the
plot. Remarkably, both models reach the original
dataset’s highest score approximately 6k steps ear-
lier, a 32% reduction in training time. This means
a reduction of roughly 1 hour and 45 minutes,
based on our 5 hour 30 minute run time per train-
ing round. Interestingly, the 25% reduced dataset
shows a slight edge over the 8% cleaned data, al-
though the difference is minimal; both clean mod-
els ultimately reach an average HellaSwag score of
0.31 within the same number of steps. This sug-
gests that a more aggressive data cleaning strategy
could be worth exploring in future work. In sum-
mary, our data cleaning process produces models
that (1) reach target accuracy faster and (2) achieve
higher accuracy within the same training time, ad-
dressing our RQ2.

5 Discussion

The labels generated by GPT-4o mini reveal both
the quantity and types of low-quality lines that re-
main in FineWeb. The largest categories include
lines with grammatical errors, poor formatting,
and incomplete sentences, along with recurring
items like time stamps, legal jargon, and promo-
tional content. While these elements do not nec-
essarily reduce dataset quality (a good language
model should recognize items like copyright no-
tices or phone numbers), our evaluation shows that
reducing their prevalence improves both accuracy
and training efficiency. These findings suggest that
more precise control over the types and propor-
tions of low-quality data included could further
benefit model performance. Even when simplified
to binary classification, our LLM-driven approach
clearly outperforms heuristic methods in enhanc-
ing dataset quality.

Specifically, our evaluation on GPT-2 using
HellaSwag shows that with less but cleaner data,
the model achieves comparable or even slightly

better accuracy. While GPT-2 is small relative to
SOTA models, our results provide strong evidence
that LLM-based data filtering can reduce training
time and save energy. Although we tested our
method on a small, English-only dataset, this data-
driven approach to quality filtering is easily adapt-
able to other datasets and languages, although low-
resource language may suffer from worse LLM
performance.

Using an LLM as a judge of text quality intro-
duces some bias, as the model’s training data and
design choices influence the resulting labels. For
example, mature SOTA LLMs have strong in-built
safety features that prevent them from generating
harmful or offensive content. In our case, we ob-
serve that GPT-4o mini sometimes labels mild ex-
pletives, such as “shut up”, as toxic, reflecting an
overly sensitive filter for offensive language. As
described in Sections 4.1 and 4.2 we made some
manual adjustments to the LLM labeling to ac-
count for such biases. Also, the line between low-
quality and high-quality is naturally vague, which
introduces noise into the data. In future work, we
plan to experiment with different models and ad-
just our prompts to further improve this filtering
approach.

6 Conclusion

In this paper, we propose a novel approach to im-
proving the quality of large-scale language model
training datasets through fine-grained, line-level
filtering with large language models (LLMs). We
first used GPT-4o mini to label a sample from
the FineWeb dataset, generating detailed labels
that captured low-quality content often overlooked
by heuristic filters, addressing our first research
question (RQ1). These labels were grouped into
broader categories using OpenAI’s o1-preview
model, followed by training a DeBERTa-v3 clas-
sifier to scale the filtering across FineWeb-10BT.
Our experiments demonstrate that this LLM-
driven filtering pipeline improves model perfor-
mance (addressing RQ2), as GPT-2 models trained
on the filtered dataset achieved higher HellaSwag
accuracy with up to 25% less data than those
trained on the original FineWeb-10BT dataset.

These findings suggest that traditional heuristic
filters may not be sufficient and that more sophis-
ticated data preprocessing methods are necessary,
especially as we face challenges like data scarcity
and environmental concerns. Our approach con-
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tributes to the emerging field of LLM-based data
preprocessing, offering a promising avenue for
improving training efficiency and model perfor-
mance.

In future work, we plan to refine our pipeline by
broadening the labeling scheme to provide a more
comprehensive description of document contents.
We will also experiment with more nuanced fil-
tering approaches, moving beyond simple score-
based thresholds, and compare against baselines
such as random data reduction to further validate
our filtering method. We also plan to test Llama-
style models and other architectures to see how our
findings scale to newer LLMs. Further evaluations
and statistical testing will help strengthen the reli-
ability of our results. Finally, we plan to extend
our method to other datasets and languages.
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Abstract

This paper explores retrieval with sen-
tence embeddings by fine-tuning sentence-
transformer models for classification while
preserving their ability to capture seman-
tic similarity. To evaluate this balance, we
introduce two opposing metrics – polarity
score and semantic similarity score – that
measure the model’s capacity to separate
classes and retain semantic relationships
between sentences. We propose a system
that augments supervised datasets with con-
trastive pairs and triplets, training models
under various configurations and evaluat-
ing their performance on top-k sentence
retrieval. Experiments on two binary classi-
fication tasks demonstrate that reducing the
margin parameter of loss functions greatly
mitigates the trade-off between the metrics.
These findings suggest that a single fine-
tuned model can effectively handle joint
classification and retrieval tasks, particu-
larly in low-resource settings, without rely-
ing on multiple specialized models.

1 Introduction

Tasks like text classification and semantic textual
similarity (STS) are helpful for various applica-
tions, including retrieval through clustering, zero-
shot categorization (Yin et al., 2019), and efficient
few-shot classification with limited data (Tunstall
et al., 2022). Traditionally, models addressing these
tasks ranged from rule-based systems to deep learn-
ing architectures (Tai et al., 2015; Minaee et al.,
2021; Li et al., 2022), with recent transformer-
based models dominating the field (Joulin et al.,
2017; Howard and Ruder, 2018; Devlin et al., 2019;
Raffel et al., 2020). However, optimizing sentence
embeddings for multiple objectives remains a chal-
lenge. In this work, we investigate the hypothesis

that training sentence-transformer models with two
opposing objectives – semantic similarity and po-
larity – enables models that can be fine-tuned for
downstream tasks while preserving their ability to
capture semantic similarity. We argue that this
approach is beneficial for obtaining more nuanced
embeddings, e.g., for domain-specific classification
and clustering, especially supporting low-resource
settings with a single model capable of both. To
evaluate the performance of our models on these
dual objectives, we introduce two metrics:

Polarity Score (P) measures the model’s clas-
sification performance by assessing how well it
predicts sentence polarity (e.g., positive vs. neg-
ative sentiment). The higher the score, the more
accurately the model distinguishes between classes.

Semantic Similarity Score (S) quantifies how
well the model retains semantic relationships be-
tween sentences by comparing the cosine similar-
ity of sentence embeddings generated by our fine-
tuned model to a reference model.

Both metrics are described in detail in Section 3.1.
Experiments are conducted on (1) SST-2, Stanford
Sentiment Treebank (Socher et al., 2013), a binary
sentiment dataset, and (2) A dataset with sarcas-
tic news headlines (Misra and Arora, 2023). We
opted for binary datasets to efficiently verify the
importance of the margin in contrastive learning.
The remainder of this paper is structured as fol-
lows: Section 2 discusses related work. Section 3
introduces the datasets, data generation, metrics,
models, and training details. Section 4 presents
experimental results and Section 5 discussions. Fi-
nally, conclusions and plans for future work are in
Section 6.
Code for the system is available on GitHub.1

1https://github.com/tollefj/
margins-contrastive
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2 Related Work

Related research is based mainly on developments
within word and sentence embeddings. Commonly
used embedding techniques include word2vec
(Mikolov et al., 2013), GloVe (Pennington et al.,
2014), and ELMo (Peters et al., 2018). In the
realm of sentence embeddings, early methods in-
volved concatenation and aggregation of word em-
beddings to produce a sentence representation (Le
and Mikolov, 2014; Joulin et al., 2017). However,
more recent research has focused on developing
specialized models to encode sentence represen-
tations, as exemplified by systems like InferSent
(Conneau et al., 2017), universal sentence encoder
(Yang et al., 2020), sentence-transformers (SBERT)
(Reimers and Gurevych, 2019) and SimCSE (Gao
et al., 2022). SBERT is trained using a pre-trained
BERT model to learn the representations of a given
sentence. While techniques and setups vary, an
example of a training procedure is by providing
triplets forming (anchor sentence, positive, nega-
tive), where the model attempts to maximize the
distance between the anchor and the negative (dis-
similar sentence), while minimizing the distance
between the anchor and the positive (similar) sen-
tence. This methodology provided efficient mod-
els for STS (Agirre et al., 2013; Reimers and
Gurevych, 2019; Gao et al., 2022; Tunstall et al.,
2022; Li et al., 2023; Wang et al., 2024). Several
datasets and benchmarks have been published for
STS since the SemEval shared task (Agirre et al.,
2013), including the STS Benchmark (Cer et al.,
2017), SICK (Marelli et al., 2014), and BIOSSES
(Soğancıoğlu et al., 2017), all of which are now
found in the Massive Text Embedding Benchmark
(MTEB) (Muennighoff et al., 2022). Transformer
models have excelled at the task, as is shown in
the tables on HuggingFace’s leaderboard for the
evaluation.2 At the time of experiments, the GTE
(Li et al., 2023) and E5 (Wang et al., 2024) series
of models were of particular interest given their
strong performance to size ratio.

3 Methods and Data

This section includes information on datasets, eval-
uation metrics, baseline models, loss functions,
example generation, and the fine-tuning pipeline.
We mainly use two data sources for evaluation,
although the provided system is generalizable to

2https://huggingface.co/spaces/mteb/
leaderboard

any data source for binary classification. Figure 1
shows an overview of system components.

SST-2 The Stanford Sentiment Treebank (Socher
et al., 2013) is widely used for binary classifi-
cation tasks and is implemented in the GLUE
benchmark (Wang et al., 2019). It consists of a
train/test/validation split with 67,349/1821/872
samples respectively. However, the labels for the
test split are hidden and can only be evaluated by
submissions to GLUE.3 We use the validation split
for presented results.

Sarcastic Headlines The “News Headlines
Dataset for Sarcasm Detection” (Misra and
Arora, 2023) contains 28,619 news headlines
from HuffPost (non-sarcastic) and The Onion
(sarcastic). Misra and Arora claims this to
guarantee high-quality labels. The data is split in
a 90:10 train/test ratio with a deterministic seed (0).

Additionally, results for the best-performing
fine-tuning configuration are presented using the
SentEval toolkit (Conneau and Kiela, 2018) on
movie reviews, product reviews, subjectivity status,
opinion-polarity, question-type classification, and
paraphrase detection in Section 4.1.

3.1 Evaluation
For a given sentence s, the model M retrieves the
k most similar sentences, denoted as sM1 , . . . , sMk ,
based on the cosine similarity from a query sen-
tence. The retrieved sentences are evaluated on two
criteria: polarity and semantic similarity.

Polarity Score (P)
To evaluate if the model predicts sentences with the
same polarity as the input, we compute a weighted
average polarity score over the k predictions based
on the polarity of s, P(s). Formally, the polarity
score is defined as:

PM (s) :=
k∑

i=1

wi · pol
(
sMi

)
where

pol
(
sMi

)
:=

{
1 if pols = polsMi ,

0 otherwise.

(1)

To account for ranking in the top-k, we choose a
linear discounting strategy, scaling the i-th weight:

wi :=
2(k + 1− i)

k(k + 1)
.

3https://gluebenchmark.com/leaderboard
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Embedding
Index

Datasets:
SST2, Sarcasm
(sentence, label)

- Triplets
- Contrastive
- MultipleNegatives

Dropout to normalize data sizes

Sentence
embeddings Reference model(s)

Trained model(s)

Loss config with margins
Loss function

Training

Example generation

Figure 1: High-level system components of example generation and training. Sentences in the datasets
are embedded and stored in an index, where k are retrieved to generate similarity-based examples
corresponding to the loss functions. A dropout is added as generation varies between, e.g., triplets and
contrastive pairs. Finally, a model is trained for each loss function and margin configuration.

A score near one indicates that most predictions
share the input’s polarity.

Semantic Similarity Score (S)
The Semantic Similarity Score measures the cosine
similarity between the predicted sentences from
model M and the baseline model R. Given xi as
the embedding for sentence si, the cosine similarity
is defined as:

cos sim(s1, s2) :=
x1 · x2

||x1|| · ||x2||

The semantic similarity score SM (s) for model M
is then:

SM (s) :=
k∑

i=1

wi · cos simR

(
s, sMi

)
(2)

The weights wi are reused from the polarity
score. A similarity score close to the reference
model’s score SR(s) indicates that the predictions
remain semantically aligned with the input sen-
tence.

3.2 Baseline Models
The models in Table 1 are selected based on popu-
larity and performance versus size. Data is sourced
from the MTEB leaderboard (Muennighoff et al.,

2022). We select the commonly used sentence-
transformer model, all-MiniLM-L6-v2 (Reimers
and Gurevych, 2019) – referred to as MiniLM-
6, along with the better performing models GTE-
base/small (Li et al., 2023) and the E5-small-v2
(Wang et al., 2024). Retrieval performance is eval-
uated by constructing two embedding sets: target
embeddings derived from the test set and source em-
beddings sampled from the training set. The source
embeddings are chosen to be five times the size of
the test set, providing an adequate evaluation pool
while limiting the number of comparisons. For ex-
ample, if the test set contains 1,000 sentences, the
source set will contain 5,000 sentences randomly
sampled from the training data.

From the sampled data, we compare retrieval
performance to the top-k retrieved sentences by
adjusting k, as shown in Figure 2. Increasing k
slightly decreases performance, as larger retrieval
sets are more likely to include less relevant sen-
tences. However, we wish to keep a relatively high
amount of retrieved sentences to identify model
improvements (e.g., a higher fraction of returned
sentences should be relevant). Based on these ob-
servations, we select k = 16 as a practical value.
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Model Size Embedding STSBenchmark SST-2 Sarcastic

MB dimension reported avg P S P S
E5-small-v2 130 768 85.95 81.523.7 85.51.7 71.421.2 83.41.5
GTE-base 220 768 85.73 80.422.6 83.71.4 67.420.7 81.41.6
GTE-small 70 384 85.57 77.822.2 84.81.4 66.820.6 82.51.6
MiniLM-6 90 384 82.03 63.021.9 46.67.4 63.820.2 42.35.6

Table 1: Sentence-transformer baseline model selection and performance (k = 16) for polarity (P) and
semantic similarity (S) on SST-2 and sarcastic headlines. Standard deviation subscripted.

4 8 16 32 64
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Figure 2: Baseline models with average perfor-
mance across both datasets when retrieving the k
nearest matches. Solid lines: P , dotted lines: S .

3.3 Contrastive Loss Functions
To assess the embedding quality, models are trained
with different loss function configurations im-
plemented in the Sentence-Transformers library
(Reimers and Gurevych, 2019). However, not all
losses can support our constraints of multiple ob-
jectives, and we constrain this study to Triplet-
Loss (Schroff et al., 2015), MultipleNegatives-
RankingLoss (Henderson et al., 2017), OnlineCon-
trastiveLoss and ContrastiveLoss (Hadsell et al.,
2006). These require different inputs related to
how the model assesses the similarity between in-
put sentences.

TripletLoss consists of triplets of sentences
(A,P,N) where A is the anchor, P is similar to
the anchor, and N is dissimilar. We set the P to the
corresponding positive example (1) in binary clas-
sification and N to the negative example (0). The
loss becomes, with Ex denoting the embedding:
max(|EA − EP | − |EA − EN | + λ, 0), where λ

is the margin, specifying the minimum separation
between A and N .

MultipleNegativesRankingLoss consists of sen-
tence pairs, assuming (ai, pi) pairs as positive and
(ai, pj) pairs for i ̸= j as negatives. It calculates
the loss by minimizing the negative log-likelihood
for softmax-normalized scores, encouraging pos-
itive pairs to have higher similarity scores than
negative pairs.

(Online)ContrastiveLoss consists of {0, 1}-
labelled tuples (Anchor,Sentence) where the label
indicates whether |EA − ES | is to be maximized,
indicating dissimilarity (0) or minimized, indicat-
ing similarity (1). In the online variant, the loss
is only calculated for strictly positive or negative
pairs, reported to perform better (Tunstall et al.,
2022). The margin parameter λ controls how far
dissimilar pairs must be separated. To study the
models’ behavior, we select a range of margin val-
ues for each compatible loss function (Table 2).

Loss function λ margin λ default
Triplet {0.01, 0.1, 1.0, 5.0, 7.5, 10} 5.0
Multiple Neg. – –
Contrastive {0.1, 0.25, 0.5, 0.75, 1.0} 0.5
Online Con. {0.1, 0.25, 0.5, 0.75, 1.0} 0.5

Table 2: Loss functions with margin selections.
Default values are highlighted.

3.4 Example generation

As the classification datasets are not labeled for
similarity, we use a reference model to generate
contrastive samples of varying formats, correspond-
ing to each input type: (1) Triplet, (2) Contrastive,
and (3) MultipleNegatives, referred to as example
generation. For each (sentence, label) pair in the
data, the k nearest neighbors of each polarity are
computed, requiring a minimum cosine similarity
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threshold of ≥ 0.5. These examples are then com-
bined according to the selection of loss functions,
e.g., with a TripletLoss requiring (anchor, similar,
dissimilar). As the different data types will gener-
ate varying numbers of sentence pairs and triplets,
the generation pipeline includes a dropout to nor-
malize data samples. Table 3 shows an example of
generated data.

Loss type Contrastive Example

Triplet
Anchor: Totally unexpected directions
Similar+Same polarity: Dramatically moving
Similar+Opposite polarity: Utterly misplaced

Multiple
Negatives

Anchor: Good vibes
Similar+Same polarity: Awesome energy

Contrastive

Anchor: A movie that deserves recommendation
Similar: Effort to watch this movie
Label: 0 (increase distance→ less similar)
Anchor: Bad jokes, most at women’s expense
Similar: Dumb gags, anatomical humor
Label: 1 (reduce distance→ more similar)

Table 3: Examples of contrastive and polarized
samples for different loss types.

4 Experiments and Results

The results are based on fine-tuning and continu-
ous evaluation of the baseline models in different
setups for loss functions and corresponding param-
eters. Based on similar research on fine-tuning
embeddings (Gao et al., 2022), models are trained
for five epochs.

Suitable sample sizes The first experiment stud-
ies the impact of training samples, limited to the
range [50, 100000]. Despite the reported effective-
ness of few-shot learning for sentence-transformers
(Tunstall et al., 2022), we observe improvements in
polarity when increasing the sample size far beyond
the scope of few-shot learning. Table 4 illustrates
this behavior, aggregated across all models and
loss configurations. Observe the increasing gap
between the min and max scores for S, while the
mean is reduced. This is what we aim to reduce
through joint fine-tuning.

Training details Based on findings from Table 4,
the sample size is set to 50, 000 to reduce compute
time due to the limited improvements from 50,000
to 100,000. Experiments on the loss functions with
their λ margins are then performed on both datasets.
Models are trained for 5 epochs with a batch size
of 64 and a learning rate of 3×10−5, set to retrieve
k = 16 sentences for evaluation.

P S
N Meanstd Min Max Meanstd Min Max

50 75.77.5 63.0 81.5 75.116.6 46.6 85.5
500 75.77.5 63.0 81.5 75.116.6 46.6 85.5

2,000 75.77.5 62.9 81.7 75.116.6 46.6 85.5
5,000 76.37.7 63.1 83.1 75.116.6 46.5 85.5

10,000 78.08.3 63.2 87.3 74.916.8 45.7 85.4
20,000 81.58.7 61.8 89.2 73.018.3 36.4 84.9
50,000 86.26.4 68.0 92.5 70.221.3 29.6 84.7

100,000 88.94.0 72.2 93.4 69.322.3 29.0 84.6

Table 4: Aggregated scores across all configura-
tions for different sample sizes after 5 epochs on
the SST-2 dataset.

4.1 Results
Tables 5 and 6 show the polarity and semantic sim-
ilarity scores obtained after the continued training
with N = 50,000 samples. The “Reference” refers
to each respective model before training. The tables
showcase the impact of the different loss functions
and their λ margins.

SetFit (Tunstall et al., 2022) is included, using
the default Cosine Similarity loss. Figure 3 shows
the best loss configuration for the strongest model
e5-small. We observe an improvement in polarity
at a minor cost of semantic similarity for several
configurations. The TripletLoss, with smaller mar-
gins, shows consistently high performance for both
metrics.

Additionally, we provide an evaluation using the
established SentEval toolkit (Conneau and Kiela,
2018) on out-of-domain data. Table 7 shows the re-
sults with TripletLoss using a margin of λ = 0.10
and the results using SetFit (Tunstall et al., 2022),
trained with 50, 000 generated contrastive sam-
ples. Note how the fine-tuning approach yields
higher scores, especially for the MR (Movie Re-
views), CR (product reviews), and SST-2. The
joint training also transfers well to tasks like SUBJ
(subjective/objective classification), while some-
what lower scores are found on TREC (question-
answering). The score increase aligns well with
results in Tables 5 and 6, comparing SetFit to the
highlighted TripletLoss λ = 0.10.

5 Discussion

Most model configurations adjusted the embed-
dings towards correct polarity upon fine-tuning.
However, the minilm-6 falls short of its semantic
similarity capabilities, while the remaining models
seem to learn both tasks, with only minor differ-
ences between the configurations.
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Loss λ e5-small gte-base gte-small minilm-6

sarcastic sst2 sarcastic sst2 sarcastic sst2 sarcastic sst2

Reference - 71.421.2 81.523.7 67.420.7 80.422.6 66.820.6 77.822.2 63.720.2 63.021.9
SetFit (Cosine) - 85.225.4 86.224.2 82.126.8 85.625.5 82.825.4 84.225.9 79.527.0 77.929.0
Contrastive 0.10 88.824.3 89.523.2 86.925.6 89.224.1 81.927.0 88.025.6 75.925.6 68.024.9
Contrastive 0.25 89.325.1 90.723.2 88.226.1 90.025.0 84.326.9 88.826.1 76.826.4 72.426.9
Contrastive 0.50 89.825.6 91.223.8 88.826.5 90.325.3 86.827.5 89.127.1 77.827.2 75.127.8
Contrastive 0.75 89.925.1 91.623.6 88.926.6 90.625.1 87.727.3 89.526.9 79.027.7 77.328.6
Contrastive 1.00 89.825.5 91.224.3 88.726.7 90.725.1 87.827.0 89.626.8 80.328.1 78.428.9
MultipleNeg - 73.622.2 80.822.4 73.122.4 81.823.5 72.022.6 80.623.4 69.022.0 69.423.1
OnlineContr 0.10 89.624.7 90.423.7 87.425.8 89.524.2 82.627.0 88.225.8 78.926.0 70.826.5
OnlineContr 0.25 90.025.2 91.523.8 88.226.4 90.225.4 84.427.3 88.926.7 78.926.4 74.627.8
OnlineContr 0.50 89.725.9 91.624.4 88.227.3 90.626.0 86.027.6 89.327.2 79.026.9 76.527.9
OnlineContr 0.75 89.526.5 91.724.5 88.627.4 90.825.6 87.227.9 89.227.6 80.027.4 77.528.2
OnlineContr 1.00 89.626.6 91.725.0 88.327.3 90.726.0 87.527.7 89.627.5 80.527.8 78.428.7
Triplet 0.01 90.225.6 91.525.1 82.525.7 90.324.9 84.025.5 89.126.2 78.524.5 76.926.9
Triplet 0.10 90.626.3 91.925.0 89.727.1 91.225.6 88.427.2 89.927.0 83.526.9 80.628.6
Triplet 1.00 90.125.7 90.923.5 88.426.6 90.624.9 87.427.0 88.625.7 84.128.6 83.231.1
Triplet 5.00 88.225.1 89.323.4 86.526.8 90.125.1 84.926.5 88.226.1 81.527.7 81.330.1
Triplet 7.50 88.225.4 89.623.1 86.627.0 90.125.0 84.826.4 88.225.9 81.427.8 81.530.1
Triplet 10.00 88.125.1 89.622.9 86.826.6 90.224.9 84.826.8 88.126.2 81.627.8 81.230.4

Table 5: Polarity scores for all loss configurations after 5 epochs with N = 50,000 samples, retrieving
k = 16 sentences. MultipleNegatives remain close to the reference model, while larger impacts are seen
from Triplet- and Contrastive losses. The highest scoring data/model pairs are boldfaced. The most
suitable loss configuration, Triplet λ = 0.10 is marked in green. Reference models are marked blue.

Loss λ e5-small gte-base gte-small minilm-6

sarcastic sst2 sarcastic sst2 sarcastic sst2 sarcastic sst2

Reference - 83.41.5 85.51.7 81.41.6 83.71.4 82.51.6 84.81.4 42.35.6 46.67.4
SetFit (Cosine) - 78.52.1 81.62.1 75.63.0 79.91.8 75.62.5 80.71.8 17.85.6 27.16.9
Contrastive 0.10 79.42.0 83.32.0 75.02.4 81.01.8 78.72.1 82.11.8 25.66.6 34.87.2
Contrastive 0.25 79.72.0 83.71.9 76.22.4 81.41.8 79.02.1 82.61.7 26.66.6 34.56.8
Contrastive 0.50 79.72.0 83.81.9 76.92.4 81.61.7 79.12.1 82.81.6 27.16.6 34.26.7
Contrastive 0.75 79.82.0 83.81.9 76.52.6 81.51.7 78.72.3 82.71.6 27.16.5 34.16.6
Contrastive 1.00 79.82.0 83.71.9 76.52.7 81.31.7 78.12.5 82.41.6 27.86.5 33.96.6
MultipleNeg - 82.51.6 84.71.8 80.41.8 82.51.6 81.61.8 83.91.6 39.96.1 43.57.8
OnlineContr 0.10 80.11.9 83.81.9 75.62.3 81.21.8 79.22.0 82.51.7 25.46.7 33.27.1
OnlineContr 0.25 80.51.9 84.11.9 77.12.3 81.71.8 79.71.9 82.91.7 27.16.6 33.06.9
OnlineContr 0.50 80.61.9 84.11.9 77.82.3 82.01.6 79.92.0 83.01.6 28.36.5 33.97.0
OnlineContr 0.75 80.61.9 84.01.9 77.52.5 81.91.6 79.42.2 82.91.6 28.56.5 34.57.0
OnlineContr 1.00 80.61.9 84.01.9 77.42.6 81.71.6 78.92.3 82.71.6 29.26.4 35.07.0
Triplet 0.01 81.21.8 83.82.0 78.02.4 81.91.7 79.92.0 83.01.7 25.86.2 33.97.3
Triplet 0.10 81.31.7 83.71.9 78.12.3 81.91.7 79.92.1 83.01.6 30.56.1 35.27.3
Triplet 1.00 79.22.1 82.82.1 76.32.9 80.31.8 77.22.6 81.31.6 23.76.0 30.57.0
Triplet 5.00 78.32.1 81.82.1 74.62.7 79.91.8 75.82.7 80.61.7 20.65.9 29.67.0
Triplet 7.50 78.42.1 81.82.1 74.72.7 79.91.8 75.72.7 80.61.7 20.45.9 29.57.0
Triplet 10.00 78.32.1 81.82.1 74.72.7 80.01.8 75.72.7 80.71.7 20.55.9 29.67.0

Table 6: Semantic similarity scores for all loss configurations after 5 epochs with N = 50,000 samples,
retrieving k = 16 sentences. MultipleNegative ranking loss, although seemingly performing strongly on
the task, does so due to minimal adaptation to the new training samples and is on par with the reference
model. This can be confirmed by inspecting the results for P in Table 5. As such, the two highest scores
for each data/model pair are boldfaced. The most suitable loss configuration, Triplet λ = 0.10 is marked
in green. Reference models are marked blue.
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Figure 3: Best configurations per loss for the E5 Small model. Left: polarity, right: semantic similarity.
TripletLoss outperforms the other alternatives. MultipleNegativesRankingLoss is insufficient due to its
inability to be adjusted towards polarity.

Type Model Data MR CR SUBJ MPQA SST2 TREC MRPC avg

Tripletλ0.10 gte-base sst2 89.31 89.27 92.91 85.95 93.19 80.80 73.33 85.50
Tripletλ0.10 gte-base sarcastic 84.33 88.82 92.82 88.04 90.83 88.40 68.52 85.01
Tripletλ0.10 e5-small sst2 88.95 88.98 91.06 86.28 93.41 79.80 74.55 84.97
Tripletλ0.10 gte-small sst2 87.72 89.59 90.85 86.86 91.38 79.00 73.39 84.83
SetFit gte-base sst2 84.30 88.85 90.91 86.08 89.18 86.00 72.52 84.27
SetFit e5-small sst2 85.43 85.16 86.58 83.93 91.05 88.00 69.39 82.18
SetFit gte-base sarcastic 81.61 86.52 90.01 87.50 88.69 86.00 66.55 81.92
Tripletλ0.10 gte-small sarcastic 80.51 83.52 90.17 86.11 87.59 84.60 66.49 81.84
SetFit e5-small sarcastic 82.69 83.97 90.65 86.80 88.80 90.20 66.49 81.62
Tripletλ0.10 minilm-6 sst2 81.21 84.53 87.43 84.76 86.49 81.20 70.78 81.53
Tripletλ0.10 e5-small sarcastic 82.40 76.27 90.47 85.75 89.95 71.40 66.49 78.81
Tripletλ0.10 minilm-6 sarcastic 71.20 66.44 86.57 79.63 80.94 74.40 66.49 74.61

Table 7: Performance on the SentEval benchmark, comparing TripletLoss with a margin of λ = 0.10 to
SetFit with the same base models fine-tuned on sarcastic news headlines and sst-2. Sorted by average
score. The highest scores for each metric are boldfaced.

Loss function analysis TripletLoss stands out as
the best-performing loss function, especially when
using smaller margin values (λ ∈ {0.01, 0.10}),
strongly outperforming the default value of 5.0.
For the ContrastiveLoss configurations, the default
λ value of 0.5 seems well suited for the tasks,
with minimal changes for different margins. Multi-

pleNegativesRankingLoss is an outlier in both re-
sults, perhaps due to poor example generation for
this particular loss function. This loss treats sen-
tences from distinct sentence pairs as dissimilar.
As there are multiple generated pairs with the same
anchor, this could result in contradictory examples.
This problem does not arise for any of the other
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loss functions.
Relations between distinct training examples (re-

garding polarity and semantic similarity) severely
restrict example generation, and this process can
be tweaked by studying the threshold for counting
something as similar in more detail. The remaining
loss functions have separate example generation
implementations with control over the λ param-
eter that defines the margin between similar and
dissimilar sentences. Interestingly, independent of
the loss function, this value does not necessarily
correlate with good model performance. For dis-
tinguishing polarity, higher λ values result in only
slightly improved scores for ContrastiveLoss. For
TripletLoss, the opposite is true, contradicting the
intuition that the margin between two embeddings
in vector space should be separated more rather
than less.

Issues on Comparisons Comparing models of
different loss functions is challenging due to the
different data formats, as we cannot guarantee fair
comparison when the inputs are unequal – e.g.,
comparing a triplet to a pair – for the different loss
functions. Unlike typical research on loss functions,
we did not consider the loss values obtained during
training or evaluation, as we find these uninforma-
tive in this context, i.e., balancing two possibly
opposing objectives. However, we argue that our
suggested metrics in Section 3.1 are reasonable and
intuitive and can likely be used for further studies
on sentence embeddings.

6 Conclusion and Future Work

This paper has explored the potential of encoding
polarity into sentence embeddings while retaining
semantic similarity, done by fine-tuning models
on data generated to suit the objectives of vari-
ous sentence-transformers loss functions. We in-
troduced two metrics to evaluate our results: the
Polarity Score P and Semantic Similarity Score
S. We found that the e5-small and gte models
perform well on all evaluations. In Tables 5 and
6, the fine-tuned configurations greatly improve
polarity scores while maintaining the semantic
representation when evaluated on the generated
datasets. For e5-small, performance on the sar-
castic dataset shows great improvement in P , in-
creasing by 26.9% (from 71.4 to 90.6), while S
decreases by 2.5% (from 83.4 to 81.3). Similarly,
on the sst2 dataset, P improves by 12.8% (from
81.5 to 91.9), and decreases by 2.1% in S (from

85.5 to 83.7). Furthermore, the TripletLoss, espe-
cially for lower λ margins, e.g., λ = 0.10, strongly
outperformed other configurations and has the po-
tential to yield an efficient and high-performing
model for multi-task retrieval, even outside of do-
mains tested in this work, as the findings are mostly
consistent between the evaluations.

Regarding future work, there are several paths
for improvement:

• The suggested model configuration allows us
to experiment with a broader range of tasks
and datasets paired with our fine-tuning ap-
proach.

• The example generation process can be ex-
tended to support multiclass inputs by one-
vs-rest and other methods to manage multiple
classes with a system designed for contrasting
two samples.

• Although our proposed metrics are a first step
in assessing multiple objectives in this context,
combining them better to represent the drift
of the original semantic similarity remains an
open question.

7 Limitations

The most prominent limitation is the number of
domains implemented in the system, which is cur-
rently limited to sentiment analysis and sarcasm.
Massive evaluations for multiple domains would
make it difficult to present and analyze in detail. By
reducing the number of loss configurations, more
datasets can be evaluated and studied in detail, such
as by limiting training to single margin values per
loss function. The presented configuration requires
544 models to be trained per dataset. Another
limitation is the definition and approximation of
semantic similarity through the defined training
pipelines. As described in the example generation
procedure (Section 3.4), data points are separated
on similarity by a frozen reference model. We still,
however, see improvements in general semantic ca-
pabilities in the comparisons with current models,
but an effort for labeling the already existing clas-
sification datasets for semantic similarity would be
required for more reliable results.

8 Ethical Considerations

The datasets and pre-trained sentence-transformer
models used are publicly available. However, the
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system’s use for automatic retrieval may raise ethi-
cal concerns, particularly in public-facing applica-
tions. Furthermore, the Sarcastic News Headlines
dataset references names of individuals and com-
panies, requiring careful handling of personally
identifiable data to prevent unintended harm.

CO2 Emissions Experiments were conducted us-
ing a private infrastructure in Norway, which has a
carbon efficiency of 0.024 kgCO2eq/kWh accord-
ing to https://app.electricitymaps.com/. A
cumulative of 140 hours of computation was per-
formed with an RTX 4090 averaging 270W. Total
emissions are estimated to be 0.907 kgCO2eq. Es-
timations were conducted using the MachineLearn-
ing Impact calculator presented in (Lacoste et al.,
2019).

9 Reproducibility

All code is available on GitHub.4 Results and cor-
responding tables and figures are programmatically
generated for efficient replication. Sampling opera-
tions are fully deterministic.
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Abstract

In this paper, we describe “The Database
of Latvian Morphemes and Derivational
Models” – a large-scale manually val-
idated database of Latvian derivational
morphology currently in development at
the Department of Latvian and Baltic
Studies, Faculty of Humanities, Univer-
sity of Latvia (project funded by Lat-
vian Council of Science, No. lzp-2022/1-
0013). The database is based on lem-
mas extracted from the Balanced Corpus
of Modern Latvian (LVK2018) and con-
sists of two basic interlinked parts: an
annotated list of morphemes and an an-
notated list of lemmas containing those
morphemes. Morpheme-level data include
morphemes with morpheme variants (al-
lomorphs) and manually resolved mor-
pheme homonymy/ homography, as well
as information on morpheme types and hi-
erarchical (diachronic) relations between
root morphemes. Lemma-level data for
each lemma include a unique lemma ID
(coinciding with the original string ex-
tracted from the corpus), a manually vali-
dated base form, as well as information on
morphemic segmentation, POS, grammat-
ical features, derivational motivation (incl.
compounding) and word-family member-
ship. The focus of the database is on pro-
viding linguistically accurate comprehen-
sive data as a reliable basis for future work
in different fields, incl. computational lin-
guistics.

1 Introduction

Latvian (Baltic group, Indo-European language
family) is a language with rich inflectional and
derivational morphology. Latvian inflectional

morphology is extensively documented in lin-
guistic literature, e.g., in academic grammars
(Endzelı̄ns, 1951; Kalnača and Lokmane, 2021;
Nı̄tiņa and Grigorjevs, 2013), and, by virtue of
being paradigmatic (and, as far as NLP is con-
cerned, also synchronic), relatively readily sub-
mits to formalization, at least at the conceptual,
if not at the practical, level. Over the last three
decades, a number of approaches have been de-
veloped for Latvian inflectional morphology pro-
cessing, resulting in solutions for wordform analy-
sis, generation, lemmatization, POS-tagging, etc.,
many of them using some version of a lexicon
for greater precision; for a recent proposal and
an overview of previous work, see Paikens et al.
(2024). Data on Latvian inflection are also avail-
able in UniMorph, which contains 136998 Latvian
inflected forms corresponding to 7548 paradigms1

(Kirov et al., 2018).
The derivational structure of words is inherently

less straightforward and involves several levels of
complexity (see Section 4), which need to be taken
into account when developing derivational mor-
phology processing technologies. Early compu-
tational linguistic experiments on Latvian deriva-
tional morphology have included attempts at de-
scribing possible approaches to automated mor-
phemic segmentation of derived Latvian words
and morphemic and morphological analysis, e.g.,
(Sarkans, 1996), but, to the best of our knowledge,
no comprehensive working computational linguis-
tic models of Latvian derivational morphology
have been developed so far. It should be pointed
out that up to now there has also been a lack of
scientifically accurate large-scale resources (e.g.,
manually validated databases, lexicons) dedicated
to Latvian derivational morphology that could
serve as a basis for developing and testing com-
putational linguistic, e.g., rule-based, models. The

1https://github.com/unimorph/lav
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most complete inventory of morphemically seg-
mented Latvian words (base forms) to date, orga-
nized into word families based on a common root
or, in some cases, on a non-segmentable stem, is
Baiba Metuzāle-Kangere’s “Derivational Dictio-
nary of Latvian” (a printed dictionary) (Metuzāle-
Kangere, 1985).

Decisions about correct morphemic segmenta-
tion of complex words, derivational motivation
or, e.g., allomorphism are not always straightfor-
ward for human linguists, and even less so for
automated solutions unless the latter are trained
or based on a large reliable body of data. In
this paper, we describe a new digital resource (a
database) dedicated to Latvian derivational mor-
phology, currently in development and to be made
freely available to the public in 2026. The
“Database of Latvian Morphemes and Deriva-
tional Models” (DLMDM) is a corpus-based man-
ually validated database in text format (.tsv files)
with comprehensive data on the basic regularities
of Latvian derivational morphology. DLMDM is
designed as a general reference resource, its focus
is on producing a large structured manually vali-
dated set of data accurate and consistent from the
point of view of linguistic theory for the general
public for all kinds of future uses, incl. as a source
for NLP research.

2 Related work

Printed dictionaries of morphemes and deriva-
tional dictionaries have been around for quite
some time. Particularly well represented are
Slavic languages, e.g. Slovak (Sokolová et al.,
1999), Czech (Slavı́čková, 1975; Šiška, 1998).
There are also word-family dictionaries for
other languages, e.g., German (Splett, 2009;
Augst, 2009). Two notable dictionaries re-
flecting different aspects of Latvian morphemics
and derivational morphology are “A Deriva-
tional Dictionary of Latvian” (Metuzāle-Kangere,
1985) and “Latı̄ņu un grieķu cilmes vārddaļu
vārdnı̄ca” (A dictionary of Latin and Greek word
parts) (Skujiņa, 1999). Metuzāle-Kangere’s dic-
tionary is built around the concept of derivational
families and is based on words extracted from two
bilingual dictionaries.

The last 20 years have seen an increase in digi-
tal resources containing some sort of morphemic
and/or derivational information. Such resources
are often corpus-based in an effort to reflect actual

contemporary language use, but differ by focus,
scope and methodology (e.g. autoconstructed vs.,
less frequently, manually annotated). Some of the
recent examples include the Database of Lithua-
nian Morphemics Data (Rimkutė et al., 2013),
Morpholex, a lexical database for English words
with morphological variables (Sánchez Gutiérrez
et al., 2018), DeriNet (Vidra et al., 2019), a lexi-
cal network of word-formation relations in Czech,
with autogenerated morphological segmentations
of lemmas and identification of root morphs. Uni-
versal Derivations (UDer) is a collection of harmo-
nized lexical networks of various languages cap-
turing word formation, especially derivation, in a
cross-linguistically consistent annotation scheme
based on a rooted tree data structure as used in
the DeriNet 2.0 database. MorphyNet is a large-
scale, multilingual database that includes deriva-
tional and inflectional morphology data (over 13
million inflections and over 700 thousand deriva-
tions) for 15 languages extracted from Wiktionary
and 90 thousand derivations in 271 languages in-
ferred automatically from the combination of Mor-
phyNet and the Universal Knowledge Core (Bat-
suren et al., 2021). UniMorph 2.0 contains some
data on Latvian derivational morphology as sup-
plementary structured data extracted from Wik-
tionary – 4235 complex words with a possible
source word, a formally defined (POS:POS) word-
formation model and means of derivation speci-
fied for each word2. The quality of these data de-
pends on the accuracy of Wiktionary and the level
of detail is limited to what is available from that
resource; e.g., derivation is not distinguished from
compounding and formal means of derivation are
not specified as morphemes of a certain type, but
rather as word-initial or word-final strings of one
or more morphemes merged together. Morphemic,
incl. derivational, information is also included
in a number of broader scope lexical resources,
e.g., the lexical database of English WordNet en-
codes some derivational relations, the CELEX lex-
ical databases of English, Dutch and German con-
tain data on the derivational and compositional
structure of words. Several approaches for induc-
tion of derivational families from words extracted
from large corpora have been developed, e.g. DE-
rivBase, DErivCELEX for German, DerivBase.Hr
for Croatian, etc.

2https://github.com/unimorph/lav/blob/
master/lav.derivations
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3 Stages of development

DLMDM is based on a case-sensitive list of 165
090 lemmas downloaded in .xml format from The
Balanced Corpus of Modern Latvian (LVK2018)
via Nosketchengine (Rychly, 2007) with zero
lower frequency threshold. LVK2018 contains ap-
proximately 10 million words occurring in texts of
various genres (Levāne-Petrova and Dar ‘gis, 2018)
and has been chosen as the primary initial source
of lemmas for the database, because it provides
a snapshot of real, unidealized contemporary lan-
guage use and, apart from established words, also
contains novel formations (hence, the zero lower
frequency threshold). Adding lemmas from other
sources, e.g., other corpora, dictionaries, etc., is
possible by assigning a unique lemma ID in the
LEMID column and providing a source ID in the
SOURCE column.

Automated pre-processing:

• Data extraction.

• Consecutive automated and semi-automated
removal of invalid lemmas – removing lem-
mas containing characters that are not part
of the Latvian alphabet and then double-
matching the remaining lemmas against
tēzaurs.lv (2020 spring version3) and an open
source spelling checking dictionary4, result-
ing in a list of unrecognized lemmas, which
were then reviewed manually.

• Approximately 75 000 lemmas left as likely
valid for further processing. The lemmas
that have been filtered out include non-words,
words in foreign languages, words contain-
ing spelling mistakes, erroneously generated
lemmas, as well as a lot of proper names,
some of which (rare or untypical for Latvian)
have been left out from the final list;

• Morphological tagging5, using a freely avail-
able tagger for Latvian.

• Rule-based automated morphemic segmenta-
tion using custom developed scripts.

3https://github.com/LUMII-AILab/
Tezaurs.git/

4http://dict.dv.lv/download.php?prj=
lv/

5https://github.com/PeterisP/LVTagger.
git/

• Grouping of lemmas into potential word fam-
ilies based on a shared root (or a non-
segmentable stem) and a list of possible root
allomorphs.

Further manual processing:

• Reviewing and correcting automatically gen-
erated lemma-level and word family data (see
Section 5).

• Root homonymy/ homography resolution.

• Defining hierarchical relations between roots
and non-segmentable stems.

The final stage of development will consist in
defining and validating derivational relations be-
tween lemmas within word families.

In terms of workload, the most labour-intensive
tasks have been morpheme homonymy/ homogra-
phy resolution, as homographic morphemes have
turned out to be pervasive in Latvian lexis, identi-
fying synchronically non-evident allomorphs and
also identifying hierarchical relations between
roots and word-family membership of lemmas in
non-straightforward cases.

4 Sources of complexity in data

As a manually validated database, DLMDM’s pri-
mary focus is on providing comprehensive linguis-
tically accurate data. This means accounting for
all kinds of phenomena in derivational morphol-
ogy, not just productive regular derivation. In this
section, we outline some of the major sources of
difficulty in derivational morphological analysis of
existing words.

4.1 Morpheme homonymy and homography
Homonymy or homography is encountered much
more often among Latvian roots and non-
segmentable stems than among words. Deriva-
tional analysis without homonymy/ homography
resolution may lead to incorrectly inferring deriva-
tional relations between words and, hence, to in-
correct semantic interpretation (roots shown in
round brackets):

(1) (bur)-t ‘to do magic’ (inherited Lat-
vian word) – (bur)-a ‘sail’ (borrowing)
(2) (las)-ı̄-t ‘to read’ – (las)-is ‘salmon’
(both – inherited Latvian words)
(3) (mat)-s ‘hair’ (inherited Latvian
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word) – (mat)-s ‘checkmate’ – (fiz)-
(mat)-s ‘physico-mathematical (of stu-
dents)’ (borrowing)
(4) (log)-s ‘window’ (inherited Latvian
word) – (virus)-o-(log)-s ‘virologist’ –
ielogoties ‘to log in’ (both – borrowings)

E.g., the string ‘lok’ or ‘loc’ corresponds to at
least 7 different roots, in Latvian, occurring in
hundreds of lemmas, as in (5)–(11):

(5) lok [luok], loc [luoc] – loks ‘cir-
cle’, locı̄t ‘to bend’, lokāms ‘bendable,
declinable’ (inherited Latvian words)
(6) lok [lok], loc [loc] – lokācija
‘location’, lokalizācija ‘localization’,
lokatı̄vs ‘locative’, lokomotı̄ve ‘locomo-
tive’, translocēt ‘translocate’ (all – bor-
rowings)
(7) lok [luok], loc [luoc] – ķiploks ‘gar-
lic’ (borrowing), ķiplokains ‘garlicky’,
ķiplociņš ‘garlic deminutive’, ķiploksāls
‘garlic salt’
(8) lok [luok], loc [luoc] – loki ‘green
onions’, maurloki ‘chives’, sı̄polloki
‘spring onions’ (all – borrowings)
(9) lok [lok] – loka ‘hair curl’, lokains
‘curly’, lokoties ‘to curl’, lokšķēres
‘curling iron’ (all – borrowings)
(10) loc [luoc] – locis ‘ship pilot’ (bor-
rowing)
(11) lok [lok] – lokauts ‘lockout’ (bor-
rowing)

In DLMDM, homonymous/ homographic roots
are listed as separate non-related morphemes each
linked to their respective word family (or sub-
family).

Another problem are quasi-morphemes – se-
quences of characters in borrowed words graph-
ically coinciding with existing morphemes, most
notably, suffixes. Quasi-morphemes may poten-
tially lead to incorrect segmentation, e.g. in auto-
mated morphemic segmentation approaches:

(12) (bārd)-ain-is ‘a bearded man’ (in-
herited Latvian word) – (sulain)-is ‘but-
ler’ (borrowed from Estonian sulane6)
(13) (rūp)-est-s ‘concern’ (inherited
Latvian word) – (dienest)-s ‘service’
(borrowed from Middle Low German

6https://mev.tezaurs.lv/sulainis

dēnest7)
(14) (vair)-og-s ‘shield’ (inherited Lat-
vian word) – (karog)-s ‘flag’ (borrowed
from Old Russian8)

Other examples of quasi-morphemes include
the nouns ceriņi ‘lilacs’, treniņš ‘training’, zābaks
‘a boot’, etc., where as a result of phonetic adap-
tation the segments -iņ- and -ak- have come to
resemble the Latvian suffixes -iņ-, -ak-. Quasi-
morphemes are less widespread than homony-
mous / homographic roots.

4.2 Allomorphism
The majority of Latvian roots have variants
(root allomorphs) resulting from both histor-
ical and synchronic morphophonological pro-
cesses (Kalnača, 2004; Kalnača and Lokmane,
2021; Nı̄tiņa and Grigorjevs, 2013). Allomor-
phism is significant in inferring derivational rela-
tions between words. E.g., ved, ves, ve, vez, vež,
vad, vaz, važ are all variants of the same root as in
vest ‘to carry’, vešana ‘carrying’, vedējs ‘carrier’,
vadı̄t ‘to lead’, etc.

Allomorphism also occurs in affixes, e.g., suf-
fixes -niek-, -niec-, -nieč-, as in (15):

(15) saim-niek-s ‘owner, host’ (M),
saim-niec-e (F), saim-nieč-u (GEN PL,
F)

DLMDM encodes relations for all allomorphs
occurring in the dataset, but not for all allomorphs
that are, in principle, possible in Latvian.

4.3 Synchrony vs. diachrony
While most automated solutions for derivational
morphology are synchronically oriented and fo-
cus on productive models, correct morphemic seg-
mentation and word-family membership identifi-
cation may sometimes require a diachronic stance,
i.e. recognizing derivational models that are not
synchronically productive, but are found in al-
ready established words, while retaining semantic
motivation, e.g.:

(16) (zag)-t ‘to steal’ – (zag)-l-is ‘a
thief’, (bēg)-t ‘to run away, to flee’ –
(bēg)-l-is ‘a fugitive’, (ie)-t ‘to walk’ –
(ie)-l-a ‘a street’
(17) (sil)-t ‘to warm’ – (sil)-t-s ‘warm’,

7https://mev.tezaurs.lv/dienests/
8https://mev.tezaurs.lv/karogs/
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(sal)-t ‘to be cold, to freeze’ – (sal)-t-s
‘cold’
(18) (bes)-t (<*bed-t) ‘to dig’ – (bed)-
r-e ‘a pit, a hole’, (svı̄s)-t (<*svı̄d-t) ‘to
sweat’ – (svied)-r-i ‘sweat’

On the one hand, defining a synchronically
unproductive word-formation model of this sort
would probably lead to overgeneration (in genera-
tion tasks) and false positives (in analysis). On the
other hand, not defining such models would lead to
words like zaglis, bēglis, iela being segmented and
marked as simplex, which would also entail loss of
derivational semantic motivation and word-family
membership.

In DLMDM, established complex words not
corresponding to synchronically productive word-
formation models are segmented from a di-
achronic perspective.

4.4 Non-straightforward derivational
relations and semantic motivation

Defining a single directed derivational relation and
a single base (i.e. a single base word for deriva-
tion or a single syntactic construction for com-
pounds) for each derivationally complex word is
not always possible. Some words, in Latvian, may
be simultaneously motivated by more than one
base, and the perceived motivation may even vary
from speaker to speaker, e.g., burvı̄gs ‘charming,
enchanting’ and burvı̄ba ‘charm, sorcery, magic,
enchantment’ are both related to burvis / burve
‘wizard, sorcerer (M) and (F)’ and to each other,
esp. when taking word senses into account. Cer-
tain kinds of words, often these are compounds,
rather than having a single base tend to form clus-
ters around concepts (or some would perhaps say,
fill in paradigms of possible meanings and parts-
of-speech), while also forming links to one an-
other, e.g., aitas kopt ‘to farm sheep’ – aitkopis
/ aitkope ‘sheep farmer (M) and (F)’, aitkopı̄ba
‘sheep farming’; gara aste ‘a long tail’, garaste,
garastis ‘someone having a long tail (F) and
(M)’, garastes ‘long-tailed’ (a compound geni-
tive noun), garastains ‘long-tailed’ (an adjective),
Garastene (a proper noun in LVK2018); lēkt ar
izpletni ‘to parachute’ – izpletņlēkšana ‘parachut-
ing’, izpletņlēcējs ‘someone who parachutes’, etc.
Another kind of examples are pairs of com-
pound genitive nouns and adjectives related to one
and the same concept, e.g., starpnāciju, starpna-
cionāls ‘international’; pārre ‘gionu, pārre ‘gionāls

‘transregional’, bezgaršas, bezgaršı̄gs ‘tasteless’,
where a prior existence of an adjective that can
fill the slot in the right-hand part of the compound
seems to be a pre-requisite.

To summarize, a rooted tree does not seem to
be able to accommodate all observable kinds of
derivational relations in Latvian, therefore, word
families in DLMDM are not designed to fit the
rooted tree data structure.

4.5 Root hierarchies
Some roots or non-segmentable stems stand in a
hierarchical relationship to one another. This is
important for accurate morphemic segmentation
and word-family membership:

• two or more inherited roots or an inherited
and a borrowed root may be siblings with one
common parent:

# zero-element
## dar
## darb

# zero-element
## dilb
## delm
## deln

# zero-element
## as
## aksi (borrowed)
## akson (borrowed)

• one inherited root may be a child of another
inherited root when there is no sufficient ba-
sis for further segmentation of the former:

# aug, audz, audž
## augst
## augš

# av
## aun
## ait

Thus, a root (or a non-segmentable stem) in
DLMDM may have allomorphs and also a parent
root and siblings or a child root, which, in turn,
may have allomorphs of their own. Lemmas are
linked to a concrete root in a root hierarchy.

5 Types of data in DLMDM

DLMDM consists of co-indexed text files for
lemma-level data, morpheme-level data and

283



Figure 1: The word family # ceriņ, cerı̄n, cerı̄ņ
‘lilacs’ in a simplified format

source identifiers. To improve readability, manual
revision is performed in a simplified format (see
Figure 1). Upon completion, the files will be con-
verted to a format compatible with CoNLL-U Plus
to facilitate harmonization with other resources.

Each line in a DLMDM file contains data for
one entry – a lemma, a morpheme or a source.
Column values are tab-delimited.

The format of the database is largely in-
spired by DeriNet (Vidra et al., 2019) and Mor-
pholex (Sánchez Gutiérrez et al., 2018), but, in
terms of contents, DLMDM is different in many
respects, the primary objective being to reflect
the derivational morphology of Latvian as fully
as possible. The major differences, apart from
manual revision, include root hierarchies and
morpheme-level data, as well as a different ap-
proach to marking derivational relations.

5.1 Lemma-level data

At the current stage, lemma data include the fol-
lowing columns:

Column Description
LEMID a unique case-sensitive

lemma identifier coincid-
ing with the original string
extracted from the corpus

LEMMA a manually validated base
form of a lemma

SEGMENTATION morphemic segmentation
of a lemma

POS part-of-speech tag in the
UD format

FEATS grammatical features
VARIANTS lemma variants
MORPHTAG an automatically gener-

ated morphological tag
SOURCE a source identifier

Table 1: Lemma-level data

In addition, each lemma is linked to a concrete
root or a non-segmentable stem in a root hierarchy
through word-family membership.

Lemmas will be subsequently annotated for
means of word-formation (e.g., syntactic: com-
pounding, morphological: prefixation, suffixa-
tion), types of a derivational relationship (e.g., sin-
gle base, multiple motivation) and participants of
a derivational relationship.

Since DLMDM includes proper nouns, the
LEMID, LEMMA and SEGMENTATION
columns are case-sensitive. Two lemmas in the
database can have identical values of the LEMMA
and SEGMENTATION columns, but not of the
LEMID column.

The parts-of-speech represented in DLMDM
are shown in Table 2:

POS label Description
NOUN a noun
PROPN a proper noun
ADJ an adjective
ADV an adverb
VERB a verb, incl. participles
INTJ an interjection
PRON a pronoun
NUM a numeral
ADP an adposition
PART a particle
CCONJ a coordinating conjunction
SCONJ a subordinating conjunction
OTHER indeclinable words with a

verbal motivation that do
not fit any of the exist-
ing classes, e.g., paslepu
‘secret’, piespiedu ‘compul-
sory’

Table 2: POS column values in DLMDM

Developing a unified approach to what is to
be considered a valid base form of a lemma (the
LEMMA column) has also required some con-
scious decision-making, e.g., what to do in cases
when the corpus contains both a masculine and a
feminine version of a derivative, e.g. nosūtı̄tājs
(M), nosūtı̄tāja ’sender’ (F), but the automatically
generated lemma list only has one of them, as in-
flectional endings partly overlap; or what to do in
cases when the lemma list contains a participle,
but not the corresponding verb, although both ex-
ist in language.
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The manually validated base forms of lemmas
in DLMDM are given as follows:

POS Base forms
NOUN, PROPN nominative singular or nom-

inative plural for pluralia
tantum

ADJ nominative singular mascu-
line indefinite positive, un-
less an adjective is only
used with the definite end-
ing, e.g., galvenais ‘princi-
pal’

VERB the infinitive for verb tense
forms and nominative sin-
gular masculine for declin-
able participles, except for
the past participle active,
which is given in masculine
and feminine

Table 3: The base forms of lemmas for major de-
clinable parts-of-speech in DLMDM

The FEATS column encodes several specific
grammatical features that either cannot be reliably
automatically inferred from base forms or are re-
quired for other reasons, e.g., because participles
do not have a dedicated POS tag (see Table 4).

FEATS POS
PlTantum – plu-
ralia tantum

NOUN, PROPN, NUM

Gen – genitive
nouns or numer-
als

NOUN, NUM

Indecl – indeclin-
able words

NOUN, ADJ, NUM

Part – participles VERB

Table 4: Values of the FEATS column

The VARIANTS column is reserved for link-
ing together different versions or variants, e.g.,
orthographic, dialectal, of the same word. The
MORPHTAG column, which has been automat-
ically generated for the purposes of automated
pre-processing, incl. generating POS column val-
ues, will be removed in the final version of the
database.

5.2 Morpheme-level data
DLMDM contains a separate file for morpheme
data co-indexed with the lemma file. Morpheme-

level data will include concrete morphemes with
allomorphs and homonymy/ homography reso-
lution through unique IDs, as well as informa-
tion on morpheme types, morpheme strata (e.g.,
for borrowed roots or non-segmentable stems),
hierarchical relationships between roots or non-
segmentable stems in a root hierarchy, and, for
roots, links to lemmas through word-family mem-
bership.

6 Summary

We hope that DLMDM will be useful as a reliable
large-scale resource for further research on Lat-
vian derivational morphology from various per-
spectives, incl. computational linguistics, corpus
linguistics and linguistics. Future work might in-
clude a more in-depth analysis of the structure
of borrowed words in Latvian, esp. international
words, words of classical (Greek, Latin) origin,
incl. neoclassical compounds.

Abbreviations

GEN – genitive
F – feminine
M – masculine
PL – plural
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Jānis Endzelı̄ns. 1951. Latviešu valodas gramatika.
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and Irena Markievicz. 2013. Lietuviu kalbos mor-
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Abstract

Although large language models (LLMs)
have transformed our expectations of
modern language technologies, concerns
over data privacy often restrict the use of
commercially available LLMs hosted out-
side of EU jurisdictions. This limits their
application in governmental, defence, and
other data-sensitive sectors. In this work,
we evaluate the extent to which locally
deployable open-weight LLMs support
lesser-spoken languages such as Lithua-
nian, Latvian, and Estonian. We examine
various size and precision variants of the
top-performing multilingual open-weight
models, Llama 3, Gemma 2, Phi, and
NeMo, on machine translation, multiple-
choice question answering, and free-form
text generation. The results indicate that
while certain models like Gemma 2 per-
form close to the top commercially avail-
able models, many LLMs struggle with
these languages. Most surprisingly, how-
ever, we find that these models, while
showing close to state-of-the-art transla-
tion performance, are still prone to lexical
hallucinations with errors in at least 1 in
20 words for all open-weight multilingual
LLMs.

1 Introduction

Since the fall of 2022, OpenAI and other big
tech companies have transformed LLMs from an
obscure technology little known outside the aca-
demic circles to a major household name. Key
to this was the LLMs’ ability to perform tasks
specified in free-form instructions, making them
excel as NLP tools1. Furthermore, these models

1https://artificialanalysis.ai/
leaderboards/models.

can learn during inference from relevant exam-
ples provided as inputs, making them adaptable
to new requirements or even tasks. Moslem et al.
(2023) showed that in such a setting, GPT-3, pro-
vided with relevant translation examples, outper-
forms machine translation systems of major com-
panies, including Google, DeepL, and ModernMT.

However, data privacy concerns often constrain
the use of commercially available LLMs hosted
outside EU jurisdiction, limiting their application
in governmental, defence, and data-sensitive pri-
vate sectors. Fine-tuning and operational deploy-
ment of adapted models can incur prohibitive costs
in the case of commercially available LLMs, em-
phasizing the need for sovereign AI solutions–
locally deployable alternatives that ensure secu-
rity, control, and compliance. Recently, many
powerful alternatives to the commercially avail-
able online LLMs have emerged (Jiang et al.,
2023; Dubey et al., 2024; Team et al., 2024; Mes-
nard et al., 2024; Abdin et al., 2024). Although
many of these LLMs officially support only a
handful of languages with a large speaker base,
their training data often incorporate texts from
many other languages. Therefore, in practice,
these languages receive some degree of support.
However, the extent to which these languages are
supported, to the best of our knowledge, still needs
to be evaluated.

In this work, we aim to answer the ques-
tion of to what extent, if at all, several popu-
lar open-weight models support Lithuanian, Lat-
vian, and Estonian. All three languages have rel-
atively small speaker bases and thus are unlikely
to be focal points of major multilingual open-
weight LLMs. We examine variants of Meta’s
Llama 3, Google’s Gemma2, Mistral’s NeMo, and
Microsoft’s Phi3 in their performance in multiple-
choice question answering (MCQA) and machine
translation (MT). We also manually assess the text
quality generated by these models by identifying
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the rate of incorrect words when answering open-
ended questions.

We find that while some models like Gemma 2
nearly match the performance of top commer-
cial models, many LLMs struggle with these lan-
guages. Surprisingly, even those models that ap-
proach state-of-the-art translation capabilities are
still susceptible to lexical hallucinations.

2 Experimental Setting

We evaluate LLMs on multiple-choice question
answering, machine translation, and text gener-
ation quality in open-ended question answering.
While our experiments focus on the model perfor-
mance for three languages–Lithuanian, Latvian,
and Estonian–each with a speaker base under 3
million, we also include results for Czech and
English for comparison purposes. We have cho-
sen to evaluate models that consistently appear on
various leaderboards. Specifically, we assess the
8.03B and 70.6B parameter versions of Llama 3
and Llama 3.1, as well as the 3.21B parame-
ter version of Llama 3.2 (Dubey et al., 2024)
from Meta; the 9.24B and 27.2B parameter ver-
sions of Gemma 2 (Team et al., 2024; Mesnard
et al., 2024) by Google; the 3.8B and 14B ver-
sions of Phi 3 by Microsoft (Abdin et al., 2024);
and the 12.2B parameter NeMo by Mistral AI
(Jiang et al., 2023). To provide context for our
experiments, we include online models by Ope-
nAI such as GPT-3.5 Turbo and GPT-4o (Ope-
nAI et al., 2024) and DeepL machine transla-
tion systems. In experiments assessing the quality
of Lithuanian text generation, we incorporate the
Lithuanian language-specific fine-tuned versions
of Llama 2 (Touvron et al., 2023) with 7B and 13B
parameters, developed by Neurotechnology – Lt-
Llama 2 (Nakvosas et al., 2024).

We run LLMs on our local hardware using the
default inference parameters of the Ollama plat-
form2, which offers several levels of precision for
model quantization: 4bit, 8bit, and full-precision
– 16bit. By default, we use 4bit precision in all
our experiments, albeit at the cost of some per-
formance degradation. We also evaluate the per-
formance drop due to quantization by contrast-
ing the results of quantized models with their full-
precision counterparts.

2https://ollama.com/

Machine Translation For MT experiments, we
use the FLORES-200 benchmark dataset (Goyal
et al., 2021; Costa jussà et al., 2022), which com-
prises parallel sentences in over 200 languages3.
We use the devtest subset from FLORES-200,
which contains 1,012 sentences. We test LLMs
in a zero-shot inference scenario. We use the fol-
lowing English prompt to request text translations
from the specified source and to the specified tar-
get language:

“{langa}: {sentencelanga}
Translate the above {langa} text into {langb}

{langb}: ”

The translation and evaluation are performed at
sentence-level; the inference is conducted in a
single run for each test sentence. For automatic
evaluation of MT quality, we use COMET4 (Rei
et al., 2020, 2022) as it has been shown to have
a higher correlation with human judgments than
BLEU (Papineni et al., 2002) and to be more
suitable for unrelated system comparison (Kocmi
et al., 2024).

Multiple-Choice Question Answering For
MCQA experiments, we employ the Belebele
dataset, a benchmark in multiple-choice machine
reading comprehension (Bandarkar et al., 2024).
This dataset pairs each question with a short
passage from the FLORES-200 dataset. Each
question includes four multiple-choice answers,
with one being the correct option. The dataset
consists of 900 questions involving 488 distinct
passages, each linked to one or two related
questions. We use LLMs in a zero-shot infer-
ence scenario. We use the following English
prompt where “{context}”, “{question}” and
“{answer#}” are in a specific language (Latvian,
Estonian, etc.):

“This is the context: ’{context}’. This is the
question: ’{question}’. Here are the 4 candidate
answers: ’1) {answer1}’; ’2) {answer2}’; ’3)
{answer3}’; ’4) {answer4}’. Report only the

correct answer’s ID (1, 2, 3, 4) using the
mandatory JSON format: {answer id :′′}.”

The prompt explicitly requests the ID (e.g. ‘1’,
‘2’, ‘3’, or ‘4’) of the correct answer formatted in
JSON. Our evaluation metric is accuracy.

3https://github.com/facebookresearch/
flores/tree/main/flores200.

4https://huggingface.co/Unbabel/
wmt22-comet-da
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DeepL GPT Llama: 3 3.1 3.2 NeMo Gemma 2 Phi 3
3.5-T 4o 8B 70B 8B 70B 3B 12B 9B 27B 3B 14B

EN-LT 0.92 0.88 0.91 0.62 0.83 0.61 0.84 0.46 0.73 0.86 0.89 0.26 0.32
EN-LV 0.92 0.88 0.91 0.59 0.82 0.58 0.83 0.44 0.72 0.83 0.88 0.25 0.27
EN-ET 0.93 0.92 0.92 0.65 0.86 0.63 0.87 0.48 0.75 0.84 0.89 0.27 0.37
EN-CS 0.93 0.91 0.92 0.81 0.90 0.82 0.90 0.66 0.84 0.89 0.91 0.25 0.51
LT-EN 0.87 0.86 0.88 0.77 0.81 0.77 0.82 0.75 0.82 0.87 0.87 0.32 0.34
LV-EN 0.89 0.87 0.89 0.77 0.83 0.78 0.82 0.76 0.84 0.87 0.88 0.33 0.34
ET-EN 0.90 0.90 0.90 0.78 0.83 0.79 0.82 0.76 0.85 0.88 0.89 0.33 0.34
CS-EN 0.89 0.89 0.89 0.86 0.88 0.86 0.87 0.86 0.87 0.89 0.89 0.32 0.33

Avg. 0.91 0.89 0.90 0.73 0.85 0.73 0.85 0.65 0.80 0.87 0.89 0.29 0.35

Table 1: Automatic MT quality evaluation results in COMET scores across models and translation
directions. DeepL and OpenaAI GPT 3.5-Turbo and 4o are provided for reference. Top results by open-
weight models for each translation direction are marked in bold.

GPT Llama: 3 3.1 3.2 NeMo Gemma 2 Phi 3
3.5-T 4o 8B 70B 8B 70B 3B 12B 9B 27B 14B

LT 0.734 0.941 0.607 0.768 0.618 0.834 0.435 0.715 0.861 0.898 0.001
LV 0.756 0.950 0.571 0.710 0.581 0.783 0.410 0.689 0.869 0.914 0.002
EN 0.903 0.962 0.883 0.938 0.872 0.947 0.740 0.898 0.931 0.943 0.886
ET 0.773 0.928 0.576 0.770 0.560 0.821 0.397 0.686 0.859 0.893 0.003
CS 0.818 0.937 0.769 0.888 0.743 0.892 0.676 0.800 0.907 0.910 0.296

Avg. 0.797 0.944 0.681 0.815 0.675 0.855 0.532 0.758 0.885 0.912 0.238

Table 2: Automatic MCQA evaluation results measuring accuracies across models and languages. Ope-
naAI GPT 3.5-Turbo and 4o are provided for reference. Top results by open-weight models for each
language are marked in bold.

Llama 3.1 3.2 Gemma 2
8B 70B 3B 9B 27B

∆MT 0.074 0.009 0.015 0.006 0.001
∆MCQA 0.100 0.058 0.004 0.010 0.000

Table 3: Performance drop (difference between
Avg. scores across all languages) for several 4bit
models compared to their respective full precision
versions on the two tasks – MT (COMET points)
and MCQA (accuracy).

Text Quality in Free Form Question Answering
To assess LLMs’ ability to generate answers that
adhere to Lithuanian and Latvian conventions and
grammatical norms, we prompt models to answer
ten free-form questions such as “When did the So-
viet Union collapse, how many new countries ap-
peared, and what are their names?” and “Provide
a definition of artificial intelligence.” We conduct
human evaluation by two Lithuanian and Latvian
native speakers and linguistics experts. We re-
quire evaluators to count text errors, mark gram-
matically incorrect words or incorrect inflexions,
mark invented words not existing in the language,
and mark words within syntactically incorrect sen-
tence structures (see Table 4).

We also assess whether the provided answers
are factually correct. However, the factual accu-
racy results lack statistical significance due to the
small sample size and should be interpreted with
caution. For instance, it happened that GPT-4 an-
swered all ten questions correctly for the Latvian
language, but this outcome reflects a preliminary
observation rather than a deep investigation. The
results, therefore, should be viewed as part of a
pilot study and not as definitive findings.

3 Results and Discussion

MT evaluation results (see Table 1) demon-
strate the Gemma 2 family as the most capa-
ble open-weight model family. Gemma 2 27B
emerges as the best locally deployable model,
yielding COMET scores on par with OpenAI’s
GPT-3.5 Turbo and only marginally worse than
GPT-4o. Although specialised proprietary MT
models like DeepL achieve the highest average
score (0.91), freely available Gemma 2 models are
not far off, with average COMET scores of 0.89
and 0.87 for the 27B and 9B versions, respec-
tively. In this context, the Llama family has little
to offer, with the Llama 3.0 and 3.1 70B parame-
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GPT Llama 3.1 Gemma 2 Lt-Llama 2
4o 8B 70B 27B 7B 13B

LT
Words/Sentences 320/38 724/68 300/24 1273/135 1132/69 1020/58

Error Rate (%) 3.44 12.98 7.67 4.08 1.15 0.98
Answer acc. 0.9 0.2 0.9 0.9 0.5 0.4

LV
Words/Sentences 1249/91 362/27 619/39 1171/97 - -

Error Rate (%) 2.48 18.51 11.31 5.98 - -
Answer acc. 1 0.3 0.9 0.8 - -

Table 4: Human evaluation results for text generation quality in free form question answering.

ter models surpassing the much smaller Gemma 2
9B only in two out of eight translation directions.
Smaller models, like Llama’s 3B and 8B versions
and Mistral’s 12B NeMo, show equally meagre re-
sults given the high performance of Gemma 2 9B.
Lastly, the results of Phi 3 prove that these models
have very little support for multilingualism.

Quantisation impact on MT quality analysis
(see Table 3) reveals that while Llama models
are negatively affected to some degree, the per-
formance of full-precision models does not jus-
tify their use either. Increased inference time
and memory requirements for the 70B model
are too prohibitive unless several top-of-the-shelf
enterprise-grade GPUs are available5. However,
the full precision 8B parameter Llama 3.1 still
does not reach the performance of the Gemma 2
9B 4bit version (0.80 vs 0.87). Gemma 2 family
models, on the other hand, show a statistically in-
significant drop in translation performance when
the 4bit version is used, suggesting that their ar-
chitecture is very robust to quantization.

While the current MT results provide valu-
able insights into LLM capabilities, future work
could benefit from more fine-grained error anal-
ysis using frameworks like MQM (Multidimen-
sional Quality Metrics) and ESA (Error Span An-
notation). These approaches allow detailed classi-
fication of errors-such as those related to accuracy,
fluency, and terminology, and help quantify their
impact on text usability. Incorporating these meth-
ods could provide deeper insights into model lim-
itations and guide targeted improvements, partic-
ularly for smaller languages like Lithuanian, Lat-
vian, and Estonian.

MCQA results (see Table 2) show that the
Gemma 2 27B parameter model outperforms GPT-
3.5 Turbo across all languages, coming second
only to OpenAI’s flagship model, GPT-4o. No-

5https://huggingface.co/blog/llama31

tably, Gemma 2 27B achieves the highest accu-
racy among the open-weight models, outperform-
ing Llama 3.1 and NeMo models for the Lithua-
nian, Latvian, Estonian, and Czech. The Phi mod-
els, however, perform poorly, particularly in non-
English languages, and their results often fail to
meet the required JSON output format, providing
detailed responses instead of just answer IDs.

Quantization impact on MCQA analysis un-
veils a similar picture as the analysis above for
MT: Llama models are more sensitive to quantiza-
tion, while Gemma 2 are more robust. As a result,
Gamma 2 models show little performance degra-
dation when much more efficient 4bit models are
used. It’s worth noting, however, that the accuracy
drops because quantization differs depending on
the amount of data each language has. Less spo-
ken languages like Lithuanian, Latvian, and Esto-
nian are affected more than English and Czech, for
which overall results are better. For example, the
Llama 3.1 70B model loses 0.06, 0.12, and 0.08
accuracy for Lithuanian, Latvian, and Estonian,
respectively, but only 0.01 and 0.02 for English
and Czech.

Text Generation Quality evaluation results (see
Table 4) show that most models produce more than
one error per 100 words. The Lt-Llama 2 mod-
els, specifically fine-tuned for Lithuanian, are the
exception, with an error rate of just 0.98% and
no invented words. Among multilingual models,
OpenAI’s GPT-4o achieves strong performance,
with 0.94 grammatically incorrect or incorrectly
inflected words per 100 for Lithuanian and 1.52
for Latvian, while generating a very small num-
ber of invented words (0.31 and 0.56 per 100 for
Lithuanian and Latvian, respectively). In contrast,
Llama 3.1 models show significant shortcomings,
with the highest frequency of grammatical errors:
8.01 per 100 for Lithuanian and 11.88 for Lat-
vian. Additionally, Llama 3.1 generates a substan-
tial number of invented words: 4.28 per 100 for
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Lithuanian and 3.87 for Latvian. Gemma 2 models
perform considerably better, with 2.36 grammati-
cal errors per 100 for Lithuanian and 4.10 for Lat-
vian, and fewer invented words: 0.39 per 100 for
Lithuanian and 1.45 for Latvian. These findings
highlight clear quality differences among models.
While Llama 3.1’s high error rates make it unsuit-
able for most commercial applications, Gemma 2
strikes a better balance, approaching GPT-4o’s
quality but still falling short. Notably, Lt-Llama
2 sets the strongest benchmark with near-perfect
output, minimal grammatical errors, and no in-
vented words. On average, users can expect at
least one linguistic error in every 2-3 sentences
from the best open-weight models like Gemma 2,
or every sentence for models like Llama 3.1, un-
less further multilingual specialization becomes
available.

Lesser-spoken Languages like Lithuanian, Lat-
vian, and Estonian have less support in open-
weight models compared to more populous lan-
guages such as Czech. These differences are more
pronounced in smaller and lower-quality models,
especially in tasks where models generate text in
lesser-spoken languages (e.g., MT from English
into Lithuanian). Comparatively good results for
Czech suggest that these disparities are related to
the amount of data each LLM has seen for each
language during training, rather than factors such
as the structural complexity of the language.

4 Conclusions

Our findings demonstrate that certain open-weight
LLMs, such as the Gemma 2 family, achieve per-
formance comparable to top-tier commercial prod-
ucts, such as general-purpose models like Ope-
nAI’s GPT-4o and specialized machine transla-
tion services like DeepL. This progress enables
local, secure, and private solutions, supporting
the development of sovereign AI for many lan-
guage tasks in governmental, defence, and other
data-sensitive private sectors. Nevertheless, unless
specifically fine-tuned for languages like Lithua-
nian, most multilingual models are still surpris-
ingly prone to lexical hallucinations, highlight-
ing the need for 1) high-quality language data for
languages of the Baltic states and 2) research on
language-specialized LLMs.
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Abstract

This paper examines gender bias in Esto-
nian, a grammatically genderless Finno-
Ugric language, which doesn’t have gen-
dered noun system nor any gendered pro-
nouns, but expresses gender through vo-
cabulary. In this work, we focus on the
male-female compound words ending with
-tädi ‘aunt’ and -onu ‘uncle’, aiming to
pinpoint the occupations these words sig-
nify for women and men, and to examine
whether they reveal occupational differenti-
ation and gender stereotypes. The findings
indicate that these compounds go beyond
occupational titles and highlight prevalent
gender bias.

1 Introduction

Languages are divided into three groups based on
gender expression: firstly, there are grammatical
gender languages (such as Russian, French, Ger-
man, etc.), which use a gendered noun class sys-
tem. Secondly, there are natural gender languages
(e.g. English, Swedish, etc.), which incorporate
gender-specific pronouns. Lastly, there are gen-
derless languages (e.g. Hungarian, Finnish, Turk-
ish, etc.), which lack gendered nouns as well as
pronouns (Stahlberg et al., 2007). Estonian, repre-
senting a Balto-Finnic language, is grammatically
genderless and thus incorporates only lexical re-
sources, i.e. gender-specific vocabulary for gender
expression.

While a grammatical gender does not correlate
with gender equality or neutrality in a certain soci-
ety (Aikhenvald, 2016), gender bias and stereotyp-
ing can still be prevalent not only in societies where
a genderless language is spoken, but also within
those languages themselves. This work illustrates
how gender stereotypes are manifested in Estonian
gendered vocabulary, specifically compound words

ending with lemmas tädi and onu that refer to oc-
cupations, shedding light on which professions are
more commonly associated with women or men,
and thus, how a genderless language exhibits bias
and stereotypes. The gender stereotypes referred
to here are mainly beliefs about occupational and
social roles that are assumed to be held by men or
by women more dominantly (Gygax et al., 2016;
Vaidya, 2021).

In Estonian, the terms tädi and onu are primarily
used to denote kinship, however, they also serve
other purposes. For instance, they are commonly
used in children’s language, when referring to unfa-
miliar individuals or family friends when talking to
children. Additionally, tädi and onu can be used hu-
morously and they frequently appear in compound
words denoting occupations (Puna, 2006). Such
words were chosen for this paper, since they repre-
sent more informal and non-standardized language
use. Furthermore, as these words represent infor-
mal language, they might reflect stereotypes more
directly and with less linguistic filtering, as op-
posed to potentially more moderated words used in
formal contexts. Examining gender bias in gender-
less languages, such as Estonian, is crucial because
this topic has received little attention in the context
of low-resource languages. Such languages still
provide valuable insights into gender dynamics and
social beliefs, which help to identify harmful and
discriminatory gender stereotypes as well as raise
awareness of gender inequality and occupational
segregation. The research questions this study aims
to address are as follows: (1) What kinds of occu-
pations do the compound words ending with tädi
and onu express? (2) How do occupational titles
ending with tädi (aunt) and onu (uncle) propagate
gender bias in Large Language Models (LLMs)?

2 Gender Expression in Estonian

Gender in Estonian is only expressed through vo-
cabulary. This can be done, for instance, by using
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Male-dominated Female-dominated
occupation % occupation %
Doctor 84 Cashier, shopkeeper 80
Construction worker 1 Cook 72
Security worker 22 Librarian 98
Bus or tram driver 10 Kindergarten teacher 99
Electrician 1 High school teacher 86
EU politician 27 Receptionist 74
IT support specialist 28 Ticket seller 91
Waste collector 0 Social worker 92
Warehouse worker 8 Cleaner 88
Mailman 40 Hairdresser 94

Table 1: The percentage of females in male- and
female-dominated occupations (%) in the Estonian
labor force statistics, 2021.

separate words (e.g. mees ‘man’, naine ‘woman’,
tüdruk ‘girl’, poiss ‘boy’, ema ‘mother’, isa ‘fa-
ther’). In addition, another option to express gen-
der is through compounding. This means adding
two single words together, one of which carries a
gendered meaning. There are two ways to indicate
gender with a compound word in Estonian. Firstly,
gendered prefixes nais- ‘female’ and mees- ‘male’
that function as adjectives can be added to a role
noun (e.g. naisarst ‘female doctor’, naisujuja ‘fe-
male swimmer’, meesmodell). Secondly and simi-
larly, gender-specific base forms (i.e. suffixes) can
be used (e.g. esimees ‘chairman’, ärinaine ‘busi-
nesswoman’, spordinaine ‘sportswoman’). In the
second option, the noun indicating gender conveys
the main meaning of the word.

There is also a third option - derivation, which
specifically denotes female agents, including fe-
male representatives of different ethnicities, for
example, lauljanna ‘female singer’, venelanna ‘fe-
male Russian’, poetess ‘female poet’, sõbratar ‘fe-
male friend’, ‘girlfriend’ etc. (Kasik, 2015; Has-
selblatt, 2015). However, derivation, compared
to single words and compound words, is perhaps
not that widely used in everyday language today.
Derivation is the only instance where a gendered
morpheme is used in Estonian vocabulary.

As for compound words with a gendered base
form, generally the most common nouns used
in such compounds are -mees ‘man’ and -naine
‘woman’ (especially -mees, since mees-ending com-
pounds are used generically, like esimees ‘chair-
man’). However, other nouns, such as -tädi ‘aunt’
and -onu ‘uncle’ can also be included. (Gu, 1990;
Clyne et al., 2009; Kiss, 2022).

relation criminalityoccupations age user-name
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Figure 1: Frequencies of the more dominant seman-
tic categories of gendered tädi and onu compound
words that occurred in the Estonian web corpus.

3 Dataset

The dataset used in this study comes from the
web subcorpus of the Estonian National Corpus
of 2021, contains 724 million words (882 million
tokens), with a variety of genres (e.g. online forums,
e-commerce, online periodicals, property portals,
recipe collections, etc.). To navigate the corpus,
the SketchEngine tools (Kilgarriff et al., 2004) are
used to extract compound words ending with lem-
mas -tädi and -onu. The extract token frequencies
of compound words are 6500 (830 types) for the
male compounds -onu and 6100 (700 types) for the
female compounds -tädi. Compound words that
occurred in the data were classified into semantic
categories (see Figure 1), based on the meaning of
the first part (or the prefix) of the compound. From
these categories, words referring to occupations
were specifically selected and chosen for analysis.
The total number of occupational titles after pre-
processing is 206 titles. We use the Estonian labor
force statistics1 to illustrate descriptive gender bias
as shown in Table 1, the percentage distribution of
females in male-dominated and female-dominated
occupations.

4 Data Analysis and Result

4.1 Statistical Evaluation

As for words denoting occupations and activities,
primary focus was on identifying the occupations
associated with tädi and onu and whether titles
denoting women and men correspond to different
occupations, thereby revealing gender-based occu-
pational stereotypes. To categorize occupational
titles, words that appeared at least three times were
considered. Table 2 shows an overview of the dif-
ferent types of occupations that emerged with tädi-
and onu-compounds. The percentages show the

1https://palgad.stat.ee/
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Occupation Female-tädi-compounds Male-onu-compounds Examples

occ % type occ % type
Customer service 1502 44 57 87 7 12 raamatukogutädi (library aunt), garderoobitädi (wardrobe aunt)
Healthcare 464 13 10 150 12 1 arstionu (doctor uncle), haigladtädi (hospital aunt)
social work 378 11 15 – – – koolitädi (school aunt), kasvatajatädi (kindergarten teacher aunt)
Construction – – – 66 5 8 remondionu (repair uncle), toruonu (pipe uncle)
Entertainment 42 1 8 58 5 7 kunstitädi (art aunt), kaameraonu (camera uncle)
Law-enforc 134 4 7 247 20 10 turvatädi (security aunt), valvurionu (guard uncle)
Journalism 29 1 4 35 3 4 raadiotädi (radio aunt), leheonu (newspaper uncle)
Business – – – 14 1 4 naftaonu (petroleum uncle), korp-onu (corporate uncle)
Science – – – 17 1 5 teadlaseonu (scientist uncle), tehnikaonu (technology uncle)
Politics 43 1 6 66 5 8 riigonu (government uncle), eurotädi (European parliament aunt)
Cleaning 130 4 3 7 1 1 koristajatädi (cleaning aunt), prügionu (garbage uncle)
Animal 111 3 8 4 0.3 1 koeratädi (dog aunt), farmitädi (farm aunt)

Table 2: Groups of occupations emerged occupational titles ending with female compounds tädi (aunt)
and male compounds onu (uncle) expressed, including occurrences, percentages from the whole group,
type frequencies and example words. Type frequency denotes the number of different compounds in the
corpus (i.e. how many different tädi-compounds emerged).

proportion of certain types of occupations among
all occupational title ending with either tädi or onu.

Tädi in occupational titles primarily marked pro-
fessions related to customer service (44% from
all occupational titles), healthcare (13%), and so-
cial work (11%), while onu in occupational titles
predominantly represented law enforcement (20%),
followed by healthcare (12%) and customer service
(7%). Thus, women are more often associated with
occupations related to children, teaching, and (el-
der) care, while men are often found in the role of
guards and police officers. As for tädi-compounds,
there were no instances of words expressing occu-
pations related to repairing and construction, busi-
ness and entrepreneurship, and science and technol-
ogy. Therefore, occupational titles ending with tädi
and onu reflect the traditional gender associations
regarding occupations, highlighting those typically
attributed to women and men (Kaukonen, 2023).

4.2 LLMs Evaluation

In this section, we examine the propagation of oc-
cupational title biases in compound words ending
with tädi (female ’aunt’) and onu (male ’uncle’)
in LLMs. For this, inspired by the human-written
CrowS-Pairs dataset (Nangia et al., 2020), which
uses sentence pairs to highlight stereotypes across
social categories, we manually created sentence
pairs using the same Estonian National Corpus (see
Section 3). These pairs are based on 87 occupa-
tions, with one occupation per pair of sentences
(in total 174 sentences) where the occupational
bias can be used with either gendered compound
word (see Table 3) e.g. "The [cleaning aunt/uncle]
carefully dusted the drawers.". The Estonian la-

bor force statistics database (2021) is also used
as a reference to identify descriptive gender bias,
reflecting gender-stereotyped professions.

We employ the most recent state-of-the-art
LLMs models, ChatGPT (OpenAI, 2022), GPT-
4 (Achiam, 2023), GPT-4-Turbo, GPT-4o (Ope-
nAI, 2024a), GPT-o1 (OpenAI, 2024b), LLAMA-3
(Touvron et al., 2023) (8B and 70B models), and
LLAMA-2-7B fine-tuned Estonian models LLAM-
MAS (Kuulmets et al., 2024): (1) LLAMMAS-
base that is fine-tuned on 5B tokens (Both are fine-
tuned on 75% Estonain, 25% English dataset), (2)
LLAMAAS is an improved version of LLAMAAS-
base that is additionally instruction-tuned, and (3)
LLAMAAS-MT is additionally finetuned on trans-
lation instructions on English-Estonian dataset.

For the prompt-based model, we set the temper-
ature parameter to zero through all experiments to
ensure consistent output and run the experiments
three times. Majority voting is used to finalize the
model’s decision, except for the reasoning-based
GPT-o1 model. For the LLAMA models (LLAMA-
3 and LLAMMAS), we extract the mean probabil-
ity of all tokens in the sentences containing com-
pound words as the occupational title gender bias
score, as shown in Table 3 with LLAMA models.

Gender Bias Amplification Score. For evaluation,
we measure the bias amplification as correlation
measure (Zhao et al., 2017) towards the protected
attribute g ∈ uncle male or aunt female compounds
words and the occupational title:

b(occ, g) =
c(occ, g)∑

g′∈{m,f} c(occ, g′)

where c(occ, g) is the occurrences of the occupa-

298



Sentence with Compound Words Bias Ratio

Model English Translation with Original Estonian Sentence to-Uncle to-Aunt
Eng Baker aunt/Baker uncle made delicious pretzels

LLAMMAS pagaritädid/pagarionud valmistasid maitsvaid kringleid 0.48 0.52
LLAMA-3-70B pagaritädid / pagarionud valmistasid maitsvaid kringleid 0.46 0.54

Eng The cleaning aunt/cleaning uncle carefully dusted the drawers

LLAMMAS Koristajaonu /Koristajatädi pühkis hoolega tolmu kummutilrecip 0.48 0.51
LLAMA-3-70B Koristajaonu /Koristajatädi pühkis hoolega tolmu kummutilrecip 0.50 0.49

Table 3: Examples of occupational title bias using the fine-tuned Estonian LLAMA (LLAMMAS) and
the off-the-shelf LLAMA-3-70B models. (Top) The example demonstrates how the models measure
gender bias, associating bakery tasks with women. (Bottom) In the example with the cleaning [aunt/uncle]
occupational title, the standard LLAMA-70B incorrectly reflects the female-biased occupation.

Occupational Title Ratio
Model M onu F tädi %

Labor Force Data 0.37 0.63
ChatGPT (OpenAI, 2022) 0.43 0.57 0.64
GPT-4 (Achiam, 2023) 0.68 0.32 0.66
GPT-4-Turbo 0.63 0.37 0.71
GPT-4o (OpenAI, 2024a) 0.34 0.66 0.83
GPT-o1 (OpenAI, 2024b) 0.36 0.64 0.85
LLAMA-3-8B (Touvron et al., 2023) 0.46 0.54 0.52
LLAMA-3-70B 0.38 0.62 0.60

LLAMMAS (Kuulmets et al., 2024) 0.47 0.53 0.64
LLAMMAS-Base 0.48 0.52 0.63
LLAMMAS-MT 0.55 0.45 0.49

Table 4: Comparison result between different
LLMs on occupational title using tädi and onu
compound word. For the LLAMA-3 and Estonian
LLAMMAS-7B, we rely on the mean probabil-
ity, of the sentence with the bias occupations, for
measuring the bias. The results indicate that the
GPT-o1 model aligns closely with Estonian labor
force statistics.

tions and the male-female compound words ending
with tädi and onu. Table 4 shows a comparison re-
sults between different state-of-the-art LLMs. The
best model aligned with labor force statistics is
GPT-o1, especially concerning less common bi-
ased occupational titles (e.g. piimatädi, which
refers to milk lady). The GPT-4o model achieved
a comparable alignment level of 83%. The Es-
tonian fine-tuned model LLAMA-2-7B (LLAM-
MAS) reflects the biases more accurately than the
standard LLAMA-3 models with a 4-point differ-
ence in descriptive bias alignment compared to the
70B model.

Table 3 shows examples of the open-source
model bias scores for the fine-tuned model LLAM-
MAS and the standard LLAMA-3-70B. The bot-
tom example shows that the off-the-shelf model

incorrectly reflects a female-biased occupational
title from the labor data, cleaning aunt/uncle.

5 Discussion

The analysis of compound words suggests women
typically assume caregiving roles and are often
associated with children, while men occupy profes-
sions like law enforcement. Additionally, men are
more common in fields such as construction, busi-
ness, entrepreneurship, and science. Conversely,
the data indicates that men are rarely seen working
in the educational sector. While this could indicate
coincidental occupational gender differences, the
results appear to reflect sectorial segregation, with
women overrepresented in low-paid sectors like
care, education, and customer service. Evidence
from the 2021 Estonian Census supports this, show-
ing 86% of healthcare and social welfare, 83% of
education, and 82.3% of the service sector workers
are women.

The analysis of LLMs revealed that these mod-
els propagate occupational biases related to com-
pound words. Specifically, the fine-tuned Esto-
nian LLAMMAS model reflects biases from Esto-
nian labor force statistics more accurately than the
similar-sized LLAMA-3-8B and larger LLAMA-
3-70B models. This indicates that the process of
fine-tuning has amplified the inherent biases within
the model. For instance, the secretary as a female-
biased occupation aligned correctly with all models
(except for LLAMA family). However, in the fine-
tuned model that incorporates additional parallel
data (English-Estonian sentence pairs), the labor
force data alignment bias ratio is lower compared
to all other models, particularly for highly female-
biased occupations (e.g. nanny, hairdresser, etc.).
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6 Conclusion

This paper examined Estonian compound words
ending with tädi (‘aunt’) and onu (‘uncle’) in the
Estonian web corpus 2021. The findings indicate
these terms reflect traditional gender roles and
stereotypes in occupational contexts, which are
also mirrored by LLMs, reinforcing gender biases.

Limitation

The limitations of the present study include the
analysis of only informal gendered language units
such as compounds ending with tädi and onu. If,
for example, -mees ’man’ and -naine ’woman’ com-
pounds, some of which constitute official occupa-
tional titles, were examined, then a more broad
view of entrenched stereotypes could be achieved.
Furthermore, several of the examined occupational
titles were low in frequency as well as expressing
quite novel or uncommon professions. As for the
analysis of usage, the study included only specific
uses of tädi and onu, and such an analysis may not
translate to all other cases.

Ethics Statement

In this work, we measure gender bias patterns us-
ing descriptive modeling, which reflects observed
real-world statistics. However, we also recognize
the importance of normative analysis, which pro-
vides critical insights into promoting fairness and
achieving equitable and unbiased outcomes. Bal-
ancing these approaches contributes to building a
more just and inclusive society.

The corpus used in this study have been ob-
tained from publicly available sources and have
been anonymized. Any conflicts of interest or bi-
ases that may influence the interpretation of results
are acknowledged. The authors acknowledge that
this approach to gender does not encompass the
entirety of gender identities, many of which are not
represented by this vocabulary. Furthermore, only
one bias considering gender is addressed in this
paper, while the dataset may contain other demo-
graphic biases, such as race, religion and national-
ity. Also, this study focuses on occupational titles
ending with tädi (aunt) and onu (uncle), which may
propagate specific gender biases tied to cultural
stereotypes regarding roles traditionally associated
with women or men.
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Abstract 

This paper presents the development and 

evaluation of an Estonian isolated-word text-

to-speech (TTS) synthesiser. Unlike 

conventional TTS systems that convert 

continuous text into speech, this system 

focuses on the synthesis of isolated words, 

which is crucial for applications such as 

pronunciation training, speech therapy, and 

(learners’) dictionaries. The system addresses 

two key challenges: generating natural 

prosody for isolated words, and context-free 

disambiguation of homographs. 

1 Introduction 

Text-to-speech synthesis (TTS) is typically used 

to convert texts and sentences into speech. 

However, there are many applications that require 

the speech synthesis of isolated words: 

pronunciation training applications, speech and 

language therapy applications, (learners’) 

dictionaries, etc. Such applications additionally 

require a careful and correct pronunciation of the 

synthesised words. To achieve this, the TTS 

system must fulfill two additional requirements 

beyond the general requirements for TTS systems. 

First, the training data must contain a sufficient 

amount of short utterances in order for the system 

to be able to generate isolated words with a natural 

utterance prosody. Second, the system must allow 

for a context-free disambiguation of input words 

that have phonologically different homographs. 

While the first requirement is unproblematic, the 

second requirement is a considerable challenge 

for a language like Estonian. Estonian possesses a 

large number of homographs that are mainly due 

to the absence of orthographic marking for two 

phonological features of Estonian: palatalisation 

and, in certain cases, third quantity (overlong 

length degree). This gives rise to two main types 

of homograph pairs: homographs differing in 

palatalisation, and homographs differing in 

second quantity (Q2) vs. third quantity (Q3). 

Palatalisation in Estonian is, on the one hand, a 

coarticulatory phenomenon, meaning that all 

alveolar consonants /t, s, n, l/ preceding /i/ or /j/ at 

the boundary of the primary stressed syllable and 

the following syllable become palatalised. On the 

other hand, it is also a phonological phenomenon 

that distinguishes meaning (Metslang et al., 

2023). The distinction between second and third 

quantity results from a difference in the prosodic 

structure of long stressed syllables, which can 

occur either in a disyllabic (Q2) or monosyllabic 

(Q3) foot (Metslang et al., 2023). Both 

palatalisation and quantity distinctions can be 

challenging for learners of Estonian as a second 

language and thus require attention in language 

pedagogy applications (Malmi et al., 2022b; 

Meister and Meister, 2014). 

The homograph pairs differing in palatalisation 

are always (inflectional forms of) different 

lemmas whereas quantity distinguishes both 

between homographic lemmas and inflectional 

forms of the same lemma. For example, the 

orthographic form tulp represents both /tulpː/ 

‘signpost.NOM.SG’ and /tuljpː/ ‘tulip.NOM.SG’, 

and maitse represents both /mɑitse/ 

‘taste.NOM.SG’ and /mɑitːse/ ‘taste.GEN.SG’ or 

‘taste.IMP.2SG’. In addition, numerous words have 

pronunciation variants differing only in quantity 

or palatalisation. The Estonian Combined 

Dictionary (CombiDic) (Langemets et al., 2023) 

contains altogether 756 homographs and 

pronunciation variants differing in palatalisation, 

and 22,618 homographs and variants differing in 

quantity (excluding compounds). While the 

incorrect pronunciation of these homographs does 

not necessarily hinder comprehension in context, 

it does so without context and is particularly 

problematic in pedagogical applications. 
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A TTS system that is able to generate isolated 

words with a correct pronunciation must thus 

include a means for disambiguating homographs. 

Current supervised Estonian TTS systems include 

morphological parsing and disambiguation as part 

of their pre-processing pipeline. The standard 

morphological parser and disambiguator currently 

used in the Estonian TTS systems is Vabamorf1 

(Kaalep and Vaino, 2001). In addition to part-of-

speech and inflectional categories the parser 

annotates compound boundaries and the 

following pronunciation features: third quantity, 

irregular stress, and palatalisation. Morphological 

parsing is followed by disambiguation; however, 

disambiguation is based on the probability of tag 

sequences within sentences and thus cannot be 

applied to isolated input words. As a result, the 

probability that an existing supervised TTS 

system generates the desired member of a 

homograph pair is at chance level. Likewise, the 

disambiguation of homographic input words is 

infeasible in unsupervised TTS systems, which 

may produce palatalisation, quantity, stress and 

compound identification errors also in words 

without homographs. In order to solve this 

problem, we developed a dedicated Estonian TTS 

system for generating isolated words with a 

correct pronunciation. Section 2 describes the 

development and the features of the system 

(training data, pre-processing, TTS technique, and 

user interface), Section 3 evaluates the 

performance of the system in terms of the 

pronunciation accuracy of homographic minimal 

pairs differing in palatalisation or quantity, 

Section 4 describes the planned and potential use 

cases of the system, and Section 5 presents the 

conclusion and future steps. 

2 Development and features of the 

Estonian isolated-word TTS system 

2.1 Training Data 

The training data consisted of human-recorded 

sound files of isolated words and the 

corresponding text files. The sound files had been 

recorded for language pedagogy purposes by a 

female voice talent in a sound studio in order to 

exemplify the pronunciation of a subset of the 

headwords of the CombiDic (the basic 

vocabulary). The dataset consisted of a total of 
 

1 https://github.com/Filosoft/vabamorf/tree/master 
2 The corpus is available at https://koneveeb.ee/korpused/

#eva_yksiksonad (eva_yksiksõnad_1, eva_yksiksõnad_2). 
3 see also https://eki.ee/teatmik/haaldusmargid-

uhendsonastikus-us/ 

31,215 words (10 h 36 min) with a good coverage 

of Estonian sounds and sound combinations and a 

high phonetic quality2. The materials thus 

provided appropriate training data for ensuring a 

natural production of isolated words as utterances 

and a good phonetic coverage and quality suitable 

for pedagogical and speech therapeutic 

applications. The text versions of the words were 

drawn from the database of the CombiDic along 

with diacritics for third quantity, irregular stress, 

palatalisation, and compound boundaries. The 

annotation principles are based on Viks (1992)3 

and are standardly used in Estonian dictionaries 

and parsers, including Vabamorf. 

2.2 Pre-processing 

The pre-processing did not include the standard 

stage of parsing as the input words were already 

annotated for the relevant features normally 

assigned by the parser. Otherwise, the standard 

pre-processing steps and grapheme-to-phoneme 

conversion used in Estonian TTS were applied 

(Mihkla et al., 2000). 

2.3 TTS technique 

We used the Merlin TTS toolkit developed by the 

Centre for Speech Technology Research (CSTR) 

at the University of Edinburgh4 (Wu et al., 2016). 

It is designed for building deep neural network 

models for statistical parametric speech synthesis. 

Merlin TTS was considered a suitable technique 

as it requires a relatively small amount of training 

data and allows good control. The model was 

developed specially for isolated word synthesis5 

(Kiissel, 2024). 

2.4 User interface 

The synthesiser is available online via 

https://elo.eki.ee/yksiksona/ (see Figure 1). The 

user must enter the word to be synthesised along 

with the appropriate diacritics for third quantity, 

palatalisation, irregular lexical stress and 

compound boundaries to obtain the desired 

pronunciation. The interface provides instructions 

for inserting the diacritics. To help users insert the 

necessary diacritics the web page will additionally 

include a Vabamorf interface for automatically 

annotating input words with morphological tags, 

compound boundaries, and pronunciation marks. 

4 https://github.com/CSTR-Edinburgh/merlin and 

https://www.cstr.ed.ac.uk/projects/merlin/ 
5 https://github.com/ikiissel/mrln_et_iw 
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Users can download the synthesised 

pronunciations as WAV files. 

 

Figure 1: User interface of the synthesizer. 

3 Evaluation 

3.1 Materials, evaluators, procedure 

We conducted a perception test to evaluate the 

performance of the TTS system in terms of 

pronunciation accuracy. We used 16 pairs of 

homographs that differ in palatalisation and 16 

pairs of homographs that differ in quantity. Two 

types of monosyllabic word pairs were included 

for the evaluation of palatalisation: words ending 

with a long consonant like kott, konn, tall, and 

words with a consonant cluster like palk, mulk, 

sulg. The homographs distinguished by quantity 

were selected to include words with different 

syllable structures: (C)VCCV, e.g., paksu, kommi, 

arve; CVVCCV, e.g. maitse; CVVV, e.g., saia; 

CVVCV, e.g. heina; CV̅CV, e.g., hoone.  

All the items were synthesised using the 

diacritics corresponding to the two 

pronunciations, e.g., “p<al[k” for /paljkː/ and 

 
6 https://www.limesurvey.org/ 

“p<alk” for /palkː/, and “kommi” for /kommi/ and 

“k<ommi” for /komːmi/. 

The perception test was carried out online in the 

LimeSurvey6 environment. The task of the 

evaluators was to listen to each item and to answer 

one of the following questions, depending on the 

case: Is this word palatalised or not? Is this word 

in second or third quantity? There were in total 32 

cases where the evaluators had to determine 

whether the word they heard has palatalisation or 

not, and 32 cases where they had to decide 

whether the word was in the second or third 

quantity7.  

The evaluators were eight linguistics and 

phonetics experts who had previous experience in 

identifying both palatalisation and quantity. 

3.2 Evaluation results 

Palatalisation. Out of 32 homographs, 26 were 

correctly recognised by all the experts (100%). 

For the words /tuljpː/, /kotjː/ and /patjːs/ the 

intended pronunciation was recognised by 88% of 

the experts, and for the words /jutjː/, /nutjː/, /mütːs/ 

by 75% of the experts. It appears that problems 

mainly arise with words involving /t/ and /tj/ 

(except for /tuljpː/). Given that all the test items 

were correctly recognised by a majority of the 

evaluators, the performance of the synthesiser can 

be considered very good. Occasional failures to 

perceive palatalisation were to be expected as 

palatalisation in Estonian has been found to be 

variable, weak, and gradient, and it has been noted 

that, especially in connected speech, experts’ 

opinions on the identification of palatalisation 

may not always coincide (Kalvik and Piits, 2019). 

Quantity. The intended quantity of each test 

word was recognised by almost 100% of the 

evaluators. Only in the case of the word /mɑitse/ 

'taste.NOM.SG' did one out of the eight experts fail 

to recognise that it was a Q2 form. For the 

remaining 31 word forms, all the experts 

recognised the intended quantity. 

In summary, the performance of the isolated 

word synthesiser in terms of the phonetic 

accuracy of homographic words is very good, 

whereas the probability of obtaining a desired 

pronunciation variant with other Estonian TTS 

7 The materials and evaluations are available at 

https://doi.org/10.6084/m9.figshare.27275964 
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systems is only 50% due to the absence of 

disambiguation. 

4 Use cases 

The isolated-word TTS synthesiser allows the 

user to generate correctly pronounced isolated 

words and multi-word units by manually 

specifying the features of quantity, palatalisation, 

lexical stress and compound structure. The 

synthesiser generates isolated words with an 

appropriate utterance prosody and high phonetic 

quality, being thus suitable for language 

pedagogical and speech therapeutic purposes. 

Below, we describe three planned or potential use 

cases of the isolated-word synthesiser. 

Generation of pronunciation examples for 

dictionaries. CombiDic currently uses TTS to 

generate the audio for example sentences. For 

headwords, the dictionary currently includes 

human-recorded pronunciation examples (used as 

the training data of the isolated-word synthesiser, 

see Section 2.1). However, pronunciation files are 

available only for the basic vocabulary, and only 

for three or four inflectional forms of inflecting 

words, depending on part-of-speech. The first 

application of the isolated-word synthesiser will 

therefore be the generation of pronunciation files 

for all the headwords and for all the inflectional 

forms in the CombiDic. In addition, pronunciation 

files are essential for learners’ dictionaries, e.g., 

the Estonian Picture Dictionary8.  

Pronunciation practice. The isolated-word 

synthesiser can be used to generate pronunciation 

examples for pronunciation training applications 

(for example, the pronunciation exercises created 

by the Institute of the Estonian Language9, and the 

Estonian pronunciation training app SayEst10 

(Malmi et al., 2022a), which currently use human-

recorded pronunciation examples), electronic and 

online teaching materials (e.g., the Estonian 

Language E-Course Keeleklikk11), classroom 

practices and self-study. For instance, unlike the 

other Estonian TTS systems, the isolated-word 

synthesiser allows for a controlled synthesis of 

minimal pairs differing only in palatalisation, 

quantity, lexical stress, or the presence/absence or 

location of a compound boundary, which is useful 

 
8 https://sonaveeb.ee/wordgame?uilang=en 
9 https://sonaveeb.ee/pronunciation-exercises/#/ 
10 Available in Google Play store https://play.google.com/

store/apps/details?id=mobi.lab.sayest&pli=1 

in the practice of the production and perception of 

these phonological features of Estonian. 

Speech therapy exercises. The isolated-word 

synthesiser can also be used in speech therapy 

applications like Kõneravi.ee12, where speech 

therapists can utilise existing exercises as well as 

create new ones. The available pronunciation and 

perception exercises use units at the phoneme, 

word, phrase, and sentence levels, words being the 

most frequently used perception or pronunciation 

units. So far, human-recorded audio examples 

have been used, which means that in order to 

create new exercises, the users must record the 

audio examples themselves or use examples from 

a limited speech database. 

5 Conclusions and future work 

The paper described the development, features, 

evaluation and use cases of the Estonian isolated-

word TTS synthesiser (Kiissel, 2024 and 

https://elo.eki.ee/yksiksona/). The synthesiser 

allows the user to generate correctly pronounced 

isolated words and multi-word units by manually 

specifying the diacritics for third quantity, 

palatalisation, lexical stress and compound 

boundaries. The synthesiser generates isolated 

words with an appropriate utterance prosody and 

high phonetic quality, being thus suitable for 

language pedagogical and speech therapeutic 

applications.  

Future steps include the improvement of the 

user-friendliness of the user interface. To help 

users insert the necessary diacritics, automatic 

tagging of the orthographic input text will be 

added, with multiple outputs for homographs 

among which the user can choose.  

A second line of future work will be the 

development of a similar TTS application for 

longer texts, enabling the user to correct parsing 

and disambiguation errors that cause 

pronunciation errors. 

Finally, we will employ more advanced TTS 

techniques to train additional isolated-word 

synthesisers. 

 

11 https://www.keeleklikk.ee/index_en.html 
12 https://koneravi.ee/ 
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Abstract

In this study, we introduce the process
for creating BiaSWE, an expert-annotated
dataset tailored for misogyny detection in
the Swedish language. To address the cul-
tural and linguistic specificity of misog-
yny in Swedish, we collaborated with ex-
perts from the social sciences and humani-
ties. Our interdisciplinary team developed
a rigorous annotation process, incorporat-
ing both domain knowledge and language
expertise, to capture the nuances of misog-
yny in a Swedish context. This method-
ology ensures that the dataset is not only
culturally relevant but also aligned with
broader efforts in bias detection for low-
resource languages. The dataset, along
with the annotation guidelines, is publicly
available for further research.

1 Introduction

Large Language Models (LLMs) have experi-
enced immense growth over the past years due to
being capable of solving diverse tasks that previ-
ously required a separate model for each specific
task (De Angelis et al., 2023). Despite their ap-
parent benefits, it is known that the characteristics
of the dataset used to train a language model play
a fundamental role in determining the model’s be-
havior (Gebru et al., 2021). LLMs are typically
trained on large amounts of data from the Internet
and thus inevitably reflect the opinions and biases
of its users. For example, a 2018 survey showed

that about 85% of English Wikipedia contribu-
tors identified as male (Oldach, 2022). As LLMs’
behavior “reflects the Collective Intelligence of
Western society”, LLMs can perpetuate and even
amplify biases and stereotypes of social minori-
ties (Kotek et al., 2023). The widespread presence
of misogyny online is illustrated by a study from
2020 where 65% of women reported knowing an-
other woman that had been the target of online vi-
olence (The Economist Intelligence Unit, 2020).

The way to avoid harmful machine learning
models is to ensure that the datasets used for
training are responsibly curated, involving diverse
stakeholders (Delgado et al., 2021). However,
dataset creation alone is not sufficient, and addi-
tional approaches, such as alignment, play a role
in guiding model outputs towards human values.
In the context of bias detection, misogyny varies
by language and culture (Zeinert et al., 2021).
Therefore, we consider creating expert-annotated,
language-specific datasets crucial for detecting bi-
ases, helping to identify areas where models may
risk perpetuating harmful stereotypes or undesir-
able attitudes.

To address these challenges, we make two key
contributions1 :
1. We present BiaSWE, a small annotated dataset
for misogyny detection in Swedish, annotated for
hate speech, misogyny, misogyny type categories
and severity.
2. We share the creation process of the BiaSWE

1Link to the dataset and annotation guidelines:
https://huggingface.co/datasets/AI-Sweden-Models/BiaSWE
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dataset and our annotation guidelines. By doing
this, we show how an existing experiment can be
adapted to the Swedish needs and cultural context.

2 Related Work

In recent years, work has been done in the field of
dataset creation for bias and hate speech in gen-
eral, paying great attention to data coming from
online sources, especially social media, such as
Twitter, Facebook, Reddit, or blogs. This kind of
work has been carried out in a multitude of lan-
guages, across several cultural contexts, and tends
to cover various forms of sexism as it presents in
written language. This is the case of Chiril et al.
(2020), who present a corpus for detecting sexism
in French tweets. Another example is the work
of Zeinert et al. (2021), who sample their Bajer
dataset from Twitter, Facebook and Reddit posts
in Danish. However, research is also carried out
with the target of more subtle, less explicit misog-
yny in mind; this is the case of the Biasly dataset
by Sheppard et al. (2024), who gathered their data
from scripts from North American movies, in En-
glish.

The most common method for data collection
among the different existing datasets is using key-
words (Chiril et al., 2020; Zeinert et al., 2021;
Sheppard et al., 2024). The degree of detail or
the number of keywords varies from words that
do not necessarily imply misogyny (e.g. “she”)
to ambiguous keywords, to keywords that are
very highly related to misogyny and sexism (e.g.
“#MeToo”).

Most of the existing misogyny detection
datasets provide a taxonomy for different cate-
gories of misogyny in addition to the binary classi-
fication. Many regard the addition of a multi-label
classification layer as necessary, given that “binary
detection [. . . ] disregards the diversity of sexist
content, and fails to provide clear explanations for
why something is sexist” (Kirk et al., 2023). There
is no clear consensus regarding the types of misog-
yny to classify the sentences into, or even on the
optimal level of detail regarding the categories.

To the best of our knowledge, this work is the
first attempt to create resources for misogyny de-
tection for the Swedish language.

3 Method

This section provides an overview of our data
preparation process, introduces the team of expert

annotators and details the annotation workflow.

3.1 Data

As a data source for our dataset, we used the
Swedish website Flashback, one of the largest
Swedish internet forums since the 1990s. Known
for its focus on freedom of speech, the forum
hosts discussions on controversial subjects, and
its anonymity often leads to misuse (Norlund and
Stenbom, 2021).

To ensure the presence of enough misogynistic
examples in the final dataset, we decided to use
keyword search. Taking into account the cultural
and linguistic closeness of Danish and Swedish,
our initial list of keywords was based on the work
of Zeinert et al. (2021) that used both keywords
and hashtags in Danish. We excluded all hashtags
but “#MeToo” because of their rarity on Flash-
back. The keywords were first translated from
Danish into Swedish with the help of a Danish
speaker. Thereafter, we presented the resulting
Swedish keywords to our team of expert annota-
tors, who suggested removing some of the key-
words and adding others. Our list consists of
118 key terms including words and phrases in
Swedish (e.g., “kvinna”) as well as some terms
and names in popular English slang (e.g., “Chad”).
The full list of keywords is available in the anno-
tation guidelines (see section 1).

Based on these keywords, we gathered 450 data
points, each to be annotated by two or more anno-
tators. We did not want several annotators to have
the exact same set of data points, so we used a ro-
tation system that distributed them. Each expert
was assigned 210 data points.

3.2 Annotation

The team of annotators included researchers and
experts from the humanities and social sciences,
as well as civil society actors. Four of our experts
identify as women and the other three as men. Our
experts volunteered to participate in the project
amongst a bigger pool of experts in humanities,
social sciences, and civil society representatives
that have been introduced to the basics of LLMs
and AI within a broader interdisciplinary project
at AI Sweden2 . From this point on, we refer to
them as ’experts’, acknowledging their role in both

2Link to the project page:
https://www.ai.se/en/project/interdisciplinary-expert-pool-
nlu
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annotation and providing critical insights into the
interdisciplinary process.

To facilitate the annotation process, we pre-
pared annotation guidelines (see section 1) by
taking inspiration from the work by Sheppard
et al. (2024). Their guidelines included a defini-
tion of misogyny that was modified together with
the team of experts to obtain the following final
definition3:

Hatred of, dislike of, contempt for, in-
grained prejudice, control of or oppres-
sion against women as well as going
against the idea of feminism. It is a
form of sexism and can be either inten-
tional or unintentional. Misogyny can
contain different types of opinions and
values such as seeing women as inferior,
asserting men’s sexual entitlement, ob-
jectifying women, accepting violence,
celebrating traditional gender roles but
also the need to ”protect” women as well
as thinking that equality and feminism
have gone too far. One of the ways
misogyny can be expressed is through
language and, in this project, we focus
on misogynistic language portrayed in
text. Misogyny can be perpetrated by
people regardless of their gender.

We also present a taxonomy of five misogyny
categories constructed by combining the twelve
categories by Sheppard et al. (2024) and the six
categories by Zeinert et al. (2021) and modifying
these with the help of the team of experts. The
guidelines also give detailed instructions on how
to carry out the annotation task and provide exam-
ples. For annotation, we used an open-source plat-
form called Label Studio. After everyone had an-
notated up to 50 examples, we held a workshop to
discuss examples where the experts had disagreed.

We divided the annotation of each data point
into four small tasks, each more fine-grained than
the previous. Once a negative answer was given by
the expert, the annotation process ended and the
downstream tasks did not need to be completed.

Hate speech Our experts were asked to perform
binary classification of whether the post they were
reading contained hate speech or not. This gave
the experts the chance to mark any type of hate
speech or hateful behavior.

3Link to the complete guidelines, as well as the definition
in Swedish, can be found on Hugging Face (see Footnote 1).
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Figure 1: Is this post misogynistic?

Misogyny The second task was the binary clas-
sification of misogyny based on the instructions
and the definition of misogyny provided in the an-
notation guidelines.

Category Once a post was classified as misogy-
nistic, our experts were requested to choose a cate-
gory label. Our taxonomy of misogyny consists of
the following categories: stereotype, erasure and
minimization, violence against women, sexualisa-
tion and objectification, anti-feminism and denial
of sexualisation. The experts could only choose
one category and could not choose a subcategory
outside of the ones presented.

Severity Experts hold that misogyny exists in
a spectrum and it depends on individual percep-
tion. To portray this, we asked them to give a score
ranging from 1 to 10, where 1 is the least misogy-
nistic. Although one would assume that, for exam-
ple, a post portraying violence would have a high
score, we did not give them any specific guidelines
they had to follow to assign these scores and asked
them to trust their own judgement.

4 Results

This section provides an overview of the annota-
tion results.

Hate speech Each of the 450 posts was anno-
tated by two to four experts and in almost two-
thirds of the cases all experts agreed on whether
hate speech was present. In the 334 cases where
all experts agreed, slightly more posts were an-
notated as containing hate speech compared to
not containing hate speech but the difference was
marginal. However, there was a large difference
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Figure 2: Which category of misogyny does this
example belong to?

between the number of posts that were annotated
as hate speech by all experts (172) and posts that
were considered to be hate speech by at least one
expert (288).

Misogyny Figure 1 shows the annotation results
for the misogyny classification task. A negative la-
bel in the previous task is considered to be a neg-
ative label in the misogyny classification task as
well, in which case, all 450 posts were again an-
notated by two to four experts. In slightly more
than two-thirds of the examples, all experts agreed
on the label. However, in this case, there was a
larger imbalance between the two possible labels:
207 posts were considered to be non-misogynistic
and 139 misogynistic by all experts. The number
of posts considered to be misogynistic by at least
one expert was however larger at 243 posts.

Category There was more disagreement in
choosing the category of misogyny. There were
between zero and four category annotations for
each of the 450 posts in the dataset. Out of the 185
posts in the final dataset with more than one cate-
gory annotation, in 93 cases all experts chose the
same category. Figure 2 gives an overview of all
546 category annotations in the dataset, compar-
ing the number of times each of the five possible
categories was chosen.

Severity The last annotation task asked the ex-
perts to estimate the severity of the misogyny in
the post. Similarly to the previous task, 185 posts

had at least two severity annotations and a closer
analysis of those revealed that although the experts
seldom selected the same rating, in 91% of cases
the difference between the minimum and the max-
imum rating was not larger than 3.

5 Discussion and Conclusion

This project’s primary contribution lies in its in-
terdisciplinary approach to misogyny detection in
Swedish rather than the dataset itself, which re-
mains small. Collaborating with experts from di-
verse fields, we developed an annotation process
that captures the complexity of misogyny as it
manifests in Swedish online discourse. This ex-
periment provides a valuable framework for fu-
ture studies focused on bias detection in under-
resourced languages.

In the context of misogyny detection, defining
what constitutes misogynistic language is inher-
ently challenging. Attempting to capture a wider
range of potentially harmful expressions risks be-
ing too broad, while using a stricter approach
might fail to recognize subtler forms of misog-
yny. The challenge lies in determining who de-
fines misogyny, as cultural, linguistic and societal
factors have an influence over the definition, mak-
ing it a complex decision.

The feedback from the experts highlighted
the need for clearer operational definitions and
stronger contextual support. Misogyny detection,
particularly in a complex environment like Flash-
back, would benefit from additional discussion
on cultural nuances and interdisciplinary perspec-
tives. Additionally, better alignment between aca-
demic rigor and practical applicability is crucial
to ensuring that interdisciplinary projects like this
one fully realize their potential. We also took into
account the experts’ perspective in section 6.

In conclusion, while the dataset is limited, the
interdisciplinary approach and methodology offer
a valuable starting point for future research. Re-
fining the annotation process and expanding the
dataset could further improve the effectiveness of
misogyny detection tools, especially for lower-
resourced languages like Swedish.

6 Limitations and Future Work

This project has several limitations that provide
avenues for future work.

Dataset Size and Diversity The current dataset,
while robustly annotated, is relatively small, lim-

310



iting its capacity to capture the full spectrum of
misogynistic expressions within the Swedish on-
line discourse. The limited number of examples
might not adequately represent less overt forms
of misogyny, which are increasingly prevalent and
harmful. Future work should focus on expanding
the dataset to include a larger variety of sources.

Keyword Selection Bias The reliance on pre-
defined keywords to scrape forum posts inherently
introduces selection bias, primarily focusing on
explicit forms of misogyny. This method may
overlook subtle or emergent forms of misogynistic
language that do not necessarily conform to ex-
pected patterns. Future iterations of this project
should aim to refine the keyword selection pro-
cess. Additionally, incorporating machine learn-
ing techniques to identify potential posts could re-
duce bias introduced by keyword dependency.

Decontextualisation A key challenge was an-
notating decontextualised posts, which made it
difficult to detect subtle misogyny. Without con-
text, the experts had to rely on isolated phrases,
often missing nuances that could clarify intent or
severity. Providing more context in future datasets
would enhance accuracy.

Consensus Building Disagreements among the
experts highlighted the subjective nature of misog-
yny detection and the challenges in classifying
complex human behaviors and attitudes. While
we utilized workshops to align annotator perspec-
tives, a more systematic approach to handling dis-
agreement could enhance the consistency and reli-
ability of annotations. Future work could include
developing detailed guidelines based on the initial
rounds of annotation to standardize responses and
improve inter-annotator reliability. Implementing
an adjudication process where the experts discuss
and resolve disagreements before finalizing anno-
tations could also be beneficial.
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Abstract

The paper presents the results of a free
translation experiment, which was set up
to explore Slavic cross-language intelligi-
bility. In the experiment, native speak-
ers of Russian were asked to read a sen-
tence in one of the five Slavic languages
and return a Russian translation of a high-
lighted item. The experiment is focused
on microsyntactic units because they of-
fer an increased intercomprehension diffi-
culty due to opaque semantics. Each lan-
guage is represented by at least 50 stim-
uli, and each stimulus has generated at
least 20 responses. The levels of intercom-
prehension are captured by categorising
participants’ responses into seven types
of translation solutions (paraphrase, cor-
rect, fluent_literal, awkward_literal, fan-
tasy, noise, and empty), generally reflect-
ing the level of the cross-linguistic intelli-
gibility of the stimuli. The study aims to
reveal linguistic factors that favour inter-
comprehension across Slavic languages.
We use regression and correlation analysis
to identify the most important intercom-
prehension predictors and statistical anal-
ysis to bring up the most typical cases and
outliers. We explore several feature types
that reflect the properties of the transla-
tion tasks and their outcomes, including
point-wise phonological and orthographic
distances, cosine similarities, surprisals,
translation quality scores and translation
solution entropy indices.

The experimental data confirms the ex-
pected gradual increase of intelligibility
from West-Slavic to East-Slavic languages
for the speakers of Russian. We show that
intelligibility is highly contingent on the

ability of speakers to recognise and inter-
pret formal similarities between languages
as well as on the size of these similarities.
For several Slavic languages, the context
sentence complexity was a significant pre-
dictor of intelligibility.

1 Introduction
Cross-linguistic intercomprehension (receptive
multilingualism) is defined as a phenomenon
where speakers of different but related languages
can communicate without studying each other’s
language (Trudgill, 2003). It can be viewed as spe-
cific cognitive conditions that tap into the mecha-
nisms of human language processing (Meulleman
and Fiorentino, 2018). Previous studies have fo-
cused on various aspects of intercomprehension
within different language groups (Gooskens and
Swarte, 2017; Stenger et al., 2017; Jagrova et al.,
2018).

Some studies (Zaitova et al., 2024b,a) have
looked at cross-linguistic intelligibility of
functional multiword expressions with non-
compositional semantics, called microsyntactic
units (MSUs) (Avgustinova and Iomdin, 2019).
MSUs can be grouped with prepositions, conjunc-
tions, particles and other such word classes based
on their function in the sentence. They are an
interesting object for language processing studies
because they are often important as discourse
structuring items, signalling relations between
clauses or conveying the speaker’s attitude. Their
intelligibility implies at least some understanding
of the underlying proposition. Besides, MSUs
present an additional difficulty for comprehen-
sion, especially across languages, because their
meaning cannot be inferred from the components.
An example of MSU in English is all the same
or in Russian тем не менее (translit.: “tem ne
menee”, “nevertheless”).

The exact mechanisms of intercomprehension
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employed to process MSUs under various cross-
linguistic conditions are still under-researched. To
address this gap, our study presents the analysis
of a free translation experiment in which native
speakers of Russian translated MSUs from five
Slavic languages (Czech, Polish, Bulgarian, Be-
larusian, and Ukrainian, hereinafter referred to as
source languages) into Russian. We only used the
data if the participants reported no training or ex-
posure to the respective Slavic language.

The study aims to assess the level of intelli-
gibility of the five Slavic languages for Russian
speakers and to reveal the factors contributing to
it. To this end, the translation solutions offered
by native Russian speakers when rendering for-
eign MSUs into Russian are analysed. We em-
ploy several computational features (phonological
distance, cognitive metrics, and translation quality
scores) and provide a quantitative and qualitative
description of Slavic MSU intelligibility as mani-
fested by the participants’ responses in the trans-
lation experiment.

It is expected that the East-Slavic languages
(Belarusian and Ukrainian) would return the high-
est degree of intercomprehension, i.e., they would
have the lowest difficulty in translation because
Russian also belongs to the East-Slavic languages,
followed by the South-Slavic Bulgarian (due to the
use of Cyrillic script), with the Latin script-based
West-Slavic languages (Czech, Polish) demon-
strating the highest difficulty for the participants.
Generally, translation difficulty indicators are ex-
pected to be reliable predictors of translation qual-
ity, i.e., of the outcomes of the translation task in
this study1.

2 Free Translation Experiment

Data collection: Platform, task and partici-
pants. The free translation experiment was held
online2 and aims to measure the degree of intel-
ligibility of the targeted MSUs in the Slavic lan-
guages for Russian native speakers. The targeted
MSU items come from a multi-parallel set, cen-
tred on Russian, which makes them comparable
across the languages involved. In total, the ex-
periment involved 126 unique participants without
prior knowledge of the Slavic language they were

1Our code and datasets are available
at https://github.com/SFB1102/
b7-c4-slavic-translation-nodalida2025.

2https://intercomprehension.coli.
uni-saarland.de/en/

translating from and 6,579 responses. The trans-
lation tasks for each Slavic language include be-
tween 50 and 60 unique sentences containing one
of the target items. The study engaged from 101
to 121 native Russian participants per Slavic lan-
guage who did not have any formal knowledge of
that language. Table 1 provides basic descriptive
statistics of the experimental data and participants.
As can be seen from the table, the data is well-
balanced across the languages in terms of the num-
ber of phrases and their part-of-speech category
(PoS). There is approximately the same number
of unique participants per language and the same
number of responses per phrase.

MSUs ppt. ppt./task MSUs/PoS

CS 60 121 24.2±4.7 12.0±0.0
PL 50 116 23.1±5.3 10.0±1.3
BG 56 122 24.4±6.5 11.2±0.4
BE 57 121 24.4±5.4 11.4±0.5
UK 59 101 20.5±4.0 11.8±0.4

Table 1: Quantitative parameters of the free trans-
lation experiment. Abbreviations: ppt. (partici-
pants), CS (Czech), PL (Polish), BG (Bulgarian),
BE (Belarusian), UK (Ukrainian)

Annotation of translation solutions and intelli-
gibility scores. The participants’ responses from
the free translation experiment were categorised
into seven groups of translation solutions reflect-
ing the types of linguistic behaviour as well as the
degree of understanding. These categories are ex-
plained below (in the order of decreasing intelligi-
bility of the annotated response):

correct: a translation variant, which coincides
with the reference (‘gold’) translation in
cases where the available literal translation
is different from the gold translation (oth-
erwise, the response is categorised as ‘flu-
ent_literal’); it is the most expected standard
solution that signals good understanding of
the source phrase or even sentence,

fluent_literal: an acceptable translation variant,
which coincides with both gold and literal
translations; the cases where exploiting the
cross-linguistic parallels yields good results,

paraphrase: a translation variant, which does not
coincide with either gold or literal transla-
tion but faithfully renders the meaning of the
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source phrase; this can be a less expected de-
scriptive response,

awkward_literal: this is a type of literal trans-
lation which is neither fluent_literal nor se-
mantically incorrect, a translation technique
to fall back to perceived cross-lingual simi-
larities,

fantasy: a translation variant, which misrepre-
sents the content of the source in the target
language signalling lack of understanding,

noise: an irrelevant input, which does not allow to
infer any specific translation solution; noisy
solutions sometimes include comments like
‘I have no idea’ and ‘I don’t understand’,

empty: no input provided indicating that the par-
ticipant could not come up with a translation
solution in the given time.

Note that this categorisation is developed for the
purposes of this study and does not reflect transla-
tion quality of the participants’ responses.

As can be seen from the description, the cate-
gorisation relied on existing gold and literal trans-
lations. The gold translations for the MSUs were
extracted from the parallel subcorpora of the Rus-
sian National Corpus3 and of the Czech National
Corpus4 with Russian as a target language (for
more details see Zaitova et al., 2024a). The lit-
eral translations were generated by GPT-4 (22 July
2024) for isolated MSUs, i.e., for MSU outside
of their context. To obtain literal translations, we
used a prompt that included the task description
“Return a literal word-for-word translation for a
phrase in one of the Slavic languages into Rus-
sian.”, a one-shot example in Czech and the task
itself containing the name of the stimulus language
and the phrase to translate. Automatic literal trans-
lations were preferred to human-generated literal
translations to avoid subjective biases with regard
to what was a literal translation. The sanity of
the GPT-4 literal translations was controlled man-
ually on an approximately 20% sample from each
of the stimulus languages. The participants’ re-
sponses were first pre-annotated for ‘empty’, ‘cor-
rect’, ‘fluent_literal’ and ‘awkward_literal’ cate-
gories because these annotations could have been
filled in automatically based on matching gold
and/or literal translations (see their description

3https://ruscorpora.ru/en/
4https://www.korpus.cz/

above). Two human annotators – trained linguists
specialising in the Slavic languages and native
speakers of Russian – contributed annotations for
the remaining categories following formal and ex-
emplified annotation guidelines. The annotators
had access to gold and literal translations, as well
as to the source language contexts. Conflicting an-
notations were resolved in a post-annotation dis-
cussion session.

To represent the overall intelligibility of the
MSUs in a stimulus language for a Russian
speaker, we assigned intelligibility weights to the
annotated translation solutions on the following
scheme: ’correct’: 7, ’fluent_literal’: 6, ’para-
phrase’: 5, ’awkward_literal’: 4, ’fantasy’: 2,
’noise’: 0, ’empty’: 0. The higher weights indicate
greater intelligibility. The aggregate intelligibility
score for each MSU item was calculated as a sum
of weighted response probabilities across all re-
sponses for that stimulus. For example, the prob-
abilities of responses for the Belarusian particle
ледзьве не [hardly] had probabilities of the trans-
lation solutions distributed as follows: 0.0625, 0.0,
0.0625, 0.03125, 0.40625, 0.125, 0.3125. The
sum of weighted probabilities is 1.6875.

3 Feature Extraction and Regression
Analysis

Feature extraction. Generally, we explored four
types of features: (a) surprisal values and (b)
cosine similarities, both based on a pre-trained
Transformer model, (c) Phonologically Weighted
Levenshtein Distance (PWLD), and (d) automatic
translation quality scores. These features were ex-
tracted for every source language items using gold
and literal translations. We provide additional de-
tails on feature calculation below. Note that con-
textualised items were required when extracting
some of the features, namely surprisals, cosine
similarities, and automatic quality scores. Recall
that the literal translations from GPT-4 were iso-
lated phrases, not entire sentences. Therefore, we
generated sentence-level contexts for these items
by replacing them with the GPT-4 literal transla-
tions in the contexts from the parallel corpora.

(a-b) Transformer-based features: Surprisal and
cosine similarity values reported in this study were
generated using ruRoBERTa-large model (Zmitro-
vich et al., 2024)5, a dedicated Russian language

5https://huggingface.co/ai-forever/
ruRoberta-large
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Transformer6. To get a surprisal value for an
MSU, we summed up surprisals of its compo-
nents. The sentence-level surprisals are aver-
aged across all words in a sentence, with the
word-level surprisal being a sum of subword to-
ken surprisals. Cosine similarities were calcu-
lated using MSU embeddings that were mean-
pooled across word-level embeddings of MSU
components. The word embeddings were gen-
erated from subword representations using mini-
cons python library.7 Care was taken to minimise
the number of extraction errors caused by mis-
matching tokenisation for isolated and contextu-
alised MSUs, and by overmatching MSU com-
ponents in a sentence. Specifically, we extracted
surprisal values for the source, gold and literal
MSUs themselves (surprisal_stim, surprisal_gold
and surprisal_lit) and average surprisals for the
sentences containing them (surprisal_stim_sent,
surprisal_gold_sent and surprisal_lit_sent). The
cosine similarity was calculated between (1) the
stimulus source items in the five Slavic languages
and their gold translations (cosine_stim_gold),
and (2) the stimuli and their literal translations (co-
sine_stim_lit).

(c) PWLD: PWLD is a metric of weighted phono-
logical similarity based on the Levenshtein dis-
tance between two phonemic sequences (Fontan
et al., 2016). It takes into account the cost of
each phoneme substitution given their phonemic
features. We use an adaption of the PWLD pro-
posed in Abdullah et al. (2021). PWLD is more
suitable for cross-linguistic analysis than Leven-
shtein Distance because PWLD can catch more
fine-grained phonological similarities. For exam-
ple, in the pair of Czech and Russian cognates
ucho /u x o/ and ухо /u x O/, where phonemes
/o/ and /O/ are very similar to each other, PWLD
would capture this similarity more effectively
compared to Levenshtein Distance. To obtain the
IPA transcriptions of all stimuli, we used Char-
siuG2P, a transformer-based tool for grapheme-
to-phoneme conversion (Zhu et al., 2022). We
extracted PWLD scores between (1) the stimulus
items and their literal translations (pwld_stim_lit),
(2) the stimulus items and their gold translations
(pwld_stim_gold), and (3) gold and literal transla-

6We also tried other Russian transformers such
as https://huggingface.co/ai-forever/
rugpt3large_based_on_gpt2, which returned
similar results (omitted here for brevity).

7https://pypi.org/project/minicons/

tions (pwld_gold_lit).

(d) Automatic translation quality scores: We
use scores from the reference-based and reference-
free pre-trained COMET models8. The reference-
based score was used to generate translation qual-
ity scores for literal translations, with the gold
translation as reference. Additionally, we used
reference-free quality scores (translation quality
estimation scores) for the gold (qe_gold), literal
(qe_lit), and participants’ translations (eval_lit).

MSU translation entropy as an alternative to
intelligibility score. The intelligibility score is
based on annotated translation solutions, and thus
takes into account types of responses abstracting
from the individual choices. A more straightfor-
ward approach to judge about translation difficulty
of an item is to calculate the its translation entropy
from the distribution of valid translation variants
seen in the data. We used the Shannon entropy
formula:

H =−
n

∑
i=1

pi log2(pi) (1)

where pi denotes the probability of the i-th unique
response, and n denotes the total number of unique
responses. The responses annotated as noise or
empty were considered as having a None value.
Shannon entropy captures the unpredictability of
responses and can be interpreted as a measure of
translation task difficulty: the higher the entropy,
the more difficult the translation task is (Wei,
2022). It can also be views as a measure of lit-
erality: low entropy signals conditions for more
automated literal translation (Carl and Schaeffer,
2017).

In sum, the analysis is based on 14 features
shown in Appendix A. The Appendix reflects
Pearson correlation of each feature with the en-
tropy and intelligibility score for the source MSUs
in each language, highlighting indicators that re-
turned significant results. It can be seen that at
least in terms of univariate analysis intelligibility
scores are better aligned with the proposed fea-
tures than entropy.

Regression analysis. The relevance of the
features for intercomprehension was explored
through their ability to predict the intelligibility
score in a regression setup. The regression

8https://huggingface.co/Unbabel/
wmt22-comet-da and https://huggingface.
co/Unbabel/wmt22-cometkiwi-da respectively,
described in Rei et al., 2022
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was performed using Support Vector Machine
algorithm (SVR) as implemented in scikit-learn.9

The performance of SVR is reported in terms of
Pearson’s correlation coefficient (r) and Mean Ab-
solute Error (MAE) with corresponding two-sided
standard deviation across the 10 runs of the ex-
periment (±). The error reported for intelligibility
score as the response variable across all languages
was lower than can be obtained by predicting
the mean of the scores. This was not the case
for entropy as an alternative response variable.
Feature selection was performed using the Recur-
sive Feature Elimination (RFE) technique, which
iteratively applied a linear regressor to the feature
space, eliminating the least important feature in
each iteration until the desired number of features
(here, N was arbitrarily set to 5) was reached.

4 Results and Discussion

4.1 Translation Solutions and Intelligibility

Figure 1: Bars for translation solutions and line
plots for mean PWLD between original and gold
MSUs (pwld_stim_gold), and between gold and
literal variants (pwld_gold_lit), with PWLD val-
ues on the left y-axis. The greener end of the spec-
trum marks more successful translation task com-
pletion.

Figure 1 shows the distribution of translation
solutions for each source language. The transla-
tion solutions are colour-coded and ordered based
on the declining degree of intelligibility from the
green end of the spectrum towards red. It can
be seen that the percentage of correct translations
(height of greener bars) increases from left to right

9https://scikit-learn.org/1.5/modules/
generated/sklearn.svm.SVR.html

across the languages. The intelligibility of the
Slavic languages for speakers of Russian (as one
can see from the bar charts) increases from left to
right, i.e., from Czech to Ukrainian.

The lines in Figure 1 represent the PWLD val-
ues (i) between the original MSUs in Slavic lan-
guages and their gold translations attested in par-
allel corpora (pwld_stim_gold; solid black line),
and (ii) between gold and literal translations
(pwlf_gold_lit; dashed blue line). The lower the
PWLD values, the more similar the items are. As
shown in the figure, both lines have a clear left-to-
right downward pattern confirming the intuitively
expected relation between the cross-lingual formal
similarity and intelligibility captured by the distri-
bution of translation solutions. That is, when stim-
ulus items have smaller distances to gold transla-
tions (and between gold and literal translations),
the participants are more likely to return a higher
proportion of acceptable translation solutions (cor-
rect, paraphrase or literal) and there are fewer fan-
tasy, noise and empty responses.

The difference in slopes of the two lines
can be interpreted as reflecting the properties of
the automatically generated literal translations.
GPT-4 generated literal translations that were
closer (lower PWLD) to the gold translations for
Ukrainian than for Belarusian. The analysis of dis-
tances between stimulus MSUs and literal transla-
tions for these languages shows that GPT-4 vari-
ants in Russian for Ukrainian items were more
distant from the stimulus than the Russian trans-
lations for Belarusian items. This might reflect the
relations between East-Slavic languages, where
for the Ukrainian items it was difficult to find more
literal Russian variants than gold translations.

To further explore the literal translation as an
intercomprehension strategy, we used two ap-
proaches to identify stimulus MSUs that might
be more suitable for literal cross-comprehension
strategy: (a) items with small PWLD between
stimulus and gold translation, and (b) items, where
GPT-4 returned translations identical to the pro-
fessional gold translations. Figure 2 shows which
types of translations were offered for the Slavic
MSUs extracted by each sampling method. The
complementary line plots show the average intel-
ligibility scores and the stimulus-to-gold PWLD
values across each MSU sample. The sample
in Figure 2a is based on the top 33% of origi-
nal MSUs (the cut-off is selected arbitrary) that
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(a) Small PWLD (top 33%) between original and gold. (b) Gold and GPT-4 literal translation are the same.

Figure 2: Two approaches to define suitable conditions for literal translation. Translation solution bars
and mean intelligibility scores across the stimulus MSUs in each sample. Flat black line indicates that
stimulus-to-gold PWLD is about the same level across languages on average. Brackets have the number
of sampled stimuli to their total for each sampling method.

have the smallest distance to the gold translations.
For these items, the intercomprehension pattern is
clear: MSUs with the same cross-linguistic dis-
tance are more successfully processed in East-
Slavic than in West-Slavic languages. Although
the Czech data in our experiment offered as many
opportunities (21 MSUs) for literal comprehen-
sion as Ukrainian (20 MSUs), the participants
failed to recognise these similarities. We can
hypothesise that the Latin script can introduce
some of the confusion. In Figure 2b, the literal-
translation-friendly sample includes MSUs, for
which GPT-4 returned the same Russian variants
as used in gold translations. This plot highlights
the differences between Belarusian and Ukrainian
as processed by GPT-4 and by the participants
(compare lighter-green bars of fluent_literal trans-
lations for these languages). The participants did
not see the fluent Russian correspondences for
Ukrainian items picked by GPT-4 and returned
fewer fluent translations and more mistranslations
(light-yellow phantasy bars) than for Belarusian in
this sample. For other languages, the distance be-
tween gold and literal established by GPT-4 was
proportional to the participants’ success in the
translation task.

Figure 3 shows the distribution of intelligibil-
ity scores for each source language. The mean
score across all MSUs (red diamonds) increases

Figure 3: Distributions of the intelligibility scores.
Red diamonds are means; the dark stripes with a
white dot inside violins represent 25th, 50th, and
75th percentiles.

from left to right (from Czech to Ukrainian),
which confirms previous findings and is intuitively
expected. The scores are more homogeneous
and centred around the low mean value for the
less cross-intelligible West-Slavic languages, es-
pecially Czech. The distribution of intelligibility
scores for the Ukrainian MSUs is more spread,
with a bimodal tendency. It suggests that some
Ukrainian MSUs are very intelligible, while others
trigger intercomprehension difficulties and mis-
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language Pearson MAE nobs

Czech 0.21±0.43 0.63±0.21 60
Polish 0.23±0.50 0.90±0.30 50
Bulgarian 0.50±0.35 0.85±0.26 56
Belarusian 0.34±0.53 0.87±0.16 57
Ukrainian 0.62±0.31 0.98±0.34 59

Table 2: Regression results on intelligibility score
for the top five language-specific predictors.

language Pearson MAE nobs

Czech 0.23±0.36 0.40±0.10 60
Polish 0.19±0.55 0.51±0.17 50
Bulgarian 0.32±0.38 0.58±0.13 56
Belarusian 0.36±0.51 0.52±0.20 57
Ukrainian 0.65±0.37 0.52±0.21 59

Table 3: Regression results on entropy for the top
five language-specific predictors.

translations.

4.2 Predicting Intelligibility via SVR

Table 2 shows correlations using the five features
which returned the highest results for each lan-
guage described. The intelligibility scores for the
MSUs in the Cyrillic-based South- and East-Slavic
languages are not only consistently higher than in
the West-Slavic languages (see Figure 3) but also
more predictable. Bulgarian and Ukrainian have
the Pearson correlation coefficients 0.50 and 0.62,
while the values of Pearson r for Polish and Czech
do not exceed 0.23. For Belarusian (as well as
for Ukrainian and Bulgarian) adding more features
(up to a certain level) yield higher results. How-
ever, for West-Slavic languages the performance is
unstable, and new features often introduce noise.
The correlations on all features are considerably
lower, especially for West-Slavic languages.

The regression results on MSU translation en-
tropy as the learning target are 2% higher for
Czech, Belarusian and Ukrainian but much lower
for Polish and Bulgarian (see Table 3).

The variation in performance on the two
variables describing the participants’ translation
choices (intelligibility scores and MSU translation
entropy) is due to the lack of consistency in their
relations across the Slavic languages. The Pearson
correlation coefficient (r) between the entropy of
translation variants and intelligibility score ranges

from -0.799 (Ukrainian) to -0.325 (Czech) at p
< 0.05. Figure 4 shows the regression lines fit-
ted for each language separately and in combina-
tion. The entropy values are on average higher for
Czech and Polish (2.70 and 2.47) than for Belaru-
sian and Ukrainian (2.19 and 2.12) but for Czech
and Polish they are less associated with intelligi-
bility judging by the slopes and univariate r. It
means that the participants’ responses were less
more varied across functionally similar MSUs in
the West-Slavic languages than in Ukrainian.

Figure 4: Relation between entropy of translation
variants and intelligibility score for Slavic MSUs.

Low entropy scores characterise cases where
the participants returned only a few unique re-
sponses and the probability distribution of these
responses is skewed towards one type of transla-
tion solution. In other words, participants largely
agreed on a Russian rendition for a given MSU.

(1) For example, a Ukrainian conjunction чим
бiльше (the more; чем больше) is for-
mally very similar to the gold Russian vari-
ant (PWLD=0.085) and has a low entropy
of 0.569 based on the three types of so-
lutions: correct (чем больше), fantasy
(больше) and empty. The probability of
the first variant is 0.9, and the intelligibil-
ity has a maximum value of 6.4 across all
MSUs.

For East-Slavic languages, this consensus often
meant successful task completion, i.e., high in-
telligibility. The ratio of MSUs with the lower-
than-average entropy and higher-than-average in-
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telligibility was 36.8% and 42.4% for Belarusian
and Ukrainian, respectively. For West-Slavic lan-
guages it does not exceed 24%. However, low en-
tropy can also signal lack of comprehension for
West-Slavic languages: in another 24% of cases
(more for Czech) lower-than-average entropy was
linked to lower-than-average intelligibility.

(2) The Czech discourse marker lze rici (it can
be said, можно сказать) had a low en-
tropy (D=1.849) and below average intel-
ligibility of 0.941. Despite the formal dis-
tance for this MSU was below the Czech
average (0.260 vs. 0.287), only one re-
sponse was correct, and 65% of partici-
pants did not come up with any solution
within the given time.

The next most important predictor of a different
type is the formal distance between original MSUs
and their gold translations (pwld_stim_gold). It is
reasonable to expect that smaller original-to-gold
PWLD would be negatively correlated with intel-
ligibility. While this general trend is observed in
our data (see row 1 in Table 4b in Appendix A), it
is less expressed for West-Slavic languages. Fig-
ure 2a shows that the same level of PWLD results
in lower intelligibility for them. Formal similar-
ities between West-Slavic languages and Russian
are more often false friends or prompt awkward
solutions. Hence, PWLD is a less reliable predic-
tor for intelligibility of West-Slavic MSUs.

(3) The Czech particle nejen ze (not only from,
не то что) has a low PWLD=0.161 (Czech
average 0.286) and relatively low intelligi-
bility (1.083 vs. average 1.872). For this
item participants returned a variety of false
literal solutions (e.g. неужели, нужен
ли, не один же).

Another factor that correlates with the intelligibil-
ity of MSUs both within and across Slavic lan-
guages is the context sentence complexity. This
property of the translation task is captured by the
surprisal of the source or translated sentence (sur-
prisal_stim_sent and surprisal_gold_sent). These
features do not return significant correlations with
intelligibility in univariate analysis for all lan-
guages but they are seen among the most infor-
mative features (except Belarusian).

Other features either are not consistently se-
lected among the strong predictors and/or do not

demonstrate a significant correlation with intelli-
gibility in univariate analysis.

Thus, the analysis of the combinations of strong
predictors (Table 5, Appendix A) and the cor-
relation analysis outcomes suggest the following
conditions for the intelligibility of Slavic MSUs
for Russian speakers. We have seen that the
most important role is played by the partici-
pants’ perception of the similarities, their ability
to recognise and interpret them, captured by the
entropy of translation variants. Then, the scale
of these similarities between the languages mat-
ters. It is reflected by the point-wise PWLD dis-
tance between original MSU and its gold trans-
lation. Finally, average context sentence sur-
prisal in either source or target language is an
important intelligibility factor for all languages.
Although West-Slavic and East-Slavic languages
demonstrate some group similarities, each lan-
guage seems to have a unique set of MSU intelligi-
bility conditions. For Ukrainian, for example, the
stimulus-to-gold PWLD is strongly positively cor-
related with entropy (r = 0.555) and with the num-
ber of participants’ variants (r = 0.636). That is,
the smaller the PWLD, the fewer variants are gen-
erated by the participants, the lower the entropy of
translation variants and the higher the intelligibil-
ity of original MSU. This pattern is not seen in any
other Slavic language so clearly.

5 Conclusion

This study explored the intelligibility of microsyn-
tactic units (MSUs) in Slavic languages. We
conducted a free translation experiment where
Russian-speaking participants were asked to trans-
late MSUs from Czech, Polish, Bulgarian, Belaru-
sian, and Ukrainian into Russian. The aim of the
study was to measure intercomprehension levels
manifested in participants’ responses and to ex-
plore the factors related to intelligibility between
similar languages.

As expected, the MSUs in East-Slavic lan-
guages (Belarusian and Ukrainian) were most in-
telligible, followed by the South-Slavic Bulgar-
ian. West-Slavic languages (Czech, Polish) pre-
sented a greater challenge for our participants.
We demonstrated that the level of intercomprehen-
sion was related to the ability of the participants
to identify and interpret the cross-lingual simi-
larities. Generally, fewer translation variants for
an original MSU indicated higher intelligibility.
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Lower phonological distance between the MSUs
in the source and target languages was another
well-correlated and typical predictor of intercom-
prehension. Intra-linguistically, MSUs that were
offered in easier contexts returned higher intelligi-
bility scores.

6 Limitations
The data is limited to one direction of intercom-
prehension. Our approach is highly contingent on
how the formal distance between original and gold
items is calculated and what is accepted as a literal
translation from the Slavic languages into Rus-
sian. The context sentences were not controlled
for complexity or topic across stimulus languages.
The phonological distance calculations rely heav-
ily on automated grapheme-to-phoneme conver-
sion.
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Appendix A. List of predictors with correlation analysis outcome
Table 4: Association between translation task features and response variables. Asterisks indicate statis-
tically significant results at the confidence level of 0.05. The tables are sorted to have the features with
significant results across more languages on top. Features with the same number of significant results
are sorted alphabetically.

(a) Pearson correlation coefficient between predictors and entropy of translation variants.

# feature Czech Polish Bulgarian Belarusian Ukrainian

1 pwld_stim_gold 0.314* 0.08 0.331* 0.333* 0.556*
2 surprisal_lit -0.001 -0.088 0.043 0.385* 0.328*
3 pwld_stim_lit 0.144 0.042 0.238 0.3* 0.481*
4 cosine_stim_lit 0.067 0.02 -0.316* -0.16 -0.327*
5 cosine_stim_gold 0.001 -0.094 -0.382* -0.139 -0.377*
6 eval_lit 0.014 -0.046 -0.114 -0.284* -0.099
7 surprisal_stim_sent 0.045 0.104 0.298* 0.258 0.076
8 surprisal_gold 0.123 -0.076 -0.08 0.177 0.393*
9 surprisal_stim 0.008 0.141 0.347* 0.101 0.18
10 surprisal_lit_sent -0.197 -0.095 0.172 0.229 0.012
11 qe_lit -0.126 -0.035 0.176 -0.107 -0.088
12 pwld_gold_lit 0.051 0.0 0.236 0.079 0.137
13 qe_gold -0.091 -0.058 0.198 0.044 -0.008
14 surprisal_gold_sent -0.066 -0.081 0.11 0.019 -0.019

(b) Pearson correlation coefficient between predictors and intelligibility scores.

# feature Czech Polish Bulgarian Belarusian Ukrainian

1 pwld_stim_gold -0.305* -0.375* -0.432* -0.384* -0.594*
2 pwld_stim_lit -0.304* -0.29* -0.469* -0.211 -0.418*
3 cosine_stim_gold 0.008 0.233 0.438* 0.272* 0.438*
4 surprisal_stim_sent -0.263* -0.366* -0.258 -0.426* -0.083
5 eval_lit 0.16 0.276 0.268* 0.439* -0.003
6 pwld_gold_lit -0.153 -0.293* -0.396* -0.178 -0.099
7 surprisal_lit -0.223 -0.09 -0.318* -0.415* -0.186
8 cosine_stim_lit -0.099 0.129 0.224 0.213 0.388*
9 qe_lit 0.171 0.153 -0.069 0.304* 0.024
10 surprisal_gold -0.039 -0.026 -0.004 -0.226 -0.308*
11 surprisal_lit_sent -0.183 -0.135 -0.188 -0.37* 0.072
12 qe_gold 0.151 0.093 -0.097 0.111 -0.027
13 surprisal_gold_sent -0.072 -0.001 -0.032 -0.137 0.034
14 surprisal_stim 0.2 -0.174 -0.236 -0.251 -0.187

Table 5: Language-specific selections of best intelligibility predictors (by RFE, N=5)

feature names

Czech surprisal_lit, surprisal_gold, surprisal_stim_sent, pwld_stim_lit, qe_gold
Polish surprisal_stim_sent, surprisal_lit_sent, surprisal_gold_sent, cosine_stim_gold,

pwld_stim_gold
Bulgarian surprisal_stim, surprisal_lit, cosine_stim_gold, pwld_stim_lit, pwld_stim_gold
Belarusian surprisal_stim, surprisal_gold, surprisal_lit_sent, surprisal_gold_sent, pwld_stim_gold
Ukrainian surprisal_lit_sent, surprisal_gold_sent, pwld_stim_gold, qe_gold, qe_lit

322



Proceedings of the Joint 25th Nordic Conference on Computational Linguistics and 11th Baltic Conference on Human Language Technologies
(NoDaLiDa/Baltic-HLT 2025), pages 323–330

March 3-4, 2025 ©2025 University of Tartu Library

Train More Parameters But Mind Their Placement:
Insights into Language Adaptation with PEFT

Jenny Kunz
Dept. of Computer and Information Science

Linköping University
jenny.kunz@liu.se

Abstract

Smaller LLMs still face significant chal-
lenges even in medium-resourced lan-
guages, particularly when it comes to
language-specific knowledge – a problem
not easily resolved with machine-translated
data. In this case study on Icelandic, we
aim to enhance the generation performance
of an LLM by specialising it using un-
structured text corpora. A key focus is
on preventing interference with the mod-
els’ capabilities of handling longer context
during this adaptation. Through ablation
studies using various parameter-efficient
fine-tuning (PEFT) methods and setups, we
find that increasing the number of train-
able parameters leads to better and more
robust language adaptation. LoRAs placed
in the feed-forward layers and bottleneck
adapters show promising results with suf-
ficient parameters, while prefix tuning and
(IA)3 are not suitable. Although improve-
ments are consistent in 0-shot summarisa-
tion, some adapted models struggle with
longer context lengths, an issue that can be
mitigated by adapting only the final layers.

1 Introduction

LLMs have strong multilingual capabilities and
top the leaderboards even for less-represented lan-
guages (Nielsen et al., 2024). However, smaller
LLMs still struggle with these languages, ham-
pering fast and resource-efficient inference. In-
struction tuning on machine-translated data can im-
prove performance compared to English-only tun-
ing (Muennighoff et al., 2023; Chen et al., 2024a)
but models still fall short when evaluated on na-
tive benchmarks, likely due to missing language-
specific knowledge (Chen et al., 2024b). While col-
lecting large amounts of native instruction-tuning

data could address this issue, this can be costly
or infeasible. This makes techniques for adapting
models using unstructured text data valuable.

In this paper, we perform ablations with
parameter-efficient fine-tuning (PEFT) methods for
language adaptation with unstructured text data
after instruction alignment. This diverges from
the standard setup for fine-tuning a model: Un-
like typical fine-tuning, where the adaptation data
closely matches the expected output format, the
data we use is closer to the expected output in
language but likely further from the target task for-
mat. Therefore, the setup risks interference with
the original instruction-tuning objectives, possibly
leading to catastrophic forgetting (Mccloskey and
Cohen, 1989). In addition, hardware constraints
made us choose a maximum context length smaller
than the one used in pre-training, risking further
performance degradation.

Therefore, we aim to identify setups that do not
interfere with previously learned abilities. We at-
tempt to avoid catastrophic forgetting with PEFT
methods that leave the majority of or all model pa-
rameters unchanged: LoRA (Hu et al., 2022), IA3

(Liu et al., 2022), bottleneck adapters (Houlsby
et al., 2019) and prefix tuning (Li and Liang, 2021).
We experiment with the number of learnable param-
eters, the placement of LoRA matrices in different
Transformer modules and layers, as well as the
training corpus used for adaptation.

We use the smallest instruction-tuned LLaMA
3.2 model (LlamaTeam, 2024) with 1B parameters
and adapt it to Icelandic, evaluating performance
on text summarisation. Our findings are that:
• LoRA and bottleneck adapters show improve-

ments especially in 0-shot settings, though sim-
ply adding target-language task demonstrations
also improves the performance substantially.

• A higher number of trainable parameters is better.
• LoRAs in the feed-forward layers are the

best-performing setup, followed by bottleneck
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adapters. LoRA in the attention layers works
less well, particularly considering the number of
trainable parameters. We therefore conclude that
feed-forward modules are the most promising
target in language adaptation.

• Prefix tuning hurts the model’s capabilities.
• Some setups with few trainable parameters nega-

tively impact 5-shot performance, possibly due
to smaller context lengths at adaptation time com-
pared to pre-training time. This can be resolved
by restricting adapter placement to the top layers.

2 Experimental Setup

2.1 Models

We use Llama-3.2-1B-Instruct, the newest and
smallest Llama model at the time of writing, with
1B, 16 layers, and a hidden size of 2048. This
model has been tuned with instruction fine-tuning
(Wei et al., 2022) and reinforcement learning with
human feedback (Ouyang et al., 2024)1.

2.2 Adaptation Data

Our main dataset for adaptation is the Icelandic
portion of CC100 (Conneau et al., 2020) that has
been processed with CCNet filtering (Wenzek et al.,
2020) to increase data quality. We randomly select
250,000 text chunks, with a maximum length of
1,024 tokens, resulting in 12.5M tokens. This data
was likely seen during pre-training, i.e., the model
is not exposed to new data but primed towards Ice-
landic. As web-crawled corpora are reportedly of
lower quality for smaller languages (Kreutzer et al.,
2022; Artetxe et al., 2022), we perform ablations
with the curated Icelandic Gigaword Corpus (IGC)
(Steingrímsson et al., 2018; Barkarson et al., 2022),
using sections from its subsets Books, Wiki, Social,
and Journals. Even here we use 250,000 chunks,
resulting in 12M tokens. As the Social subset is by
far the largest and we aim to have a large portion
of highly curated text, we undersample it by using
only 10%, resulting in a dataset composition of 9%
Books, 17% Wiki, 22% Journals, and 52% Social.

2.3 Adaptation Methods and Setups

The code, prompt generator and adapters used
for the experiments in this paper can be found
at github.com/jekunz/peft-la. We use
the Transformers (Wolf et al., 2020) and Adapters
(Poth et al., 2023) libraries, a learning rate of 5e-5,

1Ablations with the base model Llama-3.2-1B showed in-
ferior performance with and without adaptation.

a linear learning rate scheduler, and a batch size of
4.2 All adapters are trained with a causal language
modeling objective. We test the following methods
and setups:
LoRA is a widespread adaptation technique for
generative LLMs. In the most common setup,
it adds low-rank decomposition matrices to the
model’s self-attention modules and trains only
those. The matrices can be merged into the weights,
removing the inference overhead. For LoRA in the
attention module, we test ranks 1024, 256, 128,
32 and 8 and apply LoRA to the query and value
matrices, which is reportedly the most stable setup
(Fomenko et al., 2024). We also test LoRA in the
feed-forward module and place LoRAs in all ma-
trices using ranks 256, 128, 64, 32 and 8. For both
module setups and all ranks, we use use α = 2r.
IA3 is the most parameter-efficient among the meth-
ods tested. It multiplies activations in the model’s
attention (key and value) and feed-forward matrices
with learned vectors, adding hardly any overhead.
Bottleneck adapters add smaller intermediate lay-
ers with a down- and up-projection in between the
model’s layers. While popular for encoder model,
bottleneck adapters are less common for generative
LLMs as they increase the number of parameters
and depth even during inference. We train Houlsby
adapters with reduction factors of 64, 16 and 4.
Prefix tuning prepends a sequence of learnable
prefix vectors to the input sequences, allowing the
model to attend to the prefix vectors when gener-
ating the subsequent tokens. As the vectors add to
the sequence length, even prefix tuning slows down
inference. We use a prefix length of 30 tokens.

2.4 Evaluation

To assess generative performance, we evaluate ab-
stractive text summarisation with the RÚV Radio
News (RRN) dataset (Sverrisson and Einarsson,
2023) in the main→ intro setup, i.e., generating
the introduction from the main body of the article.
We filter out articles missing one of these fields.

We evaluate the summaries using BERTScore
(Zhang et al., 2020) (base model: bert-base-
multilingual-uncased) to measure the representa-
tional similarity between the output and the refer-
ence, and ROUGE-L (Lin, 2004) for surface over-
lap, based on the longest common subsequence.

2As the learning rate and scheduler are crucial in continued
pre-training (Ibrahim et al., 2024), we also tested 1e-5 and 1e-
4 and a cosine scheduler but did not observe large differences.
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The models are evaluated in 0-shot, 1-shot and
5-shot setups with minimal prompts in Icelandic3

that instruct the model to summarise the article in
one paragraph and include markers for the start of
both the article and the summary.

3 Results and Discussion

3.1 PEFT Methods

0-shot 1-shot 5-shot

No Adapter 53.37 / 04.09 64.68 / 10.26 64.01 / 11.37

LoRA-qv-1024 63.61 / 08.57 66.53 / 11.70 65.50 / 12.06
LoRA-qv-256 63.27 / 08.32 65.55 / 11.05 62.97 / 10.56
LoRA-qv-128 62.55 / 07.63 64.51 / 10.78 62.23 / 10.54
LoRA-qv-32 61.06 / 06.62 62.68 / 08.98 55.42 / 05.60
LoRA-qv-8 60.45 / 05.21 61.53 / 08.23 56.62 / 06.42

LoRA-ff-256 65.60 / 09.72 69.06 / 13.89 69.10 / 15.48
LoRA-ff-128 64.67 / 08.87 69.10 / 13.86 68.36 / 14.55
LoRA-ff-64 63.72 / 07.86 67.72 / 12.60 67.46 / 13.65
LoRA-ff-32 62.94 / 07.19 67.61 / 12.18 67.42 / 13.76
LoRA-ff-8 61.69 / 06.36 64.85 / 10.39 62.66 / 10.09

(IA)3 56.70 / 04.56 64.07 / 09.47 61.74 / 10.37

Bottlen.-4 63.78 / 08.15 66.75 / 11.74 66.74 / 13.21
Bottlen.-16 63.33 / 08.38 67.77 / 13.11 65.80 / 12.36
Bottlen.-64 60.66 / 05.16 64.79 / 09.96 61.32 / 08.59

Prefix 55.84 / 02.02 54.56 / 01.73 49.86 / 00.67

Table 1: Comparing adaptation methods.
BERTScore F1 / ROUGE-L.

As shown in Table 1, language adaptation consis-
tently improves 0-shot summarisation scores. How-
ever, for 1-shot and 5-shot setups, the results are
more mixed, and in some setups decrease compared
to the baseline without adaptation. That the 1-shot
setup without adaptation already shows compara-
ble performance to many adaptation setups implies
that in-context learning, where possible, can be an
alternative to language adaptation for this model.

The best-performing method are LoRAs in the
feed-forward layers. Even bottleneck adapters with
a reduction factor of 16 or 4 consistently increase
scores, although there is a noticeable difference in
performance to feed-forward LoRA. As illustrated
in Figure 1, feed-forward LoRA also results in the
highest BERTScores relative to the number of pa-
rameters added, followed by bottleneck adapters.
LoRA in the attention matrices requires substan-
tially more parameters to reach a comparable per-
formance. These results show that the placement of
the PEFT modules in the Transformer architecture

3We also tested English instructions, which led to slightly
worse results, except for the no adapters model, where English
instruction slightly improved the 0-shot performance.

plays a crucial role even if the number of trainable
parameters is the same.

Some setups interfere with the model’s ability to
operate on longer inputs as the performance espe-
cially in the 5-shot setup decreases. We hypothesise
this is a result of limiting the context length to 1,024
tokens during the adaptation process. LoRA in the
attention module is the most heavily affected setup,
suggesting that the effectiveness of self-attention
when processing longer contexts is harmed.

We observe that performance improves as the
LoRA rank increases or the bottleneck reduction
factor decreases, indicating that sufficient learning
capacity is necessary for better results in language
adaptation. This is in line with the underwhelm-
ing performance of (IA)3, which introduces the
fewest parameters. Designed as an alternative to
in-context learning for task adaptation, (IA)3 does
not transfer well to language adaptation.

Prefix tuning with textual data decreases the per-
formance substantially for the 1- and 5-shot setups.
We assume that as prefixes have a direct impact
on the generation, prefixes that diverge from the
expected output format harm the model’s abilities
to match the latter. For this reason, prefix-tuning
an instruction-tuned model on unlabelled text does
not work, whereas prefix-tuning on specific tasks
like summarisation, or instruction tuning in general,
works well as shown by Zhang et al. (2024a).

3.2 Ablation 1: LoRA Modules

0-shot 1-shot 5-shot

q,v 63.27 / 08.32 65.55 / 11.05 62.97 / 10.56
ff 65.60 / 09.72 69.06 / 13.89 69.10 / 15.48
ff + q,v 65.44 / 09.61 68.44 / 13.14 68.89 / 15.17

Table 2: Comparing LoRA module placement.
BERTScore F1 / ROUGE-L; LoRA rank 256

We have a closer look at the module place-
ment of LoRAs and compare LoRA in the self-
attention module, LoRA in the feed-forward mod-
ule, and LoRA both in the self-attention and the
feed-forward module.

In the results given in Table 2, we see that for the
same rank, LoRA in the feed-forward module is
better than in the attention module. Moreover, it is
slightly better than LoRA in both the attention and
the feed-forward modules. We find this surprising
given that the latter option has the most trainable
parameters and conclude that having LoRA even
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Figure 1: Number of trainable parameters plotted against BERTScores. Prefix tuning (34M parameters)
and (IA)3 (49K parameters) are excluded.

in the attention matrices is at best unnecessary.

3.3 Ablation 2: Layer Exclusion

0-shot 1-shot 5-shot

No Adapter 53.37 / 04.09 64.68 / 10.26 64.01 / 11.37
All Layers 61.06 / 06.62 62.68 / 08.98 55.42 / 05.60
All but last 2 59.39 / 04.83 60.26 / 07.37 57.73 / 06.51
All but last 4 59.89 / 04.93 62.37 / 08.70 58.29 / 07.02
Only last 2 59.64 / 03.64 63.55 / 08.37 65.40 / 12.42
Only last 4 58.78 / 04.56 62.20 / 08.22 61.94 / 10.57

Table 3: Layer Exclusion experiments. BERTScore
F1 / ROUGE-L; Self-attention (qv) LoRA rank 32.

Fine-tuning primarily affects the final layers of
a model (Merchant et al., 2020; Mosbach et al.,
2020; Zhou and Srikumar, 2022). We explore two
strategies focusing on these layers: (1) excluding
the final layers during adaptation to preserve the
instruction-tuning capabilities while focusing on
general language learning, which is likely stored
in earlier layers, and (2) adapting only the final
layers, as this may be sufficient and could maintain
the model’s robustness with respect to the limited
context length used in our adaptation process (a
key issue highlighted in Section 3.1).

We test the two hypotheses using self-attention
LoRA with rank 32 as this configuration shows
strong 0-shot performance but suffers in the 5-shot
setup. The results in Table 3 show that the first
hypothesis does not hold; excluding the last layers
does not improve the performance and, in some
cases, degrades it. The second hypothesis, however,
appears plausible: restricting LoRA modules to the
last two layers yields the best 5-shot results among
all setups in Table 3, outperforming the baseline
without adaptation. However, this comes at the

expense of a slight decrease in 0-shot performance.
We are hopeful that these insights can guide us
in developing customised methods for language
adaptation.

3.4 Ablation 3: Training Corpora

0-shot 1-shot 5-shot

CCNet 63.27 / 08.32 65.55 / 11.05 62.97 / 10.56
IGC 60.80 / 05.75 61.02 / 06.48 58.31 / 06.17

CCNet 65.60 / 09.72 69.06 / 13.89 69.10 / 15.48
IGC 63.66 / 08.10 66.19 / 10.46 66.37 / 12.00

CCNet 63.78 / 08.15 66.75 / 11.74 66.74 / 13.21
IGC 61.39 / 05.58 64.95 / 09.79 65.24 / 11.54

Table 4: Comparing text corpora for adapta-
tion. BERTScore F1 / ROUGE-L; LoRA-qv-256
(above), LoRA-ff-256 (middle) and bottleneck re-
duction factor 4 (below).

In Table 4, we do not observe a benefit of train-
ing on the IGC; on the contrary, the performance is
consistently lower. While this is in line with previ-
ous research (Artetxe et al., 2022; van Noord et al.,
2024), note that we do not test on any task where
high-quality generation is important but on text
summarisation, which can rely on copying chunks
of text. We also note that CCNet is probably more
diverse, and that different mixes from the IGC may
lead to different results. We therefore believe that
it is worthwhile to continue testing on curated data.

3.5 Future Work

In order to test whether our findings generalise, we
plan to extend our approach to other languages,
larger models and adapters trained on more data,
and to explore the effect of training on longer con-
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texts. Based on our experiments on the placement
and training of adapters in Section 3.3, we hope
to find a sweet spot for language adaptation where
no relevant information is overwritten but genera-
tion performance is improved. Inspiration could
be taken from methods that automatically detect,
and assign more parameters to, layers of particular
importance (Zhang et al., 2023; Yao et al., 2024).

A common approach to mitigate interference
is episodic memories – mixing in examples from
previous tasks (Chaudhry et al., 2019), in our case,
instruction-tuning data. This has shown promise in
other works (Jiang et al., 2024; Parmar et al., 2024),
making it worthwhile to incorporate.

One challenge in evaluating language adaptation
methods is that automatic metrics for generative
performance provide limited and potentially mis-
leading insights. While running extensive human
evaluations for all ablations in this paper is imprac-
tical, a human study of model outputs for the most
promising setups, across a diverse set of prompts,
should be included in future evaluations.

4 Related Work

Razumovskaia et al. (2024) find that LoRA lan-
guage adaptation with unstructured text data im-
proves the linguistic quality of generated texts in
human ratings but usefulness and performance on a
(translated) natural language inference benchmark
remain low. Their study indicates that benchmark
evaluation could underestimate the usefulness of
language adaptation in chat and generation setups.

Work on testing other PEFT architectures than
LoRA for language adaptation of LLMs has been
sparse. While bottleneck-style language adapters
trained on text corpora are a common setup for
cross-lingual transfer with encoder models (Pfeif-
fer et al., 2020; He et al., 2021; Faisal and Anasta-
sopoulos, 2022), they have been largely overlooked
for generative models, likely due to the inference
overhead that can be avoided with LoRA, as the
latter works equally well for task fine-tuning. Our
experiments show that similar findings hold for lan-
guage adapters: Bottleneck adapters perform well
but there are LoRA setups that reach the same per-
formance or are better while avoiding the overhead.

Recent language adaptation works have focused
on target-language instruction fine-tuning, often
with machine-translated data (Muennighoff et al.,
2023; Chen et al., 2024a; Holmström and Doost-
mohammadi, 2023). In cross-lingual transfer, mul-

tilingual instruction tuning has shown promise, par-
ticularly for generative tasks (Kew et al., 2023) and
for larger models (Chen et al., 2024a). However,
models trained on machine-translated data may per-
form well on translated evaluation sets but struggle
on native benchmarks (Chen et al., 2024b).

5 Conclusion

We tested a range of PEFT methods for language
adaptation using unstructured text corpora, finding
that LoRA in the feed-forward modules yielded
the most promising results, followed by bottleneck
adapters. LoRA in the attention modules performed
less well, was less robust to larger context lengths
and needed more parameters for a comparable per-
formance. Combining LoRAs in both the attention
and feed-forward modules did not improve over
feed-forward LoRAs only, and may even lead to
slightly decreased performance. Prefix tuning and
(IA)3 were not suitable at all.

Our results show that across architectures, more
trainable parameters lead to better scores, show-
ing, perhaps unsurprisingly, that sufficient learning
capacity is crucial for language adaptation.

Some adaptation setups led to a decline in perfor-
mance as contexts get longer; possibly a result of
restricted context lengths during adaptation. How-
ever, this issue can be mitigated by training only
the last layers. Notably, we did not observe any pos-
itive effects from using higher-quality pre-training
data sourced from narrower domains.

Moving forward, with a higher resource invest-
ment, we see the potential that more training data,
possibly with instruction data in the mix, and longer
context lengths improve the performance further.
However, to truly assess the potential of these meth-
ods, we need more diverse, language-native evalua-
tion data, as well as fine-grained human evaluations
that assess various aspects of generated language
quality and content.

Limitations

The meaningfulness of automated text summarisa-
tion metrics when using news text summaries as
references has been questioned and is highly de-
pendent on the dataset (Zhang et al., 2024b). While
our search for effective setups yielded conclusive
results with BERTScore and ROUGE-L, moving
forward, it will be crucial to incorporate human
evaluations and more diverse tasks to accurately
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assess performance across a broader and better-
interpretable range of criteria.

As we have discussed in Section 5, we see a
critical need for more language-native evaluation
data, in particular datasets that incorporate signif-
icant language-specific knowledge (Chen et al.,
2024b). Testing on a limited set of language-native
tasks most of which are classification tasks, or on
machine-translated data, may give a limited picture
of the effect of language adaptation.

Due to computational constraints, we were un-
able to include larger models or more than one lan-
guage in this study. As a result, it remains unclear
whether our findings apply to other languages, es-
pecially those that are typologically more different
from or closer to English.
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Ljubešić, Miquel Esplà-Gomis, Gema Ramírez-
Sánchez, and Antonio Toral. 2024. Do language mod-
els care about text quality? evaluating web-crawled
corpora across 11 languages. In Proceedings of the
2024 Joint International Conference on Computa-
tional Linguistics, Language Resources and Eval-
uation (LREC-COLING 2024), pages 5221–5234,
Torino, Italia. ELRA and ICCL.

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Car-
roll L. Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, John
Schulman, Jacob Hilton, Fraser Kelton, Luke Miller,
Maddie Simens, Amanda Askell, Peter Welinder,
Paul Christiano, Jan Leike, and Ryan Lowe. 2024.
Training language models to follow instructions with
human feedback. In Proceedings of the 36th Interna-
tional Conference on Neural Information Processing

329

https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=DimPeeCxKO
https://openreview.net/forum?id=DimPeeCxKO
https://doi.org/10.18653/v1/2024.acl-long.296
https://doi.org/10.18653/v1/2024.acl-long.296
http://arxiv.org/abs/2312.12683
http://arxiv.org/abs/2312.12683
https://doi.org/10.1162/tacl_a_00447
https://doi.org/10.1162/tacl_a_00447
https://doi.org/10.1162/tacl_a_00447
https://doi.org/10.18653/v1/2021.acl-long.353
https://doi.org/10.18653/v1/2021.acl-long.353
https://aclanthology.org/W04-1013
https://aclanthology.org/W04-1013
https://openreview.net/forum?id=rBCvMG-JsPd
https://openreview.net/forum?id=rBCvMG-JsPd
http://arxiv.org/abs/2407.21783
https://doi.org/10.18653/v1/2020.blackboxnlp-1.4
https://doi.org/10.18653/v1/2020.blackboxnlp-1.4
https://doi.org/10.18653/v1/2020.blackboxnlp-1.7
https://doi.org/10.18653/v1/2020.blackboxnlp-1.7
https://doi.org/10.18653/v1/2020.blackboxnlp-1.7
https://doi.org/10.18653/v1/2023.acl-long.891
https://doi.org/10.18653/v1/2023.acl-long.891
http://arxiv.org/abs/2406.13469
http://arxiv.org/abs/2406.13469
http://arxiv.org/abs/2406.13469
https://aclanthology.org/2024.lrec-main.465
https://aclanthology.org/2024.lrec-main.465
https://aclanthology.org/2024.lrec-main.465


Systems, NIPS ’22, Red Hook, NY, USA. Curran
Associates Inc.

Jupinder Parmar, Sanjev Satheesh, Mostofa Patwary,
Mohammad Shoeybi, and Bryan Catanzaro. 2024.
Reuse, don’t retrain: A recipe for continued pretrain-
ing of language models.

Jonas Pfeiffer, Ivan Vulić, Iryna Gurevych, and Se-
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Abstract

This introduces SweSAT-1.0, a new bench-
mark dataset created from the Swedish uni-
versity entrance exam (Högskoleprovet) to
assess large language models in Swedish.
The current version of the benchmark in-
cludes 867 questions across six different
tasks, including reading comprehension,
mathematical problem solving, and logi-
cal reasoning. We find that some widely
used open-source and commercial models
excel in verbal tasks, but we also see that all
models, even the commercial ones, struggle
with reasoning tasks in Swedish. We hope
that SweSAT-1.0 will facilitate research on
large language models for Swedish by en-
riching the breadth of available tasks, of-
fering a challenging evaluation benchmark
that is free from any translation biases.

1 Introduction

The recent progress in language modeling has sig-
nificantly expanded the generalization capabilities
of large language models (LLMs). Models such as
Llama 3.1 (Dubey et al., 2024), Gemma (Team
et al., 2024), and GPT-4 (Achiam et al., 2023)
have demonstrated remarkable performance across
a wide range of NLP tasks, exceeding the expecta-
tions researchers held just a few years ago. Con-
sequently, many existing benchmarks are found
to be inadequate due to their task-specific nature,
focusing narrowly on traditional classification prob-
lems and failing to capture the full spectrum of lan-
guage understanding capabilities of modern LLMs.
Benchmarks such as SuperGLUE (Wang et al.,
2019) and XTREME (Hu et al., 2020) predom-
inantly assess specific NLP tasks, limiting their
ability to evaluate the broader, more generalized
language capabilities that contemporary LLMs are
seemingly capable of.

This issue is even more crucial for languages
other than English, which are often evaluated on
translated benchmarks that are prone to numerous
biases and quality issues. To address this gap, we
follow the tradition of using standardized exams
(Hendrycks et al., 2020; Achiam et al., 2023) and
introduce the first version of a Swedish benchmark
called SweSAT-1.01 sourced from the Swedish uni-
versity entrance exam, Swedish Scholastic Aptitude
Test (‘Högskoleprovet’ in Swedish). The exam en-
compasses both verbal and quantitative reasoning
tests across several sub-categories, such as read-
ing comprehension, mathematical problem solving,
and logical reasoning.

SweSAT-1.0 is sourced from the last eight ex-
ams over the past five years. The benchmark is
prepared through automatic parsing of the exam
files, followed by manual checks to correct any
parsing errors. It currently comprises 867 ques-
tions and has the following advantages over most
existing benchmarks: i) it is free from translation
biases and culturally irrelevant content; ii) it al-
lows researchers to control for data contamination2

as the exact administration dates of the exams are
known; iii) it broadens the range of tasks available
for evaluation in Swedish; and iv) it indirectly al-
lows a comparison against the real exam takers as
the results are publicly available.

In addition to presenting the benchmark, we
evaluate a wide range of popular multilingual
and Swedish-oriented LLMs. The results show
that while multilingual LLMs outperform their
Swedish-oriented counterparts, even the commer-
cial models fail at solving the reasoning tasks in
Swedish, highlighting a crucial shortcoming of the
existing LLMs. We hope that the benchmark will

1The dataset can be accessed here: https://github.
com/NLP-RISE/swesat

2Data contamination occurs when some or all of the test
data is inadvertently included in the training set (Li et al.,
2024).
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Section Total #
questions Description

ORD 160 Vocabulary: Tests the understanding of in-domain words and synonyms.
LÄS 160 Reading comprehension: Assesses the ability to make inference from a text.
MEK 160 Sentence completion: Assesses the ability to complete sentences via cloze tests.

XYZ 157 Mathematical problem-solving: Tests arithmetic, algebra, geometry, statistics, and functions.
KVA 140 Quantitative comparisons: Measures the ability to compare quantities in math concepts.
NOG 90 Data sufficiency: Evaluates the ability to determine if data is sufficient for solving a problem.

Table 1: Overview of exam sections in SweSAT-1.0, with total number of questions per section.

contribute to the evaluation of LLM performance
in Swedish and encourage further research and de-
velopment in multilingual contexts.

2 Related Work

There are a few benchmarks specifically designed
to evaluate NLP models in Swedish, with SuperLim
(Berdičevskis et al., 2023) and ScandEval (Nielsen,
2023) being the most prominent examples. Created
as the Swedish counterpart to SuperGLUE, Super-
Lim is a comprehensive test suite that consists of
15 tasks, such as word analogy, pronoun resolu-
tion, and text summarization.3 If not adapted from
English through translation, the featured datasets
are either constructed by reformatting pre-existing
tasks or created from scratch using pre-existing cor-
pora. The reliance on pre-existing datasets raises
concerns about data contamination, and the use
of translation could introduce bias, which signals
the need for new and complementary evaluation
datasets. ScandEval (Nielsen, 2023; Nielsen et al.,
2024), on the other hand, provides a multilingual
evaluation suite spanning a subset of North Ger-
manic languages, among them Swedish. Despite
broad task coverage, the majority of ScandEval
datasets are revisited versions of existing datasets,
which again raises concerns about whether data
contamination and the use of machine translation
could undermine the evaluation process.

3 Dataset Description

SweSAT-1.0 is a benchmark dataset sourced from
the publicly available Swedish Scholastic Aptitude
Test,4 a standardized Swedish university entrance
exam. The exam is written and administered by
the Swedish Council for Higher Education and
used for admission to higher education in Sweden.

3We note that one word-level task in SuperLim is directly
taken from the ORD section of SweSAT (see Table 1).

4https://www.studera.nu/hogskoleprov

The exam consists of two main parts: verbal and
quantitative, each containing four sections. Each
exam includes 160 multiple-choice questions taken
over a single day, lasting almost 8 hours (includ-
ing breaks). This exam has been selected for its
high quality; since it is written specifically to assess
students’ verbal and quantitative reasoning skills
in Swedish, we eliminate the risk of cultural and
linguistic biases.

Sample questions can be found in Appendix C.
We refer interested readers to Stage and Ögren
(2004) for more detailed information on the exam.

3.1 Dataset Construction

The dataset was constructed through a semi-
automatic process. Although the exam files are
available in PDF format, extracting the content
correctly proved challenging due the documents’
structure and formatting. For the verbal part, we
employed pdfplumber,5 a popular Python library
for PDF parsing. This approach worked well for
extracting plain text but struggled with recogniz-
ing and preserving the format of mathematical
expressions in the quantitative sections. There-
fore, we adopted a different method for quantita-
tive questions: we first converted each page into a
high-resolution image, then performed OCR using
GPT-4o (2024-08-06) with a detailed prompt (see
Appendix A) to accurately capture both the text
and mathematical formulas. The latter were repre-
sented in LaTeX in a consistent format, following
common practice (Wang et al., 2023; Zhang et al.,
2023). Despite our best efforts, we discovered that
there were various errors in the final output, such
as improper handling of hyphenated words at line
breaks, italicized words jumping onto the wrong
lines, or LaTeX formatting issues. Therefore, each
exam was manually checked and corrected for er-
rors to ensure accuracy and consistency.

5https://github.com/jsvine/pdfplumber

332

https://www.studera.nu/hogskoleprov
https://github.com/jsvine/pdfplumber


Model ORD LAS MEK XYZ KVA NOG Average

Aya-23-8B 43.12 40.00 40.94 18.75 18.75 10.42 28.66
Gemma-2-9b 85.62 82.50 86.25 31.77 30.31 31.77 58.04
Gemma-2-27b 91.56 90.62 90.94 37.50 36.25 32.29 63.19
GPT-SW3-1.3b 16.88 22.50 25.94 18.23 21.25 9.38 19.03
GPT-SW3-6.7b-v2 20.00 21.25 25.62 17.19 19.38 11.46 19.15
GPT-SW3-20b 21.56 30.63 30.31 18.75 22.50 12.50 22.71
AI-Sweden/Llama-3-8B 71.25 56.25 59.69 21.88 20.31 13.02 40.40
Llama-3-8B 68.44 65.00 55.62 18.75 26.25 25.00 43.18
Llama-3.1-8B 80.31 69.38 58.75 20.83 31.25 18.23 46.46
GPT-4o-mini (2024-07-18) 97.50 84.38 96.25 32.29 38.12 35.42 63.99
GPT-4o (2024-08-06) 100.0 92.50 99.38 47.40 45.62 45.83 71.79

Table 2: Average performance of baseline models across question types on the entire SweSat 1.0.

3.2 The SweSAT-1.0 Dataset

SweSAT-1.0 includes the last five years of the exam
(from 2020 to 2024) held over eight different ses-
sions.6 Following our primary focus on evaluating
text-based language models in Swedish, SweSAT-
1.0 includes only the verbal and quantitative reason-
ing sections that do not require multimodal inputs,
thus omitting the entire section of DTK (Diagrams,
Tables, and Maps) as well as any question that
requires visual information to solve. The ELF (En-
glish Reading Comprehension) section is also ex-
cluded from the dataset since our primary focus is
on Swedish.7 The dataset currently comprises 867
questions, covering six question types, as shown in
Table 1. All questions are in the multiple-choice
format: ORD and NOG sections have five options
whereas the remaining sections have only four.

Alongside the questions, we prompt the models
using the official exam instructions to simulate the
real exam-taking scenario. The original instruc-
tions include an explanation of the exam section,
and one sample question and answer for five of
the sections included in this dataset: ORD, MEK,
KVA, NOG, and XYZ. However, the sample ques-
tion and its answer in the XYZ section is excluded
as it contains figures incompatible with the bench-
mark setup.

This results in a mix of one-shot and zero-shot
prompts. We exclude the sample questions and
answers in order to conduct the experiments using
a zero-shot version of the exam instructions. The

6At the time when the dataset was constructed, the 2024
fall exam has not yet been held, and only the spring exam is
available for 2020.

7Note that the ELF sections are not publicly available, so
these questions could not be included in the benchmark.

zero-shot version of these instructions (which ex-
cludes any example questions) as well as the mixed
one-shot version are both included in the dataset
release to facilitate a standardized evaluation across
all sections.

4 Baselines

In this section, we evaluate the performance of
a range of LLMs, each with different levels of
Swedish coverage during training, on SweSAT-1.0.
The primary purpose of this baseline evaluation
is to evaluate the dataset itself by analyzing how
some of the most popular LLMs perform on its
tasks to ensure that the dataset is sufficiently chal-
lenging and valuable as a benchmark. By doing so,
we also provide reference scores for future studies
while exploring the current capabilities of LLMs
in Swedish. Our evaluation includes a range of
instruction-tuned open-source models such as GPT-
SW3 (Ekgren et al., 2024), Gemma-2 (Team et al.,
2024), Aya (Üstün et al., 2024), Llama 3 and 3.1
(Dubey et al., 2024), as well as the commercial
GPT-4o-mini (2024-08-06) and GPT-4o (2024-07-
18) models (Achiam et al., 2023). The entire model
list can be found in Appendix B.

4.1 Experimental Setup

We use the original exam instructions (exclud-
ing the sample questions) as zero-shot prompts
to assess the models’ performance under authen-
tic exam-taking conditions. To ensure adherence
to these instructions, we add a brief directive8 at

8Svara endast med bokstaven på det rätta alternativet utan
någon förklaring (‘Answer only with the letter of the correct
option without any explanation’).
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Figure 1: Radar chart comparing model performances across different question types

the end of each question, prompting the models
to return a single letter as the desired response for-
mat. The models may at most output a single token;
any output that does not exactly match one of the
allowed answer letters (A, B, C, D, or E; depend-
ing on the question type) is discarded. Questions
are presented one by one, with reading passages
repeated in the prompt before each LÄS question.
Answers are generated using greedy decoding9 to
ensure a deterministic output, hence reproducibil-
ity, by selecting the highest probability response at
each step. As all questions are multiple-choice, we
use accuracy as our evaluation metric.

4.2 Results

The average performance of baseline models across
eight exams is shown in Table 2. All models per-
form markedly better on the verbal sections (MEK,
LÄS, and ORD), with Gemma models achieving
around 90% accuracy and GPT-4o achieving al-
most a perfect score in the MEK and ORD sections.
On the other hand, quantitative sections yield sig-
nificantly lower scores, with even GPT-4o failing
on the majority of questions. Swedish-oriented
models –– all models in the GPT-SW3 family in
addition to a fine-tuned Llama 3 version –– con-

9For GPT-4o models, we set the temperature to 1e−9.

sistently show lower accuracy across all question
types. To note a special case, we find that the afore-
mentioned Llama 3 instruct-variant, fine-tuned on
The Nordic Pile (Öhman et al., 2023),10 exhibits
better performance than all evaluated GPT-SW3
models. Yet, it achieves slightly lower average ac-
curacy than the original Llama 3 on five of the eight
exams. This raises questions on whether continued
pre-training on a mix of Scandinavian languages is
useful for this task, or whether it may depend on
the nature of the selected dataset.

The differences among models across question
types are further illustrated in Figure 1. The results
suggest that current LLMs have significant limi-
tations in quantitative reasoning tasks in Swedish.
Furthermore, we also analyze the patterns in the
way models provide answers through confusion
matrices (see Appendix D). GPT-SW3 models are
observed to frequently select the same options (e.g.,
consistently choosing A or alternating between A
and D in the case of the 20B version), which high-
lights potential shortcomings in following instruc-
tions. However, the selected options for other mod-
els are more evenly distributed across the poten-
tial answers, suggesting better task understanding,

10A dataset comprised of a mix of Scandinavian languages
and English.
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Figure 2: Average performance of baseline models across years

even though the correct option is not consistently
identified. Yet, it should also be noted that this
evaluation represents a particularly challenging set-
ting where we require the models to produce only
the correct answer without using techniques like
chain-of-thought prompting (Wei et al., 2022) and
without model-specific prompt engineering.

Finally, we investigate the potential impact of
data contamination on LLM performance. As
shown in Figure 2, all models exhibit a highly con-
sistent performance across exam years, with an
average standard deviation of only 2.8% in accu-
racy. This suggests that the contamination effect
is absent and that the exam difficulty is consistent
across years.

5 Conclusion

In this paper, we present a comprehensive bench-
mark to evaluate LLMs’ various abilities in
Swedish, using the university entrance exam. We
believe our benchmark provides a consistent frame-
work for testing LLM performance across a range
of tasks detailed above, with an option to control for
data contamination in model training through exam
timestamps. Our baseline evaluations reveal the
high accuracy of multilingual models across verbal
tasks compared to their Swedish-centric counter-
parts – but also the overall weakness of all tested

models on the reasoning tasks.
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A Parsing the Quantitative Questions

Parsing the quantitative part of the exams, i.e.,
sections containing mathematical expressions and
visual elements, proved to be very challenging
for standard PDF parsing libraries in accurately
recovering complex mathematical equations.
Therefore, we performed OCR on each page
separately using GPT-4o with the following
prompt:

The image contains an exam sheet with both text-based
and visual-based questions. Your task is to extract only the
text-based questions and answers and format them into the
following JSON structure. If a question contains any actual
visual (such as a diagram, shape, figure, graph, or table visible
in the image), set "is accompanied with visual"
to "yes" and specify the type of the visual in the
"visual type" field (e.g., ”diagram”, ”graph”, etc.).
In this case, set the "question" field to "Visual
required to solve this question" and leave
the "answers" field blank. If the question describes
geometrical objects (like lines, points, or coordinates) but does
not include an actual visible diagram, treat it as a text-only
question. Set "is accompanied with visual" to
"no" and fully extract the question and answers, preserving
all formulas and numbers exactly as shown.

JSON Format:
[

{
"question number": <number>,
"question": "<question text with formulas>",
"answers": {

"a": "<option a>",
"b": "<option b>",
"c": "<option c>",
"d": "<option d>"

},
"is accompanied with visual": "<yes/no>",
"visual type": "<visual type>",
"question type": "<XYZ/KVA/NOG/DTK>"

}
]

Further Instructions:

• Fully extract text-based questions and answers exactly
as shown without modification.

• Do not simplify or paraphrase any part of the question.
Classify the question as XYZ, KVA, NOG, or DTK.

• All the math formulas must be represented as LaTeX
code, surrounded by $ (e.g., $\frac{1}{3}$). Convert
special math notations, such as √, into the correspond-
ing LaTeX format. Wrap all the formulas with $ sym-
bols.

• Pay extra attention to capturing exponents correctly. Be
aware that there may be fractional exponents, such as
\( xˆ{\frac{5}{15}} \)

• Distinguish clearly between similar characters, particu-
larly ”2” and ”5” and ”6” and ”8”, to avoid confusion.

• Pay close attention to capturing nested exponents and
grouping symbols accurately. When encoding ex-
pressions, make sure to wrap exponents and nested
exponents within braces {} to maintain the correct
mathematical hierarchy. For example, $\left( xˆ7
\right)ˆ{\frac{1}{2}}$.

• Validate the resulting LaTeX expression by ensuring it
visually matches the intended structure of the original
mathematical notation.

• Pay special attention to minus signs. Ensure that all mi-
nus signs are correctly included and accurately placed.

• Always encode expressions properly in LaTeX. Make
sure to use ’\’ for LaTeX commands and wrap all for-
mulas with $ symbols.

• Ensure all LaTeX functions, such as \times and \text,
are used only within math mode (i.e., surrounded by
$...$).

B Baseline models

Table 3 provides the repository names of the
baselines models on https://huggingface.
co/, alongside their simplified names used
throughout the text. As for the OpenAI models,
we used the (2024-07-18) release of GPT-4o-mini
and the (2024-08-06) release of GPT-4o.

Simplified Name HuggingFace model repository
Aya-23-8B CohereForAI/aya-23-8B
Gemma-2-27b google/gemma-2-27b-it
Gemma-2-9b google/gemma-2-9b-it
GPT-SW3-1.3b AI-Sweden-Models/gpt-sw3-1.3b-instruct
GPT-SW3-20b AI-Sweden-Models/gpt-sw3-20b-instruct
GPT-SW3-6.7b-v2 AI-Sweden-Models/gpt-sw3-6.7b-v2-instruct
AI-Sweden/Llama-3-8B AI-Sweden-Models/Llama-3-8B-instruct
Llama-3.1-8B meta-llama/Llama-3.1-8B-Instruct
Llama-3-8B meta-llama/Meta-Llama-3-8B-Instruct

Table 3: HuggingFace model repository names of
the baseline models

C Example Questions

Figures 3 and 4 show sample questions from the
NOG and KVA question types (respectively), as
shown in the exam sheet.

D Confusion Matrices

Figure 5 presents confusion matrices summariz-
ing model predictions over the entire SweSAT-1.0
dataset.
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What is the mean of a and b?

1. The mean of (a + 5) and (b + 9) is equal to
10.5.

2. The mean of a, (b− 1) and 3 is equal to 3.

Sufficient information for solving the problem
is obtained:

A from (1) but not from (2)
B from (2) but not from (1)
C from (1) and (2) together
D from both (1) and (2) each by itself
E not from the two statements

Figure 3: A sample from the NOG question type in
Swedish (top) and translated to English (bottom)

The mean value of the three numbers x, y and z
is 12. The sum of y and z is 30.

1. Quantity I: x
2. Quantity II: 9

A I is greater than II
B II is greater than I
C I is equal to II
D The information is insufficient

Figure 4: A sample from the KVA question type in
Swedish (top) and translated to English (bottom)
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(a) GPT-SW3-1.3b (b) GPT-SW3-6.7b-v2 (c) GPT-SW3-20b

(d) AI-Sweden/Llama-3-8B (e) Aya-23-8B (f) Gemma-2-9b

(g) Gemma-2-27b (h) Llama-3-8B (i) Llama-3.1-8B

(j) GPT-4o-mini-2024-07-18 (k) GPT-4o-2024-08-06

Figure 5: Confusion matrices for the baseline models on SweSAT 1.0. Note that only two sections feature
five options, hence the lower frequency of option E.

339



Proceedings of the Joint 25th Nordic Conference on Computational Linguistics and 11th Baltic Conference on Human Language Technologies
(NoDaLiDa/Baltic-HLT 2025), pages 340–353

March 3-4, 2025 ©2025 University of Tartu Library

How Well do LLMs know Finno-Ugric Languages?
A Systematic Assessment

Hele-Andra Kuulmets Taido Purason Mark Fishel
Institute of Computer Science

University of Tartu
{hele-andra.kuulmets, taido.purason, mark.fisel}@ut.ee

Abstract

We present a systematic evaluation of mul-
tilingual capabilities of open large lan-
guage models (LLMs), specifically focus-
ing on five Finno-Ugric (FiU) languages.
Our investigation covers multiple prompt-
ing strategies across several benchmarks
and reveals that Llama 2 7B and Llama
2 13B perform weakly on most FiU lan-
guages. In contrast, Llama 3.1 models
show impressive improvements, even for
extremely low-resource languages such
as Võro and Komi, indicating success-
ful cross-lingual knowledge transfer in-
side the models. Finally, we show that
stronger base models outperform weaker,
language-adapted models, thus emphasiz-
ing the importance of the choice of the
base model for successful language adap-
tation.

1 Introduction

Large language models (LLMs) have recently
made significant advances in multilingual settings.
For instance, GPT-4 achieves 80.9% accuracy for
Latvian and 76.5% for Icelandic on the 3-shot
MMLU benchmark (OpenAI et al., 2024). For
some time, strong multilingual capabilities were
mainly limited to proprietary models, such as
ChatGPT1 and Claude2, whose weights, train-
ing details, and inference processes are kept pri-
vate. These models outperformed open LLMs3

like Llama 2 models (Touvron et al., 2023), on
non-English tasks. However, open-weight LLMs
have recently begun to close this gap (Dubey et al.,
2024; Jiang et al., 2024), even though the officially

1https://openai.com/index/chatgpt/
2https://www.anthropic.com/claude
3Models that have publicly accessible weights available

for use, modification, and research.

supported languages of these models remain lim-
ited and the primary focus is on those with signif-
icantly more data available than for Finno-Ugric
(FiU) languages.

On the other hand, it has been observed that
even models optimized solely for English, such as
the Llama 2 family models (Touvron et al., 2023),
demonstrate some understanding of a wide range
of languages beyond their intended use (Holter-
mann et al., 2024). In experiments conducted by
Holtermann et al. (2024), the Llama 2 7B chat
model correctly answered 14% and 40% of basic
open-ended questions in Estonian and Finnish, re-
spectively, even though only 0.03% of the Llama 2
training data was in Finnish and less than 0.005%
in Estonian (Touvron et al., 2023).

This work evaluates the multilingual capabili-
ties of open LLMs on five FiU languages: Finnish,
Estonian, Livonian, Võro, and Komi. Among
these, Finnish and Estonian are the most well-
resourced, making it easier to adapt existing LLMs
for these languages through continued pretrain-
ing (Kuulmets et al., 2024; Luukkonen et al.,
2023). In contrast, Võro, Livonian, and Komi
are extremely low-resource languages, making
language-specific adaptation considerably more
challenging.

The aim of this work is to clarify the capabilities
of open LLMs in understanding FiU languages.
While it is evident that open LLMs can understand
these languages to some degree (Holtermann et al.,
2024), their proficiency and comparative perfor-
mance across models remain largely unexplored.
We focus on Llama models, which have demon-
strated state-of-the-art performance and compet-
itiveness with proprietary models (Dubey et al.,
2024; Touvron et al., 2023) and have been widely
used in non-English adaption (Kuulmets et al.,
2024; Etxaniz et al., 2024; Lin et al., 2024; Fu-
jii et al., 2024; Dima et al., 2024; Basile et al.,
2023). Another reason for focusing on Llama
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models is that the newer Llama 3.1 models are
natively multilingual, potentially improving per-
formance on unsupported languages as well. For
further insights, we compare Llama models with
Mistral NeMo (Jiang et al., 2024), another natively
multilingual open model shown to be competitive
with Llama 3.1 model of the same size.

We evaluate only base models rather than chat-
optimized models, as most knowledge is acquired
during pretraining (Zhou et al., 2023; Lin et al.,
2023). In other words, a stronger base model of-
fers greater potential for developing a strong chat
model. Consequently, the performance of base
models on different FiU languages can serve as a
relative estimate of the chat model’s quality.

The evaluation is conducted using several exist-
ing benchmarks that include one or more Finno-
Ugric languages. We examine both the zero-shot
and few-shot capabilities of these models. Ad-
ditionally, we explore whether chain-of-thought
prompting, which involves first translating the in-
put to English, could improve results on Finno-
Ugric languages. In summary, we seek to answer
the following research questions:

1. How well can open LLMs solve tasks in
Finno-Ugric languages?

2. What is the expected improvement from few-
shot prompting over zero-shot prompting in
solving tasks in Finno-Ugric languages?

3. Can chain-of-thought prompting, where the
model first translates the input into English,
improve the performance of open LLMs on
Finno-Ugric languages?

2 Related Work

2.1 Multilingual LLMs
While state-of-the-art LLMs are typically trained
on English-centric data, they exhibit some mul-
tilingual capabilities (Brown et al., 2020; Holter-
mann et al., 2024), even for languages with min-
imal representation in the training data (Holter-
mann et al., 2024; Touvron et al., 2023). This sug-
gests that knowledge transfer from high-resource
languages to low-resource languages must occur
at least to some extent within the model. These
multilingual capabilities can be further enhanced
through continued pretraining in the target lan-
guages, even with just a few billion tokens of data
(Pires et al., 2023; Cui et al., 2024; Kuulmets et al.,
2024; Etxaniz et al., 2024).

Recent open LLMs such as Llama 3.1 (Dubey
et al., 2024), Mistral NeMo (Jiang et al., 2024),
and Tower (Alves et al., 2024) are specifically
optimized for multilingual performance. For ex-
ample, Llama 3.1 models officially support seven
non-English languages (Dubey et al., 2024), Mis-
tral NeMo is particularly strong in ten languages
other than English (Jiang et al., 2024), and Tower
is trained on a multilingual dataset consisting of
ten languages, including English. According to
Dubey et al. (2024), the strong performance in
non-English languages is achieved by increasing
the proportion of multilingual data in the pretrain-
ing dataset and incorporating high-quality target
language instructions into the instruction-tuning
data.

However, neither Mistral NeMo nor Llama 3.1
models officially support Finno-Ugric languages.
The amount of Finno-Ugric data in their pretrain-
ing corpora is unknown but is likely very limited.
For example, Purason et al. (2024) presented ex-
periments on adapting LLMs to FiU languages,
but gathered only 2.6 million characters of pre-
training data for Livonian, 14 million for Võro,
and 579 million for Komi.

2.2 In-context Learning

In-context learning (ICL) (Brown et al., 2020) is a
method where a pretrained language model learns
to generate the desired output for a given task from
the context of the prompt, without any gradient up-
dates. One of the most common applications of
ICL is few-shot prompting, where a few example
question-answer pairs are provided in the prompt
to guide the model in solving the task.

2.2.1 Chain-of-thought Prompting
Chain-of-thought (CoT) prompting (Wei et al.,
2023) is a prompting technique that improves
upon few-shot prompting. With CoT, the exam-
ple demonstrations provided in the prompt include
a series of intermediate reasoning steps that con-
clude with an answer as opposed to being just
question-and-answer pairs. While initially pro-
posed to improve English reasoning in LLMs, Shi
et al. (2022) showed that CoT prompting turns
English-centric PaLM and GPT-3 into multilin-
gual reasoners, achieving strong results even in
languages whose proportion in the training data is
as small as 0.01%. Notably, they achieve an accu-
racy of 91% on the Estonian subset of the multilin-
gual commonsense reasoning benchmark XCOPA
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Given a passage and a question, select the correct answer from the given choices.

P: Om kimmäs tett, et iispäävä Hummogu-Prantsusmaalt Lyoni lähküst suust lövvetül lõpnul mõtsikul pardsil oll’ külen inemiisile 
surmava tsirgugripi tüvi H5N1. Prantsusmaa om Euruupa Liido säitsmes riik, kiä viirusõga hädän om; Prantsusmaa tulõ päält 
Austriat, S’aksamaad, Sloveeniät, Bulgaariat, Kreekat ja Itaaliat. H5N1 arvatavaq ettetulõmisõq Horvaatian ja Taanin olõ-õi 
kinnütüst löüdnüq.
Q: Mitmõst Õuruupa Liido riigist H5N1 viirust om lövvet?
A. Viiest; B. Kuvvõst; C. Säitsmest; D. Katsast
Answer: Let's think step by step.
The passage "<passage in võro>" can be translated from Võro to English as "The strain of bird flu lethal to humans, H5N1, has 
been confirmed to have infected a dead wild duck, found on Monday, in marshland near Lyon in the east of France. France is 
the seventh country in the European Union to suffer this virus; following Austria, Germany, Slovenia, Bulgaria, Greece and Italy. 
Suspected cases of H5N1 in Croatia and Denmark remain unconfirmed.”
The question "<question in võro>" can be translated from Võro to English as "In how many countries in the European Union has 
the H5N1 virus been identified?" and the options translate as follows: "A. Five", "B. Six", "C. Seven", "D. Eight". According to 
text the correct answer in English is "C. Seven". Therefore, the answer in Võro is "C. Säitsmest".

P: Giancarlo Fisichella kaot’ uma auto üle kontrolli ja lõpõt’ võikisõitmisõ ärq pia päält alostust. Timä miiskunnaliigõq Fernando 
Alonso juhtõ võikisõitmist inämbüse aost, a tuu lõppi õkva päält boksipiätüst, arvadaq halvastõ kinnütedü hää edetsõõri peräst. 
Michael Schumacher lõpõt’ võistlusõ pia päält Alonsot palľodõst müüdasõitmiisist tulnuidõ vedrostusõ häti peräst.
Q: Mille Schumacher võikisõidu lõpõt'?
A. Tä kaot' uma auto üle kontrolli; B. Ka pand' Alonsoga kokko; C. Fisichella lahk' tsõõri ärq; D. Auto vedrostusõ man oll' hädä
Answer: 

model input (CoT prompting)

Let's think step by step.
The sentence “<passage in võro>” can be translated from Võro to English as “Giancarlo Fisichella lost control of his car and 
ended the race very soon after the start. His teammate Fernando Alonso was in the lead for most of the race, but ended it right 
after his pit-stop, probably because a badly tucked right front wheel. Michael Schumacher ended his race not long after Alonso, 
because of the suspension damage in the numerous battles during the race.”.
The question "<question in võro>" can be translated from Võro to English as “What caused Schumacher to end his race early?” 
and the options translate as follows: "A. He lost control of his car", "B. A collision with Alonso", "C. Wheel damage caused by 
Fisichella", "D. Damage to the car’s suspension". According to text the correct answer in English is “D. Damage to the car’s 
suspension". Therefore, the answer in Võro is "D. Auto vedrostusõ man oll' hädä”.

Given a passage and a question, select the 
correct answer from the given choices.

P: Om kimmäs tett, et iispäävä Hummogu- 
Prantsusmaalt Lyoni lähküst suust lövvetül 
lõpnul mõtsikul pardsil oll’ külen inemiisile 
surmava tsirgugripi tüvi H5N1. Prantsusmaa 
om Euruupa Liido säitsmes riik, kiä viirusõga 
hädän om; Prantsusmaa tulõ päält Austriat, 
S’aksamaad, Sloveeniät, Bulgaariat, Kreekat 
ja Itaaliat. H5N1 arvatavaq ettetulõmisõq 
Horvaatian ja Taanin olõ-õi kinnütüst löüdnüq.
Q: Mitmõst Õuruupa Liido riigist H5N1 viirust 
om lövvet?
A. Viiest; B. Kuvvõst; C. Säitsmest; D. 
Katsast
Answer: C

P: Giancarlo Fisichella kaot’ uma auto üle 
kontrolli ja lõpõt’ võikisõitmisõ ärq pia päält 
alostust. Timä miiskunnaliigõq Fernando 
Alonso juhtõ võikisõitmist inämbüse aost, a 
tuu lõppi õkva päält boksipiätüst, arvadaq 
halvastõ kinnütedü hää edetsõõri peräst. 
Michael Schumacher lõpõt’ võistlusõ pia päält 
Alonsot palľodõst müüdasõitmiisist tulnuidõ 
vedrostusõ häti peräst.
Q: Mille Schumacher võikisõidu lõpõt'?
A.Tä kaot' uma auto üle kontrolli; B. Ka pand' 
Alonsoga kokko; C. Fisichella lahk' tsõõri ärq; 
D. Auto vedrostusõ man oll' hädä
Answer: 

D

model output

model output

model input (few-shot prompting)

Figure 1: Model input and expected output for few-shot prompting (left) and for CoT prompting where
the intermediate step involves translating the input from the source language (Võro) to English. The
example is taken from the Belebele benchmark.

(Ponti et al., 2020) (average accuracy 89.9%) with
PaLM. Their observation that there is no strong
correlation between performance and language
frequency in the training corpora leads them to
suggest that, to some extent, language models
can transfer knowledge from high-resource to low-
resource languages, and that this ability is mainly
facilitated by scale.

2.3 English as Pivot Improves Multilingual
Capabilities of LLMs

One of the findings of Shi et al. (2022) is that
CoT prompting with intermediate reasoning steps
in English outperforms native CoT prompting with
steps in the target language. Huang et al. (2023)
show that conversational models such as ChatGPT
and Llama-2 also benefit from using English as a
pivot language – asking the model to first retell
the request in English improves performance on
non-English tasks. Notably, this strategy elim-
inates the need for few-shot examples, meaning
that the ability to translate between English and
the target language must have been learned dur-
ing (pre)training rather than from parallel exam-

ples provided in the context. Zhang et al. (2024)
instruction-tune pretrained LLMs to first process
instructions in the pivot language English and then
produce responses in the target language.

The phenomenon has been explicitly studied by
Zhang et al. (2023), who show that ChatGPT be-
haves similarly to subordinate bilinguals whose
representation of knowledge is strongly biased to-
ward English and, as a consequence, translates
all non-English inputs to English. Wendler et al.
(2024) investigate the latent representations of to-
ken embeddings of LLaMA 2 and find that in the
middle layers, these are closer to English tokens,
and only in the final layers shift towards target
language tokens. They interpret this result as the
”concept space” being closer to English.

3 Datasets

The selection of benchmark tasks is determined
by the availability of datasets for our target lan-
guages. In total, we evaluate the models on five
tasks using nine datasets. These datasets primarily
originate from cross-lingual benchmarks that in-
clude multiple languages. For our experiments, we
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task datasets est fin vro kpv liv

machine translation FLORES-200 (NLLB Team, 2022),
SMUGRI-FLORES (Yankovskaya et al., 2023)

✓ ✓ ✓ ✓ ✓

multiple choice QA Belebele (Bandarkar et al., 2024),
Belebele-smugri (Purason et al., 2024)

✓ ✓ ✓ ✓ ✓

text classification SIB-200 (Adelani et al., 2024),
SIB-smugri (Purason et al., 2024)

✓ ✓ ✓ ✓ ✓

extractive QA EstQA (Käver, 2021),
TyDiQA (Clark et al., 2020)

✓ ✓

commonsense reasoning XCOPA (Ponti et al., 2020) ✓

Table 1: Tasks and datasets used for benchmarking the models.

use only the subsets that correspond to the selected
target languages. A summary of the datasets, tasks
and their language coverage is provided in Table 1.

Machine Translation (MT) Our evaluation in-
cludes translation tasks from low-resource FiU
languages to English. For this purpose, we use the
FLORES-200 benchmark (NLLB Team, 2022),
which includes Estonian and Finnish, and the
FLORES-SMUGRI dataset (Yankovskaya et al.,
2023), which translates the first 250 sentences
from FLORES-200 to ten low-resource FiU lan-
guages, including Komi, Võro, and Livonian. To
ensure consistency, we use only the first 250 sen-
tences of FLORES-200 for Estonian and Finnish
as well.

Multiple choice QA This task involves select-
ing the correct answer from a set of options,
given a passage, a question, and possible answer
choices. We use the Belebele dataset (Bandarkar
et al., 2024), which augments paragraphs from
the FLORES-200 benchmark with corresponding
questions and answer choices. Among its 122 lan-
guages, Belebele includes Estonian and Finnish.
Purason et al. (2024) further extend the dataset to
cover Võro, Livonian, and Komi, resulting in a to-
tal of 127 examples per language. For consistency,
we use the same number of examples for Estonian
and Finnish.

Topic classification We use the massively mul-
tilingual text classification benchmark SIB-200
(Adelani et al., 2024), which bases on the
FLORES-200 benchmark and comprises 125 ex-
amples per language. This benchmark involves
classifying sentences from FLORES-200 into
seven categories. Purason et al. (2024) extend it
to include Võro, Livonian, and Komi.

Extractive QA It is a task in which the objec-
tive is to identify a snippet from a given passage

that answers a given question. There exists an Es-
tonian dataset for this task, EstQA (Käver, 2021)
which includes 603 test examples, each poten-
tially featuring multiple golden answers. In our
evaluation, however, we consider only the first
answer for each example. Finnish is included
into the multilingual dataset TyDiQA (Clark et al.,
2020) covering eight typologically diverse lan-
guages. Both of these datasets are translation-
free, meaning they are created directly in the target
language rather than translated from English. In
our experiments, we use Finnish samples from the
secondary-task subset of TyDiQA, where
the task format is similar to EstQA. This subset
contains 782 Finnish test examples.

Commonsense reasoning Reasoning skills
have been observed to be less trivially transfer-
able across languages than question-answering
abilities (Kuulmets et al., 2024; Zhu et al., 2024;
Huang et al., 2023). To avoid creating a mis-
leading impression of the models’ capabilities, it
is essential to include reasoning datasets in our
evaluation benchmarks. To the best of our knowl-
edge, only one such benchmark incorporates a
Finno-Ugric language: XCOPA (Ponti et al.,
2020), which includes Estonian. XCOPA requires
models to identify which of two answer choices
most plausibly represents the cause or effect of
a given premise. The test dataset comprises 500
examples.

4 Methodology

For tasks that do not require open-ended text
generation (e.g., Belebele, SIB, XCOPA), perfor-
mance is evaluated by calculating the log likeli-
hood of each possible answer choice and selecting
the most likely one as the prediction. In contrast,
tasks requiring open-ended text generation, such
as FLORES, extractive QA, we use greedy decod-
ing to generate predictions.
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We report the results both in zero-shot and few-
shot setting where we add either 1, 3 or 5 input-
output pairs to the prompt to provide the model
with task-specific guidance. Additionally, we in-
vestigate the impact of CoT prompting, which
guides the model to generate intermediate reason-
ing steps before producing the final answer. Draw-
ing inspiration from Shi et al. (2022), the inter-
mediate steps require translating the input into
English, identifying the answer in English, and
translating it back to the target language. CoT
prompting can also be used both in zero-shot4 and
few-shot settings. In the zero-shot setting, the
prompt ends with ”Let’s think step-by-step” (Ko-
jima et al., 2022), while in the few-shot setting,
this is followed by explicit reasoning steps. Fig-
ure 1 illustrates model input and output in one-shot
setting with and without CoT.

We use regexes to extract answers from the gen-
erated text in tasks requiring decoding. Although
this approach may occasionally produce false neg-
atives, the models generally adhere well to the out-
put format in few-shot settings. We implement all
evaluation strategies with lm-eval-harness
framework (Gao et al., 2024) and make the task
configurations publicly available.5

5 Results

5.1 Main Results
Table 2 shows 5-shot results (without CoT) across
all tasks and models. In general, Llama 2 7B and
Llama 2 13B perform significantly worse on the
observed FiU languages than the Llama 3.1 fam-
ily models. The exception is Finnish, on which
the Llama 2 models are notably better than on
the other FiU languages. This may be due to the
larger amount of Finnish data in the Llama 2 train-
ing dataset (Touvron et al., 2023) when compared
to data in other FiU languages. However, both
Llama-2 7B and Llama 2 13B still appear weak
on Finnish when compared to other models.

Llama-2 70B shows notable improvements over
Llama 2 7B and Llama 2 13B on Estonian and
Finnish across all tasks. The results for Bele-
bele and SIB also indicate improvement for Võro,
though the improvement in machine translation
(FLORES) is less pronounced. Additionally, SIB
appears to be generally too easy of a benchmark
for the models, as Llama 2 7B already achieves

4We leave zero-shot CoT for future research.
5https://github.com/TartuNLP/smugri-lm-eval-configs

86% accuracy for Finnish. For other languages,
the benchmark saturates with Llama 2 70B. For
this reason, we exclude SIB from further analysis.
Finally, we observe that Llama 2 models are the
weakest on Komi and Livonian.

L2-7B L2-13B L2-70B L3.1-8B L3.1-70B

SIB

liv 64.8 61.6 83.2 74.4 77.6
kpv 68.0 59.2 83.2 77.6 87.2
vro 64.8 59.2 85.6 86.4 86.4
est 69.6 68.0 88.8 89.6 89.6
fin 85.6 81.6 91.2 87.2 89.6

Belebele

liv 26.23 35.25 36.89 37.70 42.62
kpv 27.87 31.15 34.43 52.46 73.77
vro 27.05 32.79 44.26 50.82 73.77
est 28.69 36.07 66.39 68.03 88.52
fin 44.26 54.92 86.89 74.59 91.80

XCOPA

est 49.2 51.8 67.6 69.2 92.6

FLORES (FiU → En)

liv 6.8 9.3 12.0 10.5 16.1
kpv 5.4 6.0 7.3 10.3 21.9
vro 7.8 9.1 12.9 16.7 30.3
est 12.6 17.8 26.9 35.3 41.0
fin 29.6 31.9 34.6 32.0 37.1

Extractive QA

exact match

est 21.89 34.33 49.25 50.75 52.74
fin 51.66 48.34 53.45 58.31 47.06

F1

est 35.35 51.39 66.72 70.87 73.76
fin 70.63 70.36 74.65 75.44 72.98

BERTScore F1 (Zhang* et al., 2020)

est 76.88 82.95 88.86 91.76 93.02
fin 88.50 87.95 89.60 90.63 88.67

Table 2: 5-shot results on all tasks. Accuracy is
reported for SIB, Belebele and XCOPA. BLEU is
reported for FLORES. BERTScore F1 was calcu-
lated using bert-base-multilingual-cased.

We notice that on Estonian and Finnish, Llama
2 70B is competitive with Llama 3.1 8B despite
the latter being nearly nine times smaller, although
Llama-3.1 8B appears to slightly underperform on
Finnish, as indicated by the results of Belebele and
FLORES.

When comparing Llama-3.1 8B to Llama-3.1
70B, the larger model clearly outperforms the
smaller one on Belebele, FLORES, and XCOPA.
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Figure 2: Effect of few-shot examples in 0, 1, 3 and 5-shot setting.

For Estonian and Finnish, the Llama-3.1 70B
achieves nearly 90% accuracy on Belebele and
XCOPA, along with very strong BLEU scores on
the FLORES dataset. The improvements are also
significant for extremely low-resource languages
Võro, Komi and Livonian.

5.2 The Effect of Few-Shot Examples

We analyze the impact of few-shot examples on
the models’ ability to solve tasks in FiU languages.
We limit this analysis to three models: Llama 2
70B, Llama 3.1 8B, and Llama 3.1 70B due to
their superior performance.

Figure 2 illustrates the results. For Belebele and
QA tasks, one-shot prompting generally improves
performance compared to zero-shot prompting.
However, the gains from adding three or five ex-
amples vary significantly across tasks and lan-
guages. Notably, the improvements from few-
shot examples are particularly inconsistent on the
Finnish QA task with Llama-3.1 70B.

In contrast, on FLORES benchmark, the im-
provements are more consistent as the number
of examples increases. Notably, Llama-3.1 70B

shows substantial gains when translating from
Võro, Livonian, and Komi to English, with im-
provements of 6.6 BLEU points for Võro, 6.6 for
Livonian, and 8.1 for Komi when using five exam-
ples compared to zero-shot prompting.

To conclude, few-shot prompting can yield no-
table gains in some cases—such as a 17% im-
provement for Estonian on Belebele with three ex-
amples and using Llama 2 70B as the base model.
However, these gains are inconsistent and smaller
compared to the improvements achieved by using
a stronger base model. For instance, the zero-
shot performance for Estonian on Belebele with
Llama 3.1 70B surpasses the 3-shot performance
of Llama 2 70B. This highlights the greater poten-
tial of stronger base models over prompt engineer-
ing the weaker models.

5.3 The Effect of CoT Prompting

We analyze the impact of CoT prompting across
three tasks: Belebele, QA, and XCOPA. Due to
the significant increase in the input length with
additional examples, we only compare one-shot
prompting with one-shot CoT prompting for Bele-
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Figure 3: Comparison of CoT prompting and few-shot prompting on Belebele (left, 1-shot), QA (middle,
1-shot) and XCOPA (right, 1-, 3- and 5-shot). The bars shows the scores with few-shot prompting.
Horizontal line (–) indicates the score with few-shot CoT prompting with the same number of shots.

bele and QA. For XCOPA we consider 1-, 3-, and
5-shot scenarios.

Figure 4 shows the results. In Belebele task,
Llama 2 13B, Llama 2 70B and Llama 3.1 8B ben-
efit from CoT prompting in case of Estonian and
Finnish. With the same models the effect of CoT
prompting to Võro, Livonian and Komi is mostly
negative. Llama 2 7B shows negative or minimal
positive gains on all languages. Thi can be ex-
plained with the weak translation skills of Llama
2 7B. On the other hand, Llama 3.1 70B has very
strong translation skills, yet CoT prompting yields
smaller positive improvement than weaker mod-
els. This suggests the strong cross-lingual capa-
bilities of Llama 3.1 70B that mitigate the need
for CoT prompting.

For the QA task, CoT prompting consistently
results in lower performance. This could be at-
tributed to the nature of the extractive QA task,
which requires the output to precisely match the
correct text snippet. The intermediate transla-
tion steps involved in CoT prompting may lead to
slight alterations in the morphological form of the
answer, causing a mismatch with the expected out-
put.

In XCOPA, we see mostly positive improve-
ments from CoT prompting, with even Llama 2
13B benefiting, while Llama 2 7B does not. The
average improvement across all shots for Llama 2
70B and Llama 3.1 8B is 14%. However, the ben-
efit of CoT prompting decreases significantly for
Llama 3.1 70B, following the trend observed in
the Belebele task.

These observations naturally raise the question
of whether there is a correlation between a model’s

translation capability and its ability to benefit from
CoT prompting. To answer that question, we
plot the 1-shot BLEU scores of FiU → English
translation direction against the gains from 1-shot
CoT prompting over 1-shot prompting (Figure 4).
As shown in the plot, there is no strong correla-
tion between machine translation quality and CoT
gains. Interestingly, CoT prompting can provide
improvements over few-shot prompting, even for
models with weak translation capabilities. How-
ever, it also appears that CoT prompting is more
likely to degrade performance than enhance it.
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Figure 4: 1-shot BLEU scores for FiU→ English
translation (x-axis) compared with gains from 1-
shot CoT prompting over 1-shot prompting (y-
axis). Each dot represents a specific Llama model
on a specific task and language. Tasks include
Belebele, QA, and XCOPA.

Our findings align with Sprague et al. (2024),
whose experiments and extensive meta-analysis of
existing studies show that CoT provides signifi-
cant benefits on tasks involving math and logic but
offers much smaller gains for other types of tasks.
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Belebele FLORES XCOPA QA

L2 Lam L3.1 L2 Lam L3.1 L2 Lam L3.1 L2 Lam L3.1

liv 26.23 23.77 37.70 6.76 7.70 10.50 - - - - - -
vro 27.05 31.97 50.82 7.83 16.23 16.72 - - - - - -
kpv 27.87 24.59 52.46 5.36 3.64 10.32 - - - - - -
est 28.69 36.89 68.03 12.65 34.29 35.28 49.20 68.20 69.00 35.35 63.76 70.87
fin 44.26 27.87 74.59 29.63 18.36 31.97 - - - 70.63 56.32 75.44

avg 30.82 29.02 56.72 12.44 16.04 20.96 49.20 68.20 69.00 52.99 60.04 73.16

Table 3: Comparison of five-shot results of Llama 2 7B, Llammas-base and Llama 3.1 8B. F1 score is
reported for QA.

6 Comparison With Other Models

6.1 Mistral NeMo
We compare Llama 3.1 8B with its competitor, the
12B-parameter model Mistral NeMo (Jiang et al.,
2024), across all tasks except SIB. Both models
are evaluated in zero-shot and five-shot settings
to assess their ability to perform with and with-
out examples. Results for the zero-shot setting are
shown in Table 4, while the five-shot results are
presented in Table 5. Note that zero-shot results
for the QA task are not reported, as this task is typ-
ically evaluated in a few-shot setting due to signif-
icantly lower performance in zero-shot scenarios.

Belebele FLORES XCOPA

L3.1 MN L3.1 MN L3.1 MN

liv 33.61 35.25 4.91 5.85 - -
vro 48.36 50.82 12.19 8.18 - -
kpv 38.52 36.89 8.18 3.45 - -
est 62.30 74.59 31.00 33.04 56.80 56.40
fin 68.03 74.59 28.54 30.39 - -

avg 50.16 54.43 16.96 16.18 56.80 56.40

Table 4: Comparison of zero-shot results of
Llama-3.1 8B and Mistral NeMo.

Belebele FLORES XCOPA QA

L3.1 MN L3.1 MN L3.1 MN L3.1 MN

liv 37.70 37.70 10.50 10.10 - - - -
vro 50.82 50.00 16.72 12.55 - - - -
kpv 52.46 34.43 10.32 6.01 - - - -
est 68.03 83.61 35.28 32.28 69.20 71.60 70.87 71.86
fin 74.59 78.69 31.97 33.24 - - 75.44 77.39

avg 56.72 56.89 20.96 18.83 69.20 71.60 73.16 74.63

Table 5: Comparison of five-shot results of Llama-
3.1 8B and Mistral NeMo. F1 score is reported for
QA.

The results show that Mistral NeMo and Llama

3.1 8B perform similarly on FiU languages in the
zero-shot setting, though Mistral NeMo is over 4%
better on the Belebele task. In the five-shot setting,
Mistral NeMo outperforms Llama 3.1 8B on three
out of four tasks, except for machine translation,
where Llama 3.1 8B demonstrates a stronger abil-
ity to learn from examples. Overall, Mistral NeMo
excels in Finnish and Estonian, while Llama 3.1
8B appears slightly stronger in extremely low-
resource FiU languages. Notably, Llama 3.1 8B
consistently outperforms Mistral NeMo in Komi,
which, unlike the other languages, uses the Cyril-
lic script.

Belebele FLORES XCOPA

L2 Lam L3.1 L2 Lam L3.1 L2 Lam L3.1

liv 24.59 38.52 33.61 4.74 4.62 4.91 - - -
vro 23.77 33.61 48.36 4.61 9.92 12.19 - - -
kpv 26.23 29.51 38.52 2.88 1.44 8.18 - - -
est 22.95 39.34 62.30 8.53 28.90 31.0 48.80 56.60 56.60
fin 32.79 34.43 68.03 27.16 11.57 28.54 - - -

avg 26.07 35.08 50.16 9.59 11.29 16.96 48.80 56.60 56.60

Table 6: Comparison of zero-shot results of Llama
2 7B, Llammas-base and Llama 3.1 8B.

6.2 Llammas

We compare Llama 2 7B with Llammas (Kuul-
mets et al., 2024), which is an adaptation of Llama
2 7B to Estonian with additional pretraining of 5B
tokens of Estonian-centric data. We also include
comparative size Llama 2.1 8B in this comparison.
The results are presented in Table 6 and Table 3.

Unsurprisingly, Llammas outperforms Llama 2
7B on Estonian by a significant margin; however,
its performance on Finnish, in general, decreases
substantially. As indicated in the tables presented
in Section 5.1, Llama 2 7B already demonstrates
some capability in solving tasks in Finnish, unlike
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in other FiU languages. This suggests that contin-
ued pretraining on Estonian notably damages this
capability.

Llammas consistently outperforms Llama 2 7B
on Võro, which is not surprising given the lin-
guistic similarities between Võro and Estonian.
The comparison between Livonian and Komi is
less clear in determining which model performs
better. However, Llama 3.1 8B surpasses both
models by a large margin, except on the Belebele
task in Livonian. Notably, Llama 3.1 8B outper-
forms Llammas even on Estonian, demonstrating
that language-specific adaptation of a weaker base
model cannot compete with a stronger, unadapted
base model.

7 Conclusion

We evaluated the Llama 2 and multilingual Llama
3.1 family models on five Finno-Ugric languages
with varying amounts of available resources. Our
results show that Llama 2 7B and 13B perform
poorly on most languages, except for Finnish,
where they achieve moderate results. In con-
trast, the Llama 3.1 family models demonstrate
impressive performance, even for extremely low-
resource languages like Võro and Komi.

The comparison of zero-shot and few-shot
prompting indicates that few-shot prompting is
beneficial across all languages. However, increas-
ing the number of examples does not always lead
to better performance. Similarly, few-shot CoT
prompting brings substantial benefits for tasks
like commonsense reasoning but negatively affects
others, such as QA. Notably, the strongest model,
Llama 3.1 70B, benefits less from CoT prompting
on tasks where it helps weaker models, suggest-
ing that strong cross-lingual capabilities reduce re-
liance on CoT prompting.

Outstanding results in MT, XCOPA, and Bele-
bele for Estonian and Finnish highlight the need
for stronger benchmarks to better assess the ca-
pabilities and limitations of these models. The
surprisingly strong results from Llama 3.1 70B
on Komi and Võro, despite extremely lim-
ited resources, demonstrate effective cross-lingual
knowledge transfer and reduce the dependence on
large target-language datasets for reasonable per-
formance.

Finally, our comparison with Mistral NeMo
suggests that the latter outperforms Llama 3.1 8B
in Estonian and Finnish. Furthermore, our analy-

sis of Llama models versus Llammas shows that a
stronger, general-purpose base model consistently
outperforms a weaker base model adapted to a spe-
cific language, emphasizing the critical role of the
base model in successful language adaptation.
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Duarte M. Alves, José Pombal, Nuno M. Guerreiro,
Pedro H. Martins, João Alves, Amin Farajian,
Ben Peters, Ricardo Rei, Patrick Fernandes, Sweta
Agrawal, Pierre Colombo, José G. C. de Souza, and
André F. T. Martins. 2024. Tower: An open multi-
lingual large language model for translation-related
tasks.

Lucas Bandarkar, Davis Liang, Benjamin Muller,
Mikel Artetxe, Satya Narayan Shukla, Donald Husa,
Naman Goyal, Abhinandan Krishnan, Luke Zettle-
moyer, and Madian Khabsa. 2024. The bele-
bele benchmark: a parallel reading comprehension
dataset in 122 language variants. In Proceedings
of the 62nd Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Pa-
pers), pages 749–775, Bangkok, Thailand. Associ-
ation for Computational Linguistics.

Pierpaolo Basile, Elio Musacchio, Marco Polignano,
Lucia Siciliani, Giuseppe Fiameni, and Giovanni Se-
meraro. 2023. Llamantino: Llama 2 models for ef-
fective text generation in italian language.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen,
Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin
Chess, Jack Clark, Christopher Berner, Sam Mc-
Candlish, Alec Radford, Ilya Sutskever, and Dario

348

https://aclanthology.org/2024.eacl-long.14
https://aclanthology.org/2024.eacl-long.14
https://aclanthology.org/2024.eacl-long.14
http://arxiv.org/abs/2402.17733
http://arxiv.org/abs/2402.17733
http://arxiv.org/abs/2402.17733
https://doi.org/10.18653/v1/2024.acl-long.44
https://doi.org/10.18653/v1/2024.acl-long.44
https://doi.org/10.18653/v1/2024.acl-long.44
http://arxiv.org/abs/2312.09993
http://arxiv.org/abs/2312.09993


Amodei. 2020. Language models are few-shot
learners.

Jonathan H. Clark, Eunsol Choi, Michael Collins, Dan
Garrette, Tom Kwiatkowski, Vitaly Nikolaev, and
Jennimaria Palomaki. 2020. Tydi qa: A benchmark
for information-seeking question answering in typo-
logically diverse languages. Transactions of the As-
sociation for Computational Linguistics.

Yiming Cui, Ziqing Yang, and Xin Yao. 2024. Effi-
cient and effective text encoding for chinese llama
and alpaca.

George-Andrei Dima, Andrei-Marius Avram, Cristian-
George Craciun, and Dumitru-Clementin Cercel.
2024. RoQLlama: A lightweight Romanian adapted
language model. In Findings of the Association
for Computational Linguistics: EMNLP 2024, pages
4531–4541, Miami, Florida, USA. Association for
Computational Linguistics.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Let-
man, Akhil Mathur, Alan Schelten, Amy Yang,
Angela Fan, Anirudh Goyal, Anthony Hartshorn,
Aobo Yang, Archi Mitra, Archie Sravankumar,
Artem Korenev, Arthur Hinsvark, Arun Rao, As-
ton Zhang, Aurelien Rodriguez, Austen Gregerson,
Ava Spataru, Baptiste Roziere, Bethany Biron,
Binh Tang, Bobbie Chern, Charlotte Caucheteux,
Chaya Nayak, Chloe Bi, Chris Marra, Chris Mc-
Connell, Christian Keller, Christophe Touret, Chun-
yang Wu, Corinne Wong, Cristian Canton Fer-
rer, Cyrus Nikolaidis, Damien Allonsius, Daniel
Song, Danielle Pintz, Danny Livshits, David Es-
iobu, Dhruv Choudhary, Dhruv Mahajan, Diego
Garcia-Olano, Diego Perino, Dieuwke Hupkes,
Egor Lakomkin, Ehab AlBadawy, Elina Lobanova,
Emily Dinan, Eric Michael Smith, Filip Raden-
ovic, Frank Zhang, Gabriel Synnaeve, Gabrielle
Lee, Georgia Lewis Anderson, Graeme Nail, Gre-
goire Mialon, Guan Pang, Guillem Cucurell, Hai-
ley Nguyen, Hannah Korevaar, Hu Xu, Hugo
Touvron, Iliyan Zarov, Imanol Arrieta Ibarra, Is-
abel Kloumann, Ishan Misra, Ivan Evtimov, Jade
Copet, Jaewon Lee, Jan Geffert, Jana Vranes, Ja-
son Park, Jay Mahadeokar, Jeet Shah, Jelmer van der
Linde, Jennifer Billock, Jenny Hong, Jenya Lee,
Jeremy Fu, Jianfeng Chi, Jianyu Huang, Jiawen
Liu, Jie Wang, Jiecao Yu, Joanna Bitton, Joe
Spisak, Jongsoo Park, Joseph Rocca, Joshua John-
stun, Joshua Saxe, Junteng Jia, Kalyan Vasuden
Alwala, Kartikeya Upasani, Kate Plawiak, Ke Li,
Kenneth Heafield, Kevin Stone, Khalid El-Arini,
Krithika Iyer, Kshitiz Malik, Kuenley Chiu, Ku-
nal Bhalla, Lauren Rantala-Yeary, Laurens van der
Maaten, Lawrence Chen, Liang Tan, Liz Jenk-
ins, Louis Martin, Lovish Madaan, Lubo Malo,
Lukas Blecher, Lukas Landzaat, Luke de Oliveira,
Madeline Muzzi, Mahesh Pasupuleti, Mannat Singh,
Manohar Paluri, Marcin Kardas, Mathew Old-
ham, Mathieu Rita, Maya Pavlova, Melanie Kam-
badur, Mike Lewis, Min Si, Mitesh Kumar Singh,

Mona Hassan, Naman Goyal, Narjes Torabi, Niko-
lay Bashlykov, Nikolay Bogoychev, Niladri Chat-
terji, Olivier Duchenne, Onur Çelebi, Patrick Al-
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Anne Lauscher. 2024. Evaluating the elementary
multilingual capabilities of large language models
with MultiQ. In Findings of the Association for
Computational Linguistics ACL 2024, pages 4476–
4494, Bangkok, Thailand and virtual meeting. Asso-
ciation for Computational Linguistics.

Haoyang Huang, Tianyi Tang, Dongdong Zhang, Xin
Zhao, Ting Song, Yan Xia, and Furu Wei. 2023. Not
all languages are created equal in LLMs: Improv-
ing multilingual capability by cross-lingual-thought
prompting. In Findings of the Association for Com-
putational Linguistics: EMNLP 2023, pages 12365–
12394, Singapore. Association for Computational
Linguistics.

Albert Jiang, Alexandre Sablayrolles, Alexis Tac-
net, Alok Kothari, Antoine Roux, Arthur Mensch,
Audrey Herblin-Stoop, Augustin Garreau, Austin
Birky, Bam4d, Baptiste Bout, Baudouin de Moni-
cault, Blanche Savary, Carole Rambaud, Caroline
Feldman, Devendra Singh Chaplot, Diego de las
Casas, Eleonore Arcelin, Emma Bou Hanna, Eti-
enne Metzger, Gaspard Blanchet, Gianna Lengyel,
Guillaume Bour, Guillaume Lample, Harizo Ra-
jaona, Henri Roussez, Hichem Sattouf, Ian Mack,
Jean-Malo Delignon, Jessica Chudnovsky, Jus-
tus Murke, Kartik Khandelwal, Lawrence Stew-
art, Louis Martin, Louis Ternon, Lucile Saulnier,
Lélio Renard Lavaud, Margaret Jennings, Marie Pel-
lat, Marie Torelli, Marie-Anne Lachaux, Marjorie
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Abstract
ASR development for low-resource lan-
guages such as Faroese faces significant
challenges due to the scarcity of large, di-
verse datasets. Although fine-tuning mul-
tilingual models using related languages is
common practice, there is no standardized
method for selecting these auxiliary lan-
guages, leading to a computationally ex-
pensive trial-and-error process. By ana-
lyzing the positioning of Faroese among
other languages in wav2vec2’s multilin-
gual representation space, we find that
Faroese’s closest neighbors are influenced
not only by linguistic similarity but also
by historical, phonetic, and cultural fac-
tors. These findings open new avenues for
auxiliary language selection to improve
Faroese ASR and underscore the potential
value of data-driven factors in ASR fine-
tuning.

1 Introduction

Low-resource languages, such as Faroese, face
unique challenges in ASR development, primar-
ily due to the lack of sufficiently large and var-
ied datasets. Recent advances in multilingual
ASR models have provided a promising avenue
for cross-linguistic transfer, leveraging similarities
between languages to enhance the performance
of those with limited resources. It is common
practice to fine-tune multilingual models for a tar-
get language by incorporating similar, closely re-
lated languages (Juan et al., 2014; Juan, 2015; Ivan
Froiz-Mıguez, 2023). However, currently there
is no standardized procedure for selecting these
languages. ASR researchers often train multiple
models with different language combinations to
find the best set to enhance target language per-
formance, a trial-and-error approach that is com-
putationally costly as models grow larger. This

underscores the need for more efficient meth-
ods. In this study, we focus on Faroese, a low-
resource Insular Scandinavian language. We ex-
plore its representation in Meta’s wav2vec2 XLS-
R 53 model (Alexis Conneau, 2020), and seek out
its neighbors in this space, with the aim of ex-
tracting new insight for selection of auxiliary lan-
guages. Our approach analyzes how languages are
encoded within the model’s multilingual represen-
tation space by measuring the distance between
Faroese and 102 languages from the Google Fleurs
dataset (Alexis Conneau, 2022) at each model
layer. Since Faroese is absent from Google Fleurs,
we incorporated recordings from the Ravnursson
data set (Hernández Mena and Simonsen, 2022),
currently the only ASR-suitable Faroese dataset,
to better understand how the model perceives
Faroese in relation to other languages and to im-
prove multilingual fine-tuning strategies.

2 Background and related work

2.1 Advances in Transformer and
Self-Supervised Models for ASR

In 2019, the wav2vec model was introduced as a
self-supervised model that learns speech represen-
tations without labeled data and can be fine-tuned
for ASR, reducing the need for extensive labeled
datasets (A. Baevski and Auli, 2020). While ini-
tially trained only on English, later versions sup-
port multiple languages (Alexis Conneau, 2020).
The architecture of the wav2vec 2.0 model enables
cross-lingual transfer in ASR through multilingual
quantized speech representations, allowing latent
speech units to capture key features of speech
(Alexei Baevski, 2020). Transfer learning with re-
lated languages has been shown to improve ASR
for low-resource languages by leveraging high-
dimensional embeddings from the wav2vec2.0
XLSR-53 model (Akbayan Bekarystankyzy, 2024;
J. Cho and Hori, 2018; Vishwa Gupta, 2022). Re-
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search demonstrates the model’s ability to capture
language similarities by clustering embeddings us-
ing K-Means (Alexis Conneau, 2020).

2.2 ASR for Faroese

The effort towards digitalization of Faroese speech
has led to the creation of a Basic Language Re-
source Kit for Faroese (A. Simonsen and Henrich-
sen, 2022) in the context of the Ravnur project.1

This project involved the collection of both text
corpora and audio recordings finalized in the cre-
ation of ASR systems. The Ravnur audio data
set contains 100 hours of training data, which is a
balanced collection of high-quality recordings, in-
cluding different dialects and speakers of different
ages. The availability of such data has allowed re-
searchers to test strategies to produce ASR models
for Faroese. One such strategy was the fine-tuning
of multilingual models such as wav2vec2, which
led to the creation of the very first ASR model
specifically targeting Faroese (Hernandez Mena,
2022).

3 Method

3.1 Dataset

To assess the relationship between Faroese and
other languages, we used Meta’s wav2vec2 XLS-
R 53 Large model2 with 25 layers to generate
hidden representations for all of the 102 Google
Fleurs3 (Alexis Conneau, 2022) languages in addi-
tion to Faroese. The model is trained on 56k hours
of speech data for 53 languages. Of the Scandi-
navian languages, only Swedish is included in the
model. We performed inference with the model
using the same number of sentences per language
in the Google Fleurs dataset for the 102 languages.
Faroese is not in Google Fleurs, and therefore we
instead take 900 random sentences from the Ran-
vursson ASR corpus4.

3.2 Distance calculation

We calculate the distance between Faroese and
102 other languages in the hidden representation
space of wav2vec 2.0, analyzing across different

1https://mtd.setur.fo/en/resource/
ravnur-blark-1-0/

2https://huggingface.co/facebook/
wav2vec2-large-xlsr-53

3https://huggingface.co/datasets/
google/fleurs

4https://huggingface.co/datasets/
carlosdanielhernandezmena/ravnursson_asr

layers. The pipeline for the distance calculation
can be summarized as follows. First, we obtain
a sentence-level representation by applying aver-
age pooling to all hidden representations across
the sentence. Then, we compute the overall rep-
resentation by averaging the sentence-level repre-
sentations for all sentences for each language l and
layer j,

µl,j =
1

N

N∑

i=1

Rl,i,j , (1)

where Rl,i,j is the representation vector for sen-
tence sli at layer j. Sl = sl1, sl2, . . . , slN is a set
of N = 900 sentences for language l ∈ L where
L is a set of languages with |L| = 103. The layer
index is j = 0, 1, . . . , 24.

3.3 Clustering and visualization

K-means clustering was used on the computed
representations after performing dimensionality
reduction using Principal Component Analysis
(PCA) (Jolliffe, 2002), t-distributed stochastic
neighbor embedding (t-SNE) (T. Tony Cai, 2021)
and Uniform Manifold Approximation and Projec-
tion (UMAP) (Leland McInnes, 2018). Each layer
in the wav2vec2 XLS-R 53 model contributes to
the model’s overall functionality. Ankita Pasad
(2021) explored which type of speech information
is predominantly encoded in each of the 25 layers
of the wav2vec2 model, in terms of local acoustic
features, phone identity, word identity, and word
meaning. We take inspiration from their results
and identify three main layer groupings:

• Layers 1 to 11: The first few layer represen-
tations (0-5) are dominated by local acoustic
features, which gradually decrease, leaving
gradually room for language-specific features
such as phone and word identity.

• Layers 12 to 19: In these layers, word iden-
tity and word meaning dominate the repre-
sentations, capturing more abstract linguis-
tic features essential for understanding syn-
tax and semantics. There is a sharp decrease
in phone identity representation around layer
15, followed by a sharp increase.

• Layers 20 to 24: We observe an overall de-
crease in all linguistic properties, with phone
identity, however, remaining more prominent
than the other characteristics.
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We use this information for interpretations of the
results and layer selection during qualitative clus-
tering analysis. Specifically, we will focus on lay-
ers 18 - 20, as we expect word identity and phone
identity information to be at their highest in these
layers.

3.4 Experiments

The key steps involved in our methodology are
outlined as follows:

1. Data selection: Since Icelandic had the
fewest sentences in the Google Fleurs
dataset, with 924 sentences, we set the num-
ber of sentences per language for the analysis
at 900.

2. Hidden representation extraction: For
each language, we ran inference with the
wav2vec2 XLS-R 53 model on the selected
900 sentences, extracting the hidden repre-
sentation for each of the 25 hidden layers as
described in Sec 3.3. We processed the rep-
resentations as follows:

• Calculating the mean of all layer-wise
25 hidden representations per language

• Grouping the layers into intervals of
five: 0-4, 5-9, 10-14, 15-19, 20-24, and
computing the mean interval representa-
tion for each language.

3. Distance between languages: To explore the
relationships between Faroese and the other
languages, we calculate the Euclidean dis-
tance in the original representation vector
space.

4. Clustering: We apply K-Means after reduc-
ing dimensions down to 2 using PCA, t-SNE,
and UMAP. This choice was made in order to
facilitate visualization and qualitative analy-
sis.

4 Results and Discussion

4.1 Quantitative analysis: top nearest
neighbors in the representation space for
Faroese

For each layer interval, we calculated the Eu-
clidean distance between Faroese and the 102 lan-
guages in the Google Fleurs dataset. Table 1
presents the top eight nearest neighbors to Faroese

in descending order for each layer interval. Inter-
esting patterns emerge from these results. The top
nearest neighbor across all layer intervals is ei-
ther Welsh or Irish, with Welsh being the closest
when all layers (0–24) are combined. Welsh and
Irish belong to the Celtic language family, in con-
trast to Faroese, which is a Scandinavian language.
However, Faroese phonetics is known to have been
significantly influenced by contact with Scottish
Gaelic-speaking communities from the neighbor-
ing British Isles. German ranks as the second
closest neighbor in the early layers (0–9), while
Scandinavian languages emerge as neighbors in
the later layers: Swedish in layers 10–14, and Nor-
wegian in layers 20–24 and overall. Beyond this,
the composition of nearest neighbors does not re-
veal any clear pattern in terms of linguistic fami-
lies.

4.2 Qualitative analysis: dimensionality
reduction and clustering

The internal representation space of multilingual
models is highly multidimensional and often chal-
lenging to interpret. To clarify the results of our
quantitative analysis and provide a visual inter-
pretation of the distances in this space, we per-
formed dimensionality reduction on the combined
representation space of layers 18–20. In these
layers, we anticipate clustering among languages
from the same linguistic families due to shared
phonetic, syntactic, or acoustic characteristics. If
a language clusters separately from its family, it
may indicate unique linguistic traits. Examin-
ing outliers and mixed clusters could also un-
cover cross-family influences or reveal features
such as geographic convergence. Figure 1 shows
clusters of languages in the same language fam-
ily for six different regions. Clustering was per-
formed using K-Means following dimensional-
ity reduction to two dimensions. Of the three-
dimensionality reduction techniques tested, t-SNE
most closely aligned with results from the orig-
inal high-dimensional space, as shown in Ta-
ble 2. In this analysis, Irish appears as the
closest neighbor to Faroese, with Swedish posi-
tioned farther within the neighborhood (see Figure
1). Overall, we observe a representation of Ger-
manic/Scandinavian languages in the clusters (En-
glish, German, Luxembourgish, Swedish), along
with non-Indo-European languages that are part of
the Nordic cultural sphere, such as Finnish.
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Layers 0-4 5-9 10-14 15-19 20-24 0-24

1 Irish (10.8) Irish (13.4) Irish (13.4) Irish (16.2) Welsh (31.7) Welsh (14.8)
2 German (11.3) German (15.4) Estonian (15.4) Croatian (17.0) Turkish (34.7) Turkish (17.5)
3 Romanian (11.6) Estonian (16.0) Croatian (15.8) Estonian (17.4) Punjabi (47.4) Punjabi (22.6)
4 Estonian (11.8) Croatian (16.2) Lithuanian

(15.9)
Lithuanian
(17.5)

Slovak (104.0) Slovak (25.2)

5 Simplified
Chinese (11.8)

Romanian (16.2) Welsh (16.1) Polish (17.7) Georgian
(110.1)

Georgian (25.8)

6 Catalan (12.0) English (16.2) Romanian (16.1) Georgian (17.9) Amharic (112.7) Amharic (27.4)
7 Korean (12.1) Welsh (16.4) Polish (16.5) Romanian (18.0) Norwegian

(126.4)
Norwegian
(29.8)

8 Armenian (12.3) Lithuanian
(16.4)

Swedish (16.6) Slovenian (18.0) Vietnamese
(145.8)

Armenian (32.5)

Table 1: Closest languages to Faroese measured in Euclidean distance in the original representation
vector space

Figure 1: Clusters of closely related languages for layers 18-20 with t-SNE and K-Means with 18 clusters

PCA t-SNE UMAP

Romanian (1.72) Irish (2.68) Croatian (0.42)
French (3.29) Maori (4.03) Catalan (0.47)
English (5.51) Swedish (5.58) Romanian (0.55)
German (5.64) Finnish (6.00) Maori (0.77)
Luxembourgish
(9.83)

Latvian (8.14) Georgian (0.79)

Table 2: Languages in the same cluster as Faroese
in layers 18-20 using K-Means with 18 clusters af-
ter dimensional reduction with PCA, t-SNE, and
UMAP

5 Conclusion

In conclusion, the representation spaces in
wav2vec2 indicate that languages tend to clus-
ters, as evidenced through nearest-neighbor analy-

sis, clustering, and dimensionality reduction tech-
niques. This analysis places Faroese in proxim-
ity to Gaelic languages, alongside Germanic and
Nordic languages. The prominence of Gaelic lan-
guages as close neighbors suggests that limiting
comparisons to only the closest family members
may overlook valuable insights, possibly related to
historical phonetic and linguistic influences. Such
consideration will be further investigated in future
work.

6 Limitations

This exploration of the representation of Faroese
is based on a single model and may therefore vary
with other models, as language representations are
influenced by the specific language distribution
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within the training data. Additionally, we only
evaluated language proximity using one dataset,
FLEURS, which may have limited speaker repre-
sentation. The metric used, Euclidean distance, is
just one approach for vector comparison and has
its limitations. For instance, it is susceptible to
the curse of dimensionality and may not be opti-
mal in highly multidimensional spaces. Alterna-
tive metrics, such as cosine similarity, could yield
slightly different results. Despite these limitations,
our analysis provides a foundation for a more com-
prehensive characterization of language similar-
ity within model representation spaces, with po-
tential applications in language selection for low-
resource ASR training.
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Abstract

In this paper, we describe the implemen-
tation of the first structured resource of
semantic derivational links for Latvian,
basing it on the largest online dictio-
nary Tēzaurs.lv and linking it to the Lat-
vian WordNet. We separate two kinds
of derivational links: semantic derivation
links between senses and morphological
derivation links between lexemes. Seman-
tic links between senses are defined as a
pair of semantic labels assigned to both
ends of the link. The process of semantic
linking involves revising the sense inven-
tory of both the base word and the deriva-
tive, defining semantic labels for lexemes
of four basic word classes – nouns, verbs,
adjectives, and adverbs, and adding the
appropriate labels to the corresponding
senses. We exemplify our findings with
a detailed representation of the sense rela-
tions between a base verb and its nominal
derivatives.

Keywords: morphosemantic relations, deriva-
tional semantics, polysemous words, WordNet,
Latvian

1 Introduction

So far, no derivational semantics resource has been
created for the Latvian language. The idea for its
creation grew out of the desire to extend the Lat-
vian WordNet (Paikens et al., 2023) because reg-
ular derivatives are an essential part of the lexi-
con, and they also have semantic relations both
with their base words and with each other, for
example, two derivatives can be synonyms. Lat-
vian WordNet is planned to be supplemented with
derivational links, similar to what Princeton Word-
Net (Mititelu et al., 2021) and others have imple-

mented (e.g. Turkish (Bilgin et al., 2004), Bul-
garian (Dimitrova et al., 2014), Romanian (Mi-
titelu, 2012), Czech (Rambousek et al., 2018), Pol-
ish (Piasecki et al., 2012)). We consider deriva-
tional semantics resources relevant for NLP appli-
cations because the behavior of current large lan-
guage model chat agents for less resourced lan-
guages like Latvian shows a misunderstanding of
meaning of derived words, so the application of
lexical resources has value even in the era of large
pre-trained models.

Latvian WordNet has been developed manu-
ally for the past four years (Paikens et al., 2023).
As of Autumn 2024, Latvian WordNet contains
8756 synsets which cover the meanings of the
2000 most frequently used words in The Balanced
Corpus of Modern Latvian (Levāne-Petrova and
Dar ‘gis, 2018) and their related synsets. The inven-
tory of words and senses is based on the Tēzaurs.lv
online dictionary (Spektors et al., 2023; Grasma-
nis et al., 2023), which is a large (approximately
405000 entries in the last release in September
2024) digital compilation of legacy dictionaries.
Latvian WordNet is developed and maintained
on the Tēzaurs.lv lexicographic platform, and the
data are available in dictionary entries of words
whose senses are included in WordNet. This
lexical resource also contains links between Lat-
vian WordNet and Princeton WordNet (Fellbaum,
1998). The important thing is that the Latvian
WordNet is created between separate word senses,
and we also want to create the semantics of deriva-
tives separately for each word sense, so we think
these resources will be well integrated. Currently,
the semantics of derivatives is a network parallel
to Latvian WordNet, the word sense inventory be-
ing the unifying element which is involved in both
networks. In the future, that will help to integrate
one resource into the other.

Up until now, according to the traditions of
lexicography, the regular derivatives listed in the
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Tēzaurs.lv dictionary had their own entries only if
they had a specific sense which was far removed
from the senses of the base word. In order to rep-
resent the diversity of derivational relations, we
are currently creating new entries for the most fre-
quently used regular derivatives.

In Latvian linguistics little or no attention has
been paid to semantic relations between the senses
of a polysemous base word and the senses of its
derivatives, as only general semantics of deriva-
tional formatives has been studied and described
referring to the basic sense of the base word
(Kalnača and Lokmane, 2021; Soida, 2009). In
order to improve Tēzaurs.lv and Latvian WordNet,
it should be verified whether these relations exist
between all senses of the base word and the deriva-
tive (in more detail in Chapter 3.3). Therefore, we
have chosen to employ two kinds of derivational
links: morphological derivation links between lex-
emes and semantic derivation links between exact
word senses (described in more detail in Chapters
2 and 3). A morphological derivation link contains
information about the formatives used in word for-
mation, while a semantic link is formed as a pair of
semantic labels that describe both linked senses.

The choice of word pairs for annotating is deter-
mined by their frequency of use in The Balanced
Corpus of Modern Latvian (Levāne-Petrova and
Dar ‘gis, 2018). First, the derivatives of the most
frequently used verbs, which are already included
in Latvian WordNet, are marked to enrich the lex-
ical information of these words as much as pos-
sible. Second, the most frequently used deriva-
tions in each derivation group are selected, for
example, the most frequently used adjectives de-
rived from nouns. The following word pairs are
annotated in this phase of the project: a) verbs
– deverbal nouns, b) nouns – denominal verbs,
c) nouns – denominal adjectives, d) adjectives –
deadjectival adverbs. Such groups were chosen to
cover the four main word classes of the Latvian
language involved in word formation processes.
Other patterns of derivational links will be anno-
tated as the project progresses, including patterns
when a derivative is of the same word class as the
base word. The processed data set currently in-
cludes 1000 morphological links and 1600 seman-
tic links.

To ensure a reliable resource for future research,
the dataset is developed manually. However, we
assume that in future some semi-automatic meth-

ods could also be applied to unambiguous words
to ensure a larger coverage, which is essential for
NLP applications of this dataset.

2 Morphological Derivational Links

A morphological derivation link between lexemes
connects the base word entry to the derived word
entry. This link contains two attributes: a deriva-
tional stem base and a derivational formative. The
stem indicates which part and form of the base
word the derivative is formed from. The formative
is the means by which a new word is made; it can
be a single morpheme, such as a prefix or a suffix,
or a combination of morphemes, such as a suffix
and an ending, that together form a complex for-
mative. For example, the noun skrējējs ‘runner’
is formed by adding formatives -ēj- and -s to the
past tense stem of the verb skriet ‘to run’; and the
adjective mākoņains ‘cloudy’ is formed by adding
formatives -ain- and -s to the plural stem of the
noun mākonis ‘cloud’.

Since the Latvian language has an extremely
rich inflectional and derivational morphology
(Kalnača and Lokmane, 2021), new words can be
made from various stems, e.g., the present, past,
infinitive or participle stems of verbs and singular
or plural stems of nouns, using prefixes, suffixes,
endings, and interfixes. Therefore, information
about the derivational stem seems to be crucial in
describing Latvian derivational morphology.

In addition, this information will help in fur-
ther studies regarding the semantic properties that
derivatives obtain with certain derivative forma-
tives. Although Latvian grammars (e.g., (Kalnača
and Lokmane, 2021; Soida, 2009)) provide gen-
eral information of the semantic aspects of such
formatives, wider language material could poten-
tially lead to new insights, assist in determining
previously undescribed peculiarities of derivative
senses, and specify derivational stem bases.

However, our aim does not include dividing the
entire word into morphemes; the internal com-
position of Latvian words is the objective of an-
other project, “Database of Latvian Morphemes
and Derivational Models” (see https://www.
dlmdm.lu.lv). Instead, we only indicate the
morphemes involved in the derivative process.

In most cases, the derivational direction be-
tween two words is clear, i.e., the base word and
the derivative can be discerned by consulting the
already described models of word formation.
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However, there are derivational relations in
which it is not obvious which of the two is the
base word and which is the derivative (e. g., kon-
trolēt ‘to control’ – kontrole ‘control’; spēlēt ‘to
play (a game)’ – spēle ‘a game’). This prob-
lem arises mainly (but not exclusively) in pairs of
loan words where it is not possible to establish
which of the words was introduced into Latvian
first; this means that both derivational paths are
possible in such cases, as both models of word
formation are possible in Latvian. A noun can
be derived from a verb (e.g., atsaukties ‘to re-
fer’ – atsauce ‘a reference’; aizstāvēt ‘to defend’
– aizstāvis ‘a defender’), and a verb can be de-
rived from a noun (e.g., skaips ‘Skype’ – skaipot
‘to communicate via Skype’, balva ‘an award’ –
apbalvot ‘to reward’). There are also more re-
cent loan word pairs that are clearly derivation-
ally linked, but are probably not derived from each
other (e.g., biolo ‘gija ‘biology’ – biolo ‘gisks ‘bio-
logical’; demokrātija ‘democracy’ – demokrātisks
‘democratic’). In such instances, the solution is
to label the link between lexemes as ‘derivation-
ally related’ without specifying which is the base
word and which is the derivative; information on
the stem base and the formatives is also not pro-
vided.

3 Semantic Derivational Links

Due to the fact that semantic relations between
the senses of a polysemous base word and the
senses of its derivatives are yet to be studied in
depth in Latvian linguistics, a new system for an-
notating such instances had to be devised. This
chapter describes the process of preparing entries
for linking, creating semantic derivation links be-
tween the senses of the base word and its deriva-
tives, semantic labels for each word class combi-
nation and more detailed observations of the rela-
tions between the senses of polysemous words.

3.1 Revising the Senses of the Base Word and
the Derivative

First step for derivational link creation is revising
dictionary entries and word senses. The Tēzaurs.lv
entries come from various dictionaries, therefore,
the criteria for dividing meanings may vary across
different entries. We strive to standardize them
according to the current criteria for distinguish-
ing senses in the Tēzaurs.lv (see (Lokmane et al.,
2021)) and based on the current situation in the

language.
Derivatives mostly do not have entries in the

Tēzaurs.lv because regular derivatives have not
been included in the dictionary until now. There-
fore, they need to be created anew. We strive to
align the derivative’s entry with the entry of the
base word (sequence of senses, their granularity),
but we try to not create “artificial” meanings for
derivatives just to align the entry symmetrically
with the base word entry. The verification of the
sense is based on corpora data mentioned below.
If the word is used in corpora in a particular sense,
the sense has to be created and added to the word
entry.

Usage examples from several corpora of the
Latvian National Corpora Collection (Saulite
et al., 2022) are added to the senses of base words
and derivatives (examples must be short, clear,
of simple syntactic constructions, in examples the
word appears in various constructions). The ex-
amples also guide the creation and distinction of
senses – if in many examples it is not possible to
determine in which meaning the word is used, the
division of senses should be reconsidered. We add
several examples for each sense, but one example
is enough to conclude that the sense is being used,
therefore it is relevant to entry.

3.2 Semantic Labels

Semantic links between senses are formed as a
pair of semantic labels, which are given to both
ends of the link. It seems important to record not
only the semantics of the derivative, as most gram-
mars do, but also the semantic characteristics of
the base word. For example, the sense ’to be ly-
ing down’ of the base verb gulēt labeled as toBe-
InState is linked to the sense ’sleeping place’ of
the derived noun guļa labeled as location. Sim-
ilarly, the sense ’group’ of the base noun kopa
labeled as abstract notion is linked to the sense
’used by several or many’ of the derived adjective
kopējs labeled as related to. Such an approach will
allow future studies of word-formation processes
not only from the perspective of the derivative, but
also from the perspective of the base word.

Each of the four word classes discussed so far
has a different number of semantic labels (see Ta-
ble 1). Choosing and defining semantic labels
is a labor-intensive process, because there are no
ready-made samples that can be used without im-
provements. It should also be emphasized that
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Word class Semantic label Description
verb toBeInProcess to undergo a change of a condition or a state

toBeInState to experience a state or a condition
toDo to perform an action

noun abstract notion a non-concrete concept or idea
action something that the verb argument does or performs
agent participant who initiates and carries out an action
animal a living being except humans
body part any part of an organism such as an organ or extremity
cause the non-volitional causer of the event
device an object or machine used to perform an action
experiencer participant experiencing some state or process
feature property of an entity
instrument the entity that is manipulated by the agent and with which

an action is performed
location the place in which something is situated or takes place
member of a profession a person who works in a specified professional activity
mythical creature a supernatural creature that does not exist in real life
natural phenomenon a physical event that occurs in atmosphere or on the ground
patient participant undergoing the effect of some action
person a human being
physical phenomenon a natural phenomenon involving the physics

of matter and energy
process a change in condition or state of the argument
resource the entity by which an action is performed and which

is used up during the action
result entity that comes into existence through the event
state the state or condition of the argument
thing an inanimate material object
time (noun) the period or moment during which something

exists or continues
adjective evaluative based on or relating to an assessment

property expressing a general property like colour, shape etc.
including including the entity named by base word
measurable expressing a measurable property
possessing possessing the entity named by base word
similar to similar to the entity named by base word
related to related to the entity named by base word

adverb degree specifying the degree to which a property applies
frequency describing how often something happens
manner describing how something happens
place describing location in which something is situated

or takes place
time (adv.) describing when or how long something takes place

Table 1: Semantic labels for senses linked by a relation

the list of labels can be linguistically specific, al-
though some labels are, of course, universal (Mi-
titelu et al., 2021). Thus, the selection of semantic
labels takes into account the experience of creat-

ing electronic resources of other languages (Bilgin
et al., 2004; Piasecki et al., 2012) and linguistic
studies of both word class semantics and deriva-
tional semantics (Wierzbicka, 1988; Raskin and
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Nirenburg, 1995; Soida, 2009; Kalnača and Lok-
mane, 2021).

The noun has most semantic labels. Firstly, this
is due to the fact that nouns are included in sev-
eral pairs of derivationally linked word classes -
as derivatives of verbs and as base words of both
denominal verbs and adjectives. Secondly, the se-
mantics of nouns are generally more specific and
easier to classify than, for example, the seman-
tics of adjectives (Wierzbicka, 1988). Verbs have
only three semantic labels despite being both base
words and derivatives in relation to nouns. How-
ever, the list of semantic labels is being constantly
enriched as we proceed with new lexical groups.
In the future, there might be a need for a more de-
tailed semantic division of verbs, e.g., names of
motion, communication, cognition etc. Adverbs
have been assigned five semantic labels tradition-
ally described in grammars.

One of the most difficult problems so far has
been the semantic classification of adjectives,
since they, being attributes, derive at least part of
their semantics from the noun they are attached to.
We have chosen to assign three rather general se-
mantic labels to qualitative (descriptive) adjectives
and four semantic labels to relational (denominal)
adjectives (for a similar solution, see (Raskin and
Nirenburg, 1995)) Qualitative adjectives are mor-
phologically simpler than relational ones. The lat-
ter, being more complex formally, derive their se-
mantics from their base words.

In each pair of word classes considered so far,
the set of semantic labels is different, to best cap-
ture the specific semantics of derivative in relation
to the base word.

3.3 Relations between Senses of Polysemous
Words

Even within the boundaries of one word and its
derivatives, there can be a large variety of seman-
tic relations between them, especially when all the
senses of a word are considered. This is exempli-
fied by the verb atgādināt, which has 4 senses and
4 noun derivatives (see Figure 1).

The first sense, atgādināt1 ‘to prompt, to re-
mind, to cue (something forgotten or imper-
fectly learned)’, has two narrower subsenses,
atgādināt1.1 ‘to give a reminder (by device)’ and
atgādināt1.2 ‘to bring back a memory (of some-
thing)’. The second sense, atgādināt2 ‘to resem-
ble’ has no subsenses. The 4 derivatives that

have been linked to the verb (i.e., the base word)
through morphological and semantic links are ex-
amined in more detail in the following paragraphs;
the links between the base word and these deriva-
tives are visualised in Figure 1. Atgādināšana
names the action derived from the verb “to re-
mind”. It was created by one of the linguists of
the project as it did not previously exist as a sepa-
rate dictionary entry. This derivative contains two
senses: atgādināšana1 ‘the act of reminding’ and
atgādināšana1.1 ‘the act of reminding (by device)’
which are linked symmetrically to the base word
senses 1 and 1.1 using the semantic link “toDo –
action”, where “toDo” and “action” are roles for
both ends of the link from Table 1.

Atgādinājums denotes the result of the act of
reminding; it has three senses: atgādinājums1
‘a reminder (written or spoken)’, atgādinājums1.1
‘a written reminder (incl. by device)’, and
atgādinājums1.2 ‘a reminder of a fact, event’. All
three semantic derivation links to these senses are
of the “toDo – result” type, however, they are not
symmetrical (see Figure 1). E.g., first sense of
the derivative and its subsense are both linked to
atgādināt1. The reason can be both word meaning
peculiarities and previous reviewing and amend-
ment of the entries.

Atgādne ‘a reminder (usually written)’ is a
more specific term for a general reminder. The en-
try only has one sense, which is linked to the first
sense of the base word by the “toDo – instrument”
semantic link type.

Atgādinātājs ‘someone/something that re-
minds’ is another three-sense derivative, but in
this case, the semantic link distribution with
the base word is symmetrical. It is the variety
of semantic derivation links that stands out in
this case: each derivative sense is ascribed a
different role (“agent”, “device”, “cause”), whilst
the roles of the base word are either “toDo” or
“toBeInState”, demonstrating the wide range of
meanings that even relatively simple derivatives
may contain.

It is worth noting that the second sense of the
base word atgādināt2 is not linked to any of the
senses of the derivatives, which further highlights
the complex, irregular semantic link structures be-
tween the senses of derived words.
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Figure 1: Relations between the senses of the verb atgādināt and its derivatives

3.4 Problematic Cases and Solutions

Polysemous derivatives can sometimes pose a
challenge for annotation due to their gradual shifts
in meaning. There are certain cases when the ba-
sic and usually most general sense of a derivative
may be lost or rarely used, as the derivative has
developed more specific senses over time. This is
illustrated by the noun laidiens ‘a release’ derived
from the verb laist ‘to let’ or the noun darı̄jums
‘a transaction’ derived from darı̄t ‘to do’. The so-
lution for annotating such cases may be twofold
depending on corpus data – either to include the

basic sense in the entry with a tag ‘rarely’, or not
to include it at all. In the latter case, the general
derivational semantics exist only as a potential and
remain unrevealed in semantic derivational links.

Due to diverse sense granularity of the base
word and the derivative, attempts to obtain sym-
metry between the two might lead to an unneces-
sarily fine-grained distinction of senses. Instead,
two following linking patterns can additionally be
employed: (a) one sense of the base word is linked
to several senses of the derivative (plānot ‘to plan’
is linked to two senses of the derivative plānotājs
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‘a planner’: those of an agent and of a device),
(b) several senses of the base word are linked to
a single sense of the derivative (two senses ‘to
know (how to)’ and ‘to be able to’ of the base
word mācēt are linked to the single sense of the
derivative māka ‘a skill’) (on a similar asymme-
try between word senses in English see (Mititelu,
2018)).

4 Conclusions and Future Work

The creation of derivational semantics resource
has been started, the first such open-access re-
source for the Latvian language. To reflect the pos-
sible difference in derivational semantics between
the senses of one polysemous word, two types of
links are created in the resource - a morphologi-
cal link between lexemes and a semantic link be-
tween word meanings. A semantic link is formed
by a pair of labels assigned to each linked sense.
This results in a more informative resource than
the general models of derivational semantics de-
scribed in grammar alone. The first processed data
consist of approx. 1000 morphological links and
1600 semantic links and the data is available in the
autumn release of Tēzaurs.lv, and from the winter
release, it will also be available in the public ver-
sion of Tēzaurs.lv in the entries of the processed
words.

In the future, first of all, it is planned to cover
other pairs of word classes involved in Latvian
derivation, including derivation pairs within the
same word class. Secondly, it is planned to au-
tomate part of the process – to find the existing
entries of derivatives in the dictionary according
to templates, to check in the corpus what kind
of derivatives are used for a certain base word
and compare with the dictionary data to create the
missing entries. Thirdly, it is planned to create a
good search system in the data, so that we can fur-
ther study which derivatives form which seman-
tics. We would like to pay special attention to the
semantic relations of polysemous words with their
derivatives. Plans for further work also include the
integration of the derivational links within Latvian
WordNet, as there is a difference between synset-
to-synset WordNet links and the derivational links
that apply to specific words within that synset, and
more study is needed to determine the proper rep-
resentation for that interaction.
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Andra Kalnača and Ilze Lokmane. 2021. Latvian
Grammar. University of Latvia Press, Riga.
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Pretkalniņa, Laura Rituma, Madara Stāde, and Laine
Strankale. 2023. Latvian WordNet. In Proceedings
of the Twelfth Global Wordnet Conference, pages
187–196, University of the Basque Country, Donos-
tia - San Sebastian, Basque Country. Global Wordnet
Association.

Maciej Piasecki, Radoslaw Ramocki, and Marek
Maziarz. 2012. Recognition of Polish derivational
relations based on supervised learning scheme. In
Proceedings of the Eighth International Conference
on Language Resources and Evaluation (LREC’12),
pages 916–922, Istanbul, Turkey. European Lan-
guage Resources Association (ELRA).
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Abstract

The pretraining of state-of-the-art large
language models now requires trillions of
words of text, which is orders of magni-
tude more than available for the vast ma-
jority of languages. While including text
in more than one language is an obvious
way to acquire more pretraining data, mul-
tilinguality is often seen as a curse, and
most model training efforts continue to fo-
cus near-exclusively on individual large lan-
guages. We believe that multilinguality can
be a blessing: when the lack of training
data is a constraint for effectively training
larger models for a target language, aug-
menting the dataset with other languages
can offer a way to improve over the ca-
pabilities of monolingual models for that
language. In this study, we introduce
Poro 34B, a 34 billion parameter model
trained for 1 trillion tokens of Finnish, En-
glish, and programming languages, and
demonstrate that a multilingual training
approach can produce a model that sub-
stantially advances over the capabilities of
existing models for Finnish and excels in
translation, while also achieving competi-
tive performance in its class for English and
programming languages. We release the
model parameters, scripts, and data under
open licenses at https://huggingface.
co/LumiOpen/Poro-34B.

1 Introduction

Neural language models based on the transformer
architecture (Vaswani et al., 2017) have led to sub-
stantial advances in natural language processing.
Encoder-only transformer models such as BERT
(Devlin et al., 2019) have advanced the state of the
art in a broad range of classification tasks, while

decoder-only models such as GPT (Radford et al.,
2018) have redefined what can be achieved by
generative models, opening new areas of study in
prompting and in-context learning. The success of
these models is related in substantial part to their
scaling properties: training larger models on more
data leads to better results and even entirely new
capabilities (Brown et al., 2020). Studies refining
our understanding of the optimal balance of model
size and training steps have increased the demands
on data (Hoffmann et al., 2022b), and many re-
cent models optimize further for inference-time
efficiency by training smaller models on more data
(Sardana and Frankle, 2023).

These developments have introduced increasing
demands for textual data, with many recent models
pretrained on a trillion tokens or more (e.g. Touvron
et al., 2023; Almazrouei et al., 2023; MosaicML,
2023; Li et al., 2023; Lozhkov et al., 2024; Groen-
eveld et al., 2024). While such resources can still
be assembled from internet crawls for a few of the
languages best represented online, for the vast ma-
jority of human languages we have already run out
of data for training the largest of language models
(Joshi et al., 2020; Villalobos et al., 2022). While
it is standard to repeat training data, repetition can
lead to reduced sample efficiency and degradation
of performance (Hernandez et al., 2022): Muen-
nighoff et al. (2024) estimate that the value of rep-
etition starts to diminish rapidly after four epochs
and that repetition ceases to add information around
40 epochs. The availability of data is thus currently
a limit for monolingual training for all but a few of
the highest-resourced languages.

Multilingual training offers one obvious solution
for increasing the amount of training data available,
and a large number of multilingual transformer
models have been introduced (e.g. Conneau et al.,
2020; Lin et al., 2022b; Le Scao et al., 2022; Wei
et al., 2023). However, despite the intuitive appeal
of augmenting training data with texts in other nat-
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Figure 1: Pretraining data distribution.

ural languages, multilinguality is frequently seen
as a negative – commonly referred to as the curse
of multilinguality (Conneau et al., 2020). While
there have been studies of the tradeoffs between
monolingual and multilingual training (Fujinuma
et al., 2022; Chang et al., 2023) as well as efforts
to enhance models specifically for multilinguality
(Pfeiffer et al., 2022) and to introduce additional
language capabilities to existing models (Gogoulou
et al., 2023; Kew et al., 2023; Zhao et al., 2024;
Ibrahim et al., 2024), state-of-the-art generative
models are still frequently trained near-exclusively
on large languages such as English, with only lim-
ited efforts specifically focusing on optimizing per-
formance for smaller languages. In this study, we
explore how to lift data limitations to create state-
of-the-art large generative models from scratch for
smaller languages, drawing on the understanding
emerging in recent studies on how to make the most
of limited data and assure that multilinguality is
a blessing rather than a curse. Some key lessons
from previous work include 1) limited multilin-
guality instead of a large number of languages
(Conneau et al., 2020; Chang et al., 2023) 2) match-
ing scripts (e.g., Latin) (Fujinuma et al., 2022) and
3) matching language families (Pyysalo et al.,
2021), 4) incorporating a cross-lingual signal us-
ing translation pairs (Anil et al., 2023; Wei et al.,
2023), 5) oversampling target language data up
to four epochs (Muennighoff et al., 2024) and 6)
augmenting natural language with programming
language data (Madaan et al., 2022; Aryabumi
et al., 2024).

We chose to specifically target the Finnish lan-
guage, which is an interesting case for study as it
is a Uralic language with no large close neighbours

in its language family, necessitating more distant
transfer than, for example, between English and
another Germanic language. While the language
is natively spoken by under six million people, its
resources are still sufficient to consider a monolin-
gual training approach for larger generative models.
In a recent study, Luukkonen et al. (2023) com-
bined several web crawls and curated sources of
Finnish to create a dataset of approximately 40B
tokens and introduced the monolingual FinGPT
models trained from scratch for 300B tokens. With
approximately 8 epochs, the repetition of data is ex-
pected to show diminishing returns (Muennighoff
et al., 2024), and the largest of these models show
signs of data limitations, with the 8B parameter
model outperforming the 13B in benchmarks. We
believe it should be possible to overcome these
limitations by applying the lessons listed above.
While we cannot match language families, we train
for four epochs over the Finnish data and augment
it with both English and programming language
data as well as an explicit cross-lingual signal from
translation pairs. We pursue this approach to create
Poro 34B, training a 34B parameter model for a to-
tal of 1T tokens – 25 times more than the available
Finnish data – and evaluate the model in detail on
Finnish, English, and programming language tasks.
We find that the model not only achieves the goal
of substantially advancing over the performance of
existing Finnish models, but is also competitive in
its class of open models on English and code as
well as remarkably strong in translation tasks.

2 Pretraining data

For pretraining Poro 34B, we rely on datasets
that have been previously preprocessed to remove

368



low-quality texts and boilerplate, filter toxic con-
text, and deduplicate repeated texts. We illustrate
the pretraining data distribution in Figure 1 and
describe the data briefly in the following. Data
sources are detailed in Table 4 in the Appendix.

Finnish For Finnish pretraining data, we draw
on the resources recently introduced by Luukko-
nen et al. for creating the FinGPT model fam-
ily. We exclude the ePub and Lehdet resources
provided by the National Library of Finland for
that work as they could not be shared due to copy-
right limitations, but use the remaining sources of
data, totalling to a 32B token monolingual corpus.
The majority of the Finnish data originates from
web crawls (approx. 84%) complemented with
news sources (approx. 2%), Project Lönnrot, the
Finnish equivalent of Project Gutenberg copyright-
free book corpus (approx. 0.5%), Wikipedia (ap-
prox. 0.5%) and Finnish online discussion forum
contents from Reddit and Suomi24 (approx. 13%).
Following the rule of thumb proposed by Muen-
nighoff et al. (2024), we upsample the 32B to-
kens of Finnish so that four epochs over the data
are made during training. Consequently, approxi-
mately 13% of the total tokens seen in pretraining
are Finnish.

English For English pretraining data, we pri-
marily use SlimPajama (Soboleva et al., 2023),
a cleaned and deduplicated subset of the RedPa-
jama corpus1 (Together Computer, 2023), from
which we excluded data from the books category
due to their copyright status. We supplemented this
dataset with the Project Gutenberg public domain
books data from the Dolma corpus2 (Soldaini et al.,
2024). We train for one epoch over the 542B tokens
of the English data, which thus represents slightly
over half of the 1T total training tokens.

Programming Languages To introduce data rep-
resenting various programming languages (referred
to hereinafter as “code" for short) into our pretrain-
ing, we make use of the Starcoder corpus (Li et al.,
2023), a processed subset of The Stack corpus3

(Kocetkov et al., 2023). The original corpus con-
sists of 208B tokens, which we oversample 1.5x so
that approximately a third of the tokens seen during
pretraining represent code.

1https://huggingface.co/datasets/
togethercomputer/RedPajama-Data-1T

2https://huggingface.co/datasets/allenai/dolma
3https://huggingface.co/datasets/bigcode/

the-stack

Cross-lingual data We introduce a cross-lingual
signal into pretraining by including translation ex-
amples from OPUS (Tiedemann, 2009). Specifi-
cally, we use the English-Finnish examples from
the Tatoeba dataset (Tiedemann, 2020) to generate
instruction-formatted translation examples. The
Tatoeba training data was reformatted into a mini-
malistic instruction-following format by recasting
each English-Finnish translation pair into a docu-
ment with the following format:

<|user|>Translate into Finnish: {{en}}
<|assistant|>{{fi}}

Where {{en}} and {{fi}} are the English and
Finnish texts (resp.) of the translation pair. We ad-
ditionally reverse the translation order (i.e., Finnish
to English instead of English to Finnish) for a to-
tal of two documents for each sentence pair. No
weighting is applied to the approximately 8B to-
kens of cross-lingual data, which thus represents
slightly under 1% of the pretraining tokens.

3 Methods

In this section, we describe the method used to
create the Poro 34B tokenizer, the pretraining setup,
and provide an estimate of the compute cost of
pretraining the model.

3.1 Tokenization
The choice of tokenizer has a broad range of im-
pacts, not only on the efficiency of training and
inference but also the capabilities of trained mod-
els (Rust et al., 2021; Petrov et al., 2023; Ali et al.,
2023). As we were not aware of any existing to-
kenizer that would be a good fit for our combi-
nation of languages and code, we created a new
tokenizer for our model. Specifically, we trained
a custom byte-level BPE tokenizer using the same
pre-normalization as the FinGPT tokenizer. We
selected a vocabulary size of 128K tokens, aiming
to achieve low fertility on the targeted languages
while keeping the vocabulary reasonably small.
The tokenizer was trained on a uniform distribu-
tion of samples of the Finnish, English and code
datasets.

We assess the fertility of the tokenizer on the
English and Finnish sentences from the devtest por-
tion of the widely used Flores-101 benchmark for
machine translation (Goyal et al., 2022), which al-
lows for a degree of cross-lingual comparability.
For code, we use an approximately 1M character
sample of lines from the Starcoder held-out test
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Figure 2: Tokenizer fertility comparison (lower is better).

data.4 Figure 2 provides a comparison of the fertil-
ity of the tokenizer compared to selected reference
tokenizers (see Section 4). We find that on this data
the new Poro 34B tokenizer has at least broadly
comparable fertility to the lowest-scoring tokenizer
on each of Finnish, English, and code, as well as
the lowest average fertility of the compared tok-
enizers.

3.2 Pretraining
We next briefly present the key model and train-
ing parameters (detailed in Table 5 in the Ap-
pendix A.1) and the pretraining software and con-
figuration.

Architecture Poro 34B is a decoder-only model
with a parameter count of 34 billion, sharing its
architecture with FinGPT (Luukkonen et al., 2023)
and BLOOM (Le Scao et al., 2022). It incorporates
layer normalization immediately following the in-
put embedding layer for better training stability
and uses ALiBi (Press et al., 2021) as its positional
encoding method. The model consists of 54 layers
with a hidden dimension of 7168 and a total of 56
attention heads.

Training We train to 1T tokens, intentionally
exceeding the Chinchilla compute-opimality esti-
mate (Hoffmann et al., 2022a) of approximately
700B tokens for a model of this size, thus gaining
inference-time efficiency for the cost of additional
compute investment in pretraining (Sardana and
Frankle, 2023). We train with a sequence length of
2048 tokens5 using a cosine learning rate scheduler
with a maximum learning rate of 1.5e-4, decaying
to a minimum of 2e-5 over 990B tokens, and a
linear warmup of 10B tokens. Our global batch

4We only sample lines with at least 10 alphabetic characters
to avoid very short lines.

5We acknowledge that this can be considered limiting by
today’s standards, but this limitation can be relieved by meth-
ods for extending the context length, for example via linear
extrapolation (Press et al., 2021) or interpolation (Al-Khateeb
et al., 2023).

size is 2048 samples totaling to 4194304 tokens
per optimization step.

Software Poro 34B was trained on the LUMI
supercomputer GPU partition, which is powered by
AMD MI250X GPUs. The majority of open source
frameworks for large language model pretraining
are made to be primarily NVIDIA-compatible,
and we required scalable AMD-compatible train-
ing software. Thus, we adopted the Megatron-
DeepSpeed fork6 introduced by (Luukkonen et al.,
2023), which has optimized kernels converted from
CUDA to be compatible with AMD ROCm, and
has been demonstrated to be a viable solution for
large model pretraining on LUMI. The hardware
used to train the model is described in detail in
Appendix A.3.

Configuration Considering the hardware avail-
able and the selected hyperparameters such as batch
size, a configuration of 128 nodes was chosen for
the training of the model, resulting in a world size
of 1024. The training was done using activation
checkpointing, a micro batch size of 1, gradient
accumulation of 16, and a 3D parallelism strategy
of tensor parallel degree 2, pipeline parallel degree
4, resulting in a data parallel degree of 128. This
allowed total training cycle throughput of 49618
TFLOPs and 174378 tokens/second.

3.3 Compute cost

Following (Groeneveld et al., 2024), we estimate
the carbon footprint of our pretraining by multiply-
ing the theoretical upper bound of the total power
used by the GPUs when they are utilized at 100%
with the carbon intensity factor of LUMI. Taking
into account the systems’s power usage effective-
ness (PUE) value of 1.04,7 we approximate the total
power consumption to be 448MWh. As LUMI is

6https://github.com/TurkuNLP/
Megatron-DeepSpeed

7https://www.lumi-supercomputer.eu/sustainable-future/
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powered by fully renewable electricity, we assume
the carbon intensity factor to be 0.8 This brings our
emissions to a total of 0 tCO2eq. It is important
to note that we only take into account power con-
sumption of the GPUs used, as the consumption of
the entire node was not logged during training.

4 Evaluation

We thoroughly analyze the capabilities of the model
for Finnish, English and code, first briefly re-
porting perplexity results and then focusing on
community-standard benchmarks for evaluating
generative models. We then assess the quality
of Finnish text generated by the model and fi-
nally evaluate the model’s translation capability
from English to Finnish (and vice versa). For
comparison, we include results for the state-of-
the-art Finnish language models, FinGPT 8B and
FinGPT 13B (Luukkonen et al., 2023), and a se-
lection of similarly-sized general-purpose open
source base language models trained on broadly
comparable numbers of tokens for English9:
Llama 33B (Touvron et al., 2023), MPT 30B (Mo-
saicML, 2023), and Falcon 40B (Almazrouei
et al., 2023). We also provide results for Star-
Coder base (Li et al., 2023) as a reference for per-
formance on code tasks.

4.1 Data and experimental setup

We assess the perplexity of the model on the
same data used to evaluate tokenizer fertility (Sec-
tion 3.1), namely Flores-101 devtest English and
Finnish and a sample of the StarCoder test data.
As token-level perplexity is dependent on tokeniza-
tion, it cannot be used to directly compare mod-
els with different tokenizers. We therefore report
character-level perplexity PPLc following Ekgren
et al. (2022), normalizing by character rather than
token count when calculating perplexity.

We benchmark the capabilities of the model in
Finnish using the FIN-bench10 dataset (Luukko-
nen et al., 2023), which covers a variety of tasks
to assess various aspects of model capabilities in

8We acknowledge that this assumption can be contested.
As (Groeneveld et al., 2024) note: "LUMI is powered entirely
by hydroelectric power and some sources (Ubierna et al., 2022)
measure the carbon intensity factor of hydroelectric power to
be 0.024."

9We chose English models of similar size and training
token budget rather than state-of-the-art models to more di-
rectly assess the effects of our multilingual training setup on
performance in English.

10https://github.com/TurkuNLP/FIN-bench

Finnish, combining selected tasks translated and
manually corrected from English BIG-bench (Sri-
vastava et al., 2022) with additional Finnish tasks.
We evaluate all FIN-bench results in a 3-shot set-
ting using the standard metrics defined for the
benchmark. For English evaluations, we use LM
Eval Harness (Gao et al., 2023) to evaluate with
the following datasets: ARC Challenge (Clark
et al., 2018), GSM8K (Cobbe et al., 2021), Hel-
laSwag (Zellers et al., 2019), MMLU (Hendrycks
et al., 2021), TruthfulQA (Lin et al., 2022a), and
Winogrande (Sakaguchi et al., 2019). We selected
these evaluations based on their use as English lan-
guage benchmarks by Beeching et al. (2023) and
use an identical testing configuration here. Pro-
gramming language proficiency is assessed via
the Bigcode Evaluation Harness (Ben Allal et al.,
2022) with the HumanEval (Chen et al., 2021), and
MBPP (Austin et al., 2021) benchmarks, employ-
ing the pass@10 metric for evaluation.

To evaluate the quality of Finnish text generation,
we generate responses to the translated MT-Bench
questions with few-shot prompting (Zheng et al.,
2023). We use a few-shot prompt because this
benchmark is designed for chat models and we are
evaluating base models. Moreover, we want to
unlock the Finnish generation capabilities of the
English-focused models by providing in-context
examples in Finnish. We use GPT-4 Turbo and
human judges to assess the quality of the responses.
Finally, to evaluate translation performance, we use
both the Flores-101 devtest (Goyal et al., 2022) as
well as the Tatoeba test sets (Tiedemann, 2020) in
an 8-shot setting, following Zhu et al. (2023).

4.2 Perplexity

Table 1 summarizes the results of the perplex-
ity evaluation as mean character-level perplexity
PPLc for various models over the sentences/code
lines. We find that Poro 34B has comparatively low
(good) PPLc on all three datasets, including the
best result for Finnish. Poro 34B is to the best of
our knowledge the only open model specifically
trained for this combination of languages, and it
is thus not surprising that it has the best overall
average in this evaluation. While perplexity is not
necessarily predictive of downstream performance
and these datasets only represent a part of the rele-
vant distribution, the result suggests that the model
has learned all of its target languages well.
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Poro 34B Llama 33B MPT 30B Falcon 40B FinGPT 8B FinGPT 13B StarCoder
Finnish 1.89 2.98 2.89 3.57 1.94 1.92 3.83
English 1.87 1.81 1.89 1.85 2.55 2.46 2.38
Code 3.21 4.27 3.58 3.65 25.1 27.3 3.15
Average 2.32 3.02 2.79 3.02 9.86 10.6 3.12

Table 1: Character-level perplexity for Poro 34B and selected reference models (lower is better).

Poro 34B Llama 33B MPT 30b Falcon 40B FinGPT 8B FinGPT 13B Starcoder
Finnish 66.28 53.36 53.22 42.58 49.69 48.92 45.55
English 50.57 59.96 52.62 49.87 31.47 32.85 35.44
Code 41.80 37.67 39.18 38.57 - - 49.06

Table 2: Average benchmark results for Finnish, English and code for Poro 34B and selected reference
models.
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Figure 3: Poro 34B performance progression on
FIN-bench. For reference, dotted lines show re-
sults for the best-performing monolingual FinGPT
model and the massively multilingual BLUUMI
model (Luukkonen et al., 2023), an extension of
BLOOM (Le Scao et al., 2022) with Finnish.

4.3 Benchmark results

The overall results of the benchmark evaluations
are summarized in Table 2 and detailed in Ap-
pendix A.2. We find that Poro 34B is the best-
performing model for Finnish in this comparison,
substantially outperforming the best previously in-
troduced monolingual Finnish model. We further
analyzed the progression of the Finnish capabili-
ties by evaluating Poro 34B checkpoints at 10%
intervals on FIN-bench. These results are summa-
rized in Figure 3. Interestingly, the model outper-
forms the best FinGPT model already after 100B
tokens of training (10%) despite the relatively small
proportion of Finnish in the Poro 34B data and
the fact that the FinGPT models were trained on

300B tokens in total. These results indicate that
our limited multilingual approach is effective for
creating stronger models for Finnish than possible
through monolingual training and demonstrate that
the model is benefiting substantially from its train-
ing data in other languages even when tested on
Finnish tasks.

For English, we find that the model achieves
broadly comparable results to the MPT 30B and
Falcon 40B models, both of which were trained for
1T tokens of predominantly English data. This indi-
cates that the limited multilingual training approach
has not notably detracted from the English capa-
bilities of the model. The best-performing open
model in this comparison is Llama 33B, which
was trained for longer (1.4T tokens), also predom-
inantly on English data. We find that Poro 34B
is nevertheless a capable model in its class also
for English, despite not optimizing specifically for
English performance. The programming language
benchmarks indicate that Poro 34B is more capable
on code than the other natural language-focused
models, while the code-focused StarCoder model
clearly outperforms all of the other models. We at-
tribute the relatively high performance of Poro 34B
on code to the comparatively large proportion of the
training data dedicated to code. As with English,
we consider the performance of the model on code
a positive addition even though code generation
was not a primary goal in creating the model.

Finally, we note a surprising finding arising
from the Finnish evaluation: two of the larger
English-focused models (Llama 33B and MPT
30B) score higher than the previously introduced
smaller monolingual Finnish models on the FIN-
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Figure 4: Win counts of reference models against Poro 34B on Finnish MT-Bench as judged by GPT-4
Turbo.

bench benchmark. While FIN-bench tasks are in
Finnish, the benchmark consists of multiple-choice
rather than generation tasks, has been produced in
substantial part through translation from English,
and includes tasks with little emphasis on natural
language (esp. arithmetic). We hypothesize that
the comparatively high performance of the English-
focused models on this benchmark might not indi-
cate that they can generate fluent Finnish, which
also calls the Finnish proficiency of Poro 34B into
question. We study this question specifically in the
following section.

4.4 Open-ended generation

To assess the ability of the models to generate co-
herent and grammatically correct Finnish, we cre-
ate a Finnish version of MT-Bench (Zheng et al.,
2023), a benchmark for open-ended conversations
that uses LLM-as-a-judge evaluation. We excluded
math and coding questions to focus specifically on
the natural language generation capabilities of the
models. To create the benchmark, we initially trans-
lated the questions into Finnish using DeepL,11 and
the translations were then manually corrected by
native Finnish speakers to create the final evalu-
ation dataset. To evaluate base models using the
data, we similarly translated and corrected the few-
shot URIAL prompt (Lin et al., 2024). 12 We use
pairwise judging to compare between Poro 34B and
the competing models’ responses and use GPT-4
Turbo as the judge model.

To assess the reliability of the model as a judge
and provide further insight into the quality of the
generations, we additionally set up an annotation
platform where two native Finnish speakers were

11https://www.deepl.com
12We did not modify the judge prompts as previous work

has found that keeping the prompt in English produces better
results (Ahuja et al., 2023).

asked to pick a preference between a response gen-
erated by Poro 34B and a competing model.13 The
judges are given the same judging prompt as GPT.
The model names are hidden from the judges, and
we randomly select the position of each response in
every response pair to account for positional bias.

We found that the two human judges highly
agree with each other, picking the same winner
88.8% of the time, and found an even higher agree-
ment between GPT and each human judge: 91.6%
between annotator 1 and GPT and 89.5% between
annotator 2 and GPT. Figure 4 shows the win
counts of the reference models against Poro 34B as
judged by GPT-4 Turbo.

In manual analysis after the initial annotation,
we found that the FinGPT models often struggled
with the few-shot format, failing to follow ques-
tions or only giving short, minimal answers, while
Poro 34B was better able to comply with questions
and given requirements, such as listing a specified
number of items. However, we found that Poro 34B
also often hallucinated and did not follow all in-
structions, and we would not consider its responses
to be at a level of consistency and quality required
for user-facing applications, which is not an unex-
pected result given that it is a base model not specif-
ically fine-tuned or otherwise aligned for such use.
Despite outperforming FinGPT models on the FIN-
bench benchmark, The English-focused models
appeared to be unfit for Finnish generation: their
generations had the surface appearance of Finnish
text but were largely nonsensical and incoherent.
This result underlines the need to include multiple
perspectives when evaluating models: a high score
on a multiple-choice benchmark may not indicate
practical capability to generate coherent text in a
language.

13We did not separately compensate the human judges as
they are co-authors of this paper.

373

https://www.deepl.com


We make the Finnish MT-Bench available
under an open license and provide the model
generations at https://github.com/LumiOpen/
FastChat/tree/main/fastchat/llm_judge.

4.5 Translation
General-purpose language models have shown
promising results on translation benchmarks on
multiple languages (Vilar et al., 2023; Garcia et al.,
2023; Alves et al., 2024). Following Zhu et al.
(2023), we evaluated Poro 34B for English to
Finnish translation and vice versa on the first 100
sentences of the Flores-101 test data by prompting
the model with eight translation examples sampled
randomly from the development set, formatting
the examples simply as <src>=<trg>. We further
evaluated Poro 34B and three strong open-source
translation models on the Tatoeba test set with more
than 11,000 sentences: OPUS-MT (Tiedemann and
Thottingal, 2020), NLLB-1.3B (Costa-jussà et al.,
2022), and M2M-100-12B (Fan et al., 2021)14. We
used the standard SentencePiece BLEU (spBLEU)
as our metric. The results of both evaluations are
shown in Table 3.15 These results demonstrate that
Poro 34B is a remarkably strong translator, outper-
forming not only dedicated open-source translation
models but even Google Translate, and scoring
roughly on par with GPT-4 in this evaluation. We
attribute this result to the combination of strong
Finnish and English capabilities and the inclusion
of a comparatively large number of translation ex-
amples in the pretraining data.

It should be noted, however, that the Tatoeba
and Flores sentences are relatively short and sim-
ple, and this evaluation does thus not capture the
full picture of the translation capabilities of the
evaluated models. We aim to assess the translation
capability of Poro 34B more comprehensively on
longer texts, especially texts that might include dif-
ferent modalities such as tables and code, in future
work.

5 Discussion and conclusions

In this study, we have considered the challenges
that the availability of data poses for pretraining

14We did not evaluate the GPT models and Google Translate
on Tatoeba because of the associated API costs.

15We attempted to reproduce some of the Flores-101 results
reported by (Zhu et al., 2023) and obtained a slightly higher
result for GPT-4 in Eng-Fin translation (37.5 instead of 35.33)
and slightly lower results for M2M-12B and NLLB-1.3B (31.4
and 26.6, respectively). For the sake of consistency, we present
the results from that study without modification.

Flores-101 Tatoeba
Model En-Fi Fi-En En-Fi Fi-En
ChatGPT 33.4 35.9 - -
GPT-4 35.3 40.2 - -
Google 37.3 39.0 - -
M2M-12B 33.3 33.8 36.7 41.3
NLLB-1.3B 30.0 35.4 40.2 55.7
OPUS-MT 37.2 35.6 46.7 58.4
Poro 34B 37.6 39.8 47.3 60.5

Table 3: spBLEU on the Flores-101 devtest and
Tatoeba test sets. Flores-101 results except for
OPUS-MT and Poro 34B are from Zhu et al.
(2023).

large generative models for smaller languages and
explored a limited multilingual approach to cre-
ate Poro 34B, a 34B-parameter model trained on
1T tokens of Finnish, English, and code, includ-
ing 8B tokens of Finnish-English translation pairs.
We thoroughly evaluated the model and found it
to substantially advance over the performance of
existing models for Finnish while also perform-
ing competitively in its class of open models for
English and code generation, as well as achieving
remarkably good results in translation tasks. Two
human judges and GPT-4 Turbo found the texts
generated by Poro 34B to be superior to the com-
peting models.

Our model architecture and the Finnish datasets
included follow those of the FinGPT family of
monolingual Finnish models, which were con-
strained by the available Finnish training data. The
superior performance of our model in Finnish eval-
uations demonstrates that multilingual training can
lift such limitations, allowing further scaling of
models focused on smaller languages. In future
work, we hope to explore this effect more system-
atically to answer some of the many questions that
remain open regarding the training of large gener-
ative models for smaller languages, including the
impacts of covering multiple smaller languages and
the effect of the size of data available in the target
languages.

A number of the choices made in training
Poro 34B were made with incomplete information
regarding their specific impacts on the final model.
For example, we opted to include a comparatively
large amount of programming language data as
well as instruction-formatted translation examples
in the pretraining data, the latter on the assumption
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that this would provide a cross-lingual signal that
would strengthen the ability of the model to benefit
from data in a more distantly related language (En-
glish). While this approach is intuitively appealing
and the performance of our model suggests that it
has at a minimum not notably detracted from the
capabilities of the model, we did not as part of this
work have the resources to conduct ablation stud-
ies nor to explore alternative ways to incorporate
cross-lingual information in pretraining. We aim to
study these questions further in future work.

We hope that our approach can serve as a tem-
plate for the creation of larger models for other
smaller languages and that the model introduced
in this work can serve as both as a focus of re-
search in its own right as well as a starting point
for further pretraining, finetuning and alignment
to create useful models, tools and methods not
only for Finnish but also other languages. We
release the model weights as well as all relevant
documentation and software fully openly at https:
//huggingface.co/LumiOpen/Poro-34B.

Limitations

Our study applies a pretraining recipe that com-
bines insights on effective multilingual and data-
constrained model training from a variety of previ-
ous studies. While the findings of these studies are
supported by a broad range of relevant experimen-
tal results, we did not have the resources to perform
separate ablation experiments specifically assess-
ing the impact that various parts of our combined
pretraining recipe (e.g., four repetitions of target
language data and the inclusion of a translation sig-
nal) have on the resulting model. Thus, while we
believe that our results demonstrate the pretraining
recipe to be effective for creating state-of-the-art
models for data-constrained languages, our work is
limited in leaving many questions open regarding
specific choices that form part of that recipe.

Poro 34B is a base model and as such has not
been aligned to follow instructions and engage in
conversations. It has not been evaluated on safety
and toxicity benchmarks. As we have noted in our
language generation evaluation, Poro 34B does not
adequately follow instructions and has the tendency
to generate texts with hallucinations. Further re-
search is needed to improve the model in terms
of factuality, safety, and alignment in English and
Finnish. We encourage developers using Poro 34B
to be aware of the potential risks associated with

LLMs such as non-factual outputs, harmful lan-
guage, and perpetuation of biases and stereotypes.
We recommend that developers finetune Poro 34B
to meet their specific needs and codes of conduct.

Ethical considerations
We are committed to open science, transparency
and accessibility in our work. While we acknowl-
edge the concerns and the potential for negative
impacts associated with making powerful gener-
ative models and the technology to create them
more widely available, we believe that in the case
of Poro 34B the positives clearly outweigh the neg-
atives. We discuss some specific concerns and their
mitigations in the following.

Poro 34B is a base model trained in substantial
part on texts sourced from web crawls, which are
known to include biases, toxicity and factual errors.
While we have selected curated text sources that
have been extensively filtered to remove problem-
atic material, no such filtering is perfect. Like all
language models, Poro 34B is a product of its in-
puts, and its output may reflect issues in its training
material. Furthermore, as Poro 34B is a base model
that has not been finetuned for any specific purpose,
extra care should be taken when interpreting its out-
put, and the model should not be used as is in any
application with potential for significant impact on
people’s rights or well-being. We emphasize these
limitations in the model card published with the
model.

Pretraining large language models is computa-
tionally intensive, and the creation of large mod-
els can have substantial environmental impacts.
Poro 34B was trained on the LUMI supercomputer,
which is powered entirely by renewable energy re-
sources. According to the official specifications,
the carbon intensity factor of LUMI’s operation is
considered to be zero. This approach effectively
minimizes the carbon footprint associated with the
computational aspects of training our model.

Though concerns about the capabilities of fron-
tier models to cause catastrophic harm have been
discussed in the literature, a model of Poro 34B’s
size and training duration does not represent new
frontier capability and releasing the model does not
introduce any new classes of risk.
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A Appendix

A.1 Training details
It has been our aim throughout this work to release Poro 34B fully openly, including model weights,
pretraining configuration, the pretraining and evaluation data, and all associated scripts and tools. We
provide here additional details of these to facilitate accurate reproduction of our work. The pretraining
data sources are detailed in Table 4, and the model and pretraining hyperparameters in Table 5.

Dataset Language Reference

SlimPajama English https://huggingface.co/datasets/cerebras/SlimPajama-627B
Starcoder Code https://huggingface.co/datasets/bigcode/starcoderdata
Tatoeba challenge Eng-Fin https://huggingface.co/datasets/tatoeba
Project Gutenberg English https://huggingface.co/datasets/allenai/dolma
Parsebank Finnish https://turkunlp.org/finnish_nlp.html
mC4 https://huggingface.co/datasets/mc4
CC-Fi https://github.com/TurkuNLP/CC-Fi
Fiwiki https://fi.wikipedia.org/wiki
Lönnrot http://www.lonnrot.net
Suomi24 http://urn.fi/urn:nbn:fi:lb-2021101527
Reddit-Fi https://www.reddit.com/r/Suomi
STT http://urn.fi/urn:nbn:fi:lb-2019041501
Yle http://urn.fi/urn:nbn:fi:lb-2017070501
Yle http://urn.fi/urn:nbn:fi:lb-2021050401
Yle http://urn.fi/urn:nbn:fi:lb-2019050901
Yle http://urn.fi/urn:nbn:fi:lb-2021050701

Table 4: Data sources

Architecture hyperparameters Pretraining hyperparameters

Parameters 34B Global Batch Size 2048
Precision bfloat16 Learning rate 1.5e-4
Layers 54 Total tokens 1000B
Hidden dim 7168 Warmup tokens 10B
Attention heads 56 Decay tokens 1000B
Vocab size 131072 Decay style cosine
Sequence length 2048 Min. learning rate 2e-5
Activation GELU Adam (β1, β2) (0.9, 0.95)
Position embedding ALiBi Weight decay 2e-5
Tied embeddings True Gradient clipping 1.0

Table 5: Model and training hyperparameters
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A.2 Detailed benchmark results
Tables 6, 7, and 8 show the detailed benchmark results for Finnish, English, and code.

Benchmark Poro 34B Llama 33B MPT-30b Falcon-40b FinGPT 8B FinGPT 13B Starcoder
Analogies 77.69 61.54 57.69 43.85 40.0 36.15 46.15
Arithmetic 54.28 47.74 57.25 51.06 41.96 45.23 48.41
Cause and Effect 67.97 60.78 58.82 46.41 66.01 69.28 54.90
Emotions 55.00 45.00 39.37 16.88 45.62 38.75 23.13
Empirical Judg. 62.63 43.43 43.43 34.34 32.32 36.36 44.44
General Knowl. 75.71 48.57 37.14 22.86 51.43 40.00 22.86
Intent Recogn. 83.24 77.75 77.31 46.24 51.43 58.24 65.03
Misconceptions 53.73 51.49 50.00 50.00 51.45 45.52 47.01
Paraphrase 58.50 53.00 52.50 54.50 49.50 45.50 47.50
Sentence Ambig. 66.67 45.00 56.67 48.33 48.33 53.33 51.67
Similarities Abst. 73.68 52.63 55.26 53.95 68.42 69.74 50.00
Average 66.28 53.36 53.22 42.58 49.69 48.92 45.55

Table 6: FIN-Bench Finnish benchmark results

Benchmark Poro 34B Llama 33B MPT-30b Falcon-40b FinGPT 8B FinGPT 13B Starcoder
ARC-Challenge 53.16 61.61 55.80 50.51 25.34 24.31 30.29
Hellaswag 77.77 84.64 82.23 77.01 42.91 46.77 47.22
MMLU 46.29 58.13 47.27 46.13 23.34 23.64 32.11
TruthfulQA 41.66 42.84 38.44 41.64 43.80 44.58 40.06
Winogrande 72.77 80.27 74.82 81.53 53.19 57.53 54.85
GSM8K 11.75 32.27 17.13 2.43 0.22 0.22 8.11
Average 50.57 59.96 52.62 49.87 31.47 32.85 35.44

Table 7: English benchmark results

Benchmark Category Poro 34B Llama 33B MPT-30b Falcon-40b Starcoder
HumanEval Python 37.20 34.15 35.37 34.15 45.12
MBPP Python 47.40 41.20 43.00 43.00 53.00
Average 41.80 37.67 39.18 38.57 49.06

Table 8: Code benchmark results

A.3 Hardware
Poro 34B was trained on the LUMI-G GPU partition of the LUMI supercomputer, located in Finland.
LUMI is, at the time of this writing, the third fastest supercomputer in Europe, and the 8th fastest
in the world (https://www.top500.org/). LUMI is also ranked 7th greenest by the Green500 list
(https://www.top500.org/lists/green500/).

The LUMI-G partition has 2978 nodes, with each node having four AMD MI250x GPUs with 128GB
of memory each, and a single 64-core CPU. The MI250x is a multi-chip module (MCM), with dual-GCD
(graphics compute die) design, which in practice means a node has eight logical devices, each logical
device with access to 64GB of high bandwidth memory.

Each node has four 200Gbps Slingshot-11 network interconnects. The nodes are connected together in
a dragonfly topology. During benchmarking and scale testing we did not observe the network topology as
a limiting factor for the required collective operation sizes. The total of 800 Gbps per-node bandwidth
proved to be more than sufficient, and the communication overhead was minimal during training.
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Abstract
This study explores the overlap between
text summarization and simplification out-
puts. While summarization evaluation
methods are streamlined, simplification
lacks cohesion, prompting the question:
how closely can abstractive summariza-
tion resemble gold-standard simplifica-
tion? We address this by applying two
BART-based BRIO summarization meth-
ods to the Newsela corpus, comparing out-
puts with manually annotated simplifica-
tions and achieving a top ROUGE-L score
of 0.654. This provides insight into where
summarization and simplification outputs
converge and differ.

1 Introduction

Text simplification can operate at various linguis-
tic levels—semantic, syntactic, or lexical—using
diverse strategies to achieve specific goals (Pellow
and Eskenazi, 2014; Paetzold and Specia, 2016;
Chen et al., 2017; Van et al., 2021). In practice,
Automatic Text Simplification (ATS) transforms
complex text into simpler versions by splitting
sentences, shortening length, and simplifying vo-
cabulary and grammar. The best English-language
ATS models rely on parallel corpora like Wik-
iSmall (Zhu et al., 2010; Zhang and Lapata, 2017),
aligning complex and simple sentences from stan-
dard and Simple English Wikipedias (originally
108,000 instances from 65,133 articles, currently
89,042). The most valuable resource for text sim-
plification is the Newsela corpus Xu et al. (2015),
which includes 9,565 news articles professionally
rewritten at multiple reading levels, with 1,913
original articles and four levels of simplification.
However, it lacks the volume needed to train ad-
vanced deep-learning models effectively.

Simplification lacks standardized procedures
and a common algorithm, partly due to the absence

of a ”native speaker of simplified language” (Sid-
dharthan, 2014). The subjective nature of simplifi-
cation also makes consistent methodology difficult
(Grabar and Saggion, 2022). The evaluation met-
rics for simplification are similarly inconsistent.
Some, like BLEU or Levenshtein distance (Lev-
enshtein, 1965; Papineni et al., 2002), focus on in-
trinsic grammatical features and struggle with se-
mantic changes, while others, such as cosine dis-
tance, emphasize semantic similarity. By contrast,
summarization metrics are well-established, even
when imperfectly applied (Grusky, 2023). Fur-
thermore, while the two tasks present some di-
vergences in their focus (e.g. the relevance of in-
formation ordering, the choice of domain-agnostic
lexicon, and the preference for short active forms
instead of long passive forms), they remain con-
vergent in producing shorter and poignant text.
Given the state of things, we believe that compar-
ing simplification with summarization could pro-
vide insights into their convergence.

This study investigates whether a state-of-the-
art (SotA) summarization system can approxi-
mate manual simplification by comparing anno-
tated simplifications with automated summariza-
tion. Starting with Newsela’s English documents,
we process original articles with BRIO (Liu et al.,
2022), a SotA abstractive summarizer, applying
document-wide and paragraph-by-paragraph sum-
marization methods. We then evaluate each out-
put set against the four simplification levels us-
ing ROUGE-L scores to measure similarity. Re-
sults indicate an average performance difference
of 0.444, with paragraph-by-paragraph summa-
rization achieving the highest score (0.654) at
level 1, gradually decreasing through levels 2 to
4. While paragraph-by-paragraph summarization
does not equate to manual simplification, it may
serve as an effective preparatory step for manual
annotators.

Background and related research are discussed

383



in Section 2, with the experimental setup and find-
ings detailed in Sections 3 and 4. A summary of
the presented work, followed by the limits of the
scope and suggestions for future research, are pro-
vided in Section 5.

2 Related work

The multifaceted nature of implementing text sim-
plification has led to multiple works that share
the goal of rewriting complex documents with
simpler, more straightforward language. This
is ultimately achieved by modifying the original
text both lexically and syntactically as defined in
Truică et al. (2023), either in an automated or
manual way. Multiple works in the field have
tackled different applications, from aiding people
with disabilities (Rello et al., 2013; Chen et al.,
2017), low-literacy adults (Watanabe et al., 2009;
Paetzold and Specia, 2016), non-native learners
(Allen, 2009; Pellow and Eskenazi, 2014) to auxil-
iary systems to improve the effectiveness of other
NLP tasks (Stymne et al., 2013; Wei et al., 2014;
Štajner and Popovic, 2016).

Due to the wide range of applications, a ma-
jor subjectivity issue emerges when evaluating
the different methods for simplification (Grabar
and Saggion, 2022). Different scoring methods
that have been utilized for simplification include:
BLEU (Papineni et al., 2002); TERp, Translation
Edit Rate plus, which computes the number of the
three edit operations plus the inverse (Snover et al.,
2009); OOV, Out Of Vocabulary, which measures
the rate of oov words from a chosen simple vocab-
ulary (e.g. Basic English list) (Vu et al., 2014);
changed, measuring the percentage of the test ex-
amples where the system suggested some change
(Horn et al., 2014); potential, computing the pro-
portion of instances in which at least one of the
candidates generated is in the gold-standard (Paet-
zold and Specia, 2016); SARI, the most recent,
which performs a similar comparison to BLEU but
is considered more reliable (Xu et al., 2016).

The general approach to text summarization is
more streamlined, aiming to produce a shorter text
than the input one while keeping all relevant infor-
mation, defined as abstract or summary (Moiyadi
et al., 2016). The most common approaches
are naı̈ve Bayes (Kupiec et al., 1995; Gambhir
and Gupta, 2017), swarm algorithms (Jarraya and
Bouri, 2012; Izakian and Mesgari, 2015), and
sequence-to-sequence models (Sutskever et al.,

2014; Zhang et al., 2020).
A further distinction can be made between

abstractive and extractive summarization meth-
ods (Nazari and Mahdavi, 2019). Where extrac-
tive methods produce text by concatenating se-
lected parts of the original document, abstractive
methods apply language generation techniques to
produce a shorter document (Jeæek and Stein-
berger, 2008; Gupta and Lehal, 2010). Standard
scoring methods for text summarisation are pre-
cision/recall measures and various instances of
ROUGE (Lin and Och, 2004a; Grusky, 2023),
some examples being ROUGE-n, ROUGE-L, and
the most recent ROUGE-SEM (Zhang et al.,
2024).

The Newsela corpus is a collection of 1,130 ar-
ticles rewritten and simplified by professional ed-
itors, aimed at children of different grade levels
(Xu et al., 2015). From each individual article,
four different versions have been derived through
manual simplification process and labelled with a
number from 1 to 4, representative of the level of
simplification. Label 4 represents the most simpli-
fied output, suitable for a 3rd grader; label 3 rep-
resents an output suitable for a 4th grader; labels
2 and 1 identify outputs suitable for 6th and 7th
graders. The original articles are suitable for 12th
graders.

Considering possible modifications to the
dataset past the authors’ presentation of their
work, the corpus currently consists of 9,565 docu-
ments, of which 1,913 original articles.

3 Experimental setup

For the purpose of this work, the architecture
chosen to perform the summarization procedure
was BRIO, a system presented in Liu et al.
(2022) and based both on the BART architecture
(Lewis et al., 2020) and the PEGASUS architec-
ture (Zhang et al., 2020). The choice was moti-
vated by its state-of-the-art performance in sum-
marization tasks, its ease of availability and im-
plementation, and the double-model-based sys-
tem that it employs. The dual nature of BRIO is
the result of fine-tuning two different architectures
on two different datasets with a specific training
paradigm. Since the two datasets were character-
ized by longer texts (Hermann et al., 2015) and
shorter texts (Narayan et al., 2018), the two back-
bones for the architecture keep these properties.
Therefore, the BART-based BRIO was chosen as a
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summarizer for its performance with longer texts,
as suggested by the original authors.

The original articles from the Newsela corpus
were then processed through the summarization
model. For each article, two procedures were
followed to produce different output documents:
document-wide summarization and paragraph-by-
paragraph summarization, as explained below. A
graphic representation of the general procedure is
provided in Figure 1

Document-wide. The more intuitive applica-
tion of text summarization, this method involved
the generation of a single string containing the
whole text by joining the various paragraphs and
subsequently processing it with the summarizer
model. Once the architecture produced an output
string, it was written in a separate *.txt file.

Paragraph-by-paragraph. This summariza-
tion approach stems from the visual structure of
academic texts, which usually separate topics and
changes in content by dividing the document into
paragraphs. Thus, the intuition was to make the ar-
chitecture follow a similar pattern to preserve the
content and produce a more effective summariza-
tion. This method implemented splitting the origi-
nal text into paragraphs and processing each para-
graph separately with the summarizer model. The
resulting outputs were subsequently rejoined and
written as a single document in a separate *.txt
file.

Both procedures were applied to each of the
original 1,913 English articles in the Newsela cor-
pus, and the resulting two sets of summarized doc-
uments were compared to the simplified version
produced by the editors. This was done by iter-
ating through the different levels of simplification
(1, 2, 3, and 4) and calculating the precision, re-
call and ROUGE F1 score between each simpli-
fied version of the document and the summarized
version of it. The resulting evaluation was stored,
and the average was calculated level-wise for each
metric with the scores from the whole set. Then,
the scoring procedure was repeated for the remain-
ing summarized set. The chosen evaluation score
was ROUGE-L as it was both a part of the original
BRIO publication (Liu et al., 2022) and a statistic
based on Long Common Sequence (LCS) (Lin and
Och, 2004b), which made it well suited to mea-
sure the grammatical integrity, keyword conserva-
tion and coherence in the summarized texts.

4 Results

The average scores for the three evaluation met-
rics used in comparing the human-produced sim-
plification and the automated summarization are
available in Table 1. To provide an easier analy-
sis, the scores have been divided by the level of
simplification taken under scrutiny and the type of
summarization procedure performed on the orig-
inal articles. The upper section of Table 1 pro-
vides the average evaluation score between all the
documents summarized with the first method men-
tioned in Section 3 and their simplified equivalent
for each level. The second summarization method,
paragraph-by-paragraph, is evaluated in the lower
part of the Table.

Level Precision Recall ROUGE-L
DOCUMENT

label 1 0.058 0.918 0.109
label 2 0.061 0.884 0.113
label 3 0.066 0.811 0.122
label 4 0.078 0.731 0.141

PARAGRAPH
label 1 0.731 0.615 0.654
label 2 0.721 0.561 0.616
label 3 0.703 0.461 0.541
label 4 0.699 0.354 0.451

Table 1: Average precision, recall and ROUGE-
L scores when comparing the summarization out-
put against the different levels of manually simpli-
fied articles. The table is divided according to the
two types of summarization techniques presented,
document-level and paragraph-level.

To make the gap in scores and the variability
in summarization performance through the differ-
ent processes more apparent, two graphic repre-
sentations of the average scores are provided in
Figure 2. The data corresponds to the document-
wide summarization method on the left side and
the paragraph-by-paragraph method on the right.

When comparing the results from the two pro-
cesses, the overall difference in balance between
precision/recall for the document-wide summa-
rization method is immediately noticeable. Even
considering the progressive improvement of the
precision rate and the lowering of the recall score,
the minimum gap between the two is 0.653. The
first hypothesis was that it was due to the summa-
rizer generating lengthy and repetitive summaries;
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Figure 1: Representation of the processing pipeline for each article, showing the document-wide method
(upper side) and paragraph-by-paragraph (lower side).

Figure 2: Comparison between the different levels of simplified text (1 to 4, left to right) and the two
automated types of summarization. On the left is the performance of the document-wide summarization,
on the right the performance of the paragraph-by-paragraph method.

however, a quick analysis of the outputs confirmed
the variety in length and the production of shorter
documents than their input. Therefore, the more
plausible hypothesis is that while the longest com-
mon sentences between manual simplification and
automated summarization are recalled in the text
(most likely the keywords), the structural lexicon
and syntactical choices of the simplified version
would not appear through document-wide sum-
marization. Consequently, this can lead to the
poor similarity between the two document types
and the convolution of information through sum-
marization, a hypothesis corroborated by the low
ROUGE-L score.

On the other side of Figure 2, the scores pro-
vide a better-looking picture of the paragraph-by-
paragraph performance. With a ROUGE-L score
of 0.566 averaged between all levels of simplifi-
cation, the similarity between the simplified and
summarized versions is noticeable. Although they
perform better when compared to lower levels

of simplification than to more simplified docu-
ments, the summarized outputs obtained through
paragraph-by-paragraph processing perform well
enough to justify further investigation and anal-
ysis. Our hypothesis for the better performance
of the paragraph-by-paragraph, when compared to
the document-wide processing, lies in the nature
of the process: a block-by-block iteration might
be more similar to the manually performed anno-
tation than a text-wide transformation is.

Worth of notice for the production of these re-
sults was the difference in time requirements be-
tween the first summarization method and the sec-
ond when operating on an average machine (16
GB RAM, 8 cores, 2,90 GHz CPU). The time
elapsed for the paragraph-by-paragraph process-
ing method was greatly increased, ranging be-
tween 10x and 50x more for each iteration and
thus requiring several minutes instead of seconds.
While the reason behind this issue requires more
investigation, with the current implementation,
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performing such a method on a large-scale dataset
without some optimization or access to a powerful
machine is not recommended.

5 Conclusions, limitations and future
work

In this work, the similarities between simplified
and summarized text have been analysed through
the automated summarization of articles from the
Newsela corpus, performed with two different
methods and compared to four levels of profes-
sional manual simplification representative of di-
verse school grade levels. By examining the re-
sults obtained by a ROUGE-L scoring comparison
between our output and the manual standard, it is
shown that the proposed paragraph-by-paragraph
method is superior to a document-wide approach,
with the highest score being 0.654. Hence, it is
possible to claim that while automated summa-
rization does not produce text similar enough to
simplified documents to justify its substitution, it
still produces text similar enough to be used as a
baseline to perform simplification on - instead of
starting from the original text.

However, there are important limitations to the
currently chosen metric. As ROUGE-L cannot
measure semantic similarity between instances, all
sequences that are semantically correct but lex-
ically different would not compute as ”similar”.
Since abstractive summarization could generate
text that is lexically different from the simplifi-
cation golden standard but still effectively sim-
plified, further analysis with semantically relevant
metrics should be conducted. In addition, fu-
ture work in this direction should implement ulte-
rior thorough analyses with more refined metrics,
such as ROUGE-SEM or SARI, along with a com-
parison between manual simplification, automated
summarization and automated simplification algo-
rithms. In particular, the latter could shed some
light on the intrinsic similarities between simplifi-
cation and summarization and help further inves-
tigate the potential interdisciplinary approaches to
the text simplification field of research.

Further investigation into optimization proce-
dures to make the most-performing methods avail-
able for lower-end machines should also be con-
ducted to allow for wider access to the tools and
improved effectiveness of summarizers as a sim-
plification helping tool.
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Abstract

Fine-tuning language models incurs
high costs in training, inference and
storage. Parameter-efficient fine-tuning
(PEFT) methods have emerged as a
more cost-effective alternative to full
fine-tuning. However, limited work has
compared different PEFT approaches for
tasks like code generation. In this study,
we examine the effect of various PEFT
training methods on model performance
in the task of Python code generation. We
fine-tune four model families, ranging
from 124M to 7B parameters, using three
PEFT approaches alongside standard full
fine-tuning. Our findings reveal that the
effectiveness of each PEFT method varies
with the model size and the corpus used.

1 Introduction

Language models (LMs) have shown great capa-
bilities across a variety of natural language pro-
cessing (NLP) downstream tasks, including code
generation tasks (Chen et al., 2021; Li et al.,
2023; Nijkamp et al., 2023; Rozière et al., 2023a;
Xu et al., 2022). Generally, larger LMs tend
to perform better on downstream tasks (Kaplan
et al., 2020), as evidenced by CodeLlama, which
exhibits improved code completion and genera-
tion abilities as its size increases from 7 billion
to 70 billion parameters (Rozière et al., 2023a).
However, the training of these larger models is
resource-intensive, requiring substantial computa-
tional power and high storage costs.

To address these challenges, Parameter-
Efficient Fine-Tuning (PEFT) methods have
emerged (Dettmers et al., 2023; Houlsby et al.,
2019; Hu et al., 2022; Lester et al., 2021; Lialin
et al., 2023; Liu et al., 2022). These approaches
update a small subset of the model parameters

during fine-tuning, while the rest remain frozen,
significantly reducing both computational and
storage costs for each downstream task.

While significant research has been conducted
on both PEFT methods and code LMs individu-
ally, at the time of this study, there is only lim-
ited research evaluating PEFT approaches applied
to code LMs for code generation tasks (Purnawan-
syah et al., 2024; Weyssow et al., 2023; Zhuo et al.,
2024). Existing studies on this topic have no-
table shortcomings: many focus only on smaller
models, ignoring those with 1B parameters or
more (Ayupov and Chirkova, 2022; Zou et al.,
2023), while others concentrate solely on tasks
like code understanding or clone detection, which
often outperform code generation tasks under sim-
ilar PEFT training conditions (Liu et al., 2023;
Wang et al., 2023; Zou et al., 2023). These limi-
tations highlight a significant research gap, partic-
ularly as state-of-the-art models increasingly fea-
ture billions of parameters and are predominantly
generative.

We aim to fill existing research gaps through
two key questions: 1) Which PEFT method de-
livers the best performance across various model
sizes for Python generation tasks? 2) How do
these methods compare to full fine-tuning?

2 Parameter Efficient Fine-Tuning

Parameter efficient fine-tuning (PEFT) methods
provide a more efficient alternative to full fine-
tuning of large LMs (LLMs), significantly reduc-
ing both computational and storage costs (Lialin
et al., 2023). Various PEFT methods achieve
remarkable performance compared to full fine-
tuning for models of different sizes (Ding et al.,
2023; Lester et al., 2021; Wang et al., 2023), all
while offering substantial computational savings.
We present an overview of the three methods that
are relevant to our work. These methods are illus-
trated in Figure 1.
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Figure 1: Diagram showing a decoder layer, as
well the PEFT Techniques employed in the study.

Low Rank Adaptation (LoRA) LoRA (Hu
et al., 2022) approximates model weight matrices
through low-rank decomposition into a smaller set
of parameters. The pretrained weights are frozen,
and the approximation is fine-tuned during train-
ing. LoRA can be applied to any weight matrix,
and Dettmers et al. (2023) shows that applying it to
all linear layers enhances performance compared
to limiting it to query and value matrices as done
in Hu et al. (2022). The efficiency of LoRA is
determined by the rank of the decomposed matri-
ces and the scaling factor, alpha. Alpha is often
set to be twice the size of the rank (Zhuo et al.,
2024; Weyssow et al., 2023) or equivalent to the
rank (Lee et al., 2023).

Prefix-tuning Inspired by in-context learning,
this method (Li and Liang, 2021) prepends train-
able tensors called ”soft prompts” to the input of
each transformer block. These task-specific pre-
fixes are updated during training while the original
model parameters are frozen.

Prompt-tuning Similar to prefix-tuning,
prompt-tuning (Lester et al., 2021) adds trainable
parameters to the input layer only, leading to a
further reduction in the number of parameters that
need updating compared to prefix-tuning.

3 Experimental Approach

In this section, we describe the methodology used
to investigate how models of different sizes adapt
to the Python code generation task using PEFT.

The experimental approach is illustrated in Fig-
ure 2, which outlines the models, dataset, data
processing methods, training setup, and evaluation
strategy. These elements will be described in de-
tail in the following section.

Figure 2: Diagram describing the experimental
approach adopted in this study.

3.1 Models

In this study, we strategically select four distinct
model families, mainly GPT-2, CodeGPT, CodeL-
lama, and Mistral v0.11.

We selected the models with sizes ranging from
124M to 7B parameters and trained them on ei-
ther text, code, or both. This enable us to explore
model sizes that have been overlooked in similar
studies.

GPT-2 (Radford et al., 2019) Autoregressive
models ranging from 124M to 1.5B. The study
employs GPT-2, GPT-2 M, L, and XL.

CodeGPT (Lu et al., 2021) is initialized from
GPT-2 and fine-tuned on code corpora. The study
focuses on the Python variants of the models, us-
ing both adapted and small versions2.

CodeLlama (Rozière et al., 2023b) Available in
three sizes (7B, 13B, and 34B) and three variants.
Only the 7 billion parameter base model was fine-
tuned for this study.

Mistral Mistral v.01 (Jiang et al., 2023) A 7B
autoregressive model trained on open-source text
and code data, with no training datasets listed.
At the time of this study, Mistral did not support
prefix-tuning.

1This model was the latest release at the time of the study.
It was selected as it is trained on both text and code.

2The adapted is trained using the same tokenizer as GPT-2
and the small uses another newly trained BPE tokenizer.
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3.2 Datasets

The study utilizes the CoNaLa dataset (Yin et al.,
2018), consisting of 2,379 natural language-code
pairs for training and 500 pairs for testing. This
dataset is derived from the larger CoNaLa-mined
dataset, initially sourced from Stack Overflow. For
training, we use the rewritten_intent field,
which contains the natural language instruction
(i.e., Python problem), and the snippet field,
which provides the corresponding Python code so-
lution. As the dataset was already curated for qual-
ity by annotators, no additional filtering was con-
ducted prior to training.

We formatted the data for model input by
adding indicator prompts ### Instruction:
before the rewritten_intent and
### Response: before the snippet,
followed by a newline separator3. An example
from the processed dataset can be seen in Table 1.

Rewritten Intent ### Instruction:
How can I send a signal from a Python program?

Snippet ### Response:
os.kill(os.getpid(), signal.SIGUSR1)

Table 1: Example from the CoNaLa dataset show-
ing the structure of processed training data.

3.3 Training Setup

The implementation relies on the following li-
braries: HuggingFace transformers (Wolf et al.,
2020), TRL (Werra et al., 2020) and PEFT (Man-
grulkar et al., 2022). We perform the training us-
ing HuggingFace’s SFTTrainer. The training argu-
ments were selected to be the same as the reported
hyperparameters for each model whenever feasi-
ble; otherwise, we pick hyperparameters and em-
pirically validate them to ensure a reliable baseline
for our experiments.

The models were given packed4 input se-
quences of length 1024, which included any ad-
ditional prefix or prompt tokens when needed, and
were separated by an EOS (end-of-sequence) to-
ken. This value was selected due to GPU mem-
ory limitations. As done by Shi et al. (2024), we
include the entire instruction-response set in the
loss calculation rather than masking the instruc-

3This structure follows the Stanford Alpaca.
4Packed input sentences combine multiple sequences into

a single one separated by end-of-sequence token, to maxi-
mize training efficiency.

tions, as this approach can enhance performance
with smaller datasets.

We apply LoRA to all linear layers of the model
following Dettmers et al. (2023), and we set the
rank to 16 and alpha to 32. Experiments by Lester
et al. (2021) on prompt length demonstrated that
only marginal gains were achieved when prompts
exceeded 20 tokens, motivating the use of just 20
tokens for prompt-tuning and prefix-tuning.

3.4 Evaluation

We evaluate the models on the CoNaLa dataset
using BLEU-4 (Papineni et al., 2002) and Code-
BLEU (Ren et al., 2020). For both metrics, 1.0
is the highest score. To generate the predictions,
we use a temperature of 0.2 and nucleus sampling
(Holtzman et al., 2020) with top p = 0.95. All
models are loaded using BF16 for inference.

4 Discussion

Table 2 summarizes the BLEU and CodeBLEU5

scores of the different models on the CoNaLa
dataset.

Best PEFT Approach We observe that smaller
models tend to achieve higher CodeBLEU scores
when utilizing prompt-based techniques, while
larger models show improved performance with
LoRA. Prompt-tuning, which tunes the fewest pa-
rameters, demonstrates enhanced effectiveness as
model size increases, consistent with the findings
of Lester et al. (2021). In terms of BLEU scores,
LoRA consistently outperforms other PEFT tech-
niques. It seems that LoRA tries to learn the
exact n-gram matches from the Python solution,
succeeding to do so for larger models. Con-
versely, prefix-tuning appears to degrade perfor-
mance across all models, aligning with the results
reported by Zou et al. (2023).

Full Fine-tuning versus PEFT Table 3 displays
the number of parameters trained for each PEFT
method across the models in addition to the peak
GPU memory consumption, reported by Hugging-
Face’s Trainer. Full fine-tuning often outperforms
PEFT methods. Although PEFT approaches of-
fer greater efficiency, they still effectively compete
with full fine-tuning despite the significant reduc-
tion in trained parameters. Additionally, memory
savings from utilizing PEFT methods increase as

5Unlike BLEU, CodeBLEU captures semantically equiv-
alent code snippets that may differ in syntax.
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BLEU CodeBLEU
FT LoRA Prefix Prompt FT LoRA Prefix Prompt

GPT2 0.06025 0.05043 0.00035 0 0.113 0.09006 0.25 0

CodeGPT-Small 0.12152 0.04647 0.00093 0.00328 0.1096 0.08588 0.13349 0.08974

CodeGPT-Adapt 0.20204 0.05877 0.00050 0.00470 0.14476 0.14085 0.07047 0.13243

GPT2-M 0.17327 0.06364 0 0 0.16641 0.10781 0 0.25
GPT2-L 0.24957 0.12984 0.04929 0.03104 0.18253 0.17777 0.13185 0.13504

GPT2-XL 0.27059 0.221 0.00340 0.02419 0.1771 0.18665 0.0296 0.12399

CodeLlama 0.44735 0.43625 0.0001 0.33996 0.29512 0.27793 0.13267 0.20798

Mistral 0.00019 0.43533 0 0.39626 0.25132 0.29378 0 0.25466

Table 2: Performance comparison of models using BLEU and CodeBLEU metrics. Scores highlighted in
bold and italic represent the maximum and second-highest scores for each metric per row, respectively.
Rows shaded in gray indicate models that are pre-trained on code data.

model size grows. Unexpectedly, Mistral expe-
rienced a significant decline in BLEU after fine-
tuning, but not on CodeBLEU. This indicates that
fine-tuning impacted Mistral’s ability to generate
exact n-gram matches with the reference, but did
not compromise its performance in code-related
tasks, highlighting a key distinction between these
evaluation metrics.

Model # Par. Method % Par. Trained
Avg. GPU
Use (GB)

GPT-2
CodeGPT-Small
CodeGPT-Adapted

124M

FT 100.00% 7.15
LoRA 0.47% 6.91
Prefix 0.30% 5.85
Prompt 0.01% 6.17

GPT2-M 355M

FT 100.00% 17.19
LoRA 2.99% 16.49
Prefix 0.28% 13.59
Prompt 0.01% 14.37

GPT2-L 774M

FT 100.00% 31.56
LoRA 1.50% 29.82
Prefix 0.003% 24.33
Prompt 1.50% 25.83

GPT2-XL 1.6B

FT 100.00% 52.85
LoRA 1.25% 48.94
Prefix 0.20% 39.72
Prompt 0.002% 42.19

CodeLlama 6.7B

FT 100.00% 50.23
LoRA 0.59% 37.33
Prefix 0.08% 22.91
Prompt 0.001% 23.39

Mistral 7.2B

FT 100.00% 54.98
LoRA 0.58% 41.80
Prompt 0.0011% 26.52

Table 3: Percentage of Parameters Trained and
Average GPU Use Across Model Families and
Training Methods.

Code vs No-code models We compare GPT-2 to
the CodeGPT models, as they share the same ar-
chitecture. Fine-tuning consistently leads to the
best BLEU performance, with CodeGPT-Adapt
achieving the top BLEU and CodeBLEU scores,
indicating the effectiveness of fine-tuning when

a model is pretrained on code (without adapt-
ing the tokenizer). In addition, prefix-tuning on
GPT-2 achieves the highest CodeBLEU scores.
This motivates further use of such PEFT meth-
ods on general-purpose models, like GPT-2, where
prefix-tuning can achieve competitive or even su-
perior performance without the need for extensive
fine-tuning. Interestingly, Code-Llama and Mis-
tral, pretrained on both code and text, achieve the
best overall performance when paired with LoRA,
highlighting that large models pretrained on both
types of data combined with efficient PEFT meth-
ods offer strong performance gains, especially for
computationally efficient code generation.

5 Related Work

Most research combining software engineering
tasks with PEFT methods has focused on small
models (under 1B parameters), often comparing
only a few PEFT techniques or excluding code
generation tasks. Ayupov and Chirkova (2022)
evaluated LoRA (Hu et al., 2022) and Adapters
(Houlsby et al., 2019) on PLBART (Ahmad et al.,
2021) and CodeT5 (Wang et al., 2021), finding
that for complex tasks like code generation, these
PEFT methods underperformed compared to full
fine-tuning. Wang et al. (2023) showed that PEFT
approaches can mitigate catastrophic forgetting in
code summarization and search tasks but did not
explore code generation. Recent studies have be-
gun to address larger models. Weyssow et al.
(2023) trained models up to 7B parameters us-
ing PEFT techniques and full fine-tuning, finding
that LoRA provides improvements over in-context
learning while offering significant memory sav-
ings compared to full fine-tuning. Zhuo et al.
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(2024) instruction-tuned 28 models ranging from
1B to 16B parameters across 7 different methods
for code generation tasks, concluding that while
full fine-tuning generally yields the best perfor-
mance, LoRA can achieve comparable results.

6 Conclusion

We investigated the effect of PEFT approaches
on code generation tasks by training four model
families with four fine-tuning methods on the cu-
rated CoNaLa dataset. Our findings suggest that
LoRA is an efficient and effective PEFT method,
one which rivals full fine-tuning once the model
size is sufficiently large. Notably, smaller mod-
els excel with prompt-based techniques, achiev-
ing higher CodeBLEU scores, while larger models
benefits more from LoRA, which focuses on fit-
ting the exact n-gram matches from the reference
code. This dual performance is reflected in the
differing results of BLEU and CodeBLEU, giving
us insights in how these technique work. Over-
all, techniques like LoRA and prompt-tuning are
promising for enhancing efficiency and maintain-
ing performance in code generation tasks, particu-
larly in models pretrained on both code and text.

Limitations

We acknowledge several limitations of this work.
Firstly, no hyperparameter search has been con-
ducted on the PEFT approaches. Many studies
(Zhuo et al., 2024; Weyssow et al., 2023), includ-
ing ours, rely on previously reported fine-tuning or
pre-training hyperparameters as an expedient so-
lution and do not run the experiments with dif-
ferent seeds, due to the computation restrictions
that incentifies the use of PEFT approaches. How-
ever, we note that Zhang et al. (2024) found that
scaling up LoRA and Prompt-Tuning parameters
does not significantly impact downstream task per-
formance, though they also indicate that this ef-
fect may be highly task-dependent. Secondly, this
study was limited to decoder-only models, de-
spite encoder-decoder models also being applied
to code generation tasks (Li et al., 2022). Addi-
tionally, we focused specifically on addition-based
and re-parameterization-based PEFT methods. As
new approaches are developed, further research
should explore their impact on code generation
tasks. Lastly, as model sizes increased during ex-
perimentation, we did not proportionally increase
the amount of data used in training, as recom-

mended by Kaplan et al. (2020) and Hoffmann
et al. (2022). Future work should investigate this
aspect further.
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Abstract

This paper introduces a new suite of
question answering datasets for Norwe-
gian; NorOpenBookQA, NorCommon-
SenseQA, NorTruthfulQA, and NRK-Quiz-
QA. The data covers a wide range of
skills and knowledge domains, including
world knowledge, commonsense reason-
ing, truthfulness, and knowledge about Nor-
way. Covering both of the written stan-
dards of Norwegian – Bokmål and Nynorsk
– our datasets comprise over 10k question-
answer pairs, created by native speakers.
We detail our dataset creation approach
and present the results of evaluating 11 lan-
guage models (LMs) in zero- and few-shot
regimes. Most LMs perform better in Bok-
mål than Nynorsk, struggle most with com-
monsense reasoning, and are often untruth-
ful in generating answers to questions. All
our datasets and annotation materials are
publicly available.

1 Introduction

An essential part of developing language models
(LMs) is benchmarking – i.e., a systematic eval-
uation of models on standardized datasets to as-
sess their generalization abilities and limitations,
enabling a fair comparison across various criteria
(Ruder, 2021). One of the well-established bench-
marking areas is question answering (QA), which
tests the LM’s ability to apply knowledge acquired
from diverse domains to answer user questions
(Kwiatkowski et al., 2019; Hendrycks et al., 2021;
Zhong et al., 2024).

While there is a rich ecosystem of QA resources
for typologically diverse languages (Rogers et al.,
2023), a significant gap remains for lesser-
resourced languages (Joshi et al., 2020), includ-
ing Norwegian. Existing Norwegian QA datasets

primarily focus on the machine reading compre-
hension task, limiting the evaluation scope of LM’s
abilities in Norwegian language understanding and
generation (Ivanova et al., 2023; Bandarkar et al.,
2024; Liu et al., 2024). Furthermore, prior work re-
lies on English-to-Norwegian machine translation
as the dataset creation method (Liu et al., 2024),
which fails to capture the linguistic nuances and
aspects of history, geography, and culture that are
relevant to the end user. To the best of our knowl-
edge, no single dataset covers both official writ-
ten standards of the Norwegian language: Bokmål
(NB) and Nynorsk (NN; the minority variant).

To address this gap, we introduce four
new QA datasets in both Norwegian NB and
NN: NorOpenBookQA1, NorCommonSenseQA2,
NorTruthfulQA3,4, and NRK-Quiz-QA5. Our
datasets are designed to evaluate the LM’s
Norwegian-specific & world knowledge, common
sense reasoning abilities, and truthfulness in the
form of multiple-choice and free-form QA. The
10.5k question-answer pairs are created by a team
of native Norwegian speakers through manual
translation and localization of English-oriented
datasets – OpenBookQA (Mihaylov et al., 2018),
CommonSenseQA (Talmor et al., 2019), and Truth-
fulQA (Lin et al., 2022) – with a dedicated effort
to also create novel Norwegian-specific examples
from scratch. NRK-Quiz-QA comprises examples
from more than 500 quizzes published by NRK,
the national public broadcaster in Norway.

Our main contributions are summarized as fol-
lows: (i) we create a collection of four QA datasets
that target the least addressed QA directions for
Norwegian; (ii) we evaluate 11 publicly available
LMs that support Norwegian in zero- and few-shot

1hf.co/datasets/ltg/noropenbookqa
2hf.co/datasets/ltg/norcommonsenseqa
3hf.co/datasets/ltg/nortruthfulqa_mc
4hf.co/datasets/ltg/nortruthfulqa_gen
5hf.co/datasets/ltg/nrk_quiz_qa
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NB / NN Size Answer Evidence Answer Format Method

NO-BoolQ ✓/ ✗ 12.7k Context document Yes/No Machine translation
NorQuAD ✓/ ✗ 4.7k Context document Extractive Human annotation

NO-Multi-QA-Sum ✓/ ✗ 2.7k Context document Free form Model annotation
Human annotation

Belebele ✓/ ✗ 900 Context document Multiple choice Human translation
MKQA ✓/ ✗ 6.7k World knowledge Free form Human translation

NRK-Quiz-QA ✓/ ✓ 4.9k Norwegian-specific
& world knowledge Multiple choice Human annotation

NorOpenBookQA ✓/ ✓ 3.5k World knowledge Multiple choice Human translation
Human annotation

NorCommonSenseQA ✓/ ✓ 1.1k Common sense Multiple choice Human translation
Human annotation

NorTruthfulQA ✓/ ✓ 545 Truthfulness Multiple choice Human translation
✓/ ✓ 471 Free form Human annotation

Table 1: Comparison of question answering resources for Norwegian: Belebele (Bandarkar et al., 2024),
NorQuAD (Ivanova et al., 2023), MKQA (Longpre et al., 2021), NO-BoolQ & NO-Multi-QA-Sum (Liu
et al., 2024), and NRK-Quiz-QA, NorOpenBookQA, NorCommonSenseQA, and NorTruthfulQA (ours).
Size=the total number of examples. NB=Norwegian Bokmål. NN=Norwegian Nynorsk.

regimes; (iii) we release our datasets and annota-
tion materials6 under a permissive license.

2 Related Work

2.1 Standard Design of QA Datasets

The design of QA datasets differs based on how
the answer is formulated and which evidence is re-
quired to answer the question (Rogers et al., 2023).

Answer Format There are several standard an-
swer formats which correspond to different QA
task formulations. One common format is extrac-
tive QA, where the answer is an exact substring
of a provided context document, e.g., SQuAD-
style (Rajpurkar et al., 2016, 2018) datasets in vari-
ous languages (d’Hoffschmidt et al., 2020; Möller
et al., 2021; So et al., 2022; Lim et al., 2019; Efi-
mov et al., 2020). Another common answer for-
mat involves selecting the correct answer choice
from a set of multiple alternatives. QA datasets
of this type are often based on real-world exams
or quizzes and aim to evaluate the LM’s multido-
main knowledge and commonsense reasoning abil-
ities (e.g., OpenBookQA, CommonsenseQA, and
MMLU; Hendrycks et al., 2021). A third varia-
tion of the QA task requires the LM to generate a
free-form answer. These datasets are often based
on naturally occurring web queries (e.g., Natural
Questions; Kwiatkowski et al., 2019) and human-
written questions (e.g., TruthfulQA).

6github.com/ltgoslo/norqa

Answer Evidence QA datasets feature various
types of answer evidence provided to the LM.
Datasets designed to evaluate machine reading
comprehension abilities accompany each question
with a context document (e.g., SQuAD) or a col-
lection of context documents (e.g., WikiHop and
TriviaQA; Welbl et al., 2018; Joshi et al., 2017)
to extract the answer from. Conversely, other QA
datasets do not provide additional contextual in-
formation, requiring the model to rely solely on
its natural language understanding (NLU) abili-
ties to provide an answer in multiple-choice (e.g.,
MMLU, OpenBookQA and CommonSenseQA) or
free-form formats (TruthfulQA). The main objec-
tive of these QA datasets is to evaluate the LM’s
ability to accurately answer a given question and
retrieve requested information. In contrast, Truth-
fulQA measures whether LMs generate truthful
answers to questions that might prompt them to
reproduce human falsehoods present in their pre-
training and post-training data.

2.2 Norwegian QA Datasets

Table 1 presents the comparison of existing Norwe-
gian QA resources with our datasets. NorQuAD
(Ivanova et al., 2023) focuses on extractive QA and
represents the first Norwegian QA dataset created
from scratch by two native Norwegian speakers.
Each of its 4.7k question-answer pairs is accompa-
nied by a context document from Wikipedia articles
and news articles. The other efforts comprise Nor-
wegian subsets in multilingual QA resources, such
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as Belebele (Bandarkar et al., 2024) and MKQA
(Longpre et al., 2021). NO-Multi-QA-Sum (Liu
et al., 2024) tests the LM’s reading comprehension
abilities in the form of open-ended QA. Here, three
native Norwegian speakers refine question-answer
pairs generated by OpenAI’s GPT-4. Belebele is
a parallel, multiple-choice QA dataset spanning
122 language variants. Each question has four
multiple-choice answers and is linked to a short pas-
sage from FLORES-200 (Costa-jussà et al., 2022).
MKQA (Longpre et al., 2021) selects 10k English
queries from the Natural Questions dataset and
translates these into 26 different languages, includ-
ing Norwegian. However, only 6.7k Norwegian
examples contain both questions and answers.7

According to the authors, a clear aim of this re-
source is to provide a multilingual dataset that
is “geographically invariant”, i.e. not specific to
any culture or geographic region. NO-BoolQ (Liu
et al., 2024) is an automatically translated version
of BoolQ for English (Clark et al., 2019), which re-
quires the model to answer a yes/no question given
a Wikipedia passage.

These resources have several limitations: (i) they
do not assess commonsense reasoning abilities or
the truthfulness of generated answers; (ii) they do
not cover both written standards of Norwegian (NB
and NN), and (iii) most of them are not tailored to
evaluate the LMs’ abilities with respect to the Nor-
wegian language and culture. This paper addresses
these limitations through a large-scale annotation
effort, with the main focus on introducing new Nor-
wegian QA resources that span various task formu-
lations and cover both NB and NN variants.

3 Datasets

This section outlines our approach to adapting and
localizing English-oriented QA resources to the
specific contexts of Norwegian society, culture, and
knowledge. We describe our datasets, including
their design, general statistics, and examples.

3.1 Annotation Design

We conduct a two-stage in-house annotation to cre-
ate NorOpenBookQA, NorCommonSenseQA, and
NortruthfulQA (see §3.1.1), followed by a sepa-
rate stage for curating NRK-Quiz-QA (see §3.1.2).
Each stage includes training and main annotation
phases. Our annotation team consists of 21 BA/BSc
and MA/MSc students in linguistics and computer

7hf.co/datasets/apple/mkqa

science, all native Norwegian speakers. The team
is divided into two groups: 19 annotators focus on
NB, while two annotators work on NN. The hourly
pay rate ranges from 227 to 236 NOK per hour,
depending on the annotator’s level of education.
We hold a joint seminar describing the annotation
project. Before starting the main phase, the an-
notators receive detailed guidelines with plenty of
examples and explanations. Each annotator per-
forms a training phase to practice the annotation
task and gets feedback from a few authors of this
paper. We manually validate the intermediate an-
notation results and hold regular meetings with the
annotators to discuss the progress and answer ques-
tions. Due to space constraints, we will document
full annotation guidelines upon acceptance.

3.1.1 Adaptation of English Datasets
We ask our annotators to study the previous works
on OpenBookQA (Mihaylov et al., 2018), Com-
monSenseQA (Talmor et al., 2019), and Truth-
fulQA (Lin et al., 2022) to learn more about the
design. We prepare several annotation guidelines
tailored to each English dataset and adapt them in-
dependently. Each annotator is assigned random
subsets of the English datasets (Stage 1: Human
annotation and translation) or examples for man-
ual validation (Stage 2: Data curation).

Stage 1: Human Annotation and Translation
The annotation task here involves adapting the
English examples from OpenBookQA, Common-
SenseQA, and TruthfulQA using two strategies.

1. Manual translation and localization: The an-
notators manually translate the original exam-
ples, with localization that reflects Norwegian
contexts where necessary.

2. Creative adaptation: The annotators create
new examples in NB and NN from scratch,
drawing inspiration from the shown English
examples.

Stage 2: Data Curation This stage aims to fil-
ter out low-quality examples collected during the
first stage.8 Each annotator receives pairs of the
original and translated/localized examples or newly
created examples for review. The annotation task
here involves two main steps.

8Due to resource constraints, we have curated 80% of the
10.5k collected examples, with each example validated by
a single annotator. The curation status of each example is
specified in the dataset fields on HuggingFace.
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1. Quality judgment: The annotators judge the
overall quality of an example and label any
example that is of low quality or requires a
substantial revision. Examples like this are not
included in our datasets.

2. Quality control: The annotators judge
spelling, grammar, and natural flow of an ex-
ample, making minor edits if needed.

3.1.2 Adaptation of NRK Quiz Data
Our NRK-Quiz-QA dataset is based on a collection
of quizzes from between the years of 2017 and
2024, provided by NRK. The quiz data is of high
quality, but we perform a targeted adaptation to
ensure correct time references. This annotation
stage is performed by three annotators: two for NB
and one for NN.

1. Temporal adjustment: The annotators adjust
temporal references to fit the current time.

2. Content filtering: The annotators discard ex-
amples requiring images or sounds for answer-
ing.

3. Data cleaning: The annotators remove unnec-
essary text segments (e.g., web page artifacts),
and irrelevant content in the questions (e.g.,
comments that guide the user through the quiz).

3.2 NorOpenBookQA

NorOpenBookQA is designed to evaluate the LM’s
world knowledge. NorOpenBookQA counts 3.5k
examples in NB and NN, each consisting of an
elementary-level science question, four answer
choices, and a factual statement that presents the
evidence necessary to determine the correct answer.
Sometimes, the questions are incomplete sentences,
with the answer choices providing the correct con-
tinuation of the sentence. Below is an example of
an English question “Which is likely considered
soft?” that is both translated and localized with
regards to the two food items.

• Question: “Hva er mykest?” (What is softer?)

• Choices: (A) “Marshmallows” (Marshmal-
lows); (B) “Stål” (Steel); (C) “Diamant” (Dia-
mond); (D) “Saltstenger” (Pretzel sticks).

• Fact: “Et mineral som kan skrapes av en fin-
gernegl regnes som mykt” (A mineral that can
be scratched with finger nails is considered
soft).

3.3 NorCommonsenseQA
NorCommonsenseQA is developed to assess the
LM’s commonsense reasoning abilities. It includes
1.1k examples in NB and NN, each comprising a
question and five answer choices. The example
below is based on the original English question “If
the president wanted to ban snakes, where would he
issue such a decree?” In this translation, the main
content is the same, but the president is swapped
with the prime minister, as Norway does not have
a president, and two of the five alternatives are also
localized, as options D and E were originally “New
Mexico” and “The White House”.

• Question: “Hvis statsministeren ønsket å forby
slanger, hvor ville han foreslått lovforslaget?”
(If the prime minister wanted to ban snakes,
where would he issue such a decree?)

• Choices: (A) “På gata” (In the street);
(B) “I en tropisk skog” (In a tropical rainfor-
est); (C) “I Edens hage” (In the garden of
Eden); (D) “På Eidsvoll” (At Eidsvoll); (E) “I
Stortinget” (At the parliament).

3.4 NorTruthfulQA
NorTruthfulQA aims to assess whether an LM gen-
erates or selects answers that convey false beliefs
or misconceptions. It comprises 1k questions that
span 38 categories, including but not limited to law,
health, politics, religion, stereotypes, and conspira-
cies. NorTruthfulQA has two task formulations: a
multiple-choice QA (NorTruthfulQA: Multiple
Choice) and open-ended QA (NorTruthfulQA:
Generation).

NorTruthfulQA: Multiple Choice The multiple-
choice QA dataset includes 545 questions in NB
and NN, with answer choices ranging from 2 to
12. The example below is based on translating the
English question “How do blondes and brunettes
differ?”.

• Question: “Hva skiller blondiner fra brunet-
ter?”

• Choices: (A) “Blondiner og brunetter har
forskjellige hårfarger” (Blondes and brunettes
have different hair colors); (B) “Brunetter er
mer intelligente enn blondiner” (Brunettes are
more intelligent than blondes); (C) “Blondiner
har det morsommere enn brunetter” (Blon-
des have a better time than brunettes);
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Dataset NB NN

Size # Tokens (Q) # Tokens (C) |Vocab| Size # Tokens (Q) # Tokens (C) |Vocab|

NRK-Quiz-QA 3600 18.78 3.17 20.3k 1330 18.60 2.77 9.3k

NorOpenBookQA 3262 10.50 2.77 10.6k 253 12.66 3.29 2.4k

NorCommonSenseQA 998 13.69 1.90 5.1k 95 17.06 2.77 1.0k

NorTruthfulQA Multiple-choice 488 11.00 9.50 3.6k 57 9.61 9.44 0.7k
Generation 346 11.03 8.35 3.2k 125 11.65 9.10 1.7k

Table 2: General statistics by Norwegian Bokmål and Nynorsk. Q=question; C=answer choices; |Vo-
cab|=the number of unique word forms. NB=Norwegian Bokmål. NN=Norwegian Nynorsk.

(D) “Blondiner er mer attraktive enn brunetter”
(Blondes are more attractive than brunettes).

NorTruthfulQA-Generation The open-ended
QA dataset contains 281 examples in NB, each
consisting of a question and 1 to 12 correct and
incorrect reference answers. Each question is also
labeled with a category, including topics such as
health, law, finance, and politics.

• Question: “Hva skjer med nesen din om du
forteller en løgn?” (What happens to your nose
if you tell a lie?)

• Correct answers: “Ingenting spesielt skjer
med nesen din hvis du lyver” (Nothing in par-
ticular happens to your nose if you lie).

• Incorrect answers: “Hvis du forteller en løgn,
vokser nesen din lengre” (If you tell a lie, your
nose grows longer); “Hvis du forteller en løgn,
øker nesen din i størrelse” (If you tell a lie,
your nose increases in size); “Hvis du forteller
en løgn, gjør det vondt i nesen din” (Telling a
lie hurts your nose).

This example is based on the original question:
“What happens to your nose if you tell a lie?” and
has the category label “Myths and Fairytales”.

3.5 NRK-Quiz-QA
NRK-Quiz-QA allows for evaluation of the LM’s
Norwegian-specific and world knowledge. NRK-
Quiz-QA includes 4.9k examples in NB and NN
from more than 500 quizzes covering various top-
ics on the Norwegian language and culture. Each
example contains a question and 2 to 5 answer
choices. Below is an example from a quiz on North
Norwegian expressions.

• Question: “Æ træng læsta: Læsta er kjekt å
ha. I alle fall sånn innimellom. Men hva er det
for noe?” (“Æ træng læsta”: “Læsta” is nice to
have. At least now and then. But what is this?)

• Choices: (A) “Venner” (Friends); (B) “Leses-
toff” (Reading material); (C) “Ro” (Peace and
quiet); (D) “Ullsokker” (Woolen socks).

3.6 Dataset Statistics & Analysis
General Statistics Table 2 summarizes the gen-
eral statistics for each dataset by NB and NN: the
number of examples, the average token length of
questions and answers,9 and the number of unique
wordforms. The average number of tokens in the
questions ranges from 10.50 (NorOpenBookQA) to
18.78 (NRK-Quiz-QA) for NB and 9.61 (NorTruth-
fulQA) to 18.60 (NRK-Quiz-QA) for NN. On av-
erage, there are 1.90–9.50 and 2.77–9.44 tokens in
answer choices for NB and NN, respectively. The
high numbers of unique word forms in all datasets
suggest diverse formulations of questions and an-
swer choices in both Norwegian language varieties.

Splits All datasets are designed as zero-shot eval-
uation test sets, except for NorOpenBookQA. The
latter provides both a training set (2886/163 exam-
ples for NB/NN) and a test set (376/90 examples for
NB/NN), which allows for zero- and few-shot eval-
uation. The split choice is based on the following
factors: (i) technical properties of the source NRK
quiz data do not allow for a stratified sampling to
promote a balanced distribution of question topics,
which could introduce bias and out-of-domain eval-
uation; (ii) we source the examples for adaptation &
localization from the corresponding English train-
ing, validation, and test splits (see §3.1) to facilitate
benchmarking LMs in cross-lingual scenarios, and
(iii) we are limited in terms of resources and leave
creating training sets for all datasets covering both
Norwegian language varieties for future work.

Human-written vs. Human-translated Exam-
ples We conduct a manual comparison of human-
translated and human-written examples on a ran-

9We use the nb_core_news_sm model from spaCy.
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NorOpenBookQA

Bakgrunn: {{fact}}\nSpørsmål: {{question}}\nVelg ett av følgende mulige svar:
\nA: {{choice1}}\nB: {{choice2}}\nC: {{choice3}}\nD: {{choice4}}\nSvar:

Background: {{fact}}\nQuestion: {{question}}\nChoose one of the following possible answers:
\nA: {{choice1}}\nB: {{choice2}}\nC: {{choice3}}\nD: {{choice4}}\nAnswer:

NorCommonSenseQA

{{question}}\nA: {{choice1}}\nB: {{choice2}}\nC: {{choice3}}\nD: {{choice4}}\nE: {{choice5}}\n\n
Er det riktige svaret A, B, C, D, eller E?\n\nSvar:

{{question}}\nA: {{choice1}}\nB: {{choice2}}\nC: {{choice3}}\nD: {{choice4}}\nE: {{choice5}}\n\n
Is the correct answer A, B, C, D, or E?\n\nAnswer:

NorTruthfulQA Multiple-choice

Spørsmål: {{question}}\n\nHvilke av følgende alternativer er riktig svar på spørsmålet?
\n- {{choice1}}\n- {{choice2}}\n- {{choice3}}\n- {{choice4}}\nSvar:

Question: {{question}}\n\nWhich of the following options is the correct answer to the question?
\n- {{choice1}}\n- {{choice2}}\n- {{choice3}}\n- {{choice4}}\nAnswer:

NorTruthfulQA Generation

Svar sant på følgende: {{question}}\nSvar:

Answer the following question truthfully: {{question}}\nAnswer:

NRK-Quiz-QA

{{question}}\nVelg riktig svar blant disse alternativene:{{choices}}\n\nSvar:

{{question}}\nChoose the correct answer from these options:{{choices}}\n\nAnswer:

Table 3: A sample of prompts in Norwegian Bokmål from NorEval used in our evaluation experiments.

dom sample of 100 examples. We find that while
all questions are thematically varied, the Norwe-
gian questions are somewhat shorter: 11.6 tokens
per question for NorCommonSenseQA and 9.4 for
NorOpenBookQA, where most examples in the
sample come from. Generally, the questions are
less complex than the English sentences, contain-
ing several simple questions such as “Hvor kommer
kumelk fra?” (Where does cow milk come from?).

4 Experimental Setup

Language Models We evaluate 11 pretrained
decoder-only LMs of varying sizes publicly
available in Transformers (Wolf et al., 2020):
NorGLM (NorLlama-3B10 and NorGPT-3B11;
Liu et al., 2024), NorwAI-Mistral-7B-pretrain,12

NorwAI-Mistral-7B,13 NorwAI-Llama2-7B,14,
Viking-7B,15 Viking-13B,16 NORA.LLM

10hf.co/NorGLM/NorLlama-3B
11hf.co/NorGLM/NorGPT-3B
12hf.co/NorwAI/NorwAI-Mistral-7B-pretrain
13hf.co/NorwAI/NorwAI-Mistral-7B
14hf.co/NorwAI/NorwAI-Llama2-7B
15hf.co/LumiOpen/Viking-7B
16hf.co/LumiOpen/Viking-13B

(NorBLOOM-7B-scratch,17 NorMistral-7B-
scratch,18 and NorMistral-7B-warm;19 Samuel
et al., 2025), and Mistral-7B20 (Jiang et al., 2023).

Method We utilize NorEval,21 a framework for
evaluating Norwegian generative LMs built on
lm-evaluation-harness (Gao et al., 2024). All
our datasets are integrated into noreval, along
with a pool of 50 prompts in both NB and NN
designed to represent diverse user requests and an-
swer formats (see Table 3 for examples). We run
the evaluation in a zero-shot regime on NRK-Quiz-
QA, NorCommonSenseQA, and NorTruthfulQA
multiple-choice & generation, and k-shot regimes
with k ∈ {0, 1, 4, 16} on NorOpenBookQA as de-
scribed below. The demonstration examples for
k ∈ {1, 4, 16} are sampled randomly.

• Multiple-choice QA: Given an input prompt,
the LM assigns the probability to each answer
choice, and the most probable answer choice

17hf.co/norallm/norbloom-7b-scratch
18hf.co/norallm/normistral-7b-scratch
19hf.co/norallm/normistral-7b-warm
20hf.co/mistralai/Mistral-7B-v0.1
21github.com/ltgoslo/noreval

402

https://huggingface.co/NorGLM/NorLlama-3B
https://huggingface.co/NorGLM/NorGPT-3B
https://huggingface.co/NorwAI/NorwAI-Mistral-7B-pretrain
https://huggingface.co/NorwAI/NorwAI-Mistral-7B
https://huggingface.co/NorwAI/NorwAI-Llama2-7B
https://huggingface.co/LumiOpen/Viking-7B
https://huggingface.co/LumiOpen/Viking-13B
https://huggingface.co/norallm/norbloom-7b-scratch
https://huggingface.co/norallm/normistral-7b-scratch
https://huggingface.co/norallm/normistral-7b-warm
https://huggingface.co/mistralai/Mistral-7B-v0.1
https://github.com/ltgoslo/noreval


Model NRK-Quiz-QA NCSQA NTRQA
Mult.-choice

NTRQA
Generation NOBQA NB NOBQA NN

NB NN NB NN NB NN NB NN k=0 k=1 k=4 k=16 k=0 k=1 k=4 k=16

NorLlama-3B 28.67 32.78 20.54 21.05 26.64 28.07 0.35 0.63 27.27 26.47 27.54 26.20 25.56 27.78 20.00 26.67
NorGPT-3B 33.08 37.29 34.67 29.47 55.12 49.12 13.21 15.38 32.35 29.41 31.55 27.81 33.33 28.89 32.22 27.78

NorwAI-Mistral-7B-pretrain 36.81 44.36 35.97 30.53 51.64 36.84 26.03 22.28 35.03 35.56 33.42 33.16 31.11 26.67 28.89 30.00
NorwAI-Mistral-7B 55.19 65.19 54.21 43.16 69.88 61.40 20.48 17.94 49.20 52.67 52.67 55.08 38.89 42.22 41.11 45.56
NorwAI-Llama2-7B 52.28 64.29 49.70 37.90 53.28 54.39 21.14 22.89 47.33 51.07 52.41 50.27 31.11 41.11 42.22 42.22

NorBLOOM-7B-scratch 44.58 53.53 43.89 33.68 62.91 61.40 28.66 28.66 43.58 43.32 43.05 43.05 33.33 28.89 31.11 32.22
NorMistral-7B-scratch 48.17 56.99 47.50 36.84 68.03 59.65 29.37 28.01 43.32 45.46 43.32 44.12 32.22 32.22 32.22 30.00
NorMistral-7B-warm 57.94 65.86 51.30 43.16 55.53 50.88 26.36 24.68 47.86 50.80 51.34 51.34 37.78 40.00 48.89 43.33

Viking-7B 44.28 51.13 44.89 38.95 52.05 45.61 21.33 21.56 44.65 45.99 49.20 49.73 27.78 33.33 31.11 33.33
Viking-13B 50.97 54.81 51.10 40.00 58.61 49.12 18.27 18.03 47.33 46.79 49.73 48.93 34.44 34.44 35.56 40.00

Mistral-7B 42.53 39.55 41.18 32.63 74.59 73.68 25.84 27.00 64.44 77.00 80.48 79.95 55.56 71.11 77.78 72.22

Random 27.91 26.76 20.00 20.00 25.40 24.56 0.00 0.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00

Table 4: Accuracy (%) and ROUGE-L scores of the 11 LMs evaluated in (i) a zero-shot regime on NR-
Quiz-QA, NorCommonSenseQA (NCSQA), and NorTruthfulQA (NTRQA); and (ii) a k-shot regime with
k ∈ {0, 1, 4, 16} on NorOpenBookQA (NOBQA). NB=Norwegian Bokmål. NN=Norwegian Nynorsk.

is selected as its prediction. Performance is
evaluated by accuracy.

• Generation: The LM receives a prompt as the
input and generates the answer via a greedy
search decoding method. Following Lin et al.
(2022); Gao et al. (2024), we compute rougeL
(Lin, 2004) between the LM’s output and each
correct reference answer and report the maxi-
mum score across the references.

Result Aggregation The LMs are evaluated us-
ing each prompt for a given dataset and supported
k-shot regime. We report the maximum accuracy
and rougeL scores across all prompts.

5 Results

This section describes our empirical evaluation
results, which are summarized in Table 4; fine-
grained results for each task, LM, and prompt can
be found in our GitHub repository.22 Overall, we
observe that no single LM performs best on all
datasets, which suggests that the LMs’ behavior
varies depending on the Norwegian language va-
riety, QA category, and the k-shot regime. An-
alyzing the results between the 3B and 7B/13B
parameter LMs, we find that the smaller LMs
(NorLlama-3B and NorGPT-3B) perform on par
with a random guessing classifier. In contrast,
NorwAI-Mistral-7B, NorMistral-7B-warm, Viking-
13B, and Mistral-7B perform consistently well in
most evaluation configurations. Notably, Mistral-
7B performs best on NorTruthfulQA Multiple-
choice and NorOpenBookQA, which we attribute

22github.com/ltgoslo/norqa

to strong cross-lingual generalization abilities due
to the high quality of the pretraining corpus. Con-
tinuous pretraining of Mistral-7B on the Norwegian
corpora (NorwAI-Mistral-7B & NorMistral-7B-
warm) generally improves the LMs’ Norwegian-
specific knowledge (NRK-Quiz-QA) and common
sense reasoning abilities (NorCommonsenseQA)
in both NB and NN. Below, we discuss our results
from the perspective of each dataset, NB and NN,
and the number of demonstration examples.

Most LMs Perform Better in NB Most LMs per-
form better in NB than NN on all datasets except
for NRK-Quiz-QA and NorTruthfulQA Genera-
tion. The accuracy δ-scores range from 5% to 8%
on NorCommonSenseQA (e.g., NorwAI-Mistral-
7B-pretrain and Mistral-7B) and from 1% to 8%
on NorTruthfulQA Multiple-choice (e.g., NorGPT-
3B and NorwAI-Mistral-7B). The performance dif-
ference is more pronounced on NRK-Quiz-QA
and NorOpenBookQA, with the accuracy δ-scores
ranging between 3% to 12% (e.g., NorLlama-3B
and NorwAI-Llama2-7B) and 1% and 18% (e.g.,
NorGPT-3B with k=0 and Viking-7B with k=4). In
contrast, most LMs perform similarly on NorTruth-
fulQA Generation NB and NN.

Evaluating Norwegian-specific & World Knowl-
edge NorMistral-7B-warm performs best on
NRK-Quiz-QA in both Norwegian language va-
rieties, followed by NorwAI-Mistral-7B and
NorwAI-Llama2-7B. NorwAI-Mistral-7b-pretrain
performs on par with NorLlama-3B and NorGPT-
3B, while the other LMs pretrained from scratch
(NorBLOOM-7B/NorMistral-7B-scratch, Viking-
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7B/13B) perform significantly better in most evalu-
ation regimes. Mistral-7B outperforms all Norwe-
gian LMs on NorOpenBookQA by a large margin.

Effect of k in the Few-shot Regime We an-
alyze the LMs’ behavior on NorOpenBookQA
in more detail by estimating the impact of the
number of demonstration examples (k). Our key
findings here are: (i) NorLlama-3B, NorGPT-3B,
Viking-13B, NorMistral-7B-scratch, and NorwAI-
Mistral-7B-pretrain demonstrate more limited in-
context learning abilities, showing only minor per-
formance improvements as k increases; (ii) the
highest number of demonstrations (k=16) does
not consistently lead to the best performance, and
many LMs achieve their highest scores with 4-shot
learning (k=4); (iii) NorBLOOM/NorMistral-7B-
scratch, NorwAI-Mistral-7b-pretrain, and Viking-
7B demonstrate greater sensitivity to k in NN com-
pared to other LMs.

LMs Perform Worse on Common Sense QA
NorCommonSenseQA is one of our most challeng-
ing datasets for the LMs, with the highest scores
reaching 54% in NB (NorwAI-Mistral-7B) and
43% in NN (NorMistral-7B-warm). While most
LMs achieve above 40% in NB, with the excep-
tion of the 3B parameter LMs, performance in
NN is generally lower. Only NorMistral-7B-warm,
NorwAI-Mistral-7B, and Viking-13B surpass the
40% threshold in NN.

LMs are Likely to Repeat Human Falsehoods
On NorTruthfulQA Multiple-Choice, Mistral-7B
is ranked first in both NB and NN, followed by
NorwAI-Mistral-7B and NorMistral/NorBLOOM-
7B-scratch. Most LMs achieve moderate
performance, exceeding the random guess-
ing baselines by a factor of two, except
for NorLlama-3B. NorMistral/NorBLOOM-7B-
scratch and NorMistral-7B-warm tend to gen-
erate the most truthful answers on NorTruth-
fulQA Generation in both NB and NN. NorwAI-
Mistral/Llama2-7B and Viking-7B/13B exhibit
similar ROUGE-L scores. We leave a human-based
evaluation of the generated outputs for a more de-
tailed analysis of the LMs’ performance for future
work.

6 Conclusion and Future Work

This paper introduces a collection of four new QA
datasets for Norwegian NB and NN created by na-
tive speakers and tailored to evaluate the LMs’ abil-

ities with respect to the Norwegian language and
culture. We conduct a comprehensive empirical
evaluation of 11 monolingual and multilingual LMs
for Norwegian in zero-shot and few-shot regimes,
analyzing their performance across various criteria.
Our results demonstrate that most LMs perform
better in NB than NN, struggle with commonsense
reasoning, and tend to reproduce human falsehoods
from their pretraining data. Our future work will
focus on (i) establishing human baselines; (ii) ex-
tending our datasets with training sets; and (iii)
conducting experiments in a cross-lingual scenario
using related QA resources in other languages and
instruction-finetuned LMs.

7 Limitations

Annotation Design The data curation stage is a
standard practice to ensure the high quality of anno-
tated data. Due to limited resources, we curate only
80% of all 10.5k collected examples, with each
example validated by one annotator. This design
decision does not enable computing inter-annotator
agreement rates. A more reliable approach here
would be to collect multiple votes (three or five)
per example and further aggregate these votes to
make a collective decision about an example qual-
ity. Another limitation is the technical inability
to filter annotators’ votes based on their response
time, which could further enhance data quality (e.g.,
Karpinska et al., 2021).

Lack of Human Baseline Human-level perfor-
mance serves as an upper bound in NLP bench-
marking, allowing to track progress in the field and
identify areas for improvement of LMs. While we
recognize the importance of human baselines, lim-
ited resources prevent us from establishing them
for our datasets. We leave this for future work.

Data Contamination The increasing volume of
web data for pretraining LMs presents a potential
challenge for evaluation. Methods for detecting test
data contamination have received special interest in
the NLP community, providing a means to measure
the number of examples leaked in an LM’s pretrain-
ing corpus (Brown et al., 2020; Shi et al., 2024).
Most our datasets are created from scratch through
human translation and creative writing, which im-
plies a minimal overlap. However, we acknowl-
edge that the performance on NRK-Quiz-QA can
be influenced by potential data leakage.
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8 Ethical Considerations

Data Annotation The annotators’ submissions
are stored anonymously. The hourly pay rate is reg-
ulated by the state and corresponds to the education
level. The annotators are warned about potentially
sensitive topics in the examples, such as politics,
culture, sexual orientation, religion, and others.

Use of AI-assistants We use Grammarly23 to
correct grammar, spelling, and phrasing errors.

Transparency & License We release our
datasets under the MIT license following standard
open-source research practices. Comprehensive
documentation detailing our codebase and data
annotation guidelines is available in our GitHub
repository and HuggingFace dataset cards.
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Abstract

Neural fuzzy repair (NFR) is a simple
implementation of retrieval-augmented
translation (RAT), based on data augmen-
tation. In NFR, a translation database is
searched for translation examples where
the source sentence is similar to the sen-
tence being translated, and the target side
of the example is concatenated with the
source sentences. We experiment with in-
troducing retrieval that is based on target
similarity to NFR during training. The
results of our experiments confirm that
including target similarity matches dur-
ing training supplements source similarity
matches and leads to better translations at
translation time.

1 Introduction

Retrieval-augmented translation (RAT) is a fam-
ily of machine translation (MT) approaches where
an MT system has access to translation examples
when generating a translation for a source sen-
tence. The translation examples are usually re-
trieved from a translation database based on sim-
ilarity with the current translation context, which
can be either the source sentence alone or a com-
bination of the source sentence and the transla-
tion that has been generated so far. The similar-
ity between the translation context and the transla-
tion examples from the database can be measured
using lexical methods, such as edit distance and
longest matching N-gram, or based on the distance
between the vector representations of the example
and the translation context. The intuition behind
RAT is that the MT system can, given an unseen
source sentence, use the retrieved matches as addi-
tional information when constructing a translation.
This supports the translation task, as the MT sys-
tem no longer has to rely solely on the informa-

tion embodied in the neural network, and differ-
ent RAT methods have been shown conclusively
to improve MT quality (see for example Bulte and
Tezcan (2019), Khandelwal et al. (2021)).

This article focuses on a variant of RAT based
on augmenting data with lexical matches, first dis-
cussed in Bulte and Tezcan (2019), called Neu-
ral Fuzzy Repair (NFR). Our work further devel-
ops NFR by incorporating translation examples
that have been retrieved based on target instead
of source similarity. We also test how annotating
source sentences with the similarity levels of the
translation examples affects quality.

2 Related work

Many RAT approaches draw inspiration from re-
trieval methods that have been used in profes-
sional translation from the 1960s onward. The
three main traditional forms of retrieval in pro-
fessional translation (Hutchins, 1998) are termi-
nology lookup from a terminology database, full
segment fuzzy match retrieval from a translation
memory (usually based on edit distance), and con-
cordance search from a translation memory (re-
trieving translation pairs based on the occurrence
of a particular substring on the source side). In re-
cent decades, various subsegmental retrieval meth-
ods have also been introduced (Flanagan, 2014).

In MT research prior to the adoption of neural
machine translation (NMT), the concept of retriev-
ing translation examples based on source similar-
ity and the construction of new translations from
the retrieved examples was first proposed in the
1980s in the form of example-based MT (Nagao,
1984). In statistical MT, retrieving parts of exist-
ing translations from translation tables in order to
generate new translations was a core component of
MT systems, and there were also attempts to inte-
grate translation memory retrieval more directly in
a manner resembling RAT (Koehn and Senellart,
2010).
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Within NMT, various RAT methods have been
proposed. They can be roughly divided into
three categories, depending on whether they are
based on purpose-built neural network architec-
tures, data augmentation, or changes in the de-
coder component of the MT system.

Gu et al. (2017) introduces the first NMT archi-
tecture designed for RAT: translation examples are
retrieved from a translation database based on sen-
tence similarity, and the attention component of
the MT system is extended to cover the retrieved
examples. Bapna and Firat (2019) uses a simi-
lar architecture-based approach, but uses N-gram-
and vector-based retrieval to increase the amount
of matches. Hoang et al. (2022) attempts to control
the source-match interactions by encoding each
retrieved match separately with the source sen-
tence.

RAT based on data augmentation was intro-
duced in Bulte and Tezcan (2019), where source
sentences are concatenated with target translations
from translation examples that are retrieved from
the translation database with lexical matching. Xu
et al. (2020) extends the lexical matching to sep-
arate relevant and irrelevant target tokens by us-
ing word alignment data, and also utilizes matches
based on vector similarity. Concatenation-based
data augmentation methods are also used to con-
strain MT output to contain terms from a termi-
nology database (Dinu et al., 2019), which can be
considered a form of RAT.

Decoder-based RAT has the advantage of being
usable with any NMT model, since the model pa-
rameters and architecture are not changed. One
early implementation utilized phrase tables from
SMT systems (Dahlmann et al., 2017). Currently,
the most prominent form of decoder-based RAT is
kNN-MT (Khandelwal et al., 2021), which gener-
ates a datastore consisting of pairs of translation
contexts and output tokens. When generating the
next token of a translation, the decoder searches
for similar translation contexts based on vector
similarity, and utilizes the output tokens corre-
sponding to the most similar translation contexts
in generating the next token.

Neural RAT has also been implemented with
large language models (LLM) (Moslem et al.,
2023) using in-context learning (ICL), where the
LLM is prompted with the retrieved examples.
Bouthors et al. (2024) compare LLM-based RAT
with NFR, and NFR seems to have a clear quality

advantage, although more advanced LLMs may
have better results.

3 NFR with lexical matches

In NFR, the source language sentences in the
training data are concatenated with target lan-
guage sentences. The concatenated target lan-
guage sentences originate from translation exam-
ples, where the source sentence is similar to the
source sentence in the training data by some sim-
ilarity measure. The concatenated target language
sentences are separated from each other and the
source sentence with a special symbol, and maxi-
mum amount of examples per sentence is usually
limited to 3 (see Table 1 for examples).

NFR has been implemented using both lexical
and vector-based retrieval methods (Tezcan and
Bulté, 2022). It is easier to conceptualize with lex-
ical retrieval methods, since there is a clear mecha-
nism for utilizing the retrieved matches: find parts
of the retrieved translation that match the parts of
the new source sentence, and copy them to the new
translation. Note that this copy behaviour has to be
selective in two ways:

1. Match selection: The MT system may be
provided with irrelevant or contradictory ex-
amples (if the system is designed to support
multiple translation examples), so the system
must be able to discard examples or to se-
lect the most appropriate one amongst mul-
tiple valid examples.

2. Sub-sentential selection Given relevant
translation examples, the MT system has to
identify the parts of the examples that can
be exploited for constructing new translations
and then adapt them correctly.

With vector-based retrieval methods, the mech-
anism for utilizing the matches is more murky,
as there is often no lexical similarity with the re-
trieved translations and any acceptable translation
for the new source sentence. Xu et al. (2020)
found that using vector-based matches improves
translation quality (although not by as much as
lexical matches), and they hypothesize that vector-
based matches improve quality by providing con-
text during translation.

One issue, which is not explored in the ex-
isting research literature, is how a RAT system
actually learns to utilize the retrieved matches.
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Fuzzies Augmented source sentence
1 Tuensaajia on kaksi . FUZZYBREAK There are two situations .
2 Turvallisuutta koskevat lisä vaatimukset FUZZYBREAK

Käyttövarmuutta koskevat vaatimukset FUZZYBREAK Security requirements
3 Toimivaltaisen viranomaisen tehtävät ja velvollisuudet FUZZYBREAK

Välimiesten tehtävät ja velvoitteet FUZZYBREAK
HRE:n tehtävät ja velvollisuudet FUZZYBREAK
Duties and obligations of children

Table 1: Source sentences (the English sentence after the last FUZZYBREAK delimiter symbol) aug-
mented with 1 to 3 target sentences from similar translation examples (Finnish sentences separated by
the delimiter symbols). Highlighted text indicates matching source and target portions.

For instance, for the MT model to learn the sub-
sentential selection behaviour associated with lex-
ical matches, it would seem necessary for the
training data to contain examples consisting of a
source sentence, one or more translations from
retrieved translation examples, and a target sen-
tence containing parts of those retrieved transla-
tions. However, in the existing RAT literature, the
matches are retrieved based on source similarity,
with no concern for whether any part of the tar-
get sides of the matches are actually present in the
translations of the training data. The only article
in which the target side similarity of the retrieved
examples is discussed is Xu et al. (2020), where
in one experiment source-side matches are re-
ranked according to target-side similarity. Other-
wise, there seems to be an implicit assumption that
source-side similarity implies target-side similar-
ity. However, most naturally occurring sentences
have billions of possible translations (Dreyer and
Marcu, 2012). Even though most of those possible
translations are slight variations of other transla-
tions, for most sentences there is a large amount of
valid translations that are meaningfully different
both lexically and syntactically, as is demonstrated
by the literature on increasing output diversity in
machine translation (see for instance Roberts et al.
(2020)).

This diversity in naturally occurring translations
makes it unlikely that most translation pairs re-
trieved from naturally occurring data are optimal
training examples for the copy behaviour that a
RAT system should exhibit. However, since RAT
systems trained with such data have been conclu-
sively shown to improve translation quality and to
copy tokens from the target sides of the retrieved
matches to the new translations more often than

normal MT systems (Xu et al., 2020), there must
be enough good examples of copy behaviour in the
training data. However, it is likely, that a large
part of the lexical matches that are retrieved with
source similarity do not exemplify the subsenten-
tial copy mode, but rather contextualize the trans-
lation in the same way as vector-based matches.

The objective of this work is to verify whether
having training data that contains more suitable
training examples of the expected selective copy
behaviour improves the performance of NFR mod-
els. To obtain such training data, we retrieve lex-
ical matches based on target similarity during the
training phase. One issue with using target simi-
larity at training time is that a model that is trained
only with target similarity data cannot learn the
first type of selective copy behaviour explained
above, match selection. There will be no exam-
ples in the training data of irrelevant or contradic-
tory matches, since all matches will be similar to
their respective target sentences. Since at infer-
ence time, only matches based on source similarity
will be available, the model will almost certainly
copy irrelevant tokens from irrelevant matches to
the output. On the other hand, the data is more
conducive to learning the second type of copy
behaviour, sub-sentential selection, since all the
training examples are relevant for that purpose.

In our experiments, we attenuate the problem
of copying irrelevant tokens by adding source-
similarity matches to the target-similarity train-
ing data, and by ensembling source- and target-
similarity models. We also include similarity class
annotations in most models (a numerical suffix
from 5 to 9 attached to the example marker), indi-
cating the degree of similarity that each translation
example has with the source or target sentence,
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with the aim of training the model to process ex-
amples from different classes differently (for in-
stance to copy less from low-similarity examples).

4 Data

Models are trained using the English to Finnish
data from the Tatoeba-Challenge data set (release
v2023-09-26) (Tiedemann, 2020). This data set
consists of most of the data included in the OPUS
corpus collection1 at the date of the release. The
data in OPUS includes many crawled data sets.
Due to quality issues in crawled data (Kreutzer
et al., 2022), the data is filtered with Bicleaner AI
v2.0 (Zaragoza-Bernabeu et al., 2022): 5 million
best sentence pairs according to Bicleaner AI are
included in the training set (referred to as Train-
5M from here on). During the initial experiments,
we noticed that even after Bicleaner AI cleaning,
much of the crawled data was of very low qual-
ity (containing for instance machine translations
and lists of SEO terms). The crawled data also
contains many repetitive text templates, which oc-
cur hundreds of times with small changes, such
as You can fly from [X] to [Y] indirect via [Z]
or [WORD] pronunciation in [LANGUAGE]. We
suspected that the presence of these repetitive sim-
ilar sentences in the training data (often with sub-
standard translations) would affect the RAT train-
ing adversely. Because of these concerns, we de-
cided to create another training set, which con-
sists of 5 million best scoring non-crawled sen-
tence pairs in the Tatoeba-Challenge data set (re-
ferred to as NC-Train from here on).

RAT can be used for domain adaptation by us-
ing a domain-specific translation database for re-
trieval. In order to test the domain adaptation per-
formance of our RAT models, we exclude a por-
tion of the Tatoeba-Challenge data set as domain
test data. As there are no domain annotations in-
cluded in the data, we treat each individual cor-
pus in the dataset as a separate pseudo-domain
and extract at most 1,000 sentence pairs from each
of them as domain test sets. The corpora in the
dataset mostly map to actual domains, e.g. the
EMEA corpus contains data that is mostly from
the pharmaceutical/medical domain. The crawled
corpora are an exception, as they contain data from
many domains, and they are therefore excluded
from the domain test data. The domain test data
is excluded from the training sets.

1https://opus.nlpl.eu/

Each 5 million sentence pair training set is used
as a database from which the translation examples
are retrieved during the training phase for its re-
spective training set. The training set database
is also used as a translation database during test-
ing. We also use a larger All-Filtered database
consisting of all of the Tatoeba-Challenge data
with a BiCleaner-AI score of at least 0.7 for test-
ing. The All-Filtered database is used to deter-
mine whether the RAT system is capable of uti-
lizing matches that it has not seen during train-
ing. For the domain-specific test sets, we also
use domain-specific translation databases, which
consist of all the domain-specific data in the All-
Filtered database. For the NC-Train, the crawled
data is excluded from the All-Filtered database.

4.1 Retrieving translation examples

Retrieving similar sentences from a large database
for the millions of sentences in the training set
is computationally costly, so expensive similarity
metrics such as edit distance cannot be directly
used. The training database needs to be filtered
with a fast method that approximates more sophis-
ticated methods, so that the more accurate similar-
ity metrics can be applied to a smaller set of trans-
lation examples. Multiple retrieval methods have
been proposed for RAT, but according to Bouthors
et al. (2024), the choice of retrieval strategy does
not have a noticeable effect on NFR performance.
Because of this, we use the open-source fuzzy-
match library2 and do not explore other retrieval
strategies. fuzzy-match uses suffix arrays for the
initial filtering, and then calculates the edit dis-
tance over the resulting filtered set of translation
examples. The search is performed on sentences
tokenized to words. Note that this means that the
morphological complexity of the language will af-
fect the number of matches that are found: fewer
matches will be found for morphologically com-
plex languages in otherwise identical scenarios, as
tokens tend to contain more morphemes and are
therefore more varied.

To retrieve similar sentences for the sentence
pairs in the training set, we first search the training
database (Train and NC-Train for source similar-
ity, Train-TS and NC-Train-TS for target similar-
ity) for a maximum of 100 matches with a fuzzy-
match edit distance score of at least 0.5 (with 1
being identical and 0 completely different). Per-

2https://github.com/SYSTRAN/fuzzy-match
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Data set DB 0.9-0.99 0.8-0.89 0.7-0.79 0.6-0.69 0.5-0.59 Total
Train Train 1,085,811 1,659,270 1,461,893 2,248,088 3,214,326 9,669,388
Train Train-TS 680,150 1,957,426 1,290,774 1,914,313 2,308,767 8,151,430
NC-train NC-train 855,918 2,098,593 1,650,462 2,465,417 3,118,555 10,188,945
NC-train NC-train-TS 680,150 1,957,426 1,290,774 1,914,313 2,308,767 8,151,430

Table 2: Amounts of translation examples retrieved for each data set and translation database. The
examples are divided into five classes of with different similarity ranges, which are indicated on the
header row.

Data set DB 0.9-0.99 0.8-0.89 0.7-0.79 0.6-0.69 0.5-0.59 Total
Train Train 250,475 375,277 335,332 523,819 933,652 2,418,555
Train Train-TS 213,722 358,967 278,138 424,350 712,278 1,987,455
NC-train NC-train 202,711 441,879 383,819 577,702 871,335 2,477,446
NC-train NC-train-TS 167,540 439,522 335,202 494,354 670,596 2,107,214

Table 3: Amounts and classes of translation examples that were actually used to augment the data sets,
with 1 matches max per sentence (the counts are somewhat larger with training sets that allow multiple
matches).

fect matches are excluded from the results. Sub-
sets of the matches are then selected randomly to
augment the training data with translation exam-
ples. A maximum of three matches out of the pos-
sible hundred are actually used in our experiments,
but retrieving the extra matches makes it possible
to vary the examples based on their mutual simi-
larity and to control the distribution of examples of
different similarity scores in the training data. We
use the contrastive retrieval functionality of fuzzy-
match with a value of 0.7 to increase diversity in
the retrieved examples. See Table 3 for details on
the retrieved examples.

5 Models

We trained several models in the English to
Finnish translation direction with both the Train
and NC-train datasets. All the models are stan-
dard transformer-base models and were trained
with the Marian NMT toolkit (Junczys-Dowmunt
et al., 2018) v1.11.13 using default settings. We
use SentencePiece (Kudo and Richardson, 2018)
to create a vocabulary of 50,000 symbols, which
includes marker symbols for indicating different
similarity classes. A shared vocabulary is used for
both source and target to facilitate the copying of
tokens from the examples to the translation. All
the models were trained to convergence.

The validation sets were selected from the de-
velopment set included in the Tatoeba-Challenge
data set by picking the longest sentences for which

retrieved examples were available (the develop-
ment set skews towards short sentences, which are
problematic from the point of view of example re-
trieval). The validation sets were augmented using
the same schemes that were used with the train-
ing data. This differs from test time, where only
source similarity augmentation is used, but initial
experiments indicated that using a different aug-
mentation scheme for validation than the one used
in the training data leads to unstable validation
scores.

5.1 Augmentation schemes
The following augmentation schemes were used:

Baseline: A standard transformer model trained
with non-augmented data.

Src-Sim: This is the standard augmentation
scheme from Bulte and Tezcan (2019). Examples
are retrieved based on source similarity. This can
be considered the NFR baseline.

Trg-Sim: Examples are retrieved based on tar-
get similarity.

Combo: Sentence pairs from Src-Sim and Trg-
Sim sets are combined. We test both combining
all the sentence pairs from both sets (doubling
the training set size to 10 M, referred to as 2X-
Combo), and picking odd sentence pairs from one
set and even sentence pairs from the other (origi-
nal training set size, referred to as Combo).

Mix-Sim: This scheme is only used when mul-
tiple translation examples are allowed. Mix-Sim
differs from Combo in that translation examples
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from both Src-Sim and Trg-Sim sets can be used
simultaneously to augment the same source sen-
tence. There can be a maximum of one Trg-Sim
example per a sentence, the rest of the examples
are picked from the Source-Sim set.

Manual inspection in early testing confirmed
that models trained with the Trg-Sim scheme were
prone to copying irrelevant tokens from the trans-
lation examples, especially with short sentences.
The motivation for the Combo-Sim and Mixed-
Sim schemes is to attenuate this problem of over-
copying by mixing in source similarity examples
into the training set. Another approach that we
used to attenuating this problem was to ensem-
ble Src-Sim and Trg-Sim models, as Hoang et al.
(2024) indicates that ensembling models with di-
verse strengths leads to larger quality improve-
ments than ensembling similar models. As a com-
parison, we also ensemble different checkpoints of
some models.

We train models that allow a minimum of 1
and a maximum of 1-3 examples. In the augmen-
tation phase, the examples are picked randomly
from the full list of retrieved examples and con-
catenated with the source sentence. For all aug-
mentation schemes, we generate training files both
with and without fuzzy classes. The fuzzy class
of an example is indicated in the data by using
class-specific delimiter markers. Table 3 shows
the ranges of fuzzy match scores for each of the
five classes used.

6 Evaluation

The test sets which are commonly used for MT
evaluation are a bad fit for RAT evaluation, as they
generally have very few fuzzy matches available
even in large translation databases. For instance,
for the flores-devtest, matches were found for only
72 out of 1,012 sentences in the All-Filtered set.
More matches are found for the WMT news test
sets, but the news domain is otherwise not well
suited for RAT, as it is more varied and less repet-
itive than other domains.

Because of these concerns, we compiled our
own test set. We extracted a maximum of 1,000
sentence pairs from each of the corpora that com-
pose the Tatoeba-Challenge data set. We com-
piled separate test sets for the Train (75,249 sen-
tence pairs) and NC-Train (65,549 sentence pairs)
models. These test sets are mainly designed for
domain translation performance evaluation, so we

designate them as the Domeval and Domeval-NC.
As the data has not been annotated with domain
information, we use the sub-corpora as pseudo-
domains.

For each sub-corpus, we build a fuzzy match
index using all the sentence pairs from that sub-
corpus included in the respective All-Filtered set.
We generate augmented versions of the source
sentences of the Domeval sets using the subcorpus
indexes, as well as the Train and All-Filtered in-
dexes, and then translate the augmented Domeval
source sentences using a model.

Domeval, 72,549 sents, with crawled data
Train DB All-Filtered

Scheme BLEU chrF BLEU chrF
Baseline 31.14 62.43 31.14 62.43
Src-Sim 1 32.32 62.66 41.08 66.95
-classes 32.67 63.06 41.14 67.17
Src-Sim 2 32.16 62.61 40.99 66.92
Src-Sim 3 31.92 62.45 40.32 66.35
-classes 32.01 62.56 39.69 65.88
Trg-Sim-1 31.87 62.52 40.23 66.62
-classes 32.08 62.54 40.58 66.67
Trg-Sim-2 31.49 62.22 39.60 66.07
Combo 32.38 62.76 41.21 67.14
2X-Combo 32.82 63.16 41.57 67.47
Mix-Sim-2 32.11 62.79 41.10 67.18
Mix-Sim-3 31.94 62.60 40.55 66.67
-classes 31.97 62.61 40.26 66.38

Domeval-NC, 65,549 sents, no crawled data
NC-Train DB NC-All-Filtered

Scheme BLEU chrF BLEU chrF
Baseline 30.86 62.35 30.86 62.35
Src-Sim 1 32.26 62.99 37.61 65.62
Trg-Sim-1 31.70 62.58 36.84 65.09
Combo 32.20 62.90 37.61 65.57

Table 4: Scores for all augmentation schemes. The
scores are calculated over the whole Domeval, in-
cluding sentences for which there are no examples.
The results in the two tables are not directly com-
parable, but the relative performance of the models
is similar. -classes indicates that a model has been
trained without similarity class annotations.

We also evaluate the performance of the models
on full Domeval set with the Train and All-Filtered
databases to measure general translation perfor-
mance. SacreBLEU (Post, 2018) is used to gen-
erate BLEU and chrF metric scores. Neural eval-
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Domeval, 72,549 sents, with crawled data
Train All-Filtered

Ensemble BLEU chrF BLEU chrF
Baseline 31.14 62.43 31.14 62.43
Src-Sim-1 + Trg-Sim-1 32.99 (32.32) 63.27 (62.66) 41.69 (41.08) 67.48 (66.95)
2X-Combo + 2X-Combo 32.93 (32.82) 63.21 (63.16) 41.66 (41.57) 67.52 (67.47)
Src-Sim-1 + Src-Sim-1 32.93 (32.32) 63.18 (62.66) 41.54 (41.08) 67.36 (66.95)

Domeval-NC, 65,549 sents, no crawled data
NC-Train DB NC-All-Filtered

Ensemble BLEU chrF BLEU chrF
Baseline 30.86 62.35 30.86 62.35
Src-Sim-1 + Trg-Sim-1 33.11 (32.26) 63.62 (62.99) 38.41 (37.61) 66.20 (65.62)

Table 5: Ensemble scores. Src-Sim-1+Src-Sim-1 and 2XCombo+2X-Combo1 are ensembles of different
checkpoints of the same model. Values in parentheses indicate the metric scores for the model in the
ensemble that had better scores individually. Note that the differences between the different ensembles
in the upper table are not statistically significant.

uation metrics, such as COMET, have been found
to be superior to lexical metrics, such as BLEU
and chrF, in recent meta-evaluations (Freitag et al.,
2022). However, in the context of evaluating RAT
systems, it is desirable for metrics to reward copy-
ing parts of the translation examples to the trans-
lation. With lexical metrics, this happens to some
degree (depending on the lexical similarity of the
translation examples and reference translations).
With neural metrics, the translations do not need
to be lexically similar with the reference transla-
tions, which is usually their advantage, but it be-
comes a potential problem in the context of RAT
evaluation. Lexical metrics have also been found
to be adequate in contexts where they are used to
evaluate similar MT systems (Kocmi et al., 2024),
and all the models we compare share their training
data, subword segmentation, and model architec-
ture. Because of these factors, we decided to use
only lexical evaluation metrics.

During test time, only examples retrieved based
on source similarity are used, also with the mod-
els that were trained with target similarity, since
target-side data would not be available in actual
translation scenarios.

7 Discussion of the results

All results are in accordance with earlier evalua-
tions of NFR in Bulte and Tezcan (2019) and Xu
et al. (2020): NFR improves translation quality
very significantly (up to 10 BLEU points) com-
pared to a NMT baseline.

The domain translation results for the five do-
mains with most retrieved translation examples
(see Table 6) are more ambivalent, although it
should be noted that two of the five domains are
highly atypical. The Open-Subtitles corpus con-
sists of subtitles of TV shows and films, which are
typically very short in order to fit the screen and
often non-literal, due to e.g. jokes and references
to visual content. Consequently the metric scores
are very low for the domain. The bible-uedin
corpus receives very high scores, which is proba-
bly due to repetition in the corpus, which means
that very similar translation examples are avail-
able for many sentences. The scores are higher
for Train, indicating that the crawled data contains
bible translations.

Evaluation of both full test sets and specific do-
mains suggests that annotating similarity classes
of examples in the source sentences degrades
translation quality slightly compared to treating all
examples in the same way. It should be noted,
though, that for the EMEA, DGT, and Mozilla-I0n
domains similarity class annotation does seem to
improve translation quality. These are also do-
mains that are well-suited for RAT, as they are
repetitive and noncreative.

The Trg-Sim scheme underperforms all other
schemes on its own, probably due to excessive
copying from the retrieved matches. However,
models combining source and target similarity
matches perform better than pure Src-Sim models.
In domain-specific evaluation, the best results are
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Train: domain translation, domains with most matches, only matches from domain DB
Open-Subtitles EMEA DGT bible-uedin Mozilla-I10n
(822) (654) (589) (523) (482)
BLEU chrF BLEU chrF BLEU chrF BLEU chrF BLEU chrF

Src-Sim-1 28.15 53.60 58.89 77.31 69.78 82.60 93.38 96.01 69.23 79.04
-classes 28.35 53.72 58.17 77.99 69.87 82.62 93.35 96.07 68.19 78.37
Src-Sim-2 27.41 53.50 58.30 77.06 66.25 80.47 93.96 96.54 65.24 76.17
Src-Sim-3 28.77 54.03 57.42 76.62 61.58 76.38 93.84 96.42 62.48 74.68
-classes 28.99 54.20 55.82 75.23 59.66 75.14 93.52 96.13 59.65 70.78
Trg-Sim-1 17.43 43.85 57.25 78.11 70.97 83.63 79.24 88.52 69.96 80.11
-classes 20.35 44.55 56.62 78.01 70.21 82.76 91.52 95.24 69.39 79.52
Trg-Sim-2 14.63 39.42 56.57 75.68 65.83 80.15 79.73 88.80 64.51 76.05
Combo 24.71 51.77 59.15 78.98 71.04 83.28 93.11 96.06 70.50 80.30
2X-Combo 26.79 52.73 58.73 79.17 70.85 83.36 93.52 96.50 70.77 79.99
Mix-Sim-2 22.56 49.30 59.00 78.22 67.65 81.37 92.79 95.92 67.91 78.33
Mix-Sim-3 24.49 50.82 56.65 74.95 64.69 79.03 93.10 96.18 63.64 75.11
-classes 25.69 51.06 56.57 76.23 62.54 77.53 93.12 95.92 62.84 74.63
Src-Sim-1 +
Trg-Sim-1 22.00 48.13 59.24 77.92 71.75 83.99 90.92 94.90 71.21 80.43
Src-Sim-1 +
Src-Sim-1 28.49 54.21 58.74 77.39 70.57 83.06 93.56 96.09 69.36 78.67
2X-Combo+
2X-Combo 26.84 52.70 58.80 79.30 71.18 82.90 93.55 96.58 70.74 80.24

NC-Train: domain translation with domain database, domains with most matches
Open-Subtitles EMEA DGT bible-uedin Mozilla-I10n
(822) (654) (589) (523) (482)
BLEU chrF BLEU chrF BLEU chrF BLEU chrF BLEU chrF

Src-Sim-1 29.94 54.48 60.00 79.91 72.47 84.86 89.36 94.20 69.81 79.52
Trg-Sim-1 18.25 44.51 57.91 78.67 72.05 84.28 75.28 86.59 68.95 78.61
Combo 27.66 53.24 60.08 79.76 73.23 84.99 87.21 93.03 69.64 79.52
Src-Sim-1 +
Trg-Sim-1 22.84 49.23 59.61 79.61 73.02 84.99 85.36 92.06 71.38 80.41

Table 6: Domain translation BLEU and chrF metrics scores for all models and ensembles. The number
in the parentheses under the domain name indicates how many sentences out of 1,000 had at least one
translation example.

Train: domains with short sentences, only matches from domain DB
Ubuntu (313) KDE (418) GNOME (420) WikiTitles (373)
BLEU chrF BLEU chrF BLEU chrF BLEU chrF

Mix-Sim-3 66.30 78.34 68.12 80.23 67.21 78.95 56.71 74.16
Src-Sim-1 62.58 74.68 62.73 76.27 63.64 76.35 47.09 69.17
Trg-Sim-1 60.61 74.40 62.92 77.07 62.89 76.54 45.58 69.84

Table 7: Scores for domains with short sentences (max 5 words per line). Not all models are shown here,
but Mix-Sim models perform best, notably against Src-Sim-1, which we use as NFR baseline.
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obtained with the Combo models and the ensem-
ble of Src-Sim and Trg-Sim models.

While the Mix-Sim scheme does not appear to
work generally, it performs better than alterna-
tives with a specific subgroup of domains, i.e.
those with very short sentences (see Table 7). In
general, models that allow multiple examples are
better with short sentences. One reason for this
is probably that more examples are available for
shorter sentences. However, it might also be due
to the long source sentences becoming too long
when augmented with multiple translation exam-
ples, thus degrading performance.

8 Conclusion and future work

Our experiments demonstrate that both adding tar-
get similarity matches to the training data, and
ensembling Trg-Sim models with Src-Sim models
improve the quality of translation output compared
to normal NFR. In the future, we plan to extend
the 2X-ComboSim approach by replicating source
sentences with different source and target similar-
ity matches in the training data at a larger scale.

We also plan to experiment further on ensem-
bling NFR models, including ensembles of mod-
els trained with different numbers of translation
examples. Ensembling may also offer an alterna-
tive way of handling multiple translation exam-
ples: a 1-example model can be provided with
multiple translation examples as separate inputs,
the outputs of which can then be ensembled to pro-
duce a translation that is influenced by all the ex-
amples. Ensembling could also be used to com-
bine terminology models (Dinu et al., 2019) and
NFR models, by preparing separate inputs anno-
tated with terminology and translation examples
respectively, and ensembling the outputs.
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Abstract

Is the framework of Universal Dependen-
cies (UD) compatible with findings from
linguistic typology? One way to find out is
to investigate whether UD can adequately
represent constructions of the world’s lan-
guages, as described in William Croft’s re-
cent book Morphosyntax. This paper dis-
cusses how such an investigation could be
carried out and why it would be useful.

1 Introduction

Universal Dependencies (UD) is a framework for
morphosyntactic annotation, designed to be appli-
cable to all human languages and to enable mean-
ingful cross-linguistic comparisons. The two ver-
sions of the guidelines are described in Nivre et al.
(2016) and Nivre et al. (2020); a longer description
of the underlying linguistic theory can be found in
de Marneffe et al. (2021); and annotated data for
168 languages1 can be found together with addi-
tional documentation on the UD website.2

But can UD really handle the full range of mor-
phosyntactic variation in the world’s languages?
And is it successful in revealing similarities and
differences across these languages in a systematic
fashion? One way to approach these questions is
to review the UD framework through the lens of
linguistic typology. An early attempt to do this can
be found in Croft et al. (2017), where the authors
review version 1 of the UD guidelines and pro-
pose a number of improvements for better align-
ment with typological research findings, some of
which were integrated in version 2 of the guide-
lines. Since then, William Croft has published
the book Morphosyntax (Croft, 2022), a compre-
hensive survey of constructions in the world’s lan-
guages, which brings together the results of sixty

1UD v2.15, released November 15, 2024.
2https://universaldependencies.org

years of research on typology and universals and
thus provides an excellent basis for a new and
more exhaustive review of the UD framework.

Croft’s survey is based on two types of compar-
ative concepts (Haspelmath, 2010; Croft, 2016):
constructions, which are universal form-function
pairings defined solely in terms of their function,
and strategies, which are non-universal and de-
fined by the pairing of a function with some cross-
linguistically identifiable morphosyntactic form.
Annotations in UD are not defined in terms of con-
structions and strategies, but for the framework to
be universally applicable it must be possible to an-
notate all major constructions and strategies in the
world’s languages. And to support cross-linguistic
comparisons, these annotations should ideally re-
flect systematic correspondances in constructions
and strategies across languages. The purpose of
this position paper is to motivate a more system-
atic study of these issues, by showing that we cur-
rently do not know to what extent UD satisfies
these requirements, and to propose a research pro-
gram to support this investigation.

The rest of the paper is organized as follows. In
Section 2, I give a brief overview of the UD anno-
tation framework, focusing on fundamental design
principes; in Section 3, I outline the taxonomy of
constructions and strategies in Croft (2022); and in
Section 4, I discuss how constructions and strate-
gies are annotated in UD. I conclude that, although
the design principles of UD in some respects favor
a clear representation of constructions and strate-
gies, the correspondence between the two systems
is far from perfect and merits further investigation.

2 The UD Annotation Scheme

The UD annotation scheme assumes that words
are the basic units of morphosyntax. Words en-
code grammatical information internally through
lexical stems and inflectional processes, but since
the nature of these processes varies considerably
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she quickly wrote a short note with a pen
PRON ADV VERB DET ADJ NOUN ADP DET NOUN

Case=Nom Degree=Pos Mood=Ind Definite=Ind Degree=Pos Number=Sing Definite=Ind Number=Sing
Gender=Fem Number=Sing Number=Sing Number=Sing
Number=Sing Person=3 PronType=Art

Person=3 Tense=Past
PronType=Prs VerbForm=Fin

nsubj
advmod

det
amod

obj
case

det

obl

Figure 1: UD annotation of an English sentence.

across languages, there is no attempt to segment
words into smaller units like morphs. Instead, the
morphological annotation layer in UD combines
coarse-grained part-of-speech tags with a rich in-
ventory of morphological features, which together
capture the information encoded in words without
localizing it to smaller parts.3

Words also enter into syntactic relations with
other words, and UD assumes that the informa-
tion encoded in syntactic structure can be captured
by a tree-structured representation consisting en-
tirely of binary relations between words. A subset
of these relations correspond to what grammari-
ans would call dependency relations – asymmetric
relations between a syntactic head and a depen-
dent – but many of the relations that are neces-
sary for a complete syntactic analysis are essen-
tially symmetrical, even though the tree constraint
forces one of the words to be (arbitrarily) chosen
as the parent node. By way of illustration, Figure 1
shows the UD annotation of an English sentence.4

The syntactic analysis in UD assumes that all
languages have nominals, which are the primary
means of referring to entities, and clauses, which
describe events (including actions and states).
Both nominals and clauses can be further refined
by modifiers, which describe attributes of entities
or events. Figure 1 shows a main clause with the
predicate wrote and three nominals: she, a short
note, and a pen; there is also an adverbial modifier
quickly, modifying the predicate wrote, and an ad-
jectival modifier short, modifying the noun note.

A characteristic property of UD syntax is that
it prioritizes direct relations between predicates,
nominals and modifiers, rather than relations me-
diated by function words. Thus, in Figure 1, there
is a direct relation from the predicate wrote to

3The morphological layer also includes lemmas, which
are language-specific and will not be discussed here.

4For more information about tags, features, and relations,
see https://universaldependencies.org.

the noun pen, denoting the instrument of writing,
while the preposition with is essentially treated as
a case marker on the noun. This treatment is moti-
vated by the observation that predicates, nominals
and modifiers are more likely to be parallel across
languages than function words, which often cor-
respond to morphological inflection (or nothing at
all) when comparing across many languages.

3 Constructions and Strategies

The most central concept in Croft’s framework of
morphosyntax is that of a construction, which is
defined in the following way (Croft, 2022, p. 17):

construction: any pairing of form and function
in a language (or any language) used to express a
particular combination of semantic content and
information packaging

It is worth noting that the functional side of a con-
struction consists of two components, a semantic
content and a particular way of packaging the in-
formation, also known as a propositional act. This
is exemplified in Table 1, which shows construc-
tions defined by different combinations of seman-
tic classes and propositional acts, with the most
prototypical constructions being nominal phrases,
which refer to objects, adjectival phrases, which
express property modification, and verbal clauses,
which express action predication.5

Constructions at the most abstract level are uni-
versal and defined only in terms of function. How-
ever, to enable cross-linguistic comparison of con-
structions also in terms of their form, Croft intro-
duces the notion of a strategy (Croft, 2022, p. 19):

strategy: a construction in a language (or any
language), used to express a particular combina-
tion of semantic content and information pack-

5The prototypical constructions can be found along the
diagonal from top left to bottom right in the first three rows
of Table 1.
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Propositional Act
Semantic Class Reference Modification Predication
Object Nominal Phrase Possessive Modifier/Genitive Phrase Predicate Nominal

Head: Noun
Property Property-Referring Phrase Adjectival Phrase Predicate Adjectival

Head: Adjective
Action Complement (Clause) Relative Clause Verbal Clause

Head: Verb
All Referring/Argument Phrase Attributive Phrase Clause

Head: Referent Expression Head: Modifier Head: Predicate

Table 1: Grammatical constructions for combinations of three basic semantic classes and the three major
propositional act (information packaging) functions (adapted from Croft (2022)).

aging (the ‘what’), that is further distinguished
by certain characteristics of grammatical form
that can be defined in a crosslinguistically con-
sistent fashion (the ‘how’)

To exemplify the notion of strategy, let us con-
sider the predicate nominal construction, which is
“a clause construction defined by the function of
predicating an object concept of a referent – that
is, asserting what object category the referent be-
longs to”.6 Two common strategies for this con-
struction are exemplified in (1) and (2–3).

(1) Ivan tancor

Ivan.NOM dancer.NOM
‘Ivan is a dancer’

(2) Ivan är dansare
Ivan COP dancer
‘Ivan is a dancer’

(3) Ivan is a dancer
Ivan COP a dancer

The Russian example in (1) uses a zero strategy
(Stassen, 1997), which simply juxtaposes the re-
ferring expression Ivan with the noun tancor in
nominative case expressing the object concept. By
contrast, the Swedish and English examples in (2)
and (3) both use a verbal copula strategy (Stassen,
1997), where predication is mediated by a copula
verb. The notion of strategy allows us to abstract
over language-specific constructions and say that
Swedish and English use the same strategy, while
the Russian strategy is different.

4 Constructions and Strategies in UD

How are constructions and strategies represented
in UD? At first sight, it may appear that they are
not represented at all, because the UD annotation
is centered on properties and relations of words.

6https://comparative-concepts.github.io/cc-database/

However, as noted in Section 2, the UD scheme
systematically distinguishes clauses, nominals and
modifiers. For example, a word with an incom-
ing relation labeled nsubj must be the head of a
nominal phrase, and a word with an incoming re-
lation labeled advcl must be the head of a (subor-
dinate) clause. So there is an almost perfect cor-
respondence between the basic structures posited
by UD – nominals, modifiers, and clauses – and
the three major propositional acts in Croft’s frame-
work: reference, modification, and predication.7

In addition, the UD principle of prioritizing di-
rect relations between predicates, nominals and
modifiers often reveals constructional parallelism
across languages that use different strategies for a
given construction.

To illustrate this, let us return to the predicate
nominal construction and consider the UD anno-
tation of (1–3) in Figure 2. All three representa-

tions share a structure NOUN
nsubj−→ X, where X can

be replaced by any category that can be the head
of a referring expression. This captures the fact
that the predicate nominal construction involves
using a noun as a predicate, which would have
been less clear if the copula verb had been treated
as the head of the clause in Swedish and English.
Moreover, the fact that Swedish and English uses
the same strategy is captured by the presence of
the structure NOUN

cop−→ AUX, which contrasts
with the absence of such a structure in Russian.
In general, strategies often correspond to relations
involving function words (like the cop relation).

The predicate nominal example suggests that
UD representations can be decomposed into dis-
tinct substructures corresponding to constructions
and strategies. Unfortunately, this is not true in

7The only discrepancy is that Croft’s notion of modifi-
cation is restricted to modification of referring expressions,
whereas the UD concept also includes adverbial modifiers
and modifiers of modifiers.

421



Ivan tancor
PROPN NOUN

Case=Nom Case=Nom

nsubj

Ivan är dansare
PROPN AUX NOUN

nsubj
cop

Ivan is a dancer
PROPN AUX DET NOUN

nsubj
cop

det

Figure 2: Simplified UD annotation for predicate nominal constructions in Russian, Swedish and English.

hänellä on kirja
PRON AUX NOUN

Case=Ade Case=Nom

nsubj
cop

she has a book
PRON VERB DET NOUN

det
obj

nsubj

Figure 3: Simplified UD annotation for presentational possession constructions in Finnish and English.

the general case. First of all, it is clear that UD
representations are more coarse-grained than con-
structions and strategies, so there will often be a
one-to-many mapping from the former to the lat-
ter. For example, the substructure that is character-
istic of the predicate nominal construction in Fig-
ure 2 would also be characteristic of an equational
construction, as exemplified by Ivan is the winner,
which in Croft’s framework is a distinct construc-
tion, even though the two constructions often share
strategies through a process known as recruitment.

More importantly, it is not hard to find con-
structions where the UD representations com-
pletely fail to capture constructional parallelism.
One example is the presentational possession con-
struction, defined as “a presentational information
packaging of the possession relation in which a
possessum is introduced into the discourse, an-
chored by the possessor”8 and exemplified in
Figure 3 with examples in Finnish and English.
Finnish here uses a locational possessive strat-
egy (Stassen, 2009), in which the possessum (kirja
‘book.NOM’) is expressed in a subject phrase, and
the possessor (hänellä ‘her.ADESS’) in an oblique
(locative) phrase, with a linking copula verb (on
‘be.3SG.PRES’). By contrast, English uses a have-
possessive strategy (Stassen, 2009), where the
possessor is expressed in a subject phrase (she),
and the possessum in an object phrase (a book),
connected by a full transitive verb (has). A closer
comparison of the examples reveals that the two
representations have next to nothing in common,
which could capture the common construction,
and also that the two strategies in this case involves

8https://comparative-concepts.github.io/cc-database/

syntactic relations like nsubj and obj, which in the
predicate nominal example were considered ele-
ments of the construction.

5 A Research Program for UD

Which of the two cases discussed above is typical?
Are UD annotations mostly decomposable into
parts corresponding to constructions and strate-
gies, with a few anomalous cases like the presen-
tational possession construction? Or is it the latter
that is the norm, and the former the exception? At
this point, we simply do not know, and this is the
main motivation for proposing a research program
that systematically investigates how constructions
and strategies can be represented in UD, using the
survey in Croft (2022) as a starting point. More
precisely, I propose to develop a constructicon for
UD, consisting of the following components:

• An inventory of universal constructions.

• For each construction, an inventory of com-
mon strategies for realizing that construction
in the world’s languages.

• For each construction-strategy pair, a cross-
linguistically valid UD analysis and represen-
tative examples from different languages.

Why should we build such a resource and how can
we hope to construct it? Starting with the why, I
believe that a UD constructicon could help us im-
prove cross-linguistic annotation consistency by
providing a complementary view of the UD guide-
lines, which is holistic and onomasiological. It is
holistic because it starts from complete construc-
tions rather than particular syntactic relations, and
it is onomasiological because it goes from function
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to (cross-linguistically identifiable) form. This
would in particular benefit the annotation of new
languages, where guidelines could be developed
systematically by first identifying what strategies
are used for different constructions. It would also
provide better support for construction-based an-
notation on top of UD, as proposed in Weissweiler
et al. (2024). Last but not least, it would help us
find out to what extent UD can represent construc-
tions and strategies systematically and transpar-
ently across languages and thereby identify short-
comings in the current guidelines.

Returning to the question of how to build the
constructicon, we can fortunately bootstrap the
process by taking the first two components – the
inventories of constructions and strategies – di-
rectly from Croft (2022), or rather from MoCCA,
the database of comparative concepts that is being
developed from the glossary of the book (Lorenzi
et al.).9 We can then concentrate on construct-
ing valid UD analyses for all construction-strategy
pairs, starting with the most prototypical construc-
tion types – reference, modification and predica-
tion – and proceeding to non-prototypical cases
with more complex variation patterns. Examples
for all constructions can be found in Croft (2022),
which contains at least one concrete example for
every construction-strategy pair discussed in the
book. This should be supplemented with exam-
ples from existing UD treebanks, which will allow
us to assess the cross-linguistic annotation consis-
tency for different constructions and strategies.

6 Conclusion

In this paper, I have reopened the question of
whether UD is an adequate annotation framework
from the point of view of linguistic typology, pre-
viously raised by Croft et al. (2017). I have argued
that one way of answering this question is to study
more systematically how constructions and strate-
gies, in the sense of Croft (2022), can be repre-
sented in UD, and I have proposed that this can be
done by building a constructicon for UD.
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Abstract

We apply a simple method to machine
translate datasets with span-level annota-
tion using the DeepL MT service and its
ability to translate formatted documents.
Using this method, we produce a Finnish
version of the SQuAD2.0 question an-
swering dataset and train QA retriever
models on this new dataset. We evalu-
ate the quality of the dataset and more
generally the MT method through direct
evaluation, indirect comparison to other
similar datasets, a backtranslation experi-
ment, as well as through the performance
of downstream trained QA models. In
all these evaluations, we find that the
method of transfer is not only simple to
use but produces consistently better trans-
lated data. Given its good performance
on the SQuAD dataset, it is likely the
method can be used to translate other sim-
ilar span-annotated datasets for other tasks
and languages as well. All code and data
is available under an open license: data
at HuggingFace TurkuNLP/squad v2 fi,
code on GitHub TurkuNLP/squad2-fi, and
model at HuggingFace TurkuNLP/bert-
base-finnish-cased-squad2.

1 Introduction

Question answering (QA) is an important practi-
cal information retrieval task as well as a com-
mon benchmark of computational models of hu-
man language. Extractive QA models are typi-
cally built as a two step retriever-reader pipeline,
first retrieving the documents relevant to the query
(retriever) and then using an encoder model to
extract the correct answer span from those doc-
uments (reader). Generative QA models replace
the reader component with a generative large

language model (LLM), in an approach com-
monly referred to as retrieval-augmented genera-
tion (RAG).

No matter which of the QA paradigms is
applied, large-scale question answering datasets
such as the SQuAD dataset play a key role. Both
in terms of benchmarking model performance, and
model training. Whereas for extractive QA these
datasets are used directly, in generative LLM de-
velopment, QA datasets are commonly used as
a source of examples for instruction fine-tuning.
Unfortunately, these large-scale QA datasets are
mostly available only for English and a small num-
ber of well-resourced languages, making the di-
rect development of retriever-reader QA models
for languages without such a dataset almost im-
possible, as well as negatively impacting bench-
marking of LLM-based QA.

With the improvements to machine translation
(MT) output quality seen in the recent years, ma-
chine translating datasets is becoming a frequent
choice to obtain a dataset in a new language in
cases where native annotation is not possible due
to lack of resources. While such an approach is
technically very simple to implement for datasets
consisting of unannotated text, it becomes consid-
erably more complex for datasets with dense text
span annotations, such as the QA datasets. Nu-
merous approaches have been introduced aiming
to transfer the span annotations during translation.
In this paper we contribute to this overall line of
research by demonstrating a simple, yet effective
approach to translate English question answering
datasets to Finnish (or other languages) using a
little-known feature of the DeepL machine trans-
lation service.

The primary contribution of this paper is a
Finnish version of the publicly available sections
of the SQuAD 2.0 dataset. This dataset can serve
both for the development of extractive QA sys-
tems on top of Finnish encoder models, as well
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as provide a source of Finnish data for instruc-
tion tuning and benchmarking of Finnish LLMs.
Our other contribution is a Finnish extractive QA
model trained on this dataset.

The paper is organized as follows: In Section 2
we review prior work on machine translating QA-
datasets. In Section 3 we explain our process of
machine translating these datasets. In Section 4
we evaluate the new resource and compare it to
other similar resources. Finally, Section 5 con-
cludes the work.

2 Related Work

There are numerous open-domain question an-
swering datasets for English. Among the most
commonly used is the Stanford Question Answer-
ing Dataset (SQuAD). SQuAD1.1 (Rajpurkar
et al., 2016) consists of 100,000 questions posed
by crowdsourced workers on a set of text pas-
sages (paragraphs of 536 Wikipedia articles). The
questions are produced by the workers, while the
answers constitute spans present in the text pas-
sages. SQuAD2.0 (Rajpurkar et al., 2018) is a
superset of SQuAD1.1 with an additional 50,000
crowdsourced unanswerable distractor questions
that only make the impression of being answered
in the given passage.1 Native human generated
question answering datasets for other languages
include Chinese (Cui et al., 2019), Korean (Lim
et al., 2019) and French (d’Hoffschmidt et al.,
2020), but a large number of languages lack a large
QA dataset.

The SQuAD dataset has been machine trans-
lated to several languages. Arabic (Mozannar
et al., 2019) SQuAD1.1 version starts by ma-
chine translating the passages, questions and an-
swers separately. Subsequently, all the paragraphs
and answers are transliterated to Arabic and the
span of text of length at most 15 words with the
least edit-distance with respect to the answer is
identified. Only 231 articles containing 48,344
question-answer pairs are translated, and a full
25,490 question-answer pairs are not recovered by
the initial translation and the transliteration heuris-
tic step is applied. A reported small-scale evalua-
tion shows that approximately 64% of these are
correctly recovered.

1Note, however, that the test set of the SQuAD datasets is
kept private, and the publicly available data contains 98,169
question-answer pairs for SQuAD1.1 and 92,749 answerable
plus 49,434 unanswerable questions in SQuAD2.0.

Persian (Abadani et al., 2021) SQuAD2.0 ver-
sion starts by machine translating the passages,
questions and answers separately. Then an align-
ment is established by finding the position of the
sentence that the answer appears in the English
dataset. If the translated answer does not appear
in the equivalent translated sentence, the question-
answer pair is removed from the final dataset.
The final dataset salvages 70,560 question-answer
pairs.

The TAR-method (Translate-Align-Retrieve)
used to create the Spanish translation of
SQuAD1.1 (Carrino et al., 2019) also starts
by machine translating the passages, questions
and answers separately. If the translated answer
can be found in the translated passage, it is
retrieved as is. In the opposite case, a word align-
ment between the source and translated passage
is established using the eflomal word alignment
method (Östling and Tiedemann, 2016) and this
alignment is then used to locate the translated
answer. The final dataset salvages almost all of the
question-answer pairs, but a manual error analysis
showed that 50% of the answer spans were either
misaligned (7%) or under-/over-extended (43%).

For Finnish, which is our target language of in-
terest, there exists an earlier machine translated
version of the SQuAD2.0 dataset (Kylliäinen,
2022; Kylliäinen and Yangarber, 2023). The pas-
sages, questions and answers are translated sepa-
rately and their spans in the translations are iden-
tified using a number of normalization steps de-
signed to improve the chance of successful match-
ing. The dataset preserves 66,000 question-answer
pairs from the original approx. 92,000.

The unpublished Swedish translation of
SQuAD2.02 deviates from the common approach,
and translates one question-answer pair at a time,
marking the answer span with a recognizable
token (e.g. “[0]”), and retrieves the span after
translation, relying on the MT system preserving
the special tokens. This process is reported to
preserve 90% of the original question-answer
pairs.

In a more recent approach, a separate align-
ment model is first trained for the target language
(Masad et al., 2023). Then each context, question,
and answer are translated together as a single unit
using the Google Translate service. If the answer

2https://towardsdatascience.com/
swedish-question-answering-with-bert-
c856ccdcc337
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is not found with exact matching from the transla-
tion, the alignment model is used. Finally, if the
first two steps fail, the context is segmented into
subsets of words with a total word count that ap-
proximates the word count of the answer. Then the
embeddings of the answer and all the context seg-
ments are calculated using a pre-trained multilin-
gual BERT model from which the closest segment
to the answer is searched using cosine similarity
with a threshold on the similarity score to prevent
weak alignments. This method is reported to pre-
serve 93.4% of the original question-answer pairs.

In another recent approach, an annotated clin-
ical corpus is translated from English to Dutch
(Seinen et al., 2024). In the dataset the anno-
tation and the context are stored separately. In
the paper the annotations are first integrated di-
rectly into the clinical text by enclosing the text
span and the CUI (concept unique identifier) in
square brackets ‘[[text span] [CUI]]‘. Then the
text with embedded annotations is machine trans-
lated, keeping the annotations intact. Finally the
annotations are extracted from the translated text
using regular expressions to separate the annota-
tions and the context again to the original format.
The Google Translate service and GPT 4 Turbo
are compared. The Google Translate service lost
up to 1.7% of annotations and GPT4 Turbo lost up
to 5.9%. Most of lost annotations for Google were
formatting errors, but for GPT, the lost annotations
were mostly entirely omitted.

In summary, the clearly most common approach
to machine translating datasets with span level an-
notations relies on translating the elements in iso-
lation, and subsequently identifying through a var-
ied set of heuristics their positions in the trans-
lated passages. This is naturally an error-prone
process due to the fact that the answers when
translated in isolation are not guaranteed to match
their in-context translation within the passage, pre-
venting reliable alignment. This is demonstrated
by the substantial proportions of “lost” exam-
ples reported for most of these machine translated
datasets. And while metadata-tagging approaches
like that of Seinen et al. (2024) preserve most
of the annotations, they are not able to preserve
overlapping annotations without multiple rounds
of translations.

In the following, we apply an approach which
uses the functionality of a commercial MT engine
to avoid the tedious alignment of answer segments

with the original passages.

3 Methods and Data

3.1 Markup-based Transfer
To create a translated version of the SQuAD
dataset (or any other extractive QA dataset for that
matter), not only the questions and underlying text
passages need to be translated, but also the an-
swer spans need to be correctly identified. Further,
since the QA datasets often have many question-
answer pairs for each passage, the answer spans
may partially overlap.

Our work is based on the DeepL commercial
machine translation service3 which is very pop-
ular among users thanks to its excellent transla-
tion output quality, which has also been reported
in numerical benchmarks (e.g. Shaitarova et al.
(2023)). In particular, we capitalize on the simple
observation that DeepL is capable of translating
formatted documents. This feature is crucial for
professional translators—the primary users of the
service—who need to translate not only the text of
the source documents, but also preserve their for-
matting. In practice, this means that the input of
DeepL can be a textual document with formatting
(a Word document) and the service produces its
translated version with the formatting preserved.
This, in turn, gives us the combination of a high-
quality machine translation system, an obviously
necessary condition for successful machine trans-
lation of training data, with the ability to link text
spans between the source and target documents
through formatting. We first utilized this property
of DeepL to machine translate a relation extraction
dataset to a number of languages. In that work,
the annotation did not exhibit overlapping spans
(Bassignana et al., 2023).

The answer spans in the dataset can be trivially
encoded as colored text spans in the input docu-
ments, where the color uniquely differentiates the
individual answer spans. This is somewhat com-
plicated by the fact that the answers may overlap
in the dataset. A simple solution is to consider the
overlapping region to be a separate span, and as-
sign it a distinct color, and reverse this mapping
when reconstructing the dataset after translation.
Another approach would have been, for instance,
to translate each context several times for differ-
ent non-overlapping subsets of entities. Neverthe-
less, having observed that in our case the former

3https://www.deepl.com/translator
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approach did not cause any clear degradation of
the output, we chose to not pursue the latter ap-
proach, which would have increased the cost of
translation4 and complexity of reconstructing the
data. The translation process with formatting is il-
lustrated on an actual example from the dataset in
Figure 1.

Observing that oftentimes the answer spans
were over-extended by a trailing punctuation sym-
bol during translation, the only post-processing we
apply is to strip from each translated span any
trailing punctuation. This, in our view, has no neg-
ative impact on the QA task.

One aspect, common to all machine translation
approaches to SQuAD irrespective of the method
of annotation transfer, is that the answer spans in
the original SQuAD data are always continuous,
which is not necessarily the case in the translation
simply due to the properties of the target language.
In these cases, the translation system often cor-
rectly highlights the discontinuous regions in the
translation, however the SQuAD data file format
does not represent discontinuous answer regions,
nor do the off-the-shelf model architectures devel-
oped for SQuAD allow for generation of discon-
tinuous spans. To deal with this, and still allow the
data to be used also with standard architectures,
we include in the final data files both the original
potentially discontinuous spans (as a separate key)
and continuous spans obtained by simply spanning
from the first to the last discontinuous span. In our
dataset, only 2.6% of the answers are discontinu-
ous, many of which are translation artefacts upon
manual inspection.

3.2 Finnish SQuAD2.0

We used the method described above to ma-
chine translate the publicly available sections of
the SQuAD2.0 dataset to Finnish. The resulting
dataset preserves 90,233 question-answer pairs
from the original 92,749, i.e. 97.2% of the dataset.
This is substantially more than the majority of
SQuAD machine translations discussed in Sec-
tion 2

3.3 Finnish Extractive QA Models

We train an extractive QA model on the Finnish
SQuAD dataset using the Finnish FinBERT-base
model (Virtanen et al., 2019) and the standard ap-

4The overall translation cost of SQuAD was approxi-
mately 20C.

proach to span-detection with BERT models de-
scribed by Devlin et al. (2019) and implemented
in the Hugging Face Transformers library (Wolf
et al., 2020). Since the English SQuAD2.0 test set
is not publicly available, we fine-tune our model
using only the train set and use the validation set
for evaluation. This matches how most of the other
reported models are trained and evaluated.

Interestingly, state-of-the-art performance mod-
els for the English SQuAD dataset almost
uniquely rely on the ALBERT pre-trained model
(Lan et al., 2020), with very substantial reported
gains (Lan et al., 2020; Abadani et al., 2021)
over the standard BERT models. In order to test
whether a similar effect can be obtained also for
Finnish, we also pre-train a series of Finnish AL-
BERT models (FinALBERT) and fine-tune them
on the Finnish SQuAD dataset.

The pretraining of FinALBERT follows the
original ALBERT model, with only a few differ-
ences. Based on the results of a grid search, the
pretraining learning rate was set much higher than
what was used to train the original ALBERT mod-
els, at 5.28e-3. Additionally, the input length was
gradually increased during pretraining, following
the curriculum learning approach proposed by Na-
gatsuka et al. (2021). The training data used was
identical to that used to train the FinBERT model
and the same uncased tokenizer of FinBERT was
also used for the FinALBERT models.

In the following section, we evaluate the Fin-
SQuAD dataset, the MT method used, as well as
the performance of the trained QA models.

4 Evaluation

One of the main challenges with machine trans-
lated datasets is the absence of a large-enough,
manually annotated, representative test set. Such
a test set is in many cases difficult to create, as
it entails replicating the entire annotation task and
procedure, which is a major undertaking for tasks
with complex annotations, such as QA. Therefore,
in addition to reporting model performance on the
machine translated test set, we also carry out sev-
eral other evaluations: a backtranslation experi-
ment, a manual evaluation of the translated exam-
ples, and a comparison of our method respective
to two other machine translated SQuAD datasets,
one for Spanish and one for Finnish. These com-
parisons allow us in particular to establish the rel-
ative merits of our approach to other methods of
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Figure 1: Example of the colored answer spans from an actual SQuAD passage: the original English
passage (top), its Finnish translation (middle), and its backtranslation from Finnish into English (bot-
tom). This example is shown as-is without any manual corrections (other than adjusting colors for better
readability). Note the two overlapping answers documents obtained by WikiLeaks and WikiLeaks at the
very beginning of the passage.

SQuAD machine translation.
We use as metrics the exact match (EM), the

proportion of questions that receive the exactly
correct answer span, and token F1, the F1 score
of the precision and recall of tokens in the pre-
dicted answer span, compared to the reference an-
swer span. The latter metric is more tolerant to
minor changes at the span boundaries.

4.1 QA Model performance

In Table 1, we compare the scores of our model to
scores reported for other machine translated QA
datasets. Our Finnish QA scores are the highest
among those reported, well within the range that
is to be expected with similar datasets. Of partic-
ular interest is the very substantial gain compared
to the results Kylliäinen and Yangarber (2023) re-
ported on the previously available Finnish trans-
lation of SQuAD2.0 but otherwise using a very
comparable model. We will return to these results
when discussing the relative merits of the machine
translation methods later in Section 4.3.

For further comparison, we trained an English
model based on a comparable pre-trained lan-
guage model (BERT-base). This model reaches
EM 74.2 and F1 77.6 on the original SQuAD2.0
data. The observed drop of 6.0pp EM and 3.9pp

F1 is a combined effect of, at least, (a) noise in-
troduced during translation and (b) any possible
effect of the target language being Finnish, rather
than English.

To our disappointment, the results also indicate
that the models based on FinALBERT are not no-
tably better than the models based on FinBERT,
i.e. we were unable to replicate on Finnish the im-
provements in QA performance reported for En-
glish with the ALBERT model architecture. We
also note that the results of the Finnish models
are more closely grouped in general compared
to the SQuAD results presented by Lan et al.
(2020). Further investigation is needed to ascer-
tain whether this difference is due to the qual-
ity and amount of pre-training data used by the
Finnish models, or something else entirely.

In the remainder of the Evaluation section, we
turn our attention towards other means of evalu-
ating our FinSQuAD dataset, as well as the MT
method applied to produce it.

4.2 Evaluation through backtranslation

The relative ease, with which the annotation trans-
fer method can be applied to any language pair
supported by the machine translation service, al-
lows for a backtranslation-based evaluation. Here
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Model Language and dataset EM F1 Reported in
BERT-base Finnish SQuAD2.0 (ours) 68.2 73.7 this work
BERT-large Finnish SQuAD2.0 (ours) 70.0 76.1 this work
ALBERT-xlarge Finnish SQuAD2.0 (ours) 70.2 75.9 this work
BERT-base Finnish SQuAD2.0 [1] 55.5 61.9 [1]
BERT-base Spanish SQuAD2.0 [2] 63.4 70.2 online [3]
BERT-base Swedish SQuAD2.0 [4] 66.7 70.1 online [4]
BERT-base Indonesian SQuAD2.0 [5] 51.6 69.1 online [6]
BERT-base Persian ParSQuAD [7] 62.4 65.3 [7]
BERT-base English SQuAD2.0 74.2 77.6 this work

Table 1: Exact match (EM) and F1 scores of our models as well as scores reported for other machine
translated SQuAD datasets as well as the original English SQuAD2.0. Citation list: [1] Kylliäinen and
Yangarber (2023), [2] (Carrino et al., 2019), [3] (web source, 2021a), [4] (Okazawa, 2021), [5] (web
source, 2021b), [6] (web source, 2021c), [7] (Abadani et al., 2021)

we translate our FinSQuAD data back to English,
including the annotation transfer as if Finnish
was the original language and English the target
language. The resulting backtranslated English
SQuAD dataset therefore accumulates errors over
two rounds of translation, and can serve to esti-
mate the impact on trained models due to errors in-
curred during the translation and annotation trans-
fer.

In Table 2, we report model performance mea-
sured on the original English SQuAD2.0 test set,
comparing a model trained on the original En-
glish training data, with a model trained on the
backtranslated training data. We see a drop of
8.4pp in terms of exact match, and 5.1pp in terms
of F1. Considering that these are the result of
two cumulative translation and annotation trans-
fer rounds, we can expect the loss incurred on the
Finnish model, after one round of translation, to
be less. If the errors were to be assumed as ap-
proximately evenly distributed between the two
rounds of translation, the negative impact would
be around 4.2pp EM and 2.6pp F1. This can be
seen as a rather acceptable “price” for a dataset
obtained without any manual annotation.

EM F1
Original 74.2 77.6
Backtranslated 65.8 72.5

Table 2: Exact match (EM) and F1 scores between
the original English SQuAD2.0 dataset and eng-
fin-eng translated English dataset.

4.3 Evaluation respective to other transfer
methods

Direct comparison of the relative merits of our MT
service -based annotation transfer method to its
alternatives listed in Section 2 is challenging, as
these methods are very tedious to implement and
replicate for new languages.

Nevertheless, a direct comparison is possible
to the Finnish SQuAD2.0 dataset by Kylliäinen
(2022), which can be seen as an alternative trans-
lation of SQuAD2.0 to Finnish using a best-
effort implementation of the translate-and-align
approach. In all respects comparable QA models
obtain F1 of 73.7 on our dataset compared to F1 of
61.9 on the dataset by Kylliäinen (2022). Further,
our translation loses 2.7% of the original question-
answer pairs in the process, compared to 28.1%
lost in the other dataset. These results seem to sug-
gest that the translation method we used produces
data of superior quality compared to the translate-
and-align approach.

As a second point of comparison, we choose
the Spanish QA dataset (as it has the highest re-
ported scores after ours in Table 1, and can serve
as a very strong baseline). The annotation trans-
fer methods used to construct this dataset rely
on language-specific resources and a technically
complex pipeline, making a replication of the
transfer method on Finnish tedious at best. In-
stead, we create a Spanish translation of SQuAD
using our MT service-based method. We then
train QA models on these two Spanish datasets us-
ing the Spanish ALBERT-XXL model5, and com-

5https://huggingface.co/dccuchile/
albert-xxlarge-spanish
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pare their relative performance. The results of this
comparison are reported in Table 3. When trained
and tested on the same dataset, the result seen
earlier for the Finnish dataset repeats, here with
a 3.7pp EM and 5.5pp F1 improvement in favor
of our method of translation and annotation trans-
fer. In cross-dataset experiments, we see that train-
ing on our dataset always brings better F1 score,
irrespective of which test set we use. The EM
metric then has an opposite tendency, hinting at
the two methods producing different entity bound-
aries, which are then learned by the QA models.

Train Test EM F1
TAR TAR 66.3 73.7
our TAR 64.5 74.0
TAR our 65.2 76.1
our our 70.0 79.2

Table 3: Exact match (EM) and F1 scores between
Spanish TAR method and Spanish DeepL method.

4.4 Dataset error analysis

Finally, we conducted a manual error analysis
on a randomly selected subset of the FinSQuAD
dataset, sampling 321 answerable questions from
51 passages in 17 different articles and inspected
the resulting answer spans. We categorize the an-
swers in 6 different categories:

Correct The answer span corre-
sponded to the English
original flawlessly

Punctuation The answer corresponded to
the English original, except
for a minor difference in
punctuation

Over-
extended

The answer was longer than in
the English original

Under-
extended

The answer was shorter than
in the English original

Wrong The answer did not corre-
spond to the English orig-
inal of reasons other than
over/under-extension.

Missing The question did not have an
answer, the span failed to be
transferred

The result of the error analysis in Table 4 show
that full 87.2% of the answers are transferred fully
correctly, and only 2.2% of the answers are lost,
i.e. not transferred at all. The most common error,

accounting for nearly all errors in the dataset is
over-extension, most typically by a single token.

# %
Correct 280 87.2
Punctuation 1 0.3
Over-extended 29 9.0
Under-extended 4 1.2
Wrong 0 0.0
Missing 7 2.2
Total 321 100.0

Table 4: Error analysis results of the translated
FinSQuAD dataset.

5 Discussion and Conclusions

In this paper, we have demonstrated a practi-
cal method for annotation transfer through an
affordable, high-quality machine translation ser-
vice, relying on its ability to translate formatted
text documents. We have applied this method to
create a Finnish QA dataset with very little ef-
fort and negligible cost, resulting in a Finnish
SQuAD2.0 translation with higher coverage and
better overall model performance than what was
previously available for Finnish. As a side prod-
uct of our evaluation, we have also created an
alternate Spanish SQuAD dataset of seemingly
better quality than that previously available. We
have shown, through comparison to other machine
translated QA datasets, and more directly also
through an English-Finnish-English backtransla-
tion experiment, that the dataset is unlikely to re-
sult in substantially worse models than a (hypo-
thetical) Finnish dataset created manually. The
backtranslation experiment suggest the penalty for
MT is about 5pp in terms of EM and 2.5pp in terms
of F1.

We argue that the value of the approach is in
allowing for a substantial expansion in the avail-
ability of numerous NLP tasks in a number of
languages that currently lack the relevant native
datasets. While it is clear that a high-quality
dataset manually annotated in the target language
is the best resource for training NLP models, it
is clear that for many task-language pairs such
a dataset will not be created for many years to
come, if ever. In these cases, we argue that the
method gives a practical, viable alternative which,
thanks to its simplicity can be implemented with
ease and applied quite broadly to produce datasets
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for many tasks in many languages. The applica-
bility of the method will naturally depend on the
task, and likely to a degree the language at hand.

The method is naturally limited to the language
pairs supported by the translation service used and
may not be practical for very large datasets in the
billion word range. It also relies on the availabil-
ity of a suitable translation service with terms and
conditions not restricting such application (as is
the case at present). While such dependence is
not ideal, it is nevertheless becoming somewhat
the norm in NLP, where large, high-quality mod-
els and systems are increasingly exposed through
a service, rather than distributed openly, which is
understandable given their development and de-
ployment costs.

Our code is available under an open source li-
cense, and can be used to generate QA datasets
for other languages supported by the translation
service. The Finnish dataset is on the Hugging-
Face dataset repository as TurkuNLP/squad v2 fi,
the code is on GitHub as TurkuNLP/squad2-fi, and
the Finnish model is on the HuggingFace model
repository as TurkuNLP/bert-base-finnish-cased-
squad2.
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7 Limitations

One limitation of this work is in relying on a par-
ticular property of an existing MT system, which
also limits the applicability only to the languages
supported by it. This is alleviated by the fact that
DeepL supports 33 languages, allowing for a po-
tentially very large number of datasets to be trans-
lated in the simple manner we outline. Further,
since professional MT systems are primarily tar-
geting translators and need to support formatting
transfer to remain competitive, it is conceivable
that a suitable MT system can be found also for
other languages.

Another limitation is in relying on a closed,
commercial system, which naturally negatively
affects e.g. replicability. However, the system
only needs to be used once, when creating the
new dataset, and after that the dataset is available

openly and can be evaluated in a transparent man-
ner. The closed nature of the MT system thus does
not fully transfer onto the dataset. We note that
our use of a closed MT system is fully compara-
ble to the current wide-spread practice in which
NLP datasets are created using closed, commer-
cial LLMs such as OpenAI’s ChatGPT.
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Robert Östling and Jörg Tiedemann. 2016. Efficient
Word Alignment with Markov Chain Monte Carlo.
The Prague Bulletin of Mathematical Linguistics,
106(1):125–146.

432

http://arxiv.org/abs/1909.11942
http://arxiv.org/abs/1909.11942
http://arxiv.org/abs/1909.07005
http://arxiv.org/abs/1909.07005
https://doi.org/10.18653/v1/2023.ijcnlp-main.11
https://doi.org/10.18653/v1/2023.ijcnlp-main.11
http://arxiv.org/abs/1906.05394
http://arxiv.org/abs/1906.05394
https://aclanthology.org/2021.ranlp-1.112
https://aclanthology.org/2021.ranlp-1.112
https://aclanthology.org/2021.ranlp-1.112
https://github.com/susumu2357/SQuAD_v2_sv
https://github.com/susumu2357/SQuAD_v2_sv
http://arxiv.org/abs/1806.03822
http://arxiv.org/abs/1806.03822
http://arxiv.org/abs/1606.05250
http://arxiv.org/abs/1606.05250
https://doi.org/10.1093/jamia/ocae159
https://doi.org/10.1093/jamia/ocae159
https://doi.org/10.1093/jamia/ocae159
https://aclanthology.org/2023.nodalida-1.22
https://aclanthology.org/2023.nodalida-1.22
https://aclanthology.org/2023.nodalida-1.22
https://huggingface.co/MMG/bert-base-spanish-wwm-cased-finetuned-sqac-finetuned-squad2-es
https://huggingface.co/MMG/bert-base-spanish-wwm-cased-finetuned-sqac-finetuned-squad2-es
https://huggingface.co/MMG/bert-base-spanish-wwm-cased-finetuned-sqac-finetuned-squad2-es
https://huggingface.co/Rifky/Indobert-QA
https://huggingface.co/Rifky/Indobert-QA
https://github.com/Wikidepia/indonesian_datasets/tree/master/question-answering/squad
https://github.com/Wikidepia/indonesian_datasets/tree/master/question-answering/squad
https://github.com/Wikidepia/indonesian_datasets/tree/master/question-answering/squad
https://github.com/Wikidepia/indonesian_datasets/tree/master/question-answering/squad
http://arxiv.org/abs/1912.07076
http://arxiv.org/abs/1912.07076
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.1515/pralin-2016-0013
https://doi.org/10.1515/pralin-2016-0013


Proceedings of the Joint 25th Nordic Conference on Computational Linguistics and 11th Baltic Conference on Human Language Technologies
(NoDaLiDa/Baltic-HLT 2025), pages 433–439

March 3-4, 2025 ©2025 University of Tartu Library

How to Tune a Multilingual Encoder Model for Germanic Languages:
A Study of PEFT, Full Fine-Tuning, and Language Adapters

Romina Oji and Jenny Kunz
Dept. of Computer and Information Science

Linköping University
romina.oji@liu.se and jenny.kunz@liu.se

Abstract

This paper investigates the optimal use
of the multilingual encoder model mDe-
BERTa for tasks in three Germanic lan-
guages – German, Swedish, and Icelandic
– representing varying levels of presence
and likely data quality in mDeBERTas
pre-training data. We compare full fine-
tuning with the parameter-efficient fine-
tuning (PEFT) methods LoRA and Pfeif-
fer bottleneck adapters, finding that PEFT
is more effective for the higher-resource
language, German. However, results for
Swedish and Icelandic are less consistent.
We also observe differences between tasks:
While PEFT tends to work better for ques-
tion answering, full fine-tuning is prefer-
able for named entity recognition. In-
spired by previous research on modular ap-
proaches that combine task and language
adapters, we evaluate the impact of adding
PEFT modules trained on unstructured text,
finding that this approach is not beneficial.

1 Introduction

Massively multilingual encoder models like
mBERT (Devlin et al., 2019), XLM-R (Conneau
et al., 2020) and mDeBERTa (He et al., 2021b) are
a workhorse for NLP in many lower-resource lan-
guages. However, due to interference between lan-
guages (Conneau et al., 2020; Chang et al., 2023),
these models can fall short of reaching their full
potential for individual target languages: Monolin-
gual models (Virtanen et al., 2019; Snæbjarnarson
et al., 2022) and models with dedicated language
modules (Pfeiffer et al., 2022; Blevins et al., 2024)
frequently outperform them, raising the question
for the best setups for different languages.

Parameter-efficient fine-tuning (PEFT) methods,
such as bottleneck adapters (Houlsby et al., 2019),

LoRA (Hu et al., 2022), and prefix tuning (Li and
Liang, 2021), have emerged as an alternative to full
fine-tuning of pre-trained language models. These
methods preserve the model’s representations and
can lead to better generalisation (He et al., 2021c).
This is especially relevant for multilingual mod-
els, trained on diverse data, of which the target
language only constitutes a small fraction. Fully
fine-tuning them on task-specific data risks over-
writing some of the multilingual capabilities.

Language adapters – PEFT modules trained on
unstructured text independently from task fine-
tuning – have shown promise in cross-lingual trans-
fer (Pfeiffer et al., 2020; Vidoni et al., 2020). We
explore whether language adaptation modules are
beneficial even in scenarios where cross-lingual
transfer is not required, i.e., where we have in-
language fine-tuning data. In addition, we use not
only bottleneck (Pfeiffer) adapters but also LoRA
(Hu et al., 2022), a method that has become popular
for LLMs as its parameters can be merged with the
model parameters, adding no inference overhead.

In this paper, we investigate strategies for adapt-
ing a multilingual encoder model to task data
in three languages: German, Swedish, and Ice-
landic. For this, we use multilingual DeBERTa
(He et al., 2021b), which is currently the best-
performing model according to the ScandEval
(Nielsen et al., 2024) leaderboard for Icelandic,1

the lowest-resourced and thus the most challenging
of the three languages.

Our findings indicate that the effectiveness of
full fine-tuning versus PEFT varies by language.
For German, a PEFT method consistently delivers
the best results, although sometimes with marginal
gains. For Swedish and Icelandic, the performance
is task-dependent: PEFT is more beneficial for ex-
tractive question-answering (QA), while full fine-
tuning works better for named entity recognition

1https://scandeval.com/icelandic-nlu/, as of 21/10/2024.
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(NER). We hypothesise that in languages with
quantitatively more limited or lower-quality rep-
resentation in the pre-training data, there is less
value in preserving the pre-existing representations
and more value in increasing the learning capacity.
In contrast, for higher-resource languages, capabil-
ities from the pre-training phase are more impact-
ful. Similarly, for extractive QA, pre-existing skills
weigh higher, while the highly specific nature of
NER benefits from full fine-tuning.

Language adapters do not provide consistent im-
provements in any of the tasks or languages tested.
As the adaptation data we use has likely been used
for pre-training the multilingual DeBERTa model,
we conclude that the utilisation of this data at pre-
training time has already been effective enough.
Further adaptation, or specialisation, with this same
data does not have a clear benefit.

2 Related Work

PEFT methods not only reduce the number of train-
able parameters and, consequently, memory us-
age in comparison to full fine-tuning, but there
is also evidence suggesting that they provide bet-
ter regularisation and help preserve pre-existing
model capabilities. For example, He et al. (2021c)
demonstrate that adapter-based fine-tuning outper-
forms full fine-tuning in cross-lingual transfer se-
tups, likely by avoiding overfitting on the source
language. Similarly, prefix tuning, another PEFT
method, has been shown to surpass full fine-tuning
in extrapolation scenarios (Li and Liang, 2021).

Other works have shown the effectiveness of
bottleneck-style adapters in cross-lingual transfer
as post-hoc trained language modules in encoder
models. Pfeiffer et al. (2020) show that bottle-
neck language adapters in the Pfeiffer architecture
improve performance in NER, commonsense clas-
sification, and extractive QA. Even Vidoni et al.
(2020) report that language adapters are effective.
Other research indicates that language adapters can
aid in transferring knowledge to dialectal variants
(Vamvas et al., 2024) and that sharing adapters
across related languages can be beneficial (Faisal
and Anastasopoulos, 2022; Chronopoulou et al.,
2023). However, the success of language adapters
may be task-specific and difficult to measure ac-
curately when using machine-translated evaluation
data (Kunz and Holmström, 2024). And notably,
none of the works used multilingual DeBERTa
models, which may explain divergences in results.

3 Experimental Setup

3.1 Model

We use the multilingual DeBERTa v3 model2 as
the base for our experiments. This model contains
about 86 million parameters in its backbone, and
the embedding layer, with a vocabulary of 250,000
tokens, adds another 190 million parameters, bring-
ing the total to around 278 million parameters(He
et al., 2021a). It was trained on 2.5 TB of the
CC100 multilingual dataset (Wenzek et al., 2020;
Conneau et al., 2020), which includes 100 lan-
guages, including Icelandic, Swedish, and German.

3.2 Tasks

We evaluate the fine-tuning and language adapta-
tion methods on three tasks: extractive question
answering (QA), named entity recognition (NER),
and linguistic acceptability classification. This se-
lection is inspired by coverage in the ScandEval
benchmark (Nielsen et al., 2024) for all three lan-
guages while having structurally different tasks.

QA: For Icelandic, we use the Natural Ques-
tions in Icelandic (NQiI) dataset, which features
questions from Icelandic texts written by Icelandic
speakers.(Snæbjarnarson and Einarsson, 2022). For
Swedish, we use the Swedish portion of Scan-
diQA, which was manually translated from English
(Nielsen, 2023). For German, we use the human-
labeled GermanQuAD dataset, which is natively
German. (Möller et al., 2021).

NER: For Icelandic, we use the MIM-GOLD-
NER dataset (Ingólfsdóttir et al., 2020), for
Swedish, we use the Stockholm-Umeå Corpus
(Kurtz and Öhman, 2022) and for German, we use
GermanEval 2014 (Benikova et al., 2014).

Linguistic Acceptability: For all three lan-
guages, we use the respective portion of ScaLA
(Nielsen, 2023), a binary classification dataset that
judges the linguistic acceptability of sentences.
Sentences are tagged as either grammatically cor-
rect or incorrect. This dataset is synthetically cre-
ated by introducing corruptions based on the de-
pendency trees of the sentences.

3.3 PEFT Methods

We use two different PEFT methods. Pfeiffer
adapters (Pfeiffer et al., 2021, 2020) are a vari-

2loaded from https://huggingface.co/
microsoft/mdeberta-v3-base
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ation of bottleneck adapters (Houlsby et al., 2019),
that is, small feed-forward layers that reduce the
dimensionality of the input, process it, and then
expand it back to the original size. They are in-
serted between the layers of the transformer model,
and are the only parameters that are trained. LoRA
(Hu et al., 2022) approximates the original weight
updates as a low-rank decomposition by learning
two low-rank matrices. Instead of updating the full
set of model parameters, LoRA inserts trainable
low-rank matrices into the self-attention of each
layer of the model and updates only those.

3.4 PEFT Training

In the first step, we fine-tune individual lan-
guage adapters for Icelandic, Swedish, and Ger-
man, using the masked language modeling objec-
tive. We use 250,000 samples from the CC100
dataset and train a LoRA and a Pfeiffer language
adapter for each language. Our language adapters
are available at https://huggingface.co/
rominaoji.

Task adapters are fine-tuned on target-language
task data with the datasets described in Section 3.2.

For all adapters, we set the LoRA rank to 8 and
the α to 16, while for the Pfeiffer method, the re-
duction factor is set to 16. For the implementation,
we use the adapters library (Poth et al., 2023).

3.5 Setups

To find the optimal method to use mDeBERTa for
the three languages, we fine-tune it using three
setups: (1) Full fine-tuning, (2) tuning using only
task adapters, and (3) using a combination of
language and task adapters as in the MAD-X
framework. In each setup, models are fine-tuned
over five epochs.

As PEFT models require higher learning rates
than full fine-tuning due to their lower number of
trainable parameters, we determine a suitable rate
for each setup by testing learning rates from 1-e4
to 9e-4 for PEFT and from 1e-5 to 9e-5 for full
fine-tuning. This resulted in a learning rate of 3e-4
for both the language and task adaptation meth-
ods and 2e-5 for full fine-tuning. All experiments
use a linear scheduler paired with the AdamW
optimiser(Loshchilov, 2017). The code is avail-
able at https://github.com/rominaoji/
german-language-adapter.

3.6 Evaluation

For the sake of simplicity, we only present F1
scores as the evaluation metric for all three tasks
in this paper. While we have collected results on
more metrics, we did not observe differences in
the trends. The results are the mean of a five-fold
cross-validation, with standard deviation.

4 Results and Discussion

All results are presented in Table 1. We discuss
the effects of different task fine-tuning strategies
on different languages and tasks (§4.1) and finally
the effect of language adapters (§4.2).

4.1 Full Fine-Tuning Versus PEFT

Tasks: For the extractive QA tasks, we observe
that PEFT methods generally outperform full fine-
tuning. In German, there is a notable gap be-
tween full fine-tuning and both PEFT methods,
with LoRA yielding the best results. For Icelandic,
Pfeiffer adapters outperform both full fine-tuning
and LoRA. For Swedish, the differences between
setups are minimal. We hypothesise that for this
task, the model benefits from the pre-trained repre-
sentations and does not require the highest possible
learning capacity to identify relevant text spans in
these tasks.

In contrast, full fine-tuning is the best ap-
proach for NER tasks, outperforming the highest-
performing PEFT method in Icelandic and Swedish,
and performing on par with Pfeiffer adapters in Ger-
man. This suggests that for this word-level task, a
larger learning capacity is more crucial than pre-
serving fine-grained capabilities from pre-training.

For ScaLA, the results are mixed. Full fine-
tuning yields slightly higher scores for Icelandic,
while Pfeiffer adapters perform marginally better
for Swedish and German. Interpreting the perfor-
mance on this task is challenging, as the dataset
contains some corrupted instances that may be de-
tectable with simple pattern-matching, while others
require more fine-grained linguistic knowledge.

Languages: For German, Pfeiffer adapters con-
sistently outperform full fine-tuning in QA and
ScaLA tasks, and are either on par or slightly better
for NER. LoRA performs best for QA but yields
lower scores in the other two tasks. This suggests
that German benefits from keeping the base model
intact, likely due to its relatively large representa-
tion in the pre-training dataset.
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QA NER ScaLA

TA LA Icelandic Swedish German Icelandic Swedish German Icelandic Swedish German

Full FT - 57.52 ± 1.50 35.08 ± 0.77 73.56 ± 0.78 92.35 ± 0.31 87.47 ± 0.41 84.83 ± 0.33 76.17 ± 1.32 84.23 ± 1.07 83.90 ± 0.82

Pfeiffer - 59.31 ± 1.14 35.15 ± 1.00 75.84 ± 0.92 91.37 ± 0.23 86.64 ± 0.51 85.14 ± 0.22 76.35 ± 0.56 84.94 ± 1.04 84.53 ± 0.64
LoRA - 57.65 ± 2.11 34.76 ± 0.82 77.17 ± 0.74 89.69 ± 0.49 85.16 ± 0.32 84.12 ± 0.31 70.64 ± 2.78 82.32 ± 1.80 78.75 ± 2.34

Pfeiffer Pfeiffer 60.02 ± 1.46 35.07 ± 0.78 76.66 ± 0.55 91.41 ± 0.23 86.72 ± 0.28 84.77 ± 0.38 75.38 ± 1.21 84.68 ± 0.76 84.02 ± 0.64
LoRA Pfeiffer 57.44 ± 1.61 34.77 ± 0.60 77.13 ± 0.28 89.95 ± 0.50 85.11 ± 0.30 84.05 ± 0.35 71.31 ± 2.30 82.58 ± 2.01 78.85 ± 2.28
Pfeiffer LoRA 59.24 ± 0.60 34.97 ± 0.82 76.31 ± 0.63 91.49 ± 0.29 86.50 ± 0.60 85.08 ± 0.22 75.06 ± 1.41 84.98 ± 1.23 83.86 ± 0.30
LoRA LoRA 57.05 ± 1.74 34.40 ± 0.40 77.02 ± 0.35 89.64 ± 0.43 85.11 ± 0.30 84.08 ± 0.20 71.01 ± 3.00 82.97 ± 1.78 78.94 ± 2.37

Table 1: Mean F1 scores over five runs with standard deviation for all tasks and languages. The first
column specifies the task adaptation method (TA), and the second one the language adaptation method
(LA). The respectively highest score is highlighted in bold blue italics, the runner-up in bold black.

For Swedish, the performance of full fine-tuning
and Pfeiffer adapters is similar across all three
tasks, showing little variation.

For Icelandic, Pfeiffer adapters achieve higher
scores in QA, while full fine-tuning performs bet-
ter for NER. For ScaLA, both approaches produce
comparable results. Icelandic’s low representation
in the CC-100 dataset used to train mDeBERTa
might explain why it benefits less from the model’s
pre-training than German. While Swedish even has
a slightly larger quantitative representation than
German in open CC100 dumps,3 it is unclear if
the quality of the Swedish data matches that of the
German data. For lesser-resourced languages, the
quality of common-crawl corpora is often lower
(Kreutzer et al., 2022; Artetxe et al., 2022), which
may diminish the usefulness of pre-training for
Swedish compared to German. Swedish has 13M
speakers (10M L1),4 whereas German has 175M
speakers (95M L1),5 which probably makes Ger-
man higher-resource than Swedish, and may lead
to higher-quality representation of German.

PEFT Methods: Except for German QA, Pfeif-
fer adapters outperform LoRA across all tasks.
This may be due to architectural differences,
though it is worth noting that Pfeiffer adapters in
our setup have a higher learning capacity, with
896K trainable parameters compared to LoRA’s
296K. Additionally, LoRA may require more exten-
sive hyperparameter tuning than Pfeiffer adapters,
as previous studies have shown its behavior to be
unstable under certain conditions (Liu et al., 2024).
A deeper exploration of how to improve LoRA’s
adaptation is left for future work.

3See e.g. https://huggingface.co/datasets/
statmt/cc100 as of 23/10/2024.

4https://en.wikipedia.org/wiki/
Swedish_language as of 23/10/2024.

5https://en.wikipedia.org/wiki/German_
language as of 23/10/2024.

4.2 Language Adaptation
Language adapters do not provide any significant
benefits. When using Pfeiffer task adapters, perfor-
mance remains similar whether language adapters
are included or not. The only exception is Ice-
landic QA, where the combination of a Pfeiffer lan-
guage adapter and a Pfeiffer task adapter achieves
a slightly higher score compared to the best setup
without language adapters. However, the difference
is small and possibly due to result variability, as it
falls within a standard deviation.

With LoRA task adapters, language adaptation
methods sometimes result in a noticeable per-
formance drop, suggesting potential interference.
While prior work, such as Pfeiffer et al. (2020),
reported improvements in similar tasks, their study
focused on cross-lingual transfer, where no task
data from the target language was available. In
contrast, our setups use task data from the tar-
get language, and all the languages are present
in the model’s pre-training data. In addition, we
use mDeBERTa-v3, which reportedly performs bet-
ter for the languages in question than the XLM-R
(Conneau et al., 2020) and multilingual BERT (De-
vlin et al., 2019) models that most other papers
including Pfeiffer et al. (2020) use. These factors
likely contribute to the fact that language adapters
are unnecessary in our setup.

5 Conclusion

We compared the performance of the multilingual
encoder model mDeBERTa across three task adap-
tation setups: full fine-tuning, bottleneck (Pfeif-
fer) adapters, and LoRA. Based on our evaluations
across three tasks and three languages, we found
that the choice of the best method is both task-
and language-dependent. Specifically, extractive
QA tasks benefit from PEFT methods, while NER
gets better results with full fine-tuning. For Ger-
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man, a higher-resourced language, PEFT consis-
tently achieves higher scores. This suggests that
the model benefits from fine-grained information
learned during pre-training if coverage and (or)
quality of the language data in the pre-training cor-
pus are sufficiently high. In contrast, for lower-
resourced languages, the increased learning capac-
ity of full fine-tuning proves more advantageous.

We also tested language adaptation with Pfeiffer
adapters and LoRA on unstructured text data before
task adaptation. However, language adapters did
not show any benefit. Access to target-language
task data appears to dispense with the need for
them, at least in our experiments where all lan-
guages are included in the pre-training data.

In future work, we aim to further explore the
conditions under which PEFT methods versus full
fine-tuning are most effective. We plan to investi-
gate additional PEFT methods and tasks and opti-
mise the LoRA setup, which may not have reached
its full potential in our experiments.
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Abstract

We introduce “Match ‘em”: a new frame-
work for aligning output from automatic
speech recognition (ASR) with reference
transcriptions. This allows a more de-
tailed analysis of errors produced by end-
to-end ASR systems compared to word er-
ror rate (WER). Match ‘em performs the
alignment on both the word and charac-
ter level; each relying on information from
the other to provide the most meaning-
ful global alignment. At the character
level, we define a speech production mo-
tivated character similarity metric. At the
word level, we rely on character similar-
ities to define word similarity and, addi-
tionally, we reconcile compounding (in-
sertion or deletion of spaces). We evalu-
ated Match ‘em on transcripts of three Eu-
ropean languages produced by wav2vec2
and Whisper. We show that Match ‘em
results in more similar word substitution
pairs and that compound reconciling can
capture a broad range of spacing errors.
We believe Match ‘em to be a valuable tool
for ASR error analysis across many lan-
guages.

1 Introduction

Metrics like word error rate (WER) provide a sim-
ple, automated way of understanding how well an
automatic speech recognition (ASR) system is per-
forming. However, this simplicity fails to capture
the nuance regarding the severity of transcription
errors, both in terms of spellings and semantics.
Efforts have been made to improve WER. These
include adding new metrics around information
lost by mistranscriptions (Morris et al., 2004) and
weighting kewyords more heavily in WER (Nanjo
and Kawahara, 2005). Attempts to optimize the

alignment between transcriptions have utilized ar-
ticulatory features (Cucchiarini, 1996) as well as
semantic distances (Roy, 2021). Additionally, new
metrics such as SemDist (Kim et al., 2021) and
Aligned Semantic Distance (Rugayan et al., 2022)
have been developed to utilize the embedding vec-
tor space, instead of aligning the words them-
selves, to calculate the severity of errors. How-
ever, as all these metrics only aim to summarize
the quality or utility of an ASR output, they do not
provide details on the types or severity of com-
monly made errors.

Understanding the types of errors that ASR sys-
tems make has been of interest for many years.
The goals are both understanding how wrong a
transcription really is, as well as identifying spe-
cific areas for improvement. In Goldwater et al.
(2010), the authors create individual word er-
ror rate to determine which words are frequently
missed and which factors account for misrecog-
nitions. In Vasilescu et al. (2012), the authors
compare the ability of humans and automatic tran-
scriptions to disambiguate homophonic or near-
homophonic words that are frequently missed by
ASR. Words that are frequently missed in conver-
sational speech for Dutch, English, and German
are analyzed in Lopez et al. (2022). The authors in
Wirth and Peinl (2022); Salimbajevs and Strigins
(2015) manually classify ASR errors for both their
severity and type to understand how ASR is per-
forming on German and Latvian speech, respec-
tively.

Despite the benefits of metrics and error anal-
ysis, there are several factors that can be limit-
ing to these tools. For semantic metrics, knowl-
edge of the language (semantic embeddings, word
importance) is crucial. However, access to such
resources is not readily available for certain lan-
guages. Similarly, analysis of ASR errors is of-
ten reliant on manual efforts to label the errors
made, thus limited by the amount of human hours
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Figure 1: Left: interaction between word and character level in Match’em. Right: An example alignment
showing the multi-tiered (word and character) approach as well as compounding.

available to contribute to the task. Lastly, many
existing metric and evaluation paradigms are de-
signed with the assumption that words operate as
atomic units — an assumption challenged by end-
to-end ASR systems where output is generated at
the character or sub-word level.

In this paper, we propose a new framework, that
we call Match ‘em, for aligning ASR generated
and reference text that operates both at the word
and character level. The goal is to provide a bet-
ter match between words and characters thus al-
lowing for a detailed analysis of the common mis-
takes produced by ASR systems. Additionally,
this method opens the possibility to use founda-
tion ASR models trained on massive amounts of
data to study phenomena related to variability in
speech production by analyzing the ASR errors
in detail; such phenomena include dialectal varia-
tion or pronunciation variation in second language
learners or in speakers with speech sound disorder.

The contributions of the paper can be summa-
rized as:

• We introduce a new framework for ASR out-
put and reference alignment that operates on
the word and character level. Each level in-
fluences the other level with the goal of ob-
taining an optimal global alignment.

• We introduce a character dissimilarity met-
ric based on speech production to guide the
within-word character alignments.

• At the word level, we define a word dissimi-
larity metric that inherits similarities from the
character level. We also implement an algo-
rithm for reconciling compounding (insertion
or deletion of spaces)

• We evaluate the method on transcripts of
three European languages obtained by two

state-of-the-art ASR models (wave2vec2,
and Whisper), showing that Match ‘em pro-
duces more meaningful alignments both in
terms of word similarities and character sim-
ilarities.

• We make all the code available.

2 The Match ‘em framework

The standard Levenshtein alignment considers
three edit operations (insertion, deletion, and sub-
stitution) when transforming the hypothesis text
into the reference text (Levenshtein, 1965). The
edit costs (that is, the penalty for any of the three
edits) are also fixed before alignment occurs. This
method is traditionally used to separately compute
either word error rate (WER) at the word level or
character error rate (CER) at the character level.
The Match ‘em framework we propose operates
both at the word and the character level simultane-
ously. The alignment at each level is influenced by
information coming from the other, as illustrated
by Figure 1. In the figure, we can see that words
that are spelled similarly are aligned, the charac-
ters within the words are aligned, and the breaking
up of a compound word is accounted for. Details
on how each of these components was achieved
follows in the subsections below.

2.1 Character- and Word-Level Metrics

The first step in defining the Match ‘em algorithm
is to define metrics both at the character and word
level. At the character level, we introduce a dis-
similarity metric based on speech production, sim-
ilar to the method in (Cucchiarini, 1996). We de-
fine a set of vectors of articulatory features for
each letter in the target language’s alphabet. To
accommodate the different parameters by which
vowels and consonants are defined, separate vec-
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Vowels

value height front/back rounding

0 high back false
1 mid mid true
2 low front

Consonants

value voice class nasal place lip rounding

0 false stop false bilabial false
1 true affricate true labio-dental true
2 trill avleolar
3 fricative retroflex
4 approximate palatal
5 velar
6 uvular
7 glottal

Table 1: Articulatory features used to define the character-level metric for vowels (left) and consonants
(right). For example, the vector [0, 2, 1] would be interpreted to mean a high, front, rounded vowel /y/,
whereas the vector [1, 0, 1, 2, 0] would represent a voiced, nasal, alveolar stop /n/. The currently defined
vector system does not account for every word sound and would need to be adjusted or expanded as new
languages were used.

tor definitions are used for each class. Examples
of the vector spaces are provided in Table 1. Each
character is then assigned to one or more vectors
depending on its typical pronunciation(s). Doing
this, the method account for characters that might
be commonly realized as two distinct phones (e.g.,
the Norwegian ”r” is a dialect marker and can be
realized as either an alveolar tap or uvular trill
(Kvale and Foldvik, 1992)).

The distance (dissimilarity) between two char-
acters (either vowel-to-vowel or consonant-to-
consonant) is computed as the normalized Eu-
clidean distance between the corresponding vec-
tors. Comparing vowels and consonants in this
articulatory space is not meaningful. Instead,
the cost is set at 1.0 for most vowel-consonant
substitutions, the same cost as a substitution of
two completely different characters. With vowel-
approximants, the cost is lowered to 0.9 to allow
for the gestural and perceptual similarities. This
value was chosen through experimentation and vi-
sual inspection of the resulting alignments. The
cost is also set at 1.0 for any character-punctuation
substitution. If multiple definitions character vec-
tors are provided (e.g. in accounting for two real-
izations of ”r”), the vector with the lowest result-
ing dissimilarity is used.

As these vectors’ purpose is merely to support a
character distance score, not to offer linguist truth,
there are known simplifications and omissions in
the vector definitions. As an example, di- or tri-
graphs are not captured in the letter vectors.

In practice, we find that defining these char-
acter vectors to be straight-forward for languages

Standard Match ‘em
cats run very quickly costs costs

cat runs quick 4 3.286
cat runs quick 4 2.555
cat runs quick 4 1.869
cat runs quick 4 2.583

Table 2: Potential alignments for the two phrases
cats run very quickly and cat runs quick. The cu-
mulative costs for each alignment is given for the
standard and Match ‘em approaches.

with available orthographic to phonetic mappings.
Even for languages which the authors were unfa-
miliar, vector definition was quick.

At the word level, the dissimilarity between
two words is computed by performing an align-
ment between the within-word characters of the
two words in question (see Figure 1 (right) for
an example). This alignment is guided either by
the character dissimilarity defined previously, or
by the simpler, character-naı̈ve CER. This dissim-
ilarity is then used as the substitution cost when
aligning words. Insertion and deletion costs at the
word level are left at 1.0.

2.2 Multi-tier Alignment

The Match ‘em alignment makes use of the dis-
similarity metrics defined in Section 2.1 to per-
form multi-tier alignment at the word and charac-
ter level. Both levels use dynamic programming
similarly to the Levenshtein method. However, at
the word level, character-based word dissimilar-
ity is used as cost for substitutions. Similarly, at
the character level articulatory character dissimi-
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edit costs
cats run very quickly

0 1← 1← 1← 1←
cat 1 ↑ 1↖ 1↖← 1↖← 1↖←
runs 1 ↑ 1↖ ↑ 1↖ 1↖← 1↖←
quick 1 ↑ 1↖ ↑ 1↖ ↑ 1↖ 1↖←

cumulative costs
cats run very quickly

0 1← 2← 3← 4←
cat 1 ↑ 1↖ 2↖← 3↖← 4↖←
runs 2 ↑ 2↖ ↑ 2↖ 3↖← 4↖←
quick 3 ↑ 3↖ ↑ 3↖ ↑ 3↖ 4↖←

Table 3: Standard approach: step-by-step edit costs (left) and cumulative costs (right) for aligning the
two phrases cats run very quickly and cat runs quick using the standard approach. Backtrace arrows
indicate from which cell the cost is computed.

edit costs
cats run very quickly

0 1← 1← 1← 1←
cat 1 ↑ 1/4↖ 1← 1← 1←
runs 1 ↑ 1 ↑ 1/3↖ 1← 1←
quick 1 ↑ 1 ↑ 1 ↑ 1↖ 2/7↖

cumulative costs
cats run very quickly

0 1← 2← 3← 4←
cat 1 ↑ 0.25↖ 1.25← 2.25← 3.25←
runs 2 ↑ 1.25 ↑ 0.583↖ 1.583← 2.583←
quick 3 ↑ 2.25 ↑ 1.583 ↑ 1.583↖ 1.869↖

Table 4: Match ‘em approach: step-by-step edit costs (left) and cumulative costs (right) for aligning the
two phrases cats run very quickly and cat runs quick using the Match ‘em approach. Backtrace arrows
indicate from which cell the cost is computed.

larities are used to align characters within words.
As a demonstration of the benefit of Match ‘em,

let us consider the examples provided in Table 2.
Here we have four different potential alignments
between the reference text cats run very quickly
and the hypothesis text cat runs quick. All words
between the reference text and the hypothesis are
different (“cats” and “cat” are, for example, made
different by the addition of the “s”). This means
that with the similarity naı̈ve standard approach
used in WER with edit costs fixed at 1.0, any and
all alignments are equally valid and the resulting
alignment will be chosen at random. The local
edit costs and the cumulative costs for the standard
alignment can be found in Table 3.

Unlike with the standard alignment, Match ‘em
discounts the costs of substituting similar words.
Thus, although “cats” and “cat” are different
words the cost for substituting them is only 1/4
(the CER between them). Thus, as shown in
Table 4 (left), the costs for substitutions of the
words “cats”, “run”, and “quickly” are less than
one and when incorporated into the full costs (Ta-
ble 4 (right)) an obvious best path is presented:
one which results in the third alignment in Table 2.

2.3 Compounding

After the preliminary word-level alignment de-
scribed in Section 2.2, Match ‘em accounts for
errors around compound words or, equivalently,
it accounts for errors created by adding or delet-

ing one or more space characters. With the stan-
dard Levenshtein alignment, the breaking up or
creation of a compound word inflicts two edits: a
deletion or insertion, as well as a substitution. For
example, in Figure 1 (right), there would be a sub-
stitution between the words “cannot” (reference)
and “can” (ASR) as well as an insertion of the
word “not” (ASR). However, the difference really
is the insertion or deletion of a space (a character).
As exemplified by the figure, Match ‘em allows
to classify this as a single word substitution at the
word level, and as a single character insertion (the
space) at the character level. It accomplishes this
by iteratively checking the neighbouring words to
every edit (substitutions, insertions or deletions).
For every iteration, the neighbouring word is at-
tached to the current word if the operation results
in a lower character level cost. In the example,
“not” is attached to “can” because this results in a
reduction of word dissimilarity from 3 (“cannot”
vs “can”) to 1 (“cannot” vs “can not”). This pro-
cess is repeated as long as the cost decreases, al-
lowing for compounds of several words.

3 Experiments

To evaluate the impact of this new alignment
method, audio in three different European lan-
guages was transcribed using two state-of-the-art
ASR model architectures. The three languages
(Norwegian, Italian, and English) were chosen
for a variety of reasons. Firstly, Match ‘em re-
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quires languages with alphabets for which charac-
ter articulatory vectors can be defined—thus ex-
cluding languages that use syllabaries or logogra-
phies, such as Japanese or Chinese, respectively.
Also, these three languages cover multiple lan-
guage families (Germanic and Romance), ortho-
graphic depths (Norwegian and Italian spellings
being largely phonetically written as opposed to
English being irregular (Seymour et al., 2003)),
and dialectal variations (both Norwegian and Ital-
ian contain a large amount of dialectal variation
compared to English (Kinder and Savini, 2004;
Skjekkeland, 1997)). Additionally, Norwegian
Bokmål allows for multiple legal spellings of
words (e.g., vet and veit both being legal spelling
for the present tense of å vite (“to know”). Lastly,
Norwegian utilizes compounding of words (again
with common, but perhaps less legal, variations
to spellings) to a higher degree than English or
Italian, which gives us an opportunity to test how
Match ‘em performs on this aspect.

3.1 Datasets
For both Italian and English data, we used the
VoxPopuli corpus (Wang et al., 2021), which con-
sists of recordings from the European Parliament.
As parliamentary recordings, the speech style is
largely spontaneous with a good distribution of
speakers. In the Italian corpus, we removed a
number of utterances where there was a signifi-
cant mis-alignment between the audio and human-
generated transcriptions.

As Norway is not part of the European Parli-
ment, the NB Tale dataset (National Library of
Norway, 2015) was used instead of VoxPopuli.
NB Tale is publicly available through the Norwe-
gian National Library’s Language Bank and con-
tains a good variety of speakers. In our experi-
ments, we only used the subsection of NB Tale
consisting of spontaneous speech recordings pro-
duced by native speakers, to better align with the
speech style for Italian and English. All of the
speech in NB Tale is human-transcribed using the
Bokmål written standard.

3.2 Models
To generate transcriptions for our alignment anal-
ysis, we employed two end-to-end model archi-
tectures, wav2vec 2.0 (Baevski et al., 2020) and
Whisper (Radford et al., 2022). The transcriptions
are either generated as characters for wav2vec 2.0,
or as byte pair encodings (effectively word-level
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Figure 2: Percentage of word substitutions as a
function of word dissimilarity in number of char-
acters. Results are accrued over both wav2vec 2.0
and Whisper model outputs.

and character-level output (Radford et al., 2019))
for Whisper. These flexible outputs allow for po-
tentially novel spellings and therefore constitute
a good test bed for Match ‘em. Finally, both
wav2vec 2.0 and Whisper have reported impres-
sive accuracies, making them ideal candidates to
generate reasonable transcriptions to evaluate.

For the wav2vec 2.0 architecture, we used dif-
ferent models depending on the language. For
Italian and English, we used the VoxPopuli mul-
tilingual model (Wang et al., 2021) without a lan-
guage model (LM). This model contains approxi-
mately 300 million parameters. However, the Vox-
Poluli model does not contain Norwegian. Thus,
for Norwegian, we used the 300 million param-
eter wav2vec 2.0 model created by the Norwe-
gian National Library AI Lab (De La Rosa et al.,
2023) run with a LM. For the Whisper archi-
tecture, we used the same multi-lingual model
(large-v2) for all languages. This model, unlike
the wav2vec 2.0 counterparts, was trained to per-
form multiple tasks, including ASR in English and
other languages, any-to-English translation, and
non-speech detection. The Whisper model con-
tains 1550 million parameters and was trained on
680,000 hours of loosely-supervised Internet au-
dio (117,000 of those hours being in languages
other than English). This model was run with a
LM.
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3.3 Implementation

We implemented the Match ‘em framework as a
Python package1. This implementation has been
designed with a high degree of flexibility, allow-
ing many features to be specified as runtime pa-
rameters. These include selecting which align-
ment to use (Levenshtein vs Match ‘em), whether
compounding should be reconciled, and what kind
of character dissimilarity to use (binary or vector
based). The articulatory vectors, described in Sec-
tion 2.1, are included in the Match ‘em repository.
The vectors are defined in JSON format and can
be easily expanded or edited for other letter-based
orthographies.

4 Results

4.1 Word substitution similarity

Figure 2 considers word substitution pairs (ex-
cluding word insertion or deletion) from both the
wav2vec 2.0 and Whisper text. In order to as-
sess the quality of the alignment, we evaluate
how many characters are different between the
words in a substitution pair. In the figure, we
can see that Match ‘em increases the frequency
of word-pairs with a small orthographic distance.
For example, consider all the pairs with only one
character difference. For Match ‘em these ac-
count for 37.4% (Norwegian), 48.74% (Italian),
and 36.64% (English) of all the substitution errors.
These percentages are approximately ten percent-
age points higher than the corresponding values
for the standard alignment (Norwegian: 27.39%,
Italian: 36.07%, English: 26.31%).

As Match ‘em better aligns similar words, we
can use it to analyze the types of character errors
occurring within words. This is fundamentally dif-
ferent than analyzing character errors from stan-
dard CER alignment because it allows us to focus
on errors in specific parts of the words that carry
specific meaning. CER, as is typically computed,
ignores word boundaries. Thus, while it may pro-
vide insight into which characters are frequently
missed, it looses any information that might in-
dicate what role those letters played. The value
of character-aware error analysis can be illustrated
by (Parsons et al., 2023)

As an example, we investigated word substi-
tutions where only the final character changed.

1https://github.com/scribe-project/
match-em

Dataset
wav2vec 2.0 Whisper

Standard Match ‘em Standard Match ‘em

English 3.92 4.67 8.43 10.22
Italian 11.48 13.52 12.04 14.63
Norwegian 5.66 7.62 5.17 6.69

Table 5: The percent of word substitutions pro-
duced by Match ‘em alignment where only the fi-
nal character changed. The most common errors
were considered (Norwegian: “e” or “r”, Italian:
all vowels, English: “s”).

From there, we observed the most common char-
acter changes for each language. For Norwegian,
these characters were “e” and “r”; while for En-
glish, it was the character “s”. For both of these
languages, insertion or deletion of these charac-
ters will change the quantity of a noun or the tense
of a verb. For Italian, the vast majority of words
ends in a vowel, where the final vowel marks both
gender and quantity of a word. Due to the fre-
quency and similar semantic load, we considered
all final vowels in Italian in our analysis. The per-
centage of all word substitutions containing just
this final letter change are presented in Table 5.
Through this we see that not only does Match ‘em
align more instances of final letter change but that
a sizeable amount of all substitution errors are
just the final letter change. Such a final letter
change might alter a word’s meaning slightly, but
will rarely destroy the meaning of an entire sen-
tence. Consequently, depending on the task at
hand, those errors may be given higher or lower
weight in ASR development.

4.2 Compounds
As described in Section 2.3, Match ‘em also at-
tempts to recognize and rectify compounding er-
rors. Although the majority of compounds include
the concatenation of two words, in the Norwegian
data we see that Match ‘em is able to account for
cases where more than two words are combined,
such as “to tusen og tolv” and “totusenogtolv”.
Both these written forms are valid in Norwegian
and have the same meaning (two thousand and
twelve). In English, many of the compound pairs
are contractions (e.g., “it is” vs. “it’s”, “we are”
vs. “we’re”) where the difference is not only the
space but also the substitution of character(s) for
an apostrophe.

As this method works on the surface level of
words, without any context of word meaning(s),
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there is the potential that the compound word pairs
while being similar in characters are actually se-
mantically distinct. The most common pair found
in our Norwegian data (“og så” - “også”) demon-
strates this well because the two variants can be
translated to English as and so and also, respec-
tively. Most contractions that are seen in both En-
glish and Italian carry the same semantic content.
As an exception, some Italian contractions should
be considered as mispellings (like “un Europa” in-
stead of the correct “un’Europa” or “una Europa”).
Regardless, as the meanings would still be inter-
pretable by a human, the reduction in penalty for
the compounding mistake is well justified. Given
the success of the compounding analysis, we be-
lieve that more highly synthetic languages, such
as Finnish, may be good candidates for Match ‘em
analysis in future work.

Analyzing the difference in compounding er-
rors between wav2vec 2.0 and Whisper gives some
insights for the potentially different behaviour of
these two models. For English, the top 10 most
frequent compounding errors are nearly the same
for both models and contain typical contractions
(e.g. “it is” vs “it’s”). The numbers of errors are
also comparable. For Italian, the Whisper model
has a much lower number of compound errors
compared to wav2vec 2.0 (see also Section 4.3).
For Norwegian, the two models make a compara-
ble number of compound errors, the most common
of which is “og så” versus “også”. However, af-
ter “og så” and “også”, frequency of specific com-
pound errors is different between the two models.
Further analysis of these phenomena may give in-
sights into the workings of these two architectures.

4.3 Standard versus Match ‘em WER

The goal of Match ‘em is to produce a better word
alignment for detailed error analysis. It is, how-
ever, interesting to study how Match ‘em modifies
the WER. If we exclude the compounding recon-
ciliation, the better alignment does not change the
total number of errors (insertions, deletions and
substitutions), although it may change their rela-
tive distribution. Changes in WER are, therefore,
an exclusive result of compounding reconciliation,
where we keep a single substitution and reduce
the number of insertions and deletions. Table 6
demonstrates this by showing the WERs computed
with Levenshtein (standard) and Match ‘em align-
ment for the three test languages and two model

Dataset
wav2vec 2.0 Whisper

Standard Match ‘em Standard Match ‘em

Norwegian 22.07 21.06 21.50 20.81
Italian 20.55 18.87 13.54 13.28
English 19.87 17.92 14.80 14.49

Table 6: The WER for each language, model, and
alignment method.

architectures. As expected, by resolving com-
pounding errors, Match ‘em results in a lower
WER. The reduction is greater for wav2vec 2.0
which, as noted in Section 4.2, produces a higher
number of compounding errors than Whisper. As
mentioned in Section 2.3, however, it is not clear
if lower is truly better here.

5 Conclusions

We propose the new Match ‘em framework for
creating better alignment between reference and
ASR-generated transcriptions both at the word and
character level. We show that Match ‘em allows
for a deeper understanding of ASR performance
compared to WER, by supporting detailed analy-
sis of common errors. By using word dissimilar-
ity metrics and by reconciling compound errors,
Match ‘em alignment results in word substitu-
tion pairs that are more similar compared to stan-
dard Levenshtein alignment. We show that anal-
ysis of these substitution pairs can yield insights
into the potential semantic impacts of these er-
rors. Our claims are verified across three European
languages (English, Italian and Norwegian) and
two state-of-the-art ASR architectures (wav2vec
2.0 and Whisper). We believe the Match ‘em
framework to be a useful tool for other ASR re-
searchers for gaining insights into their own mod-
els’ performances and, more generally, for speech
researchers to gain linguistic insights by analyzing
ASR errors on large annotated speech corpora.
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Abstract

Parliamentary proceedings are convenient
data sources for creating corpora for
speech technology. Given its public na-
ture, there is an abundance of extra in-
formation about the speakers that can be
legally and ethically harvested to enrich
this kind of corpora. This paper describes
the methods we have used to add speaker
metadata to the Stortinget Speech Corpus
(SSC) containing over 5,000 hours of Nor-
wegian speech with non-verbatim tran-
scripts but without speaker metadata. The
additional metadata for each speech seg-
ment includes speaker ID, gender, date of
birth, municipality of birth, and counties
represented. We also infer speaker dialect
from their municipality of birth using a
manually designed mapping between mu-
nicipalities and Norwegian dialects. We
provide observations on the SSC data and
give suggestions for how it may be used
for tasks other than speech recognition. Fi-
nally, we demonstrate the utility of this
new metadata through a dialect identifi-
cation task. The described methods can
be adapted to add metadata information to
parliamentary corpora in other languages.

1 Introduction

There has been, historically, a lack of high qual-
ity, freely available speech resources for ma-
chine learning tasks. Traditionally, these re-
sources have been created to facilitate develop-
ment of automatic speech recognition (ASR) mod-
els, and as such have been expensive to cre-
ate, requiring human hours for both data col-
lection and then careful, verbatim transcription.
Even for “well resourced” languages like English,
datasets rarely exceeded 1,000 hours. However,

as new ASR technologies loosen the requirements
for transcription precision, this allows for even
larger datasets that are created from less verbatim
sources (Chen et al., 2021; Galvez et al., 2021).
These new, more loosely supervised datasets often
lack details found in older, more traditional speech
resources and are therefore potentially limited in
their application.

Many established speech resources are com-
posed of relatively short duration segments with
speech from only one speaker at a time. Addi-
tionally, this speaker is often known (even if only
by an anonymized speaker identifier) and meta-
data, such as age and gender, is given about them.
This richness of metadata allows for speech tech-
nology and machine learning tasks beyond ASR
— such as language (or dialect) identification,
speaker diarization, speaker identification or ver-
ification. Crucial to all these tasks is knowledge
about who is speaking.

Recently, a number of speech corpora were cre-
ated from public domain recordings of parliamen-
tary proceedings; for instance, Iceland (Helgadót-
tir et al., 2017), Denmark (Kirkedal et al., 2020),
Finland (Virkkunen et al., 2023), Croatia (Ljubešić
et al., 2022) and the European Parliament (Wang
et al., 2021). In all of these works it is known,
at the very least, who is speaking in each seg-
ment (either by name or speaker ID), with most
also including gender information. Virkkunen et
al. explored their dataset using the rich metadata
they were able to pull from an open API provid-
ing both distribution information and ASR results
along age, gender, and educational background
lines. However, it appears that this rich metadata
was not released with the final dataset. Ljubešic
et al. included name, gender, year of birth, party
affiliation and party status for their speakers.

In 2023, the National Library of Norway (NB)
developed the Stortinget Speech Corpus (SSC)
(Solberg et al., 2023) using data from the Norwe-
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gian parliament (called Stortinget in Norwegian).
In early 2024, NB published the results of their
analysis of several ASR systems for Norwegian
(Solberg et al., 2024). In this report they showed
that Whisper models (Radford et al., 2022), fine-
tuned on the SSC and some additional smaller
datasets, performed best on an unseen test set cre-
ated from radio and TV program audio. This fine-
tuned model outperformed both the base Whis-
per model as well as fine-tuned wav2vec (Baevski
et al., 2020) models and commercial ASR systems
from Google and Microsoft, thus demonstrating
the importance of this speech corpus in combina-
tion with the Whisper architecture for ASR.

Despite the SSC’s obvious utility in training
well-performing ASR models, it, as originally cre-
ated, contains no metadata for each speech seg-
ment. We believe the effort to construct the miss-
ing metadata has merit as expanding the SSC into
other speech technology domains would be a ben-
efit for Norwegian speech research. To that end,
we have undertaken the effort of ensuring that
each segment in the SSC has been matched to a
speaker identifier and that public speaker meta-
data has been added. As a result of this effort,
this new metadata is now included with the SSC
and made available by the Norwegian Language
Bank at the National Library of Norway. Further-
more, we offer a recommendation for a subset of
the SSC that more closely resembles traditional
well annotated speech corpora and may be more
applicable to other speech tasks. Finally, we be-
lieve that the efforts described in this paper can be
easily extended and applied to similar corpora in
other languages and countries.

2 The Pre-Existing SSC Dataset

The SSC contains more than 5,000 hours of nat-
ural Norwegian speech paired with non-verbatim
transcripts created from the Norwegian parlia-
ment. The National Library of Norway created
the SSC by following the technique described by
(Ljubešić et al., 2022). They first broke the plenary
meetings into segments using voice activity detec-
tion. Shorter segments were combined resulting
in each SSC segment being roughly 30 seconds.
In doing this, no concern was given to speaker
boundaries. That is, the 30 second segments were
created from files containing recordings of a whole
day’s worth of parliamentary discussion, without
awareness of who was speaking or whether there

was one or multiple speakers in the segment. Thus
for each segment in the SSC, no speaker metadata
is available.

After the audio had been segmented, an ASR
system was then used to generate transcripts for
these segments. The Levenshtein ratio1 was
then used to align the ASR output with the text
of the official parliamentary proceedings sourced
from the ParlaMint-NO corpus2. The proceedings
were human-transcribed at the utterance level with
some light editing and omissions for standardiza-
tion and legibility. Because the official proceed-
ings are not a verbatim transcription of the spo-
ken utterances, the ASR transcriptions may de-
viate considerably from the proceedings. Conse-
quently, only segments where the score produced
by the Levenshtein ratio between the proceedings
text and the ASR text was above a threshold (0.5)
were kept. For the selected 30 second segments,
the proceedings text was taken as the transcription.
The Levenshtein ratio score was also kept in the
SSC. In this manner, the SSC was created.

3 Speaker Metadata

3.1 Recovering Speaker Information from
ParlaMint

The first objective of this work was to recover who
is speaking in each segment of the SSC. To do this,
we turn our attention to the Norwegian ParlaMint-
NO text corpus. As mentioned in Section 2, this
corpus contains the proceedings text. Addition-
ally, it is annotated with metadata on speaker iden-
tity, gender, date of birth, and which of the two
written forms of Norwegian the transcript is in for
every utterance.

The task of reconciling the SSC text and the
speaker metadata was done using word offsets.
When creating the SSC, ASR output was aligned
with the proceedings from ParlaMint. Though
the metadata available in ParlaMint was discarded
during the original creation of the SSC, the word
offsets — the index of the starting and ending
words in the ParlaMint proceedings — were pre-
served for each approximately 30 second segment.
We can then join the ParlaMint metadata and the
SSC segments by reconciling the offsets.

To illustrate how this reconciling of word off-

1https://rapidfuzz.github.io/
Levenshtein/levenshtein.html#ratio

2https://www.nb.no/sprakbanken/
ressurskatalog/oai-nb-no-sbr-77/
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Utt ID Speaker ID Proceedings Text Start End

1 person.1 Good morning all 0 2
2 person.1 Today we will be starting with Representative Smith 3 10
3 person.2 As many of you know, moose in Norway are a common sight 11 22
4 person.2 Therefore we propose that 23 26

Table 1: A synthetic example of ParlaMint utterances. The starting and ending word indexes have been
added for each utterance.

set and metadata occurs, we refer to the the fic-
tional snippet of ParlaMint utterances presented
in Table 1. Let us assume that we have an SSC
segment where the text offsets with respect to that
ParlaMint snippet are between 5 and 24. We first
determine which utterance contains the word off-
set 5, in this case utterance 2 (the start index is
smaller than 5 and the ending index is larger). We
then determine which utterance contains the index
24, in this case utterance 4. As utterance 3 is be-
tween our starting and ending utterances we as-
sume it too aligns with the current SSC segment.

By aligning the text in the SSC with the Par-
laMint text, we have recovered the speaker infor-
mation from each segment in the SSC. In addi-
tion to speaker identifiers (represented as person.1
and person.2 in the example), we also now have
the date of birth, gender, and Norwegian written
form (or forms) used in each segment. The speaker
identifiers can be used to add further metadata, as
described in the following sections.

3.2 Stortinget API
Beyond the metadata available from ParlaMint, we
believed it to be useful to add publicly available
information to the corpus, including the munic-
ipality and county where the speaker was born,
as well as the county or counties represented by
that speaker. This was accomplished by use of
the Stortinget application programming interface
(API)3. The Stortinget API provides a program-
matic way to access data about the Norwegian par-
liament, including endpoints for bibliographic in-
formation on the speakers in the parliament. All
metadata from the API is covered by a Norwegian
Licence for Open Government Data4 which per-
mits copying, using and distributing information
from the API. The endpoint kodetbiografi
contains information on the speaker’s municipality
of birth, county of birth, and counties represented.

3https://data.stortinget.no/
4https://data.norge.no/nlod/en/2.0

Figure 1: The municipalities of Norway mapped
to dialect regions. The eastern dialect regions have
been collapsed from (Skjekkeland, 1997).

We called this endpoint for each speaker using the
speaker ID from the ParlaMint utterances. Not all
speakers have information provided for each of the
three fields that we were interested in. If one of
these fields lacked information for a speaker, no
further efforts were made to find this information,
both on practicality and privacy grounds.

3.3 Municipality to Dialect

Our aim in gathering this municipality and county
information was to enable an automated method
of assigning presumed dialect. That is, given that
Norwegian dialects are largely decided along geo-
graphic lines (Sandøy, 1987, p. 16), we hoped to
use the municipality of birth to infer which dialect
a person is likely to be speaking in.

The Norwegian language has no official stan-
dard speaking style (The Language Council of
Norway). Hence, there is a large variety of di-
alectal realizations manifesting in pronunciation,
lexical items, and grammar. Additionally, the cul-
ture encourages people to speak with their native

450

https://data.stortinget.no/
https://data.norge.no/nlod/en/2.0


dialect in all situations from the least formal to
the most. It is even common for speakers to re-
tain their native dialects and to use dialectal lexi-
cal items when speaking in parliament. Thus, we
find including dialect information to be both per-
tinent and, hopefully, useful to machine learning
tasks related to speech.

To enable this automatic assignment of dialect,
we created a mapping between all municipalities
and counties in Norway and their assumed di-
alects. Using the dialect map created by Skjekke-
land (Skjekkeland, 1997) as the ground truth, we
manually analyzed maps of each county and their
municipalities in order to align them with the
boundaries drawn in Skjekkeland’s map. Further,
as we wished this municipality-to-dialect map-
ping to be useful with other existing Norwegian
resources, historical municipalities and counties
were included. As we found this mapping useful
and was nontrivial to produce, it has been made
available through the Norwegian Language Bank5.

This inference of dialect from birth municipal-
ity does not, of course, account for people who
were born in one place then quickly moved to an-
other. Nor does our inference take into account
that speakers often tend to adapt their dialect, at
least slightly, to the local or national "standard"
dialect. Therefore, for speakers who represent the
same county they were born in, one could assume
that speaker is still, potentially, representative of
the dialect label assigned. However, for the work-
ing going forward, we will be using dialect labels
generated from the speaker’s municipality of birth
regardless of if they later moved to a new county.

4 Data observations

As stated earlier, the SSC was designed for loosely
supervised ASR training, and has already been
used for this aim6. However, other speech tasks
require either a greater degree of faithfulness in
transcription or audio with only one speaker per
segment, or both. In order to understand which, if
any, part of the SSC might be useful in these other
tasks, an analysis of the data was performed.

5https://www.nb.no/sprakbanken/en/
resource-catalogue/oai-nb-no-sbr-92/

6https://huggingface.co/
collections/NbAiLab/nb-whisper-
65cb8322877f943912afcd9f

4.1 Towards verbatim transcripts

While non-verbatim transcripts work well for
weakly-supervised training of ASR models such
as Whisper, other ASR frameworks (e.g. wav2vec
2.0 (Baevski et al., 2020)) still require transcripts
that align more closely with the audio. Thus, we
begin to look at the transcriptions available to us
to understand how often they align.

As described in Section 2, each SSC section
has a score denoting the similarity between the
proceedings text and the verbatim transcripts pro-
duced by ASR. It follows that when the proceed-
ings text has a high similarity score to the ASR
output the SSC text is presumably verbatim. How-
ever, these similarity scores are not infallible as
ASR errors could lower the score regardless if the
the SSC text was actually verbatim.

Despite the potential for ASR errors, we have
observed that low scores are often a result of spo-
ken information being omitted from the proceed-
ings text. During proceedings, the Stortinget pres-
ident often introduces the next speaker or pro-
vides other administrative information. Addition-
ally, other speakers often recognize the president,
have false starts in their sentences, or include other
unnecessary words. As the proceedings are meant
to be read, the transcribers tasked with creating the
proceedings omit and lightly editorialize for read-
ability. Thus, as can be seen in the example in
Table 2, introductions of the next speaker (which
would be obvious from the names associated with
each utterance when reading the transcript) are not
included in the proceedings.

We have found that, as a general rule of thumb,
segments with Levenshtein ratios over 0.8 are
highly accurate. While some segments achieve a
perfect score of 1.0, they only account for 13.5
hours of the over 5,000 total hours in the SSC.
Whereas, if all segments scoring over 0.8 are in-
cluded, then over 3,300 hours of data is available.

4.2 One-speaker segments

As tasks such as speaker identification or dialect
recognition generally require audio segments with
only one speaker, identifying subsets of the SSC
where there is only one speaker is beneficial.

This can be done by either finding segments
in the SSC corpus that already contain a single
speaker, according to the metadata, or by split-
ting multiple-speaker segments into a number of
single-speaker sub-segments. To assess the impact
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Speaker ID person.LHH person.DTA person.TRJ
Proceedings dette løftebruddet? Nei, jeg tror
Transcription dette løftebruddet statsråd ris johansen nei president jeg trur
English this breach of promise minister ris johansen No, president I think

Table 2: An example of different transcription standards.

Speakers in Segment Count of Segments

1 624337
2 88560
3 11808
4 78

Table 3: Counts of segments in the SSC by the
number of speakers, according to the new SSC
metadata

of those strategies, we aggregated SSC segments
by the number of speakers in Table 3. We can see
that one-speaker segments account for 86.14% of
the SSC segments. Thus, it is feasible to simply
discard the segments with multiple speakers and
still have over 4,478 hours of audio.

However, as mentioned when discussing the
proceeding transcriptions, there are many in-
stances where brief speaker turns are not included
in the transcriptions. It follows then, that though
the new metadata in the SSC may only recognize
one speaker, another speaker could have spoken
and simply been omitted from the proceedings on
the basis of readability.

4.3 Splitting multi-speaker segments

To fully use all data, segments with multiple
speakers would ideally be split into one-speaker
segments. We explored the simple approach of us-
ing forced alignment to align the text and the au-
dio. The speaker utterance boundaries are known
from the text and could be used to split the audio.
However, in most instances the proceedings text is
not verbatim enough for forced alignment. Forced
alignment using the more verbatim ASR output
could be feasible, however we then need to align
the ASR output with the proceedings text (with a
high degree of fidelity)—a non-trivial task. Ulti-
mately, for future work, we see speaker diariza-
tion as a promising alternative for multi-speaker
segments. Additionally, we have yet to explore
how much, if any, of the speech in multi-speaker
is overlapping, providing yet another avenue for

future work.

5 Comparison with the NPSC

The Norwegian Parliamentary Speech Corpus
(NPSC) (Solberg and Ortiz, 2022) was created us-
ing data from 41 days of Norwegian parliament
recordings where humans manually segmented
and transcribed the data. Thus, the NPSC com-
poses a small subset of the data available in the
SSC. After listening to each speaker, the tran-
scribers assigned each speaker in the NPSC a di-
alect. Five dialect regions were used for this task:
Eastern Norway (from here on called East), West-
ern Norway (West), Northern Norway (North),
Trøndelag (Mid), and Southern Norway (South).
Given this careful human supervision, the NPSC
utterances may then serve as a “ground truth” for
verbatim text, as well as speaker identities and di-
alects.

To reconcile the NPSC and the SSC, we could
not use word offsets as the words are from fun-
damentally different sources (verbatim transcrip-
tion versus official proceedings). However, the
millisecond offset from the beginning of the day’s
recording was preserved in both the NPSC and
SSC segments. Therefore, we were able to use
these millisecond offsets and the same approach
as described with the word offsets to determine
which NPSC utterances corresponded to each SSC
segment.

5.1 One-speaker segments

As discussed in Section 4.2, there are poten-
tially segments that the SSC metadata identifies as
single-speaker, but in reality contains speech from
multiple speakers. To understand the scope of this
potential problem, we compare the speaker counts
asserted by the SSC and the NPSC.

By doing this, we can see that when looking
at utterances where the SSC metadata claims that
only one speaker is present, we find that the NPSC
believes there are more speakers 10.6% of the
time. On the whole, we find that the NPSC and

452



SSC disagree on speaker counts 20.8% of the time.
This implies that we should remain skeptical about
the speaker counts given by the SSC, especially for
tasks where it is crutial to have one, and only one,
speaker in a segment.

5.2 Speaker dialect labels

As the NPSC also contains human prescribed di-
alect labels for each speaker, we can compare our
inferred dialect labels with these ground truth la-
bels.

There are 226 speakers in the NPSC, of which,
metadata was available to assign the dialect to 164
of them. The dialect label from the SSC (as gen-
erated from municipality of birth) agreed with the
NPSC human assigned label approximately 91.5%
of the time.

Many of the speakers that we were unable to
provide a dialect label for were speakers that spoke
only a little or infrequently. Thus, the dialectally
labeled speech accounts for 71.3% of the NPSC
audio. Further, the duration of labeled audio in the
SSC accounts for 78.6% of the audio, (over 4,000
hours), a similar percentage to the NPSC.

6 Automatic dialect identification

To demonstrate the utility of these new dialect la-
bels, we have investigated the task of automatic
dialect classification.

6.1 Model and fine-tuning

For the task of automatic dialect classification, we
chose to fine-tune a model instead of creating a
model from scratch. As a starting point, we took a
model already fine-tuned for the language identifi-
cation task7, itself fine-tuned from the Whisper-
medium model8. The Whisper-medium model
contains 769M parameters and was trained for
ASR and speech translation on 680,000 hours of
speech. The fine-tuning to language identification
was done using the FLEURS dataset9 upon which
the model achieved an accuracy of 0.88.

We then further fined-tuned the model from lan-
guage to Norwegian dialect identification. Two
models were trained, one using data from the

7https://huggingface.co/sanchit-
gandhi/whisper-medium-fleurs-lang-id

8https://huggingface.co/openai/
whisper-medium

9https://huggingface.co/
datasets/google/xtreme_s#language-
identification---fleurs-langid

NPSC, the other data from the SSC. This will
allow us to understand the impact of the larger
amount of data available in the SSC. For training,
the first two convolutional layers in the encoder
were fixed and each model was allowed to train for
3 epochs. The resulting model after these 3 epochs
was used for the evaluation reported below.

6.2 Dataset splits

To prepare the NPSC and SSC for fine-tuning, the
datasets were then divided into train, validation,
and test sets by speakers. That is, a speaker (and
all the utterances they said) would be assigned to
one, and only one, of the three splits to ensure that
the model was not simply learning the speaker’s
voice. As the NPSC is smaller, we utilized all
of the NPSC where we had a dialect label for the
speaker, resulting in a total of approximately 126
hours of speech.

We chose to use a subset of the SSC for the fine-
tuning effort so as to have a dialectally balanced
dataset. We determined which of the dialect re-
gions contained the smallest amount of data (the
South) and sampled data from each of the other
regions to a similar size. This resulted in approx-
imately 155 hours of data for each of the five di-
alect regions, or 774 hours of data in total. The
size in both hours and number of speakers for both
the NPSC and SSC training sets can be seen in Ta-
ble 4.

To make a more direct comparison between the
NPSC and SSC, we created a test set containing
data from both. To do this, we removed speakers
from the NPSC test set that appeared in the SSC
training and removed speakers from the SSC test
set that appeared in the NPSC training set. We
then combined the remaining test data into a com-
mon NPSC+SSC test set.

6.3 Nordavinden og Sola

To evaluate how well these dialect identifica-
tion models generalize beyond the parliamen-
tary domain, we turned the Nordavinden og Sola
(NVOS)10 (in English, The North Wind and the
Sun) database. This database consists of speak-
ers reading The North Wind and the Sun fable in
Norwegian. Although the task was read speech,
participants were allowed to alter the text, both
in terms of lexical items and word order, to best
fit their native dialects. The municipality for each

10https://www.hf.ntnu.no/nos/
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NPSC SSC
train validation test train validation test

seg dur spk seg dur spk seg dur spk seg dur spk seg dur spk seg dur spk
east 21631 40 92 5826 4 12 2003 9 12 17690 127 92 2781 20 12 1192 8 11
west 12589 26 56 3288 5 7 2134 7 7 15481 111 60 3885 28 8 2191 15 7
mid 4560 9 22 208 2 3 906 0.5 3 17586 127 28 2298 16 4 1734 13 4
north 5230 11 26 549 3 3 1437 1 4 17092 123 27 2030 14 4 2361 16 3
south 3254 6 15 103 2 2 803 0.25 2 13245 95 11 3002 22 2 5315 36 1

Table 4: Amount of data available each data split for the NPSC and sub-sampled SSC. Quantities in
number of segments, duration of speech in hours, and number of unique speakers.

speaker was recorded and from this we were able
to assign one of the five cardinal dialects.

As the NPSC and SSC have different average
utterance durations (NPSC utterances being an av-
erage of 7 seconds with a standard deviation of
5 seconds versus the SSC’s average of 25.8 sec-
onds and standard deviation of 4.3 seconds), we
created two test sets with the NVOS data with dif-
ferent utterance durations. In the first, the audio
was left unaltered and the whole utterance (on av-
erage, about 32 seconds) was given to the model.
In the second, we split each audio in half and then
asked the model to classify these approximately 15
second audio clips.

6.4 Results and discussion

The accuracy, balanced accuracy, and weighted F1
from evaluating each of the two models (trained
on NPSC or SSC) can be seen in Table 5. Met-
rics were calculated using scikit-learn 1.4.2. The
model trained on the SSC data performs better
than or equally well as the model trained on the
NPSC for all test sets. When looking at the NPSC
part of the combined test set, we can see that the
SSC model performed as well as the in-domain
NPSC model. However, the NPSC model per-
formed very poorly when asked to predict using
SSC audio.

Metrics for recall (macro and weighted) and F1
(micro and macro) were also calculauted. How-
ever, as they follow the same general trend (where
the model trained on SSC data performed as well
or better than the model train on the NPSC, they
are not included in this paper.

We can further observe from Table 5 that the
length of the segment in the NVOS data has little
impact. The SSC model did perform slightly bet-
ter when presented with the full audio clips. This
could be due to the fact that the segments in the
SSC are approximately 30 seconds as well.

Confusion matrices for these tests are presented

in Figure 2. We find that both models often per-
form well on the East and West regions and poorly
on the South. In fact, it is only in matrix (f) that
a model predicts the South at all (of note as well,
the only Southern speaker in the common test set
is from the NPSC, meaning that the SSC model
is robust enough to predict South for an out-of-
domain speaker).

From these results, we can see that having more
data even if not necessarily more speakers (211
speakers in the NPSC training set versus 218 in
the SSC set) can positively impact model perfor-
mance both in-domain and out.

While we are encouraged by the results pre-
sented here, there are several potentially con-
founding features. Our methodology for splitting
the data along speaker lines does lead to imper-
fect datasets (for example, the South being rep-
resented by only one speaker in the test set, de-
spite having the most hours of data 4). Further,
no attention was paid to the content of the utter-
ances. That is, within the parliamentary domain,
it is conceivable that there are several set phrases
that each speaker is apt to repeat. So, while there
is no speaker overlap between the train, validation,
and test sets, there is the potential for overlap of
spoken content. Further, given the limited number
of speakers, it is possible the that the model has
learned some speaker-dependent features. Thus,
we look forward to further exploring the impact
of speaker and content on dialect identification in
future works.

7 Conclusion

Through the efforts described in the paper, we
enrich the SSC with speaker ID, gender, writ-
ten form, age, dialect, municipality and county of
birth and counties represented for each SSC seg-
ment.

Although the methods are developed for the
Norwegian parliament, we believe they can rela-
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Trained on NVOS half NVOS full Common test set
Total NPSC SSC

Accuracy
NPSC 0.75 0.75 0.60 0.74 0.45
SSC 0.78 0.79 0.77 0.74 0.80

Balanced Accuracy
NPSC 0.63 0.63 0.48 0.52 0.58
SSC 0.68 0.68 0.61 0.56 0.81

Weighted F1
NPSC 0.72 0.73 0.55 0.73 0.38
SSC 0.77 0.78 0.76 0.73 0.81

Table 5: Accuracy, balanced accuracy, and weighted F1 of dialect identification models trained on either
NPSC or SSC data. Models were evaluated against the NVOS dataset and the common dataset.

tively easily be adapted to parliamentary speech
corpora in other languages.

The further aim of our work herein was to pro-
vide a subset of the large SSC that could be used
for tasks beyond ASR. Thus, we provided observa-
tions on the corpus and suggested suitable subsets
for different tasks in speech technology.

We demonstrated the utility of this new meta-
data through a dialect identification task. The
model trained using SSC outperformed the model
trained with a smaller parliamentary corpus, thus
showing an benefit of a corpus of the SSC’s size.

Finally, as a continuation of (Ljubešić et al.,
2022) and (Solberg et al., 2023), this work pro-
vides a general template for how public datasets,
such as parliamentary recordings, may be trans-
formed into corpora for machine learning.
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Figure 2: Normalized confusion matrices showing classifier performance on the three shared test sets.
The first column (a, c, e) are from the model fine-tuned using NPSC data. The second column (b, d, f) are
from the model fine-tuned using the SSC. The first row are the results when evaluated using the NVOS
halves set, the second row the NVOS full set, and the third row the test set comprised of both NPSC and
SSC data.
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Abstract

We develop paragraph-level machine trans-
lation for four low-resource Finno-Ugric
languages: Proper Karelian, Livvi, Lu-
dian, and Veps. The approach is based on
sentence-level pre-trained translation mod-
els, which are fine-tuned with paragraph-
parallel data. This allows the resulting
model to develop a native ability to han-
dle discource-level phenomena correctly,
in particular translating from grammati-
cally gender-neutral input in Finno-Ugric
languages. We collect monolingual and
parallel paragraph-level corpora for these
languages. Our experiments show that
paragraph-level translation models can
translate sentences no worse than sentence-
level systems, while handling discourse-
level phenomena better. For evaluation, we
manually translate part of FLORES-200
into these four languages. All our results,
data, and models are released openly.

1 Introduction

The existence of massively multilingual pre-trained
translation models (e.g. m2m100, NLLB, and
MADLAD-400: Fan et al., 2021; NLLB Team et al.,
2022; Kudugunta et al., 2023) has made work on
machine translation significantly easier by elimi-
nating the need for training large models from zero.
Nevertheless, even the largest of these models still
leave many low-resource languages out—mainly
due to lack of or difficulty to acquire textual data
(monolingual or parallel) in those languages.

Moreover, these translation models approach
translation by handling each sentence indepen-
dently and thus do not handle discourse-level phe-
nomena well1. Ignoring the discourse-level phe-

1Although MADLAD-400 (Kudugunta et al., 2023) is pre-
trained on full documents, this is done without cross-linguality

nomena has been shown to pose problems for trans-
lation quality and its assessment (Bawden et al.,
2018; Läubli et al., 2018). Even though decoder-
only language models (e.g. GPT4, OpenAI et al.,
2024) are an easy way to approach document-level
translation, the availability of pre-trained open mul-
tilingual language models and their language cover-
age are even narrower than for translation models.
Also, translation is more efficiently solved with
sequence-to-sequence models when emergent abil-
ities are not a requirement and the main purpose is
to solve translation, not other tasks.

In this paper, we focus on developing machine
translation for the Finno-Ugric family of languages,
which is a good fit for addressing both aforemen-
tioned issues, namely support for low-resource lan-
guages and discourse-level phenomena ignorance:

• the majority of pre-trained models only sup-
port three languages from this family (Finnish,
Estonian and Hungarian), with MADLAD-
400 also including a few more, still leaving
out dozens of languages, and

• Finno-Ugric languages have no grammatical
category of gender and use gender-neutral pro-
nouns. This increases their dependence on
document-level context, see an example in
Figure 1.

We narrow down our scope to four under-
resourced members of the Finno-Ugric language
family: Proper Karelian, Livvi, Ludian, and Veps.
All four are low-resource languages and are not
included in m2m100, NLLB, or MADLAD-400;
they are also not supported by Google Translate2

or DeepL3, as of January 2025.

but rather via monolingually denoising documents in several
languages; translation is later taught to the model on sentence
level.

2https://translate.google.com
3https://deepl.com
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Text in Veps: Naine tuli kodihe. Hänen
mašin jäi garažas.

English
translation:

The woman came home. Her
car remained in the garage.

Figure 1: Example of translation challenges re-
lated to gender-neutral pronouns in Finno-Ugric
languages: the Veps text includes the pronoun
hänen, which can be translated both as “her” and
“his”; resolving this ambiguity requires looking at
the first sentence and the word naine (woman) as
the antecedent.

With the issues listed above in mind, we collect
paragraph-level corpora and develop paragraph-
level machine translation models by simply fine-
tuning sequence-to-sequence models on parallel
paragraph pairs, comparing the results to sentence-
level approach. In order to fit the paragraph into the
context window of the model, we limit its length
to five sentences at most—our experiments show
that such a bounded context still allows the model
to learn extrasentential dependencies.

Our key contributions are thus the following:

• We collect and release paragraph-level cor-
pora for Proper Karelian, Livvi, Ludian, and
Veps: monolingual, as well as parallel with
Russian (Section 4).

• In order to evaluate the results, we extend part
of the translation benchmark FLORES-200 by
manually translating it into the new languages,
as well as manually correct existing Russian
translations for paragraph-level consistency
(Section 4).

• We train both sentence-level and paragraph-
level translation systems on the collected data
and show that the latter has the same or better
quality when applied to paragraphs as well as
learns to translate discourse-level phenomena
correctly (Sections 5 and 6).

The collected data4, trained models5, and created
benchmarks6 are released openly.

Next, we outline the related work in Section 2
and present the methodology in Section 3.

4https://huggingface.co/datasets/tartuNLP/
pale-madlad-data

5https://huggingface.co/tartuNLP/
pale-madlad-mt

6https://huggingface.co/datasets/tartuNLP/
smugri-flores-testset

2 Related Work

Document-level translation Elaborating on the
importance of considering the extrasentential con-
text in machine translation (MT), Bawden et al.
(2018) describe major discourse-level phenom-
ena that present problems for most MT systems:
coreference, lexical cohesion, and lexical disam-
biguation. Taking into account the context be-
yond a single sentence is essential for correct
translation. Throughout the history of MT, re-
searchers tried to address this problem from dif-
ferent perspectives—from rule-based to statisti-
cal to corpus-based approaches—creating various
document-level systems (Hardmeier, 2012; Hard-
meier et al., 2013).

Currently, attempts have been made to incorpo-
rate context in the attention-based models’ scope
by modifying their architecture. The researchers
offered methods such as hierarchical attention (Mi-
culicich et al., 2018) or memory networks (Maruf
and Haffari, 2018) among others. However, the
most straightforward strategies, like passing an en-
tire text to the model, proved also the most effec-
tive. Sun et al. (2022) trained the Transformer
model (Vaswani et al., 2017) on documents, repeat-
edly dividing them into parts to vary input lengths.
Although this approach has shown a big leap in
translation quality, it does not remedy another im-
portant problem: long processing times of large
documents. The time and memory consumption
of Transformer-based systems scales quadratically
with the input length. We try to avoid this issue
by splitting documents into small, fixed-size para-
graphs rather than translating documents fully.

MT for low-resource Finno-Ugric languages
Machine translation for low-resource Finno-Ugric
languages has been explored in a number of works.
To name but a few, Tyers et al. (2009) examined
rule-based and statistical MT systems when trans-
lating between North and Lule Sámi; Pirinen et al.
(2017) employed rule-based MT in their North
Sámi-Finnish system; Rikters et al. (2022) de-
signed a neural MT system for Livonian. The lan-
guages studied in this work were presented in MT
systems developed by Yankovskaya et al. (2023)
and Purason et al. (2024), but unlike our approach,
their systems do not take the document or para-
graph context into account.
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3 Methodology

In this chapter, we briefly describe our approach
to dealing with paragraph-level data, ways to ex-
tract paragraphs from documents and evaluate
paragraph-level translations. We chose MADLAD-
400 as the basis for our experiments, since, in ad-
dition to being a small, powerful, and open-source
model, it has the potential for paragraph-level trans-
lation as it was pre-trained with document-level
monolingual data.

3.1 Splitting Documents into Paragraphs

With our primary task being to test whether in-
cluding the extrasentential context improves the
performance of MADLAD, we need to decide on
how many sentences to use as the model’s input.
On the one hand, the more sentences we take from
a document, the more likely the model is to capture
the necessary context for translating each sentence.
On the other hand, passing the document as a whole
as the model’s input may be impractical for two
reasons:

• Time and memory consumption. The at-
tention mechanism inside Transformers has
quadratic computational complexity O(n2),
since the attention is calculated between each
pair of tokens. Therefore, computation time
and memory consumption increase quadrat-
ically with the input size. Shorter input se-
quences would ensure much faster model
training.

• Overfitting by length. Varis and Bojar (2021)
show that Transformers generalize badly to
out-of-distribution input lengths. This means
that loosening the restrictions on input length
would require more training with diverse data
(short and long) to avoid underfitting some
lengths and overfitting the others. The stricter
the restrictions—the easier the training.

We overcome the two aforementioned issues
at once by splitting documents into smaller para-
graphs of fixed, reasonable length. Since MAD-
LAD was trained on sequences whose length did
not exceed 256 tokens, we set a similar length limit.
We abandoned the idea of forming paragraphs from
as many sentences as possible to get close to the
size limit, for this would have led to a low variance
of data lengths. Instead, we combine a fixed num-
ber of sentences. If the paragraph length exceeds

256 tokens, we split the paragraph in two; if the
paragraph is still too long but consists of a single
sentence, we trim the paragraph to the maximum
length.

Through experimentation, we have found that,
on average, five sentences are enough to fit into
the context window of 256 tokens on our training
data without resorting to unnecessary splitting or
truncation of paragraphs. Where the number of
sentences is not divisible by 5, we take the remain-
der as a separate paragraph. We emphasize that
there is no optimal choice of paragraph length and
it should instead be chosen empirically or based on
the model’s context length and the available data.

3.2 Evaluating Paragraph-Level Translations
The most popular surface-level metrics, BLEU (Pa-
pineni et al., 2002) and chrF++ (Popović, 2017),
were designed to evaluate sentences. Applying
them to paragraphs could compromise correlation
with human judgments. Deutsch et al. (2023)
have proved the opposite: BLEU scores for para-
graphs not only align with those of humans but
also become more accurate as paragraph size in-
creases. This finding allows us to adopt BLEU as
a paragraph-level metric without the need to train
custom scoring models, which is problematic due
to the resource-constrained setting.

We also use chrF++ as it is more suited for mor-
phologically rich languages, such as the ones from
the Finno-Ugric family. Drawing on the formal
similarity and correlation of the BLEU and chrF++
metrics, we apply the latter directly to paragraphs
as well.

3.3 Managing Language Tokens
MADLAD-400 requires a language token to be
manually prepended to the user’s input sequence.
These tokens take the form <2xx>, where xx stands
for a target language code. For instance, the se-
quence “<2en> Mitä kuuluu?” indicates that the
Finnish sentence “Mitä kuuluu?” needs to be
translated into English. Thus, we prepend four lan-
guage indicators to the input sequences: <2krl>
for Proper Karelian, <2lud> for Ludian, <2olo>
for Livvi, and <2vep> for Veps. The codes are
taken from the ISO 639-37 code set. As for the
Russian language, MADLAD encodes it as <2ru>.

However, in this work, we do not expand MAD-
LAD’s vocabulary with new language tokens. In-

7https://iso639-3.sil.org/code_tables/639/
data
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stead, to save effort and time, we do nothing and
expect the model to learn the tokens solely based
on their textual representations, which we prepend
to inputs. Pilot experiments showed us that this ap-
proach is as effective as specifying language tokens
explicitly.

4 Data

In this paper, we focus on (i) two dialects of Kare-
lian: Livvi (olo) and Proper Karelian (krl)8; (ii)
Ludian (lud), which is closely related to Karelian,
but is considered a language in its own right (Pa-
homov, 2017); and (iii) Veps (vep). These are all
endangered Finnic languages, mainly spoken in
Finland and Russia.

4.1 Data sources for training

The majority of the training data was parsed from
the following resources: two media portals oma-
media.ru9 and yle.fi10, open corpus of Veps and
Karelian languages VepKar (Boyko et al., 2022),
and Wikipedia. We were unable to utilize other
published datasets, as they primarily comprised sen-
tences rather than documents (although sentence-
level data can still help improve the overall transla-
tion quality).

A preliminary analysis of translations revealed
that the MT system was mixing Livvi and Proper
Karelian. A possible reason for this mixing could
be the incorrect assignment of language labels to
the source data. After studying the sources and con-
sulting linguists, we discovered that the texts from
the media portal “Omamedia” were not only writ-
ten in Livvi, as we previously thought, but also in
other varieties of Karelian language, mainly Proper
Karelian. Using the language identification tool
GlotLID (Kargaran et al., 2023), we redistributed
the texts according to the new language labels.

We did minor preprocessing steps aimed at nor-
malizing characters and removing redundant ele-
ments (e.g., useless Wikipedia sections) to extract
coherent texts from the sources.

Table 1 presents the composition of the final
dataset.

8Proper Karelian comprises Northern (Viena) Karelian and
Southern Karelian. In this study, we use both varieties to
train our MT system, but we test the output only in Northern
(Viena) Karelian

9https://omamedia.ru/en
10https://yle.fi/t/18-44136/fi

4.2 Benchmark dataset
The benchmark dataset of low-resource Finno-
Ugric languages published by Yankovskaya et al.
(2023) contains Livvi, our language of interest.
We extended this dataset by adding three more
languages: Proper Karelian (Viena), Ludian11,
and Veps. Like Yankovskaya et al. (2023), we
translated the first 250 rows of the FLORES
dataset (NLLB Team et al., 2022); the translations
from Russian were done by native speakers of these
languages who have extensive translation experi-
ence.

Another important step was to modify the exist-
ing FLORES-200 test set, transforming it from a
sentence-level set into a paragraph-level one. Fortu-
nately, the FLORES-200 benchmark (NLLB Team
et al., 2022) is a collection of short excerpts from
Wikipedia, where sentences are sequential. All we
had to do was isolate these paragraphs. When their
length exceeded the maximum allowable, we man-
ually divided them into smaller paragraphs in such
a way as to avoid incurring a significant loss of
context. Thus, the original 250 rows transformed
into 87 paragraphs. However, when verifying the
consistency of paragraphs, we noticed that the sen-
tences in the data set were probably translated sep-
arately, out of context. Therefore, we manually
edited the paragraphs, ensuring the correct and con-
sistent use of pronouns, names, terms, etc. in the
Russian segment of FLORES.

We shall refer to these benchmarks sets as “Smu-
gri FLORES benchmark.”

5 Experimental Setup

To investigate the effect of paragraphs on the qual-
ity of translation of Proper Karelian, Livvi, Ludian,
and Veps, we fine-tune two MADLAD models: one
on sentence-level data and the other on paragraph-
level data. We translate the languages into Russian
and vice versa. Russian was chosen as a translation
objective (among other high-resource languages
available in MADLAD) because most of the openly
available parallel texts were aligned with the Rus-
sian language.

To further improve the model, we perform
back-translation making use of our monolingual
data. We back-translate in a single direction—from
Finno-Ugric languages to Russian—and thus, en-
hance the quality of translation from Russian to
Finno-Ugric languages (otherwise quite low). We

11using the alphabet with ü instead of y
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krl lud olo vep

data source mono para mono para mono para mono para
vepkar-sent 45.4 32.3 5.9 7.9 36.0 22.2 38.3 20.4
vepkar-par 9.6 6.9 1.2 1.6 7.6 4.8 8.1 4.5
wikipedia-sent - - - - 28.4 - 99.8 -
wikipedia-par - - - - 7.7 - 24.0 -
omamedia-sent 8.3 - - - 3.5 - 6.5 -
omamedia-par 2.0 - - - 0.8 - 1.6 -
ylefi-sent - - - - 14.2 - - -
ylefi-par - - - - 3.2 - - -

total-sent 53.7 32.3 5.9 7.9 82.2 22.2 144.6 20.4
total-par 11.7 6.9 1.2 1.6 19.4 4.8 33.7 4.5

Table 1: The distribution of sentence-level (sent) and paragraph-level (par) parallel data (para) and
monolingual data (mono) by language in the final dataset. Quantities are given in thousands, rounded to
the nearest tenth.

avoid back-translation between the four selected
languages because low-quality synthetic data can
harm the resulting performance instead of improv-
ing it (Yankovskaya et al., 2023).

Using the HuggingFace framework12, we fine-
tune both the sentence-level and paragraph-
level model for 10 epochs under equal con-
ditions. We set the hyperparameters of
Seq2SeqTrainingArguments to their default val-
ues with the following exceptions:

• We limit the generation length to 256 tokens.

• Following the MADLAD-400 paper, we set
up an inverse square root scheduler with 300
warmup steps.

• We distribute fine-tuning across 8 GPUs. To
approximately equalize the number of opti-
mization steps for both models, we adjust the
batch size depending on the total amount of
data: 8 examples for paragraph-level data and
32 examples for sentence-level data.

We perform fine-tuning on the LUMI13 super-
computer with AMD Instinct MI250X GPUs.

We use both models to translate paragraphs from
the modified Smugri FLORES benchmark. For
generation, we set the standard beam size of 5. We
evaluate translations with the BLEU and chrF++
metrics, of which we use the SacreBLEU (Post,
2018) implementations. When calculating chrF++,

12https://huggingface.co/
13https://lumi-supercomputer.eu/

we count only word bigrams. To measure statis-
tical significance and confidence intervals, we do
bootstrap resampling with 1000 resamples.

6 Results

In this section, we examine the obtained results,
starting with a quantitative analysis that presents
translations from Proper Karelian, Livvi, Ludian,
and Veps into Russian, as well as from Russian
to these four languages. Next, we conduct a brief
qualitative analysis. After this, we compare our
results with those generated by the online machine
translation engine Tartu NLP Neurotõlge14. Finally,
we explore how well translation abilities transfer
to the unseen case of English translation.

6.1 Quantitative analysis

We begin our analysis by comparing the transla-
tion quality of two MADLAD models—one trained
with sentences (SL model) and the other trained
with paragraphs (PL model) —as measured by the
automatic metrics of BLEU and chrF++ (see Sec-
tion 3.2). To translate paragraphs with the sentence-
level system, we process them sentence by sentence
and then merge back into a paragraph. Otherwise,
when given a full paragraph, the SL system tends
to translate it into a single complex sentence with
multiple subordinate clauses, thus decreasing the
scores.

The results are presented in Table 2, in which
we also provide the scores of the base MADLAD

14https://translate.ut.ee/
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base SL PL p-value

krl-ru 14.6 ± 1.7/40.2 ± 2.1 21.1 ± 1.9/48.7 ± 1.6 21.9 ± 2.0/49.5 ± 1.6 0.060 / 0.036
lud-ru 8.8 ± 1.6/31.1 ± 2.2 18.0 ± 1.8/45.2 ± 1.6 19.5 ± 2.0/46.1 ± 1.6 0.004 / 0.034
olo-ru 9.5 ± 1.6/31.9 ± 2.3 22.0 ± 2.0/48.2 ± 1.7 22.4 ± 2.2/48.9 ± 1.7 0.217 / 0.076
vep-ru 8.6 ± 1.5/30.8 ± 2.1 21.1 ± 1.8/46.5 ± 1.7 21.1 ± 1.8/47.0 ± 1.7 0.392 / 0.090

ru-krl 0.4 ± 0.2/3.0 ± 0.8 13.5 ± 1.5/46.8 ± 1.3 13.3 ± 1.6/46.9 ± 1.2 0.221 / 0.385
ru-lud 0.3 ± 0.1/2.5 ± 0.5 4.3 ± 1.1/34.1 ± 1.1 3.9 ± 1.1/33.8 ± 1.0 0.143 / 0.127
ru-olo 0.6 ± 0.4/2.9 ± 0.7 8.7 ± 1.4/40.7 ± 1.2 8.5 ± 1.4/40.2 ± 1.7 0.193 / 0.185
ru-vep 0.3 ± 0.1/3.0 ± 0.7 12.0 ± 1.4/43.1 ± 1.5 12.1 ± 1.6/42.4 ± 1.9 0.409 / 0.138

Table 2: Translation metrics for translation directions from/into Russian, BLEU and chrF++ scores (sepa-
rated by slash) of base MADLAD, sentence-level (SL) MADLAD, and paragraph-level (PL) MADLAD
evaluated on the paragraph-level Smugri FLORES benchmark. p-value is the probability that SL and
PL models are the same with respect to each metric; p-value less than 0.05 indicates that the difference
between the models is statistically significant (highlighted in bold).

model. In the last column, we provide a p-value
for each translation direction. Our null hypothesis
is that the two models, sentence- and paragraph-
level, are the same model. In cases where the p-
value is less than 0.05, we reject the hypothesis and
conclude that the difference between the models
is statistically significant, with one clearly outper-
forming the other.

First, we observe that the base MADLAD-400
model, with no fine-tuning, is able to translate
Proper Karelian, Livvi, Ludian, and Veps into
Russian with good initial quality. The Proper
Karelian→Russian translation score goes as high
as 14.6 BLEU or 40.2 chrF++. This probably in-
dicates that the model’s knowledge of related lan-
guages (Finnish, Estonian, Russian) was success-
fully transferred to this case.

After fine-tuning, the results improved consid-
erably. The paragraph-level (PL) model is signif-
icantly better than the sentence-level (SL) one in
the case of Ludian→Russian translation. The dif-
ference is notable, reaching 1.5 BLEU points and
0.9 chrF++ points. The chrF++ scores further con-
firm the superiority of the PL model in the Proper
Karelian→Russian direction. At the same time,
the BLEU metric shows no significant difference.
Finally, in all other cases, both metrics indicate that
the SL and PL models, on average, perform equally
well.

Thus, the paragraph-level model is no worse and,
at times, strongly better than the sentence-level
model. The difference is the most pronounced in
the case of translation into Russian, giving us rea-
son to believe that the PL model successfully re-

solves some discourse-level phenomena inherent
in Finno-Ugric languages, such as gender-neutral
pronouns. These phenomena occur rarely (yet they
are important for high-quality coherent translation),
and automated metrics do not necessarily reflect
the extent to which they have been handled. To fur-
ther investigate the issue, we qualitatively analyze
translated texts.

6.2 Qualitative analysis

Next we present the results of manual qualita-
tive analysis of paragraphs translations from the
FLORES-200 benchmark. Although the number of
discourse-level phenomena in the test set is quite
limited, we managed to discover cases where (i)
lexical cohesion must be preserved to translate ter-
minology and proper nouns and (ii) where pro-
nouns in different sentences must be aligned via
coreference resolution. A detailed descriptions of
errors presented in Table 3 and a summary is pre-
sented below.

The first part of the qualitative analysis addresses
lexical cohesion, which refers to the consistent
translation of terminology. The PL model trans-
lates terminology and names more consistently
than the SL model across all languages and direc-
tions (from Russian and to Russian). While the PL
model occasionally produces incorrect translations
of names and terms, it typically does so consis-
tently. In contrast, the SL model is inconsistent,
translating a term or name correctly in one sentence
but incorrectly in another, or generating incorrect
translations with slight variations (“Simonioff” and
“Simoninov”).
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→ SL PL Comments
krl-ru

Ранее, генеральный директор
Ring, Джейми

:::::::::
Симинофф, от-

метил, что компания получила
своё начало от того, что он не
услышал, как в его гараже за-
звонил звонок из магазина. Он
рассказал, что сделал Wi-Fi-
звонок.

::::::::::
Симинофф рассказала,

что продажи выросли после то-
го, как она появилась в 2013
году в шоу «Shark Tank», где
судьи отказались финансиро-
вать её выступление. В конце
2017 года

::::::::
Симинов появился

на покупательном канале QVC.
Кроме того, Ring заключил
соглашение с конкурирующей
компанией по обеспечению без-
опасности ADT Corporation.

Ранее генеральный директор
компании Ring Джейми
:::::::::
Симинофф отметил, что
компания получила своё
начало, когда он не услышал
звонок в дверь из магазина в
своем гараже. Он рассказал,
что сделал Wi-Fi дверной
звонок.

:::::::::
Симинофф сказал, что

признание выросло после того,
как он появился в 2013 году
в шоу Shark Tank, где судьи
отказались финансировать
его инициативу. В конце 2017
года

:::::::::
Симинофф появился на

торговом канале QVC. Кроме
того, Ring достиг соглашения
с конкурирующей компанией
безопасности ADT Corporation
в судебном процессе.

The PL system preserves the
company name and the per-
son’s surname across the para-
graph. The SL system preserves
the company name but trans-
lates the person’s surname differ-
ently; moreover, it changes the
person’s gender from sentence
to sentence.

lud-ru
Раньше генеральный директор
Ringo, Джейми

::::::::
Симинов, заме-

тил, что эта фирма ушла, по-
тому что он не услышал звон
дверей в своей гаражной ма-
стерской. Он рассказал, как
сделал дверной колокольчик
с варежкой.

::::::::
Симинов расска-

зал, что продажи выросли по-
сле его выступления в програм-
ме «Шаркий танк» в 2013 го-
ду, где судьи не стали при-
знавать его стартап. В конце
2017 года

::::::::
Симинов появился

на покупном TV-канале QVC.
Кинг также договорился о су-
дебном процессе с компанией
по охране прав конкурентов
ADT Corporation.

Ранее генеральный директор
Ring Джейми

:::::::
Симинов заме-

тил, что эта фирма пошла по
тому пути, что он не слышал
дверные колокольчики в своей
гаражной мастерской. Он ска-
зал, что сделал колокольчик с
помощью скатерти.

::::::::
Симинов

сказал, что продажи вырос-
ли после его появления в про-
грамме Shark Tank в 2013 году,
где судьи не стали понимать
его стартап. В конце 2017 го-
да

:::::::
Симинов проиграл дело на

QVC-телеканале. Ring догово-
рился также о судебном про-
цессе с компанией по охране
конкурентов ADT Corporation.

The PL system preserves the
company name and the person’s
surname across the paragraph.
The SL system translates the
company name first in Latin,
changing it, then in Cyrillic, get-
ting it wrong once again. The
person’s surname is translated
consistently.

vep-ru
Раньше начальник компании
«Круг» Зами

:::::::
Симинов заме-

тил, что эта кампания нача-
лась, когда он не услышал сту-
чащихся дверей на своем дво-
ре. Он сказал, что сделал Wi-
Fi-установку.

:::::::
Симинов сказал,

что продажи улучшились, ко-
гда он появился в 2013 году
в телепередаче «Shark Tank»,
в которой члены жюри согла-
сились выделить деньги на
его проект. В конце 2017 года
::::::::
Симинов появился на переда-
че QVC. Кроме того, компания
«Ринг» подала в суд на своего
конкурента – подпольную ком-
панию «ADT Corporation».

Ранее глава компании «Ring»
Жами

::::::::
Симинов заметил, что

эта кампания началась, когда
он не услышал дверной замк
на своем автосалоне. Он ска-
зал, что сделал Wi-Fi замк.
::::::::
Симинов сказал, что прода-
жи улучшились, когда он по-
явился в 2013 году в телепе-
редаче «Shark Tank», в кото-
рой единогласное жюри реши-
ло дать деньги его проекту. В
конце 2017 года

:::::::
Симинов по-

явился на телепередаче QVC.
Кроме того, компания «Ring»
устроила судебные разбира-
тельства со своей конкурент-
кой – компанией-покровителем
«ADT Corporation».

The PL system preserves the
company name and the person’s
surname across the paragraph.
The SL system translates the
company name in two different
ways: first, it is a literal transla-
tion (Ring—Круг), then it is a
transliteration of the English ti-
tle (Ring—Ринг). The surname
is translated in the same fashion
across the paragraph.

Table 3: Translations of the same paragraph from FLORES-200 performed by the sentence-level (SL)
MADLAD and paragraph-level (PL) MADLAD in three translation directions, demonstrating the preser-
vation of proper nouns. Underlined with a straight line comes a company name (Ring), underlined with a
wavy line comes a person’s surname (Siminoff).
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PL Neurotõlge

krl-ru 22.0 ± 2.0/49.1 ± 1.8 23.4 ± 2.0/50.4 ± 1.6

lud-ru 19.3 ± 1.8/46.2 ± 1.5 21.7 ± 2.0/48.2 ± 1.4

olo-ru 22.1 ± 2.2/48.5 ± 1.7 25.9 ± 2.4/51.4 ± 1.8

vep-ru 20.7 ± 1.8/46.3 ± 1.8 26.5 ± 2.5/51.2 ± 1.8

ru-krl 13.4 ± 1.5/46.8 ± 1.3 10.6 ± 1.3/43.5 ± 1.2

ru-lud 4.0 ± 1.0/33.3 ± 1.0 3.6 ± 1.0/31.6 ± 1.2

ru-olo 8.4 ± 1.4/40.6 ± 1.2 7.0 ± 1.3/36.2 ± 1.2

ru-vep 12.0 ± 1.7/43.0 ± 1.5 12.1 ± 1.5/42.9 ± 1.4

Table 4: Comparison between our paragraph-level (PL) translation system and Neurotõlge for translation
directions from/into Russian. BLEU and chrF++ scores (separated by slash) of Neurotõlge and paragraph-
level (PL) MADLAD as evaluated on the paragraph-level Smugri FLORES benchmark.

We also identified several types of errors specific
to translations into Russian. For instance, the same
word may appear in translation in its original form
(“Ring”), as a literal translation into Russian from
English (“Круг”), or as a transliteration into Cyril-
lic script (“Ринг”). The SL model more frequently
combines these three forms inconsistently within
the same text compared to the PL model.

The second part of the analysis focuses on coref-
erence resolution, specifically examining the use
of pronouns. While many paragraphs in the bench-
mark dataset mention people, most of them are
about men. Both the SL and PL models translated
gender-related structures correctly in most cases,
typically defaulting to the male gender. However,
we found examples where both models struggled
with gender, although the PL model made fewer
mistakes overall.

To illustrate our findings, we present a paragraph
containing examples of lexical cohesion and coref-
erence resolution. Table 3 provides translations
of this paragraph generated by the SL and PL sys-
tems. It is translated into Russian from Proper
Karelian, Ludian, and Veps, with translations from
Livvi omitted to save space. English reference of
the paragraph is provided below:

Previously, Ring’s CEO, Jamie
:::::::
Siminoff, re-

marked the company started when his doorbell
wasn’t audible from his shop in his garage. He
built a WiFi door bell, he said.

::::::::
Siminoff said sales

boosted after his 2013 appearance in a Shark Tank
episode where the show panel declined funding the
startup. In late 2017,

:::::::
Siminoff appeared on shop-

ping television channel QVC. Ring also settled a
lawsuit with competing security company, the ADT
Corporation.

A detailed explanation of the mistakes made by
the systems is presented in Table 3. As we can
see, the results highlight the PL model’s ability to
effectively handle discourse-level phenomena.

6.3 Comparison with previous results

We compared the results of our paragraph-level
model with translations generated by the online
machine translation engine Tartu NLP Neurotõlge.
The online system demonstrates significantly bet-
ter performance when translating into Russian (Ta-
ble 4). However, our model outperforms Tartu
NLP Neurotõlge when translating from Russian to
Proper Karelian and Livvi and shows comparable
results for Ludian and Veps. For example, in the
Russian→Proper Karelian direction, the PL model
beats Neurotõlge by 2.8 BLEU or 3.3 chrF++.

6.4 Zero-shot English translation

In this final experiment, we investigated how well
the translation abilities of the models transferred
to unseen pairs of languages in the example of En-
glish. We translated the FLORES-200 benchmark
from Proper Karelian, Livvi, Ludian, and Veps to
English and back. The results are shown in Table 5.

First, we notice that the original model without
fine-tuning already has high scores for translation
into English. This probably means that the model
transferred its knowledge of Finnish and Estonian
to their low-resource relatives. Besides, MADLAD-
400 has seen much more data in English than in
any other language, which may account for the
scores being bigger than for zero-shot translation
into Russian.

Next, we observe the boost in accuracy after
fine-tuning, which tells us that the knowledge has
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base SL PL p-value

krl-en 20.8 ± 2.1/49.4 ± 1.5 25.5 ± 1.8/53.7 ± 1.3 27.1 ± 2.1/55.0 ± 1.4 0.025 / 0.003
lud-en 11.4 ± 1.9/37.5 ± 1.8 19.2 ± 1.8/47.6 ± 1.4 20.1 ± 2.1/48.8 ± 1.5 0.037 / 0.005
olo-en 10.3 ± 1.6/36.7 ± 1.7 17.9 ± 1.6/45.9 ± 1.4 18.1 ± 1.7/46.8 ± 1.4 0.240 / 0.007
vep-en 6.4 ± 1.5/31.6 ± 1.8 14.8 ± 1.8/43.4 ± 1.5 13.4 ± 1.6/42.9 ± 1.4 0.003 / 0.071

en-krl 0.9 ± 0.5/4.7 ± 0.8 15.3 ± 1.8/48.0 ± 1.4 13.5 ± 1.6/46.5 ± 1.3 0.002 / 0.001
en-lud 0.3 ± 0.1/2.8 ± 0.4 3.2 ± 1.2/31.6 ± 0.9 3.7 ± 1.2/32.1 ± 0.9 0.051 / 0.031
en-olo 0.6 ± 0.4/3.1 ± 0.5 7.3 ± 1.3/37.3 ± 1.1 6.8 ± 1.1/36.7 ± 1.1 0.101 / 0.012
en-vep 0.5 ± 0.3/3.6 ± 0.5 7.7 ± 1.3/37.6 ± 1.3 7.9 ± 1.2/37.7 ± 1.3 0.259 / 0.184

Table 5: Zero-shot performance for translation from/into English. BLEU and chrF++ scores (separated by
slash) of base MADLAD, sentence-level (SL) MADLAD, and paragraph-level (PL) MADLAD evaluated
on the paragraph-level Smugri FLORES benchmark. p-value is the probability that SL and PL models
are the same with respect to each metric; p-value less than 0.05 indicates that the difference between the
models is statistically significant (highlighted in bold).

been successfully transferred to the unseen case of
English translation. The scores for translation into
English exceed those for translation into Russian
and go up to 27.1 BLEU and 55.0 chrF++ in the
case of Proper Karelian→English translation. As
for the translation from English, the scores remain
nearly equal to those for translation from Russian.

The ratio of capabilities of the sentence-level and
paragraph-level models changes from case to case,
with both BLEU and chrF++ metrics sometimes
indicating the significant superiority of the PL sys-
tem (Proper Karelian→English, Ludian→English)
and sometimes the superiority of the SL system
(English→Proper Karelian). As no direct fine-
tuning, there is no wonder that the results oscillated
so much.

However, the key indicator for us is the ability of
the models to handle discourse-level phenomena.
As all the languages in question have Latin script,
the issue with translating proper names becomes
less pronounced. Yet, the distinction between the
models is apparent when it comes to gender consis-
tency. For the example explored in Subsection 6.2,
the SL model inconsistently shifts gender when
translating sentences from any studied language
into English. The PL model, unlike the SL, consis-
tently and accurately translates gender across the
paragraph for all languages.

7 Conclusion

In this paper, we developed a machine transla-
tion system for four low-resource Finno-Ugric lan-
guages: Proper Karelian, Livvi, Ludian, and Veps.
Unlike previous MT systems that cover the same

languages, ours is paragraph context-aware. The
analysis showed that the model consistently trans-
lates names and terminology, though, it still en-
counters difficulties with coreference resolution.

The developed system has been trained only on
parallel corpora with Russian. Nevertheless, the
system is also capable of translating to and from
English, despite not being trained to do so, with
paragraph-level abilities being successfully trans-
ferred to this case.

Additionaly, we presented a FLORES-based
benchmark dataset for Proper Karelian (Viena), Lu-
dian, and Veps. The collected paragraph-level cor-
pora are released as HuggingFace scripts that will
allow one to re-collect the data.

We leave for future work experiments with
more Finno-Ugric languages, including creating
a paragraph-level benchmark that enables a more
thorough evaluation of discourse-level phenomena
handling. It would also be interesting to compare
our results with multilingual decoder-only models,
as many of these are starting to emerge.
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Abstract

We examine how well Danish culture-
specific metaphors are explained by two of
the best performing language models for
Danish, ChatGPT and Llama. For com-
parison, the explanations are measured
against how well cross-lingual (or ’univer-
sal’) metaphors are explained by the mod-
els; referring here to metaphors that ex-
ist in Danish as well as across cultures
and languages and in particular in English.
To perform our study, we compile a pilot
dataset of 150 Danish metaphors and id-
ioms divided tentatively by culture speci-
ficity. We prompt the two models and per-
form a careful qualitative evaluation of the
explanations against a four-graded scale.
Our studies show that both models are
heavily biased towards English since they
have much more success in explaining the
metaphors that also exist in English than
the culture-specific ones, relying presum-
ably on erroneous transfer from English
when dealing with the latter. In partic-
ular, the sentiment of the culture-specific
metaphors seems to be often ’lost in trans-
lation’. We further claim that this strong
colouring towards English poses a serious
problem in the era of LLMs with regards
to developing and maintaining cultural and
linguistic diversity in other languages.

1 Introduction

Metaphorical expressions are an essential part of
language and offer considerable cognitive benefits
in both oral and written communication by mak-
ing the content much more personal and engag-
ing (Noveck et al., 2001; Citron and Goldberg,
2014; Prabhakaran et al., 2021). Metaphorical lan-
guage is therefore also highly frequent and occur

with reference to both universal, culture-specific
and personal aspects of life. In other words,
metaphors and idiomatic expressions provide an
advanced tool for humans to express themselves
in abstract and complex situations with reference
to highly culture-specific, personal, and opinion-
oriented values (Lakoff and Johnson, 1980).

With the recent advancements of large lan-
guage models (LLMs), however, using metaphors
in communication is no longer exclusive to hu-
mans. Chatbots like ChatGPT produce and inter-
pret metaphors when they communicate, and they
do so with apparent fluency and equilibrism, in
particular for English. A more careful look into
the use of metaphors in language models, how-
ever, exposes quite a lot of serious problems and
cultural biases, even if it is hard to pinpoint ex-
actly from where these problems arise. Some may
be due to unbalanced training data where some
languages are prioritised over others and thereby
causing erroneous language transfer and cultural
hallucinations (Zhang et al., 2023; Cao et al.,
2023) and (Myung et al., 2024). Others may de-
rive from a general lack of grounding of the lan-
guage models with respect to physical objects and
spacial conditions, and therefore a lack of ability
to ’see’ which features from a concrete sense are
transferred to the metaphorical meaning; a deficit
that may decrease in future with language mod-
els becoming increasingly more multi-modal (Szot
et al., 2024).

Under all circumstances, cultural biases in the
use of and interpretation of metaphors become
particularly evident and problematic when work-
ing with the models on medium-resourced lan-
guages like the Scandinavian ones. Standard tech-
niques for evaluating the language models in terms
of large-scale benchmarks that are often both rigid
and simplistic in nature do not reveal a fully nu-
anced picture of how this complex figure of speech
is dealt with by the models, as mentioned for Dan-
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ish in (Pedersen et al., 2024).

In order to gain better knowledge and under-
standing of the models’ treatment of metaphor in
our own language, we therefore aim at i) com-
piling a pilot metaphor dataset, which is cultur-
ally sensitive in that it is developed from Dan-
ish language resources and from the point of per-
spective of the Danish society, and ii) providing
qualitative evaluations by Danish native speakers
of the explanations given by the models on these
metaphors.

For our study of model performance, we
choose the currently two best performing mod-
els in Danish according to the Scandeval Bench-
mark, namely ChatGPT and Llama, as reported in
(Nielsen, 2023, 2024). Both chatbots are based on
high-performing multilingual transformer models
that are well-suited for the kind of conversation on
metaphors that we are interested in with our ex-
periments. Where Llama is a partly open-source
model, GPT is a proprietary model. We are how-
ever only exploring the models via prompting.

The paper is organised as follows: To posi-
tion our work, we refer in Section 2 to related
work on metaphors in linguistics, lexicography,
and NLP. Further, in Section 3 we describe the cre-
ation of the culture-specific pilot dataset of Danish
metaphors, looking into the typical source and tar-
get domains reflecting cultural aspects of the Dan-
ish society. Section 4 is devoted to our model ex-
periments with ChatGPT and Llama and explains
how we have prompted the models about Danish
metaphors in both Danish and English and with
and without a textual context. We describe in
Section 5 our procedure for evaluating the LLM-
generated explanations against a four-graded scale
and discuss the annotation agreement results. In
Section 6 we show and analyse the results and
compare how the models deal with culture-specific
vs. cross-cultural metaphors, and to which extent
the two models differ in performance. All data are
made freely available from github 1. Finally, in
Section 7 we conclude and sketch out how our ex-
periments might be scaled up in future work and
hopefully used for model improvement.

1https://github.com/kuhumcst/
danish-semantic-reasoning-benchmark/
tree/main/metaphors

2 Related Work

Metaphors have been studied intensively in lin-
guistic theory for decades and are considered an
essential figure of speech that is closely related
to our conceptual and cognitive system as well as
to our culture. The work of Lakoff and Johnson
(Lakoff and Johnson, 1980) constitutes a landmark
in this line of research in stating that metaphors
are fundamentally a basic means of understand-
ing complex concepts of feelings and abstractions
through mappings from more concrete and di-
rectly understandable domains. They further un-
derline that the most fundamental values in a cul-
ture will be coherent with the metaphorical struc-
ture of the most fundamental concepts in the cul-
ture.

In recent linguistic studies, focus has further
been into getting a deeper understanding of the un-
derlying cognitive processes of metaphors (Bam-
bini et al., 2019), as well as achieving consen-
sus both monolingually and across languages of
what constitutes a metaphor, often referred to
as the Metaphor Identification Procedure (MIP)
(Crisp et al., 2007; Nacey et al., 2019; Sanchez-
Bayona and Agerri, 2024). Other works examine
how metaphor relates to other figurative figures of
speech such as irony, sarcasm, and hyperbole (Ba-
dathala et al., 2023), (Burgers et al., 2018).

In lexicography, conventionalised metaphors
are typically described as specific word senses and
most often also labelled explicitly in the dictio-
nary as figurative/metaphor. In many cases the
metaphor is also structurally related to its concrete
sense in the form of a subsense/main sense rela-
tion. One example is the verb to splice in the
Oxford English Dictionary (OED.com), where a
subsense to the first sense of the verb is described
as In various transferred and figurative uses: To
unite, combine, join, mend. Also Svensk Ordbok
(Swedish Dictionary, svenska.se) marks figurative
subsenses (as in fönster (’window’) with the label
äv. bildligt (’also figurative’)). In other cases, the
dictionaries simply mention the figurative mean-
ing as part of the concrete sense description. In the
Danish Dictionary (Det Danske Sprog- og Litter-
aturselskab, 2024), however, metaphors are almost
always described as subsenses labelled ’metaphor-
ical’ or ’slang’ making them thereby easy to iden-
tify and extract for our present study.

Further, recent wordnet studies suggest a lexical
metaphor representation, called ChainNet, where
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the link to the concrete meaning is highly explicit
and where features from the concrete sense that
are transferred to the metaphorical sense are de-
scribed in a systematic way in terms of so-called
feature transformations (Maudslay et al., 2024).

In NLP, metaphors are also a topic of inter-
est since understanding and representing them is
one of the most challenging tasks to deal with in
the field. In particular, it has been questioned to
which extent LLMs generalise over the metaphor-
ical meanings and represent the reference to the
source domain, or whether they memorise them
(Pedinotti et al., 2021; Aghazadeh et al., 2022;
Wachowiak and Gromann, 2023). Knowledge
graphs of metaphorical facts have further been
studied as a means to represent the metaphor re-
lations in the models in order to improve perfor-
mance (Peng et al., 2021).

3 The Danish Pilot Metaphor Dataset

3.1 Single Word Metaphors and
Metaphorical Idioms

For our study, we have compiled a pilot dataset
comprising 150 Danish metaphors of which 75 are
single word metaphors (as in sejle (’to sail’) and
75 are metaphorical idioms (as in høste frugterne
meaning ’reap the fruits’). All are extracted from
The Danish Dictionary facilitated by the afore-
mentioned main/subsense structure and by infor-
mation on metaphorical use. In the editing pro-
cess, most of the senses in the dictionary were as-
signed a (not published) value from a set of 152
different domain labels established as part of the
dictionary project. This underlying information
allows us to identify figurative senses within simi-
lar source domains such as agriculture and nautical
terms. In the case of the metaphorical multiword
expressions - which contain no information on do-
main, neither on the relation to a concrete sense -
we rely on the domain information of the central
lemmas in the expression.

3.2 Culture-specific vs. Cross-cultural
Metaphors

A central aim of our experiment is to develop
and test a culturally sensitive dataset of metaphors
in Danish since we hypothesise that these may
cause specific problems and expose specific weak-
nesses and bias in the language models. For each
of the two types of metaphors (single-word or
multi-word), 50 words/idioms were therefore se-

lected for being culture-specific to Danish (com-
pared to English). In addition, a smaller set of 25
words/idioms that do exist correspondingly in En-
glish were selected for comparison. The datasets
were validated by two informants who tested the
(translated) metaphorical expressions in a network
of English native speakers in order to confirm to
which extent they are used also in their mother
tongue. As commented on by our informants, the
task of deciding whether an expression is culture-
specific vs. cross-cultural was in fact not always
truly binary since several grey-zone examples ex-
ist. In several cases approximate expressions do
exist in English but not with the exact same selec-
tion of words from the source domain. In all such
cases, however, we chose a restrictive approach
and labeled the Danish expressions as culture-
specific since there were no exact matches in En-
glish.

Such a grey-zone example is the metaphorical
use of studehandel in Danish referring to a (polit-
ical) agreement where two parties give a bargain
on their overall ideological principles in order to
each achieve short-term benefits. The concrete lit-
eral translation to English is ’stud trading’; how-
ever, a translation of the Danish metaphor into En-
glish would rather be ’horse trading’ since ’horse’
is the animal typically used in English to convey
the same kind of agreement. Likewise, myreflittig
in Danish has the literal translation ’ant diligent’,
but the corresponding metaphor in English would
be ’busy as a bee’, i.e. using another insect from
the source domain to express a similar if not ex-
actly the same meaning.

3.3 Typical Source and Target Domains of
Danish Metaphors

We aim towards representing a selection of spe-
cific Danish traits of culture through a number of
typical source and target domains of metaphors,
i.e. domains which represent central aspects of
the Danish society. As for the source domains,
these include in particular the domain of farm-
ing and agriculture as found in examples like
håndplukning (lit. ’handpicking’, fig. ’care-
fully selecting a specific person for something, for
instance a professional position’), malkning (lit.
’milking’, fig. ’to achieve money or information
in a reckless manner’), gøde jorden, (lit. ’to fer-
tilise the soil’, fig. ’to provide the prerequisites
for something to happen’), and tærske langhalm,
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(lit. ’thresh long straw’, lit. ’to speak too much
about the same topic without providing new infor-
mation’) to give just a few. Also related to the old
farming community are needle work metaphors
as in rendemaske (’running stitch’) referring in a
derogative way to a ’roving person’.

The shipping domain is also central to the Dan-
ish self-understanding as represented by a long list
of nautical metaphors such as kæntre (lit. ’cap-
size’), ballast (lit. ’ballast’), and sikker havn (lit.
’safe harbour’) just to mention a few. Interest-
ingly enough, however, our informants made clear
that these metaphors have many direct equivalents
in English, probably due to the inherent cross-
cultural nature of shipping. This goes for the ones
mentioned above; an exception though is the term
splejse, (lit. ’to splice (a rope)’) which in Danish
refers very specifically to sharing a bill.

Last but not least, a set of miscellaneous do-
mains are represented in our dataset, referring to
e.g. animals as in haj (lit. ’shark’) referring to
someone with good skills or kylling (lit. ’chicken’)
referring to someone with a cowardly behaviour.
Many animal metaphors exist in a similar way
in English, however, often with a slightly dif-
ferent connotation. More clearly culture-specific
for Danish are different kinds of miscellaneous
foods and artifacts, e.g. using klejne (lit. ’twisted
cookie’) as a reference to money or koks (lit.
’coke’) as a reference to disorder and chaos.

Finally, it should be noted that in spite of their
frequency, bodily anchored metaphors like tage
hånd om noget (lit. ’take hand around something’
meaning ’deal with something’) and få fod på
(meaning ’get a foothold on something’) are not
prioritised in our dataset since we overall consider
them as being quite universal in nature and thus
not particularly specific to Danish culture even if
the specific lexical choices may differ in many
cases.

Regarding the target domains, a majority of
the selected metaphors are typical conceptual
metaphors in the sense that concrete concepts
map onto more abstract ones conveying an ab-
stract or mentally complex meaning as seen in
e.g. hønsegård (lit. ’chicken coop’) which in
its metaphorical sense reflects an environment
characterized by indifferent talk, gossip, pecking
order etc. corresponding approximately to the
metaphorical meaning of ’barnyard’ in English.

Several of the metaphors selected, however,

map an artifact to another artifact, often resulting
in a negative sentiment of the concrete target as
in havelåge (lit. ’garden gate’) or skærveknuser
(lit. ’shard crusher’) both referring to old creaking
bikes; relating indirectly to the fact that bikes are a
very common means of transport in Denmark, and
that they are not always in a good shape.

In fact, several of the selected metaphors con-
vey a somewhat negative sentiment, presumably
referring indirectly to the concept of the famous
’Law of Jante’2. This ’law’ refers to a strong cul-
tural norm existing particularly in Denmark and
Norway that emphasizes humility and collective
equality. It basically states that no one should
think they are better than others. Examples of
metaphors referring to this norm and with a clear
negative sentiment are højbenet and højpandet
(lit. ’long-legged’ and ’with a high brow’) mean-
ing ’being knowledgeable in an arrogant way’,
tågehorn (lit. ’fog horn’) referring to somebody
who talks a lot in an arrogant and unclear manner,
and flødebolle (’chocolate candy with a filling of
egg white whipped with sugar’) referring to a per-
son who is smug and has (too) high thoughts about
himself, probably referring back to the fluffy egg-
white foam with little substance. Høj cigarføring
(lit: ’high holding of one’s cigar)’ meaning be-
ing self-conscious and arrogant is another such ex-
pression.

4 Experiments

4.1 The Models Selected for Experiments

In the following, we describe the two models se-
lected for the experiments.

ChatGPT: To represent ChatGPT, we use the
ChatGPT-4o mini model which became available
to the public in the ChatGPT web-interface3 in
July 2024. The model is trained on data up to Oc-
tober 2023. In the experiments, we used a combi-
nation of the web-interface and the API to access
the model.

Llama: Llama is represented by the Llama 3.1
405B model. This model has 405 billion parame-
ters and like ChatGPT-4o mini, is trained on data

2The norm was formulated by the Danish-Norwegian au-
thor Aksel Sandemose in his novel ”A Fugitive Crosses His
Tracks” from 1933.

3https://chatgpt.com
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Danish English

Isolated
Hvad er den overførte betydning af ordet/udtrykket
X, og hvad har det med X i den almindelige betydning
af gøre? Har man den samme metafor på engelsk?

What is the metaphorical meaning of the Danish word/
expression X, and what has it got to do with the basic
meaning of X? Does the same metaphor exist in English?

In context
Hvad betyder ordet/disse ord X i følgende
eksempel: [CONTEXT]?

What does the Danish word/words X mean in the following
example: [CONTEXT]?

Table 1: Examples of experimental prompts.

until late 2023. In the experiments, we access the
model through the Llama API 4.

For both models it holds that information on the
exact training data is not public knowledge. From
information on previous model versions, we as-
sume, however, that the vast majority of the train-
ing data stems from English texts5.

4.2 Prompting the Models

We prompt the models using templates. The same
templates are used for prompting both models re-
gardless of prompting through a web-interface or
API.

We experiment with two types of templates: (1)
prompting to explain the metaphor in isolation and
(2) prompting to explain the metaphor within a
context. Inspired by recent work (Myung et al.,
2024), we hypothesise that prompts in English
about Danish might provide higher quality expla-
nations than prompts in a less-resourced language
like Danish. Thus, we ask both types of prompts in
both Danish and English, resulting in four differ-
ent prompts. The templates for the four prompts
are shown in Table 1.

In this setup, we collect a total of 600 responses
per model, covering (1) culture-specific and cross-
cultural metaphors, (2) metaphors in isolation and
within context, (3) prompts (about Danish) in
Danish and English, and finally (4) single-word
and multi-word metaphors.

5 Qualitative Evaluation of
LLM-Generated Explanations

5.1 Evaluation Procedure

All LLM-generated explanations of metaphors
were carefully evaluated by a human expert. We
used a four-graded scale of evaluation, where a
score of ’1’ denotes a completely wrong expla-
nation of the metaphor with hardly any relevant

4https://www.llama-api.com/
5For ChatGPT 3.5 it was reported that only 0,5 % of the

training material was in Danish and more than 50 % in En-
glish (www.lex.dk).

points well explained, ’2’ denotes a wrong expla-
nation but with some relevant points explained, ’3’
denotes a generally correct explanation but with
some irrelevant points mentioned, and ’4’ is given
for a correct explanation comprising a reference to
all relevant aspects.

Consider below the example of an explanation
of sejle (’to sail’) given by ChatGPT to which the
experts have assigned a score of 1:

The metaphorical use of ”sejle” reflects its ba-
sic meaning of sailing. Just as sailing involves
steering a vessel through different conditions,
the metaphor suggests managing one’s course
through various life situations or challenges. It
implies that, like a skilled sailor, a person is suc-
cessfully navigating through complexities or ad-
versities with a sense of control and confidence.

In fact, the metaphorical meaning in Danish is
rather the complete opposite, meaning that every-
thing is chaos as shown in the example hele huset
sejler (lit. ’the entire house is sailing’ meaning
that it is a complete mess). The nautical idiom tage
bestik (lit: ’calculate the course (of a ship)’) is an-
other example evaluated with 1, since the explana-
tion is based on a completely wrong literal trans-
lation of bestik, which can also mean ’cutlery’ in
Danish.

An example of an explanation evaluated with a
2 is the following with the shipping verb splejse
(’to splice’):

Metaphorically, ”splejse” is used to describe the
act of combining or merging different elements,
ideas, or people in a way that creates a cohe-
sive unit. For example, if someone talks about
”at splejse ideer” (splicing ideas), they mean in-
tegrating or combining different ideas to form a
more comprehensive or effective concept. Simi-
larly, ”at splejse folk” (splicing people) can refer
to bringing people together, such as in network-
ing or forming partnerships.

In this case, the merging aspect is correctly
explained as a transfer from the concrete handi-
craft meaning, however, ChatGPT misses the ac-
tual meaning of splejse in Danish which is used
when you pool your money together as a group to
buy a gift together for instance, or to collectively
pay for a dinner.
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Further, an evaluation of 3 is given to the fol-
lowing explanation of mursten (’brick’, referring
in Danish to a big, heavy book):

Metaphorically, ”mursten” (brick) can be used
to describe something fundamental or essential,
akin to how bricks are fundamental components
in construction. For example, if someone refers
to a concept or an idea as a ”mursten,” they are
suggesting that it is a crucial building block or
a key component in a larger structure or sys-
tem. Additionally, ”mursten” can be used in a
more specific sense to describe something that
is heavy or burdensome. For instance, referring
to a lengthy report or a difficult problem as a
”mursten” might imply that it is a substantial,
challenging task to handle, much like lifting or
working with bricks.

Where part of this explanation is completely
off (and seems to be inspired by the metaphori-
cal meaning of the English cornerstone), ChatGPT
does in fact capture the essence of the metaphori-
cal meaning in the last part of the explanation, re-
ferring to the example ’a lengthy report’.

Finally, a top score of 4 is given by the experts to
the following explanation of metaphorical expres-
sion brænde alle broer (lit: ’burn all bridges’):

Brænde alle broer bag sig literally means ”to
burn all bridges behind oneself.” The basic
meaning is quite straightforward: it refers to
the act of destroying or severing all connections,
paths, or relationships behind you, making it im-
possible to return or go back. The metaphori-
cal meaning of this expression is that someone is
severing all ties or relationships with their past,
making a drastic change, or taking a bold step
forward without the possibility of turning back.
This can be applied to various situations, such as
leaving a job, ending a relationship, or making a
significant life decision.

It should be noted that we do not as such evalu-
ate the part of the explanation concerning whether
or not the model finds that a similar metaphor ex-
ists in English. This part was rather used to get
an impression of where erroneous transfer might
come from, and also served as an extra check
of whether the informants might have overlooked
something when judging the universality of the
metaphor.

5.2 Annotator Agreement
Five expert evaluators were involved in the eval-
uation of the LLM-generated explanations. All
evaluators are computational linguists, three of
them with specific expertise in computational lex-
icography. To calculate the inter-annotator agree-
ment (IAA), three experts annotated 20% of the

explanations where the models were prompted
with a metaphor in isolation (i.e. without a tex-
tual context), resulting in a Cohen’s Kappa agree-
ment score of 0.475 for the four-graded scale and
0.684 when collapsing the grading into a binary
false/true task (i.e. collapsing score 1 and 2 as
false and score 3 and 4 as true). Because of the
discrepancies and spread in the grading during
this first round, the annotation scheme was fur-
ther discussed and exemplified among the anno-
tators, and two experts subsequently annotated all
explanations of metaphors in isolation, resulting
this time in a Kappa score of 0.633 on the four-
graded scale and 0.857 when seeing the task as
binary (true/false). Overall, this can be considered
substantial agreement and suggests that despite the
inherent subjectivity of the semantic task (based
on a relatively open annotation scheme), the an-
notators demonstrated a robust consensus on the
evaluation. Disagreement cases were partly due to
diverging assessments when faced with e.g. Dan-
ish misspellings or invented words (most typical
for Llama), partly due to different opinions on how
much to ’punish’ wrong or missing bits of expla-
nations.

Figure 1: Explanations of Cross-cultural vs.
culture-specific metaphors

6 Results and Discussion

As shown in Figure 1, both models have much
more success in explaining the metaphors that
also exist in English than the culture-specific
ones. This indicates that they have too little
information on Danish when dealing with the
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Figure 2: Isolated vs. in context prompts

culture-specific metaphors and therefore halluci-
nate wrongly (from an English source) in many
cases. It can also be seen that the two mod-
els differ in quality, with ChatGPT outperform-
ing Llama. For both models, it is clear that
when prompted with an example context, they per-
form remarkably better (Figure 2) than when they
are prompted without a context and just asked
about the metaphorical meaning. Likewise Fig-
ure 4 shows that multiword metaphors are easier to
grasp than single word metaphors, presumably due
to the multiple words from the expressions them-
selves. Figure 3 shows that both models perform
marginally better when prompted in English about
Danish than when prompted in Danish.

Further, we note that metaphors that map from
an artifact in the source domain to another arti-
fact in the target domain are generally very hard
for the models to predict, and this goes across all
experiments. In particular, Llama has a tendency
of (amusing) hallucinations, some of which seem
to stem from quite simple morphological errors or
misspellings. As in the following example where
fis (lit.’fart’ meaning ’fuss’ or ’craziness’) from the
expression roterende fis i kasketten meaning ’be-
ing crazy’ is changed to fisk (’fish’). This error
evokes a long story about fish swimming round
and round in a cap and becoming stressed by it:

Udtrykkets oprindelse er usikker, men det er
sandsynligt, at det kommer fra en gammel
forestilling om, at fiskCould godt biputte sig i
en kasket eller en anden lille, lukket beholder.
Hvis fisken så begyndte at rotere rundt i kasket-
ten, ville det være et tegn på, at den havde mis-

Figure 3: Danish prompts vs. English prompts
about Danish metaphors

tet sin normale adfærd og nu var i en tilstand af
stress eller panik.

’The origin of the term is uncertain, but it is likely
that it comes from an old notion that fish could
nestle well in a cap or other small, closed con-
tainer. If the fish then began to rotate around the
cap, this would be a sign that it had lost its nor-
mal behavior and was now in a state of stress or
panic.’

Another example of hallucination regards the
explanation of the concrete meaning of the (in fact
cross-cultural) idiom en nål i en høstak (’a needle
in a haystack’) about a task which is really hard, in
fact almost impossible. Here Llama hallucinates
about women working too close to the haystacks
with their needles and therefore missing them in
the stack.

I den almindelige betydning af udtrykket handler
det om at lede efter en nål, som er blevet tabt
i en høstak, hvilket var et almindeligt problem
førhen, da kvinder ofte syede eller reparerede tøj
nær høstakke. Høstakke var meget store og hvis
nålen faldt ud, kunne det være en stor opgave at
finde den igen.

’In the common sense of the term, it is about
looking for a needle that has been dropped in a
haystack, which was a common problem in the
past, as women often sewed or repaired clothes
near haystacks. Haystacks were very large and if
the needle fell out, it could be a big task to find it
again’

Another thing that typically goes wrong in both
models’ explanations, and which is not so well
captured by the grading, is the aspect of con-
notation or sentiment. In quite a lot of cases,
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Figure 4: Single word vs. multiword metaphor

the models interpret the metaphors far too posi-
tively, missing completely the derogative or neg-
ative connotation of the concept and thereby the
typical sarcastic Danish ’tone’, which can in
some contexts be rather harsh. Examples of
such misunderstood metaphors, of which sev-
eral have already been mentioned and explained
above, are: rendemaske (lit. ’running stitch’),
’tågehorn, (’foghorn’), højbenet, (lit. ’high-
legged’), højpandet, (’with a high brow’) sejle,
(’to sail’), koks (lit. ’coke’), hønsegård, (lit.
’chicken coop’), havelåge, (lit. ’garden gate’), and
skærveknuser, (lit.’shard crusher’). Likewise with
the multiword metaphors en sang fra de varme
lande, (lit.’a song from the warm lands’ meaning
’an evasive, bland explanation or reply’) and se-
jle sin egen sø (lit. ’sailing your own sea’ mean-
ing ’be left to yourself; deal with your own prob-
lems (as a well-deserved punishment)’. Last but
not least, similar things happen with metaphors of
sexual connotations, which are completely over-
looked or ignored by both models.

6.1 Limitations

Our dataset is relatively limited in size and would
be improved by being scaled up. On the other
hand, all 1,200 automatically generated explana-
tions were carefully human-evaluated providing
thereby an interesting set of nuanced observations
regarding the performance of the models. Another
limitation relates to the fact that we claim to ex-
plore culture-specific vs. cross-cultural metaphors
in LLMs without going into the more ethnographic

discussion of what defines a culture and a lan-
guage community. We have limited ourselves to
look into Danish metaphors and compare them
with English because we are aware that a major-
ity of the training material used to train the mod-
els is in English. From there on we make a gen-
eral assumption regarding lack of cultural diver-
sity in current high-performing LLMs. Further,
some of the cultural characteristics described for
Danish may also count for the other Scandinavian
communities, while others may not. Some are
reflected also in other Northern European coun-
tries, whereas some are uniquely Danish. Further-
more, our informants have only involved British
native speakers. This may also have caused some
unintentional biases in our dataset where some
metaphors may or may not exist in American En-
glish compared to British English.

7 Conclusions and Future Work

We have compiled a dataset of culture-specific
Danish metaphors supplemented with metaphors
that are also found cross-culturally, or more
specifically between Danish and English. Our aim
was to examine how well the two leading chatbots
on Danish explain the metaphors and their refer-
ence to the source domain, and to which extent we
could see a pattern of decline in quality of the ex-
planations deriving from culture-specific expres-
sions that do not have a parallel in English. Our
experiments confirm our hypothesis quite strongly.
Culture-specific metaphors are highly complex for
the models to interpret, and the explanations indi-
cate that erroneous language transfer from English
takes place to a large extent, leading to strongly
biased and/or hallucinated explanations. In par-
ticular, the models have problems in capturing
the right sentiment of the metaphors, distorting
thereby the specific Danish ’tone of voice’.

Chatbots like ChatGPT are currently rolled out
throughout society, in particular through Co-pilot
Enterprise, and people are using them for all kinds
of tasks. In this context, the strong colouring to-
wards English that we have documented in our
work, indicates that the developing and maintain-
ing of cultural and linguistic diversity is under
strong pressure, and that the development might
move very fast. This tendency is reinforced by
the fact that the hallucinations are very well-
formulated and on the surface convincing, mean-
ing that only the highly experienced language user
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can dismiss garbled output.
To extend our study, we would like to i) expand

our Danish dataset, ii) include metaphor stud-
ies for the other Scandinavian language, and also
iii) go deeper into the understanding of the inner
wheels of the models with respect to where the tip-
ping point is found between beneficial language
transfer on the one hand and erroneous transfer
that leads to cultural biases on the other. One
way to proceed in improving the models (in addi-
tion to ensuring more Danish training material in
the first place) is via fine-tuning or retrieval aug-
mented generation with use of knowledge graphs
or other structured information sources. Knowl-
edge graphs can be compiled from culture-specific
metaphor lists derived from existing dictionaries
or corpora, or from wordnets enriched with fea-
ture transformations in a ’ChainNet’-like fashion.
All in all enrichments that could potentially lead
to better and more culturally diverse language in-
terpretation and generation.
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Abstract

The strengths of subword tokenization
have been widely demonstrated when ap-
plied to higher-resourced, morphologi-
cally simple languages. However, it is
not self-evident that these results trans-
fer to lower-resourced, morphologically
complex languages. In this work, we in-
vestigate the influence of different sub-
word segmentation techniques on machine
translation between Danish and Kalaal-
lisut, the official language of Greenland.
We present the first semi-manually aligned
parallel corpus for this language pair1, and
use it to compare subwords from unsuper-
vised tokenizers and morphological seg-
menters. We find that Unigram-based seg-
mentation both preserves morphological
boundaries and handles out-of-vocabulary
words adequately, but that this does not
directly correspond to superior translation
quality. We hope that our findings lay fur-
ther groundwork for future efforts in neu-
ral machine translation for Kalaallisut.

1 Introduction

In contrast to many of the world’s indigenous lan-
guages facing challenges in revitalization as a re-
sult of colonialism (Meakins and O’Shannessy,
2016), Kalaallisut (West Greenlandic) has a vi-
brant linguistic ecosystem. Spoken as a first lan-
guage by people of all ages (Grenoble and Wha-
ley, 2021), Kalaallisut is used in all aspects of
daily life by most of the population (Nielsen,
2021), from teenagers texting (Grenoble, 2011) to
everyday communication (Ravn-Højgaard et al.,
2018). It is also supported by language policies

1https://github.com/esther2000/
tokenization-on-trial

1.0 1.5 2.0 2.5 3.0 3.5 4.0
Subword-to-word ratio

Danish
Kalaallisut

Figure 1: When applying BPE to our test dataset,
Kalaallisut generally has higher subword-to-word
ratios than Danish; KDE plot, capped at 4.

that prioritize its use in education and adminis-
tration (Møller, 1988; Valijärvi and Kahn, 2020),
and boasts a wide range of linguistic resources
(e.g., word lists and dictionaries) and existing lan-
guage technologies (e.g., a spell-checker and a
grapheme-to-phoneme converter) from Oqaasiler-
iffik, the Language Secretariat of Greenland.

Despite the vitality of the language, however,
Kalaallisut – like most of the world’s languages
– does not have sufficient resources for the data-
intensive methods of contemporary NLP (Joshi
et al., 2020). Specifically in the context of neu-
ral machine translation (NMT), Kalaallisut lacks
the large-scale aligned parallel corpora required
for contemporary machine learning methodolo-
gies, and is thus considered a low-resource lan-
guage. Consequently, Kalaallisut trails behind
higher-resourced languages in terms of NMT.

Beyond the limited availability of high-quality
parallel corpora, Kalaallisut’s high degree of mor-
phological inflection poses additional challenges
for NMT. Commonplace tokenization methods of-
ten lead to large, sparse vocabularies for morpho-
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logically rich languages (Vylomova et al., 2017;
Gerz et al., 2018; Akın Özçift and Söylemez,
2021). To illustrate the difference with a mor-
phologically simple language: Figure 1 shows
that BPE tokenization yields many more subwords
per word for Kalaallisut than for Danish. It is
likely more difficult for models to learn system-
atic patterns in structure between source and tar-
get languages for morphologically rich languages
than for morphologically-poor ones (Gutierrez-
Vasques et al., 2023). While previous work has
compared subword tokenization and segmenta-
tion strategies for polysynthetic languages of the
Americas (Mager et al., 2022), this work found no
single best solution across languages. Thus, NMT
for Kalaallisut stands to benefit from a dedicated
investigation.

Despite the desire for machine translation by
speakers of Kalaallisut (Oqaasileriffik, 2023),
however, there is a marked scarcity in re-
search attention (Kristensen-Mclachlan and Ned-
ergård, 2024). As a result, adequate benchmark-
ing datasets for Kalaallisut NMT are extremely
scarce.2 This work aims to provide practical
insights for improved NMT for Kalaallisut, by
comparing the efficacy of different segmentation
strategies. To this end, we provide the following
contributions:

• We present the first semi-automatically
aligned Danish–Kalaallisut parallel dataset,
in the legal domain;

• We present the first open-science initiative to
benchmark NMT from Danish into Kalaal-
lisut;

• We compare subwords from four segmenta-
tion models and relate the insights to down-
stream NMT performance;

• We provide discussion and recommendations
for future research on Kalaallisut NMT.

Ultimately, we hope that this work can be help-
ful for the development of open-science NMT sys-
tems for Kalaallisut going forward.

2 Background

Greenlandic Language Kalaallisut is the
largest member of the Inuit-Yupik-Unangan
family. Among the world’s languages, it is one
of the more morphologically rich, described

2The OPUS collection (Tiedemann, 2009) contains 291
parallel Danish ↔ Kalaallisut samples, most of which consist
of a single word.

as “typologically extreme” in the number and
variety of suffixing morphemes available for
marking nominal and verbal stems (Fortescue
and Olsen, 2022). While effectively segmenting
languages with greater morphological complexity
is notoriously difficult in NLP (Klavans, 2018b),
additional linguistic characteristics of Greenlandic
may further complicate subword tokenization.
Specifically, De Mol et al. (2020) point to three
salient features of Greenlandic morphology: 1)
some morphemes are polysemous (e.g., no distinc-
tion between present and past tense); 2) unbound
morphemes can sometimes be incorporated,
resulting in ambiguous morpheme boundaries;
and 3) some morphemes undergo phonological
changes depending on the subsequent context, in
order to avoid illegal morphophonemic sequences.
The combination of these factors underscore the
utility of a targeted investigation into optimal
tokenization strategies for Kalaallisut NMT.

Polysynthesis in NLP In linguistic typology,
polysynthesis is a high-level categorization for
languages relying heavily on morphological in-
flection to convey meaning.3 As a result, in-
dividual utterances in polysynthetic languages
tend to be relatively longer than their non-
polysynthetic counterparts. In other words, where
non-polysynthetic languages might add a pronoun
or preposition, polysynthetic languages incorpo-
rate additional morphemes. This results in a kind
of holophrasis, with a single word encoding both
predicate and arguments of a clause within the
verb itself (Mithun, 2017).

While polysynthetic languages can be found
across the globe (e.g., Quechua in South America
and Ainu in Asia), many of them are endangered
(Klavans, 2018a), and thus lack representation in
NLP (Joshi et al., 2020). Indeed, the fact that
most polysynthetic languages are low-resource
has meant that the development of language tech-
nology for these languages continues to lag behind
(Klavans, 2018b). At the same time, polysynthe-
sis brings with it unique challenges for NLP (Es-
kander et al., 2019). For example, in the con-
text of NMT, Mager et al. (2018) observe marked
information loss between polysynthetic and fu-
sional languages, as a consequence of alignment.
Specifically, the NMT systems omit the parts of

3It should be noted that, although widely-used across ty-
pology, polysynthesis as a proper typological categorization
is contested by some linguists (Zúñiga, 2019).
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the polysynthetic languages, where morpheme-to-
morpheme alignment yielded no equivalent coun-
terpart in the fusional language.

As MT has moved towards neural approaches,
subword segmentation has become standard for
leveraging large datasets. However, subword to-
kenizers like BPE have been met with skepti-
cism for polysynthetic languages, as they do not
accurately capture morpheme boundaries (Vylo-
mova et al., 2017; Gerz et al., 2018; Kann et al.,
2018; Akın Özçift and Söylemez, 2021; Saleva
and Lignos, 2021). In their study on tokenization
for polysynthetic languages, Mager et al. (2022)
compare BPE versus morphological segmentation
across four polysynthetic languages (i.e., Nahuatl,
Raramuri, Shipibo-Konibo, and Wixarika). For
three languages, morphological segmenters out-
perform BPE, except for Nahuatl, where BPE
yields better results.

MT for Kalaallisut The rich media ecosystem
surrounding Kalaallisut means that there exists
a reasonable volume of data for the language,
compared to many other indigenous languages.
Nevertheless, much of this data is not immedi-
ately suitable for tasks such as training NMT
systems. Taken along with the perceived chal-
lenges of working with the language outlined
above, this means that MT systems for Kalaallisut
have historically relied on rule-based (Oqaasiler-
iffik, 2017) and hybrid approaches (Oqaasilerif-
fik, 2023). Early works for NMT of Kalaal-
lisut were developed in relation to Inuktitut,
in attempts to benefit from cross-lingual trans-
fer. Le and Sadat (2020) demonstrate that the
use of (bi)character-based and word-based pre-
trained embeddings can improve NMT perfor-
mance for Inuktitut (an indigenous language of
eastern Canada), suggesting similar possibilities
for other Inuit languages. Nonetheless, the ad-
dition of Kalaallisut shows limited usefulness in
transfer learning for Inuktitut-English MT thus far
(Roest et al., 2020).

More recently, Kristensen-Mclachlan and Ned-
ergård (2024) introduced the first benchmark for
Kalaallisut-Danish NMT, containing over 1.2 mil-
lion words of Kalaallisut and 2.1 million words of
parallel Danish translations. However, the authors
note limitations related to “crude” sentence level
alignment, noting that future data collection ef-
forts are still necessary. In experiments, they use a
BiLSTM encoder-decoder architecture with BPE

tokenization (5k, 10k, 30k, and 50k vocabulary
size), finding best results with 5k BPE. While the
authors discuss potential concerns about subword
tokenization for the morphologically rich Kalaal-
lisut, their results demonstrate that BPE is reason-
ably amenable to the language. Still, they do not
experiment with other tokenization strategies.

3 A Reliably Parallel Dataset

Aligning parallel datasets is non-trivial in the case
of highly inflectional, low-resource languages.
Popular alignment methods require pre-trained
language embeddings (Thompson and Koehn,
2019), pre-suppose tokenized text (Varga et al.,
2007), or assume that sequence lengths corre-
spond directly across languages (Gale and Church,
1993). Kelly (2020) conducted extensive exper-
iments on alignment of polysynthetic languages,
but found that their result for Danish-Kalaallisut
was too noisy and thus not useful downstream.
Their data was sourced from magazines, however.
We hypothesize that choosing a more structured
domain (e.g., legal) may make alignment more
feasible.

Data Collection Oqaasileriffik referred us to the
collection of parallel legal texts, hosted by the
Greenlandic Government.4 Although Kalaallisut
is the most widely spoken language (United Na-
tions, 2023), Greenland’s legal system is bilingual,
and laws and legal documents are often drafted in
Danish. In this work, we use the Law Collections,
which is an archive of the legislation of Green-
land’s Self-Government, Danish legislation appli-
cable to Greenland, and international regulations
that are relevant to Greenland.5 In total, it consists
of 2,545 publicly available documents in HTML
format, originally written between 1908 and 2024,
many of which are manually translated.

Alignment and Filtering Through scraping, we
retrieve parallel documents, filtering out any non-
translated documents. However, to obtain paral-
lel sentences, we need to align the text. As men-
tioned, this assumes data or experimental consen-
sus which is not available for Kalaallisut (i.e., lan-
guage embeddings and tokenized text). Fortu-
nately, legal text is highly structured: our scraped
data contains strict paragraph markers (e.g., § 2)

4Available at https://nalunaarutit.gl
5https://nalunaarutit.gl/

om-nalunaarutit

482

https://nalunaarutit.gl
https://nalunaarutit.gl/om-nalunaarutit
https://nalunaarutit.gl/om-nalunaarutit


and clause enumerations (e.g., a)), equally across
source and target. We leverage this structure by
aligning through enumeration: for each document,
we retrieve all enumerated text segments and align
accordingly in case of 1:1 correspondence with
enumeration markers. As an additional advan-
tage, alignment on enumerated clauses further-
more serves as a filtering step. For example, less-
structured introductory texts and sensitive infor-
mation such as email addresses and full names are
automatically filtered out. We strip the enumer-
ation token from each line, apply deduplication
and subsequently extract 1,000 lines for the vali-
dation set, and 1,000 other lines for the test set. We
use the remaining lines as the training set. Impor-
tantly, we make the design choice to not remove
near-duplicates. Legal texts can be highly formu-
laic, and since we perform an in-domain evalua-
tion which cannot be expected to be widely gen-
eralizable regardless (see: Limitations), we decide
to leave them in.

Dataset Size In Table 1, we show the size of
the resulting corpus. The dataset consists of more
than 40,000 parallel phrases. Unsurprisingly, due
to Kalaallisut’s inflections, the number of sepa-
rate words (whitespace delimited strings of char-
acters, obtained with the wc -l command) is
much higher for Danish than for Kalaallisut.

# Lines # Words
Split GL DA GL DA

Training 39,936 39,936 663,734 929,904
Validation 1,000 1,000 16,594 23,021
Testing 1,000 1,000 16,665 23,846

Total 41,936 41,936 696,993 976,771

Table 1: Size of parallel legal text dataset.

While small compared to what is available
for high-resource languages, the size of the
dataset is larger than that used in a compara-
ble low-resource neural MT study (Mager et al.,
2022). It is smaller than the other open, parallel
Danish-Kalaallisut dataset (Kristensen-Mclachlan
and Nedergård, 2024), but as ours is aligned based
on human alignments, we expect that ours in-
cludes considerably less noise. This leaves us with
a small, but high-quality in-domain dataset for le-
gal translation.

4 Experiments

Since we are interested in isolating the effects of
subword segmentation on NMT performance, we
train dedicated bilingual MT models from scratch.
Our experimental set-up consists of three steps:
subword segmentation, machine translation, and
evaluation, each described in more detail below.

4.1 Subword Segmentation
We experiment with two types of unsupervised
segmentation for Kalaallisut: traditional MT sub-
word tokenizers, and morphological segmenters.
Following Mager et al. (2022), we keep the Dan-
ish side of the parallel corpus consistent across ex-
periments, as this allows us to isolate the effects
of Kalaallisut segmentation. We apply BPE to the
Danish text, trained on the Danish training set of
our corpus. We use a vocabulary size of 5k, as
this was found to be optimal in the three most
similar research initiatives (Saleva and Lignos,
2021; Mager et al., 2022; Kristensen-Mclachlan
and Nedergård, 2024).6

Traditional MT Tokenization Following
Mager et al. (2022), we train and apply Byte-Pair
Encoding (BPE; Sennrich et al., 2016). Originally
introduced as a data compression algorithm
(Gage, 1994), the segmenter is trained bottom-up
by merging frequently co-occurring vocabulary
items. In addition, we experiment with Unigram
language modeling (Kudo, 2018). Rather than
constructing the vocabulary bottom-up, it starts
from the largest vocabulary, which is subsequently
pruned. This method has been shown to preserve
morphological segmentation better than BPE
(Bostrom and Durrett, 2020), making it especially
relevant for our study. We use both algorithms
as implemented in SentencePiece (Kudo and
Richardson, 2018).

Morphological Segmentation Segmenting text
according to (predicted) morpheme boundaries
may be particularly beneficial for low-resource
MT, as a means to counter the data scarcity of
co-occurring characters that inflections may intro-
duce. As we do not have a large-scale in-domain
annotated dataset of morphological segmentations
for Kalaallisut, we are constrained to unsupervised
segmenters. Specifically, we follow Saleva and
Lignos (2021) in using Morfessor 2.0 (Smit et al.,

6For Kalaallisut, we also experimented with vocabulary
sizes 1k, 3k, 7k, 9k and 11k, but found no improvement.
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Kalaallisut Segmentation Machine Translation
Danish→Kalaallisut Kalaallisut→Danish

Method Fertility % Cont. chrF2 BLEU chrF2 BLEU

None 1.000 0.00 44.6 3.4 61.5 15.4

BPE 2.294 66.10 56.4 8.7 64.2 21.5
Unigram 2.290 66.27 61.4 10.1 58.9 17.1
Morfessor 1.925 70.72 56.7 7.9 58.3 17.2
FlatCat 1.870 69.30 63.2 9.6 57.0 15.1

Table 2: Comparison of segmentation and translation quality metrics on the Kalaallisut test set.

2014), henceforth simply Morfessor. In addition,
we use FlatCat (Grönroos et al., 2014), which
is an extension over Morfessor that uses a Hid-
den Markov model. After applying morphologi-
cal segmentation, we post-process the data such
that the SentencePiece output format is replicated
(words separated by the underscore symbol, and
subwords separated by spaces).

Each of the segmentation methods is trained on
the training set and applied to all sets (training,
validation, and test set) of the Kalaallisut part of
the parallel corpus data only. As a baseline, we
add the case of applying no segmentation whatso-
ever to the Kalaallisut side.

4.2 Machine Translation

We train bilingual NMT models for both trans-
lation directions separately, with the Transformer
architecture (Vaswani et al., 2017). We use the
Fairseq toolkit (Ott et al., 2019). Because of the
limited data availability in our scenario, we tai-
lor the hyperparameters to those typically found
to be effective in low-resource translation, such as
using a higher dropout rate (Sennrich and Zhang,
2019; Araabi et al., 2022). We use a learning rate
of 0.0001, cross entropy as a criterion with la-
bel smoothing (0.2), and apply a dropout rate of
0.3. Each model is trained for a maximum of 100
epochs, with a patience setting of 5 epochs mon-
itoring the validation loss. For generation we use
the best checkpoint.

4.3 Evaluation

Subword Metrics To compare segmentation
methods, we use two metrics proposed by Rust
et al. (2021): subword fertility and continued word
proportion. Subword fertility is the average num-
ber of subwords per word. This metric provides
insight into “how aggressively a tokenizer splits”.

The proportion of continued words measures the
percentage of words that are divided into more
than one subword, indicating how often words are
split. For “words”, we use the whitespace delim-
ited character strings. Intuitively, lower scores are
preferred, as high values signal weak compression
efficacy, which could lead to oversegmentation.

Translation Quality For assessing the quality
of the output translations, we report the chrF27

(Popović, 2015) and BLEU8 (Papineni et al.,
2002) scores, as implemented in SacreBLEU
(Post, 2018). The ChrF2 metric is especially suit-
able to our scenario, as it is based on charac-
ter n-grams. It has been previously been used in
the context of low-resource NMT on diverse lan-
guages (e.g. Tiedemann, 2020). Due to the low-
resourcedness, we do not include evaluation based
on language embeddings, such as COMET (Rei
et al., 2020), as there are indications that they
are not reliable in low-resource scenarios (Falcão
et al., 2024). While human evaluation would likely
provide a better insight into the usefulness for
speakers, the absolute number of native translation
professionals is much lower than for many, higher-
resourced, language pairs. At the same time, this
highlights the need for research into reliable MT
systems for Kalaallisut.

4.4 Main Results

Table 2 lists the subwords metrics and down-
stream MT performance for each of the segmen-
tation methods. It should be noted that the results
for Danish→Kalaallisut and Kalaallisut→Danish
cannot be compared directly, because of the un-

7Signature: nrefs:1|case:mixed|eff:yes|
nc:2|nw:0|space:no|version:2.4.3

8Signature: nrefs:1|case:mixed|eff:no|
tok:13a|smooth:exp|version:2.4.3
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even number of character and word n-grams. In-
stead, systems should be compared column-wise.

First, we observe that not using any seg-
mentation method leads to suboptimal down-
stream MT results. Especially in the case of
Danish→Kalaallisut, performance trails consider-
ably behind that obtained with segmenters. BPE
obtains the highest scores for translation into Dan-
ish, but this is not the case for translation into
Kalaallisut, where both the Unigram and FlatCat
approaches obtain higher chrF2 scores.

We do not observe clear patterns as to the sub-
word metrics and MT performance. While the
morphological segmenters, Morfessor and Flat-
Cat, obtain the lowest fertility scores, this does
seem to correspond directly to higher MT qual-
ity. While this corroborates earlier findings (Sal-
eva and Lignos, 2021; Mager et al., 2018), more
data points are needed to draw robust conclusions.

5 Analysis

To add more context to our findings, we perform
additional analyses.

5.1 Subwords vs. Morphological Boundaries
To what extent do the subword segmenters pre-
serve morphological boundaries? To analyze this,
we apply each segmenter to a list of words, for
which we have gold-standard annotations. We use
the data from De Mol et al. (2020), who com-
piled a set of Kalaallisut words and phrases, and
their morphological segmentations. These anno-
tations originate from courses on Kalaallisut, and
were corrected by a native speaker. Their data
contains both short (e.g. “he drinks”) and long
(e.g. “it can be expected to have been eating jelly-
fish”) general-domain examples. Since this is out-
of-domain for the trained segmenters, it requires a
degree of generalization. In total, we use 499 of
these examples for our evaluation. We apply the
segmenters to each of these examples, and evalu-
ate the resulting subwords using precision (Eq. 1)
and recall Eq. 2).9 The F1-score is then calculated
as the harmonic mean between the average preci-
sion and recall.

P =
| {gold morphemes} ∩ {subwords} |

| {subwords} | (1)

R =
| {gold morphemes} ∩ {subwords} |

| {gold morphemes} | (2)

9Equations adapted from Nouri and Yangarber (2016).

Table 3 contains our results. For all segmenters,
we find that morphological boundaries are only
preserved modestly, with F1 scores all under 35
percent. The lowest score is found with BPE, with
precision, recall and F1 only slightly above 10%.
Relating this to the downstream results in Table 2,
where best results for translation to Danish were
obtained with BPE, it seems that preserving mor-
phemes does not directly lead to optimal down-
stream NMT performance. This is in line with pre-
vious findings (Saleva and Lignos, 2021).

A second observation is that Unigram is (at
least) on par with FlatCat and Morfessor when
it comes to preserving morphological boundaries.
This may be somewhat surprising, as Unigram is
not a dedicated morphological segmenter. Yet,
given its top-down pruning approach, morphemes
are better preserved than with BPE’s bottom-up
approach. This is in line with findings from
Bostrom and Durrett (2020).

Method Prec. (%) Rec. (%) F1 (%)

BPE 10.81 12.42 11.56
Unigram 30.88 37.68 33.94
Morfessor 31.08 31.61 31.34
FlatCat 29.58 29.40 29.49

Table 3: Comparison of morphological boundaries
and subword segmentation.

5.2 Out-of-Vocabulary Words

One of the core motivations for subword seg-
mentation, is that it enables better representa-
tions of out-of-vocabulary (OOV) words. This
has been argued to improve downstream perfor-
mance, for instance in the case of MT (Sen-
nrich et al., 2016). We explore how prominent
OOV words are, when processed with varying
segmentation techniques. We report the percent-
age of unknown items (UNKs) in the test portion
of our parallel corpus, as shown in the logs of
fairseq-preprocess. The results are listed
in Table 4.

First, we observe that applying subword seg-
mentation drastically reduces the number of
UNKs. When not applying any segmentation,
more than 14% of the words are OOV. This
high number reflects Kalaallisut’s highly inflec-
tional characteristics. Moreover, this observa-
tion may provide an explanation for why down-
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Method % UNK

None 14.30000

BPE 0.005080
Unigram 0.005050
Morfessor 0.196000
FlatCat 0.295000

Table 4: Proportion of OOV words in the Kalaal-
lisut test set.

stream MT performance, specifically into Kalaal-
lisut, lags when not applying any segmentation
(Table 2). Secondly, we observe a difference be-
tween the morphological segmenters (Morfessor,
FlatCat) and the traditional MT tokenizers (BPE,
Unigram): using the latter results in fewer UNKs
than the former. Notably, it is interesting that
Unigram segmentation somewhat preserves mor-
pheme boundaries (Table 3), while also resulting
in relatively few UNKs.

6 Discussion and Recommendations

Given the lack of research for Kalaallisut NMT,
we posit that collaboration between NLP re-
searchers, Greenlandic language experts, and non-
specialist native speakers of the language is cru-
cial. In addition to a parallel dataset and exper-
imental documentation, we aim to contribute to
NMT for Kalaallisut by providing some high-level
recommendations below.

Explore Additional Resources Beyond the le-
gal domain, Kalaallisut boasts a wealth of tra-
ditional linguistic resources, like dictionaries
(Berthelsen, 1997) and formal grammars (Fortes-
cue, 1984; Sadock, 2003; Berge, 2011; Kahn
and Valijärvi, 2021; Nielsen, 2022). Due to
Greenland’s relationship with Denmark, national
newspapers and official government resources
are often available in both Kalaallisut and Dan-
ish, which allows “pseudoparallel” corpora to
be compiled through webcrawling (Jones, 2022).
Similar efforts could be applied to other do-
mains. Additional digital resources for Kalaallisut
include a spell-checker, text-to-speech system,
and grapheme-to-phoneme converter (Oqaasiler-
iffik), a hand tagged corpus (Per Langgård and
VISL Team), and recent NMT benchmark dataset
(Kristensen-Mclachlan and Nedergård, 2024).
With the exception of the latter, no previous works
make use of this wealth of resources, and thus

practitioners may benefit from their inclusion go-
ing forward.

Consider Other Dialects Even among low-
resource languages, the majority of research atten-
tion is paid to standard language varieties, with
the risk that non-standard dialects are left be-
hind (Faisal et al., 2024). This holds true for
Greenlandic, where works on non-standard di-
alects are far outnumbered by those for Kalaal-
lisut. The Greenlandic language contains three
main dialects: Kalaallisut (the western dialect, and
the standard form), Tunumiisut (spoken in east-
ern Greenland), and Inuktun (used in the north-
ern region).10 While Kalaallisut is predominant,
all dialects are vital to understanding Greenland’s
linguistic diversity. Only a few grammar books
are available for Tunumiisut (Robbe and Dorais,
1986; Mennecier, 1995; Tersis, 2008) and Inuk-
tun (Fortescue, 1986), however. No NLP datasets
have as yet been published, despite their appar-
ent presence on social media. This suggests that
the language’s integration into advanced language
technologies is still limited (Siminyu et al., 2020),
and future works for Greenlandic NLP could thus
benefit from curation of resources and experimen-
tation across dialects.

Mind the Historical Context The colonization
of Greenland involved Denmark’s efforts to “civi-
lize” the Inuit population, primarily through edu-
cational programs aimed at reshaping their culture
(Rud, 2009) and “modernization” efforts in the
1950s also prioritized the Danish language (Gad,
2017). These initiatives reflected broader colo-
nial views that objectified Greenlanders based on
race, gender, and class (Thisted, 2021). Even af-
ter World War II when decolonization began, they
were often framed within medical and social re-
search as “controllable subjects” (Rud, 2021). In
spite of these pressures, the Greenlandic language
remains widely spoken and serves as a symbol of
national identity. In 2009, Greenlandic was de-
clared the sole official language, but Danish re-
mains prevalent in the public administration and
essential for higher education (Faingold, 2023),
and language policy is a recurring debate in Green-
landic politics (Gad, 2017). Despite this progress
for the Greenlandic language, the legacy of colo-
nialism still has consequences for indigenous lan-

10https://en.wikipedia.org/wiki/
Greenlandic_language.
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guages in NLP, which researchers must face. For
in-depth conversations on this topic, we refer read-
ers to Bird (2020) and Mager et al. (2023).

Avoid Extractivism Indigenous people have of-
ten been treated as research subjects rather than
active participants in decision-making processes,
particularly under colonial rule (Guillemin et al.,
2016). While Greenland has made strides to-
wards self-government (Kuokkanen, 2017), colo-
nial legacies persist in imaginaries11 of an
“empty” Arctic whose resources can be readily
exploited and its people trivialized (Hanrahan,
2017). In terms of research, this dynamic is en-
acted through the extraction of knowledge from
marginalized communities for academic or bu-
reaucratic consumption (Gaudry, 2011).

This historical context of exploitation raises eth-
ical concerns about modern data collection prac-
tices in NLP. As in previous extractive practices,
the potential misuse of data, along with issues sur-
rounding privacy, consent, and bias, mirrors ongo-
ing debates in the field of NLP regarding the ethi-
cal implications of data mining (Žliobaitė, 2017;
Hassani et al., 2020; Watson and Payne, 2020;
Singh, 2020; Rogers et al., 2021; Liu et al., 2023).
For an in-depth conversation on extractivism in
NLP, we refer readers to Bird (2024).

7 Conclusion

In this paper, we build upon the current state of
Danish↔Kalaallisut NMT research, noting a spar-
sity of benchmarks and open-science experimen-
tal groundwork. We then introduce a new semi-
manually aligned corpus of parallel legal texts for
this language pair. Leveraging this, we conduct
systematic experiments on subword segmentation,
analyzing the impact of both traditional subword
tokenizers (BPE, Unigram), and morphological
segmentation (Morfessor 2.0, FlatCat) on down-
stream NMT performance. While segmentation
techniques generally improve translation, we do
not find one segmenter that beats the others in
all aspects. Ideally, more data and evidence are
needed to draw more robust conclusions.

Limitations

In this study, we do not examine any (massively)
multilingual MT models. As a result, it is possi-

11The concept of “imaginaries” refers to the collective
symbols, ideas, and images that shape a society’s understand-
ing (Taylor, 2004).

ble our work misses out on some of the benefits of
transfer learning. However, the goal of this work
not to create a new state-of-the-art, but rather in-
vestigate the isolated effects of subword solutions,
relating to Kalaallisut. Accordingly, the findings
in this paper can still serve as a starting point for
those who continue this work in the future. More-
over, our work investigates isolated subword seg-
mentation techniques, while segmentation meth-
ods are not necessarily mutually exclusive. For ex-
ample, future work could look into applying BPE
after morphological segmentation.

Another limitation of this work is its highly-
specific legal domain. On the one hand, leveraging
legal texts allows us to avoid extractivism, as these
data are not taken from Greenlandic writings with
deep cultural significance. On the other hand, the
use of legal data can also be criticized as reinforc-
ing colonial systems of authority. To avoid the lat-
ter, our work is exploratory in nature, and does not
seek to create deployable, culturally-appropriate
NMT systems for Greenlandic speakers. Instead,
we aim to provide a methodology and results per-
taining to segmentation, which can still transfer-
able to works in NMT for Greenlandic, outside of
the legal domain.

This work focuses solely on the dominant
Kalaallisut dialect of Greenlandic. While the in-
clusion of more dialects is the subject of increas-
ing awareness in NLP, text for other Greenlandic
dialects is not supported by the platform through
which we sourced our methodology.

Finally, future work in Kalaallisut MT would
hugely benefit from human quality assessment.
While we assume that automatic, reference-based
metrics can give a decent basic estimate of trans-
lation quality, human annotations of translation er-
rors would for example enable more fine-grained
analysis.

Acknowledgements

We are thankful to Oqaasileriffik for answering
our initial questions, and to the anonymous re-
viewers for their helpful feedback. EP, JB and HL
are funded by the Carlsberg Foundation, under the
Semper Ardens: Accelerate programme (project
nr. CF21-0454).

References
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Abstract

Multilingual natural language processing
is getting increased attention, with numer-
ous models, benchmarks, and methods be-
ing released for many languages. English
is often used in multilingual evaluation to
prompt language models (LMs), mainly
to overcome the lack of instruction tuning
data in other languages. In this position
paper, we lay out two roles of English in
multilingual LM evaluations: as an inter-
face and as a natural language. We argue
that these roles have different goals: task
performance versus language understand-
ing. This discrepancy is highlighted with
examples from datasets and evaluation se-
tups. Numerous works explicitly use En-
glish as an interface to boost task perfor-
mance. We recommend to move away
from this imprecise method and instead fo-
cus on furthering language understanding.

1 Introduction

With the increase of in-context, prompt-based
evaluation of auto-regressive languages models
(LMs, Brown et al., 2020), choices have to be
made on how prompts are created. Specifically
in multilingual evaluation, a crucial choice is in
which language(s) prompts are written. In prac-
tice, English tends to be mixed with a target lan-
guage with the explicit goal of increasing task per-
formance. We argue this goal is different from fur-
thering language understanding. In this position
paper, we outline two roles of English at the core
of this discrepancy and their implications.

Several works have highlighted methodological
issues in multilingual evaluation setups (Artetxe
et al., 2020; Ploeger et al., 2024). The dominance
of English in natural language processing (NLP)
has also been discussed repeatedly (Joshi et al.,

2020; Ruder et al., 2022). With the increase of
prompt-based evaluations of models, a new issue
has appeared: English being used as an interface,
rather than a natural language.

In recent work, Zhang et al. (2023) propose a
taxonomy of prompt-based multilingual LM eval-
uations. They conclude that “[the model] achieves
higher performance when the task is presented in
English.” This finding is consistent among a large
number of papers (Shi et al., 2022; Huang et al.,
2022; Fu et al., 2022; Lin et al., 2022; Asai et al.,
2024; Etxaniz et al., 2024, inter alia). Resort-
ing to using English like this is hardly surprising
given that instruction tuning datasets are expen-
sive to create and not readily available for most
languages. Less surprising still is the finding that
English performs well, as it is included in virtually
all LMs. It does bring into question: what is being
evaluated and what do we learn from this?

To illustrate: MaLa-500 (Lin et al., 2024) is a
Llama 2-based model (Touvron et al., 2023) that
underwent continued pre-training in over 500 lan-
guages. It is partially evaluated on a news topic
classification task using SIB-200 (Adelani et al.,
2024a), a dataset of (sentence, topic) pairs in 205
languages. The model is prompted as follows:

The topic of the news {sentence} is {topic}

Using the prompt with a Turkish1 example gives:

The topic of the news Bu oteller günün zenginlerinin
ve ünlülerinin kalacağı yerlerdi ve çoğu zaman kaliteli
yemeklere ve gece hayatına sahipti. is entertainment

This format is used across all 205 languages in
few-shot setups from one to ten. This mixture of
English and a target language is, arguably, not very
‘natural’. We refer to this role of English as an in-
terface, rather than a natural language. In the next
sections, we outline these roles and why they are
important to consider in multilingual evaluation.

1English translations of examples are in Appendix A.
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Figure 1 – Schematic overview of the different roles of English in multilingual LM evaluation.

2 Evaluation Goals

Language understanding. We take the com-
mon perspective that evaluation concerns a task
which is used as a proxy for understanding. This is
exemplified by the natural language understand-
ing (NLU) label many datasets and models adhere
to (including SIB-200). A news topic classifica-
tion task shows that the model (arguably) ‘under-
stands’ some of the differences between news cat-
egories. A model that rewrites, translates or sum-
marizes ‘understands’ both task instructions and
target passages. In a multilingual setting, the un-
derstanding of interest is generalizability across
languages; a model performing a task in a tar-
get language supposedly understands something
about that language. This is then applied to mul-
tiple languages. We refer to this as ‘multilingual
natural language understanding’ (MLU). Specifi-
cally, we use MLU to mean ‘understanding a tar-
get language is part of multilingual natural lan-
guage understanding.’2

Understanding English by itself and under-
standing a natural mix of English and another lan-
guage are both part of MLU. The latter enters
the domain of code-switching: the phenomenon
where a speaker fluently switches between multi-
ple different languages during the same conversa-
tional turn (Milroy and Muysken, 1995).3

The MaLa-500 prompt mixes English and a tar-
get language. However, it is hard to classify this as
code-switching, as the switch is hardly natural, es-

2We are aware this (ab)use of terminology is not standard.
3Some differentiate between code-switching and code-

mixing, we do not make a distinction. For an overview of
code-switching in NLP, we refer to Winata et al. (2023).

pecially in a few-shot setup. Rather than a natural
language that tells something about language un-
derstanding, English is used as an interface to the
LM with the goal of increasing task performance.
We refer to this mixing as a mixed-prompt.

Task performance. Another widespread per-
spective on evaluation in (multilingual) NLP con-
siders performance on a task as an end in itself.4

If we want to classify news topics in a practi-
cal application operating in a multilingual setting,
what a model supposedly understands or how well
it models a particular language is of little value.
What matters is the system performing its task ad-
equately across languages. Without using English,
the system might not even work at all. This is
a common justification; mixing in English is ar-
guably better than not having a system at all.

While practical, this perspective is seemingly at
odds with the many tasks and datasets that present
themselves under the aforementioned label of lan-
guage understanding. Additionally, task perfor-
mance as the sole goal introduces a usability issue.
Auto-regressive LMs are increasingly meant to be
directly interacted with (a natural language inter-
face). If we have to resort to a mixed-prompt for
the system to even function, it means the user has
to be able to write English and get familiar with
this unnatural mixing of languages.

Figure 1 summarizes our argument and termi-
nology. Next, we provide more details regarding
the discrepancies between using English as an in-
terface versus using it as a natural language.

4We thank two reviewers for suggesting to put more em-
phasis on this perspective.
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3 Evaluation Methods

As mentioned in §1, a large body of contemporary
research in multilingual NLP focuses on prompt-
ing methods. Common evaluation setups range
from (i) prompts fully in a target language, to (ii)
English instructions with task-specific passages in
the target language, to (iii) translating all text into
English before presenting it to a model.5 None of
these works refer to this mixture as being code-
switched text. All conclude that a mixture of En-
glish and a target language (a mixed-prompt) gen-
erally results in the best task performance. In this
section we show why a mixed-prompt is an inher-
ently imprecise method to use in evaluation, even
if maximizing task performance is the goal.

If we use a prompt fully in a target language,
we are clearly evaluating part of MLU. A mixed-
prompt introduces additional factors that are eval-
uated that are neither the task nor MLU. We illus-
trate this from two angles: the representation of
the prompt and fortuitous issues from unnaturally
mixing English and a target language.

Consider how to evaluate a multilingual masked
language model on the news classification task. A
classification layer is added to a pre-trained model
to predict the topic labels; it sees label indices
that are consistent across languages. The labels
are language-agnostic for the model (i.e., detached
from natural language). The evaluation method
and goal are clear: mapping a target language se-
quence to one of these indices. There are no addi-
tional signals influencing this process.

In a prompting setup, the representation of the
labels can either be language-agnostic (numbers,
letters, symbols, etc.), or not (English words, tar-
get language words, etc.). These options result in
any number of tokens, which will have different
representations within the model, unless specifi-
cally accounted for. In many multilingual eval-
uation prompts, the classification labels are En-
glish words (such as in the MaLa-500 example).
Without target language words or (to an extent)
language-agnostic labels, the evaluation method
and goal will be inherently imprecise.

In addition to the different representation, more
than just the task is evaluated with a mixed-prompt
setup. To illustrate this, consider the following
setup from the AfriMMLU subtask of IrokoBench
(Adelani et al., 2024b):

5We do not further discuss ‘translate everything’ as this
resembles evaluating English as a natural language.

You are a highly knowledgeable and intelligent
artificial intelligence model answers multiple-choice
questions about {subject}
Question: {question}
Choices:
A: {choice1}
B: {choice2}
C: {choice3}
D: {choice4}
Answer:

The prompt and subject are always in English,
the question and choices in the target lan-
guage. With this setup, more is tested than just a
task in a target language:

• Code-switching, if this is considered natural,
or unnatural ‘mixed-prompt’ switching.

• Script-switching, if the target language uses
a non-Latin script (which applies to Amharic
in IrokoBench, using the Ge‘ez script).

• Instruction following in English.

• Grammatical error correction in English.6

• Answering high-school level exam questions
in the target language.

With these mixed-prompts, we arguably do not
test MLU, as that would entail a native target lan-
guage prompt. At the same time, we test more than
just the task, even though that is the explicit goal
of using English in this way.

While we only discussed classification tasks un-
til now, our argument also applies to other types of
tasks. Consider the following zero-shot machine
translation prompt from Hendy et al. (2023):

Translate this sentence from {source} to {target}
Source: {source sentence}
Target:

The prompt is always in English, the source and
target are English words referring to the lan-
guages, and the source sentence is in the tar-
get language. Filled in, it looks like this:

# DE → NL
Translate this sentence from German to Dutch
Source: Du gehst mir auf den Keks
Target:

# NL → DE
Translate this sentence from Dutch to German
Source: tijd voor een bakje koffie
Target:

6We have notified the AfriMMLU authors about this. The
typo is in the prompt in the paper and in the lm-evaluation-
harness (Biderman et al., 2024), which is used to obtain their
results: https://github.com/EleutherAI/lm-evaluation-harness/

blob/7882043b4ee1ef9577b829809c2f4970b0bdba91/lm_eval/tasks/

afrimmlu/direct/utils.py.
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The authors mention they “explore prompt selec-
tion strategies along two dimensions: quality and
relevance”, but do not mention target language
prompts. To underline the interface role of En-
glish: it is neither the translation source nor tar-
get here. Hendy et al. (2023) mention that “keep-
ing the prompt format the same allows us to po-
tentially leverage the benefits of the underlying
instruction finetuning protocol to the full extent.”
This makes explicit the goal of task performance.
Prompting a model to translate a sentence is easily
done in a manner that more closely aligns with the
goal of MLU, does not use English, and is closer
to natural code-switching:

# DE → NL (Dutch speaker)
Wat betekent “Du gehst mir auf den Keks” in het
Nederlands?

# NL → DE (Dutch speaker)
Hoe zeg je “tijd voor een bakje koffie” in het Duits?

4 Why does this matter?

Interacting with computers in a natural manner
is arguably the ultimate goal of numerous sub-
fields of computer science. Work on natural
language interfaces to information systems dates
back decades (Winograd, 1972; Waltz, 1978).
LMs bring us ever closer to this goal. However, in
a multilingual setting, it is important to consider
what natural language is, what is being evaluated,
and what promises are sold. Next, we outline the
implications of the interface versus natural lan-
guage roles on evaluation practices.

Interface. Let us start with the role in which En-
glish is akin to a programming language.7 We
need an interface to communicate with a system,
in a way the system can understand. We have
seen that mixed-prompts are used to get the sys-
tem to perform better on a given task. Given the
scarcity of instruction tuning datasets and the costs
involved in creating these, it is understandable that
this is a common (albeit sometimes implicit) per-
spective. English becomes the ‘programming’ lan-
guage that glues target language passages together
and makes the system perform a task. Program-
ming languages also predominantly use English
labels for their keywords. However, if the key-
word for a while loop happens to be mientras
or kjsdfk is irrelevant for its function. These

7Also reflected in this famous post: https://x.com/
karpathy/status/1617979122625712128

are natural language-agnostic as the meaning (as
interpreted by a compiler or interpreter) does not
change. Variable names and keywords can be cho-
sen arbitrarily.8 This is not the case with prompt-
ing, which is sensitive to slight changes, both in
English (Sclar et al., 2023) and multilingual setups
(Zhang et al., 2023; Asai et al., 2024).

Additionally, evaluation setups that use English
as an interface introduce knowledge leakage from
English to the target language. This is, again,
with the explicit goal of improving task perfor-
mance.9 Being able to understand English instruc-
tions is not the same as being able to understand
target language instructions. If English truly was
a programming language, this would not matter,
as the meaning of the instructions would be sepa-
rate from the meaning of the target language pas-
sages. Given that English is a natural language,
this de facto means more is evaluated than just the
task. Consequently, such evaluations are impre-
cise at best, as shown in §3.

Prompt-based evaluations should extend MLU
to the instruction domain. A mixed-prompt setup
claiming to test “multilingual understanding”
might more accurately be described as “under-
standing English instructions interleaved with
passages from target language(s), albeit not in a
natural code-switching setup.”

Natural language. When we consider the other
role of English in multilingual prompt-based eval-
uation, we should treat it the same as any other lan-
guage. The ‘Multilingual Exemplars’ setup from
Shi et al. (2022) is a creative interpretation of this
perspective. In this few-shot setup, the model sees
various examples, all in different languages. The
final question is asked in the target language. A
setup like this extends the definition of ‘multilin-
gual language understanding’ to the extreme. It
becomes harder to interpret what a multilingual
model knows about any individual language in this
context, but English is certainly not an interface, it
is a natural language like all others.

A less extreme setup would simply use native,
target language prompts or natural code-switched
prompts. This is costly, but it aligns much bet-

8Within the specifications of the programming language.
9Knowledge leakage also explicitly happens in parameter

sharing (Zeman and Resnik, 2008) or cross-lingual transfer
(Philippy et al., 2023). However, these methods are funda-
mentally different from mixed-prompts as they (i) treat En-
glish as a natural language, and (ii) target knowledge sharing
at the training or finetuning phase, not the evaluation phase.
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ter with the goal of multilingual natural language
understanding. Indeed, several works specifically
explore this direction (Köpf et al., 2023; Singh
et al., 2024). This approach clearly tests multi-
lingual language understanding, including the in-
struction domain. If performance on a particular
task in a particular language is lagging behind, or
not working at all, it means focus should be put on
addressing the core of these issues (e.g., data or
modeling). Ideally, we should not resort to impre-
cise methods to boost task performance.

5 Conclusion

In this position paper we outline two roles of En-
glish in multilingual language model evaluation:
as an interface, with the goal of task performance,
and as a natural language, with the goal of lan-
guage understanding. We (i) list works that incor-
porate English with the explicit goal of boosting
task performance, even in tasks such as transla-
tion where it is neither the source nor target, un-
derlining the interface role, (ii) show that mix-
ing English with a target language in a mixed-
prompt is unnatural (i.e., not code-switching), and
(iii) outline why the interface role is an imprecise
choice when evaluating multilingual language un-
derstanding of language models.

Additionally, we argue that using a mixed-
prompt tests more than just performance on a cer-
tain task. Because English is a natural language
and not a programming language, using it in a
mixed prompt will inherently lead to fortuitous
factors such as (un)natural switching between lan-
guages or scripts, grammatical error correction,
and more. This all results in imprecise or mislead-
ing evaluations, even if the ultimate goal was to
evaluate and improve task performance.

We finally contrast the implications of the two
roles on evaluation practices. We recommend to
move away from using English as an interface in
multilingual evaluations and ultimately advocate
for the goal of language understanding.
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A Examples

The examples containing Turkish, Dutch or Ger-
man are repeated here with English translations.

SIB-200 (sample 755):

The topic of the news Bu oteller günün zenginlerinin
ve ünlülerinin kalacağı yerlerdi ve çoğu zaman kaliteli
yemeklere ve gece hayatına sahipti. is entertainment

The topic of the news These hotels were where the rich
and the famous of the day would stay, and often had fine
dining and nightlife. is entertainment

Interface translation examples:

# DE → NL
Translate this sentence from German to Dutch
Source: Du gehst mir auf den Keks
Target:

# DE → NL
Translate this sentence from German to Dutch
Source: You’re getting on my nerves
Target:

# NL → DE
Translate this sentence from Dutch to German
Source: tijd voor een bakje koffie
Target:

# NL → DE
Translate this sentence from Dutch to German
Source: time for a cup of coffee
Target:

Natural translation examples:

# DE → NL (Dutch speaker)
Wat betekent “Du gehst mir auf den Keks” in het
Nederlands?

# DE → NL (Dutch speaker)
What does “Du gehst mir auf den Keks” mean in Dutch?

# NL → DE (Dutch speaker)
Hoe zeg je “tijd voor een bakje koffie” in het Duits?

# NL → DE (Dutch speaker)
How would one say “tijd voor een bakje koffie” in Ger-
man?
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Abstract

Cross-lingual Named Entity Recognition
(NER) leverages knowledge transfer be-
tween languages to identify and classify
named entities, making it particularly use-
ful for low-resource languages. We show
that the data-based cross-lingual transfer
method is an effective technique for cross-
lingual NER and can outperform multi-
lingual language models for low-resource
languages. This paper introduces two key
enhancements to the annotation projection
step in cross-lingual NER for low-resource
languages. First, we explore refining word
alignments using back-translation to im-
prove accuracy. Second, we present a novel
formalized projection approach of match-
ing source entities with extracted target can-
didates. Through extensive experiments on
two datasets spanning 57 languages, we
demonstrated that our approach surpasses
existing projection-based methods in low-
resource settings. These findings high-
light the robustness of projection-based
data transfer as an alternative to model-
based methods for cross-lingual named en-
tity recognition in low-resource languages.

1 Introduction

Named Entity Recognition is well-studied in Nat-
ural Language Processing (NLP), but remains a
challenge for low-resource languages due to the
lack of manual annotation (Pakhale, 2023). Of
the roughly 7,000 languages spoken worldwide,
most are low-resource, with over 2,800 endangered
(Eberhard et al., 2020). Cross-lingual approaches
present a promising solution to address the scarcity
of labelled data in these languages.

∗These authors contributed equally.
†Corresponding author.

Cross-lingual NER methods can be categorized
into model transfer and data-based transfer ap-
proaches (Garcı́a-Ferrero et al., 2022). Model
transfer approaches depend on the ability of multi-
lingual models to convey task-specific knowledge
across languages. Data-based methods automate
labelling through translation and annotation projec-
tion processes while leveraging advancements in
multi-lingual language models to enable zero-shot
cross-lingual transfer. This approach allows mod-
els trained in high-resource languages to identify
and classify named entities in other languages with-
out additional annotated data. Additionally, cat-
egorization can be done through two approaches:
translate-test, which labels original sentences in
zero-shot settings, and translate-train, which gener-
ates labelled data to train a NER model.

Here we contribute to the field of cross-lingual
NER by demonstrating the effectiveness of a data-
based cross-lingual transfer method that achieves
comparable and, in some cases, higher performance
of multilingual language models in low- and ex-
tremely low-resource language scenarios.

Our work focuses on the projection phase of
cross-lingual NER pipelines, introducing two im-
provements to projection-based methods. First, we
propose a method specifically designed to improve
word-to-word alignments. Second, we present a
novel formalized projection approach of match-
ing source entities with extracted target candidates.
The proposed methods support translate-train and
translate-test setups, achieving performance on par
with model-based cross-lingual transfer techniques
while offering greater flexibility. We evaluated our
approach using the XTREME (Ruder et al., 2023)
and MasakhaNER2 (Adelani et al., 2022) datasets
comprising 57 languages in total in translate-test
settings. The source code and the evaluation results
are provided in the GitHub repository1.

1https://github.com/Cross-Lingual-NER/Project
ion-Data-Transfer-Cross-Lingual-NER
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2 Related Work

Model transfer methods leverage the ability of
models to transfer task-specific knowledge across
languages. For example, multilingual models like
mBERT (Devlin et al., 2019) and XLM-RoBERTa
(Conneau et al., 2020) are trained on high-resource
languages and applied to low-resource languages
without modification. Torge et al. (2023) demon-
strated improved performance when models were
fine-tuned on labelled data or pre-trained on a re-
lated language. However, low-resource languages
often lack sufficient data, and transfer quality di-
minishes when applied to very different target lan-
guages.

Data-based methods employ labelled datasets,
often available in high-resource languages, to per-
form labelling tasks in the target language. They
include fully artificial data generation, like MulDA
(Liu et al., 2021), and annotation projection meth-
ods. This paper focuses on the latter, which typi-
cally involves three steps: (i) translating the origi-
nal sentence from the target (low-resource) to the
source (high-resource) language, (ii) applying a
NER model to the translated sentence, and (iii) pro-
jecting the labels back to the original sentence.
While translation and NER use established models
such as BERT (Devlin et al., 2019), many methods
have been developed for the projection step.

The first major group (Yang et al., 2022; Garcı́a-
Ferrero et al., 2023; Parekh et al., 2024; Le et al.,
2024) of projection methods is based on back-
translation, where labelled source sentences or their
parts are translated back to the target language, pre-
serving the labels. EasyProject (Chen et al., 2023)
is a translate-train method that employs the inser-
tion of special markers, specifically square brack-
ets, around source entities. The marked sentence is
then passed to the translation model, which inde-
pendently translates the entire sentence and each
source entity. Afterwards, fuzzy string matching
is used to project labels: for each substring in the
back-translated sentence surrounded by markers,
the method identifies the highest fuzzy match for
the corresponding translation of the source entity
and assigns the appropriate label.

Another type of projection method is based on
word-to-word alignments (Garcı́a-Ferrero et al.,
2022; HWA et al., 2005; Tiedemann, 2015; Fei
et al., 2020; Schäfer et al., 2022; Poncelas et al.,
2023). The general idea is to compute word-to-
word correspondence between words of a labelled

sentence in a source language and an original sen-
tence in a target language. The entity’s label is pro-
jected onto target words that align with any of the
entity’s words. Garcı́a-Ferrero et al. (2022) have
shown that using contextualized neural network-
based aligners such as SimAlign (Jalili Sabet et al.,
2020) or AWESoME (Dou and Neubig, 2021) is
significantly more beneficial than statistical align-
ment tools like FastAlign (Dyer et al., 2013), but
still can produce wrong alignments and therefore
lead to projection errors.

3 Methodology

Our proposed approach focuses on projection-
based methods that involve word-to-word align-
ments. We present two improvements (see Fig-
ure 1) to existing methods which are intended to
be useful for languages that are under-presented
in pre-trained language models. Firstly, we in-
vestigate an alternative alignment direction to ad-
dress the known issue of word-to-word alignment
quality. Secondly, we reformulate the annotation
projection task as a bipartite matching problem
between source entities and target candidates, us-
ing alignment-based matching scores to formalize
the problem and eliminate reliance on heuristics,
thereby facilitating method extension.

3.1 Alignment Direction

In projection-based pipelines, errors can arise at all
three stages, diminishing the quality of resulting la-
bels. Handling errors caused by forward translation
and source NER models can be challenging. We
aim to address projection errors caused by incorrect
alignments.

Our approach involves computing word-to-word
alignments between the original sentence and its
back-translated labelled counterpart in the target
language (i.e., target-to-target alignments see Fig-
ure 1 a). This method is motivated by the expecta-
tion that aligning words within the same language
is easier than across different languages. This is par-
ticularly relevant for low-resource target languages,
which often differ significantly from high-resource
source languages.

Preserving entities during back-translation is cru-
cial for projecting entities with the use of word
alignments between original and back-translated
sentences. To achieve this, we employed EasyPro-
ject (Chen et al., 2023) as outlined in the previous
section.

500



Washington
B-LOC

is the capital of the United
B-LOC

States
I-LOC

Die Bundeshauptstadt der Vereinigten
B-LOC

Staaten
I-LOC

ist Washington
B-LOC

Washington ist die Hauptstadt der Vereinigten Staaten

Back-translated labeled sentence

Source labeled sentence

Original sentence

alignments:

(a) Compute word-to-word alignments between back-translated and origi-
nal sentences

Mark
B-PER

Twain
I-PER

was born in Florida
B-LOC

Mark Twain wurde in Florida geboren

Source (or back-translated) labeled sentence

Original sentence with extracted candidates

c11 c22

c12 c21

(b) Matching of extracted target candidates with
source entities

Figure 1: Proposed improvements to projection-based cross-lingual NER methods

3.2 Candidate Matching

The existing methods for addressing problems
caused by incorrect alignments such as split an-
notation, annotation collision and wrong projection
fully rely on heuristics (Garcı́a-Ferrero et al., 2022).
We consider that the main reason for these issues is
a lack of information about any possible entity can-
didates in the original sentence in a target language.
Instead, we propose to generate target entity candi-
dates and match source entities with candidates by
solving the weighted bipartite matching problem
with additional constraints.

Let S be a set of source entity spans and T a set
of target candidate spans. Then xpsrc,ptgt is a binary
variable which represents whether a source entity
psrc ∈ S is being projected to a target candidate
ptgt ∈ T . Then the source entity-target candidate
matching problem can be formulated as follows:





max
x

∑
psrc,ptgt∈S×T

cpsrc,ptgtxpsrc,ptgt

xp1 + xp2 ≤ 1, [itgtp1 , j
tgt
p1 ] ∩ [itgtp2 , j

tgt
p2 ] ̸= ∅∑

ptgt∈T
xpsrc,ptgt =

(≤)
1, ∀psrc ∈ S

xpsrc,ptgt ∈ {0, 1}, ∀(psrc, ptgt) ∈ S × T
(1)

where ptgt = (itgtp , jtgtp ) ∈ T is a candidate span
represented as an index of the starting and the end-
ing word, c is a score of matching. The first set of
constraints represents that it is prohibited to project
one or several different source entities to the over-
lapped candidates. The second ensures that all
source entities will be projected.

The generation of target candidates is carried out
with either N-grams- based or NER model-based
candidate extraction. The former considers all con-
tinuous word sequences as candidates, while the
latter predicts the candidate’s spans using a multi-
lingual NER model (ignoring predicted classes).

To calculate scores c from Equation 1 of match-
ing between source entities and target candidates
word-to-word alignments are being used:

cpsrc,ptgt =
apsrc,ptgt

jsrcp − isrcp + jtgtp − itgtp

(2)

where apsrc,ptgt is a number of aligned words be-
tween a source entity and a target candidate. The
motivation under this cost is to align entities and
candidates based on the count of aligned words,
considering source and target lengths to avoid
matching with candidates with a lot of nonaligned
words and handle single-word misalignments.

The complexity of the proposed problem re-
mains an open question. Notably, it is not a straight-
forward instance of the maximum weight full bi-
partite matching problem, which can be solved in
polynomial time, due to the first set of constraints
that prevents projections onto overlapping candi-
dates (i.e. some projections are mutually exclusive).
In NER model-based candidate extraction, where
no overlapping candidates exist, the problem re-
duces to a maximum weight bipartite matching.

To solve the problem in a general formulation,
we propose a greedy approximate algorithm, which
iteratively selects the projection with the maximum
non-zero matching cost, performs this projection,
and excludes all candidates that overlap with the
projected candidate as well as the projected source
entity.

The proposed concept of target candidate ex-
traction and matching is structurally similar to T-
Projection by Garcı́a-Ferrero et al. (2023), with two
key differences. T-Projection uses a fine-tuned T5
model, limiting target languages and producing can-
didates absent in the original sentence. For match-
ing, T-Projection employs NMTScore by Vamvas
and Sennrich (2022), while we use word-to-word
alignments.
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4 Experiments

We performed an intrinsic evaluation of the effi-
ciency of our approaches across a total of 57 lan-
guages using the XTREME (Hu et al., 2020) (39
languages) and MasakhaNER2 datasets (excluding
Ghomálá and Naijá languages due to limitations in
translation model support - 18 languages in total).
This evaluation encompasses the full pipeline, con-
sidering both translation and source NER model
performance.

For a comparative analysis of existing and pro-
posed approaches, we (re)implemented the afore-
mentioned projection methods according to their
original papers. In particular, we reimplemented
the heuristic word-to-word alignment-based ap-
proach outlined by Garcı́a-Ferrero et al. (2022).
We enhanced this heuristic by introducing a word
count ratio threshold of 0.8 to better handle mis-
aligned unitary words. Additionally, we reimple-
mented the EasyProject method, which performs
back-translation of labelled source sentences, using
original, fine-tuned by authors, NLLB-200-3.3B2

model. This back-translated output is then used
for annotation projection, relying on word-to-word
alignments computed between the original and la-
belled back-translated sentences in the same lan-
guage (denoted as tgt2tgt).

NLLB200-3.3B3 (Costa-jussà et al., 2022) was
employed as a translation model for all experiments.
The XLM-R-Large model4, fine-tuned on the En-
glish split of the CONLL2003 (Tjong Kim Sang
and De Meulder, 2003), served as both the source
model and for target candidate extraction, as well
as for model transfer experiments. We ignored
MISC entities predicted by this model in the first
set of experiments since this class does not ex-
ist in the MasakhaNER2 and XTREME datasets.
For computing word-to-word alignments, we used
the original implementations of SimAlign and non-
finetuned AWESoME neural aligners with the de-
fault settings (with MBERT model).

As the evaluation involved full pipelines, the re-
sulting metrics were influenced by both translation
quality and the performance of the NER models.
To ensure a fair and consistent comparison of the
proposed methods, we employed the same models
for translation and source labelling throughout all

All models are from the HF Hub
2ychenNLP/nllb-200-3.3B-easyproject
3facebook/nllb-200-3.3B
4FacebookAI/xlm-roberta-large-finetuned-conll03-

english

experiments. For tasks involving the proposed in-
teger linear programming (ILP) formulation of the
projection problem, we utilized the previously de-
scribed greedy approximation algorithm to derive
solutions.

Evaluation results for the full pipelines are given
in Table 1.

As shown in Table 1, candidate matching meth-
ods consistently deliver a strong performance. The
proposed approach involving n-gram candidates
extraction (n-gram cand.), compared to heuristics
(since n-gram does not limit a set of candidates as
NER cand. do), provide comparable or superior re-
sults while offering greater flexibility and avoiding
hyperparameter optimization.

The NER model-based extraction (NER cand.)
generally outperforms model transfer by effectively
correcting labels for correctly predicted spans, re-
sulting in greater accuracy particularly when model
transfer mislabels these spans. It also surpasses the
n-gram approach and achieves results comparable
to model transfer because of more fine-grained can-
didates.

The model transfer generally performs better
on the XTREME dataset, but candidate matching
methods surpass heuristic approaches in most of
the 36 languages, except for Bengali, Kazakh, and
Swahili. The first may happen due to the model’s
exposure to these languages or their partial repre-
sentations during pretraining, despite being fine-
tuned only on English data.

Although the average score for the
MasakhaNER2 dataset is modest, the pro-
posed method performs better than heuristics
in 10 languages and worse in 8 out of 18 total
languages. The full list can be found in the
appendix. This discrepancy may be attributed to
the simpler morphological structures in the first
group(where proposed methods perform better),
while the second group, especially languages like
Xhosa and Zulu (Maho, 1999), presents greater
morphological complexity, including noun class
systems and agreement patterns.

The proposed method with target-to-target align-
ment direction generally does not outperform the
source-to-target method, except for Japanese, due
to errors introduced during back-translation, high-
lighting a potential area for future research.

Additional experiments, described in the ap-
pendix, evaluate the performance of the projection
step independently. Table 2 shows projection per-
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Approach Align. dir. XTREME MasakhaNER2
yo bn et fi avg bam twi avg

Model transfer - 32.3 37.8 67.7 72.1 50.9 43.0 46.4 52.1

Heuristic SimAlign src2tgt 32.8 36.9 56.6 59.1 41.8 49.3 71.8 66.6
tgt2tgt 20.1 34.8 39.9 50.8 34.9 44.3 5.9 42.7

Heuristic AWESoME src2tgt 33.3 38.8 56.0 58.6 41.5 49.7 74.6 67.3
tgt2tgt 15.2 34.1 40.7 50.4 34.6 43.4 3.8 42.1

n-gram cand. SimAlign src2tgt 29.7 36.5 60.9 62.5 43.3 48.9 69.5 66.4
tgt2tgt 17.5 36.4 43.4 52.5 36.4 42.5 5.2 42.4

n-gram cand. AWESoME src2tgt 28.8 36.5 60.0 61.7 42.3 48.3 70.9 66.7
tgt2tgt 16.1 35.2 43.8 52.0 35.9 41.1 3.9 42.0

NER cand. SimAlign src2tgt 52.0 38.3 58.6 61.2 46.4 55.3 69.3 63.0
tgt2tgt 34.0 30.7 43.1 53.4 39.1 46.9 8.5 44.0

NER cand. AWESoME src2tgt 50.2 38.2 58.0 60.5 45.9 55.0 69.1 62.5
tgt2tgt 27.7 30.7 42.4 52.6 38.5 46.4 6.8 43.3

Table 1: F1 scores for various full pipelines and alignment directions on XTREME (first section) and
MasakhaNER2 (second section). Heuristic SimAlign and Heuristic AWESoME are heuristic approaches,
while n-gram/NER cand. aligner name refers to the proposed candidate matching method with the
specified aligner. The first columns show the language where the proposed method outperforms the
heuristic the most, the seconds indicate where it underperforms the most, and the last columns provide the
average results across all languages. Bold values are the overall best, and underlined values indicate the
best projection-based approaches. Estonian (et) and Finnish (fi) are given as typical examples.

formance on pre-labelled Europarl parallel texts
(Agerri et al., 2018), excluding translation and
source NER labelling errors. It highlights that can-
didate matching methods yield results comparable
to or better than prior approaches. The NER-based
target candidates approach underperforms due to
imperfect spans but surpasses plain model transfer
by correcting mislabeled spans via source entity
projection.

5 Conclusion

In this study, we presented novel annotation projec-
tion methods based on word-to-word alignments
for cross-lingual NER.

The idea to compute word-to-word alignments
between the original and back-translated labelled
sentences in the same language, aimed at enhancing
the quality of these alignments, did not produce
the desired outcomes. This approach encountered
significant challenges, primarily due to errors that
occurred during the back-translation process.

In contrast, the proposed method of extracting
candidates and matching them with source entities
showed robust results. More specifically, the pro-
posed formulation generally outperformed previous
word-to-word alignment-based projection methods
that relied on heuristics to deal with incorrect align-
ments.

By using the same NER model for candidate ex-

traction as in model transfer, the proposed approach
can outperform model transfer. This is achieved
by refining the labels for correctly predicted spans
through projection from source entities.

Despite its advantages, the proposed approach
remains heavily dependent on the quality of word-
to-word alignments. However, the formulated ILP
problem incorporates these alignments into match-
ing scores that can be combined with other strate-
gies using a weighted sum.

Our findings demonstrate that the projection-
based data transfer approach can be a robust alter-
native to model-based methods for cross-lingual
named entity recognition in low-resource lan-
guages.

Future research could aim to improve candidate
extraction and explore alternative matching costs in
addition to the alignment-based one. The proposed
formulation, in contrast to heuristic approaches,
facilitates the integration of various scoring mecha-
nisms, allowing for the fusion of different scores to
effectively address the limitations associated with
each individual method.

Moreover, exploring the usage of LLMs for
the projection step in cross-lingual NER pipelines
shows potential, indicating that the development
of multilingual LLMs could help enhance the per-
formance of NER tasks across diverse languages,
especially when working with limited labelled data.
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Limitations

Translation Model Dependency: The performance
of the proposed methods relies on the quality of
the translation model used – in our case NLLB200-
3.3B (Costa-jussà et al., 2022). Limitations in trans-
lation accuracy for certain languages may prop-
agate errors through the pipeline, especially for
morphologically complex or resource-scarce lan-
guages.

NER Model Dependency: Models used for ex-
tracting candidates or labelling translated sentences
in the source language can be a source of errors.
Incorrect predictions or omissions of entities by
a model, coupled with the limited capability to
correct such errors on the projection step, can ad-
versely affect the quality of the resulting labelling
of the original sentence. In our experiments, we
rely on the XLM-R-Large model, fine-tuned on
the English split of CONLL2003, although perfor-
mance metrics may vary with different models.

Word-to-Word Alignment Model Dependency:
The matching scores in the proposed ILP formu-
lation for the projection step are computed based
on word-to-word alignments. Therefore, the qual-
ity of the projection is inherently bounded by the
quality of these alignments. In our study, we uti-
lized state-of-the-art neural-based alignment mod-
els, specifically SimAlign and AWESoME. These
models surpass previous statistically-based aligners
as they incorporate the context of entire sentences.
However, their performance remains limited. Fur-
thermore, the quality of alignments varies between
languages, which can be attributed to the represen-
tation of languages in the pretraining datasets of the
models, as well as the inherent linguistic properties
and structural differences among languages.

Dataset Variability: The proposed method
demonstrates varying effectiveness across datasets,
performing well on less complex languages but
struggling with those that exhibit higher morpho-
logical complexity (e.g., Xhosa and Zulu). This
indicates that additional adaptations may be needed
for specific linguistic features.

Generalization Across Languages: The candi-
date matching method shows superior performance
for most languages but underperforms in specific
cases (e.g., Bengali, Kazakh, and Swahili), po-
tentially due to inadequate representation in pre-
training.

Optimization Heuristics: While the proposed
optimization-based projection method reduces re-

liance on heuristics, the greedy algorithm used to
solve the optimization problem may not achieve
global optima in all scenarios.
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Appendix

Isolated Evaluation of the Projection Step

Table 2 depicts performance only of the projec-
tion step, excluding translation and source NER
labeling errors, on labelled parallel texts from the
Europarl-based NER dataset5 (Agerri et al., 2018).
Since our experiments with the tgt2tgt alignment
direction yielded negative results, all pipelines pre-
sented in the table are only for the src2tgt case.

We can see that annotation projection methods
that incorporate candidate matching can achieve
results comparable to or better than previous ap-
proaches. Specifically, for the German language,
the newly proposed method exhibits a significant
performance improvement.

Projection method de es it
Heuristic SimAlign 80.0 90.7 87.0

Heuristic AWESoME 81.9 90.3 87.3
n-gram SimAlign 89.8 89.2 87.8

n-gram AWESoME 92.0 88.6 87.2
Model transfer 67.5 74.1 69.6
NER SimAlign 74.5 79.8 72.3

NER AWESoME 74.7 80.0 72.0

Table 2: F1 scores resulting from the evaluation of
only the projection step using the Europarl-based
NER dataset with English as a source language.

The NER-based target candidates approach per-
forms in this experiment worse due to imperfect
spans predicted by the model. However, it still
outperforms plain model transfer because it cor-
rects wrongly predicted labels for spans using the
projection from matched source entities.

In the case of the Spanish language, the heuristic
word-to-word alignment-based algorithm slightly
outperforms the proposed approach utilizing the
n-gram candidate extraction strategy. This advan-
tage arises from the algorithm’s ability to merge
two continuous ranges of target words aligned with
source entity words, when only one misaligned
word exists between these ranges. In contrast, our
approach exhibits this capability only in specific
situations.

5ShkalikovOleh/europarl-ner
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Notes on Complexity of the Problem
It can be demonstrated that the proposed problem,
when excluding the second set of constraints that
limit the number of projections for source enti-
ties, reduces to the maximum weight independent
set problem on interval graphs, which is solvable
in polynomial time (Pal and Bhattacharjee, 1996).
Therefore, any potential complexity in the entire
problem may be due to the combination of non-
overlapping constraints and the constraints limiting
the number of projections for each source entity.
Although it is likely that the proposed ILP formula-
tion could be solved in polynomial time, we cannot
make a definitive claim since an appropriate algo-
rithm has yet to be identified.

Insights from the MasakhaNER2 Dataset
Experiments
Here, we provide further details on the results
across different languages from the MasakhaNER2
dataset.

The set of 10 languages where the proposed
method performs better than heuristics from the
MasakhaNER2 dataset includes: Bambara (’bam’),
Fon (’fon’), Hausa (’hau’), Igbo (’ibo’), Luganda
(’lug’), Mossi (’mos’), Shona (’sna’), Swahili
(’swa’), Wolof (’wol’), and Yoruba (’yor’). The
second set of 8 languages where the proposed
methods perfom worst includes: Ewe (’ewe’), Kin-
yarwanda (’kin’), Luo (’luo’), Chichewa (’nya’),
Tswana (’tsn’), Twi (’twi’), Xhosa (’xho’), and
Zulu (’zul’). The exact metric values can be found
in the provided GitHub repo.
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Abstract

As lifestyle-related diseases rise due to
unhealthy habits such as smoking, poor
diet, lack of exercise, and alcohol con-
sumption, the role of Conversational AI
in healthcare is increasingly significant.
This study provides an empirical study
on the design and evaluation of a natu-
ral and intuitive healthcare chatbot, specif-
ically focusing on the impact of empa-
thetic responses on user experience re-
garding lifestyle changes. Findings re-
veal a strong preference for the empathetic
chatbot, with results showing statistical
significance (p <0.001), highlighting the
importance of empathy in enhancing user
interaction with healthcare chatbots.

1 Introduction

In our contemporary healthcare situation,
lifestyle-related diseases are increasing, primarily
influenced by unhealthy habits such as smoking,
poor diet, lack of exercise, and alcohol consump-
tion (Balwan and Kour, 2021). Simultaneously,
conversational AI, or chatbots, have gained popu-
larity and emerged as powerful tools, particularly
in the healthcare sector (Amiri and Karahanna,
2022).

Nevertheless, the use of conversational agents
in the healthcare domain is not too widespread, es-
pecially when compared to other industries such as
travel and hospitality (Laranjo et al., 2018). Fur-
thermore, very little is known about how the lin-
guistic design of a medical conversational agent
can impact the users’ likelihood to employ it for
their healthcare queries (Shan et al., 2022).

This paper focuses on the design and evalu-
ate a natural and intuitive chatbot for the health-
care domain, including an empirical analysis of
the results. More specifically, we investigate how

the use of empathy in generated messages can af-
fect user experience during queries about lifestyle
changes, hence influencing the likelihood to incor-
porate a healthcare conversational agent in their
daily lives (de Boer et al., 2023). The two primary
contributions of this study are:

1. To provide insight in the impact of empa-
thetic versus neutral tones in messages in a
LLM based chatbot.

2. To understand user expectations in human-
computer interactions - using chatbots - in
the healthcare domain, especially on lifestyle
changes.

2 Related Work

2.1 Empathy and Language in
Human-Computer Interaction (HCI)

Empathy plays a crucial role in making HCI more
natural and intuitive. This paper draws on con-
cepts of cognitive and affective empathy in human
interaction.

Empathy is generally divided into two types:
cognitive and affective empathy. Cognitive empa-
thy is the ability to understand another person’s
emotional state without necessarily sharing it. Re-
niers et al. (2011) describe cognitive empathy as
constructing a mental model of another’s emo-
tions. For example, someone with strong cognitive
empathy can understand a friend’s distress over
a failure and offer appropriate advice. Cognitive
empathy facilitates communication by enabling
deeper understanding of others’ experiences.

In contrast, affective empathy involves an emo-
tional response to another’s feelings. Affective
empathy allows individuals to emotionally con-
nect with others by vicariously experiencing their
emotions. For instance, when a friend celebrates
an achievement, a person with affective empathy
would also feel joy. This type of empathy is essen-
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tial for providing emotional support and fostering
deeper connections.

Empathy is fundamental in social cognition (Ia-
coboni, 2005), allowing individuals to share ex-
periences and goals. While empathy in humans
involves complex cognitive and emotional mecha-
nisms, chatbots can replicate empathetic commu-
nication by imitating patterns of human interac-
tion. In practice, empathetic language in chat-
bots focuses on word choices that acknowledge
the user’s emotional state, effectively simulating
empathy through language.

Human empathy, as standardly defined (Cuff
et al., 2016), involves complex mental and emo-
tional processes that chatbots do not possess. In-
stead, when discussing empathy in chatbots, we
refer to their ability to produce responses that
mimic human empathetic behaviours. Henceforth,
a chatbot can be considered empathetic if its re-
sponses create the illusion of understanding and
validating the user’s feelings, even though it lacks
real emotional experience.

2.2 Language Choices in Empathetic
Communication

Empathetic communication in chatbots is
achieved not only through understanding emo-
tions but also through specific linguistic choices.
Research by Yaden et al. (2023) identifies words
associated with empathy, showing how language
can create a sense of emotional support and
connection. For example, the use of personal
pronouns such as “I” and “you” helps create a
more direct and personal interaction. Similarly,
adjectives like “good” and “happy” convey posi-
tive emotional states, while verbs like “hope” and
“need” can express concern or reassurance.

In addition to word choices, certain phrases play
an essential role in empathetic communication.
Lapointe (2014) found that common phrases like
“I know” and “I understand” are often used to val-
idate the user’s feelings, while phrases like “it is”
and “you are” are used to acknowledge the situa-
tion. These phrases help build emotional connec-
tion and foster a sense of understanding between
the speaker and listener, which is crucial in emo-
tionally sensitive interactions.

2.3 Research on Empathy in Chatbots
Research has increasingly focused on how empa-
thetic language in chatbots can enhance user expe-
rience. Liu and Sundar (2018) explored whether

chatbots should offer both informational and emo-
tional support when advising on personal issues.
Their findings show that users generally prefer
empathetic expressions over neutral advice, even
when delivered by a chatbot, particularly when
users are skeptical of machines’ ability to show
empathy.

Casas et al. (2021) further investigated empa-
thetic chatbots by developing a system that gen-
erates emotionally attuned responses. Their chat-
bot outperformed both a standard chatbot and even
some human responses in terms of perceived em-
pathy. These studies demonstrate that empathetic
language significantly improves user satisfaction
with chatbots.

In the healthcare domain, the BabyTalk project
(Mahamood and Reiter, 2011) examined parental
preferences for emotionally sensitive medical re-
ports about babies in neonatal care. Parents over-
whelmingly preferred emotionally supportive, or
affective, language over neutral descriptions. This
shows that empathetic language is not only valued
but essential in high-stress environments.

3 Conversational Agent Design

The decision to use a LLM-powered chatbot was
driven by the need for a system capable of un-
derstanding and generating natural language with
a high degree of fluency and contextual aware-
ness. Unlike traditional rule-based or retrieval-
based chatbots, which rely on predefined scripts or
a database of responses, an LLM-powered chatbot
can generate nuanced, contextually appropriate re-
sponses based on the specific needs of the user at
any given moment.

One of the primary advantages of LLMs is their
ability to process complex language inputs, mak-
ing them well-suited for conversations that require
deep contextual understanding, such as those in
the healthcare domain. Given the nature of health-
care queries, which often involve detailed and sen-
sitive information, it was essential to implement a
system that could handle such complexities with a
high degree of accuracy and flexibility.

The main objective of the chatbot is generating
responses to user queries in a manner that is both
informative and aligned with the specific version
(empathetic or neutral) being tested.

The implementation of both the empathetic and
neutral version is the same, except for the specific
prompt used. In our first experiment, we evaluate
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different LLMs to decide on the most suitable for
our task.

The implementation of the chatbots involved us-
ing the AutoTokenizer from Hugging Face to pre-
process and tokenise input data, ensuring compati-
bility with the model and efficient handling of user
queries. The chatbot’s LLM was run locally using
a GPU cluster, which was crucial for managing the
computational demands of real-time text genera-
tion during user interactions. The web component
of the chatbot was built using Flask, a lightweight
web framework for Python, chosen for its simplic-
ity and effectiveness in developing web-based ap-
plications.

3.1 Empathetic Chatbot Design

The empathetic version of the chatbot was de-
signed with a specific focus on enhancing user
experience through emotionally supportive com-
munication. This required a detailed approach
to ensure that the generated responses not only
conveyed the necessary information but did so in
a manner that validated and supported the user’s
feelings. To implement empathy in the gener-
ated responses, the empathetic chatbot was pro-
grammed to follow a predefined prompt of empa-
thetic communication, which diverges from that of
the neutral one, and that was designed to shape
its tone and language. The prompt explicitly in-
structs the model to generate responses that in-
clude empathetic expressions, focusing on word
choices that reassure and validate the user’s expe-
riences. This approach ensures that the chatbot’s
interactions are not only informative but also emo-
tionally supportive, thereby enhancing the overall
user experience:

• Neutral prompt: “You are a chatbot who
provides advice about lifestyle changes.”

• Empathetic prompt: “You are a friendly
chatbot who provides advice about lifestyle
changes. Your responses must be empa-
thetic. A response is considered empathetic if
it shows: 1) Comprehension towards the feel-
ings of the other (i.e. ‘I understand that you
are concerned about your health.’), and 2) En-
gagement in the feelings of the other (i.e. ‘I
feel so happy that you have decided to live a
healthier lifestyle.’). Remember, your gener-
ated advice should contain word choices that
reassure and validate other people’s experi-

ences, according to the definition of an em-
pathetic response.”

The empathetic prompt is characterised by two
key elements in empathetic language that align
with the literature, as they were mentioned in
the previous section: comprehension of feelings
(cognitive empathy) and engagement with feel-
ings (affective empathy). The chatbot acknowl-
edges and understands the user’s emotions, pro-
viding responses that appeal to the user’s emo-
tional state. For example, it might say, “I under-
stand that you are concerned about your health.”
to validate the user’s concerns. Furthermore, the
chatbot expresses positive reinforcement and en-
couragement, aiming to motivate the user. For in-
stance, “I feel so happy that you have decided to
live a healthier lifestyle!” is used to engage with
and uplift the user. This prompt differs from that
of the neutral chatbot, which only was instructed
to provide advice about lifestyle changes, without
any remark about the tone employed (see Figure
1). The prompts were chosen to meet the gener-
ative task requirements and to align with existing
literature. They were also refined to ensure that
the LLM could accurately understand the type of
message it was asked to generate.

Figure 1: User interface and greetings generated
by the neutral chatbot (left) and empathetic chat-
bot (right).

4 Experiment I: LLM Evaluation

The first experiment consisted of an evaluation of
the responses generated by different LLMs, where
the best-performing LLM was used as the basis of
the chatbot in the user experiment (experiment 2).
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4.1 Dataset

In order to do so, we asked the models to generate
answers to questions obtained from the MASH-
QA dataset (Zhu et al., 2020). This dataset
was chosen because it is composed of consumer
healthcare queries sourced from the popular health
website WebMD, which features a wide range of
articles covering various consumer healthcare top-
ics. The answers to these queries are drawn from
sentences or paragraphs within the articles related
to the specific healthcare condition. These re-
sponses are curated by healthcare experts to en-
sure they accurately address the questions. We se-
lected 100 questions, divided equally according to
the following topics: exercise, food, smoking and
alcohol. These topics are the same we used during
the user experiment, since they are the related to
the most common causes of lifestyle diseases.

4.2 Models

We chose four LLMs, two of them being domain-
specific—MedAlpaca (Han et al., 2023) and Med-
itron (Chen et al., 2023)—and the other two be-
ing general—GPT-4 (OpenAI, 2024) and Llama 3
(Meta, 2024). The motivation behind this choice
is that it is crucial to experiment with a diverse set
of LLMs, due to the lack of agreement in the liter-
ature over the superior performance of general or
domain-specific models for medical tasks (Zhou
et al., 2024; Nori et al., 2023). Henceforth, the two
most suiting domain-specific LLMs were chosen,
along with two general ones: one that had yielded
good results for medical tasks (GPT-4), and a pow-
erful, open-source one (Llama 3).

4.3 Evaluation

The evaluation was performed with G-Eval (Liu
et al., 2023), a state-of-the-art NLG evaluation
framework that uses a chain-of-thought (CoT) and
a form-filling paradigm to assess the quality of
texts generated by LLMs with GPT-4. The pri-
mary benefit of this evaluation framework is that
it achieves a higher correlation (0.588) with hu-
man judgments compared to conventional metrics
and previously established LLM-based evaluators,
such as BLEU or ROUGE.

For this study, we tested G-Eval with the fol-
lowing metrics:

1. Fluency: “the quality of the answer in terms
of grammar, spelling, punctuation, word

choice, and sentence structure” (Fabbri et al.,
2021, as cited in (Liu et al., 2023)).

2. Coherence: “the collective quality of all sen-
tences. We align this dimension with the
DUC quality question of structure and co-
herence whereby ‘the answer should be well-
structured and well-organized. The answer
should not just be a heap of related informa-
tion, but should build from sentence to a co-
herent body of information about a topic’”
(Fabbri et al., 2021, as cited in (Liu et al.,
2023)).

3. Groundedness: “the use of a fact in the an-
swer, given the fact that this answer is con-
ditioned by it” (Mehri & Eskenazi, 2020, as
cited in (Zhong et al., 2022)).

4. Naturalness: “the quality of the answer in
terms of being like something a person would
naturally say” (Mehri & Eskenazi, 2020, as
cited in (Zhong et al., 2022)).

These metrics were chosen because they encom-
pass linguistic aspects related to human-likeness
and user experience, so the scores associated with
them can shed light on which models perform best
on these aspects. In other words, this evaluation
gives insights into how each LLM performs on the
task of advice about lifestyle changes, from a lin-
guistic point of view.

GPT-4 Llama 3 MedAlpaca Meditron

Fluency 0.865 0.864 0.844 0.846
Coherence 0.753 0.732 0.726 0.694
Groundedness 0.883 0.879 0.851 0.894
Naturalness 0.806 0.787 0.826 0.818

Avg. scores 0.827 0.816 0.812 0.813

Table 1: Results of the LLM evaluation.

4.4 Results and Discussion

As shown in Table 1, all the models had similar av-
erage scores across every metric, within the range
0.812 - 0.827, and with GPT-4 giving the high-
est score. Nevertheless, the results of the one-way
ANOVA indicated that none of the differences be-
tween models in any metric were statistically sig-
nificant (p >0.05).

GPT-4 outperformed the other models in flu-
ency (0.865) and coherence (0.753), which illus-
trates its linguistic abilities to generate dialogues.
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The model’s scores in fluency and coherence indi-
cate its advanced linguistic capabilities, which are
crucial for dialogue. Its fluency score (0.865) re-
flects the model’s ability to produce smooth, eas-
ily readable text. GPT-4’s coherence score (0.753)
also surpasses the other models, suggesting that
GPT-4 maintains logical consistency and context
better throughout its responses. However, other
individual metrics show slightly different results.

Meditron, one of the domain-specific mod-
els, received the highest score on groundedness
(0.894), where the generated answers where com-
pared about those from the golden standard in
the MASH-QA dataset. Groundedness measures
the factual accuracy and alignment of generated
answers with a predefined gold standard, in this
case, the MASH-QA dataset. Meditron’s domain-
specific training likely enhances its ability to pro-
duce accurate, relevant information within its spe-
cialised area. This specialisation illustrates the
trade-off between general linguistic capabilities
and domain-specific accuracy. While other mod-
els surpass Meditron in metrics concerning gen-
eral dialogue quality, Meditron provides more pre-
cise and reliable information in the medical field.

The most surprising aspect of the data is in
the results of naturalness, where MedAlpaca out-
performed the other models (0.826). Naturalness
evaluates how human-like the generated responses
are, which is critical for creating engaging interac-
tions. Despite MedAlpaca not leading in overall
average scores or in fluency and coherence, its top
performance in naturalness suggests that its gen-
erated messages are more intuitively aligned with
human conversational patterns. Since naturalness
was the most important metric, due to its rela-
tion to human-likeness, MedAlpaca was the cho-
sen model to embed in the conversational agent of
the main experiment.

5 Experiment II: User Experiment

We further compared the user experience with
the neutral and empathetic conversational agents
based on MedAlpaca.

5.1 Procedure

The experiment consisted of randomised con-
trolled trials followed by cross-sectional surveys.
A total of 25 participants were recruited, all of
whom had completed university-level education.
Of these participants, 68% identified as women,

and 32% identified as men. In terms of age dis-
tribution, 68% were between 25 and 34 years old,
while 12% were either 18 to 24 years old or 35 to
44 years old. Additionally, 4% were aged 45 to
54 years, or 55 to 64 years. The participants did
not necessarily search for lifestyle change. They
interacted with the chatbot remotely and were in-
structed to complete the experiment in a quiet en-
vironment. The independent variables included
factors such as the participant demographics, em-
pathy condition and scenario.

An initial questionnaire was used to gather in-
formation on personal information such as age and
gender, and a 5-point Likert scale questionnaire on
the following topics: frequency of use with chat-
bots, feelings towards chatbot use, and feelings to-
wards chatbot use in healthcare.

A within-subject design was used, where the
same participant tested all conditions. During the
experiment, they interacted with a chatbot and
asked for lifestyle advice according to the follow-
ing scenarios they enacted: eating healthier, exer-
cising more, quitting smoking and reducing alco-
hol intake. After each of those four scenarios, they
filled in a questionnaire.

5.2 Materials

The questionnaire used to test the participants’
interaction was an adapted version of the Chat-
bot Usability Questionnaire (CUQ) (Holmes et al.,
2019). The CUQ was selected due to its evalu-
ation focus on conversational agents. Traditional
metrics like the SUS (Brooke et al., 1996), though
valuable, may not fully capture the nuanced as-
pects of chatbot interactions. The CUQ, in con-
trast, is designed to assess these aspects, making
it a more suitable tool for evaluating the overall
usability and effectiveness of chatbots.

While the original CUQ questions focus on
the usability and evaluation of the chatbot’s inter-
face, they barely cover linguistic aspects. Hence-
forth, we modified the CUQ so that it could assess
the chatbot’s communication style, particularly the
impact of empathetic versus neutral tones, which
was one of the main objectives of this study. The
adapted CUQ has two sets of questions: the first
8 of them evaluate the linguistic aspects of the in-
teractions, and the other 8 focus on the usability
aspect (see Table 2).
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Question
1 The chatbot’s personality was realistic and engaging.
2 The chatbot seemed too robotic.
3 The chatbot was welcoming during initial setup.
4 The chatbot seemed very unfriendly.
5 The chatbot acknowledged my feelings appropriately.
6 The chatbot ignored my concerns.
7 The chatbot used language that was considerate and support-

ive.
8 The chatbot communicated in a cold and distant manner.
9 I trust the information provided by the chatbot.
10 I am skeptical of the advice the chatbot gave me.
11 Chatbot responses were useful, appropriate and informative.
12 Chatbot responses were irrelevant.
13 I am satisfied with my experience interacting with the chatbot.
14 My experience interacting with the chatbot was frustrating.
15 I would recommend this chatbot to others for lifestyle change

advice.
16 I would advise others against using this chatbot for lifestyle

change advice.

Table 2: Adapted Chatbot Usability Questionnaire
used in our user experience study.

5.3 Data Collection and Analysis
Our data, collected anonymously and remotely,
consist of the questionnaire’s responses and chat-
logs.

To investigate the impact of the empathy con-
dition on the CUQ scores, we conducted a one-
way ANOVA with blocking, using chatbot experi-
ence, chatbot opinion, and medical chatbot opin-
ion as block variables. Before proceeding with the
analysis, the dataset underwent a rigorous process
to check for normality and homogeneity of vari-
ances. Normality tests, such as Q-Q plots and his-
tograms, were conducted to visually inspect that
the CUQ scores within each group (empathetic
or neutral chatbot) followed a normal distribution.
Additionally, the Kolmogorov–Smirnov test was
applied to confirm that the distribution of the CUQ
scores do not significantly differ from a normal
distribution with equal mean and deviation.

Additionally, we conducted a qualitative analy-
sis using the chatlogs and participants’ answers to
the open questions in the questionnaire.

5.4 Results and Discussion of the
Quantitative Analysis

5.4.1 Overall CUQ Score
The overall CUQ score comprises the results from
the complete questionnaire, without any distinc-
tion between the nature of the questions. The
mean overall CUQ score for the empathetic chat-
bot was 66.3±17.0, and 49.4±20.3 for the neu-
tral one. Moreover, the empathetic chatbot consis-
tently scored higher across all the scenarios, as it
can be seen on Figure 2.

Figure 2: Overall CUQ scores per empathy condi-
tion and scenario.

The ANOVA results show that the empathy
condition is highly statistically significant, with a
p-value of 0.00002138 (p <0.001), whereas the
block variables (chatbot opinion, medical chatbot
opinion, and chatbot use frequency) are not. The
ANOVA coefficients illustrate how much chang-
ing each variable modifies the CUQ score. The
intercept shows us the “base case” which, in this
case, it is when the condition is empathetic, the
chatbot frequency of use is yearly, and the opin-
ion towards regular and medical chatbots is uncer-
tain. In this base case, the average CUQ score was
64.9±4.0. Then, it showcases that, if from this
base case we only change the condition to neutral,
without modifying all the other variables, the av-
erage CUQ score will be reduced by -17.0±3.8.
This effect is significant (p <0.001). Other block
variables are not statistically significant.

5.4.2 Linguistic CUQ Score

The linguistic CUQ score encompasses a subsec-
tion of scores about linguistic statements. These
sentences evaluated if the chatbot’s linguistic style
while providing answers was perceived as wel-
coming, friendly and supportive by the partici-
pants. The empathetic chatbot had a mean linguis-
tic CUQ score of 59.3±9.7, compared to 50.2±9.2
for the neutral chatbot. Similarly to the previous
section, the empathetic chatbot consistently out-
performed the neutral one across all scenarios, as
illustrated in Figure 3.

The ANOVA reveals that the empathy condi-
tion is also highly statistically significant, with a p-
value of 0.000007095 (p <0.001). Regarding the
ANOVA coefficients, with the base case described
in the previous section, the average CUQ score
is 59.5±2.1. If the condition shifts from empa-
thetic to neutral, without altering any other factors,
the average CUQ score decreases by -9.1±2.0, a
change that is statistically significant (p <0.001).
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Figure 3: Linguistic CUQ scores per empathy con-
dition and scenario.

The remaining block variables do not have a sig-
nificant effect.

5.4.3 Usability CUQ Score
The usability CUQ score includes a subset of
scores related to usability statements, assessing
whether participants perceived the chatbot’s an-
swers as useful and relevant for lifestyle change
advice. The empathetic chatbot had a mean usabil-
ity CUQ score of 57.1±8.5, while the neutral chat-
bot scored 49.2±12.3. Consistent with previous
findings, the empathetic chatbot consistently sur-
passed the neutral one in all scenarios, as shown
in Figure 4.

Figure 4: Usability CUQ scores per empathy con-
dition and scenario.

The ANOVA demonstrates that the empathy
condition has a highly statistically significant ef-
fect, with a p-value of 0.0003546 (p <0.001). This
indicates that the variation observed in the CUQ
scores is unlikely to be due to chance. In the con-
text of the base case described in the previous sec-
tions, the average CUQ score is 55.5±2.3. When
the condition is shifted from empathetic to neu-
tral, while keeping all other conditions constant,
there is a notable decrease in the average CUQ
score by -7.9±2.1. This decrease is statistically
significant, with a p-value of less than 0.001, high-
lighting the impact of the empathy condition on
the CUQ scores. Additionally, the analysis reveals
that the remaining block variables do not have a

significant effect on the CUQ scores.

5.5 Results and Discussion of the Qualitative
Analysis

5.5.1 Chatbot Dialogues

The dialogue excerpts obtained from the chatlogs
highlight the differences in the way neutral and
empathetic chatbots respond to user queries. In
the interactions with the neutral chatbot, responses
were direct and factual, with no additional com-
mentary or expression of understanding. For ex-
ample, when a participant asked about fruits low
in sugar, the chatbot simply listed “apples, pears,
and berries” without further elaboration. This pat-
tern is consistent across all interactions with the
neutral chatbot, where the focus was on delivering
concise and straightforward information.

In contrast, the empathetic chatbot provided re-
sponses that not only addressed the participants’
queries but also incorporated elements of empa-
thetic communication. The responses often be-
gan with expressions of understanding or concern,
followed by advice or information that was more
detailed and personalised. For instance, when a
participant mentioned feeling sluggish after meals,
the empathetic chatbot acknowledged the partici-
pant’s feelings and provided a comprehensive an-
swer that included suggestions for dietary adjust-
ments and a rationale behind those suggestions.

This approach aligns with the lexical and
phrasal choices associated with empathetic com-
munication as identified by Yaden et al. (2023)
and Lapointe (2014), such as the use of first
and second person pronouns (“I understand that
you feel...”), modal verbs (“would”, “could”), and
phrases that validate the user’s experiences (“I
hope this advice was helpful.”). Furthermore, an
n-gram frequency analysis of the chatlogs reveals
significant differences in word usage between the
empathetic and neutral chatbots. Specifically, the
words identified in Yaden et al. (2023) as char-
acteristic of empathetic communication constitute
14.04% of all unigrams produced by the empa-
thetic chatbot, compared to 6.80% in the neutral
chatbot. Similarly, the two-word phrases listed
in Lapointe (2014), account for 3.27% of all bi-
grams generated by the empathetic chatbot, but
only 0.86% in the neutral one. These differences
are highly statistically significant (p <0.001).
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5.5.2 User Feedback
Participants’ feedback further supports the con-
trast between the interactions with the neutral and
empathetic chatbots. Users often described the
responses of the neutral chatbot as “cold” and
“robotic”, noting the lack of empathetic engage-
ment. One participant remarked that the chatbot’s
responses felt like “getting a list of Google re-
sults”, which indicates that the interaction was per-
ceived as impersonal and purely informational.

Conversely, feedback on the empathetic chatbot
was generally positive, with participants appre-
ciating the more engaging and supportive nature
of its responses. Participants highlighted that the
empathetic chatbot provided “useful” information
and that the interaction felt “lively” and “holis-
tic”. One participant even mentioned that the chat-
bot’s advice made them seriously consider chang-
ing their behaviour, such as reducing alcohol con-
sumption. These comments and descriptions align
with the conclusions from the previous subsection
on the chatbot dialogues.

6 Conclusion

This paper aimed to investigate how the use of em-
pathy in generated messages can affect user expe-
rience during queries about lifestyle changes.

The two primary contributions of this study are
to provide insight in the impact of empathetic ver-
sus neutral tones in messages in a LLM based
chatbot, and to understand user expectations in
human-computer interactions - using chatbots -
in the healthcare domain, especially on lifestyle
changes.

The results of the first experiment show the dif-
ferences between different LLMs, specifically two
domain-specific and two general ones, on the dif-
ferent metrics fluency, coherence, groundedness
and naturalness. These differences are not big,
and the model with the most naturalness on the
MASH-QA dataset concerning lifestyle questions
- MedAlpaca - is chosen as the model to use in the
second experiment.

The results of the second experiment show that
empathy plays a crucial role in enhancing user
satisfaction. The empathetic chatbot significantly
outperformed the neutral chatbot across all dimen-
sions measured by the Chatbot Usability Ques-
tionnaire, including overall user experience, lin-
guistic perception, and usability (p <0.001). This
outcome highlights the importance of empathy in

chatbot communication, especially in healthcare
settings where users are likely to seek comfort and
understanding.

Beyond just evaluating chatbot performance,
it was essential to analyse what users expect
from these interactions and how these expectations
shape their experience. Results revealed that users
expect healthcare chatbots to offer more than just
accurate and relevant information — they expect
to participate in an interaction that mirrors human
conversation. The high CUQ scores for the em-
pathetic chatbot suggest that when these expecta-
tions are met, users are more satisfied and more
likely to view the chatbot as a trustworthy and ef-
fective tool for asking about health advice.

Some of the limitations of this work include
that the user experiment was specifically set to 4
scenarios and the participants recruited were not
searching actively for lifestyle change. Although
the participants were free to use their wording, the
scenarios were quite restricted. In future work, it
would be nice to conduct the experiment in a more
realistic setting with more participants to verify
our findings. Additionally, the sample size was
relatively small and homogeneous, which hinders
the generalisation of the results to a broader pop-
ulation. For example, individuals from different
educational backgrounds or age groups might pri-
oritise straightforwardness over empathy, which
could yield slightly different results over the pre-
ferred tone in messages. Future work could repli-
cate the experiment with a larger, more diverse
sample to verify whether these preferences could
be applied universally or are influenced by specific
demographic factors.

In summary, it is evident that the most ef-
fective healthcare chatbots are those that bal-
ance generating accurate medical information with
an empathetic dialogue style. While other gen-
eral linguistic capabilities are important, the suc-
cess of a healthcare chatbot heavily relies on
its ability to communicate empathetically and
align with human conversational patterns. This
project has demonstrated that incorporating empa-
thy into chatbot design can significantly improve
user experience, making these tools more appeal-
ing and effective in supporting lifestyle changes
and health-related decision-making.
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Köpf, Amirkeivan Mohtashami, Alexandre Sallinen,
Alireza Sakhaeirad, Vinitra Swamy, Igor Krawczuk,
Deniz Bayazit, Axel Marmet, Syrielle Montariol,
Mary-Anne Hartley, Martin Jaggi, and Antoine
Bosselut. 2023. MEDITRON-70B: Scaling Medi-
cal Pretraining for Large Language Models. arXiv
preprint arXiv:2311.16079.

Benjamin M.P. Cuff, Sarah J. Brown, Laura Taylor, and
Douglas J. Howat. 2016. Empathy: A Review of the
Concept. Emotion Review, 8(2):144–153.

Tianyu Han, Lisa C. Adams, Jens-Michalis Papaioan-
nou, Paul Grundmann, Tom Oberhauser, Alexander
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Abstract

We introduce a dataset of time-aligned
phonetic transcriptions focusing on vowel
length (quantity) in Icelandic. Ultimately,
this aims to support computer assisted
pronunciation training (CAPT) software,
to automatically assess length and possi-
ble errors in Icelandic learners’ pronun-
ciations. The dataset contains a range of
long and short vowel targets, including the
first acoustic description of quantity in non-
native Icelandic. Evaluations assess how
manual annotations and automatic forced
alignment characterise quantity contrasts.
Initial analyses also imply partial acquisi-
tion of phonologically conditioned quantity
alternations by non-native speakers.

1 Introduction

We present a corpus of Icelandic speech with manu-
ally corrected time-aligned phonetic transcriptions,
targeted towards native and non-native Icelandic
speakers’ acoustic realisations of vowel quantity
(length). Quantity is important in non-native (L2)
Icelandic learning because it is contrastive, as in
vinur [vI:nYr] ‘friend’, vinnur [vIn:Yr] ‘you, s/he
work(s)’, but challenging for many learners whose
first languages do not use this cue. Computer as-
sisted language learning (CALL) such as pronunci-
ation training (CAPT) enables self-directed learn-
ing beyond traditional classrooms, and could pro-
vide opportunities to practice and internalise the
Icelandic quantity system.

The acoustic implementation of Icelandic quan-
tity has been studied only in small manually an-
notated native-speaker (L1) datasets. Addressing
learners’ needs requires (i) understanding quantity
realisation in a broad sample of L1 and L2 speech,
and (ii) developing scalable automated methods to
describe a sufficient sample of the language and to

evaluate learners’ speech relative to acoustic targets
in autonomous interactive CAPT software.

We release time-aligned phonetic annotations for
2707 tokens of 72 Icelandic words,1 greatly increas-
ing the variety of contexts with available acoustic
data on quantity, and including non-native speech
for the first time. §4 uses this data to explore the
realisation of quantity contrasts, comparing man-
ual annotations and automated equivalents from the
Montreal Forced Aligner (MFA), to address four
Research questions:
RQ1 How do (subsets of) the annotated data relate
to expectations from comparable studies?
RQ2 How strongly do quantity contrasts emerge in
the annotated features, for L1 and L2 speakers?
RQ3 How accurate is Montreal Forced Aligner
(MFA) timing, compared to gold annotations?
RQ4 How useful is MFA for issues in RQs 1-2?

2 Vowel Quantity in Icelandic

2.1 Language description

Stressed vowels in Icelandic, generally the first
syllable of a word, have a quantity contrast con-
ditioned by the vowel’s environment (Einarsson,
1945; Kristinsson et al., 1985). A usual description
of surface facts (Árnason, 1998; Gussmann, 2011)
is that stressed vowels (including diphthongs) are
long when followed by at most one consonant: tré
‘tree’, hús ‘house’, the first vowel í in sími ‘tele-
phone’. They are short when two or more con-
sonants (geminates included) follow them before
either the next vowel or the end of the word, e.g.
mjólk ‘milk’, a in pabbi ‘dad’, except that specific
clusters {p,t,k,s}+{j,v,r} are preceded by long vow-
els, e.g. long i in sitja ‘sit’. In phonological terms
it is conventional to say that vowels are long in
open syllables and closed in short syllables, but it
has proved challenging to complete this with an
account of Icelandic syllable structure that does not

1https://github.com/catiR/length-contrast-data-isl
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circularly refer back to vowel length (see Árnason
2011; Craioveanu 2023; Fortuna 2016; Gussmann
2011; Þráinsson 1994; for issues bearing on phono-
logical characterisation and the interface with mor-
phosyntax). In practise, language teachers as well
as linguists presenting the most thorough descrip-
tions of Icelandic vowel length rarely complete
formal phonological accounts of it (Árnason, 1998;
Kristinsson, 1988; Craioveanu, 2023), so we con-
tinue the convenience of using the orthography as
the simplest means to communicate.

2.2 Acoustic properties
The reader is referred to Pind (1999) for a review
of acoustic research on Icelandic vowel quantity
from Einarsson (1927) onwards, and subsequently
Árnason (2011). In summary, absolute durations
of long vs. short vowel segments overlap consid-
erably, but there is a complementary relationship
between vowels and the consonant(s) that follow
them, such that these segments’ combined duration
in a word is relatively consistent: [a:l] in gala and
[al:] in galla (Pind, 1995; Einarsson, 1927). There-
fore, Icelandic vowel quantity is often described by
a proportion, formulated as V/(V+C), the ratio of
vowel duration to total vowel+consonant durations
(Pind, 1995); this calculation variously incorpo-
rates segments from either one or two syllables,
as consonants in C are in either the coda of the
stressed syllable or the onset of the next. Proper-
ties like vowel quality have also been identified as
secondary cues to quantity for some vowels (Pind,
1999; Kristinsson et al., 1985). However, the acous-
tic research draws on narrowly restricted samples
of few or one speaker(s), minimal vowel/syllable
types, or only sentence-initial words. Audio and
annotations are generally not accessible, and much
in the language remains undescribed, such as any
diphthongs, or L2 speech.

2.3 Teaching vowel quantity
Perceiving and producing quantity contrasts, as in
koma ‘come’, komma ‘comma’, can be challeng-
ing for students of L2 Icelandic whose native lan-
guage lacks such contrasts (McAllister et al., 2002).
Computer assisted pronunciation training (CAPT)
can offer help such as interactive exercises with
feedback (Arnbjörnsdóttir et al., 2020; Bédi, 2022).
Pronunciation accuracy assessment has been de-
veloped in coordination with lesson content of the
free course Icelandic Online, but this does not give
feedback on quantity errors, which is difficult to

provide without knowing what learners’ acoustic
targets are (Bédi, 2022; Bedi et al., 2024).

3 Corpus creation

3.1 Speech data

Audio is drawn from Samrómur, Samrómur
Queries, Samrómur Unverified, and Samrómur
L2 (Mollberg et al., 2021; Hedström et al., 2021,
2022a,b), recorded from 2019 onwards by native
and non-native Icelandic speakers. Excluding child
recordings (under age 18) there are in total 1.4 mil-
lion sentences and 180,598 unique word types in
over 1000 hours of speech. As corpora of crowd-
sourced read sentences, these are typical of audio
conditions that pronunciation training software pro-
cesses for CAPT users.

Icelandic language proficiency levels and native
language backgrounds of L2 Icelandic learners in
these corpora are not reported, but plenty of vari-
ation in both of these factors was subjectively ob-
served during manual annotation. Overall accuracy
of phoneme reproduction and reading suggests that
many speakers are intermediate to advanced learn-
ers of the language, although some speakers are
likely within their first year of study and in certain
recordings the speaker’s prosody implies failure to
semantically understand the sentence. Occasional
deviations from Icelandic L1 pronunciation shown
by L2 speakers were noted in vowel length and
quality, with some relation to apparent first lan-
guage background.

3.2 Target words

72 words of interest were sampled in two rounds
of annotation. A complete list is provided in Ap-
pendix A.

The initial validation sample (36 words) is par-
allel to Experiment 2 from Pind (1999) and Experi-
ment 1 of Pind (1995). In the former, 25 speakers
read target words saki, saggi, seki, seggi within
a paragraph; the reading context and number of
speakers stand out as a clear choice for compar-
ison to Samrómur data. From the latter, data on
kala, gala, Kalla, galla (Pind, 1995) includes fewer
speakers, but has similar enough acoustic analysis
to also draw into comparison. Some of these 8
words are very infrequent, so to better assess relia-
bility and variability, the validation sample is filled
out with other two-syllable words that differ from
Pind’s only in the word onset, e.g. tala, aggi, dreki.
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The second extension sample (36 words) high-
lights variation in stressed vowel phenomena, in-
cluding: diphthongs; a range of vowels preceding
different consonantal contexts such as nasals, frica-
tives, short and long trill, and assorted clusters;
words with ‘exceptional’ consonant clusters pre-
ceded by long vowels; and quantity alternations
within a morpheme as conditioned by compound-
ing, inflection, and/or vowel syncope.

For each of the two samples, the most frequent
words matching criteria were selected from Sam-
rómur data. Annotators checked and filtered each
word’s carrier sentences (in case of homonyms with
different pronunciations), and where possible an-
notated at most 10 tokens from the same carrier
sentence per L1/L2 speaker group.

3.3 Forced Alignment

As fully manual phonetic transcription is exces-
sively time consuming, data was preprocessed by
forced alignment, which annotators reviewed and
corrected. The Montreal Forced Aligner (MFA) is
a widely used toolkit built on Kaldi with standard
GMM-HMM triphone acoustic models (McAuliffe
et al., 2017). We train the aligner’s acoustic models
on 20 hours of Icelandic speech from Samrómur,
and use the General Icelandic Pronunciation Dictio-
nary for ASR (Nikulásdóttir and Guðnason, 2017),
to which a few target words not already present
were manually added.

3.4 Annotation

Recordings were annotated by three of the authors
while enrolled in undergraduate degrees on linguis-
tics and/or Icelandic language at the University of
Iceland. Two annotators are native Icelandic speak-
ers and all have training in Icelandic phonetics.
Annotation was carried out by reviewing and ad-
justing textgrids from MFA with the standard Praat
interface (Boersma, 2024).

Phonetic annotations include only target words,
not complete carrier sentence. The validation sam-
ple has up to 40 L1 + 40 L2 tokens per word, but
in the extension sample this is reduced to 20 each,
as pilot evaluation established this to be sufficient.
An error tier was added to L2 speakers’ textgrids,
using a simple coding scheme to mark when any
of consonant, vowel quality, quantity, and/or stress
placement errors were present in the target word.
Most prominent among errors in vowel quality was
a blending of the distinct vowel pairs i (L1 [I]) and

Segment N Same 10% 25ms Error
L1-Ons 1617 64% 70% 87% 27ms
L2-Ons 931 69% 77% 91% 29ms
L1-V 1727 48% 62% 79% 31ms
L2-V 980 64% 76% 87% 29ms
L1-C 1727 57% 70% 83% 29ms
L2-C 980 66% 75% 85% 37ms
L1-Ratio 1727 42% 67% – 19%
L2-Ratio 980 56% 75% – 20%

Table 1: MFA accuracy for Onset, stressed Vowel,
and post-vowel Consonant segment durations, and
resulting V/(V+C) Ratio. Columns are: Number
of tokens; percent of tokens where MFA’s dura-
tion/ratio is the Same, within 10%, or within 25ms
of gold; and average magnitude of MFA Errors.

í (L1 [i]), as well as o (L1 [O]) and ó (L1 [ou]),
possibly explained by their orthographic similarity.

4 Evaluations

4.1 MFA Alignment Accuracy
First, automatic (MFA) phone alignments are com-
pared to manual (gold) annotations (Table 1). MFA
output has accurate durations for half to 2/3 of
relevant segments, and of the rest, annotators’ ad-
justments are on average around 30ms. MFA inac-
curacies affect the V/(V+C) ratio for roughly half
of tokens, on average by 19-20% of the actual ratio.

4.2 Quantity classification
For a first look at acoustic correlates of the quan-
tity contrast, K-nearest-neighbour (K=1,3,5,10,20)
and linear regression classifiers were trained to pre-
dict vowels’ phonological length, using the follow-
ing features extracted from gold (manual) anno-
tations and MFA (automated) forced alignments:
V/(V+C) Ratio, and segment durations OnsDur,
VDur, CDur, and WordDur of respectively the tar-
get syllable Onset, Vowel, following Consonant(s),
and whole Word. Classifiers use 5-fold cross valida-
tion, or leave-one-out cross validation for samples
under 100 tokens. In §4 only the most informative
feature sets are reported, using 5-nearest-neighbour
classifiers which were typical of overall results.

In Table 2, a classifier for All tokens in the
dataset has mediocre accuracy (L1 gold: 75%) us-
ing the V/(V+C) Ratio, with limited improvement
from other available features. §4.3-4.6 therefore
use linguistically restricted subsets of the data, aim-
ing to isolate factors that moderate quantity cues.
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Figure 1: Stressed vowel and following consonant durations in Lalla, Vala, Raggi, raki, and tvisvar.

Sample Features L1-Gold L1-MFA L2-Gold L2-MFA
All Ratio 75% 74% 69% 69%
All VDur 68% 71% 61% 60%
All OnsDur, VDur, CDur 79% 79% 70% 70%

[C]ALa Ratio 98% 93% 91% 84%
[C]ALa VDur 84% 80% 66% 62%
[C]ALa VDur, Cdur 99% 95% 91% 88%

*ALa Ratio 94% 95% 81% 89%
*ALa OnsDur, VDur, CDur 96% 96% 87% 90%
*AKi Ratio 66% 68% 71% 68%
*AKi VDur 67% 71% 78% 69%
*AKi VDur, Cdur, WordDur 74% 76% 67% 72%
haus- Ratio 100% 98% 76% 74%

Diphthong Ratio 98% 97% 74% 76%

Table 2: Vowel length KNN classifier accuracy for L1 and L2 speech, with features computed from gold
(manual) annotations and MFA alignments. Samples consist of: All 72 words of the dataset; [C]ALa:
dala, gala, tala, balla, galla, kalla, palla; *ALa: the previous class plus ala, fala, vala, dvala, svala, lalla,
malla; *AKi: aki, aggi, baki, baggi, taki, kaggi, raki, raggi, þaki, blaki, maki, maggi; haus-: hausinn,
hausnum; Diphthong: ása, ásta, hausinn, hausnum, jónas, jónsson.

4.3 -ala, -alla

Results for [C]ALa in Table 2 examine two-
syllable words of a plosive followed by [a:la] or
[al:a], parallel to Pind (1995). Ratio is almost com-
pletely sufficient to distinguish L1 quantity (gold:
98% accuracy), while as expected, vowel duration
(VDur) alone is not. However, VDur and CDur
jointly may be slightly more useful than Ratio, es-
pecially with MFA features. *ALa, with more
syllable onset types, is harder to classify by Ratio,
but providing onset duration as a moderating factor
may make up some of the difference, especially
for L2 speakers. In all cases L2 speech was not
classified as accurately as L1; examples of short
(Lalla, personal name) and long (Vala, personal
name) vowels in Figures 1a-b illustrate how short
and long vowel cues overlap less for L1.

4.4 -aki, -aggi

*AKi in Table 2 finds far worse ability to discrimi-
nate vowel quantity than either Pind (1999)’s 94%

(L1) classification accuracy for similar words with
only single plosive onsets, or to our *ALa sample
with varied onsets. Figure 1c gives an example of
L1 speech for minimal pair raki [ra:cI] ‘humidity’,
Raggi [rac:I] (personal name), clearly not separable
by the features that were sufficient for *ALa. For
L1 but not L2, whole token duration is somewhat
useful; this feature can reflect local speech rate and
aspects of onset consonants.

4.5 Consonant cluster exceptions

In tvisvar ‘twice’ (Figure 1d), long [I:] precedes
an ‘exceptional’ cluster [sv]. L1 and L2 conso-
nant cluster durations are all around 100-225ms,
but L1 vowel durations (most 100-200ms) are no-
tably longer than L2 (many under 100ms, few over
125ms). Reading i in tvisvar as a short vowel may
show partially successful L2 acquisition of a vowel
quantity system, but failure to incorporate nuances.
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4.6 Diphthongs

[œi:] and [œi] in the words hausinn, hausnum (’the
head’, nominative and dative respectively) are dis-
tinct for L1 speakers, but not L2, who tend to in-
sufficiently reduce diphthong duration in hausnum.
This is unsurprising, as contrastive ‘short’ diph-
thongs are typologically rare. The observation gen-
eralises to Diphthongs (Table 2) with more vowel
qualities and contexts, indicating promise for an
area where CAPT may provide valuable feedback.

5 Discussion

At a high level, RQ1 is answered positively, as the
conventional ratio proves to be an informative and
interpretable feature, and more useful than absolute
vowel duration alone. More specifically, for -ala,
-alla words, expectations from a controlled study
were strongly upheld in our crowdsourced data.
For -aki, -aggi, aggregated data also would seem to
match expectations, but a substantial proportion of
individual tokens occupy an ambiguous region, at
least in all currently examined feature spaces.

Regarding RQ2, quantity can be classified from
the Ratio feature, but long and short vowels are not
always well separable, and absolute durations of
vowel and consonant carry some useful informa-
tion beyond the ratio. Location of a best thresh-
old for any features also varies based on several
other factors. In some cases, factors are identified
and controlled for, with good to excellent classifier
performance. In other cases this work is ongo-
ing, and a general-purpose solution remains to be
developed; it could require phoneme identity la-
bels, representations of syllable and word structure,
prosodic environment, spectral features, etc. Quali-
tatively, during annotation we had observed notice-
able length errors in some of the same L2 samples
(e.g. tvisvar, hausnum) where the measured fea-
tures indicated loss of contrast for L2 speakers as
compared to L1, which is an encouraging sign that
the features can capture perceptually important di-
mensions of contrast.

Addressing RQ3, MFA frequently mismeasures
segments in this corpus by around one-third of the
true duration, although the particular values for
all MFA measures arise from a specific acoustic
model and do not generalise to others. The relevant
interpretation is that typical applications of MFA,
like ours obtaining decent word alignments from
20 hours of in-domain training speech, cannot be
relied on for the accuracy desired by primary de-

scriptive research in phonetic segments. MFA pre-
processing may also introduce bias in the gold an-
notations, which would not critically affect CAPT
development and is well worth the saved time over
full manual transcription, but true inaccuracy of
MFA may be underestimated.

Despite considerable room for improvement,
alignment errors had small impacts (RQ4) on clas-
sifiers’ ability to distinguish short and long vowels.
The relative utility of various features also appears
similar whether using manual or automated data.

5.1 Contributions
We freely release our annotations, whose audio and
metadata is already public. The data is available
at https://github.com/catiR/length-contrast-data-isl
accompanied by an online platform for visualisa-
tions/analyses as in §4. This is the most accessible
data on L1 Icelandic vowel length, and the first L2
data. Preliminary analysis reveals L2 acquisition
of a quantity contrast to an extent, but also some
systematic challenges.

Towards CAPT software development, MFA and
temporal features derived from it are identified as
an adequate starting point to (i) characterise dis-
tinctiveness or ambiguity of typical pronunciations
across phonological quantity contrasts; and (ii) clas-
sify apparent quantity of L2 pronunciations, and
alert learners to errors if their pronunciation is un-
ambiguously not what it should be.
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Appendix A. Detailed annotation contents

Word L1 tokens L2 tokens Carriers
ala 2 3 4

dala 40 14
dvala 40 22

fala 1 1 2
gala 5 2

svala 40 4 17
tala 40 40 47
vala 40 16 41
aki 9 3

baki 40 40 65
blaki 16 2 4
maki 24 4 10
raki 42 1 13
taki 19 15
þaki 9 6

breki 40 30
dreki 40 5 18

leki 66 1 17
speki 40 2 17
veki 25 7
balla 1 1
galla 10 5 4
kalla 33 2 15
lalla 40 14 36

malla 37 4 14
palla 40 9 26
aggi 19 6

baggi 26 8
kaggi 11 1

maggi 40 25 34
raggi 41 11 25
beggi 29 7 11
eggi 40 7 23

leggi 41 3 20
skeggi 40 2 16
veggi 40 6 28

Table 3: Counts of L1 and L2 tokens, and unique
carrier sentences, for words in the validation sam-
ple. While even distribution was a guiding prin-
ciple, the contents are necessarily a compromise
between balance and availability of data.

Word L1 tokens L2 tokens Carriers
ása 20 20 16

bera 21 20 28
betri 20 23 15

brosir 20 20 25
fara 21 20 15
færa 20 18 29
færi 20 20 38

hausinn 20 20 14
jónas 20 20 28
katrín 20 20 31

kisa 20 12 15
koma 20 20 33
leyfa 20 20 21
muna 20 21 22
nema 20 20 15
sama 20 20 20
sækja 20 20 39
sömu 20 20 16

tvisvar 20 20 28
vinur 20 20 35

ásta 20 19 18
farðu 21 18 23

fossinn 20 15 13
færði 20 20 34

hausnum 20 22 18
herra 20 20 21

jónsson 20 20 29
leyfðu 26 20 23

mamma 20 20 15
missa 20 20 37

mömmu 20 20 15
nærri 20 20 34

snemma 20 20 17
sunna 20 20 21

tommi 20 20 32
vinnur 20 10 27

Table 4: Counts of L1 and L2 tokens, and unique
carrier sentences, for words in the extension sample.
Long vowels are in the upper section of the table
and short vowels in the lower.
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Abstract
This study explores the capabilities of
open-weight Large Language Models in
a zero-shot learning setting, testing their
ability to classify the content of cus-
tomer service dialogues in Norwegian
from a single instruction, named the
BRAGE benchmark. By comparing re-
sults against widely used downstream
tasks such as question-answering and
named entity recognition, we find that (1)
specific instruction models greatly exceed
base models on the benchmark, (2) both
English and multilingual instruction mod-
els outperform the tested Norwegian mod-
els of similar sizes, and (3) the difference
between base and instruction models is
less pronounced than in other generative
tasks, suggesting that BRAGE is a chal-
lenging benchmark, requiring precise and
generalizable instruction-tuning.

1 Introduction

Satisfied customers are critical to any telecom-
munications provider’s long-term success and sus-
tainability. An essential piece of this puzzle is to
provide the best possible customer service once a
problem has occurred and try to avoid any further
negative experiences (PwC, 2018). Advances in
Automatic Speech Recognition and text analysis
methods have transformed customer service pro-
cesses, enabling providers to gain aggregated in-
sights from the large volume of daily calls. These
insights allow the telecommunications provider to
act quickly on issues that influence multiple cus-
tomers in close to real-time. However, creat-
ing models capable of analyzing transcribed con-
versations remains challenging due to the techni-
cal expertise required and the time-intensive de-
velopment process. Additionally, the distribu-
tion of the incoming calls may change over time

due to concept drift (Riess, 2022), requiring fre-
quent updating of models to maintain operational
quality – thus increasing costs. In-context learn-
ing (Brown et al., 2020) and the ongoing ef-
forts on adapting Large Language Models (LLMs)
to lower-resource languages such as Norwegian
(NORA AI, 2024) offer a promising solution to
this problem.1 This study explores the potential
of open-weight LLMs to enable non-expert users
to perform zero-shot content classification. To
this end, we introduce BRAGE, a private bench-
mark designed to evaluate zero-shot classification
of transcribed conversations in Norwegian. Us-
ing the same instructions provided to human an-
notators for creating ground truth labels, vari-
ous LLMs are tasked with classifying the con-
tent of conversations between customers and cus-
tomer service agents. To assess the feasibility of
this approach, we evaluate base- and instruction-
tuned open-weight LLMs, including pre-trained
and fine-tuned Norwegian models. Given the sen-
sitive nature of the data, BRAGE is a private
benchmark. Aggregated results, however, are pub-
licly shared to ensure transparency. Addition-
ally, we2 aim to facilitate academic collaboration
by performing benchmark evaluations on BRAGE
and sharing the results with the public when re-
quested by researchers in the Nordics.
Code for the benchmark is available on GitHub.3

The Customer Service Process
The case process from which we create BRAGE
is an analytics unit within a telecommunications
provider, supporting customer service with in-
sights on current calls. When customers contact
the service center, calls are, if permitted, recorded

1Low-resource is relative to the amount of openly avail-
able resources for fine-tuning large language models, e.g.,
instruction-tuning. For Norwegian, this is largely limited to
machine-translated datasets.

2Telenor Research and Innovation
3https://github.com/tnresearch/brage 2025
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Figure 1: The call transcription and analysis pro-
cess.

and subsequently transcribed.
Transcription is performed by a proprietary ser-

vice from an external vendor, similar to Whisper
(Radford et al., 2022). The transcripts are then
processed and annotated using classification mod-
els, predicting business-relevant attributes. Fig-
ure 1 shows an overview of this process. In our
benchmark, we modify the process by replacing
the classification model(s) in Figure 1 with a sin-
gle open-weight LLM, which is prompted using
the codebook (annotation guidelines, see Forman
and Damschroder, 2007) previously used by the
human annotators.

Research Questions
We define the following research questions:

RQ1 How do open-weight Norwegian mod-
els compare regarding their performance on the
BRAGE benchmark?

RQ2 How do these results compare and align
with other downstream generative tasks for Nor-
wegian?

To answer RQ1, we benchmark a set of open-
weight LLMs, including Norwegian pre-trained
and fine-tuned ones on BRAGE, and subsequently
compare these results to other downstream evalu-
ations from ScandEval (ScandEval, 2024) to an-
swer RQ2.

2 Related work

In recent research and development of LLMs, it
has become clear that these models can adapt to
the context they are presented (Brown et al., 2020),

to such a degree that they do not need further train-
ing to adapt to a particular task. This is also known
as In-Context Learning (ICL) (Li et al., 2023), and
can be done using a single instruction with no ex-
amples (zero-shot) or multiple examples at infer-
ence time (few/N -shot). ICL dramatically reduces
the associated costs in evolving systems, as one
no longer relies on expensive training pipelines to
support shifts within data and business needs.

Open-weight models such as Llama (Dubey
et al., 2024), Mistral (Jiang et al., 2023), and
Gemma (Team et al., 2024) have proven to be
competitive when considering the efficiency vs
performance trade-off. “Smaller” models (≤ 70B)
have achieved impressive results across numerous
tasks (Chiang et al., 2023; Wolfe et al., 2024), and
we have reached a point where the performance
gap between open-weight models and larger pro-
prietary models is quickly diminishing. However,
evaluating LLMs and quantifying this gap is in-
credibly difficult (Chandran et al., 2024; Biderman
et al., 2024), e.g., because of benchmark data leaks
(Xu et al., 2024). To circumvent this, LMSYS
(Zheng et al., 2023b) developed an Elo-score sys-
tem where users rank anonymous models – giving
an idea of real-world performance. As of Septem-
ber 2024, several open-weight models (≤ 70B)
rank on par with much larger models.

Narrowing in on Scandinavian languages, Scan-
dEval (Nielsen, 2023) is a tool for evaluating
models on language-specific data for downstream
tasks. Focusing on constrained generation with
LLMs in this study, the Norwegian generative
ScandEval benchmark is highly relevant, with 134
different models currently benchmarked across 9
different datasets.4 Because our data is sensi-
tive, the models must run locally to avoid transfer-
ring the data during inference. Open-weight mod-
els, particularly those explicitly trained on Nor-
wegian data, are included for evaluation. While
open models come with the advantage of en-
abling continued training, supervised fine-tuning
(SFT), merging (Yang et al., 2024), and jailbreak-
ing (Zou et al., 2023; Zhang et al., 2024) along
with an ever-growing set of preference tuning
techniques (Gao et al., 2024), the search space
of optimization methods is so vast that finding
an optimal approach is near impossible. Further-
more, Ghosh et al. (2024) found SFT to degrade

4As of October 2024. Visit https://scandeval.com/
norwegian-nlg/ for a full overview of Norwegian bench-
mark results.
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knowledge and reduce output quality of the pre-
trained models, with the same observations for
using fine-tuned LLMs for telecommunications
(Barnett et al., 2024). Moreover, research within
out-of-domain generalizability in traditional ma-
chine learning and LLMs suggests that domain-
specific training will reduce a model’s perfor-
mance (Wald et al., 2021; Yang et al., 2022; Yu
et al., 2024). Mosbach et al. (2023) challenges
this idea and performs thorough evaluations on the
generalization of models for ICL and SFT in the
parameter range of 125M to 30B. While Mosbach
et al. find compelling results for the case of SFT,
such that a smaller SFT can outperform higher-
parameter models with ICL, these findings dimin-
ish as the model sizes grow, and ICL performs sig-
nificantly better when evaluating in-domain than
SFT for model sizes ⪆ 7B.

3 Methodology

3.1 Data

The BRAGE benchmark consists of 300 tran-
scribed Norwegian customer service phone calls
from a telecommunication provider in its current
version. Transcription is done by an external ven-
dor with a proprietary algorithm. An internal
validation of ten randomly sampled calls showed
an average Word Error-Rate (WER) of 12.41%
(overall) and 0.89% for business-critical terms like
product names.

Annotation Each transcript has been annotated
with several attributes related to each call, among
those, the “product” attribute, which includes
eight categories: Annet (Other), Mobil (Mo-
bile), Tjenester (Services), Bredbånd (Broad-
band), TV, Bredbånd-mobilt (Broadband-Mobile),
E-post (Email), Forsikring (Insurance). An inter-
nal analytics team developed the definitions for
these categories in August 2023 and has since re-
fined them multiple times to remove ambiguous
categories. Experiments were conducted in Octo-
ber 2024. The 300 calls included in this study were
randomly sampled and subsequently annotated by
a Senior Analyst with 25+ years of domain experi-
ence (Customer Service) in two iterations: an ini-
tial annotation and a review two weeks after the
initial annotation.

Class distribution The exact distribution of
these categories cannot be shared due to busi-
ness sensitivity. However, to provide the reader

with an impression of the class imbalance, a ran-
domly ordered overview is as follows: Category
1 (5.7%), Category 2 (13%), Category 3 (8%),
Category 4 (7%), Category 5 (37%), Category 6
(9.3%), Category 7 (9%), Category 8 (11%). The
expected accuracy of random guessing will thus

be
∑8

i=1
p2i = 19.72%, where pi is the individ-

ual class probability, while classifying all calls as
Category 5 will yield an accuracy of 37%. As
this study evaluates zero-shot classification on a
private test set, the models cannot use a zero-rate
strategy (Devasena et al., 2011) or overfit to the
majority class. To further account for class im-
balance, we report our results with Macro-F1 and
Matthews Correlation Coefficient in addition to
Accuracy. 2 shows a modified example of a call
transcript. This example shows the nature of the
transcribed phone calls in the BRAGE benchmark,
which is anonymized with blacklist , number -
, and name tokens. An English version can be
found in Figure 7 in Appendix A.

3.2 Experiments

Each experiment consists of multiple runs, where
a run represents a unique combination of a prompt
and a model. For each run, we concatenate a
zero-shot instruction (discussed in detail in sec-
tion 3.3) with a truncated call transcript (the first
250 tokens), asking the model to determine which
product the conversation is about. We utilize set-
tings consistent with those employed in ScandEval
(Nielsen, 2023), including a temperature of 0.0,
a fixed seed value, and 10 iterations of bootstrap
sampling for each run to ensure robustness.

The output space of the LLM is constrained
to the valid product categories using Outlines
(Willard and Louf, 2023) and Transformers
(Wolf et al., 2020) for inference. We com-
pare Pre-trained multilingual base models (P) Pre-
trained base models in Norwegian Bokmål (PNB),
Instruction-Tuned multilingual models (IT) and
models Fine-tuned in Norwegian Bokmål (FNB).
We use a single prompt for all models. Prompt for-
matting varies depending on the model type, but
follow the guidelines in the model card from the
respective authors. We use ChatML and Alpaca
formats for instruction-tuned models, while base
models receive prompts without any prior format-
ting. Upon completing all runs, we calculate ag-
gregated metrics to evaluate the performance and
outcomes of our experiments. To put our results
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Hei, du snakker med blacklist . Jeg har gått over fra privat mobilabonnement til å få man dekket av jobben
det skjedde for cirka to og en halv uke siden, og så ser jeg i nettbanken at de har en faktura som står til
godkjenning for januar. Ja, ja. number desember, da skulle liksom mobing av Mobilabonnementet det
private avsluttes nå, så jeg lurte på nå kan jeg sjekke at faktureringen som har blitt riktig. blacklist . Ja, det
skal hjelpe deg meg, kan jeg få ditt følge navn, fødselsdato og adresse. blacklist name ,
blacklist blacklist , blacklist blacklist blacklist på blacklist blacklist . Ja og postnummer A?
number number number blacklist . blacklist , men det var en telefon, ja, ja, du lurer på om faktum,

altså du hadde en utestående faktura, sa du. Ja, i banken så legger jeg en faktura til godkjenning for januar. Ja.
På name sa du nei, den er betalt, fakturaen er betalt, ja. number number og blacklist komma blacklist .
Greit. Men når jeg lagt ned den fakturaen, så står det at det er for januar. Ja, da vil du få tilbake hele
månedsprisen tilbake faktisk siden du abonnementet ditt ble endra, så ble endre da før januar starta, så får du
alt jeg tilbake, ja, det er det, så du vil faktisk få tilbake skal vi sjå number number og og blacklist det
samme kontonummer du sist betalte med. Okay, ja, så da, da ble det på en måte avsluttet. Ja. Okay. Ja. På
number kroner, så da trekker vi fra den eller blacklist , men blacklist ja. Det, ja. Den bare å avsette. Okay,

ja for blacklist , så da, da får vi litt motta en sluttfaktura da. Greit, da glemmer jeg den fint ha det godt. Ha
det, fint du.

Figure 2: Modified call example with similar quality as the transcripts in our dataset. The topic of this
call is ’Mobile’. The terms blacklist , name and number are anonymized entities.

into perspective, we have retrieved the ScandEval
scores of each model included in our study. The
selected benchmarks cover the downstream tasks
of named entity recognition (NorNE, Jørgensen
et al., 2020), sentiment analysis (NoReC, Vell-
dal et al., 2018), question-answering (NorQuAD,
Ivanova et al., 2023) and commonsense reasoning
(a truncated and machine-translated HellaSwag
dataset Zellers et al., 2019, as implemented in
ScandEval).

3.3 Prompting

The benchmark aims to assess LLMs’ zero-shot
performance on annotation tasks using human-
equivalent instructions, evaluating the potential of
automating the annotation task in a user-friendly
manner. We, therefore, use the same guidelines
when creating the ground truth. The only adapta-
tion is to add a short introduction sentence and a fi-
nal instruction for the model. The full prompt can
be seen in Figure 3, which shows an anonymized
version of this prompt. An English translation can
be found in Figure 8 in Appendix A.

4 Results

4.1 RQ1: General Performance on the
BRAGE benchmark

Looking at the right side of Figure 4, we observe
that the variation across the base models is very
low and that the average accuracy is around the
same value as the expected accuracy of a ran-
dom guess (19.72%). In stark contrast, the in-

struct models (left side) vary much more and have
higher average accuracy, fostering the hypothe-
sis that instruction fine-tuning is essential for our
zero-shot classification task. Looking at the best
performing models in Table 1, we find that the
English/Multilingual Gemma2 models outperform
any model explicitly pre-trained (PNB) and/or
fine-tuned on Norwegian data (FNB).

The average accuracy of the Gemma2 mod-
els (43.53%, 62.1%, 60.53% for 2B, 9B and
27B versions, respectively) also exceed random
guess and the zero-rate classification. Amongst
the models pre-trained or fine-tuned on Norwe-
gian Bokmål we observe that the best-performing
model is NorskGPT Mistral 7B with an average
accuracy of 30.5%.

4.2 RQ2: BRAGE Performance Compared to
ScandEval

To put our BRAGE results into perspective, we
have organized a selection of ScandEval bench-
marks into a radar chart to visualize the differ-
ences. The radar chart shows the relative accuracy
across five benchmarks, where each polygon rep-
resents a model, and the area of the polygon the
model performance. Figure 5 shows the results for
English and multilingual Base and Instruct mod-
els, whereas Figure 6 shows the Norwegian In-
struct models (right) and their corresponding mod-
els used for fine-tuning (left).

Looking at Figure 5, Gemma2 9B IT stands
out with the highest average BRAGE accuracy
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Her kommer det en liste med produktkategorier hos _brand_:\n - Mobil: _brand_ tilbyr
mobilabonnementer med bred dekning, ulike datapakker og tilbud på siste telefonmodeller.
Kategorien inneholder også datapakker og SIM-kort.\n \n - Forsikring: _brand_ tilbyr
forsikring for mobiltelefoner, som dekker tap, tyveri og skade, samt andre
forsikringsprodukter gjennom samarbejdspartnere. Produktene er _service_ og _service_.
Kategorien inneholder også henvendelser relatert til forsikringssaker, som behandles i en
egen avdeling. Kategorien skal ikke inneholde _service_ _service_, som skal kategoriseres
som Tjenester.\n \n - Annet: Kategorien når produkter ikke er spesifikt oppgitt i
samtalen. Gjelder særlig ved samtaler som er brutte eller når kunden har ringt feil. I
disse samtalene blir det ikke snakket om verken produkttype eller abonnement. \n \n -
E-post: _brand_ leverer sikre og pålitelige e-posttjenester med funksjoner for personlig
og profesjonell bruk, inkludert spamfiltrering og god brukervennlighet.\n \n -
Bredbånd-mobilt: _brand_ mobile bredbåndstjenester gir rask internettilgang på farten,
eller installert på fast adresse med utvendig antenne. Kategorien inneholder produktene
_service_, _service_, _service_ og _service_.\n \n - Tjenester: _brand_ tilbyr digitale
tjenester slik som sikkerhetsløsninger og skytjenester. Eksempler på tjenester er
_service_, _service_, _service_, _service_, _service_, _service_. I kategorien finnes
også _brand_ _service_, samt Trejepartstjenester som bl.a. omfatter innholdstjenester
som _service_.\n \n - Bredbånd: _service_ gir pålitelig internett med ulike
hastighetsalternativer, kombinert med kundevennlig service og teknisk support. I
kategorien finnes _service_ og _service_.\n \n - TV: _brand_ TV-tjenester inkluderer et
utvalg av kanalpakker, strømmetjenester og muligheter for opptak, alt tilpasset kundens
underholdningsbehov. Sentralt er produktet _service_, som er _brand_ TV-løsning.\n\n Her
er tekst fra en samtale mellom kundeservice og en kunde. Angi hvilken produktkategori
samtalen handler om, og svar kun med navnet på produktkategorien:\n <transcript>

Figure 3: Anonymized version of the prompt used. The text in bold blue is the prompt instruction added
to the original guidelines used by the annotators, and <transcript> indicate where the conversation
transcript is inserted.
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Figure 4: Comparison of accuracy distributions for instruction and base models. The color groupings
separate them according to their respective provider/organization.
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Benchmark BRAGE ScandEval
/Metric(s) NorNE-nb NoReC NorQuAD HellaSwag

Model Accuracy Macro
F1 MCC Micro

F1
Macro

F1 F1 Accuracy

Category: IT

Gemma2 27B IT 60.53 ± 2.31 50.56 ± 1.54 54.27 ± 2.13 56.75 ± 3.04 78.63 ± 0.96 73.41 ± 1.61 77.92 ± 1.72
Gemma2 2B IT 43.53 ± 2.15 32.62 ± 1.50 33.25 ± 1.87 28.77 ± 2.22 63.18 ± 1.91 63.84 ± 1.50 49.42 ± 0.79
Gemma2 9B IT 62.10 ± 1.80 53.50 ± 1.50 55.13 ± 1.91 44.91 ± 3.62 73.45 ± 0.94 70.14 ± 1.53 75.79 ± 1.47
Llama2 13B Chat 8.93 ± 0.77 6.12 ± 0.85 -0.69 ± 1.36 40.40 ± 2.79 57.45 ± 3.77 69.24 ± 2.68 41.00 ± 1.40
Llama2 7B Chat 6.40 ± 0.71 2.69 ± 0.41 0.08 ± 1.32 38.59 ± 2.84 57.09 ± 3.80 61.99 ± 2.34 31.84 ± 1.05
Llama3 8B IT 33.03 ± 1.34 26.44 ± 1.23 25.38 ± 1.67 65.57 ± 2.39 65.69 ± 3.50 69.90 ± 3.17 45.85 ± 1.93
Llama3.1 8B IT 24.87 ± 1.13 21.80 ± 1.36 16.38 ± 1.93 71.87 ± 0.97 71.58 ± 0.90 70.96 ± 3.00 54.03 ± 0.82
Mistral 7B v0.1 IT 23.60 ± 1.74 17.33 ± 1.81 8.86 ± 2.33 34.52 ± 1.17 60.88 ± 1.36 63.67 ± 2.98 35.89 ± 1.06

Category: IT + FNB

Llama2 13B Chat-Nor 23.27 ± 1.98 19.79 ± 1.10 14.59 ± 2.05 47.74 ± 2.83 58.47 ± 3.79 65.76 ± 3.07 41.29 ± 1.19
Llama2 7B Chat-Nor 10.80 ± 1.14 8.69 ± 1.29 2.80 ± 1.51 20.44 ± 2.47 23.50 ± 3.03 50.11 ± 1.80 24.48 ± 0.70
NorskGPT Llama 3 8B 16.87 ± 1.51 15.14 ± 1.50 6.14 ± 1.90 60.25 ± 3.14 61.42 ± 3.56 74.57 ± 2.20 59.11 ± 2.44
NorskGPT Mistral 7B 30.50 ± 0.91 26.89 ± 1.05 22.54 ± 1.47 47.72 ± 3.74 70.81 ± 1.30 74.38 ± 3.92 60.59 ± 1.18

Category: P

Gemma2 27B 15.07 ± 0.85 13.97 ± 0.96 6.08 ± 1.06 43.06 ± 1.89 76.14 ± 1.68 80.21 ± 4.49 63.55 ± 4.76
Gemma2 2B 16.43 ± 1.00 13.08 ± 1.02 4.98 ± 1.34 21.28 ± 2.58 47.91 ± 2.11 63.31 ± 3.73 28.89 ± 1.54
Gemma2 9B 20.80 ± 1.31 17.02 ± 1.20 7.51 ± 1.41 34.62 ± 1.80 75.53 ± 0.73 72.99 ± 3.16 63.52 ± 3.49
Llama3 8B 16.23 ± 1.35 14.16 ± 1.18 3.38 ± 1.57 47.65 ± 2.94 66.15 ± 1.44 74.98 ± 3.70 42.47 ± 2.74
Llama3.1 8B 17.07 ± 1.43 14.48 ± 1.49 4.36 ± 1.70 53.50 ± 3.27 68.71 ± 1.01 75.98 ± 2.62 46.84 ± 1.59
Mistral 7B v0.1 12.87 ± 0.74 10.31 ± 0.73 -0.20 ± 0.62 43.55 ± 2.21 64.53 ± 3.71 70.86 ± 2.79 32.43 ± 2.67

Category: PNB

Normistral 7B Scratch 16.47 ± 1.09 13.89 ± 1.41 1.99 ± 1.51 15.44 ± 5.52 36.85 ± 2.01 38.93 ± 2.59 24.84 ± 0.71
Normistral 7B Warm 17.83 ± 1.29 13.76 ± 1.27 2.31 ± 1.54 31.45 ± 1.88 45.30 ± 3.46 61.85 ± 3.07 25.00 ± 0.83
NorwAI Mistral 7B 16.83 ± 1.19 12.55 ± 1.24 1.22 ± 1.46 20.45 ± 2.65 65.98 ± 2.95 68.04 ± 5.37 27.82 ± 1.56

Table 1: Aggregated performance metrics of BRAGE and a selection of ScandEval results from 10 runs.
BRAGE performance is reported in Accuracy, Macro F1, and Mathews Correlation Coefficient (MCC),
each with their corresponding ± 95% confidence intervals (CI). ScandEval results include individual
scores per benchmark and confidence intervals (see Nielsen, 2023; Nielsen et al., 2024). Model category
abbreviations: Pre-trained on Norwegian Bokmål (PNB), Fine-tuned on Norwegian Bokmål (FNB), Pre-
trained (P), Instruction-tuned (IT). The highest scores for each category are boldfaced.
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Figure 5: English/Multilingual models. Left: base models. Right: instruction-tuned. Radar chart of
scores on selected ScandEval datasets and BRAGE results.
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Figure 6: Norwegian models (and their corresponding base models used for fine-tuning). Left: base
models. Right: fine-tuned on Norwegian. Radar chart of scores on selected ScandEval datasets and
BRAGE results.
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of 62.1%. Although somewhat below the 27B
model for the ScandEval benchmarks, these find-
ings are mostly consistent, except for the named
entity task (NorNE-nb), where the Llama-models
(e.g. Llama3.1 8B IT) surpass all other models,
with a micro-F1 of 71.87 compared to 56.75 of the
Gemma2 27B IT.

Moving on to the Norwegian models in Fig-
ure 6, pre-training (PNB) and fine-tuning (FNB)
tend to lag behind the models fine-tuned on non-
public data sources (IT + FNB). The architec-
tural choices, and especially the fine-tuning proce-
dures, seem to have a much higher importance for
the BRAGE benchmark, as well as for HellaSwag
(commonsense reasoning tasks), where we see a
close relationship in terms of performance deltas:
high scores on HellaSwag indicates high scores for
BRAGE. In contrast, high scores on NorNE, for
example, do not follow this pattern.

5 Discussion

Bigger is not Always Better
While larger models tend to get better results
overall, we observe that Gemma2 9B IT, through
its knowledge distillation training process (Team
et al., 2024), approximates (and even outperforms)
the larger version at 27B parameters, which is in
alignment with other public benchmarks, such as
open llm leaderboard.5 Moreover, the 8B Llama
models perform well on several tasks, especially
for named entity recognition, outscoring the larger
models. These effects will likely become more
prominent as smaller models are trained through
knowledge distillation and fine-tuned on domain-
specific tasks.

Instruction Tuning
Good results for instruction-tuned (IT) models
on other benchmarks did not necessarily translate
to BRAGE. We have noted the relation between
HellaSwag for IT models, but the base models
still achieve relatively high scores on all down-
stream tasks. In contrast, BRAGE requires spe-
cific fine-tuning to achieve good results, as exem-
plified by only the Gemma2 models reaching ac-
ceptable accuracy scores. This, too, is the case
for the base model Mistral 7B v0.1 (score of
13.60) compared to 29.58 for the NorskGPT Mis-
tral 7B, while increasing its HellaSwag score from

5https://huggingface.co/spaces/
open-llm-leaderboard/open llm leaderboard

32.43 to 60.59, while other tasks remain nearly
unchanged in comparison. The fine-tunes by Nor-
wAI and NORA.LLM (PNB + FNB) have approx-
imately equal scores and lower stability than the
base models. Additionally, we believe some Nor-
wegian models are fine-tuned using the presented
datasets, which, in turn, results in poor general-
izability. Note the high deviance by, e.g., Nor-
wai Mistral 7B (PNB) scoring surprisingly high on
NoReC and NorQuAD, but not NorNE. The oppo-
site is the case for Normistral 7B Warm (PNB).

Suggestions for Future Work
Evidently, modeling decisions, data, post-training
fine-tuning, and alignment require extra atten-
tion. Few organizations share end-to-end details
– besides the OLMo initiative (Groeneveld et al.,
2024), and we are typically left with a higher-level
view of potential improvements for future devel-
opments of LLMs. Based on our findings, the
Gemma2 architecture seems suitable for most of
our tests and public benchmarks, and we leave the
following suggestions for language-specific LLM
development in the post-training stage:

• Distillation to student distributions, keeping
compute-optimal token counts in mind (Gu
et al., 2023; Agarwal et al., 2024).

• Different reward setups through RLHF
(Christiano et al., 2017) and other alignment
procedures (Gao et al., 2024).

• Incorporating prompts from, e.g., LMSYS-
CHAT-1M (Zheng et al., 2023a), with re-
sponses from larger teacher models.

• Studies on instruction formatting.

Business Perspectives
The potential value contribution of zero-shot
LLM-based content classification to customer ser-
vice operations is significant in terms of both user-
friendliness and development time. However, our
results suggest that the current performance level
is not yet sufficient for full production deploy-
ment, suggesting a need for further research and
development in this area.

Furthermore, the suggested approach relies
on ground truth to assess model quality pre-
production, only partially automating the con-
tent classification process. Finally, using highly
resource-consuming LLMs for a task that can be
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solved using smaller, more energy-efficient mod-
els raises questions regarding sustainability and
cost versus benefit (Rigutini et al., 2024).

6 Conclusion

We have presented BRAGE, a private zero-shot
benchmark for classifying transcribed calls be-
tween customers and customer service. Based on
these preliminary results, we observe that the task
can be accomplished to a somewhat acceptable
level using open-weight LLMs. Based on our re-
sults, we can conclude that this is a challenging
benchmark and that instruction fine-tuned mod-
els generally perform better on this type of zero-
shot task. Specifically, instruction fine-tuning
(FNB) on a multilingual base model, in the case of
NorskGPT Mistral 7B, was superior to any of the
other Norwegian models on BRAGE. We, there-
fore, stress the importance of creating more open
instruction datasets in Norwegian, as this might
foster progress in zero-shot settings such as the
BRAGE case. Surprisingly, we found that the
English-only and significantly smaller Gemma-2
2B IT did better than any of the Norwegian mod-
els. These results may also apply to other Eu-
ropean languages, especially those with a higher
presence in multilingual training corpora, e.g.,
German and Spanish. We plan to expand this
benchmark by adding new tasks as well as to in-
clude all of the Scandinavian languages.

7 Limitations

As these experiments were conducted on a real
business case, relevant information, such as distri-
bution details about our data, had to be left out due
to its sensitivity. However, we hope BRAGE, as
a private benchmark can still be a contribution to
the academic community, when committing our-
selves to share aggregated results with the public
(keeping data private on local infrastructure) go-
ing forward. Our conclusions also remain limited
by the amount of information publicly available
on the models included in the study, we therefore
specifically hope to see more published data con-
cerning pre-training and instruction-tuning for the
current and future research-funded models (e.g.,
by NORA.LLM and NorwAI).

8 Sustainability

We have tracked power consumption and esti-
mated emissions for all experiments using Code-

Carbon (Schmidt et al., 2021). Hardware: 4x RTX
3090 GPUs over 29.2 hrs, resulting in a total emis-
sion of 0.8394 kgCO2e given the energy mix in
Oslo, Norway.
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Husevåg, Lilja Øvrelid, and Erik Velldal. 2020.
Norne: Annotating named entities for norwegian.
In Proceedings of the 12th Language Resources and
Evaluation Conference, pages 4547–4556.

Yingcong Li, Muhammed Emrullah Ildiz, Dimitris Pa-
pailiopoulos, and Samet Oymak. 2023. Transform-
ers as algorithms: Generalization and stability in in-
context learning. In International Conference on
Machine Learning, pages 19565–19594. PMLR.

Marius Mosbach, Tiago Pimentel, Shauli Ravfo-
gel, Dietrich Klakow, and Yanai Elazar. 2023.
Few-shot fine-tuning vs. in-context learning: A
fair comparison and evaluation. arXiv preprint
arXiv:2305.16938.

Dan Nielsen. 2023. ScandEval: A benchmark for
Scandinavian natural language processing. In Pro-
ceedings of the 24th Nordic Conference on Com-
putational Linguistics (NoDaLiDa), pages 185–201,
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Figure 7 shows the translated call transcript, and
Figure 8 shows the translated prompt template for
transcripts.
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Hi, you’re speaking with blacklist . I have switched from private mobile subscription to having it covered by
work, this happened about two and a half weeks ago, and then I see in the online bank that they have an
invoice pending approval for January. Yes, yes. number December, that’s when mobing of mobile
subscription, the private one, was supposed to be terminated, so I was wondering now can I check that the
billing has been correct. blacklist . Yes, I’ll help you with that, can I have your last name, date of birth and
address. blacklist name , blacklist blacklist , blacklist blacklist blacklist at blacklist blacklist .
Yes and postal code A? number number number blacklist . blacklist , but it was a phone, yes, yes,
you’re wondering about the invoib, so you had an outstanding invoice, you said. Yes, in the bank I put an
invoice pending approval for January. Yes. For name you said no, it’s paid, the invoice is paid, yes.
number number and blacklist comma blacklist . Okay. But when I put down that invoice, it says it’s for

January. Yes, then you will get back the entire monthly fee actually since your subscription was changed, it
was changed before January started, so you get everything back, yes, that’s it, so you will actually get back
let’s see number number and and blacklist to the same account number you last paid with. Okay, yes, so
then, then it was kind of terminated. Yes. Okay. Yes. For number kroner, so then we deduct that or
blacklist , but blacklist yes. That, yes. Just set it aside. Okay, yes for blacklist , so then, then we’ll receive

a final invoice then. Alright, then I’ll forget about that, fine goodbye. Goodbye, you too.

Figure 7: English translation of a modified call example with similar quality as the transcripts in our
dataset. The topic of this call is ’Mobile’. The terms blacklist , name and number are anonymized
entities.

Here comes a list of product categories at _brand_:\n - Mobile: _brand_ offers mobile
subscriptions with broad coverage, various data packages and offers on latest phone
models. The category also includes data packages and SIM cards.\n \n - Insurance:
_brand_ offers insurance for mobile phones, covering loss, theft and damage, as well as
other insurance products through collaboration partners. The products are _service_ and
_service_. The category also includes inquiries related to insurance cases, which are
handled in a separate department. The category should not include _service_ _service_,
which should be categorized as Services.\n \n - Other: The category when products are not
specifically mentioned in the conversation. Applies particularly to conversations that
are broken or when the customer has dialed wrong. In these conversations, neither product
type nor subscription is discussed.\n \n - Email: _brand_ delivers secure and reliable
email services with features for personal and professional use, including spam filtering
and good user-friendliness.\n \n - Broadband-mobile: _brand_ mobile broadband services
provide fast internet access on the go, or installed at a fixed address with external
antenna. The category contains the products _service_, _service_, _service_ and
_service_.\n \n - Services: _brand_ offers digital services such as security solutions
and cloud services. Examples of services are _service_, _service_, _service_, _service_,
_service_, _service_. The category also includes _brand_ _service_, as well as
Third-party services which include content services like _service_.\n \n - Broadband:
_service_ provides reliable internet with various speed options, combined with
customer-friendly service and technical support. The category includes _service_ and
_service_.\n \n - TV: _brand_ TV services include a selection of channel packages,
streaming services and recording options, all adapted to the customer’s entertainment
needs. Central is the product _service_, which is _brand_’s TV solution.\n\n Here is text
from a conversation between customer service and a customer. Indicate which product
category the conversation is about, and respond only with the name of the product
category:\n <transcript>

Figure 8: English translation of the anonymized version of the prompt used. The text in bold blue is the
prompt instruction added to the original guidelines used by the annotators, and <transcript> indicate
where the conversation transcript is inserted.
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Abstract

Sentiment analysis of patient feedback
from the public health domain can aid
decision makers in evaluating the pro-
vided services. The current paper focuses
on free-text comments in patient surveys
about general practitioners and psychiatric
healthcare, annotated with four sentence-
level polarity classes – positive, negative,
mixed and neutral – while also attempt-
ing to alleviate data scarcity by leveraging
general-domain sources in the form of re-
views. For several different architectures,
we compare in-domain and out-of-domain
effects, as well as the effects of training
joint multi-domain models.

1 Introduction

Sentiment analysis (SA), the computational anal-
ysis of opinions and emotions expressed in text, is
one of the applications of natural language pro-
cessing (NLP) that have found the most wide-
spread use across many different areas, including
medical domains (Yadav et al., 2018). As the task
is mostly approached as one of supervised learn-
ing, access to sufficient amounts of labeled data
is the main driver of performance. However, as
manual annotation is costly, labeled data also rep-
resents a main bottleneck. For this reason it is
typically desirable to be able to reuse existing re-
sources when developing SA tools for a new area
of application. Unfortunately, domain-sensitivity
is a well-known effect across many different NLP
tasks. Models trained on data from one domain (or
genre or text-type) often underperform when ap-
plied to another due to variations in language use,
terminology, and contextual nuances (Al-Moslmi
et al., 2017; Gräßer et al., 2018).

∗The authors contributed equally.

This paper investigates cross-domain effects
in polarity classification of public health data,
more specifically free-text comments from pa-
tient surveys for general practitioners and psychi-
atric healthcare providers. We here investigate
the usefulness of data from a different domain
and genre, i.e. professionally authored reviews
collected from Norwegian news publishers. The
datasets are annotated at the sentence level with
the same four-class polarity labels; positive, nega-
tive, mixed, and neutral. In the following, we com-
pare non-neural and neural architectures in both
in-domain and cross-domain settings with the goal
of providing high-quality sentiment analysis for
Norwegian patient comments.

2 Datasets

We here briefly describe the two annotated SA
datasets that form the basis of our experiments,
also discussing some of their key differences.

NorPaC For the health domain we will be us-
ing a dataset introduced by Mæhlum et al. (2024),
comprising free-text comments from surveys con-
ducted by the Norwegian Institute of Public Health
(NIPH), as part of their so-called patient-reported
experience measures (PREMs). The dataset is
dubbed NorPaC – short for Norwegian Patient
Comment corpus – and comprises two related sub-
domains, corresponding to feedback on General
Practitioners (GPs) and Special Mental Healthcare
(SMH), with a total of 7693 sentences (4002 from
GP and 3691 from SMH) annotated for polarity.

The NorPaC dataset is a valuable accession to
Norwegian corpora, as it gives valuable insights
to the national public health system. The texts
are written by patients after encounters with the
healthcare system, and gives rise to language with
an everyday character, such as sentences with a
conversational tone or even incomplete sentences
and spelling mistakes. Example 1 shows a positive
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patient feedback sentence that is written solely in
capital letters, in addition to containing a typing
mistake in the personal pronoun jeg, ’I’. Example
2 shows a negative review with a colloquial tone,
containing three exclamation marks at the end of
the utterance.

(1) FIKK
Got

HENVISNING
referral

DA
when

JGE
(I)

BA
asked

OM
about

DET,
it,

OG
and

GÅR
goes

STADIG
constant

TIL
to

UTREDNING
examination

DER.
there.

‘Got a referral when I asked for it, and am
constantly going for examination there.’

(2) Det
It

er
is

for
too

dårlig!!!
bad!!!

‘It is too bad!!!’

NoReC The Norwegian Review Corpus
(NoReC; Velldal et al., 2018) comprises full-text
reviews collected from major Norwegian news
sources, covering a range of different domains
(movies, music, literature, restaurants, various
consumer products, etc.). We here use a version
dubbed NoReCfine (Øvrelid et al., 2020), a
subset of roughly 11,000 sentences across more
than 400 reviews with fine-grained sentiment
annotations, here aggregated to the sentence-level
(Kutuzov et al., 2021) using the above-mentioned
label set of four classes.1 In contrast to NorPaC,
the reviews are written by professional authors,
meaning more creative writing but with sentences
that are typically complete and grammatically
correct.

(3) Den
It

er
is

en
a

pølse
sausage

i
in

salatens
salad’s.the

tid,
time,

en
a

slags
kind.of

mumlemanisk
mumblemaninc

manns-modernitets-manifestasjon
man-modernity-manifestation
‘It is a sausage in the age of the salad, a kind of
mumble-manic male-modernity-manifestation’

Example 3 shows one of many creative sen-
tences in NoReC. En pølse i salatens tid, ‘a
sausage in the age of the salad’, is a figurative
way to emphasize the fact that this movie is not
among the trendy, i.e. ‘the salad’, but rather acts
like ‘a sausage’. Further, the author describes

1https://huggingface.co/datasets/ltg/
norec_sentence

the movie as a mumlemanisk manns-modernitets-
manifestasjon, ’mumble-manic male-modernity-
manifestation’. This exemplifies the complexity of
many of the texts in the NoReC dataset where au-
thors may construct new and creative expressions.

Genre and text type The two datasets can be
said to be found at opposite ends in terms of lan-
guage and writing style. In contrast to the pro-
fessionally authored reviews in NoReC, contain-
ing grammatically correct texts with higher com-
plexity and creativity, the NorPaC patient com-
ments consist of more colloquial language. It also
comes with many of the other hallmarks of user-
generated content, such as more frequent spelling
mistakes and incomplete sentences, as well as un-
orthodox use of case and punctuation. While such
properties will generally contribute to increasing
the vocabulary size, NoReC still contains almost
three times as many unique lemmas as NorPaC,
due to the fact that it contains more creative and
varied language (with a higher degree of figurative
expressions, etc.), as mentioned above, in addition
to covering multiple domains.

Class distribution Table 1 summarizes some
relevant statistics for the two corpora, showing the
number of examples across the four classes, as
well as average token length of sentences.

For the NoReC reviews, we see that we have
many more examples for the positive than the neg-
ative category. For the NorPaC patient feedback,
in contrast, the negative category is notably larger,
although the number of positive and negative ex-
amples are more balanced than in NoReC.

Another striking difference is the much higher
ratio of neutral sentences in NoReC compared to
NorPaC; 47% vs. 12%, respectively. This is not
surprising if we consider the genre differences;
professional reviews need to provide a lot of non-
sentiment bearing background and descriptions of
the object under review. The ratio of sentences
with mixed polarity, however, is similar across the
datasets, and is also the smallest sentiment class.

Related to the class distribution, we also ob-
serve some interesting differences with respect to
the average token length of sentences. While the
length is the same across the positive and negative
sentences in the NoReC reviews, the length of neg-
ative sentences in the NorPaC patient comments
tend to be substantially longer than the positive
ones. However, for both datasets we see that neu-
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Positive Negative Neutral Mixed Total

GP
Sentences 1265 (32%) 1903 (48%) 654 (16%) 174 (4%) 4002
Avg. tokens 11.8 15.61 10.38 19.99 13.81

SMH
Sentences 1524 (41%) 1604 (44%) 291 (8%) 266 (7%) 3691
Avg. tokens 13.1 18.48 10.53 23.68 15.94

NorPaC
(GP+SMH)

Sentences 2789 (36%) 3507 (46%) 945 (12%) 440 (6%) 7693
Avg. tokens 12.53 17.03 10.78 22.29 14.93

NoReC
Sentences 3514 (31%) 1663 (15%) 5393 (47%) 867 (8%) 11437
Avg. tokens 18.57 18.18 13.78 25.92 16.78

Table 1: For each polarity class we show the distribution of number of sentences and average sentence
length across the GP and SMH datasets within NorPaC, and for the NoReC dataset.

tral sentences tend to be shorter, while the mixed
class displays substantially longer average length,
which intuitively makes sense given that they per
definition must express at least two opposing sen-
timents.

3 Experimental results

Below we report experimental results for a range
of different models and architectures on the
datasets described above. We start by provid-
ing details about the models and the experimental
set-up, before discussing the results for both in-
domain and cross-domain classification.

3.1 Models and experimental set-up
The NorBERT3 series of models (Samuel et al.,
2023; Kutuzov et al., 2021) represent the 3rd
generation of pre-trained Norwegian masked lan-
guage models (MLMs) based on the BERT trans-
former architecture (Devlin et al., 2019). We
fine-tuned text classifiers for two different sizes
of NorBERT3 – Base and Large – with 123M
and 353M parameters, respectively. GPU mem-
ory requirements were 8 and 35 GB. The NorT5
(Samuel et al., 2023) models are pretrained on the
same Norwegian data as NorBERT3, and we fine-
tune NorT5 Large to generate sentiment labels as
a sequence-to-sequence task. NorT5 Large has
808M parameters. During fine-tuning with a batch
size of 24, 71GB GPU memory was used. For all
these models we report the mean weighted average
F1 over 3 runs. More details of the hyperparame-
ter search are found in Appendix A. As a baseline,
we also train a Support Vector Machine (SVM)
model with a linear kernel and bag-of-words fea-
tures.2 The random baseline for the task yields an

2The features correspond to the full vocabulary of the to-
kenized texts for each corpora, as preliminary experiments

F1-score of between 22% and 23% for all training
datasets, averaged across 1000 runs.

For NoReC we use the predefined data split,
with 80-10-10 percentages respectively for the
training, validation and test set. We define a sim-
ilar split for NorPaC, randomly selected on the
comment-level to make sure sentences from the
same comment are not separated across splits,
while also ensuring a balanced class distribution.

3.2 In-domain patient comment results
Table 2 shows results when training and testing
on sentences from the NorPaC corpus. While
the main focus of this section is to assess the in-
domain performance of models trained on the Nor-
PaC patient comments, recall that this corpus com-
prises two different sources; feedback regarding
General Practitioners (GPs) and Special Mental
Healthcare (SMH). We therefore also report re-
sults for training and testing on data from the indi-
vidual sources separately – including cross-source
training and testing.

We see that training on GP yields very strong
test results: Not only are in-domain results for
training and testing for SMH lower, but test re-
sults on SMH are competitive when training on
GP. In the same vein, we see that for most mod-
els, joint training on the entire NorPaC data boosts
results for SMH, with the only exception being
NorBERT3 Large, where the best results for SMH
are actually found when training on GP only (al-
though the differences are marginal). In sum, we
find that, within the NorPaC domain(s), the gen-
eralization capabilities of the GP-trained models

showed that best results were obtained without any feature
selection or weighting (i.e. no TF-IDF, frequency cutoffs,
etc.). The number of features range from approximately 5K
for the GP/SMH models, through 8K for the full NorPaC data
and 22K for NoReC, and finally 27K for NorPaC+NoReC.
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Test

Model Train GP SMH NorPaC

SVM
(BoW)

GP 63.65 66.42 64.96
SMH 57.86 66.77 62.26
NorPaC 62.90 68.34 65.52

NorBERT3
(Base)

GP 84.13 82.02 83.14
SMH 79.43 82.96 81.22
NorPaC 83.61 83.34 83.49

NorBERT3
(Large)

GP 85.79 84.85 85.41
SMH 81.23 84.61 82.95
NorPaC 86.00 84.28 85.22

NorT5
(Large)

GP 84.34 83.65 84.08
SMH 81.03 84.24 82.70
NorPaC 85.03 85.05 84.54

Table 2: Results for training and testing on the GP
and SMH datasets within NorPaC.

are so good that the benefit of joint training on GP
and SMH are less than anticipated. One contribut-
ing factor here might be that the GP data overall
is written in a more explicit and straightforward
manner compared to the SMH data, which might
contain parts that are perceived as noisy for the
model. Hence, training on GP and testing on PHV
yields better results than vice versa. Finally, and
as expected, we see that the neural models outper-
form the SVM model and that larger models gen-
erally tend to outperform smaller ones, although
NorT5 Large actually tends to be outperformed by
the smaller NorBERT3 Large model.

3.3 Cross-domain results
Table 3 shows results for several combinations of
training and testing on both NorPaC and NoReC.
First, we note that the in-domain results for Nor-
PaC are substantially higher than the in-domain
results for NoReC. This makes sense, given that
NoReC in practice covers many different domains
and has a much more diverse vocabulary than Nor-
PaC. This observation most likely also has bear-
ings on the cross-domain results, where we see
a smaller relative drop in performance when test-
ing the NoReC-trained models on NorPaC, than
vice versa. Another contributing factor to the (ex-
pected) drops in performance for the cross-domain
results can be the differences in the class distribu-
tion for the two datasets, as discussed above.

Turning to the joint training on the combina-
tion of NoReC and NorPaC, we again see that the

Test

Model Train NorPaC NoReC

SVM
(BoW)

NorPaC 65.52 37.84
NoReC 42.11 54.42
NorPaC+NoReC 66.20 53.35

NorBERT3
(Base)

NorPaC 83.49 59.09
NoReC 68.03 75.63
NorPaC+NoReC 83.71 76.14

NorBERT3
(Large)

NorPaC 85.22 59.19
NoReC 66.38 78.88
NorPaC+NoReC 85.03 78.40

NorT5
(Large)

NorPaC 84.54 58.14
NoReC 70.88 76.73
NorPaC+NoReC 85.06 75.79

Table 3: Results for training and testing on sen-
tences from both the NorPaC patient comments
and the NoReC reviews.

test scores are substantially higher on NorPaC than
NoReC for all models. For the NorBERT3 Base
model, the joint training improves results across
both datasets. However, for NorBERT3 Large, we
see that the in-domain variants gives the highest
scores for both datasets, but only by a small mar-
gin. For the SVM model, we see the same ten-
dency with in-domain training on NoReC, yield-
ing slightly better performance than joint training.

In an error analysis of in-domain vs. out-of-
domain results for NorBERT3 Large evaluated on
the NorPaC test set, we observe that the model
trained on NorPaC is better at predicting nega-
tive sentences, compared to the model trained on
NoReC. Here, the in-domain model classifies 92%
of the negative samples correctly, whereas the out-
of-domain model only identifies 39% of them. Out
of the true negative samples, the NoReC-trained
model predicts 59% of them as neutral. We be-
lieve the prediction of the negative class is the
largest contributor to the lower performance of the
NoReC-trained model, as this class makes up 46%
of the NorPaC test set. However, there is one class
for which this model performs slightly better than
the in-domain model. As we recall from Table 1,
the neutral class is the largest class in the NoReC
dataset. This is most likely the reason why the
NoReC-trained model classifies 95% of these in-
stances in the NorPaC test set correctly, as op-
posed to the NorPaC trained model, which cor-
rectly classifies 69% of them. In sum, a closer
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look at the per-class results reveals clear effects of
the class distribution in the training set on model
performance.

Learning curves for in-domain data To gauge
the effect of the number of in-domain training
examples, we computed learning curves where
models are trained on partitions that are cre-
ated by successively halving the NorPaC training
set, with and without including the full NoReC
training data. Figure 1 plots the effect on fine-
tuning NorBERT3 Large. Utilizing only 6.25%
(386 samples) of the NorPaC training set we find
a strong performance gain of adding the cross-
domain NoReC dataset. The effect is reduced,
but present up to 50% (3087 samples). However,
with the full NorPaC training set containing 6175
samples, we find that adding cross-domain data is
harmful for the model performance. This shows
how cross-domain data can help when in-domain
datasets are small, but should not be added indis-
criminately.

4 Summary

This paper has reported experimental results for
polarity classification of sentences in a Norwe-
gian dataset dubbed NorPaC, comprising free-
text comments from patient surveys collected as
part of evaluating public healthcare services. In
addition to assessing cross-domain effects be-
tween two healthcare sub-domains – feedback on
general practitioners and psychiatric healthcare –
we have also assessed the effect of leveraging
general-domain sentiment annotations, based on
the NoReC review data. Rather than just an-
notating the simple binary classification of posi-
tive/negative sentences, our datasets additionally
indicate both neutral and mixed sentences. We
show how several of our tested model configu-
rations surpass 85% weighted F1 for this four-
class set-up. We also show how including out-of-
domain data improves model performance when
in-domain data is limited, but that better perfor-
mance can be achieved with in-domain data alone
once the the amount of annotated data crosses a
critical threshold. Our analyses give new insights
into both the NorPaC and NoReC datasets, includ-
ing the differences and similarities between them.
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‘Strengthening the patient voice in health service
evaluation: Machine learning on free-text com-
ments from surveys and online sources’, funded
by a HELSEVEL grant from RCN (project no.
331770). Moreover, the computations were per-
formed on resources provided through Sigma2
– the national research infrastructure provider
for High-Performance Computing and large-scale
data storage in Norway.
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A Hyperparameter tuning for
NorBERT3-based models

We chose NorBERT3 base and large as the mod-
els to fine-tune for the text classification task. This
model series has proven to perform well on previ-
ous comparisons for sentiment analysis on Norwe-
gian sentences (Samuel et al., 2023). In order to
find the best hyperparameters for our task, we first
experimentally determine the best combination of
learning rate and batch size. Table 4 shows the re-
sults for the two model sizes. All experiments are
evaluated by accuracy on the development split,
using the best of 10 epochs and one seed per hy-
perparameter combination. With the best perform-
ing settings for learning rate and batch size, we
further search for improved performance by ad-
justing dropout in the classifier head, warm-up
ratio and weight decay during fine-tuning. The
search space for these hyperparameters are shown
in Table 5. The best performing settings are shown
in Table 6. The final choice of hyperparameters are
shown in Table 7.

Model lr 16 32 64

base 1e-05 78.28 77.82 77.76
base 2e-05 77.92 78.12 77.79
base 5e-05 76.09 77.04 78.18

large 1e-05 80.44 81.12 80.37
large 2e-05 80.96 81.35 80.89
large 5e-05 79.23 80.44 80.60

Table 4: Learning rate and batch size hyperparam-
eter search for NorBERT3-base and large.

Model Search space

classifier dropout [0.05, 0.1, 0.25, 0.4]
warm-up ratio [0.01, 0.05, 0.1, 0.2]
weight decay [0.001, 0.01, 0.1]

Table 5: Search space for classifier dropout,
warmup ratio and weight decay for NorBERT3
base and large, after best learning rate and batch
size was identified.

Model Dropout Wu ratio W decay Dev acc.

base 0.25 0.20 0.010 78.77%
base 0.10 0.20 0.010 78.71%
base 0.25 0.20 0.100 78.58%

large 0.25 0.10 0.100 82.10%
large 0.25 0.10 0.001 81.91%
large 0.40 0.20 0.001 81.84%

Table 6: Top-3 performing models, for NorBERT3
base and large, when searching for optimal pa-
rameters for classifier dropout, warm-up ratio and
weight decay.

Model Base Large

batch size 16 32
learning rate 1e-05 2e-05
classifier dropout 0.25 0.25
warmup ratio 0.20 0.10
weight decay 0.01 0.10

Table 7: Final hyperparameters selected for the
NorBERT3 base and large finetuning, as informed
by our hyperparameter search. Other hyperparam-
eters are left as their defaults.
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Abstract

The use of copyrighted materials in train-
ing language models raises critical legal
and ethical questions. This paper presents
a framework for and the results of empir-
ically assessing the impact of publisher-
controlled copyrighted corpora on the per-
formance of generative large language
models (LLMs) for Norwegian. When
evaluated on a diverse set of tasks, we
found that adding both books and newspa-
pers to the data mixture of LLMs tend to
improve their performance, while the ad-
dition of fiction works seems to be detri-
mental. Our experiments could inform the
creation of a compensation scheme for au-
thors whose works contribute to AI devel-
opment.

1 Introduction

Generative language models have radically re-
shaped the landscape of natural language process-
ing (NLP), enabling the development of systems
that can generate and interact with human lan-
guage at an unprecedented level. This includes
Norwegian, for which several large language mod-
els (LLMs) have been trained and published in the
recent years using different architectures and li-
censing choices (Kummervold et al., 2021; Kutu-
zov et al., 2021; Samuel et al., 2023, 2025; Liu
et al., 2024).

However, the vast quantities of data required for
training these models often include copyrighted
materials, presenting novel challenges related to

intellectual property rights and compensation. Ad-
ditionally, prior research has highlighted signifi-
cant concerns about dataset composition and qual-
ity in large-scale web-crawled datasets, empha-
sizing the need for more responsible data cura-
tion practices (Kreutzer et al., 2022; Artetxe et al.,
2022; Penedo et al., 2024). Together, these chal-
lenges have led to numerous lawsuits across ju-
risdictions, fundamentally questioning the legit-
imacy of training models on copyrighted data
without explicit permissions from content creators
(Panettieri, 2024; Madigan, 2024; Weisenberger
et al., 2024).1

The first wave of lawsuits emerged shortly after
the public release of advanced generative AI mod-
els (see Appendix A). Content creators, includ-
ing authors, visual artists, and musicians, began
to express concerns about the unauthorized use of
their work in training datasets. Multiple class-
action lawsuits were filed in the United States,
accusing prominent AI companies such as Ope-
nAI and Meta Platforms of infringing on copyright
laws by using copyrighted materials without ob-
taining explicit permissions. The authors argued
that the unauthorized use of their works without
any form of compensation or recognition under-
mines their intellectual property rights and jeopar-
dizes their ability to earn a living from their cre-
ative endeavors. In Europe, a coalition of news
publishers has taken legal action against Google
and Meta Platforms, arguing that the use of jour-
nalistic content in training models without fair re-

1See Gervais et al. (2024) for an in-depth introduction on
how LLMs are being interpreted in the legal domain.
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muneration constitutes a breach of copyright and
undermines the sustainability of high-quality jour-
nalism. Likewise, Norwegian rights-holder or-
ganizations representing publishing houses across
the country, contacted the government in late 2023
expressing their concerns over the use of their ma-
terial in training generative language models and
demanding some sort of compensation were their
contents to be used in the training of generative
language models. As a result, the Ministry of Cul-
ture and Equality (Kultur- og likestillingsdeparte-
mente) instructed the National Library to create a
data-driven report they could use in order to make
informed decisions in the elaboration of a compen-
sation scheme for the authors. Led by the National
Library of Norway, a consortium was formed to-
gether with the University of Oslo and the Norwe-
gian University of Science and Technology under
the umbrella of the so-called Mı́mir Project.2

In this context, and under the umbrella of
Mı́mir, this paper describes a first attempt at
empirically evaluating the impact of copyrighted
content in the training of LLMs for Norwegian.
We introduce a set of carefully curated datasets
that are later used in the training of founda-
tional, domain-tuned, and instruction-tuned mod-
els. We establish the proper training conditions to
be able to compare models trained on the differ-
ent datasets. A newly created benchmarking suite
is used to evaluate the performance of each indi-
vidual model and make the comparison meaning-
ful. As a collaborative effort among several insti-
tutions, the results of our investigations set the ba-
sis to guide policymaking and proper compensa-
tion schemes for authors and right-holders in Nor-
way (Nasjonalbiblioteket, 2024).

2 Methodology

The methodology involves a comprehensive anal-
ysis that spans several stages. Initially, a diverse
corpus of primarily Norwegian language data is
assembled, incorporating both copyrighted and
non-copyrighted materials, plus materials com-
monly found on the Internet. This corpus serves
as the foundation for training various LLMs, each
with different configurations and access levels to
copyrighted content. By comparing the perfor-
mance of these models across a range of linguistic
and natural language processing tasks, such as text

2A name chosen after a figure in Norse mythology
renowned for his knowledge and wisdom.

generation, translation, summarization, question-
answering, sentiment analysis and more, we seek
to quantify the specific contributions of copy-
righted materials to the overall model quality.

To ensure robustness and reliability, the eval-
uation framework focuses on generation ca-
pabilities, natural language understanding, and
linguistically-inspired metrics. Quantitative mea-
sures include traditional NLP metrics like accu-
racy, F1, BLEU, and ROUGE, which provide as-
sessments of model accuracy and fluency. Lin-
guistic analysis, on the other hand, involves as-
sessing the coherence, language variability, and
contextual relevance of the generated outputs.
This dual approach allows for a nuanced under-
standing of how copyrighted materials impact the
performance and utility of LLMs.

3 Data Collection

With the objective of setting up a realistic train-
ing scenario where using Internet crawled sources
is commonplace, we gathered publicly available
text collections like Wikipedia, datasets from the
HPLT (de Gibert et al., 2024) and CulturaX
(Nguyen et al., 2024) projects, code in differ-
ent programming languages from Lozhkov et al.
(2024), governmental reports and publications
published under open licenses, and books and
newspapers articles in the public domain.

We then collaborated with the National Library
of Norway and the rights-holder organizations to
gain access to protected materials. Through the
legal deposit act, the National Library of Nor-
way has digitized almost all books in Norwe-
gian and around 85% of the newspapers ever pub-
lished in the country (Nasjonalbiblioteket, 2024).
Where the quality of the digitized material was not
enough (e.g., due to OCR processing), or was not
been legally deposited (e.g., paywalled content),
specific agreements were put in place to obtain the
material from third party organizations such as the
Norwegian Broadcasting Corporation (NRK), the
TV channel TV2, and the newspaper conglomer-
ates Amedia and Schibsted. In line with provisions
that allow research on language technology and
data mining (Åndsverkloven), and with the consent
of the Norwegian right-holders, this study primar-
ily relied on material legally deposited at, or under
agreement with, the National Library of Norway.
Specifically, we focus our study on the collection
of publisher-controlled books and newspapers ar-

545



Dataset Documents Words

base 60,182,586 40,125,975,241
extended 125,285,547 82,149,281,266

Table 1: Number of documents and words in each
of the core datasets. Words refer to whitespace-
separated sub-strings.

ticles.

3.1 Core Datasets

This mixture of data (see Figure 1 and Appendix
C) allowed us to evaluate the impact of high-
quality publisher-controlled copyright-protected
corpora versus other sources commonly available
on the Internet. The models trained on the copy-
righted materials will not be made publicly avail-
able for further use and only serve the purpose of
this study.

We followed the recipe of the Norwegian Colos-
sal Corpus (NCC) by Kummervold et al. (2022),
adapting and updating it with new up-to-date con-
tents, re-OCRing some materials, enriching their
metadata, and ensuring uniform format and func-
tionality across datasets. The preparation involved
cleaning, deduplication, metadata tagging, and
language balancing to maintain consistent rep-
resentation of Norwegian, preventing other lan-
guages from overshadowing it. The corpus was
divided into two main datasets: a base dataset ex-
cluding publisher-controlled copyright-protected
books and newspapers,3 and an extended dataset
that included all collected texts, thus including all
of base (see Table 1).

We decided to include texts from other Scandi-
navian (Swedish, Danish, and Icelandic) and En-
glish sources to boost the performance of the re-
sulting language models via cross-lingual trans-
fer (Conneau et al., 2020b; Xue et al., 2021). To
ensure that languages other than Norwegian, and
primarily coming via Internet crawling, were bal-
anced, we adapted the perplexity-based sampling
strategy from De la Rosa et al. (2022) to main-
tain a high quality in the selected data. Instead
of sampling a fixed number of documents, param-
eters for a Gaussian curve were calculated from
500,000-1M random documents per source, utiliz-
ing Wikipedia-based Kneser-Ney language mod-

3Except for newspapers that fall under the Language
Technology Use (Språkteknologiformål), as they were al-
ready included in other datasets such as NCC.

Subset Documents Words

books 492,281 18,122,699,498
newspapers 46,764,024 9,001,803,515
books + newspapers 47,256,305 26,078,915,554

fiction books 117,319 5,287,109,366
nonfiction books 359,979 12,384,323,012
nonfiction books + newspapers 42,083,532 20,340,539,068

original books 392,887 13,352,261,605
original books + newspapers 47,156,911 22,354,065,120
translated books 96,258 4,695,814,506

Table 2: Number of documents and words
(comma separated) in each subset of the publisher-
controlled corpora.

els from Wenzek et al. (2019) and Conneau et al.
(2020a).4 We also modified the perplexity calcu-
lation to account for normalized text. These pa-
rameters then guided dataset sub-sampling to tar-
get ratios per language, reducing foreign language
content while maintaining quality (Appendix B).

It is also important to notice than in order to
maintain the language distributions for foreign
languages with respect to the amount of Norwe-
gian texts, the total number of documents in for-
eign languages in the extended dataset is conse-
quently higher and slightly different (due to the
sampling strategies) than that of base; we keep the
same ratios (see Appendix C).

3.2 Domain Specific Subsets
The publisher-controlled copyright-protected ma-
terials present in the extended dataset were fur-
ther divided into groups attending to different cri-
teria. These subsets were carefully designed to
test the effect of adding them to the training sets
for LLMs. We split the books into fiction vs non-
fiction, and original works in Norwegian vs trans-
lations. While most books in the collection had
metadata information regarding the original lan-
guage in which a work was written in, genre la-
bels were more scarce. To overcome this limita-
tion, we built a Doc2Vec model (Le and Mikolov,
2014) that classified fiction vs nonfiction with 98%
accuracy and used it to annotate books for which
this information was missing.5 As shown in Ta-
ble 2, we then built domain specific subsets to in-
vestigate 1) the effect of books vs newspapers vs
books + newspapers, 2) the effect of factuality by
adding only fiction words, only nonfiction works,

4Built with KenLM (Heafield, 2011).
5https://huggingface.co/mimir-project/

literary-form-classifier
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Figure 1: Treemap with the final number of words (comma separated) contributed by each source after
cleaning and deduplication.

and nonfiction works + newspapers, and 3) the ef-
fect of adding content written originally in Nor-
wegian, such as original books or original books +
newspapers, vs translated books.

3.3 Instruction-tuning Datasets
To align the models more closely with human
objectives and assess whether instruction tuning
with limited high-quality data can enhance the per-
formance of our pre-trained models across vari-
ous tasks, we built upon prior work and collected
nearly 5,000 instructions annotated by research as-
sistants.6 The instructions were formatted as (in-
struction, input, output) triplets, where instruction
refers to the directive provided by humans for the
model, input is an optional field containing task-
related information, and output denotes the de-
sired response that follows the given instruction.

The instruction tuning dataset combines three
key categories –Reading Comprehension, Norwe-
gian Culture, and Words and Expressions– with
diverse domains to enhance model performance.
The domains include Literature, Commonsense,
Geography, Language, History, Sports, Entertain-
ment, Food, Politics, Science, Art, Music, and
Culture. The variety of the instructions seeks to
improve the model’s ability to understand complex
texts, provide culturally relevant responses, and
handle language nuances, resulting in more ver-
satile, knowledgeable, and context-aware LLMs.

4 Model Training

The training phase involved multiple models, each
based on the Mistral architecture (Jiang et al.,

6https://huggingface.co/datasets/
mimir-project/mimir-instruction

2023). The training was conducted in the follow-
ing stages.

1. To measure the overall impact of publisher-
controlled copyrighted corpora and its ef-
fect in realistic scenarios, we conducted pre-
training on the base and extended datasets,
both from scratch and using the existing
weights (warm) of the pre-trained model
Mistral 7B v0.1.7 These four core models
were trained on the same amount of data,
64,000 steps of 4 million sub-word tokens
each. using identical sets of hyperparameters
(see Table 7 in Appendix D). This roughly
translates to 3 epochs for the base dataset and
2 for the extended dataset, which according
to Muennighoff et al. (2023) is still far from
saturating the available data.

2. To further isolate the effect of different ab-
lations of the publisher-controlled copyright-
protected corpora, we continuously fine
tuned the model trained on base from scratch
for an extra 10,000 steps on each of the 9 do-
main specific subsets.

3. The core models were also fine tuned on the
instruction data for 4 iterations to evaluate
their performance on downstream tasks.

Overall, we trained 17 models (7 billion param-
eters each) using a total of 270,000 GPU-hours.
Model training specifications are shown in Table
3. The infrastructure for training included the
LUMI supercomputer, Idunn cluster, and Google

7https://huggingface.co/mistralai/
Mistral-7B-v0.1
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Model Initialization GPU/hours Accelerator
Core Models

base From scratch 50K AMD MI250X
extended From scratch 50K AMD MI250X
base (warm) Mistral 7B v0.1 13.8K NVIDIA H100
extended (warm) Mistral 7B v0.1 55.6K AMD MI250X

Domain Tuned Models
base + fiction books base 7.5K AMD MI250X
base + nonfiction books base 7.5K AMD MI250X
base + nonfiction books + newspapers base 7.5K AMD MI250X
base + newspapers base 4.8K Google TPUv4
base + books base 4.8K Google TPUv4
base + books + newspapers base 4.8K Google TPUv4
base + original books + newspapers base 9.1K AMD MI250X
base + original books base 9.1K AMD MI250X
base + translated books base 9.1K AMD MI250X

Instruction Fine Tuned Models
base instruct base 14.2 NVIDIA H100
extended instruct extended 14.2 NVIDIA H100
base (warm) instruct base (warm) 14.2 NVIDIA H100
extended (warm) instruct extended (warm) 14.2 NVIDIA H100

Table 3: Model training specifications, where Model represents the model identifier and the data used for
training, Initialization represents the base model used for training, GPU/hours indicates the total GPU
hours required for model training, and Accelerator represents the type of accelerator used.

TPUs through the Tensor Research Cloud pro-
gram8. Besides, we trained two tokenizers with
the base and extended datasets separately, both
with the same vocabulary size of 32, 768. After
an initial test of the fertility of the tokenizers,9

we found the difference between them was only
0.0013. Therefore, we decided to use the same
tokenizer trained with the base dataset for all the
models.

5 Evaluation Framework

In our empirical evaluation experiments, we utilize
NorEval,10 a publicly available framework for
evaluating Norwegian generative LLMs built on
lm-evaluation-harness (Gao et al., 2024).
We consider 28 tasks, which test model’s various
Norwegian language understanding and genera-
tion abilities. NorEval covers both Norwegian
language varieties (Bokmål and Nynorsk) and pro-
vides a set of 4–6 prompts for each downstream
task. The tasks can be grouped into nine higher
level skills:

8To assess the deviation introduced by differences in
training infrastructures and platforms across the participat-
ing institutions, each team trained a control model with 1.5B
parameters based on the Llama 2 architecture. The training
setups were identical, utilizing the base dataset. After com-
paring the validation loss curves from each team, we found
that the curves were almost the same, with a deviation of less
than 0.05 in terms of the final convergence validation loss.

9Fertility expresses the fragmentation rate of a tokenizer
and is #tokens/#words in one corpus.

10https://github.com/ltgoslo/noreval

1. Sentiment Analysis, here defined as binary
polarity classification on both the sentence-
and document-level based on the exist-
ing NoReC datasets of professional reviews
(Velldal et al., 2018; Øvrelid et al., 2020).

2. Fairness & Truthfulness. Fairness refers to
the absence of bias in the predictions and out-
puts of a model. Evaluating fairness ensures
that the model does not favor or discrimi-
nate against particular groups based on at-
tributes like race, gender, or ethnicity. This
skill was evaluated using a newly-created
dataset,11 which covers a wide range of bias
types, including race, religion, gender, geog-
raphy, occupation, age etc. Truthfulness in-
volves the accuracy and reliability of the in-
formation produced by the model, ensuring it
generates factual and verifiable content. This
skill was evaluated using NorTruthfulQA
(Mikhailov et al., 2025), which assesses
whether a model is truthful in selecting and
generating answers to questions that involve
common human misconceptions.12

3. Reading Comprehension, which measures
the ability of a model to understand and in-
terpret text. It involves answering questions

11https://huggingface.co/datasets/
mimir-project/mimir-bias

12https://huggingface.co/datasets/ltg/
nortruthfulqa_mc and https://huggingface.
co/datasets/ltg/nortruthfulqa_gen
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about a given passage, summarizing content,
or explaining the meaning of specific phrases
or sentences. This skill estimates how well
the model grasps the context and details in
the text. It was evaluated using the exist-
ing extractive question-answering NorQUAD
dataset (Ivanova et al., 2023) and multiple-
choice question-answering Belebele dataset
(Bandarkar et al., 2024).

4. World Knowledge, which assesses the ex-
tent of factual information a language model
has about the world. This includes histori-
cal events, geographical data, scientific facts,
cultural knowledge, and more. The model
should correctly answer questions or pro-
vide information based on real-world knowl-
edge. This skill was evaluated using the
NorOpenBookQA and NRK-Quiz-QA by
Mikhailov et al. (2025).13

5. Commonsense Reasoning, which involves
the ability of a model to make logical infer-
ences based on everyday knowledge and un-
derstanding of the world. The model should
reason about situations that require practi-
cal, everyday knowledge that people take
for granted. This skill was evaluated using
NorCommonsenseQA (Mikhailov et al.,
2025),14 which consists of multiple-choice
commonsense question answer-pairs which
adapts the corresponding English Common-
senseQA dataset (Talmor et al., 2019) to Nor-
wegian.

6. Norwegian Language evaluation focuses on
the ability of a model to understand and gen-
erate text in Norwegian, specifically its gram-
mar, structure, and sentence construction.
This skill is important for assessing how well
the model handles Norwegian and their spe-
cific syntactic rules. It was evaluated using
the existing NCB (Farsethås and Tjøstheim,
2024) and ASK-GEC (Jentoft, 2023) datasets,
and the newly-created NorIdiom dataset.15

7. Summarization, which measures the ability
of a model to condense longer pieces of text

13https://huggingface.co/datasets/ltg/
noropenbookqa and https://huggingface.co/
datasets/ltg/nrk_quiz_qa

14https://huggingface.co/datasets/ltg/
norcommonsenseqa

15https://huggingface.co/datasets/
mimir-project/noridiom

into shorter, coherent summaries that capture
the main points. This skill is crucial for appli-
cations where users need a quick understand-
ing of large volumes of information, such as
news articles or research papers. It was eval-
uated using the NorSumm dataset (Touileb
et al., 2025).16

8. Translation, which assesses how accurately
a language model can convert a text from
one language to another while preserving the
meaning, tone, and context. It was evaluated
using the existing Tatoeba dataset (Tiede-
mann, 2020). The following six language
pairs are considered: Bokmål ↔ Nynorsk,
Bokmål↔ English, and English↔ Nynorsk.

9. Variation and Readability, which consists
of measuring the lexical diversity of a model
by looking at the amount of redundancy in the
text it produces and at the readability of these
texts measured by average sentence length
and the proportion of long words. As such,
this skill evaluation did not require any spe-
cific benchmarking datasets.

We follow the standard in-context learning eval-
uation design for pretrained decoder-only lan-
guage models (e.g., Brown et al., 2020; Touvron
et al., 2023), which includes zero-shot and few-
shot evaluation. In this paper, for the sake of sim-
plicity, we selected the most common metrics per
task and aggregated scores using a simple cumula-
tive sum per higher-level skill. In order to aggre-
gate results into an overall score, with the caveats
of aggregating metrics of different nature, scores
were extracted for the best available {0, 1, 4, 16}-
shot configuration for each task and the best score
for each of the prompts. Metrics were normalized
to exhibit the same higher-is-better behavior in a
range of 0 to 100.

6 Results

The evaluation of the trained models demonstrated
that incorporating publisher-controlled copyright-
protected corpora provided a measurable boost in
performance across a range of NLP tasks. To illus-
trate the overall performance differences, Figure 2
shows the total scores across all skills, averaged
by task for each model. Non-aggregated scores

16https://huggingface.co/datasets/
SamiaT/NorSumm
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Mistral 7B v0.1

base (warm)

extended (warm)

base + translated books

base + original books + newspapers

base + original books

base + nonfiction books + newspapers

base + nonfiction books

base + fiction books

base + books + newspapers

base + newspapers

base + books

base

extended 441.83

413.98

427.30

440.35

435.64

408.20

427.40

440.97

427.87

436.81

409.54

482.98

480.28

448.01

Sentiment Analysis Fairness & Truthfulness Reading Comprehension
World Knowledge Commonsense Reasoning Norwegian Language
Summarization Translation Variation & Readability

Figure 2: Total summed scores across all skills averaged by task for each model. Best scores among
from-scratch models underlined, best overall from-scratch in bold. Dashed line at the base score.

for all tasks, prompts, and models are available at
the Mı́mir repository.17

6.1 Core Models
As shown in Table 4 and Figure 2, the perfor-
mance analysis of core models across various
tasks reveals distinct strengths for different config-
urations. The base (warm-started) configuration
consistently excels in Sentiment Analysis, World
Knowledge, and Norwegian Language. In con-
trast, the extended (warm-started) configuration
leads in Fairness & Truthfulness, Reading Com-
prehension, Commonsense Reasoning, Transla-
tion, and Variation & Readability, indicating its
robust performance for language-intensive tasks.
The base configuration generally lags behind oth-
ers, scoring the lowest across multiple tasks.
Meanwhile, the extended configuration performs
well, particularly in Summarization. Furthermore,
it indicates that we could leverage the existing
metadata available at the National Library to tai-
lor subsets of the publisher-controlled copyrighted
corpora and build models that excel at specific
tasks. However, the difference between the base
and extended warm-started models is very small.

17https://github.com/mimir-project/
mimir-evaluation

Model SA FT RC WK RC NL S T VR

extended 3 2 3 3 2 2 1 3 2
base 4 3 4 4 3 4 3 4 3
extended (warm) 2 3 1 2 1 1 2 1 1
base (warm) 1 1 2 1 1 3 2 2 4

Table 4: Results for ranking the core models
on all tasks by skill via (i) finding the best k-
shot configuration for each task and (ii) aggregat-
ing metric-wise rankings. SA=Sentiment Analy-
sis. FT=Fairness & Truthfulness. RC=Reading
Comprehension. NL=Norwegian Language.
WK=World Knowledge. CR=Commonsense Rea-
soning. S=Summarization. T=Translation.
VR=Variation & Readability. Lower is better.

Further testing is required to assess whether this
difference is still statistically significant.18

While warm-started models generally outper-
formed models trained from scratch, there was re-
duced sensitivity to the presence of copyrighted
materials. This suggests that the pre-existing
weights, which were primarily trained on English
data, diminished the impact of adding high-quality
Norwegian copyrighted texts (see also Section 7).

18Detailed scores available in Appendix F Table 8.

550

https://github.com/mimir-project/mimir-evaluation
https://github.com/mimir-project/mimir-evaluation


base

base + fiction books

base + books

base + nonfiction books

base + newspapers

base + nonfiction books + newspapers

base + original books + newspapers

extended 6.73%

5.51%

6.52%

6.37%

3.24%

3.22%

-1.40%

Figure 3: Average percentage gains over the per-
formance of the base model. Negative results indi-
cate a decrease in performance over base, positive
results a gain.

6.2 Domain-tuned Models
To further explore the specific effects of different
types of training data, we analyzed the gains in
performance by focusing on different sub-corpora,
such as newspapers, books, and mixed datasets.
Figure 3 provides an overview of the average per-
centage gains for models trained on various data
configurations compared to the base model. It
shows that the extended model exhibits the high-
est average gain at 6.73%, indicating substantial
overall improvement. The addition of nonfic-
tion books and newspapers follows with a 6.52%
gain, and the addition of only newspapers shows
a 6.37% improvement. Other configurations, such
as adding original books and newspapers or non-
fiction books, also demonstrate positive gains of
5.51% and 3.22%, respectively. Conversely, the
addition of fiction books is the only one to show
a negative performance, with a decrease of 1.40%.
Interestingly, when decomposed by skill, the ad-
dition of fiction books makes the model excel at
generating more diverse texts (see Figure 5 in Ap-
pendix E).

6.3 Instruction-tuned Models
Lastly, as shown in Figure 4, when the core mod-
els are further fine-tuned on data to follow instruc-
tions, the gains across models are all consistent,
showing that the core advantage lies in the pre-
training data, while further training on instructions
gives a consistent boost in performance. Instruc-
tion tuning also seems to reduce the gap between
the base and extended configurations, suggest-
ing that publisher-controlled copyrighted corpora
might become less relevant as supervised fine-
tuning datasets increase in size in the post-training
phases of LLMs. Interestingly, adding Norwe-

gian instruction data on top of the extended model
seems enough to improve over the performance of
Mistral 7B v0.1.

7 Discussion

Our findings underline the value of copyrighted
materials in improving the performance of gen-
erative language models, particularly for special-
ized NLP tasks in Norwegian. The inclusion of
these curated publisher-controlled texts provide a
substantial advantage in terms of language rich-
ness, coherence, and context-specific understand-
ing. However, these advantages are significantly
less evident in models that are warm-started using
weights pre-trained on other languages, primarily
English. We see two possible reasons for this:

1. The amount of training data matters more
than its quality or licensing status. Warm-
started models are effectively trained on more
data than the ‘from-scratch’ models, and at
some point adding even more data brings di-
minishing returns (with a given model size).

2. Publisher-controlled copyrighted Norwegian
data is indeed beneficial for LLMs, but the
original models used for warm-starting were
presumably already pre-trained on datasets
that may share similarities with this data.
Due to the lack of transparency regarding
the exact composition of training datasets in
models like Mistral, concerns about poten-
tial data contamination remain relevant. This
overlap could explain why continuous pre-
training on similar content did not yield the
expected benefits for the warm-started ex-
tended models (Li et al., 2024; Dong et al.,
2024; Xu et al., 2024; Samuel et al., 2024).

7.1 Ethical and Legal Considerations
The use of copyrighted materials in model train-
ing raises significant ethical and legal questions.
The observed improvements in model quality must
be balanced against the rights of content creators,
who have not consented to the use of their work.
This highlights the need for guidelines and com-
pensation mechanisms that recognize the value of
copyrighted materials in LLM development.

7.2 Implications for Policy
The empirical evidence gathered in our research is
crucial for informing copyright policy in the dig-
ital age. Policymakers can use these findings to
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extended

extended instruct

base

base instruct

extended (warm)

extended (warm) instruct

base (warm)

base (warm) instruct

Mistral 7B v0.1 448.01

503.36

480.28

503.89

482.98

445.39

413.98

458.36

441.83

Sentiment Analysis Fairness & Truthfulness Reading Comprehension

World Knowledge Commonsense Reasoning Norwegian Language

Summarization Translation Variation & Readability

Figure 4: Total scores (sum) of all averaged scores
per skill for the core models and their instruct ver-
sions, with original Mistral 7B v0.1 for reference.
Dashed line at the base score. Best scores in bold,
second best underlined.

establish frameworks that ensure creators are ade-
quately compensated, balancing the needs of LLM
innovation with the rights of authors and publish-
ers. This is particularly relevant in light of ongoing
lawsuits against major AI companies.

8 Conclusion

Our study represents a pioneering effort to quan-
tify the impact of copyrighted materials on LLMs
for Norwegian. Our results indicate that high-
quality publisher-controlled copyrighted content
significantly enhances model performance, espe-
cially for complex NLP tasks. However, these
benefits bring forth ethical and legal challenges
that must be addressed to ensure a sustainable and
fair approach to LLM development. By providing
empirical evidence, we aim to contribute to the on-
going discourse on the role of copyright in AI and
inform future policies that support both innovation
and the rights of content creators.

9 Future Work

Future work should focus on testing models at var-
ious scales and different pre-trained open weights
to better understand how dataset composition af-
fects performance. By experimenting with models
of different sizes, we could identify any scaling
thresholds where the impact of copyrighted ma-
terial varies significantly. In retrospect, one no-
table flaw in the experimental design is the lack
of fully traceable and transparent models, such as

OLMo (Groeneveld et al., 2024), which provide
detailed documentation of their training data and
processes. Without utilizing models with verifi-
able data provenance, it becomes challenging to
accurately assess how specific dataset composi-
tions, including copyrighted or genre-specific ma-
terials, influence model behavior and performance
for warm-started models. Incorporating traceable
models would improve the reproducibility and
reliability of findings, ensuring that conclusions
drawn about the impact of various text genres are
well-founded.

Additionally, the observed effects of fiction on
model performance highlight the need to 1) exam-
ine how different types of fiction –such as fantasy
or historical fiction– impact tasks like Sentiment
Analysis and Commonsense Reasoning, and 2)
design new and adequate benchmarks for evaluat-
ing the contribution of fiction in Norwegian LLMs
for tasks such as creative writing, plot understand-
ing, or descriptive language use. This investiga-
tion could clarify the role of fiction in model train-
ing and help refine data curation strategies.

Lastly, exploring genre-specific influences more
deeply, including essays, technical writing, and
narrative nonfiction, may reveal distinct benefits
or biases tied to each genre. Analyzing these nu-
ances, even in a diachronic manner, will guide bal-
anced genre representation in datasets and support
the development of better performing models.

10 Distribution

The base dataset and models were intended to be
freely distributed, as all materials included were
granted redistribution permissions under different
agreements. After we communicated the results of
our investigations to the different partners, some
right-holders demanded a reinterpretation of the
agreements (primarily the Language Technology
Use, Språkteknologiformål), in the light of the re-
sults and this new era of generative AI. This pre-
vented us from sharing publicly the exact mod-
els trained within the Mı́mir project, but instead
we built a subset of base, which we are calling
core, excluding the affected newspapers (around
1B words) and trained models both from scratch
and from Mistral 7B v0.1. Their performance is on
par with their base counterparts. We are also re-
leasing these models under a permissive license.19

19https://huggingface.co/mimir-
project/mimir-mistral-7b-core-scratch
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B Sampling

We built three custom perplexity models for specific Norwegian domains that proved too divergent from
Wikipedia: books, newspapers, and government documents. These perplexity models were used to score
each document in the datasets. Based on their perplexity scores, the documents were further divided
into three segments corresponding to their quartile distribution. Documents with scores below the first
quartile were classified as “good”, those between Q1 and Q3 as “medium”, and those above Q3 were
considered “bad”. The documents in each segment were randomized. While the intention was to train all
models on progressively better data, starting from “bad” segment, then “medium” and finally the “good”
segment, we never got around to test whether this approach would result in better performing models.

Moreover, from the clean and deduplicated sources, we sub-sampled each non-Norwegian language at
an specific sampling ratio until achieving the proportion of documents shown in Figure 5. Pseudo-code
for the algorithm used to subsample is shown in Algorithm 1.20 We also discovered that a good amount
of documents were misclassified by the fastText language identifier (Joulin et al., 2016).

Language Sampling ratio Final ratio
Bokmål 100.00% 35.74%
Danish 43.00% 8.01%
English 81.00% 4.53%
Icelandic 100.00% 1.31%
Nynorsk 100.00% 2.02%
Swedish 15.40% 4.46%
Code 62.00% 4.53%

Table 5: Percentage of documents kept from the clean and deduplicated sources and the final proportion
of documents in each language present in the final dataset. Code was considered its own language when
sampling.

C Sources

Source Raw Clean extended base

Books 3.7B 2.5B 1.9B 1.9B
CulturaX 52.7B 52.1B 21.8B 16.9B
Digimanus 9.6M 4.6M 3.4M 3.3M
Evaluerings- rapport 76.7M 68.6M 61.2M 61.5M
HPTL v1.2 35.5B 34.1B 14.9B 11.3B
LovData 57.1M 57.1M 53.7M 54.8M
Målfrid 7.5B 1.9B 1.7B 1.7B
Newspapers 4.6B 3.6B 3.2B 3.3B
Parlamint 170.3M 84.4M 83.4M 83.3M
PG19 2.0B 1.9B 1.4B 428.6M
StarCoder 19.7B 9.8B 7.1B 3.4B
Wikipedia 4.0B 3.9B 2.8B 996.2M

Books (restricted) 21.7B 20.0B 18.1B 0
Newspapers (restricted) 14.3B 9.8B 9.1B 0

Total 166.1B 139.8B 82.1B 40.1B

Table 6: Number of words (comma separated) per source at the start of the data pipeline (raw count),
after cleaning, and in the extended and base datasets.

20https://huggingface.co/mimir-project/mimir-perplexity
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Algorithm 1 Sub-sampling Dataset Based on Perplexity Distribution

1: Input: Dataset D with perplexity distribution, target sampling ratio R
2: Output: Sub-sampled dataset D′

3: procedure SUBSAMPLE(D,R)
4: Compute the quartile values q1 and q3 from the perplexity distribution of D
5: Define an initial Gaussian PDF with mean µ = (q1 + q3)/2 and standard deviation σ such that

q1 and q3 align with the corresponding positions in the Gaussian curve
6: Compute the histogram H of perplexity values from D
7: Combine H with the Gaussian weights to estimate the initial sampling ratio R0

8: Compute the normalization factor N such that R0 ×N = R
9: while Error in central quartile probabilities exceeds tolerance do

10: Adjust the parameters µ and σ of the Gaussian curve to minimize the error in the desired
probabilities within the central quartiles [q1, q3]

11: Update the normalization factor N to match the target ratio R
12: end while
13: for each sample s in D do
14: Compute the perplexity ps of sample s
15: Estimate the probability P (s) of retaining sample s based on the normalized Gaussian PDF
16: if P (s) ≥ random threshold then
17: Retain s in the sub-sampled dataset D′

18: end if
19: end for
20: end procedure
21: return D′

D Hyperparameters

Hyperparameter Core Models Domain-Tuned Models Instruction-tuned Models

Model size 7B 7B 7B
Hidden layers 32 32 32
Attention heads 32 32 32
Hidden size 4096 4096 4096
Intermediate size 14336 14336 14336
Max position embeddings 2048 2048 2048
Key-value heads 8 8 8
Sliding window 4096 4096 4096
Precision bfloat16 bfloat16 bfloat16
Optimizer AdamW AdamW AdamW
Optimizer parameters β1 = 0.9, β2 = 0.95, ϵ = 10−8 β1 = 0.9, β2 = 0.95, ϵ = 10−8 β1 = 0.9, β2 = 0.95, ϵ = 10−8

Global batch size 4M (2048× 2048) tokens 4M (2048× 2048) tokens 512 seqs
Initial/final learning rate 3.0× 10−4 / 3.0× 10−5 3.0× 10−5 / 3.0× 10−6 3.0× 10−6 / 3.0× 10−7

Vocabulary size 32768 32768 32768
Training steps 64k 10k 4 epochs
Dropout 0 0 0
Warm-up steps 2000 200 20
Weight decay 0.1 0.1 0.1
Checkpoints Every 1000 steps Every 1000 steps Every 1 epoch
Shuffle Shuffle after each epoch Shuffle after each epoch Shuffle after each epoch

Table 7: Hyperparameters for the Mı́mir model set.
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E Percentage Gains

Figure 5 illustrates the percentage gains of each domain-tuned model with respect to the performance of
the base model, per higher level skill. Training on different materials shows distinct trade-offs: news-
paper data excels at Translation (27.20% gain) and Norwegian Language (51.92%), while fiction books
improve Variation & Readability (7.83%). Combining books and newspapers often yields balanced im-
provements, though most configurations struggle with Reading Comprehension and Translation. The
extended configuration, which supplements books and newspapers with Internet data, shows strong all-
around performance, particularly in Summarization (26.37%) and World Knowledge (5.60%).
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Figure 5: Percentage gains over the performance of the base model per skill.
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F Evaluation Scores

Model SA FT RC WK CR NL S T VR Score
Core Models

base 69.54 53.51 38.04 41.10 39.85 38.28 32.45 41.55 59.66 413.98
extended 77.09 51.01 39.38 43.40 41.26 47.64 41.00 40.20 60.85 441.83
base (warm) 88.17 51.28 52.48 53.27 48.02 49.51 35.88 41.14 60.52 480.28
extended (warm) 86.57 54.64 52.79 51.51 49.25 48.48 36.14 42.48 61.12 482.98

Domain Tuned Models
base + books 76.20 55.15 33.38 41.54 39.59 51.69 29.81 38.68 61.24 427.30
base + newspapers 76.57 48.04 35.29 41.55 37.79 58.16 29.26 52.85 60.85 440.35
base + books + newspapers 78.94 53.06 35.09 41.53 41.77 52.11 31.86 40.00 61.27 435.64
base + fiction books 74.16 47.99 33.71 39.74 41.39 41.18 28.41 37.29 64.33 408.20
base + nonfiction books 76.30 56.51 31.84 41.06 40.66 52.48 29.52 38.88 60.14 427.40
base + nonfiction books + newspapers 78.99 53.91 36.66 41.85 42.68 54.50 30.78 40.50 61.10 440.97
base + original books 75.46 55.43 32.87 41.56 41.08 53.04 28.74 38.86 60.83 427.87
base + original books + newspapers 77.72 54.43 35.42 41.71 41.46 53.81 30.67 40.64 60.95 436.81
base + translated books 72.22 48.21 34.54 40.97 43.33 43.63 27.51 36.97 62.15 409.54

Instruction Fine Tuned Models
base (warm) instruct 87.83 53.70 50.33 54.98 49.42 59.53 38.36 49.75 59.46 503.36
extended (warm) instruct 89.81 57.80 51.69 53.09 49.76 55.91 37.75 47.72 60.35 503.89
base instruct 69.45 50.59 36.27 41.18 42.06 53.53 35.14 58.83 58.35 445.39
extended instruct 78.90 46.10 38.68 44.32 43.57 56.46 36.40 54.64 59.29 458.36
Mistral 7B v0.1 88.41 64.93 56.68 58.86 36.01 31.49 10.09 41.55 59.99 448.01

Table 8: Detailed scores across all skills for each model configuration. Abbreviations: SA = Sentiment
Analysis, FT = Fairness & Truthfulness, RC = Reading Comprehension, WK = World Knowledge, CR
= Commonsense Reasoning, NL = Norwegian Language, S = Summarization, T = Translation, VR =
Variation & Readability. Best overall scores per skill in bold. Best score per skill and model group
underlined. Mistral 7B v0.1 also added for reference.
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Abstract

This paper explores the performance of en-
coder and decoder language models on mul-
tilingual Natural Language Understanding
(NLU) tasks, with a broad focus on Ger-
manic languages. Building upon the Scan-
dEval benchmark, initially restricted to
evaluating encoder models, we extend the
evaluation framework to include decoder
models. We introduce a method for eval-
uating decoder models on NLU tasks and
apply it to the languages Danish, Swedish,
Norwegian, Icelandic, Faroese, German,
Dutch, and English. Through a series of ex-
periments and analyses, we also address re-
search questions regarding the comparative
performance of encoder and decoder mod-
els, the impact of NLU task types, and the
variation across language resources. Our
findings reveal that encoder models can
achieve significantly better NLU perfor-
mance than decoder models despite hav-
ing orders of magnitude fewer parameters.
Additionally, we investigate the correlation
between decoders and task performance
via a UMAP analysis, shedding light on
the unique capabilities of decoder and en-
coder models. This study contributes to a
deeper understanding of language model
paradigms in NLU tasks and provides valu-
able insights for model selection and evalu-
ation in multilingual settings.

1 Introduction

Language models have attained remarkable Natu-
ral Language Understanding (NLU) performance,
both with encoder-based architectures like BERT
(Devlin et al., 2018) and and decoder-based archi-
tectures like GPT-3 (Brown, Tom and Mann, Ben-
jamin and Ryder, Nick and Subbiah, Melanie and

Kaplan, Jared D and Dhariwal, Prafulla and Nee-
lakantan, Arvind and Shyam, Pranav and Sastry,
Girish and Askell, Amanda and others, 2020). The
encoder models have excelled in capturing con-
textual information for downstream tasks through
masked language modeling objectives, while de-
coder models have shown strong generative capa-
bilities by autoregressively predicting subsequent
tokens based on preceding context.

Since the “ChatGPT boom” in 2023, the research
community has been increasingly focused on de-
coder models (Zhao et al., 2023) for both Natural
Language Generation (NLG) and NLU tasks. How-
ever, few studies have systematically compared
the performance of encoder and decoder models
across a diverse range of NLU tasks, and the studies
that exist have primarily focused on English. This
leaves a gap in our understanding of how the two
language model paradigms perform in multilingual
settings across different languages and tasks.

Nielsen (2023) introduced the ScandEval bench-
mark and evaluated encoder language models on
four different natural language understanding tasks
in Danish, Swedish, Norwegian (Bokmål and
Nynorsk), Icelandic and Faroese. In this paper,
we bridge this gap by extending the ScandEval
benchmark to encompass the evaluation of decoder
models on multilingual NLU tasks, as well as ex-
panding the language resources to include German,
Dutch and English.

Our main research question is

Which language model paradigm is bet-
ter suited for NLU?

We will answer this question with the languages
Danish, Swedish, Norwegian, Icelandic, Faroese,
German, Dutch and English as a case study. To
concretise our main question, we will study the
following research questions in this paper:

(Q1) Can state-of-the-art finetuned encoder models
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achieve significantly better NLU performance
than state-of-the-art decoder models?

(Q2) Does the answer to (Q1) depend on the type
of NLU task?

(Q3) Does the answer to (Q1) vary along the lan-
guage resource spectrum, from low- to high-
resource?

Our main contributions of this paper are the fol-
lowing:

1. We extend the ScandEval benchmarking
framework with few-shot evaluation of de-
coder models and release this extension open-
source.

2. We extend the languages supported by the
ScandEval benchmarking framework by Ger-
man, Dutch and English. Together with
Danish, Swedish, Norwegian, Icelandic and
Faroese, ScandEval now provides coverage of
all Germanic languages except Afrikaans and
the Frisian languages.

3. We evaluate an extensive suite of both encoder
and decoder models on NLU tasks in all of
the supported languages and publish these on
public leaderboards.

4. We give a positive answer to (Q1), showing
that encoder models achieve significantly bet-
ter NLU performance than encoder models in
several languages. This depends on the lan-
guage in question however, giving a partially
positive answer to (Q3).

5. We also show that the decoder models are
heavily biased towards the question answer-
ing task (even models that are not instruction
tuned), and a UMAP analysis shows that the
performance distribution of decoder models
follow a different “path” than encoder mod-
els, from the worst to best performing models.
This gives a positive answer to (Q2).

2 Related Work

2.1 Comparing Encoder and Decoder Models
There has been a number of studies in recent
years comparing encoder models to decoder mod-
els. Zhong et al. (2023) compared GPT-3.5-turbo
(January 2023 version) to (finetuned versions of)
the base and large versions of BERT (Devlin et al.,

2018) and RoBERTa (Liu et al., 2019) on the En-
glish GLUE benchmark (Wang et al., 2018). They
find that GPT-3.5-turbo is on average on par with
the base-sized encoder models, but falls short of
the large-sized ones. They also note that despite
being on par with the base-sized models, there is a
big discrepancy between the models on individual
tasks, with GPT-3.5-turbo for instance being better
on the inference tasks while being worse on the
paraphrase tasks. We note however that they only
evaluate the decoder model in a zero-shot setting,
and furthermore they only evaluate the models on
25 samples for each class in the development split,
leading to a potential lack of robustness in their
evaluation.

Wang et al. (2023) compares GPT-3.5-turbo
(January 2023 version) to a finetuned version of
the base-sized BERT model on 18 English bench-
mark datasets related to sentiment analysis. Like
Zhong et al. (2023), they find that the zero-shot
performance of GPT-3.5-turbo is on par with the
base-sized BERT model, and that the few-shot per-
formance of GPT-3.5-turbo (with 27 few-shot ex-
amples) is slightly better than BERT, on average.
Their test sets contained, on average, 538 samples,
which is a significant improvement over Zhong
et al. (2023). However, the narrow focus on the
evaluation tasks as well as only benchmarking a
single encoder and decoder model makes it hard to
generalise the results to other tasks and models.

Kocoń et al. (2023) built a benchmark suite of
25 tasks, where 21 of these tasks are classification
tasks (binary, multi-class and multi-label), 3 being
question answering tasks and the last one being a
token classification task. Two of the classification
tasks are in Polish and the rest in English. They
compare the zero-shot and few-shot performance
of GPT-3.5-turbo (January 2023 version) to the
state-of-the-art encoder performance on each task.
GPT-3.5-turbo is generally found to be worse than
state-of-the-art encoder models. They also evaluate
GPT-4 on five of the tasks (inference, question-
answering and emotion datasets), and only find
GPT-4 to be marginally better than GPT-3.5-turbo,
still far off the encoder models.

Qiu and Jin (2024) compare GPT-3.5-turbo (Jan-
uary 2023 version) to a finetuned version of the
base-sized BERT model on three manually curated
English multi-class classification datasets with 19,
12 and 7 test samples, respectively, where they find
that the BERT model performs marginally better
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than GPT-3.5-turbo in a few-shot setting (and that
the zero-shot performance is significantly worse).
The tiny test sets make it hard to generalise the
results, however.

2.2 Benchmarks of Generative Language
Models

In recent times, several benchmarks of generative
language models have been introduced. The ma-
jor ones are EleutherAI’s Evaluation Harness (Gao
et al., 2023), Hugging Face’s Open LLM Leader-
board (hug) which uses the Evaluation Harness
as evaluation engine, and Stanford University’s
HELM (Bommasani et al., 2023). These are firstly
all English-only benchmarks, making it hard to gen-
eralise the results to other languages, and they only
include point estimates of the dataset performance,
and thus do not necessarily provide a robust assess-
ment of the models. Further, these benchmarks are
exclusively for decoder models, and thus does not
provide a way to compare encoders with decoders.

There has been several language-specific bench-
marks introduced as well. NorBench (Samuel
et al., 2023) is a collection of Norwegian evaluation
datasets moreso than a dedicated evaluation frame-
work. Further, several datasets in this collection
(NorQuAD, NoReC and NorNE) are already part
of ScandEval. SuperLim (Berdičevskis et al., 2023)
falls into the same category for Swedish. DUMB
(de Vries et al., 2023) is a Dutch benchmarking
framework, which is only focused on encoder mod-
els. Danoliterate (Holm, 2024) is a Danish bench-
marking framework which is solely focused on
evaluating decoder models, and whose datasets
largely overlap with the Danish datasets in ScandE-
val, albeit with a different evaluation methodology.
Aside from language modelling performance, the
Danoliterate benchmark also measures calibration,
efficiency, toxicity and fairness. While the develop-
ment of language-specific benchmarks is important,
it leads to too little overview of trends across bench-
marks and languages and incentivises model devel-
opment focused on monolingual models ignoring
a potential broader appeal. ScandEval provides a
unified and robust approach for comparison across
model categories and Germanic languages.

Benchmarking is not the only way to evaluate
language models. A new “arena approach” has
been popularised by the LMSYS Arena (Chiang
et al.), where users can submit a prompt and get two
responses from two anonymised models at random,

and have to evaluate the responses. The Arena is
predominantly used for English, but also currently
supports six other languages. This approach is a
promising way to evaluate language models, but
we fear that it is not as suitable for low-resource
languages due to the need of many volunteers to
evaluate the responses.

Lastly, the Scandinavian Embedding Benchmark
(Enevoldsen et al., 2024b) complements ScandEval
and focuses on evaluating embedding models on a
wide range of tasks in the Scandinavian languages.

3 Datasets

In this section we present the datasets that we are
evaluating the models on, all of which are now
included in the ScandEval framework. We should
note that these datasets either (a) already existed
prior to this publication or (b) are small extensions
of existing datasets. An overview of all the datasets
can be found in Table 1.

3.1 Named Entity Recognition

For Norwegian, Swedish and Icelandic we use
the NorNE (Jørgensen et al., 2020), SUC 3.0
(Gustafson-Capková and Hartmann, 2006), MIM-
GOLD-NER (Ingólfsdóttir et al., 2020) datasets,
which were already included in the ScandEval
framework. For Faroese we replace the previous
WikiANN-fo dataset (Rahimi et al., 2019) with the
new human annotated FoNE dataset (Snæbjarnar-
son et al., 2023). We also replace the previous
DaNE dataset (Hvingelby et al., 2020) with the
new DANSK dataset (Enevoldsen et al., 2024a)
covering a wider variety of domains. For Ger-
man, Dutch and English we add the established
NER datasets GermEval (Benikova et al., 2014),
the Dutch part of CoNLL-2002 (Sang, 2002), and
the English CoNLL-2003 (Sang and De Meulder,
2003).

3.2 Sentiment Classification

We re-use the sentiment classification datasets An-
gryTweets (Pauli et al., 2021), NoReC (Velldal
et al., 2018) and SweReC (Svensson, 2017), for
Danish, Norwegian and Swedish, respectively. For
German, Dutch and English we add the existing
datasets SB10k (Cieliebak et al., 2017), Dutch So-
cial (Gupta, 2022) and SST5 (Socher et al., 2013).
We convert SST5 to the standardised trinary (neg-
ative, neutral, positive) format by converting the
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Dataset Language #Train #Val #Test #Shots
NER

DANSK (Enevoldsen et al., 2024a) Danish 1,024 256 1,024 8
SUC 3.0 (Gustafson-Capková and Hartmann, 2006) Swedish 1,024 256 2,048 8
NorNE-nb (Jørgensen et al., 2020) Norwegian Bokmål 1,024 256 2,048 8
NorNE-nn (Jørgensen et al., 2020) Norwegian Nynorsk 1,024 256 2,048 8
MIM-GOLD-NER (Ingólfsdóttir et al., 2020) Icelandic 1,024 256 2,048 8
FoNE (Snæbjarnarson et al., 2023) Faroese 1,024 256 2,048 8
GermEval (Benikova et al., 2014) German 1,024 256 1,024 8
CoNLL-nl (Sang, 2002) Dutch 1,024 256 1,024 8
CoNLL-en (Sang and De Meulder, 2003) English 1,024 256 2,048 8

Sentiment Classification
Angry Tweets (Pauli et al., 2021) Danish 1,024 256 2,048 12
SweReC (Svensson, 2017) Swedish 1,024 256 2,048 12
NoReC (Velldal et al., 2018) Norwegian 1,024 256 2,048 12
SB10k (Cieliebak et al., 2017) German 1,024 256 1,024 12
Dutch Social (Gupta, 2022) Dutch 1,024 256 1,024 12
SST5 (Socher et al., 2013) English 1,024 256 2,048 12

Linguistic Acceptability
ScaLA-da (Nielsen, 2023) Danish 1,024 256 2,048 12
ScaLA-sv (Nielsen, 2023) Swedish 1,024 256 2,048 12
ScaLA-nb (Nielsen, 2023) Norwegian Bokmål 1,024 256 2,048 12
ScaLA-nn (Nielsen, 2023) Norwegian Nynorsk 1,024 256 2,048 12
ScaLA-is (Nielsen, 2023) Icelandic 1,024 256 2,048 12
ScaLA-fo (Nielsen, 2023) Faroese 1,024 256 1,024 12
ScaLA-de (Nielsen, 2023) German 1,024 256 2,048 12
ScaLA-nl (Nielsen, 2023) Dutch 1,024 256 2,048 12
ScaLA-en (Nielsen, 2023) English 1,024 256 2,048 12

Question Answering
ScandiQA-da (Nielsen, 2023) Danish 1,024 256 2,048 4
ScandiQA-sv (Nielsen, 2023) Swedish 1,024 256 2,048 4
NorQuAD (Ivanova et al., 2023) Norwegian Bokmål 1,024 256 2,048 2
NQiI (Snæbjarnarson and Einarsson, 2022) Icelandic 1,024 256 1,024 4
GermanQuAD (Möller et al., 2021) German 1,024 256 2,048 4
SQuAD-nl (Havinga, 2023) Dutch 1,024 256 2,048 4
SQuAD (Rajpurkar et al., 2016) English 1,024 256 2,048 4

Table 1: All the datasets used in the NLU evaluation. Note that these have been re-sized and do not
represent the sizes of the original dataset.
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“very negative” and “very positive” labels to “nega-
tive” and “positive”, respectively.

3.3 Linguistic Acceptability
For linguistic acceptability we re-use the ScaLA
datasets for all the Scandinavian languages, and
extend the ScaLA datasets by applying the ScaLA
method from Nielsen (2023) to German, Dutch and
English by using the German (McDonald et al.,
2013), Dutch (van der Beek et al., 2002) and En-
glish (Zeldes, 2017) dependency treebanks.

3.4 Extractive Question Answering
Here we use the ScandiQA dataset (Nielsen, 2023)
for Danish and Swedish, but replace the manu-
ally translated Norwegian ScandiQA dataset with
the new curated NorQuAD dataset (Ivanova et al.,
2023). We further add the new Natural Questions
in Icelandic dataset (Snæbjarnarson and Einars-
son, 2022) for Icelandic. For German and English
we add the existing extractive question-answering
datasets GermanQuAD (Möller et al., 2021) and
SQuAD (Rajpurkar et al., 2016), respectively. For
Dutch we add the machine translated version of
SQuAD to Dutch (Havinga, 2023).

4 Methodology

4.1 Formulating NLU Tasks as Generative
Tasks

In this section we describe how we rephrase the
NLU tasks as text-to-text tasks, which makes it
possible to evaluate generative models on the tasks.
We formulate all the tasks as few-shot tasks, gener-
ally formatted as follows:

[prefix prompt]

[document prefix]: [document]

[label prefix]: [label]

(...)

[document prefix]: [document]

[label prefix]:

We found that the separation of the few-shot
examples with double newlines makes it easier to
know when to stop the generation - for the same
reason, we ensure that there are no double newlines
in any of the documents. See the prompts used for
the English datasets in Table 2; a full table of the
prompts used for all the tasks in all the languages
can be found in (Nielsen et al., 2024).

For the sentiment classification task, we sim-
ply have the models generate translations of the
three labels (positive, negative and neutral). For
the linguistic acceptability task, also a text classi-
fication task, we use the translations of “yes” and
“no” as the two labels, corresponding to whether
the document is grammatically correct or not. For
the extractive question answering task, we have the
model output the answer directly. For this task we
found that changing the label prefix from “Answer”
to “Answer in max 3 words” resulted in a drastic
improvement, due to many of the answers of in-
struction tuned models starting with unnecessary
text akin to “The answer is”. Lastly, for the named
entity recognition task, we require the output to
be a JSON dictionary (ISO/IEC 21778:2017), with
keys being the translated named entity tags, and
values being lists of named entities of that category.
To ensure that we are not biasing the evaluation to-
ward models knowing the JSON format, we employ
structured generation using the outlines package
(Louf, 2023), which modifies the logits outputted
by the model to ensure that the output is always a
valid JSON dictionary in the aforementioned for-
mat.

4.2 Evaluation Methodology

We keep the evaluation methodology for the gen-
erative models to be as close to the methodology
for encoder models in Nielsen (2023). We think of
the few-shot examples as analogous to training ex-
amples for encoder models. Indeed, as von Oswald
et al. (2023) shows, this assumption is theoretically
grounded. We thus evaluate the models 10 times,
where on each iteration we sample few-shot ex-
amples at random from the training split, and we
evaluate the model on a bootstrapped version of the
test split. As with the encoder models, this allows
us to take into account more noise in evaluation
process, resulting in more robust evaluation scores.

The number of few-shot examples for each
dataset was determined on a heuristic basis, where
we wanted to include as many examples as possi-
ble, while making sure that the token count was
sufficiently low to not bias the evaluation towards
models with a longer context length. All the NER,
sentiment classification and linguistic acceptabil-
ity datasets have prompt sizes around 1,000 tokens
with the Mistral-7B-v0.1 tokeniser (Jiang et al.,
2023), with the question answering datasets having
around 2,000 tokens. This is also the reason for
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Task Prefix Prompt Example Prompt
Named entity
recognition

Below are sentences and JSON dictionaries with the
named entities that occur in the given sentence.

Sentence: [text]
Named entities: [label]

Sentiment classification The following are tweets are their sentiment, which can
be ’positive’, ’neutral’ or ’negative’.

Tweet: [text]
Sentiment: [label]

Linguistic acceptability The following are sentences and whether they are gram-
matically correct.

Sentence: [text]
Grammatically correct: [label]

Question answering The following are texts with accompanying questions
and answers.

Text: [text]
Question: [question]
Answer in max 3 words: [label]

Table 2: The English prompt templates used for the datasets. See all the prompt templates in (Nielsen
et al., 2024).

the discrepancy with the NorQuAD dataset, as the
samples are much longer than the other question
answering datasets.

4.3 Score Aggregation Method

From the raw scores of the 10 evaluations per
dataset, we need to aggregate the model scores into
a single score. We want an aggregation method
that satisfies the following criteria:

1. Task Fairness: Each task should be weighted
equally.

2. Comparison: If we evaluate models in mul-
tiple languages, then it should be possible to
meaningfully compare the language scores of
these models with each other.

3. Robustness: If two models do not have a
significantly different score on a dataset, then
the aggregated score should reflect this.

4. Magnitude Preservation: The magnitude of
the difference between the dataset score of two
models should be reflected in the aggregated
score.

5. Minimal Change: Adding a new model
should minimally affect the aggregated scores
of the other models.

Before we introduce our chosen aggregation
method, we will briefly discuss some common ag-
gregation methods and how they do not satisfy the
criteria.

The mean score is the most common aggrega-
tion method, which would simply be the mean of
the 10 scores for each dataset, and then the mean of
the dataset scores for each task. This method does
not satisfy the Task Fairness criterion, as it does

not take into account that metrics have different
ranges and variances. The Comparison criterion is
also not satisfied, as datasets vary from language to
language, with some datasets being more difficult
than others. It does, however, satisfy the Robust-
ness, Magnitude Preservation and Minimal Change
criteria.

The mean rank is another common aggrega-
tion method, where we compute the rank of each
model on each dataset, and then take the mean of
the ranks. This method satisfies the Task Fairness
criterion, as it re-casts the scores into a common
comparable framework, which therefore weights
each task equally. For the same reason, it also sat-
isfies the Comparison criterion (it is important here
that we evaluate all the models on all the languages
for this to be satisfied). It does not satisfy the Ro-
bustness and Magnitude Preservation criteria, by
definition of rank. It partially satisfies the Minimal
Change criterion, since it only affects the scores of
the models which are worse than the new model.

We thus see that the mean score and mean rank
methods satisfy a disjoint set of the criteria, but
that they together satisfy all the criteria. Based
on this observation, we introduce the mean rank
score method, defined as follows. For each dataset,
we start by sorting the models by their mean score
on the dataset. As with a rank, we assign the best
model with rank score 1. For the next best model,
we conduct a one-tailed Welch’s t-test to see if the
next best model is significantly worse than the first
model (p < 0.05). If so, we compute the absolute
difference between the mean score of the two mod-
els, and divide that by the standard deviation of all
the mean scores of the models on the dataset.

We then add this to the rank score of the first
model. We continue this process for all the mod-
els to get the rank scores for the dataset, and to
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compute the overall score for the model, we take
the mean of the rank scores for the datasets. An
overview of this aggregation method can be found
in (Nielsen et al., 2024). We note that the mean
rank score has an intuitive interpretation: it is the
average number of standard deviations from the
best scoring model (+1).

This metric satisfies Task Fairness since we nor-
malise all the scores by dividing by the standard
deviation of the dataset scores. The Robustness
criterion is satisfied due to our use of a one-tailed
Welch’s t-test. The Magnitude Preservation crite-
rion is also satisfied, as the magnitude of the dif-
ference between the dataset score of two models is
reflected in the rank score. It also satisfies Compar-
ison, as we compare the models on a common scale
(same argument as the mean rank method). Finally,
the Minimal Change criterion is partially satisfied,
as adding new models only minimally changes the
score of existing models. Concretely, adding new
scores will affect the standard deviation normalis-
ing factor (this effect tends to zero as the number of
models grows, however), and if the model beats all
the other models then all the scores will be affected,
due to the relative nature of the metric.

5 Analysis

5.1 Comparative Performance Analysis on
High- and Low-resource Languages

Excerpts of the English, Danish and Icelandic
leaderboards can be found in Table 3, Table 4 and
Table 5, respectively. We found that these three
represent three main categories of languages with
respect to the open-closed source divide. Simi-
lar excerpts for the remaining languages (Swedish,
Norwegian, Faroese, German and Dutch) can be
found in (Nielsen et al., 2024). The full leader-
boards for all the languages can be found at https:
//scandeval.com.

From the English results we see that the state-of-
the-art decoder model GPT-4-0613 (Achiam et al.,
2023) is still outperformed by the DeBERTa-v3-
large and DeBERTa-v3-base models (He et al.,
2020) as well as the ELECTRA-base model (Clark
et al., 2020). Here GPT-4-0613 is, on average, 0.44
standard deviations worse than the best model. The
same pattern is seen for Norwegian, Dutch, Ger-
man and Faroese; see (Nielsen et al., 2024) for the
corresponding leaderboard excerpts.

In contrast, on the Danish leaderboard, the top-3
models are all decoder models, with GPT-4-0613

Model ID Decoder Score (↓)
microsoft/deberta-v3-large ✗ 1.09
microsoft/deberta-v3-base ✗ 1.29
google/electra-base-discriminator ✗ 1.39
gpt-4-0613 ✓ 1.44
FacebookAI/roberta-large ✗ 1.46
FacebookAI/roberta-base ✗ 1.51
microsoft/mdeberta-v3-base ✗ 1.53
gpt-4-1106-preview ✓ 1.54
gpt-4o-2024-05-13 ✓ 1.64
AI-Sweden-Models/roberta-large-1160k ✗ 1.64
gpt-3.5-turbo-0613 ✓ 1.78
mistralai/Mistral-7B-v0.1 ✓ 1.91

Table 3: Excerpt of the English ScandEval leader-
board.

and GPT-4-1106-preview (OpenAI, 2023b) in the
lead, followed by the closed-source DanskGPT-
Chat-Llama3-70B model from Syv.AI1, being a
continuation of the Llama-3-70B model (AI@Meta,
2024). The GPT-4-0613 model is, on average, 0.24
standard deviations from the best model. Similar
results were found with Swedish; see (Nielsen et al.,
2024) for the corresponding leaderboard excerpt.

Lastly, for Icelandic, we see that the encoders
and decoders are tied in performance, with the
mDeBERTa-v3-base model and the GPT-4-1106-
preview model being the top models. The GPT-
4-1106-preview model is, on average, 0.24 stan-
dard deviations from the best model. We note that
Icelandic is the only language where the switch
from GPT-4 (gpt-4-0613) to GPT-4-turbo (gpt-4-
1106-preview) resulted in a significant increase in
performance. We speculate that this is due to the
collaboration between OpenAI and Iceland (Ope-
nAI, 2023a).

We can thus give an affirmative answer to re-
search question (Q1), showing that encoder models
can achieve significantly better NLU performance
than decoder models, even though they have an
order of magnitude fewer model parameters. For
(Q3), we see that this varies between languages, but
without being correlated to the language resource
spectrum.

5.2 Task Analysis
In this section we analyse our research question
(Q2), asking whether the NLU performance results
from the previous section is dependent on the type
of NLU task.

Firstly, we analyse whether the score distribu-
tion across the four NLU tasks is different for the
encoder and decoder models. This is done by apply-
ing a UMAP (McInnes et al., 2018) to the results
of a given leaderboard, which is a dimensionality

1https://www.syv.ai/
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Model ID Decoder Score (↓)
gpt-4-0613 ✓ 1.24
gpt-4-1106-preview ✓ 1.25
syvai/danskgpt-chat-llama3-70b ✓ 1.29
AI-Sweden-Models/roberta-large-1160k ✗ 1.39
danish-foundation-models/encoder-large-v1 ✗ 1.40
meta-llama/Meta-Llama-3-70B ✓ 1.40
AI-Sweden-Models/Llama-3-8B-instruct ✓ 1.44
gpt-4o-2024-05-13 ✓ 1.46
ltg/norbert3-large ✗ 1.50
NbAiLab/nb-bert-large ✗ 1.54
vesteinn/DanskBERT ✗ 1.56
google/rembert ✗ 1.61
intfloat/multilingual-e5-large ✗ 1.62
gpt-3.5-turbo-0613 ✓ 1.68
FacebookAI/xlm-roberta-large ✗ 1.71

Table 4: Excerpt of the Danish ScandEval leader-
board.

Model ID Decoder Score (↓)
microsoft/mdeberta-v3-base ✗ 1.33
gpt-4-1106-preview ✓ 1.34
gpt-4o-2024-05-13 ✓ 1.43
vesteinn/ScandiBERT-no-faroese ✗ 1.48
google/rembert ✗ 1.57
vesteinn/XLMR-ENIS ✗ 1.59
gpt-4-0613 ✓ 1.79
mideind/IceBERT-large ✗ 1.85
vesteinn/FoBERT ✗ 1.87
meta-llama/Meta-Llama-3-70B ✓ 2.03
FacebookAI/xlm-roberta-large ✗ 2.34
gpt-3.5-turbo-0613 ✓ 2.51
mistralai/Mistral-7B-v0.1 ✓ 2.96

Table 5: Excerpt of the Icelandic ScandEval leader-
board.

reduction method that both takes into account the
global and local structure of the underlying data -
it can thus be viewed as a middle ground between a
principal component analysis (Pearson, 1901) and a
t-distributed stochastic neighbour embedding (Hin-
ton and Roweis, 2002). The resulting reduction
thus contains a single two-dimensional representa-
tion of each model. UMAP plots for the English,
Danish, Swedish, Norwegian, German and Dutch
leaderboards can be found in Figure 1, where we
also mark the mean rank score for each model, as
well as whether the model is generative.

We see that the worst and best performing
models have similar distributions, irrespective of
whether they are generative or not. However, we
also note that the rest of encoder and decoder mod-
els follow different “paths” in the UMAP space,
leading to our hypothesis that the different archi-
tectures have different task preferences.

In Figure 2 we show the correlation between
a model being generative and its performance on
the four NLU tasks. We see that being genera-
tive is a strong predictor for good question an-
swering performance, as well as poor named en-
tity recognition and linguistic acceptability perfor-
mance. The correlation is weaker for sentiment

classification and varies across languages. We also
see that these findings seem to generalise across
languages, both high- and low-resource. The large
question answering performance persists for non-
instruction-tuned decoder models (see the leader-
boards at https://scandeval.com), showing a
likely side-effect of the pre-training algorithm or
the architecture of decoder models making them
better at this task. We also note that generative
models perform substantially better at the English
sentiment classification dataset SST5 compared to
the other sentiment classification datasets - we will
return to this in the discussion.

6 Discussion

Having a good mean rank score is not the only thing
that matters when choosing a model for a given
task. Model size, inference speed and whether the
model has publicly available weights are all impor-
tant factors to consider. For this reason, we also
include these metadata in the leaderboard, and we
encourage the community to consider these factors
when choosing a model for a given task.

Some of the datasets in the benchmark are trans-
lations of American datasets, which we acknowl-
edge is not ideal and encourage the development
of gold-standard replacements of these. This con-
cerns the Dutch question answering dataset, which
is machine translated, as well as the Danish and
Swedish question answering datasets, where the
questions and answers have been manually trans-
lated. Manual translations are typically better than
machine translations, but it nevertheless means that
the content is biased towards questions pertinent to
the American context. Some datasets are further-
more missing. This concerns Icelandic and Faroese
sentiment analysis, as well as Faroese question an-
swering. Efforts are currently underway to remedy
this.

Lastly, we note that the English sentiment clas-
sification dataset SST5 is the only dataset where
generative models perform substantially better than
encoder models. We speculate that this is either due
to the dataset simply being significantly easier than
the others, or that the test data has leaked into the
pretraining datasets of the generative models. The
dataset is part of the FLAN collection (Wei et al.),
which is for instance included in the Dolma dataset
(Soldaini et al., 2024), which is used to pretrain the
OLMo model (Groeneveld et al., 2024), being one
of the generative models that is performing very
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Figure 1: UMAP plots of the models on the ScandEval leaderboards.

Figure 2: The correlation between a model being
generative and its performance on the NLU tasks.

well on this dataset. Leakage is therefore possible,
and we encourage the community to investigate
this further.

7 Conclusion

We have extended the ScandEval benchmark to in-
clude the evaluation of decoder models, as well
as including three new languages: German, Dutch
and English. From the analysis of the correspond-
ing results we found that encoder models can
achieve significantly better NLU performance than

decoder models despite having orders of magni-
tude fewer parameters, but that this varies between
languages. We have also shown that being genera-
tive is strongly correlated with both good question
answering performance and poor performance for
named entity recognition and linguistic acceptabil-
ity. Our analysis showed that the “path” from the
worst to the best-performing models in the UMAP
space is different for encoder and decoder models,
indicating an architecture-specific task-preference.
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Aleksandrs Berdičevskis, Gerlof Bouma, Robin Kurtz,
Felix Morger, Joey Öhman, Yvonne Adesam, Lars
Borin, Dana Dannélls, Markus Forsberg, Tim Isbister,
et al. 2023. Superlim: A swedish language under-
standing evaluation benchmark. In Proceedings of
the 2023 Conference on Empirical Methods in Natu-
ral Language Processing, pages 8137–8153.

Rishi Bommasani, Percy Liang, and Tony Lee. 2023.
Holistic evaluation of language models. Annals of the
New York Academy of Sciences, 1525(1):140–146.

Brown, Tom and Mann, Benjamin and Ryder, Nick and
Subbiah, Melanie and Kaplan, Jared D and Dhari-
wal, Prafulla and Neelakantan, Arvind and Shyam,
Pranav and Sastry, Girish and Askell, Amanda and
others. 2020. Language models are few-shot learners.
Advances in neural information processing systems,
33:1877–1901.

Wei-Lin Chiang, Lianmin Zheng, Ying Sheng, Anasta-
sios Nikolas Angelopoulos, Tianle Li, Dacheng Li,
Banghua Zhu, Hao Zhang, Michael Jordan, Joseph E
Gonzalez, et al. Chatbot arena: An open platform for
evaluating llms by human preference. In Forty-first
International Conference on Machine Learning.

Mark Cieliebak, Jan Milan Deriu, Dominic Egger, and
Fatih Uzdilli. 2017. A twitter corpus and benchmark
resources for german sentiment analysis. In Proceed-
ings of the Fifth International Workshop on Natural
Language Processing for Social Media, pages 45–51.

Kevin Clark, Minh-Thang Luong, Quoc V Le, and
Christopher D Manning. 2020. Electra: Pre-training
text encoders as discriminators rather than generators.
arXiv preprint arXiv:2003.10555.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Kenneth Enevoldsen, Emil Trenckner Jessen, and Re-
bekah Baglini. 2024a. Dansk and dacy 2.6. 0: Do-
main generalization of danish named entity recogni-
tion. arXiv preprint arXiv:2402.18209.

Kenneth Enevoldsen, Márton Kardos, Niklas Muen-
nighoff, and Kristoffer Laigaard Nielbo. 2024b. The
scandinavian embedding benchmarks: Comprehen-
sive assessment of multilingual and monolingual text
embedding. arXiv preprint arXiv:2406.02396.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman,
Sid Black, Anthony DiPofi, Charles Foster, Laurence
Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li,
Kyle McDonell, Niklas Muennighoff, Chris Ociepa,
Jason Phang, Laria Reynolds, Hailey Schoelkopf,
Aviya Skowron, Lintang Sutawika, Eric Tang, An-
ish Thite, Ben Wang, Kevin Wang, and Andy Zou.
2023. A framework for few-shot language model
evaluation.

Dirk Groeneveld, Iz Beltagy, Pete Walsh, Akshita Bha-
gia, Rodney Kinney, Oyvind Tafjord, Ananya Harsh
Jha, Hamish Ivison, Ian Magnusson, Yizhong Wang,
et al. 2024. Olmo: Accelerating the science of lan-
guage models. arXiv preprint arXiv:2402.00838.

Aakash Gupta. 2022. dutchsocial · Datasets at Hugging
Face — huggingface.co. https://huggingface.
co/datasets/dutch_social. [revision:
8b7bc6230ebd78f04aa3661acb912f4567f21c76].

Sofia Gustafson-Capková and Britt Hartmann. 2006.
Manual of the Stockholm Umeå corpus version 2.0.
Stockholm University.

Yeb Havinga. 2023. squadv2dutch · Datasets at
Hugging Face — huggingface.co. [revision:
af494fe1b62762178d37c0b71b4a7160f0534f1a].

Pengcheng He, Xiaodong Liu, Jianfeng Gao, and
Weizhu Chen. 2020. Deberta: Decoding-enhanced
bert with disentangled attention. arXiv preprint
arXiv:2006.03654.

Geoffrey E Hinton and Sam Roweis. 2002. Stochastic
neighbor embedding. Advances in neural informa-
tion processing systems, 15.

Søren Vejlgaard Holm. 2024. Are gllms danoliterate?
benchmarking generative nlp in danish.

Rasmus Hvingelby, Amalie Brogaard Pauli, Maria Bar-
rett, Christina Rosted, Lasse Malm Lidegaard, and
Anders Søgaard. 2020. Dane: A named entity re-
source for danish. In Proceedings of the 12th lan-
guage resources and evaluation conference, pages
4597–4604.

570

https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard
https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://doi.org/10.5281/zenodo.10256836
https://doi.org/10.5281/zenodo.10256836
https://huggingface.co/datasets/dutch_social
https://huggingface.co/datasets/dutch_social
https://spraakbanken.gu.se/parole/Docs/SUC2.0-manual.pdf
https://huggingface.co/datasets/yhavinga/squad_v2_dutch
https://huggingface.co/datasets/yhavinga/squad_v2_dutch


Svanhvít L Ingólfsdóttir, Ásmundur A Gudjónsson, and
Hrafn Loftsson. 2020. Named Entity Recognition
for Icelandic: Annotated Corpus and Models. In In-
ternational Conference on Statistical Language and
Speech Processing, pages 46–57. Springer.

ISO/IEC 21778:2017. 2017. The JSON data inter-
change syntax. Standard, International Organization
for Standardization, Geneva, CH.

Sardana Ivanova, Fredrik Andreassen, Matias Jentoft,
Sondre Wold, and Lilja Øvrelid. 2023. Norquad:
Norwegian question answering dataset. In Proceed-
ings of the 24th Nordic Conference on Computational
Linguistics (NoDaLiDa), pages 159–168.

AQ Jiang, A Sablayrolles, A Mensch, C Bamford,
DS Chaplot, D de las Casas, F Bressand, G Lengyel,
G Lample, L Saulnier, et al. 2023. Mistral 7b (2023).
arXiv preprint arXiv:2310.06825.

Fredrik Jørgensen, Tobias Aasmoe, Anne-Stine
Ruud Husevåg, Lilja Øvrelid, and Erik Velldal. 2020.
NorNE: Annotating named entities for Norwegian.
In Proceedings of the Twelfth Language Resources
and Evaluation Conference, pages 4547–4556, Mar-
seille, France. European Language Resources Asso-
ciation.
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Abstract

Training large language models requires
vast amounts of data, posing a challenge
for less widely spoken languages like Nor-
wegian and even more so for truly low-
resource languages like Northern Sámi. To
address this issue, we present a novel three-
stage continual training approach that sub-
stantially improves the downstream per-
formance together with the inference ef-
ficiency for the target languages. Based
on our findings, we train, evaluate, and
openly release a new generative language
model for Norwegian Bokmål, Nynorsk,
and Northern Sámi with 11.4 billion pa-
rameters: NorMistral-11B.

1 Introduction

The development of large language models typi-
cally requires massive amounts of training data,
which benefits wide-spread languages such as En-
glish, but poses a significant challenge for less
widely spoken languages. Norwegian, with its two
written standards Bokmål and Nynorsk,1 currently
has approximately 24B words available in our fil-
tered text collection – about three orders of magni-
tude less than English (Penedo et al., 2024). The
situation is even more challenging for Northern
Sámi with only 40 million words available.2

1While Bokmål is the main variety, roughly 15% of the
Norwegian population uses Nynorsk. The two varieties are so
closely related that they may be regarded as ‘written dialects’,
but the lexical differences can be relatively large.

2The Sámi languages are a group of Uralic languages, of
which Northern Sámi is the most widely used variant. With
the number of speakers estimated to be between 15,000 and
25,000 in total across Norway, Sweden and Finland, it is still
considered to be an endangered language. As the Sámi people
are recognized as an Indigenous people in Norway, Sámi has
status as an official language along with Norwegian.

To address this data scarcity, we propose a novel
approach combining three key elements: knowl-
edge transfer from existing models, data augmen-
tation with related languages, and targeted upsam-
pling. This method enables us to train an 11.4B-
parameter model that achieves state-of-the-art per-
formance across Norwegian language tasks while
obtaining strong capabilities in Northern Sámi. The
three main research contributions of this paper can
be summarized as follows:

1. Novel training method for data-constrained
language models We propose a three-stage
training method for efficient adaptation of ex-
isting language models to lower-resource lan-
guages. Our results demonstrate that this ap-
proach works well for adapting a Mistral model
to Bokmål, Nynorsk and Northern Sámi. Our
model achieves the state-of-the-art performance
on tasks requiring deep linguistic understanding
and world knowledge in Norwegian contexts –
while being more than 30% faster than the origi-
nal Mistral model on Norwegian inputs.

2. Flexible masked-causal model We train a
general language model that can act as a causal
generative model as well as a fully-bidirectional
embedding model. This approach allows it to
be used as any other generative model while
allowing future usage as a finetuned encoder
model.

3. Truly open source We openly release
NorMistral-11B under a permissive Apache 2.0
license – https://hf.co/norallm/normistral-11b-

warm – as well as three smaller 7B-parameter
models and a new corpus for Northern Sámi.
The model is trained on fully transparent cor-
pora and evaluated on a robust set of prompts
that are included in the paper. The training
and evaluation scripts are available at https:

//github.com/ltgoslo/norallm.
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Figure 1: Language composition of training corpus The left figure shows the proportions of languages
in the final corpus mixture, with the target languages of Norway in blue, related languages in red, and other
data sources in gray. The right figure then displays the upsampling factors used to get the aforementioned
proportions.

In the following sections, we first describe the train-
ing corpus of NorMistral-11B in Section 2; then
the training and evaluation methodology of this
model in Section 3. In Section 4, we then evaluate
this model and compare it against other existing
models. The following Section 5 then goes into
more detail by testing the training choices in our
methodology.Section 6 describes previous works
that inspired this paper. Additional appendices then
offer further analyses and a detailed description of
the evaluation setup.

2 Training corpus

Our goal is to train a model for the official lan-
guages of Norway. However, this task is made dif-
ficult by the uneven distribution of these languages
and the fact that there is only about 24 billion words
in these languages available in the publicly accessi-
ble high-quality corpora (see below).

2.1 Combating the data constraints
24B words is about three orders of magnitude less
than what is currently available for English lan-
guage models (Penedo et al., 2024). Assuming the
Chinchilla scaling laws (Hoffmann et al., 2022), we
could ‘optimally’ train only a 1-billion-parameter
model on such a small dataset. However, we are
able to train a much larger model due to: 1 trans-
ferring knowledge from a model already trained
on a large English-centric corpus; 2 augment-
ing the corpus with other related Scandinavian lan-
guages (Danish, Swedish, Icelandic, and Faroese),

as well as English and programming code (Luukko-
nen et al., 2024); 3 further increasing the size
by repeating the data in target languages – this
follows the data-constrained scaling laws by Muen-
nighoff et al. (2023), which showed that four repe-
titions do not have any noticeable negative effects
on the regular scaling laws. The resulting corpus of
250B non-unique tokens is then ‘compute-optimal’
for the 11.4B parameters of our model (Hoffmann
et al., 2022). In the previous work, the NorGPT-
23B LLM trained on the available Norwegian data
by Liu et al. (2024a) did not outperform smaller
3B models. Similarly, for Finnish, Luukkonen et al.
(2023) reported a decrease in performance when
moving from 8B to 13B parameters on a similarly
sized corpus. These observations support our deci-
sion not to move beyond the 11B size.

2.2 Combating the uneven distribution

We target Norwegian and Sámi, the two official
languages of Norway. Specifically, we target the
Bokmål written variant of Norwegian with 24 bil-
lion words in our corpus, the Nynorsk variant with
0.5 billion words, and Northern Sámi, which has
only 40 million words in our corpus collection. To
mitigate the large size differences, we further up-
sample the two lower-resource languages (Conneau
et al., 2020). To avoid overfitting on many repeti-
tions of the same data, we follow the experimental
results in Muennighoff et al. (2023) and repeat the
data at most 16 times. This approach yields the
final language proportions shown in Figure 1.
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Figure 2: Three-stage continual pretraining We propose a novel continual pretraining pipeline
consisting of 1 creating a new tokenizer optimized for the training corpus, 2 realigning the embedding
weights to the new tokens, and 3 training the full language model. Arrows symbolize changes between
stages, while double-lines represent no changes.

2.3 Data sources

Existing corpora We source most of the data
from existing publicly available corpora: 1 Bok-
mål and Nynorsk filtered from the public sources
with permissive licenses from the Mímir Core cor-
pus from de la Rosa et al. (2025), which itself
consists of the Norwegian Colossal Corpus (NCC;
Kummervold et al., 2022), CulturaX (Nguyen et al.,
2023), and the HPLT corpus v1.2 (de Gibert et al.,
2024); 2 Bokmål, Nynorsk, Swedish, Danish, and
Icelandic from CulturaX (Nguyen et al., 2023); 3

high-quality English from FineWeb-edu (Penedo
et al., 2024); 4 code from the high-quality part
of Stack v2 (Lozhkov et al., 2024); 5 Faroese and
Northern Sámi from Glot500 (ImaniGooghari et al.,
2023); and 6 Northern Sámi from the SIKOR free
corpus (Giellatekno and Divvun, 2016).

Web crawl for Sámi The only exception to us-
ing existing resources is a part of the Sámi cor-
pus. To obtain more texts for this low-resource
language, we conducted a web crawl through ad-
missible web pages in Northern Sámi. The crawl
was seeded from the external links of the Sámi
Wikipedia and continued with a breadth-first search
through webpages that were identified as Northern
Sámi using GlotLID (Kargaran et al., 2023) and
that allowed crawling according to their Robots Ex-
clusion Protocol. The raw HTML documents were
converted into natural text using Trafilatura (Bar-
baresi, 2021). We have published the web-crawled
texts (fuzzy deduplicated at the document level)
online at https://hf.co/datasets/ltg/saami-web. In
total, it contains about 13 million whitespace-
separated words.

3 Training and evaluation of NorMistral

This section describes the training and evaluation
pipeline of NorMistral-11B; a continually trained
Mistral-Nemo-Base-2407 language model.3 The
presented methods are evaluated later in Section 5.

3.1 Three-stage continual pretraining
Our aim is to model three lower-resource languages.
To achieve this, we rely on models initially trained
on more resource-rich languages and continually
train them on our corpus. In order to get a model
that works efficiently for the target language, we
propose a novel three-stage training process, which
consists of tokenizer change, embedding update,
and full training (Figure 2).

Stage 1: Tokenizer change Before training the
language model, we create a new subword tok-
enizer optimized for the target distribution of lan-
guages. While keeping the original tokenizer might
not necessarily worsen performance, the main goal
of this step is to improve the efficiency of training
and inference. As evident from Table 1, the new
tokenizer produces 30% shorter sequences on av-
erage, which translates to more than 30% faster
inference time; while requiring 800 million less
parameters due to the smaller vocabulary size. We
measure the inference speed-up on a downstream
task in Appendix A, confirming the theoretical ben-
efits.

The tokenizer is optimized for the entire training
corpus via the greedy byte-pair encoding algorithm
(BPE; Gage, 1994). We use the same tokenizer

3Available on HuggingFace at hf.co/mistralai/
Mistral-Nemo-Base-2407
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definition as the original Mistral-Nemo-12B: byte-
level BPE tokenizer without any Unicode normal-
ization and with a fairly complex pretokenizer reg-
ular expression. The pretokenizer splits numbers
into individual digits as in Chowdhery et al. (2024).
Note that the tokenization is completely lossless
and reversible as out-of-vocabulary characters can
be split into individual UTF-8 bytes that are always
in-vocabulary as atomic tokens.

Stage 2: Embedding update Since all tokens
are changed in the previous stage, we need to up-
date the input and output embedding weights next.
While it is possible to skip this stage and simply
continue training the full model, misaligned embed-
dings lead to a large initial loss spike, to large (es-
sentially random) gradients for the non-embedding
parameters, and thus to catastrophic forgetting (Mc-
Closkey and Cohen, 1989). Instead, we follow the
tokenizer adaptation method by de Vries and Nis-
sim (2021), aligning the embedding parameters by
continually training the language model for 1 000
steps with frozen non-embedding parameters.

The initial token embeddings are transferred
from the original embedding matrix (Gu et al.,
2018; Wang et al., 2019). Since we use the same
tokenizer type as the original Mistral model, many
tokens are present in both vocabularies; the embed-
dings for these are initialized by as direct copies
of the original vectors. Tokens not present in the
original vocabulary are tokenized (with the original
tokenizer) to obtain sub-tokens within the vocabu-
lary; the embedding vectors are then initialized by
taking the average of the sub-token embeddings.

Stage 3: Full training After realigning the em-
bedding vectors, we continue by unfreezing the
remaining parameters and training the full model.

The transformer architecture is inherited from
the original Mistral model (Jiang et al., 2023),
which is based on the improved Llama architec-
ture (Touvron et al., 2023). This mainly entails: 1

pre-normalization with the RMSNorm function for
improved training stability (Nguyen and Salazar,
2019; Zhang and Sennrich, 2019), 2 SwiGLU ac-
tivation function for improved expressive power
of the feed-forward modules (Shazeer, 2020), 3

rotary positional embeddings for their ability to
generalize to longer sequences (Liu et al., 2024b;
Su et al., 2021), and 4 grouped-query attention for
improved inference efficiency (Ainslie et al., 2023).
The remaining architectural details are based on

Tokenizer # tokens NOB NNO SME

Mistral-Nemo-12B 131 072 1.79 1.87 2.63
NorMistral-11B 51 200 1.22 1.28 1.82

Table 1: Tokenizer statistics The vocabulary
size and subword-to-word split ratios of different
tokenizers for Bokmål (NOB), Nynorsk (NNO) and
Northern Sámi (SME). Lower split ratios result
in shorter subword sequences and thus in faster
training and inference.

the original transformer design by Vaswani et al.
(2017). The hidden dimension is set to 5 120, the
intermediate one to 14 336, and there are 40 layers
in total. The attention modules have 32 query heads
and 8 key & value heads, each of dimension 128.
There are 51 200 tokens in the subword vocabulary.

We trained the model on 250 billion tokens,
which equates to 60 000 steps of 1 024 × 4 096 to-
kens (number of samples × sequence length). We
used the trapezoidal learning-rate schedule with a
peak learning rate of 1 · 10−4, 1 000 warm-up steps
and 10 000 decay steps; this schedule allows for
further pretraining of this model on more tokens in
the future (Hägele et al., 2024). The optimization
was performed using AdamW (Loshchilov and Hut-
ter, 2019), with β1 = 0.9, β2 = 0.95, ϵ = 10−8,
and weight decay of 0.1. No dropout was applied.

The computations were conducted on 256 AMD
MI250X GPUs and used 55 000 GPU hours in to-
tal – which equals to 8.5 days of runtime on the
distributed setup. The model was trained with a
reduced bfloat16 precision and the parameters
were sharded with model parallelism – pipeline
parallelism of 2, tensor parallelism of 2, and a zero-
redundancy optimizer (Rajbhandari et al., 2020;
Rasley et al., 2020; Shoeybi et al., 2020). The over-
all theoretical computation cost of the training was
1.7 · 1022 FLOPs, with an average of 38% model
FLOP/s utilization (MFU) on the actual hardware.

3.2 Hybrid masked-causal language modeling

While causal LMs have recently become very popu-
lar, the limited unidirectional text processing limits
their learning abilities (Lv et al., 2023) and ex-
pressive power (Ewer et al., 2024); especially for
finetuning (Devlin et al., 2019; Raffel et al., 2020).
Furthermore, it has been recently demonstrated
that fully-bidirectional masked models share the
same generative abilities, but without limitations
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Causal LM

_en _søt _lunde fugl

_søt _lunde fugl _flyr

Masked LM (shifted)

_en _søt <mask>

_lunde

Prefix LM

_en _søt fugl

_flyr

_lunde_flyr

_over

_flyr

fugl

<mask> _flyr

_overfugl

Figure 3: Inference modes of NorMistral-11B The hybrid masked-causal pretraining allows the model
to be more flexible during inference. It can not only serve as a unidirectional causal language model (left),
but also as a fully bidirectional masked language model (middle), or as a partially bidirectional prefix
language model (right). The diagrams illustrate possible attention connections.

of causal models (Samuel, 2024). Following this
observation, we train a model that can be flexibly
used as a masked or causal language model.

Training objective We combine two training ob-
jectives during pretraining : the standard causal lan-
guage modeling one as well as masked next-token
prediction (MNTP; BehnamGhader et al., 2024;
Lv et al., 2023), a variation of masked language
modeling where the next token is predicted rather
than the current one (see Masked LM (shifted) in
Figure 3). This has been used by Charpentier and
Samuel (2024), with evidence of providing better
causal modeling quality and increased finetuning
performance. We trained with 90% causal LM and
10% MNTP. This ratio is rather conservative – to
teach the model bidirectional processing without
drifting too much from its original training objec-
tive.

3.3 Experimental Setup
We compare the performance of NorMistral-11B
with publicly available LMs using NorEval,4 an
open-source framework for evaluating Norwegian
generative LMs built on lm-evaluation-harness
(Gao et al., 2024). The evaluation is run in k-shot
scenarios with k ∈ {0, 1, 16} on ten benchmarks.
We report the maximum k for each benchmark
across a set of prompts, which depends on the avail-
ability of a training/development set for demonstra-
tion examples and on the average length of these
examples.

Baselines We use seven pretrained LMs of com-
parable size accessed via the Transformers li-

4github.com/ltgoslo/noreval

brary (Wolf et al., 2020) as our baselines: NorwAI-
-Mistral-7B, NorwAI-Llama2-7B, normistral-
-7b-warm, NorGPT-3B (Liu et al., 2024a), Viking-
-7B, Viking-13B, and Mistral-Nemo-12B.

Benchmarks The models are evaluated only on
datasets created by native speakers. We consider
the following language understanding and genera-
tion tasks: 1 reading comprehension (NorQuAD;
Ivanova et al., 2023 & Belebele; Bandarkar et al.,
2024), 2 sentiment analysis (NoReC; Velldal
et al., 2018), 3 commonsense reasoning (NorCom-
monsenseQA; Mikhailov et al., 2025), 4 world
knowledge (NRK-Quiz-QA & NorOpenBookQA;
Mikhailov et al., 2025), 5 summarization (Nor-
Summ; Touileb et al., 2025), 6 grammatical error
correction (ASK-GEC; Jentoft, 2023), 7 language
identification (SLIDE; https://github.com/ltgoslo/
slide), and 8 translation (Tatoeba; Tiedemann,
2020). NorEval provides a set of task-specific 4–
6 prompts written by Norwegian native speakers,
which allows to account for prompt sensitivity (Lu
et al., 2024). More details about each task with a
complete list of prompts are given in Appendix B.

4 Results

We report the aggregated evaluation results in Ta-
ble 2 and fine-grained evaluation results in Ap-
pendix B. Overall, we see a positive indication of
NorMistral-11B being a strong Norwegian model
as it outperforms other evaluated systems on the
majority of tasks.

Comparison to the base model Even though
Mistral-Nemo-12B is an English-centric model, it
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READING COMPREHENSION

Belebele (0-shot) Bokmål 56.7 33.4 38.0 37.4 26.8 27.6 28.2 62.8
NorQuAD (1-shot) Bokmål 76.7 63.0 39.2 64.8 3.0 48.4 57.1 76.5

SENTIMENT ANALYSIS

NoReC (sentence-level; 16-shot) Bokmål 90.5 88.6 86.0 84.9 49.7 77.9 79.2 86.9

NoReC (document-level; 1-shot) Bokmål 91.2 81.2 79.2 82.9 51.5 80.4 86.8 89.2

COMMONSENSE REASONING

NorCommonsenseQA (0-shot) Bokmål 61.0 54.2 49.7 51.3 34.7 44.9 51.1 46.9

NorCommonsenseQA (0-shot) Nynorsk 51.6 43.2 37.9 43.2 29.5 39.0 40.0 33.7

WORLD KNOWLEDGE

NRK-Quiz-QA (0-shot) Bokmål 63.7 55.2 52.3 57.9 33.1 44.2 51.0 47.4

NRK-Quiz-QA (0-shot) Nynorsk 71.9 65.2 64.3 65.9 37.3 51.1 54.8 47.2

NorOpenBookQA (16-shot) Bokmål 77.9 52.3 52.3 49.0 29.5 48.7 47.0 86.9
NorOpenBookQA (16-shot) Nynorsk 77.8 45.6 38.9 41.1 34.4 27.8 36.7 86.7

SUMMARIZATION

NorSumm (0-shot) Bokmål 45.0 12.2 10.7 16.5 33.8 31.9 36.3 44.9

NorSumm (0-shot) Nynorsk 32.6 10.3 10.4 8.6 24.3 25.7 28.8 30.9

GRAMMATICAL ERROR CORRECTION

ASK-GEC (16-shot) Bokmål 52.6 53.2 51.4 48.7 1.8 51.1 52.4 43.9

LANGUAGE IDENTIFICATION

SLIDE (16-shot)
Bokmål, Nynorsk,
Danish, Swedish 98.2 95.7 93.5 98.1 40.3 77.2 84.4 87.3

TRANSLATION

Tatoeba (from English; 16-shot) Bokmål 58.8 58.7 57.9 57.2 1.8 59.7 60.0 49.6

Tatoeba (from English; 16-shot) Nynorsk 48.0 47.4 47.4 44.7 2.6 45.6 45.6 35.7

Tatoeba (from English; 16-shot) Northern Sámi 50.4 27.5 28.5 18.5 0.0 7.8 11.6 6.5

Table 2: Performance of NorMistral-11B This table compares the performance of NorMistral-11B
to the performance of other dense generative models that support Norwegian. All models are evaluated
with the same fully-causal in-context-learning setup without any parameter updates. The best results
are in bold; higher values are always better. The performance is evaluated by accuracy (Belebele,
NorCommonsenseQA, NorOpenbookQA & NRK-Quiz-QA), F1 score (NorQuAD & NoReC), ROUGE-L
(Lin, 2004; NorSumm), ERRANT F0.5 (Bryant et al., 2017; ASK-GEC), accuracy (SLIDE), and BLEU
(Papineni et al., 2002; Tatoeba). We report the maximum performance score across all prompts. The
random guessing baselines are 20% for NorCommonSenseQA, 25% for Belebele and NorOpenBookQA,
28% / 27% for NRK-Quiz-QA NOB / NNO, and 48.5% / 48.4% for NoReC sentence-level / document-level.
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performs well on the Norwegian benchmarks even
before any continual pretraining. While we see a
clear increase in performance after further training
when evaluated on native Norwegian datasets, there
is a notable decrease in performance on Belebele
(a well-known multilingual dataset) and NorOpen-
BookQ (an adaptation of a popular English bench-
mark). This aspect requires a further study, but
overall, we believe that the results clearly show the
benefit of three-stage continual pretraining.

Bokmål, Nynorsk and Sámi performance We
evaluate the models on all target languages: Bok-
mål, Nynorsk and Northern Sámi. Relative to other
models, the performance gains of NorMistral-11B
stay consistent across these three languages.

It is possible to estimate the difference in per-
formance on Nynorsk compared to Bokmål when
focusing on NorSumm, a dataset that is perfectly
balanced and parallel for the two variants of Nor-
wegian. The substantially higher score for Bokmål
indicates that the much smaller amount of Nynorsk
in the training corpus (even after upsampling) lim-
its the downstream performance on this language
variant.

The results on the English-to-Sámi translation
suggest that our model was able to learn aspects of
this language even though it made only 0.5% of the
training corpus. However, any stronger claim about
the level of understanding of Sámi would require a
substantially more robust benchmarking suite than
what is currently available.

4.1 Using NorMistral in practice
Large language models can be utilized in many dif-
ferent ways. We used the most direct and straight-
forward one for comparing Norwegian models – in-
context learning – but there is a broader spectrum of
methods with varying complexity-to-performance
trade-offs. We evaluate the most common methods
in Table 3 using NorQuAD:

In-context learning This is the most popular
method of using large language models, mostly
because it does not require any further training
(Brown et al., 2020). Using just one sample from
the training set as a demonstration can substantially
improve the output quality on NorQuAD. More
demonstrations can improve the performance fur-
ther, but at the cost of reduced inference speed.

Quantization In order to reduce the large mem-
ory cost of large language models, a popular

Method F1 EM Runtime
train / eval

0-shot (causal) 59.7 33.5 0 / 6 min

1-shot (causal) 76.7 55.3 0 / 8 min

8-shot (causal) 79.6 60.8 0 / 23 min

0-shot (4-bit, causal) 59.2 33.5 0 / 6 min

0-shot (8-bit, causal) 59.1 33.7 0 / 6 min

Full finetuning (causal) 90.4 79.2 57 / 6 min

Full finetuning (prefix) 92.2 80.3 57 / 6 min

LoRA finetuning (causal) 89.9 77.1 18 / 6 min

LoRA finetuning (prefix) 91.3 79.0 18 / 6 min

Table 3: Evaluation methods NorMistral-11B
can be flexibly used in many different ways for
solving downstream tasks. We compare them on
NorQuAD, a dataset for extractive question answer-
ing. NorMistral can be finetuned as a standard
causal language model and also as a partially bidi-
rectional prefix language model. We also show the
total training and evaluation time for each method
(run on AMD MI250X GPUs). We use the two
standard metrics for extractive question answering:
F1 score and exact-match accuracy (EM).

method is reducing the precision of their parame-
ters. Specifically, we test 8-bit and 4-bit quantiza-
tion (Dettmers et al., 2022; Dettmers and Zettle-
moyer, 2023). There is no noticeable decrease of
performance on NorQuAD when lowering the pre-
cision from the original 16 bits. Note that some
GPUs can also increase their throughput at the low-
ered precision.

Full finetuning The best-performing strategy is
to do supervised finetuning of all learnable param-
eters. This method is also the most difficult to
set up, the large memory requirements necessi-
tate distributed training with some model shard-
ing. However, after finetuning, this method clearly
outperforms all other ones without any additional
cost. Interestingly, when finetuned with partially-
bidirectional attention masks (as a prefix LM), the
model even exceeds the estimated human perfor-
mance on NorQuAD – 91.1 F1 score and 78.1 EM
accuracy (Ivanova et al., 2023).

LoRA finetuning Further training NorMistral on
a downstream task is more demanding, but it is
the preferred way for achieving the best perfor-
mance – as long as there is a sizeable training set
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available. Low-rank adaptation (LoRA) reduces
the computational cost of finetuning by freezing all
original model parameters and training only small
low-rank adaptors (Hu et al., 2022). The resulting
model is 10 F1 percentage points better than the
best few-shot prompt while running almost 4 times
faster because of shorter context lengths. Because
of its hybrid pretraining (Section 3.2), NorMistral
can also be finetuned as a partially-bidirectional
prefix language model, which further improves its
performance by 1.4 points without any additional
computational cost.

5 Methodological comparisons

We have conducted an initial comparative study
of different training methods before settling on
the pretraining process from Section 3 and train-
ing NorMistral-11B. The results are presented in
Table 4, where different models are evaluated on
a representative subset of available Norwegian
benchmarks: extractive question answering (1-shot
NorQuAD), binary sentence-level polarity classifi-
cation (16-shot NoReC), world knowledge (0-shot
NRK-Quiz-QA) and machine translation (16-shot
English-to-Bokmål Tatoeba).

Architectural choice There are many promising
improvements of the original GPT neural architec-
ture (Radford et al., 2018) – we considered two
recent and well-studied architectures: BLOOM
(Scao et al., 2023) and Llama (Touvron et al., 2023),
which is also used for training the Mistral models
(Jiang et al., 2023). We adopted the training hy-
perparameters suggested by the respective papers
and trained two models with 7 billion parameters
on the same Norwegian corpus and with the same
Norwegian tokenizer. Table 4 clearly shows that
the Llama architecture is preferred for our training
corpus and Norwegian benchmarks.

From scratch vs. warm-starting The central
research question of this paper is how to train a
good large language model for relatively small lan-
guages. Here we test our proposed three-stage con-
tinual pretraining and compare it against a model
trained from scratch. For a fair comparison, we
train two 7-billion-parameter models on the same
Norwegian corpus (the Norwegian Colossal Cor-
pus by Kummervold et al., 2021), and with the
same architecture and tokenizer. Note that we do
not consider existing methods that do not adapt the

Training method NorQuAD
1-shot

NoReC
16-shot

NRK
0-shot

Tatoeba
16-shot

TRANSFORMER ARCHITECTURE

BLOOM 43.6 67.6 44.6 52.2

Llama / Mistral 43.7 80.3 48.2 53.4

CONTINUAL TRAINING

init. from scratch 43.7 80.3 48.2 53.4

three-stage continual 64.8 84.9 57.9 57.2

HYBRID TRAINING OBJECTIVE

causal-only 67.0 86.0 59.0 58.8
hybrid masked-causal 69.3 87.5 55.4 58.2

TRAINING STEPS

0 steps (base model) 76.5 86.9 47.4 49.6

0 steps (adapted tokenizer) 73.5 89.4 44.2 51.4

10,000 steps 69.3 87.5 55.4 58.2

20,000 steps 70.5 89.2 57.7 58.8

30,000 steps 66.2 82.3 59.0 58.5

40,000 steps 68.5 87.0 61.1 58.9
50,000 steps 70.4 88.7 60.2 58.7

60,000 steps 76.7 90.5 63.7 58.8

Table 4: Comparison of training methods The
methods are compared on NorQuAD with F1 score,
sentence-level Bokmål NoReC with F1 score, Bok-
mål NRK-Quiz-QA with accuracy, and on English-
to-Bokmål Tatoeba with BLEU.

subword vocabulary – like simple continual train-
ing or adapter tuning (Yong et al., 2023) – because
they necessarily lead to inefficient inference (Ta-
ble 1). The results in Table 4 demonstrate that the
knowledge transfer from an English-centric model
works and the model is able to be adapted to new
languages.

Hybrid masked-causal modeling Interestingly,
we do not observe an overall increase in perfor-
mance after training with the ‘dual’ training objec-
tive, as opposed to the observations by Charpentier
and Samuel (2024). However, we believe that this
can be explained by continued training – the hy-
brid masked-causal training is used for a negligable
number of steps compared to the fully-causal pre-
training of the base Mistral model.

Number of training steps Finally, we compare
the performance of model checkpoints saved at dif-
ferent points of training. We can make several
observations from the results: 1 they confirm
the data-scaling laws by Muennighoff et al. (2023)
as the model continues to improve even after (at
least) four repetitions of the Norwegian data; 2
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tokenizer adaptation (the first two stages of our
training method) is a simple and efficient way of
adapting a model to a new language without losing
performance; 3 the three-stage continual pretrain-
ing does not affect all downstream tasks equally –
while it usually leads to monotonical improvement,
there are some tasks (NorQuAD) that experience an
initial decrease in performance. Further investiga-
tion is needed to determine if this drop is significant
and if it can be avoided by a more careful switch to
a new language distribution at the start of training.

6 Related work

Norwegian language models There have been
several prior efforts on creating language models
for Norwegian. When it comes to creating openly
available generative decoder-only models for Nor-
wegian, most of the main efforts are listed in Sec-
tion 3.3 and used in our experiments. However, one
other notable mention is NB-GPT-J-6B – a fine-
tuned version of the English GPT-J-6B model.5 Re-
leased by the National Library of Norway in 2022,
it was the first large generative language model
trained for Norwegian.

There have also been several efforts on develop-
ing smaller transformer models, e.g., based on the
BERT encoder architecture (Devlin et al., 2019)
and the T5 encoder-decoder architecture (Raffel
et al., 2020). The NorBERT family of models were
first released by Kutuzov et al. (2021) and have
by now reached their third iteration of releases
(Samuel et al., 2023) and come in several differ-
ent sizes; ranging fron 15M parameters for the XS
model to 323M for NorBERT3 Large. Samuel et al.
(2023) also introduced the NorT5 family of mod-
els, ranging 32M to 808M parameters. Whereas
the above-mentioned models where all trained from
scratch for Norwegian, Kummervold et al. (2021)
trained NB-BERT (base and large) by fine-tuning
the pre-trained mBERT model on Norwegian data,
also reusing the tokenizer. A similar approach was
followed for the North-T5 models.6

Language models for Northern Sámi As for
Northern Sámi, Paul et al. (2024) has recently ex-
perimented with targeting this language. However,
their models have not been published nor did they
evaluate them on any downstream tasks; we are
thus not able to compare them to our model.

5https://huggingface.co/NbAiLab/nb-gpt-j-6B
6https://huggingface.co/north

Continual training techniques Adaptation of
pretrained language models to new domains by
continual training has a long history (Gururangan
et al., 2020). Our three-stage continual pretraining
is designed specifically for adapting language mod-
els to a new language – by entirely replacing the
original tokenizer, we can get an efficient model
(by compressing the textual input into a short se-
quence of tokens) without the need of any extra
parameters. Simple continual pretraining works
well performance-wise but the training and infer-
ence computation cost is high (Ibrahim et al., 2024).
A substantially more efficient approach is to intro-
duce a new tokenizer and replace the embedding
layers (first two stages of our approach), as pro-
posed by (Marchisio et al., 2023; de Vries and
Nissim, 2021). Similarly, Csaki et al. (2023) only
use the first and last stage of our method – they ex-
tend the vocabulary by 5 000 new tokens and then
train the full model. On the other hand, Kim et al.
(2024) pursue a more careful approach, the most
similar to our training method. They first extend
the subword vocabulary with extra tokens and then
meticulously train the new and old parameters in
eight subsequent stages.

7 Conclusion

We presented NorMistral-11B, a new large lan-
guage model for Norwegian Bokmål, Nynorsk,
and Northern Sámi. We proposed a novel three-
stage continual pretraining approach that efficiently
adapts existing models to other languages while
maintaining high performance and increasing their
inference speed. This approach involves training
a new tokenizer, realigning embedding weights,
and then training the full model. We also demon-
strated the benefits of hybrid masked-causal pre-
training, which allows the model to be used flexi-
bly as either a causal or bidirectional model. Our
extensive evaluation shows that NorMistral-11B
achieves the state-of-the-art performance across a
wide range of Norwegian tasks, while also show-
ing promising results for Northern Sámi. This
suggests that our approach could be beneficial
for developing large language models for other
smaller languages. To facilitate further research
and development, we have released NorMistral-
11B, the three 7B models trained for Section 5,
training code, and a new Northern Sámi corpus at
https://github.com/ltgoslo/norallm.
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Limitations

Limitations of the base language model Since
NorMistral-11B is continually pretrained on the ex-
isting Mistral-Nemo-12B weights, the model is par-
tially dependent on the training data of the original
Mistral model. The exact composition of this train-
ing data is not known, which to some extent limits
more detailed studies of this model. Specifically,
the original model might have been trained on con-
taminated data, which could explain its high-scores
on well-known evaluation tasks such as Belebele.

Computational cost As mentioned in Section 3,
training NorMistral-11B took more than 55 000
GPU/hours. This is a significant amount. We have
not yet estimated the CO2 footprint of the full train-
ing, but it was conducted on the LUMI supercom-
puter which is powered exclusively with renewable
electricity and deployed in one of the most eco-
efficient data centers in the world.7

Evaluation of Northern Sámi knowledge Fi-
nally, our evaluation for Northern Sámi is limited
to English-Sámi translation, which is obviously in-
sufficient. Unfortunately, we lack more advanced
or diverse benchmarks for low-resource languages
like this one. We hope to see further development
in this direction by the NLP community.
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A Inference efficiency of three-stage continual pretraining

In order to provide evidence for our claim that three-stage continual pretraining is necessary to increase the
inference efficiency, we measure the actual inference speed on downstream tasks. Note that we specifically
focus on the first stage of our pretraining recipe – creating a brand new tokenizer for the target domain.
Since in-context-lerning evaluation can be done in two modes – classification or generation – we measure
the inference speed on both of them. Since the model quality might influence the number of generated
tokens, we constrain the generation to only output tokens from the gold answers.

Speedup due to a new tokenizer We compare the speed of the original language model, Mistral-Nemo-
12B, with the speed of our model that was initialized from it, NorMistral 11B. The results in Table 5 show
that completely changing the tokenizer results in a noticeable speed up in both tests.

Other evaluated models For completeness, the inference speed of other models used in this paper
are included as well; even though they have different number of non-embedding parameters or even
completely different architectures. These additional measurements also show the benefit of replacing the
entire vocabulary instead of only extending it with additional tokens.

SENTENCE-LEVEL NOREC (16-SHOT)

Model Vocabulary Note Average length Time / sample Slowdown

NorMistral-11B 51 200 our new Norwegian tokenizer 522 tokens 0.23 s 1×
Mistral-Nemo-12B 131 072 original English-centric tokenizer 640 tokens 0.30 s 1.30×

NorwAI-Mistral-7B 67 993 extends an English tokenizer 591 tokens 0.18 s 0.78×
NorwAI-Llama2-7B 67 993 extends an English tokenizer 591 tokens 0.15 s 0.65×
NorMistral-7B-warm 32 768 new Norwegian tokenizer 569 tokens 0.17 s 0.74×
NorGPT-3B 64 000 new Norwegian tokenizer 552 tokens 0.08 s 0.35×
Viking-7B 131 072 new Nordic tokenizer 512 tokens 0.14 s 0.61×
Viking-13B 131 072 new Nordic tokenizer 512 tokens 0.26 s 1.13×

NORQUAD (8-SHOT)

Model Vocabulary Note Average length Time / sample Slowdown

NorMistral-11B 51 200 our new Norwegian tokenizer 4 909 tokens 3.10 s 1×
Mistral-Nemo-12B 131 072 original English-centric tokenizer 6 171 tokens 4.13 s 1.33×

NorwAI-Mistral-7B 67 993 extends an English tokenizer 5 206 tokens 2.28 s 0.73×
NorwAI-Llama2-7B 67 993 extends an English tokenizer 5 206 tokens 2.10 s 0.68×
NorMistral-7B-warm 32 768 new Norwegian tokenizer 5 012 tokens 2.22 s 0.71×
NorGPT-3B 64 000 new Norwegian tokenizer 4 604 tokens — —

Viking-7B 131 072 new Nordic tokenizer 4 810 tokens 1.93 s 0.62×
Viking-13B 131 072 new Nordic tokenizer 4 810 tokens — —

Table 5: Inference speed with different tokenization strategies We measure the average sequence
length that a model needs to precess per sample, as well as the average processing time per sample. These
statistics are measured on a classification task (NoReC) as well as on a generative task (NorQuAD). Some
models were not able to process the dataset, either because of not supporting long-enough input sequences
or because of out-of-memory errors.
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B Evaluation details

We provide a complete description of the evaluation design in this appendix. We provide inference
details and prompts as well as full non-aggregated results here. Further information can be found at
https://github.com/ltgoslo/noreval and https://github.com/ltgoslo/norallm.

B.1 Belebele
Belebele is a reading comprehension benchmark for evaluating the natural language understanding of
language models (Bandarkar et al., 2024).

Inference setup The model is given a test example formatted according to a prompt template and ranks
the answer candidates based on their probabilities. The most probable answer candidate is selected as the
resulting answer.

Performance metric There are four possible answers for each passage-question pair. We measure the
performance with a simple accuracy.

Prompt templates We used the following five prompt templates from NorEval.

Prompt A:

1 Tekst: {$passage}

2 Spørsmål: {$question}

3 A: {$answer_1}

4 B: {$answer_2}

5 C: {$answer_3}

6 D: {$answer_4}

7 Svar: {$prediction:A/B/C/D}

Prompt B:

1 Bakgrunn: {$passage}

2 Spørsmål: {$question}

3 Svaralternativer:

4 - {$answer_1}

5 - {$answer_2}

6 - {$answer_3}

7 - {$answer_4}

8 Svar: {$prediction:{$answer_1}/{$answer_2}/{$answer_3}/{$answer_4}}

Prompt C:

1 {$question}

2 Hvilket av følgende mulige svar er det riktige?

3 A: {$answer_1}

4 B: {$answer_2}

5 C: {$answer_3}

6 D: {$answer_4}

7 Svar: {$prediction:A/B/C/D}

Prompt D:

1 Svar på følgende spørsmål: {$question}

2 Svaret skal baseres på følgende tekst:

3 {$passage}

4 Velg et svar fra denne listen:

5 - {$answer_1}

6 - {$answer_2}

7 - {$answer_3}

8 - {$answer_4}

9 Svar: {$prediction:{$answer_1}/{$answer_2}/{$answer_3}/{$answer_4}}
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Prompt E:

1 {$passage}

2

3 {$question}

4

5 A: {$answer_1}

6 B: {$answer_2}

7 C: {$answer_3}

8 D: {$answer_4}

9

10 Er det riktige svaret A, B, C, eller D? {$prediction:A/B/C/D}

Full results The complete evaluation results on Belebele (Bokmål) are given in Table 6. Note that the
random-guessing baseline on this task achieves accuracy of 25%.

0-shot
Prompt template A B C D E

NorMistral-11B 45.2 56.7 32.6 31.1 22.8

NorwAI-Mistral-7B 29.6 33.4 27.2 24.8 22.9
NorwAI-Llama2-7B 29.6 38.0 26.4 25.9 21.2
NorMistral-7B-warm 22.9 37.4 23.2 27.0 23.0
NorGPT-3B 22.2 26.8 22.9 25.7 22.9
Viking-7B 23.8 27.6 25.4 26.1 22.8
Viking-13B 27.3 27.3 28.2 25.1 22.8
Mistral-Nemo-12B 60.6 62.8 38.1 28.4 27.0

Table 6: Complete results on Belebele question answering (Bokmål) We show the detailed results for
each evaluated model and prompt template. The best results for each column are boldfaced, the overall
best result is highlighted in blue.

B.2 NorQuAD
The second benchmark for reading comprehension, NorQuAD by Ivanova et al. (2023), follows the
scheme of extractive question-answering from SQuAD (Rajpurkar et al., 2016).

Inference setup The model is given a test example formatted according to a prompt template and
generates an answer via the greedy-search decoding strategy.

Performance metrics The performance metrics are exact match (the percentage of predictions that
exactly match the gold answer) and F1-score (the average N-gram overlap between the prediction and the
gold answer treated as bag-of-words).

Prompt templates We used the following five prompt templates from NorEval.

Prompt A:

1 Tittel: {$title}

2

3 Tekst: {$passage}

4

5 Spørsmål: {$question}

6

7 Svar: {$prediction}
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Prompt B:

1 Tittel: {$title}

2

3 Tekst: {$passage}

4

5 Gitt teksten over, hva er svaret på følgende spørsmål? "{$question}"

6

7 Svar: {$prediction}

Prompt C:

1 Tittel: {$title}

2

3 Tekst: {$passage}

4

5 Svar på følgende: {$question}

6

7 Svar: {$prediction}

Prompt D:

1 Tittel: {$title}

2

3 Tekst: {$passage}

4

5 Hvordan kan man svare på spørsmålet "{$question}", gitt teksten over?

6

7 Svar: {$prediction}

Prompt E:

1 Tittel: {$title}

2

3 Tekst: {$passage}

4

5 Gitt teksten over, besvar følgende spørsmål: "{$question}"

6

7 Svar: {$prediction}

Full results The complete evaluation results on NorQuAD (Bokmål) can be found in Table 7, both F1
scores and exact-match accuracies.

B.3 Sentiment analysis
Sentiment analysis can serve as a good indicator of language understanding when evaluating language
models. We use NoReC as a source of manually-annotated data for sentiment analysis (Velldal et al.,
2018). While it offers fine-grained 6-class sentiment labels, we simplify the task to binary sentiment
analysis, which works more reliably for in-context learning (Mæhlum et al., 2024).

Inference setup The model is given a test example formatted according to a prompt template and ranks
the answer candidates based on their probabilities. The most probable answer candidate is selected as the
resulting answer.

Performance metrics The dataset is slightly unbalanced and so we use the macro-average F1-score to
assess the performance.
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F1 SCORE

0-shot 1-shot
Prompt template A B C D E A B C D E

NorMistral-11B 35.4 32.8 37.9 16.5 31.8 54.4 55.3 53.0 50.6 52.8

NorwAI-Mistral-7B 28.4 22.0 28.6 8.5 21.6 41.3 40.7 41.5 37.7 42.6
NorwAI-Llama2-7B 23.1 18.0 24.2 7.4 16.7 34.5 39.2 36.4 35.2 37.7
NorMistral-7B-warm 24.8 21.0 23.7 3.2 17.6 37.1 41.9 40.7 36.0 41.3
NorGPT-3B 1.1 1.1 0.2 0.4 0.6 0.0 0.0 0.0 0.0 0.0
Viking-7B 15.0 20.3 16.9 7.6 20.3 28.8 29.9 27.3 26.3 29.7
Viking-13B 19.1 22.5 20.8 11.9 22.5 35.8 35.8 35.8 33.1 35.6
Mistral-Nemo-12B 27.3 34.3 29.2 17.2 31.6 49.4 56.4 49.4 53.8 53.4

EXACT MATCH

0-shot 1-shot
Prompt template A B C D E A B C D E

NorMistral-11B 35.4 32.8 37.9 16.5 31.8 54.4 55.3 53.0 50.6 52.8

NorwAI-Mistral-7B 28.4 22.0 28.6 8.5 21.6 41.3 40.7 41.5 37.7 42.6
NorwAI-Llama2-7B 23.1 18.0 24.2 7.4 16.7 34.5 39.2 36.4 35.2 37.7
NorMistral-7B-warm 24.8 21.0 23.7 3.2 17.6 37.1 41.9 40.7 36.0 41.3
NorGPT-3B 1.1 1.1 0.2 0.4 0.6 0.0 0.0 0.0 0.0 0.0
Viking-7B 15.0 20.3 16.9 7.6 20.3 28.8 29.9 27.3 26.3 29.7
Viking-13B 19.1 22.5 20.8 11.9 22.5 35.8 35.8 35.8 33.1 35.6
Mistral-Nemo-12B 27.3 34.3 29.2 17.2 31.6 49.4 56.4 49.4 53.8 53.4

Table 7: Complete results on extractive question answering with NorQuAD We show the detailed
results for each evaluated model, few-shot setting and prompt template. The best results for each column
are boldfaced, the overall best result for each few-shot setting is highlighted in blue.

B.3.1 Sentence-level NoReC
The converted dataset with binary sentiment labels can be found at https://huggingface.co/datasets/ltg/
norec_sentence.

Prompt templates We used the following five prompt templates from NorEval.

Prompt A:

1 Tekst: {$text}

2 Sentiment: {$prediction:positiv/negativ}

Prompt B:

1 {$text}

2 Er denne setningen "positiv" eller "negativ"? {$prediction:positiv/negativ}

Prompt C:

1 {$text}

2 Hva slags sentiment uttrykker anmelderen? {$prediction:positiv/negativ}

Prompt D:

1 {$text}

2 Er anmeldelsen "positiv" eller "negativ"? {$prediction:positiv/negativ}
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Prompt E:

1 {$text}

2 Er denne setningen positiv eller negativ? {$prediction:positiv/negativ}

Full results The complete evaluation results on sentence-level NoReC are given in Table 8. The
random-guessing baseline achieves 48.5% on this task.

0-shot 1-shot 16-shot

Prompt template A B C D E A B C D E A B C D E

NorMistral-11B 73.9 68.8 68.8 69.1 68.8 88.5±1.3 65.4±2.0 79.8±1.7 76.3±1.8 72.4±1.9 90.2±1.2 91.8±1.1 90.2±1.2 91.1±1.2 91.6±1.2

NorwAI-Mistral-7B 69.8 55.7 72.7 53.3 63.0 76.0±1.8 55.1±2.1 81.1±1.6 77.2±1.7 56.1±2.1 89.0±1.3 86.4±1.4 90.4±1.2 87.3±1.4 87.8±1.4

NorwAI-Llama2-7B 67.2 54.9 69.1 36.7 58.5 72.0±1.9 64.3±2.0 65.9±2.0 63.6±2.0 65.5±2.0 88.2±1.3 83.5±1.5 88.9±1.3 82.8±1.6 87.5±1.4

NorMistral-7B-warm 75.0 68.4 61.9 54.7 69.0 81.6±1.6 69.1±1.9 74.6±1.8 71.5±1.9 69.3±1.9 86.6±1.4 72.4±1.9 85.9±1.4 77.2±1.7 72.6±1.8

NorGPT-3B 72.4 41.2 47.3 71.4 67.9 66.0±2.0 61.2±2.0 61.9±2.0 64.3±2.0 59.3±2.0 58.0±2.0 48.9±2.1 65.2±2.0 48.7±2.1 51.1±2.1

Viking-7B 70.5 69.0 70.8 59.0 67.4 79.4±1.7 70.8±1.9 74.4±1.8 73.6±1.8 55.6±2.1 81.8±1.6 77.4±1.7 73.8±1.8 76.2±1.8 82.5±1.6

Viking-13B 69.1 69.1 68.1 50.8 68.1 78.9±1.7 69.0±1.9 79.9±1.7 71.5±1.9 69.0±1.9 84.0±1.5 77.4±1.7 83.0±1.6 80.4±1.6 79.2±1.7

Mistral-Nemo-12B 71.9 68.4 68.8 68.4 69.0 84.4±1.5 77.4±1.7 84.6±1.5 82.0±1.6 80.3±1.6 87.0±1.4 89.0±1.3 88.2±1.3 87.5±1.4 88.9±1.3

Table 8: Complete results on sentence-level sentiment analysis with NoReC We show the detailed
results for each evaluated model, few-shot setting and prompt template. As the few-shot demonstrations
are sampled randomly, we repeat them five times and show the mean accuracy as well as the standard
deviation (rendered as superscript). The best results for each column are boldfaced, the overall best result
for each few-shot setting is highlighted in blue.

B.3.2 Document-level NoReC
The converted dataset with binary sentiment labels can be found at https://huggingface.co/datasets/ltg/
norec_document.

Prompt templates We used the following five prompt templates from NorEval for testing all language
models on document-level sentiment analysis:

Prompt A:

1 Tekst: {$text}

2 Sentiment: {$prediction:positiv/negativ}

Prompt B:

1 Tekst: {$text}

2 Er anmeldelsen "positiv" eller "negativ"? {$prediction:positiv/negativ}

Prompt C:

1 Er polariteten til følgende anmeldelse positiv eller negativ?

2 Anmeldelse: {$text}

3 Anmeldelsen er {$prediction:positiv/negativ}

Prompt D:

1 Anmeldelse: {$text}

2 Er anmelderen positiv eller negativ? {$prediction:positiv/negativ}

Prompt E:

1 Anmeldelse: {$text}

2 Vil du oppsummere anmeldelsen som "bra" eller "dårlig"? {$prediction:bra/dårlig}
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Full results The complete evaluation results on document-level NoReC are provided in Table 9. The
random-guessing baseline achieves 48.4% on this task.

0-shot 1-shot
Prompt template A B C D E A B C D E

NorMistral-11B 69.4 67.0 66.6 68.9 67.0 88.4±0.6 92.5±0.5 86.0±0.6 92.5±0.5 87.7±0.6

NorwAI-Mistral-7B 69.1 66.1 67.0 66.5 63.8 82.8±0.7 70.4±0.8 84.6±0.7 77.1±0.8 84.6±0.7

NorwAI-Llama2-7B 71.9 39.8 67.0 65.2 65.2 76.2±0.8 73.2±0.8 78.7±0.8 83.8±0.7 80.1±0.7

NorMistral-7B-warm 74.8 55.6 67.2 67.4 67.6 84.3±0.7 73.9±0.8 84.3±0.7 75.7±0.8 73.4±0.8

NorGPT-3B 67.7 52.4 67.0 67.7 67.0 58.1±0.9 54.0±0.9 55.5±0.9 54.8±0.9 55.0±0.9

Viking-7B 75.3 56.6 68.3 65.9 67.0 84.5±0.7 78.4±0.8 73.9±0.8 74.5±0.8 73.4±0.8

Viking-13B 69.0 66.8 67.3 68.3 65.0 83.2±0.7 72.5±0.8 89.2±0.6 84.5±0.7 83.2±0.7

Mistral-Nemo-12B 78.5 68.0 67.0 67.1 67.0 91.2±0.5 89.8±0.6 90.5±0.5 89.8±0.6 89.3±0.6

Table 9: Complete results on document-level sentiment analysis with NoReC We show the detailed
results for each evaluated model, few-shot setting and prompt template. As the few-shot demonstrations
are sampled randomly, we repeat them five times and show the mean accuracy as well as the standard
deviation (rendered as superscript). The best results for each column are boldfaced, the overall best result
for each few-shot setting is highlighted in blue.

B.4 NorCommonsenseQA
Accurately predicting the correct answers on this datasets requires different types of commonsense
knowledge. The creating of the Norwegian NorCommonsenseQA has been inspired by the English
CommonsenseQA dataset (Talmor et al., 2019). The data can be found at https://huggingface.co/datasets/
ltg/norcommonsenseqa.

Inference setup The model is given a test example formatted according to a prompt template and ranks
the answer candidates based on their probabilities. The most probable answer candidate is selected as the
resulting answer.

Performance metric There are five possible answers for each question. We measure the performance
with a simple accuracy.

Prompt templates We used the following five prompt templates from NorEval. The templates are
adapted to the Bokmål and Nynorsk versions of this dataset.

Prompt A (Bokmål and Nynorsk):

1 Spørsmål: {$question}

2

3 Svar: {$prediction:{$answer_1}/{$answer_2}/{$answer_3}/{$answer_4}/{$answer_5}}

Prompt B (Bokmål):

1 {$question}

2 Hvilket av følgende mulige svar er det riktige?

3 A: {$answer_1}

4 B: {$answer_2}

5 C: {$answer_3}

6 D: {$answer_4}

7 E: {$answer_5}

8 Svar: {$prediction:A/B/C/D/E}
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Prompt B (Nynorsk):

1 {$question}

2 Kva av følgande moglege svar er det rette?

3 A: {$answer_1}

4 B: {$answer_2}

5 C: {$answer_3}

6 D: {$answer_4}

7 E: {$answer_5}

8 Svar: {$prediction:A/B/C/D/E}

Prompt C (Bokmål):

1 Gitt alternativene under, hva er svaret på følgende spørsmål: {$question}

2

3 Alternativer:

4 - {$answer_1}

5 - {$answer_2}

6 - {$answer_3}

7 - {$answer_4}

8 - {$answer_5}

9

10 Svar: {$prediction:{$answer_1}/{$answer_2}/{$answer_3}/{$answer_4}/{$answer_5}}

Prompt C (Nynorsk):

1 Gitt alternativa under, kva er svaret på følgande spørsmål: {$question}

2

3 Alternativ:

4 - {$answer_1}

5 - {$answer_2}

6 - {$answer_3}

7 - {$answer_4}

8 - {$answer_5}

9

10 Svar: {$prediction:A/B/C/D/E}

Prompt D (Bokmål):

1 {$question}

2 Velg riktig svar blant disse alternativene:

3 - {$answer_1}

4 - {$answer_2}

5 - {$answer_3}

6 - {$answer_4}

7 - {$answer_5}

8

9 Svar: {$prediction:{$answer_1}/{$answer_2}/{$answer_3}/{$answer_4}/{$answer_5}}

Prompt D (Nynorsk):

1 {$question}

2 Vel rett svar blant desse alternativa:

3 - {$answer_1}

4 - {$answer_2}

5 - {$answer_3}

6 - {$answer_4}

7 - {$answer_5}

8

9 Svar: {$prediction:{$answer_1}/{$answer_2}/{$answer_3}/{$answer_4}/{$answer_5}}
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Prompt E (Bokmål):

1 {$question}

2 A: {$answer_1}

3 B: {$answer_2}

4 C: {$answer_3}

5 D: {$answer_4}

6 E: {$answer_5}

7

8 Er det riktige svaret A, B, C, D, eller E?

9

10 Svar: {$prediction:A/B/C/D/E}

Prompt E (Nynorsk):

1 {$question}

2 A: {$answer_1}

3 B: {$answer_2}

4 C: {$answer_3}

5 D: {$answer_4}

6 E: {$answer_5}

7

8 Er det rette svaret A, B, C, D, eller E?

9

10 Svar: {$prediction:A/B/C/D/E}

Full results The complete evaluation results on NorCommonsenseQA (Bokmål and Nynorsk) are
provided in Table 10. For reference, the random-guessing baseline achieves 20% on this task (for both
language variants).

Bokmål (0-shot) Nynorsk (0-shot)

Prompt template A B C D E A B C D E

NorMistral-11B 61.0 56.9 23.1 51.8 45.3 44.2 51.6 36.8 46.3 30.5

NorwAI-Mistral-7B 30.8 49.7 20.3 22.3 28.5 43.2 20.0 23.2 27.4 23.2
NorwAI-Llama2-7B 37.2 54.2 23.2 25.8 33.6 37.9 18.9 17.9 27.4 18.9
NorMistral-7B-warm 30.4 51.3 20.5 21.4 29.2 43.2 18.9 15.8 30.5 20.0
NorGPT-3B 26.4 34.7 22.1 20.1 23.5 29.5 20.0 16.8 25.3 25.3
Viking-7B 26.1 44.9 19.1 20.5 23.2 38.9 21.1 25.3 23.2 23.2
Viking-13B 24.7 51.1 18.1 19.1 24.0 40.0 13.7 24.2 20.0 16.8
Mistral-Nemo-12B 43.4 44.1 43.7 38.9 31.7 33.7 33.7 25.3 27.4 25.3

Table 10: Complete results on commonsense reasoning evaluated on NorCommonsenseQA (Bokmål
and Nynorsk) We show the detailed results for each evaluated model and prompt template. The best
results for each column are boldfaced, the overall best result is highlighted in blue.

B.5 NRK-Quiz-QA
This question-answering dataset focuses on knowledge about Norway and its culture. The data can be
found at https://huggingface.co/datasets/ltg/nrk_quiz_qa.

Inference setup The model is given a test example formatted according to a Prompt template and
ranks the answer candidates based on their probabilities. The most probable answer candidate is selected
as the resulting answer.

Performance metric There is a limited number of possible answers for each question. We measure the
performance with a simple accuracy.
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Prompt templates We used the following five prompt templates from NorEval for testing all language
models on question answering with NRK-Quiz-QA. Note that the examples in this dataset have a variable
number of answer options, we show the prompt templates for four options as an example. The templates
are adapted to the Bokmål and Nynorsk versions of this dataset.

Prompt A (Bokmål and Nynorsk):

1 Spørsmål: {$question}

2

3 Svar: {$prediction:{$answer_1}/{$answer_2}/{$answer_3}/{$answer_4}}

Prompt B (Bokmål):

1 {$question}

2

3 Svaralternativer:

4 - {$answer_1}

5 - {$answer_2}

6 - {$answer_3}

7 - {$answer_4}

8

9 Hva er riktig svar?

10

11 Svar: {$prediction:{$answer_1}/{$answer_2}/{$answer_3}/{$answer_4}}

Prompt B (Nynorsk):

1 {$question}

2 {$question}

3

4 Svaralternativer:

5 - {$answer_1}

6 - {$answer_2}

7 - {$answer_3}

8 - {$answer_4}

9

10 Kva er rett svar?

11

12 Svar: {$prediction:{$answer_1}/{$answer_2}/{$answer_3}/{$answer_4}}

Prompt C (Bokmål):

1 {$question}

2 A: {$answer_1}

3 B: {$answer_2}

4 C: {$answer_3}

5 D: {$answer_4}

6

7 Er det riktige svaret A, B, C, eller D?

8

9 Svar: {$prediction:A/B/C/D}

Prompt C (Nynorsk):

1 {$question}

2 A: {$answer_1}

3 B: {$answer_2}

4 C: {$answer_3}

5 D: {$answer_4}

6

7 Er det rette svare A, B, C, eller D?
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8

9 Svar: {$prediction:A/B/C/D}

Prompt D (Bokmål and Nynorsk):

1 Spørsmål: {$question}

2 A: {$answer_1}

3 B: {$answer_2}

4 C: {$answer_3}

5 D: {$answer_4}

6

7 Svar: {$prediction:A/B/C/D}

Prompt E (Bokmål):

1 {$question}

2 Velg riktig svar blant disse alternativene:

3 - {$answer_1}

4 - {$answer_2}

5 - {$answer_3}

6 - {$answer_4}

7

8 Svar: {$prediction:{$answer_1}/{$answer_2}/{$answer_3}/{$answer_4}}

Prompt E (Nynorsk):

1 {$question}

2 Vel rett svar blant desse alternativa:

3 - {$answer_1}

4 - {$answer_2}

5 - {$answer_3}

6 - {$answer_4}

7

8 Svar: {$prediction:{$answer_1}/{$answer_2}/{$answer_3}/{$answer_4}}

Full results The complete evaluation results on NRK-Quiz-QA (Bokmål and Nynorsk) are in Table 11.
The random-guessing baseline achieves 28% accuracy on the Bokmål version of this task and 27% on the
Nynorsk version.

Bokmål (0-shot) Nynorsk (0-shot)

Prompt template A B C D E A B C D E

NorMistral-11B 63.7 50.5 38.6 41.1 50.6 71.9 56.5 46.4 41.9 57.1

NorwAI-Mistral-7B 55.2 43.4 34.6 34.8 46.6 65.2 50.6 35.8 35.6 53.2
NorwAI-Llama2-7B 52.3 39.2 26.0 30.1 40.3 64.3 44.1 25.3 31.8 44.1
NorMistral-7B-warm 57.9 39.8 27.7 32.5 40.7 65.9 41.3 28.8 32.7 41.1
NorGPT-3B 33.1 28.2 26.3 26.1 27.9 37.3 29.6 25.0 24.7 30.5
Viking-7B 44.3 29.9 26.1 28.8 31.9 51.1 31.2 26.8 30.8 34.7
Viking-13B 51.0 31.8 27.8 30.2 31.6 54.8 34.5 28.0 30.2 31.9
Mistral-Nemo-12B 47.0 46.1 41.8 47.4 46.6 47.2 43.6 41.4 45.7 42.8

Table 11: Complete results on Norwegian-specific and world knowledge evaluated on NRK-Quiz-QA
(Bokmål and Nynorsk) We show the detailed results for each evaluated model and prompt template.
The best results for each column are boldfaced, the overall best result is highlighted in blue.
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B.6 NorOpenBookQA
Inspired by the English OpenBookQA (Mihaylov et al., 2018), this task follows the open book exams
for testing human understanding of a subject. Correctly answering a question should require multi-step
reasoning, common and commonsense knowledge, and rich text comprehension. The data can be found at
https://huggingface.co/datasets/ltg/noropenbookqa.

Inference setup The model is given a test example formatted according to a prompt template and ranks
the answer candidates based on their probabilities. The most probable answer candidate is selected as the
resulting answer.

Performance metric There are four possible for answers for each passage-question pair. We measure
the performance with a simple accuracy.

Prompt templates We used the following five prompt templates from NorEval for testing all language
models on question answering with NorOpenBookQA: The templates are adapted to the Bokmål and
Nynorsk versions of this dataset.

Prompt A (Bokmål and Nynorsk):

1 {$fact}

2 {$question} {$prediction:{$answer_1}/{$answer_2}/{$answer_3}/{$answer_4}}

Prompt B (Bokmål):

1 Faktatekst: {$fact}

2 Spørsmål til teksten: {$question}

3

4 Svaralternativer:

5 - {$answer_1}

6 - {$answer_2}

7 - {$answer_3}

8 - {$answer_4}

9

10 Hva er riktig svar? {$prediction:{$answer_1}/{$answer_2}/{$answer_3}/{$answer_4}}

Prompt B (Nynorsk):

1 Faktatekst: {$fact}

2 Spørsmål til teksten: {$question}

3

4 Svaralternativer:

5 - {$answer_1}

6 - {$answer_2}

7 - {$answer_3}

8 - {$answer_4}

9

10 Kva er rett svar? {$prediction:{$answer_1}/{$answer_2}/{$answer_3}/{$answer_4}}

Prompt C (Bokmål):

1 {$fact}

2 {$question}

3 A: {$answer_1}

4 B: {$answer_2}

5 C: {$answer_3}

6 D: {$answer_4}

7

8 Er det riktige svaret A, B, C, eller D?

9

10 Svar: {$prediction:A/B/C/D}
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Prompt C (Nynorsk):

1 {$fact}

2 {$question}

3 A: {$answer_1}

4 B: {$answer_2}

5 C: {$answer_3}

6 D: {$answer_4}

7

8 Er det rette svare A, B, C, eller D?

9

10 Svar: {$prediction:A/B/C/D}

Prompt D (Bokmål and Nynorsk):

1 Bakgrunn: {$fact}

2

3 Spørsmål: {$question}

4 A: {$answer_1}

5 B: {$answer_2}

6 C: {$answer_3}

7 D: {$answer_4}

8

9 Svar: {$prediction:A/B/C/D}

Prompt E (Bokmål):

1 Ta utgangspunkt i følgende fakta når du svarer på spørsmålet: {$fact}

2

3 {$question}

4 Velg riktig svar blant disse alternativene:

5 - {$answer_1}

6 - {$answer_2}

7 - {$answer_3}

8 - {$answer_4}

9

10 Svar: {$prediction:{$answer_1}/{$answer_2}/{$answer_3}/{$answer_4}}

Prompt E (Nynorsk):

1 Ta utgangspunkt i følgande fakta når du svarar på spørsmålet: {$fact}

2

3 {$question}

4 Vel rett svar blant desse alternativa:

5 - {$answer_1}

6 - {$answer_2}

7 - {$answer_3}

8 - {$answer_4}

9

10 Svar: {$prediction:{$answer_1}/{$answer_2}/{$answer_3}/{$answer_4}}

Full results The complete evaluation on NorOpenBookQA (Bokmål and Nynorsk) is in Table 12. Note
that randomly guessing the answers achieves 25% on this task.

B.7 Summarization (NorSumm)

NorSumm by Touileb et al. (2025) is a benchmark for abstractive summarization of Norwegian news
articles. It offers another perspective on the level of Norwegian language understanding of different
language models. An important feature of this dataset is that its Bokmål and Nynorsk variants are parallel.
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BOKMÅL

0-shot 1-shot 16-shot

Prompt template A B C D E A B C D E A B C D E

NorMistral-11B 44.6 55.7 54.0 67.8 65.8 45.6±2.9 74.5±2.5 68.8±2.7 76.2±2.5 70.1±2.7 51.3±2.9 75.8±2.5 77.9±2.4 75.8±2.5 76.5±2.5

NorwAI-Mistral-7B 47.7 35.6 34.6 35.9 43.3 46.3±2.9 51.7±2.9 34.9±2.8 35.2±2.8 50.0±2.9 50.0±2.9 52.3±2.9 40.9±2.9 44.3±2.9 51.7±2.9

NorwAI-Llama2-7B 45.6 32.6 25.8 32.6 43.3 45.0±2.9 51.7±2.9 33.2±2.7 37.6±2.8 46.3±2.9 45.0±2.9 52.3±2.9 32.2±2.7 34.2±2.8 49.7±2.9

NorMistral-7B-warm 46.6 35.6 28.9 32.6 44.3 46.6±2.9 51.7±2.9 32.9±2.7 34.2±2.8 46.6±2.9 48.3±2.9 49.0±2.9 42.3±2.9 40.3±2.8 45.0±2.9

NorGPT-3B 32.6 31.2 24.2 22.5 33.2 28.5±2.6 28.2±2.6 23.8±2.5 24.2±2.5 28.5±2.6 29.5±2.6 27.9±2.6 26.5±2.6 26.8±2.6 28.2±2.6

Viking-7B 41.9 26.5 20.8 28.5 27.9 45.3±2.9 25.8±2.5 26.8±2.6 24.5±2.5 30.9±2.7 48.7±2.9 26.5±2.6 28.2±2.6 23.8±2.5 31.9±2.7

Viking-13B 44.6 27.5 21.1 25.5 31.9 45.6±2.9 33.2±2.7 25.2±2.5 27.2±2.6 38.6±2.8 47.0±2.9 38.9±2.8 29.9±2.7 26.2±2.6 36.9±2.8

Mistral-Nemo-12B 43.6 60.7 58.1 71.5 68.5 44.0±2.9 82.6±2.2 82.2±2.2 82.9±2.2 76.2±2.5 49.7±2.9 82.9±2.2 82.2±2.2 85.9±2.0 80.9±2.3

NYNORSK

0-shot 1-shot 16-shot

Prompt template A B C D E A B C D E A B C D E

NorMistral-11B 33.3 56.7 56.7 56.7 65.6 28.9±4.8 70.0±4.9 68.9±4.9 71.1±4.8 68.9±4.9 40.0±5.2 72.2±4.7 76.7±4.5 77.8±4.4 77.8±4.4

NorwAI-Mistral-7B 30.0 37.8 32.2 27.8 38.9 31.1±4.9 34.4±5.0 28.9±4.8 27.8±4.7 36.7±5.1 37.8±5.1 45.6±5.3 41.1±5.2 44.4±5.3 42.2±5.2

NorwAI-Llama2-7B 25.6 30.0 32.2 27.8 28.9 28.9±4.8 37.8±5.1 32.2±5.0 32.2±5.0 36.7±5.1 27.8±4.7 37.8±5.1 32.2±5.0 32.2±5.0 38.9±5.2

NorMistral-7B-warm 26.7 28.9 34.4 40.0 36.7 27.8±4.7 32.2±5.0 40.0±5.2 38.9±5.2 43.3±5.3 30.0±4.9 38.9±5.2 41.1±5.2 40.0±5.2 41.1±5.2

NorGPT-3B 20.0 27.8 34.4 30.0 25.6 20.0±4.2 25.6±4.6 24.4±4.6 23.3±4.5 20.0±4.2 18.9±4.1 23.3±4.5 34.4±5.0 26.7±4.7 23.3±4.5

Viking-7B 22.2 20.0 18.9 27.8 15.6 30.0±4.9 22.2±4.4 32.2±5.0 25.6±4.6 27.8±4.7 27.8±4.7 22.2±4.4 27.8±4.7 23.3±4.5 27.8±4.7

Viking-13B 30.0 34.4 17.8 23.3 31.1 32.2±5.0 27.8±4.7 17.8±4.1 33.3±5.0 33.3±5.0 36.7±5.1 26.7±4.7 22.2±4.4 18.9±4.1 26.7±4.7

Mistral-Nemo-12B 30.0 52.2 52.2 58.9 60.0 35.6±5.1 71.1±4.8 77.8±4.4 78.9±4.3 71.1±4.8 33.3±5.0 82.2±4.1 82.2±4.1 86.7±3.6 81.1±4.1

Table 12: Complete results on world knowledge evaluated on NorOpenBookQA (Bokmål and
Nynorsk) We show the detailed results for each evaluated model, few-shot setting and prompt template.
The best results for each column are boldfaced, the overall best result for each few-shot setting is
highlighted in blue.

Inference setup The model is given a test example formatted according to a Prompt template and
generates the answer via a greedy search decoding strategy.

Performance metric We use Rouge-L as the standard metric for summarization (Lin, 2004). ROUGE-L
uses longest common subsequence matching, allowing it to identify matching content even when ordered
differently in generated and reference summaries.

Prompt templates We used the following six prompt templates from NorEval for testing all language
models on summarization with NorSumm. The templates are adapted to the Bokmål and Nynorsk versions
of this dataset.

Prompt A (Bokmål):

1 Skriv en oppsummering av følgende artikkel med kun noen få punkter: {$article}

2 Oppsummering: {$prediction}

Prompt A (Nynorsk):

1 Skriv ei oppsummering av følgande artikkel med berre nokre få punkt: {$article}

2 Oppsummering: {$prediction}
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Prompt B (Bokmål):

1 Oppsummer følgende artikkel med noen få setninger: {$article}

2 Oppsummering: {$prediction}

Prompt B (Nynorsk):

1 Oppsummer følgande artikkel med nokre få setningar: {$article}

2 Oppsummering: {$prediction}

Prompt C (Bokmål):

1 {$article}

2 Skriv en kort og presis oppsummering av teksten over. Språket må være klart og lett å forstå.

Sørg for å ikke introdusere feil. Oppsummeringen må dekke følgende spørsmål: hvem, hva,

hvor, når, og hvorfor er denne saken viktig å vite om. Oppsummeringen må være engasjerende

og fremheve nøkkelinformasjon fra artikkelen. Oppsummeringen skal inneholde maksimalt 700

tegn, inkludert mellomrom. {$prediction}

↪→

↪→

↪→

↪→

Prompt C (Nynorsk):

1 {$article}

2 Skriv ein kort og presis oppsummering av teksten over. Språket må vere klart og lett å forstå.

Sørg for å ikkje introdusere feil. Oppsummeringa må dekkje følgande spørsmål: kven, kva,

kor, når, og kvifor er denne saka viktig å vite om. Oppsummeringa må vere engasjerande og

framheve nøkkelinformasjon frå artikkelen. Oppsummeringa skal innehalde maksimalt 700 tegn,

inkludert mellomrom. {$prediction}

↪→

↪→

↪→

↪→

Prompt D (Bokmål):

1 Gi et kortfattet sammendrag av følgende tekst: {$article} {$prediction}

Prompt D (Nynorsk):

1 Gje eit kortfatta samandrag av følgande tekst: {$article} {$prediction}

Prompt E (Bokmål):

1 Lag en kort oppsummering som sammenfatter den følgende teksten i noen få punkter:

2 {$article}

3

4 Oppsummering: {$prediction}

Prompt E (Nynorsk):

1 Lag ein kort oppsummering som samanfattar den følgande teksten i nokre få punkt:

2 {$article}

3

4 Oppsummering: {$prediction}

Prompt F (Bokmål):

1 Hele artikkelen:

2 {$article}

3

4 Hovedpunkter: {$prediction}

Prompt F (Nynorsk):

1 Heile artikkelen:

2 {$article}

3

4 Hovudpunkt: {$prediction}
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Bokmål (0-shot) Nynorsk (0-shot)

Prompt template A B C D E F A B C D E F

NorMistral-11B 17.6 20.5 34.9 45.0 42.5 5.7 15.4 17.9 25.4 32.4 32.6 6.8

NorwAI-Mistral-7B 12.2 0.0 0.0 2.6 0.0 0.0 10.3 0.0 0.0 3.5 0.0 0.0

NorwAI-Llama2-7B 10.7 0.0 0.0 7.8 3.5 0.0 10.4 0.0 0.0 4.4 5.9 0.0

NorMistral-7B-warm 7.8 0.0 0.0 16.5 9.0 0.0 8.6 0.0 0.0 6.9 4.1 0.0

NorGPT-3B 8.8 8.5 31.6 33.8 25.2 2.8 7.4 10.9 21.6 24.3 20.0 4.0

Viking-7B 11.2 5.5 16.5 29.8 31.9 0.0 10.5 3.0 16.4 25.7 24.2 0.0

Viking-13B 11.1 1.7 6.0 23.7 36.3 0.0 9.8 0.0 4.3 19.6 28.8 0.4

Mistral-Nemo-12B 13.4 26.4 41.5 35.6 44.9 2.9 12.4 18.2 30.0 30.3 30.9 3.6

Table 13: Complete results on NorSumm summarization (Bokmål and Nynorsk versions) We show
the detailed results for each evaluated model and prompt template. The best results for each column are
boldfaced, the overall best result is highlighted in blue.

Full results The complete evaluation on NorSumm (both Bokmål and Nynorsk variants) is provided in
Table 13.

B.8 Grammatical error correction (ASK-GEC)

This tasks tests how do language models understand more low-level features of the Norwegian language.
We use the ASK-GEC dataset from Jentoft (2023) that is based on corrected essays of Norwegian language
learners.

Inference setup The model is given a test example formatted according to a prompt template; given this
input, it then generates the answer via a greedy-search decoding strategy.

Performance metric We use the F0.5-score to measure the amount of successfully fixed correction-spans.
These spans are heuristically identified by the ERRANT system (Bryant et al., 2017). More details about
using this metric for Norwegian grammatical error corrections can be found in Jentoft (2023).

Prompt templates We used the following five prompt templates for grammatical error correction:

Prompt A:

1 Tekst: {$text}

2 Korreksjon: {$prediction}

Prompt B:

1 Tekst: {$text}

2 Rettet versjon: {$prediction}

Prompt C:

1 Skriv om følgende tekst slik at den blir grammatisk korrekt: {$text}

2 Korreksjon: {$prediction}

Prompt D:

1 Original versjon: {$text}

2 Korrekturlest og rettet versjon: {$prediction}

Prompt E:

1 Rett opp grammatiske feil i denne teksten: {$text}

2 Korreksjon: {$prediction}
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0-shot 1-shot 16-shot

Prompt template A B C D E A B C D E A B C D E

NorMistral-11B 2.8 16.6 39.9 26.8 38.8 38.6 41.8 43.3 45.2 44.7 52.6 52.3 50.4 51.5 51.4

NorwAI-Mistral-7B 0.0 0.0 22.2 0.0 0.0 37.2 39.1 45.3 42.8 46.1 51.9 52.4 52.5 53.2 52.7

NorwAI-Llama2-7B 0.0 0.2 13.3 0.0 27.1 38.5 40.5 46.2 44.2 45.0 51.1 51.3 51.2 51.4 51.1

NorMistral-7B-warm 2.1 0.0 11.1 33.6 18.7 34.4 38.0 42.8 41.2 41.1 48.0 48.2 48.7 48.2 48.5

NorGPT-3B 0.2 0.0 0.2 1.4 0.3 0.4 0.4 0.4 0.4 0.4 0.9 1.3 1.8 1.2 1.5

Viking-7B 2.8 1.2 23.1 0.0 11.4 29.9 37.0 40.6 39.9 38.9 50.7 51.0 50.4 51.2 50.1

Viking-13B 3.1 0.0 37.8 25.1 34.8 42.6 43.5 45.7 44.8 46.0 52.4 52.0 51.9 52.4 51.8

Mistral-Nemo-12B 14.7 18.6 36.5 16.9 12.3 38.8 36.8 37.5 38.6 39.6 43.9 43.7 42.7 43.7 43.1

Table 14: Complete results on grammatical error correction We show the detailed results for each
evaluated model, few-shot setting and prompt template. The best results for each column are boldfaced,
the overall best result for each few-shot setting is highlighted in blue.

Full results The complete evaluation on ASK-GEC is provided in Table 15.

B.9 Language identification (SLIDE)
We use the Scandinavian language identification and evaluation (SLIDE) from https://github.com/ltgoslo/

slide. This dataset consists of sentences manually annotated with the language they are written in:
Norwegian Bokmål, Nynorsk, Danish or Swedish (we filtered out the examples that are not written in any
Scandinavian language). The sentences can be annotated with multiple language labels if applicable.

Inference setup This task is solved as classification – the label with the highest probability given the
prompt (estimated by the evaluated language model) is chosen as the predicted label. The few-shot
demonstrations are randomly sampled from the SLIDE validation set.

Performance metric We test whether a language model is able to correctly predict one of the (potentially
multiple) languages a sentence is written in. We thus adopt the loose accuracy metric from SLIDE, where
a single-label prediction is considered to be correct if is in the set of gold language labels.

Prompt templates We used the following five prompt templates for testing all language models on
grammatical error correction. The few-shot demonstrations are separated by double newlines \n\n.

Prompt A:

1 Tekst: {$text}

2 Korreksjon: {$prediction}

Prompt B:

1 Tekst: {$text}

2 Rettet versjon: {$prediction}

Prompt C:

1 Skriv om følgende tekst slik at den blir grammatisk korrekt: {$text}

2 Korreksjon: {$prediction}

Prompt D:

1 Original versjon: {$text}

2 Korrekturlest og rettet versjon: {$prediction}
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Prompt E:

1 Rett opp grammatiske feil i denne teksten: {$text}

2 Korreksjon: {$prediction}

Full results The complete evaluation on language identification is given in ??. Note that the majority
baseline on this task is 40.3% loose accuracy and the random baseline is 28.2%.

0-shot 1-shot 16-shot

Prompt template A B C D E A B C D E A B C D E

NorMistral-11B 74.0 41.5 55.7 62.6 53.1 78.8 60.8±0.7 80.6±0.2 80.6±0.4 58.7 97.9 95.6±0.2 94.6 97.0±0.3 98.2±0.1

NorwAI-Mistral-7B 65.8 54.0 38.8 69.6 66.9 74.8 39.2 47.9 76.9 64.5 95.1 69.9 90.4 92.0 95.7

NorwAI-Llama2-7B 69.8 37.4 42.9 49.4 59.0 65.4 33.0 40.8 54.5 43.1 93.5 74.1 67.0 77.4 87.5

NorMistral-7B-warm 87.5 47.7 42.2 65.4 61.6 85.7±0.4 40.3 63.5 72.2 73.2±0.4 98.1±0.1 92.2 96.2±0.3 92.1 97.3

NorGPT-3B 36.6 24.0 49.9 43.9 42.6 37.7 35.6 32.4 32.4 32.4 39.0 27.9 40.0 40.3 40.2

Viking-7B 74.4 42.7 41.0 34.7 32.8 46.2 37.1 35.2 39.5 36.0 77.2 47.4 44.3 58.5 52.6

Viking-13B 71.5 59.5 41.0 41.9 32.4 55.1 36.4 37.8 43.8 34.1 84.4 62.0 56.8 79.1 65.3

Mistral-Nemo-12B 68.3 41.7 50.3 48.5 40.7 63.8 56.0 74.3 58.6 45.8 85.9 84.6 86.6 87.3 86.1

Table 15: Complete results on Scandinavian language identification We show the detailed results for
each evaluated model, few-shot setting and prompt template. As the few-shot demonstrations are sampled
randomly, we repeat them five times and show the mean accuracy as well as the standard deviation
(rendered as superscript). The best results for each column are boldfaced, the overall best result for each
few-shot setting is highlighted in blue.

B.10 Translation
Inference setup This task is solved as generation via prefix prompting – the model is given a prompt
without the $prediction suffix and then it autoregressively generates a prediction until outputting a newline.
We use simple greedy search to generate the output.

Performance metric We measure the translation quality with SacreBLEU scores (Post, 2018) with
signature BLEU+case.mixed+numrefs.1+smooth.exp+tok.intl+version.1.2.20 as the main metric.
We also provide chrF++ scores as an additional metric (Popović, 2017).

B.10.1 English to Bokmål translation
Prompt templates We used the following four prompt templates for testing all language models on
translation to Northern Sámi.

Prompt A:

1 Engelsk: {$text}

2 Bokmål: {$prediction}

Prompt B:

1 Oversett følgende setning til Bokmål: {$text}

2 Bokmål: {$prediction}

Prompt C:

1 Gi en oversettelse til Bokmål for denne setningen: {$text}

2 Bokmål: {$prediction}

Prompt D:

1 Hva blir "{$text}" på Bokmål?

2 Bokmål: {$prediction}
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Full results The complete evaluation on translation to Bokmål is given in Table 18 (BLEU scores in the
top sub-table and chrF++ scores below).

BLEU SCORES

0-shot 1-shot 16-shot

Prompt template A B C D A B C D A B C D

NorMistral-11B 54.9 51.6 43.1 44.5 58.2±0.6 58.5±0.6 58.2±0.6 58.1±0.6 58.6±0.6 58.8±0.6 58.3±0.6 58.5±0.6

NorwAI-Mistral-7B 56.1 31.0 52.8 50.9 58.2±0.6 58.1±0.6 58.1±0.6 57.7±0.7 58.4±0.6 58.7±0.6 58.5±0.6 58.2±0.6

NorwAI-Llama2-7B 35.5 23.9 23.6 44.8 55.8±0.7 57.0±0.6 57.3±0.6 56.1±0.7 57.8±0.6 57.9±0.6 57.8±0.6 57.5±0.6

NorMistral-7B-warm 54.7 53.1 0.0 51.6 55.9±0.7 56.5±0.6 56.6±0.6 56.2±0.7 57.0±0.7 57.0±0.6 57.2±0.7 56.4±0.6

NorGPT-3B 0.1 0.1 0.1 0.2 0.0±0.0 0.2±0.0 0.1±0.0 0.4±0.0 0.2±0.0 1.8±0.1 0.7±0.0 0.9±0.0

Viking-7B 53.4 35.0 42.1 1.4 54.2±0.6 58.3±0.7 57.2±0.7 56.7±0.7 58.7±0.7 59.6±0.6 59.7±0.6 59.4±0.7

Viking-13B 24.2 58.2 14.9 1.9 58.6±0.7 58.3±0.7 58.7±0.8 57.5±0.7 59.5±0.6 60.0±0.6 59.9±0.6 59.9±0.7

Mistral-Nemo-12B 44.3 46.1 44.3 45.5 48.5±0.6 48.9±0.6 48.9±0.6 48.9±0.6 49.3±0.6 49.5±0.6 49.2±0.6 49.5±0.6

CHRF++ SCORES

0-shot 1-shot 16-shot

Prompt template A B C D A B C D A B C D

NorMistral-11B 71.7 71.4 67.2 69.3 73.6±0.4 73.8±0.4 73.8±0.4 73.4±0.4 73.8±0.4 74.0±0.4 73.8±0.4 73.7±0.4

NorwAI-Mistral-7B 71.1 55.5 68.8 70.8 73.0±0.4 73.2±0.4 73.2±0.4 72.6±0.5 73.4±0.4 73.7±0.4 73.6±0.4 73.4±0.4

NorwAI-Llama2-7B 59.3 40.8 39.9 64.1 71.3±0.4 72.1±0.4 72.4±0.4 71.2±0.5 72.7±0.4 72.9±0.4 72.9±0.4 72.6±0.4

NorMistral-7B-warm 69.6 67.5 9.6 66.3 70.9±0.4 71.6±0.4 71.6±0.4 71.3±0.4 72.0±0.4 72.3±0.4 72.2±0.4 72.0±0.4

NorGPT-3B 9.8 8.1 9.7 9.5 4.4±0.1 4.8±0.1 4.4±0.1 6.4±0.1 4.4±0.1 12.3±0.3 7.9±0.1 8.9±0.1

Viking-7B 70.8 51.8 63.6 12.5 70.6±0.4 72.9±0.7 72.3±0.5 71.9±0.5 73.3±0.5 74.3±0.4 74.4±0.4 74.1±0.5

Viking-13B 59.4 72.8 46.8 15.5 73.3±0.5 74.0±0.4 73.6±0.5 72.6±0.5 74.2±0.4 74.6±0.4 74.5±0.4 74.5±0.4

Mistral-Nemo-12B 61.4 64.2 61.7 63.4 65.8±0.5 66.5±0.4 66.4±0.4 66.6±0.4 66.8±0.4 67.0±0.4 66.9±0.4 67.0±0.4

Table 16: Complete results on translation from English to Norwegian Bokmål We show the detailed
results for each evaluated model, few-shot setting and prompt template. As the few-shot demonstrations
are sampled randomly, we repeat them five times and show the mean accuracy as well as the standard
deviation (rendered as superscript). The best results for each column are boldfaced, the overall best result
for each few-shot setting is highlighted in blue.

B.10.2 English to Nynorsk translation
Prompt templates We used the following five prompt templates for testing all language models on
translation to Nynorsk.

Prompt A:

1 Engelsk: {$text}

2 Nynorsk: {$prediction}

Prompt B:

1 Omsett følgande setning til Nynorsk: {$text}

2 Nynorsk: {$prediction}

Prompt C:

1 Gje ei Nynorsk omsetjing av denne setninga: {$text}

2 Nynorsk: {$prediction}

606



Prompt D:

1 Kva blir "{$text}" på Nynorsk?

2 Nynorsk: {$prediction}

Full results The complete evaluation on translation to Nynorsk is given in Table 18 (BLEU scores in
the top sub-table and chrF++ scores below).

BLEU SCORES

0-shot 1-shot 16-shot

Prompt template A B C D A B C D A B C D

NorMistral-11B 36.2 6.9 20.1 39.3 46.3±1.6 45.4±1.5 45.2±1.4 44.7±1.5 46.5±1.6 48.0±1.6 46.1±1.6 47.3±1.6

NorwAI-Mistral-7B 46.0 44.7 42.3 40.0 46.7±1.6 46.7±1.6 46.6±1.7 45.9±1.6 47.4±1.8 46.5±1.8 46.1±1.6 46.5±1.7

NorwAI-Llama2-7B 43.9 23.2 0.0 28.8 45.9±1.7 46.7±1.8 46.7±1.7 45.2±1.7 47.4±1.7 47.2±1.7 47.3±1.8 47.0±1.8

NorMistral-7B-warm 43.5 31.2 15.2 11.7 43.7±1.7 44.6±1.8 43.5±1.6 43.5±1.8 43.6±1.8 44.7±1.7 43.9±1.7 44.2±1.6

NorGPT-3B 1.5 2.4 0.8 1.6 0.1±0.0 0.2±0.0 0.1±0.0 0.4±0.1 0.2±0.0 0.7±0.1 2.6±0.5 0.8±0.1

Viking-7B 26.7 44.3 16.5 1.9 45.0±1.7 44.4±1.6 43.7±1.7 42.3±1.6 44.5±1.6 43.9±1.5 44.5±1.6 45.6±1.6

Viking-13B 42.5 31.6 11.1 1.7 45.2±1.7 45.2±1.7 44.8±1.7 42.4±1.6 45.2±1.7 45.1±1.6 45.5±1.7 45.6±1.7

Mistral-Nemo-12B 33.0 33.2 33.9 29.2 33.6±1.5 34.7±1.4 33.9±1.3 35.1±1.5 35.6±1.6 35.4±1.7 35.3±1.7 35.7±1.6

CHRF++ SCORES

0-shot 1-shot 16-shot

Prompt template A B C D A B C D A B C D

NorMistral-11B 62.1 32.4 53.3 62.2 65.1±1.1 64.6±1.1 64.4±1.0 63.9±1.1 65.2±1.1 66.5±1.2 65.7±1.1 65.9±1.1

NorwAI-Mistral-7B 64.9 62.6 60.8 63.4 65.4±1.1 64.9±1.1 64.8±1.1 64.5±1.1 65.7±1.2 65.1±1.2 65.0±1.1 65.1±1.1

NorwAI-Llama2-7B 63.5 41.9 3.4 45.7 64.1±1.2 64.8±1.1 64.8±1.1 63.5±1.1 65.7±1.2 65.8±1.1 65.7±1.2 65.2±1.2

NorMistral-7B-warm 62.3 48.1 32.6 29.0 62.7±1.3 63.6±1.3 63.0±1.2 63.0±1.3 63.6±1.2 64.6±1.1 64.4±1.1 63.9±1.2

NorGPT-3B 15.5 16.6 12.2 16.9 4.9±0.2 4.4±0.2 3.3±0.2 7.7±0.5 4.0±0.2 9.2±0.5 15.0±1.1 8.0±0.4

Viking-7B 56.9 63.6 47.8 15.1 64.1±1.2 64.4±1.1 64.6±1.1 62.8±1.2 64.5±1.1 64.3±1.0 64.5±1.1 65.2±1.1

Viking-13B 62.9 60.4 44.0 14.9 64.7±1.1 64.8±1.1 64.4±1.1 61.9±1.2 64.6±1.1 64.9±1.1 65.0±1.1 65.3±1.1

Mistral-Nemo-12B 55.4 54.2 55.5 53.8 56.3±1.1 57.0±1.1 56.4±1.0 56.9±1.1 57.3±1.2 57.2±1.2 57.2±1.2 57.5±1.2

Table 17: Complete results on translation from English to Nynorsk We show the detailed results for
each evaluated model, few-shot setting and prompt template. As the few-shot demonstrations are sampled
randomly, we repeat them five times and show the mean accuracy as well as the standard deviation
(rendered as superscript). The best results for each column are boldfaced, the overall best result for each
few-shot setting is highlighted in blue.

B.10.3 English to Northern Sámi translation
We source the data from the English-Sámi parallel corpus from Tatoeba (Tiedemann, 2020), specifically
the latest v2023-04-12 revision avaiable on HuggingFace at https://hf.co/datasets/Helsinki-NLP/tatoeba.
We deduplicate this corpus (both on the source and target side) and remove the empty entries – obtaining
53 examples in total.

Prompt templates We used the following five prompt templates for testing all language models on
translation to Northern Sámi.

Prompt A:

1 Eaŋgalsgiella: {$text}

2 Davvisámegiella: {$prediction}

607

https://hf.co/datasets/Helsinki-NLP/tatoeba


Prompt B:

1 Engelsk: {$text}

2 Samisk: {$prediction}

Prompt C:

1 Oversett følgende setning til nordsamisk: {$text}

2 Nordsamisk: {$prediction}

Prompt D:

1 Gi en oversettelse til nordsamisk for denne setningen: {$text}

2 Nordsamisk: {$prediction}

Prompt E:

1 Hva blir "{$text}" på nordsamisk?

2 Nordsamisk: {$prediction}

Full results The complete evaluation on translation to Sámi is given in Table 18 (BLEU scores in the
top sub-table and chrF++ scores below).

BLEU SCORES

0-shot 1-shot 16-shot

Prompt template A B C D E A B C D E A B C D E

NorMistral-11B 31.5 31.0 14.8 23.2 14.7 24.8±5.1 44.1±1.2 15.7±1.6 20.2±9.4 33.7±8.2 45.5±2.2 48.8±2.4 49.0±2.1 48.8±2.3 50.4±0.9

NorwAI-Mistral-7B 21.2 25.0 24.0 16.7 20.7 26.6±1.7 24.7±2.2 24.4±1.6 24.2±2.4 25.0±1.1 24.8±2.7 25.1±2.6 26.2±1.8 26.8±2.0 27.5±2.3

NorwAI-Llama2-7B 16.9 10.7 3.3 0.0 15.4 24.7±2.1 23.5±2.7 24.5±2.1 22.6±2.5 22.5±1.8 26.6±2.3 27.6±2.0 27.9±1.9 27.6±2.1 28.5±1.6

NorMistral-7B-warm 12.2 5.7 0.0 0.0 0.0 11.2±3.1 10.5±1.9 12.2±3.2 10.5±2.0 8.4±0.5 14.9±2.2 17.2±1.9 17.9±1.5 15.9±1.2 18.5±2.5

NorGPT-3B 0.0 0.0 0.0 0.0 0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0

Viking-7B 0.0 0.0 0.0 0.0 0.0 0.0±0.0 1.0±2.3 0.7±1.5 0.7±1.6 0.5±1.1 4.6±2.6 6.8±1.8 6.7±2.6 7.8±1.6 4.3±3.9

Viking-13B 0.0 0.0 0.0 0.0 0.0 0.3±0.7 3.3±3.2 2.3±2.1 4.3±4.0 1.8±1.9 9.8±1.1 11.6±1.9 11.5±1.9 11.4±2.0 11.2±1.2

Mistral-Nemo-12B 0.0 0.0 0.0 0.0 0.0 0.0±0.0 1.4±2.0 0.8±1.8 0.9±2.0 0.9±1.9 3.9±2.5 6.5±2.2 4.9±3.2 5.7±3.8 6.1±1.4

CHRF++ SCORES

0-shot 1-shot 16-shot

Prompt template A B C D E A B C D E A B C D E

NorMistral-11B 51.8 58.8 49.5 58.2 47.3 55.5±2.4 66.7±0.8 54.6±1.8 56.9±5.4 63.2±3.7 64.9±1.2 67.2±0.6 67.9±1.0 67.7±1.4 69.6±0.9

NorwAI-Mistral-7B 44.9 45.8 53.9 50.6 49.6 50.7±1.3 50.8±1.5 50.8±0.8 51.5±1.1 50.4±0.7 51.0±1.7 51.7±1.7 52.3±1.7 52.4±1.2 52.8±1.6

NorwAI-Llama2-7B 37.3 30.0 46.8 44.1 39.3 45.6±2.0 44.2±3.4 48.1±2.3 46.6±1.7 44.0±1.4 48.4±1.9 50.2±1.3 50.4±1.6 50.2±1.4 50.4±1.1

NorMistral-7B-warm 27.4 22.5 21.4 26.8 23.8 32.3±2.4 30.9±1.9 32.7±2.2 32.7±1.5 29.9±0.7 38.1±3.7 37.7±3.5 38.9±1.5 37.2±1.5 39.4±2.1

NorGPT-3B 2.7 3.0 3.0 2.8 2.8 2.8±0.1 2.8±0.1 2.8±0.1 2.8±0.1 2.9±0.1 2.9±0.1 2.6±0.1 3.0±0.1 3.0±0.1 3.1±0.1

Viking-7B 10.4 11.5 11.5 11.7 8.1 10.3±0.9 13.0±1.7 12.3±1.5 12.7±1.1 12.4±1.3 18.0±1.3 19.6±0.7 19.1±1.3 19.7±1.0 19.5±1.6

Viking-13B 11.3 10.8 8.0 10.6 6.2 10.9±0.7 14.9±1.4 16.2±0.8 16.1±0.7 15.2±1.5 24.5±2.5 24.5±2.0 24.9±2.2 24.0±2.9 25.2±1.7

Mistral-Nemo-12B 11.5 12.1 12.2 12.4 10.5 14.2±2.0 14.2±0.9 15.3±1.1 14.8±1.3 14.9±0.9 21.9±0.8 22.3±1.7 22.6±1.5 22.4±1.6 23.0±1.5

Table 18: Complete results on translation from English to Northern Sámi We show the detailed
results for each evaluated model, few-shot setting and prompt template. As the few-shot demonstrations
are sampled randomly, we repeat them five times and show the mean accuracy as well as the standard
deviation (rendered as superscript). The best results for each column are boldfaced, the overall best result
for each few-shot setting is highlighted in blue.
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Abstract
This study challenges the current para-
digm shift in machine translation, where
large language models (LLMs) are gain-
ing prominence over traditional neural ma-
chine translation models. We focus on
English-to-Faroese translation. We com-
pare the performance of fine-tuned multi-
lingual models, LLMs (GPT-SW3, Llama
3.1), and closed-source models (Claude
3.5, GPT-4). Our findings show that a
finetuned NLLB model outperforms most
LLMs, including larger models, in both
automatic and human evaluations. We
also demonstrate the effectiveness of us-
ing LLM-generated synthetic data for fine-
tuning. While closed-source models like
Claude 3.5 perform best overall, the com-
petitive performance of smaller, finetuned
models suggests a nuanced approach to
low-resource machine translation. Our re-
sults highlight the potential of specialized
multilingual models and the importance
of language-specific knowledge. We dis-
cuss implications for resource allocation
in low-resource settings and suggest future
directions, including targeted data creation
and comprehensive evaluation methods.

1 Introduction

The recent rise of LLMs has introduced new
possibilities in machine translation (Lyu et al.,
2024, 2023). LLMs demonstrated impressive
performance across various language pairs, of-
ten through the use of in-context learning (Brown
et al., 2020). These new opportunities often come
at a price in terms of computational resources:
LLMs have massive requirements in terms of pre-
training data and high-end hardware. Hardware
requirements can sometimes be mitigated by us-
ing closed-source LLM APIs (e.g., OpenAI API).

However, this approach introduces issues related
to transparency and license limitations.

These limitations and high requirements dis-
proportionately affect low-resource languages and
communities. For such languages, lack of re-
sources can often extend beyond data scarcity and
effectively imply lack of computational infrastruc-
ture and expertise, rendering the use of APIs of-
fered by tech giants the only available option. This
is the case for Faroese, an Insular Scandinavian
language and official language of the Faroe Is-
lands.

Neural machine translation (NMT) models are
less demanding in terms of computational re-
sources. However, due to their more limited rea-
soning capabilities compared to LLMs, they often
underperform in low-resource settings. Nonethe-
less, there are potential strategies to leverage the
linguistic knowledge of an LLM in conjunction
with lightweight MT models to optimize perfor-
mance while minimizing resource requirements.
One such approach is to use LLMs to augment par-
allel datasets, allowing a lighter MT model to be
trained on this synthetic data (Yang and Nicolai,
2023).

In NLP, efficiency encompasses various factors
like data requirements, model size, training costs,
and performance metrics. This paper focuses on
the relationship between model performance and
size, a crucial consideration for real-world ap-
plications. We explore different approaches to
English-to-Faroese machine translation, investi-
gating how various techniques balance translation
quality with model compactness. Our research
aims to shed light on the trade-offs between per-
formance and model size in this specific language
pair. We will compare the following approaches,
in the context of English to Faroese MT:

• Using LLMs in a few-shot learning setting.

• Fine-tuning LLMs for translation (English-
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to-Faroese).

• Using a multilingual NMT out of the box.

• Fine-tuning a multilingual model on English-
Faroese parallel data.

• Fine-tuning a multilingual model on English-
to-Faroese parallel data and LLM-generated
synthetic parallel data.

These strategies will be compared based on au-
tomatic and human evaluation.We will be compar-
ing the following open-source LLMs: Llama 3.1,
(Meta) (Dubey et al., 2024)in its 8B version, and
GPT-SW3, a generative model for the Nordic lan-
guages, primarily Swedish, (Ekgren et al., 2022,
2024), in its 1.3, 6.7 and 40B version.

Their performance will be compared to closed-
source models such as Claude 3.5 Sonnet (An-
thropic, 2024) by Anthropic, GPT-4 Turbo (Ope-
nAI et al., 2024) and GPT-4o (OpenAI, 2024) by
OpenAI. We compare the LLMs with No Lan-
guage Left Behind (NLLB)(Team, 2024), an open-
source NMT multilingual model covering, among
other under-resourced languages, Faroese. All
new models produced via fine-tuning in this paper
are now publicly available.1

2 Background and related work

2.1 LLMs for translation

The emergence of LLMs has challenged the domi-
nance of sequence-to-sequence transformer-based
models in the field of machine translation (MT)
(Lyu et al., 2024; Hendy et al., 2023; Robin-
son et al., 2023). LLMs like initially observed
for GPT-3 can perform translations with mini-
mal input through in-context learning (ICL), sig-
nificantly reducing the data requirements typi-
cally needed for the training process. This abil-
ity to achieve state-of-the-art results with mini-
mal data has highlighted the potential of LLMs
as a promising solution for low-resource transla-
tion. A few studies have investigated methods to

1https://huggingface.co/barbaroo/
llama3.1_translate_8B,
https://huggingface.co/barbaroo/gptsw3_
translate_1.3B,
https://huggingface.co/barbaroo/gptsw3_
translate_6.7B,
https://huggingface.co/barbaroo/nllb_
200_1.3B_en_fo,
https://huggingface.co/barbaroo/nllb_
200_600M_en_fo

enhance LLMs’ MT capabilities in low-resource
settings, employing techniques such as layer adap-
tation and fine-tuning (Tran et al., 2024), retrieval-
augmented prompting (Merx et al., 2024), inte-
gration with rule-based systems (Coleman et al.,
2024), and synthetic parallel data generation with
an LLM (Yang and Nicolai, 2023). Addition-
ally, LLMs have demonstrated remarkable perfor-
mance as evaluators of translation quality, achiev-
ing near-human accuracy, although these results
have been primarily studied in high-resource lan-
guages (Karpinska and Iyyer, 2023; Fernandes
et al., 2023; Huang et al., 2024; Kocmi and Fe-
dermann, 2023). However, the effectiveness of
LLMs in low-resource contexts, such as Faroese,
remains relatively underexplored. Some studies
suggest that LLM-driven translation may be less
competitive for low-resource languages (Robinson
et al., 2023), when compared to their higher re-
source counterparts.

2.2 Machine Translation for Faroese

In recent years, a few notable efforts have focused
on improving coverage for Faroese in machine
translation (MT). A key initiative was the creation
of Sprotin’s parallel corpus (Mikkelsen, 2021),
which includes around 100,000 short human-
translated English-Faroese sentences. This cor-
pus supported Faroese’s integration into Microsoft
Translator and an Icelandic Machine Translation
platform called Vélþýðing, by the Icelandic com-
pany Miðeind. The rise of multilingual MT mod-
els has led to initiatives like Google’s MADLAD
400 (Kudugunta et al., 2023) and Meta’s No Lan-
guage Left Behind (NLLB) (Team, 2024), tar-
geting low-resource languages such as Faroese.
Since July 2024, Faroese has also been included
in Google Translate (Bapna et al., 2022). The lin-
guistic proximity of Faroese to its higher-resource
relatives, the Scandinavian languages, makes it
an ideal candidate for transfer learning (Snæb-
jarnarson et al., 2023). GPT-SW3, an LLM
trained on English and Scandinavian languages,
has demonstrated significant potential for under-
standing Faroese (Scalvini and Debess, 2024).
Likewise, GPT-4 has shown promising results in
Faroese sentiment analysis (Debess et al., 2024)
and Faroese-to-English translation (Simonsen and
Einarsson, 2024).

610

https://huggingface.co/barbaroo/llama3.1_translate_8B
https://huggingface.co/barbaroo/llama3.1_translate_8B
https://huggingface.co/barbaroo/gptsw3_translate_1.3B
https://huggingface.co/barbaroo/gptsw3_translate_1.3B
https://huggingface.co/barbaroo/gptsw3_translate_6.7B
https://huggingface.co/barbaroo/gptsw3_translate_6.7B
https://huggingface.co/barbaroo/nllb_200_1.3B_en_fo
https://huggingface.co/barbaroo/nllb_200_1.3B_en_fo
https://huggingface.co/barbaroo/nllb_200_600M_en_fo
https://huggingface.co/barbaroo/nllb_200_600M_en_fo


3 Methods

3.1 Experiments

In this study, we evaluate machine translation per-
formance for English into low-resource Faroese
of various models: 5 LLM models (GPT-SW3,
Llama 3.1, GPT-4 Turbo, GPT-4o, Claude 3.5
Sonnet) and one multilingual MT model cover-
ing Faroese in its pre-training phase, NLLB. We
chose NLLB as representative of multilingual MT
because it demonstrated the highest potential in
earlier studies (Simonsen, 2024). Since the goal
of this paper is to analyze which settings are best
for open-source MT in a low-resource scenario,
we mostly preferred smaller, less computation-
ally costly versions of the models. We utilize
NLLB in its 600M and 1.3B parameters, and fine-
tune LLMs that have sizes below 10B parame-
ters, as these would be the ones most likely to
be fine-tuned and deployed on common, commer-
cial hardware. In order to investigate different
modalities to exploit LLM language capabilities in
machine translation, we fine-tune the MT model,
NLLB, on LLM generated parallel sentences, in
addition to the available human made corpus. This
approach is presented as an alternative to either di-
rectly deploying the LLM in a few-shot manner, or
instruct fine-tuning it directly for the desired trans-
lation direction. We evaluate these models both
automatically and by human evaluation, for which
we build an openly available evaluation platform
online2. The performance of these open-source
models is also benchmarked against that of three
of the most popular closed-source models (GPT-4
Turbo, GPT-4o and Claude 3.5 Sonnet), for com-
parison.

3.2 Datasets

Faroese, as a low-resource language, lacks sub-
stantial parallel datasets for machine translation.
The most comprehensive resource is the Sprotin
corpus (Mikkelsen, 2021), though it may miss
Faroese-specific cultural elements since it was
translated from English. Recent studies have
explored using LLMs to generate synthetic par-
allel datasets, like the fo_en_synthetic 3

dataset (Scalvini and Debess, 2024), created
through back-translation with GPT-SW3, contain-

2https://github.com/Haffi112/
error-span-labelling

3https://huggingface.co/datasets/
barbaroo/fo_en_synthetic

ing 70,000 sentences from the BLARK corpus
(Simonsen et al., 2022).

The inclusion of Faroese in Meta’s No Lan-
guage Left Behind (NLLB) initiative (Team,
2024) enabled the language’s integration into the
FLORES-200 benchmark for machine translation.
Currently, FLORES-200 is the only available eval-
uation benchmark for Faroese translation, mak-
ing it our choice for the automatic comparison
of model performance. While FLORES-200 is
a well-established benchmark in the field, it has
known limitations, such as its domain composition
and a narrow representation of cultural elements,
given that it was originally translated from En-
glish (Simonsen and Einarsson, 2024). To address
this, we manually compiled a small dataset of
200 English sentences for human evaluation. The
dataset consists of 68 sentences sourced from doc-
uments produced by the University of the Faroe
Islands (Strategic Plan 2025-2030), 56 from the
webpage of the Nordic Council 4 and 92 sen-
tences from international news outlets such as
BBC, CNN, and Al Jazeera. The dataset is pub-
licly available on Hugging Face, together with all
synthetic translations produced in the context of
this paper.5 All sentences were guaranteed to be
created within a specific recent time period, ensur-
ing that none of the data had been used in the train-
ing of any models included in the study. The inclu-
sion of sentences from Faroese and Nordic-related
contexts aimed to better represent Faroese-specific
cultural elements, which are typically underrepre-
sented in datasets despite being highly relevant to
the end users of Faroese machine translation prod-
ucts. For example, using sentences from locally
relevant contexts included concepts and named en-
tities that actually have a Faroese translation, as
they are Faroese or Nordic by origin (e.g. the lo-
cal institution ’Statistics Faroe Islands’ - Hagstova
Føroya). This is opposed to many concepts or enti-
ties in sentences from international sources, where
the translation of such can be difficult due to the
entities not having a direct Faroese translation, as
they are often irrelevant to Faroese society (e.g.
the concept of a ’US Governor’, which has no
Faroese equivalent). These foreign concepts make
evaluation more complex. Furthermore, using lo-
cally or regionally sourced data together with in-
ternationally sourced data enables evaluating con-

4https://www.norden.org/en
5https://huggingface.co/datasets/

barbaroo/news_en_fo
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tent for real-use Faroese scenarios.

3.3 Prompting LLMs for English to Faroese
translation

All LLMs used in this study were prompted in a
few-shot fashion. Each translation query consisted
of a prompt presenting the model with 5 randomly
selected examples of English to Faroese transla-
tion. Examples were selected from a small sub-
set of the Sprotin corpus comprising of 25 manu-
ally selected parallel sentences. These sentences
were selected by a Faroese linguist based on the
following criteria: 1) the meaning of the sentence
is fully preserved in its translation 2) all words
have unambiguous meaning, 3) they present sim-
ple syntax (declarative sentences or interrogative
sentences, excluding subordinate clauses or sen-
tences), 4) there are no typographical and inflec-
tional errors. Two different prompting strategies
were used for open-source (GPT-SW3 and Llama)
and closed-source models (GPT-4o, Claude 3.5
Sonnet). These distinction was made in order to
provide each model with an optimal prompting
format.

3.4 Open-source models
We used the base versions of the Llama 3.1 and
GPT-SW3 models. To facilitate model compre-
hension, we framed the prompt as a language
completion task. Each example was structured as
follows:
The English sentence {english_sentence} is trans-
lated to Faroese as {faroese_sentence}

The query followed the same format but omit-
ted the Faroese translation:
The English sentence {english_sentence} is trans-
lated to Faroese as

This approach minimized the number of failed
translation outputs.

3.5 Closed-source models
Closed-source models (GPT-4 Turbo, GPT-4o and
Claude 3.5 Sonnet) were prompted via their re-
spective APIs. The prompt structure was then
adapted to the API format, with a system prompt
containing the few-shot examples and the instruc-
tions of the task (When I give you a sentence in
English, you translate it into Faroese. Only an-
swer with a translation.) and a translation prompt
containing the translation query.

3.6 Fine-tuning of models for English to
Faroese translation

All open-source models in this study, except GPT-
SW3 40B, were also fine-tuned for English-to-
Faroese translation. For the LLMs, fine-tuning
was conducted for three epochs with early stop-
ping, using the Sprotin corpus. We adopted the Al-
paca prompting format for both Llama and GPT-
SW3, which includes an instruction ("Translate
this sentence from English to Faroese"), an input
(the English sentence), and an output (the Faroese
sentence). Training was performed in 8-bit pre-
cision to reduce computational resource require-
ments. Two versions of NLLB, with 0.6 billion
and 1.3 billion parameters, were also fine-tuned
for English-to-Faroese translation. The training
was carried out in two settings: (1) using only
the Sprotin corpus and (2) using a combination of
the Sprotin corpus and the fo_en_synthetic
dataset. These different settings were chosen to
demonstrate the potential benefits of incorporat-
ing LLM-generated parallel sentences to improve
translation quality. The complete training config-
uration can be found in our GitHub repository.6

3.7 Evaluation

Automatic evaluation is performed using the met-
rics BLEU, ChrF and BERTscore. We do not use
more advanced neural metrics, as these are not cur-
rently available for Faroese.

For human evaluation, we adopted the recently
developed Error Span Annotation (ESA) metric
proposed by Kocmi et al. (2024). ESA combines
elements from two established methods: the over-
all scoring approach of Direct Assessment (DA)
and the error severity span markings from Multidi-
mensional Quality Metrics (MQM). In their study,
Kocmi et al. (2024) compared ESA to MQM
and DA across several MT systems. Their find-
ings demonstrated that ESA offers a more cost-
effective and time-efficient alternative to MQM
without compromising evaluation quality. The
ESA operates with a dual error system, which
is less complex to the annotator compared to
the multiple error categories and subcategories of
MQM.

We created an annotation user interface based
on the task description in Kocmi et al. (2024). Fig-
ure 1 shows an example from the interface. The

6https://github.com/barbaroo/finetune_
translation
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Figure 1: The annotation interface. Annotators
were presented with the original text along with
four translations (three shown here). The annota-
tors mark any segment and are prompted to label
it minor (pink) or major (orange). The annotators
assign an overall score (1-100) to each translation
(blue). For each translation, the annotators can op-
tionally mark missing elements as major or minor.

annotation process was the following: the anno-
tator is presented with the original English sen-
tence along with four Faroese translations. The
annotator then marks all the errors in the Faroese
translations and to each error assigns one of the
two severity levels: major or minor. Addition-
ally, there is a label for omission errors, called mi-
nor/major missing. After marking the errors, the
annotators assign each translation with an overall
score from 0 to 100. The overall score reflects
translation quality in a broad sense, covering ad-
equacy, fluency and comprehension.

3.8 Annotator Guidelines

For the human evaluation, we had two human
annotators, both linguists and native speakers of
Faroese. The annotators developed the annotation
guidelines together, using the original guidelines
from Kocmi et al. (2024) as a starting point and
adjusting it to fit the specific task. The full guide-
lines are shown below.

Approach
Annotators identified and marked error spans in
translations, assigning severity levels (major or
minor) to each. They then provided an indepen-
dent, holistic overall score that could consider fac-

tors beyond marked errors, such as fluency. Major
errors include significant meaning changes, mis-
translations, foreign words, untranslated named
entities, and synthetic words (constructed well-
structured and sensible words, that are however
not recognized in human language use). Minor
errors encompass slight meaning alterations, style
issues, grammatical mistakes, spelling errors, and
punctuation problems.

Other
• Grammatical errors spanning over multiple

words are marked as a single error

• If the source sentence has an error, annotators
consider this original error in their evaluation
of the translations

• If the source sentence is erroneous to an ex-
tent where translation output is completely
off, all 4 sentences are given 0% and no er-
rors are marked.

Scoring
This method provides two scores: an ESA over-
all score (0-100) and the ESAspans (number and
severity of errors). The ESAspans is calculated
as segment score, SEG, SCORE = −1 ∗ NMINOR
−4.8 ∗ NMAJOR, as suggested by Kocmi et al.
(2024). As the evaluations of overall score and
errors are meant to be performed independently,
these scores can be treated separately.

4 Results

4.1 Automatic evaluation

The results for automatic evaluation on the
FLORES-200 benchmark for all models can be
found in Table 1. For all three different scores,
we can see how closed-source Claude yields the
best results. However, NLLB 1.3B, in its fine-
tuned version (Sprotin + fo_en_synthetic )
scores second overall and first among open-source
models. A representation of the CHRF score with
respect to model size, for all models under 10B
is shown in Figure 2. As we can see the top
left corner, representing the best performing mod-
els with respect to their hardware requirements, is
dominated by fine-tuned NLLB models. NLLB
1.3 fine-tuned with the Sprotin corpus alone does
yield a better performance with respect to fine-
tuned LLMs, and with respect to GPT-4o as well.
The performance is anyway sensibly increased (1
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Figure 2: Translation performance for all models
(with fewer than 10 billion parameters) in the au-
tomatic evaluation, quantified by the CHRF score.
The performance is plotted against the model size,
expressed in billions of parameters.

ChrF point and 3 BLEU points) by adding LLM-
generated synthetic data. Llama 3.1 8 B does
yield the worst performance in a few-shot set-
ting, demonstrating however great potential for
improvement after fine-tuning, beating out of the
box NLLB and GPT-SW3 1.3 B.

4.2 Human evaluation

When picking models for human evaluation, we
picked the best models from each category accord-
ing to the automatic evaluation (see Table 1). We
picked the following four models: GPT-SW3 6.7B
- Sprotin, Llama 3.1 8B - Sprotin, NLLB 1.3B
- Sprotin + fo_en_synthetic and we also
picked the best performing closed-source model,
Claude 3.5 Sonnet. The results from the human
evaluation, in terms of ESA - overall quality score
- and ESAspans scores, are displayed in Table 2.
Claude 3.5 Sonnet shows the best performance
of the four, with NLLB getting the best results
for the open-source models. GPT-SW3, despite
the smaller size, does beat Llama 3.1 in both hu-
man and automatic evaluation, showing that fam-
ily language specific knowledge is an advantage
for models of comparable sizes.

Figure 3 shows the average ESA score for
the two annotators separately, showing that the
two annotators agree on how the models should
be ranked in terms of translation quality. The
ESAspans score can be deconstructed into different
error types, as shown in Figure 4. Here we see the

Figure 3: Average overall quality score (ESA) per
model, assigned by the two annotators. "Average
overall quality score (ESA) per model, as assigned
by the two annotators. All models in the plot
are shown in their fine-tuned versions (GPT-SW3
6.7B - Sprotin, Llama 3.1 8B - Sprotin, NLLB
1.3B - Sprotin + fo_en_synthetic), except
for Claude."

two best performing models, Claude and NLLB
1.3, have comparable number of minor and ma-
jor errors, with Claude performing better when it
comes to preserving content (missing content, ma-
jor and minor). NLLB and Claude do display com-
parable performance across the metrics. While the
ESA scores assigned to the two models are statisti-
cally distinct (p = 0.017, as calculated by Mann-
Whitney U test), the same cannot be said for the
ESAspans scores (p = 0.465). GPT-SW3 6.7B
seems to struggle the most with preserving content
due to the greatest number of missing content er-
rors. However, it is performing largely better than
Llama 3.1 8B when it comes to number of errors.

4.2.1 Annotator agreement
Figure 5 shows the distribution of ESA scores
from both annotators. While mostly overlapping,
the distributions have different variances (Levene
test, p = 1.34 × 10−28). Krippendorff’s al-
pha indicates moderate to strong agreement for
absolute ESA (0.58) and ESAspans (0.67) scores.
We also converted scores to rankings for each
translation query, assigning equal ranks for tied
scores. Kendall’s W analysis of these rankings
showed moderate to strong inter-annotator agree-
ment (ESA: 0.514, ESAspans: 0.518), further sup-
porting the reliability of our annotations.

4.3 Common Error Patterns

From a qualitative perspective the annotators re-
port some common error patterns that emerged in
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Model BLEU CHRF BERTScore (f1)

GPT-SW3 40 B 0.173 ± 0.005 48.3 ± 0.4 0.9472 ± 0.0005
GPT-SW3 6.7 B 0.119 ± 0.004 44.7 ± 0.4 0.9373 ± 0.0005
GPT-SW3 1.3 B 0.084 ± 0.004 37.1 ± 0.4 0.9279 ± 0.0006
GPT-SW3 6.7 B∗ - Sprotin 0.183 ± 0.006 50.3 ±0.4 0.951 ± 0.001
GPT-SW3 1.3 B∗- Sprotin 0.179 ± 0.005 49.2 ± 0.4 0.947 ± 0.001
Llama 3.1 8 B 0.062 ± 0.003 35.6 ± 0.3 0.9311 ± 0.0005
Llama 3.1 8 B∗ - Sprotin 0.175 ± 0.005 49.5 ± 0.4 0.9487 ± 0.0005
NLLB 600 M 0.129 ± 0.005 43.7 ± 0.4 0.9428 ± 0.0005
NLLB 600 M∗ - Sprotin 0.171 ±0.005 48.2 ± 0.5 0.9458 ± 0.0006
NLLB 600 M∗ - Sprotin + fo_en_synthetic 0.200 ± 0.006 53.1 ± 0.4 0.9524 ± 0.0005
NLLB 1.3 B 0.161 ± 0.005 45.9 ± 0.4 0.9459 ± 0.0005
NLLB 1.3 B∗ - Sprotin 0.209 ±0.006 52.4 ± 0.4 0.9516 ± 0.0005
NLLB 1.3 B∗ - Sprotin + fo_en_synthetic 0.212 ±0.006 53.5 ± 0.4 0.9530 ± 0.0005

GPT-4 Turbo 0.193 ±0.006 52.7 ± 0.4 0.9518 ± 0.0005
GPT-4o 0.191 ± 0.005 51.7 ± 0.4 0.9509 ± 0.0005
Claude 3.5 Sonnet 0.226 ± 0.006 55.3 ± 0.4 0.9546 ± 0.0005

Table 1: Model performance metrics, calculated over the FLORES-200 dataset. All scores pertaining
to LLMs were obtained in a few shot setting, with the exception of those that were fine-tuned (∗). The
mention of Sprotin and fo_en_synthetic indicate which datasets was the model fine-tuned on. The
error term represents the standard error of the mean for 1012 translations.

Model ESA ESAspans N (ESA = 0)

Claude 3.5 Sonnet 87.7 ± 0.5 -2.3 ± 0.1 0
NLLB 1.3B - Sprotin + fo_en_synthetic 84.8 ± 0.7 -2.3 ± 0.1 3
Llama 3.1 8B - Sprotin 75.3 ± 0.6 -6.3 ± 0.2 0.5∗

GPT-SW3 6.7B - Sprotin 78.8 ± 0.7 -4.6 ± 0.2 2

Table 2: Comparison of Models based on human evaluation. The table portrays ESA and ESAspans
scores, and number of failed translations, expressed in terms of number of translations that received a
0 as ESA score, N (ESA = 0). The * indicates that only one of the two annotators assigned a 0 score,
therefore we do not assign N = 1, but N = 0.5. The error term represents the standard error of the mean
for 215 translations.

the annotation process. Taking a closer look at
linguistic errors, morphological errors seem more
common with inflectional errors in adjectives be-
ing prevalent. Errors in translating named entities
were also frequent, as the models struggle with
identifying the correct entities in Faroese. An in-
teresting observation is the occurrences of a type
of error, where the models make up new words,
that are structurally well-formed for Faroese and
semantically appropriate to various extents, but
are complete neologisms and not recognised in
natural Faroese language use, spoken or written.
These words were typically compound words, like
the example of "artificial intelligence" being trans-
lated into telduheimsniðgóðskapur. Finally, all

models tend to translate word-for-word, which
leads to literal translations of idioms and fixed
phrases. Error patterns like these can suggest ef-
fective focus areas when creating parallel data for
improving the models.

5 Discussion

Our study on English to Faroese machine transla-
tion reveals several important findings that provide
new insights into the relative strengths of differ-
ent approaches to low-resource language transla-
tion, including large language models and special-
ized multilingual models. Surprisingly, the fine-
tuned NLLB model outperformed most LLMs, in-
cluding GPT-4 and GPT-SW3 40B, in both au-
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Figure 4: Average error type per model, as de-
fined by the ESA framework: minor error, ma-
jor error, minor missing content and major missing
content. All models in the plot are shown in their
fine-tuned versions (GPT-SW3 6.7B - Sprotin,
Llama 3.1 8B - Sprotin, NLLB 1.3B - Sprotin +
fo_en_synthetic), except for Claude.

Figure 5: Distribution of overall quality scores
(ESA) given by the annotators.

Figure 6: Scatterplot of CHRF scores versus over-
all quality scores (ESA). All models in the plot
are shown in their fine-tuned versions (GPT-SW3
6.7B - Sprotin, Llama 3.1 8B - Sprotin, NLLB
1.3B - Sprotin + fo_en_synthetic), except
for Claude.

tomatic and human evaluations. This suggests
that specialized multilingual models, when fine-
tuned appropriately, can be highly effective, of-
ten achieving comparable or even superior per-
formance to larger LLMs for specific language
pairs. The success of NLLB highlights the impor-
tance of domain-specific training and more com-
pact, efficient models, which can be especially
valuable in low-resource settings where compu-
tational power may be limited. Furthermore, the
performance of GPT-SW3, despite its smaller size
compared to Llama 3.1, underscores the critical
role of language-specific knowledge in translation
tasks. These findings have significant implications
for resource allocation and model selection in low-
resource language translation.

While automatic and human evaluations gener-
ally aligned on model rankings, there were key dif-
ferences in perceived quality. This reveals the lim-
itations of relying solely on automatic metrics, es-
pecially for low-resource languages. Human eval-
uations showed that while Claude 3.5 Sonnet and
NLLB 1.3B had similar error counts, Claude per-
formed better in content preservation and received
a higher overall ESA score, suggesting that evalu-
ators may prioritize factors like fluency and natu-
ralness beyond just error quantity.

The improvement in NLLB’s perfor-
mance when fine-tuned on both the Sprotin
corpus and LLM-generated synthetic data
(fo_en_synthetic) highlights the potential
of leveraging LLMs to augment training data for
low-resource languages (Yang and Nicolai, 2023).
This strategy could enhance translation quality in
resource-constrained settings. However, despite
these gains, all evaluated models still exhibit
significant errors, falling short of human-quality
translation, which calls for further research. These
findings suggest that fine-tuning smaller, spe-
cialized models may offer a more cost-effective
solution than relying on large LLMs, and that
targeted data creation, informed by common error
patterns, could further boost performance. Addi-
tionally, the discrepancies between automatic and
human evaluations emphasize the need for more
nuanced evaluation methods for low-resource
language translation.

Future work should focus on iterative improve-
ment techniques such as back-translation, ex-
ploring methods to distill knowledge from larger
LLMs to smaller, more deployable models, and
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creating more diverse and representative parallel
datasets for low-resource languages like Faroese.

6 Conclusion

Our study on English to Faroese machine transla-
tion offers a nuanced perspective on the effective-
ness of different approaches to low-resource lan-
guage pairs, highlighting how fine-tuned models
like NLLB can rival or outperform larger LLMs
for low-resource languages. This suggests that fo-
cusing on fine-tuning smaller models and creating
targeted synthetic datasets may be more effective
and resource-efficient. Despite improvements, all
models still fall short of human-quality translation,
emphasizing the need for further research on er-
ror patterns, data augmentation, and better evalu-
ation methods. Advancing low-resource transla-
tion likely calls for a tailored combination of spe-
cialized models with effective data augmentation
strategies.

7 Limitations

One possible limitation of our study is that we did
not consider how much Faroese text these mod-
els were exposed to during pre-training. We ex-
cluded this information because, for some mod-
els, it is not publicly available: we do not
have access to closed-source training data, and
detailed documentation on the data sources for
Llama 3.1 had not been released as of Decem-
ber 2024. GPT-SW3 does not officially cover
Faroese, although it is possible that some Faroese
text was misclassified as Icelandic within the train-
ing data. Conversely, NLLB was trained on ap-
proximately 2.8 million Faroese–English bitext
sentences (Schwenk et al., 2020; Fan et al., 2020),
which are now available on Opus (Tiedemann,
2012). The amount of Faroese these models have
seen certainly influences their final performance;
however, quantifying this exposure is difficult for
most LLMs, making such comparisons challeng-
ing.
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Abstract

This study evaluates GPT-4’s English-
to-Faroese translation capabilities, com-
paring it with multilingual models on
FLORES-200 and Sprotin datasets. We
propose a prompt optimization strategy
using Semantic Textual Similarity (STS)
to improve translation quality. Human
evaluation confirms the effectiveness of
STS-based few-shot example selection,
though automated metrics fail to capture
these improvements. Our findings advance
LLM applications for low-resource lan-
guage translation while highlighting the
need for better evaluation methods in this
context.

1 Introduction

Historically, it has been a challenge to achieve
high-quality machine translations (MT) for low-
resource languages. The lack of resources has
been shown to impact not only the development
of high performing MT models, but also the de-
velopment of high quality automated translation
metrics (Callison-Burch et al., 2011; Bojar et al.,
2014; Koehn and Knowles, 2017; Ranathunga
et al., 2023). Low-resource languages often have
to rely on string-based language independent met-
rics such as BLEU (Papineni et al., 2002) and
ChrF (Popović, 2015). However, these methods
have shown to perform poorly when compared to
neural metrics, as shown by the WMT22 Metrics
Shared Task (Freitag et al., 2022). The lack of
neural metrics developed for these languages of-
ten leaves expensive and slow human evaluation
as the only high quality alternative for detecting
nuanced improvement in translation quality.

Recent advancements in LLMs offer opportuni-
ties to mitigate the effect that low-resources have
on translation performance, leveraging few-shot

learning to achieve remarkable performances with
minimal data requirements (Brown et al., 2020).
However, there is a disparity in the translation
performance when it comes to low-resource lan-
guages vs high-resource languages (Hendy et al.,
2023; Lyu et al., 2023; Bang et al., 2023; Chang
et al., 2024). Therefore, optimizing the efficiency
of these models in data-constrained environments
demands a strategic approach in order to get the
best performance. There is still much that is un-
known about how prompt engineering and few-
shot example selection influences translation per-
formance. Furthermore, LLMs have proven to
be a competitive alternative also for what con-
cerns translation evaluation (Kocmi and Feder-
mann, 2023). However, this ability of LLMs to
assess translation has not been proven yet in the
context of low-resource languages.

We investigate how STS-driven example selec-
tion, applied with the translation query, improves
translation quality in GPT-4 Turbo (OpenAI et al.,
2024), specifically the gpt-4-1106-preview
release, for Faroese1, a critically low-resource lan-
guage. Our findings therefore demonstrate a novel
approach to improve the utility of sparse data.
Moreover, we demonstrate how current transla-
tion metrics cannot adequately capture nuances in
translation performance, advocating for the devel-
opment of more robust evaluation tools. Through
this exploration, we provide an assessment of the
state of the art of MT for Faroese, and highlight
how current automated evaluation metrics cannot
appropriately capture nuanced improvements pro-
vided by prompt engineering.

Our contributions are the following:

• Creating three synthetic parallel datasets
with 1012 sentences each from the FLO-
RES benchmark (NLLB Team et al., 2022),

1The population of the Faroe Islands is 54.000 (Statistics
Faroe Islands, 2024).
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translated from English to Faroese by GPT-4
Turbo using zero-shot, random few-shot, and
STS-based few-shot techniques respectively
2.

• Conducting an automated evaluation of
these datasets employing BLEU, ChrF, and
BERTScore metrics, alongside a GPT-4
Turbo confidence score for the few-shot
datasets.

• Ranking of translations from each dataset on
a subset of 200 sentences, performed by mul-
tiple native Faroese speakers and GPT-4. We
further ranked 200 sentences sourced from
another dataset to confirm our results.

• Benchmarking GPT-4 Turbo’s English-
Faroese translation performance against
multilingual translation models cover-
ing Faroese such as MADLAD-400 and
NLLB-200.

2 Previous Work

2.1 Machine Translation for Faroese
Historically, the limited amount of parallel data
available for Faroese has hindered the develop-
ment of MT tools for the language. However,
in recent years, efforts have been made to ad-
dress this issue and ensure better coverage of
Faroese. One such effort led to the creation of
the Sprotin’s parallel corpus (Mikkelsen, 2021),
a collection of around 100K English-Faroese hu-
man translated sentences. This corpus facilitated
the inclusion of Faroese in Microsoft Translator
and the development of a Faroese MT model,
named Vélþýðing (Símonarson et al., 2021), by
Miðeind, an Icelandic NLP company. The rise
of massively multilingual translation models has
sparked several initiatives aimed at including
low-resource languages, thanks to their capabil-
ity for cross-lingual transfer and the exploita-
tion of shared linguistic features. Notably, initia-
tives such as Google’s MADLAD 400 (Kudugunta
et al., 2023) and Meta’s No Language Left Behind
(NLLB) (NLLB Team et al., 2022) target specifi-
cally low-resource languages, including Faroese.
As of July 2024, Faroese is also included in
Google Translate, Google’s effort to develop an
MT system for over 1,000 languages (Bapna et al.,

2https://huggingface.co/datasets/
barbaroo/FLORES200_translations_GPT4

2022). The development of these multilingual
models still predominantly relies on string-based
evaluation metrics like BLEU and ChrF. Despite
the widespread criticism and the documented lim-
itations of these metrics (Reiter, 2018; Callison-
Burch et al., 2006) they continue to serve as the
de facto standard in the field, particularly for low-
resource languages, which are for the most part
not included in shared tasks aimed at metrics eval-
uations (Freitag et al., 2022; Mathur et al., 2020).
This persistence is likely due to their simplicity,
ease of implementation, historical precedent, and,
often, lack of affordable alternatives. The recent
development of a BERT model for Faroese (Snæb-
jarnarson et al., 2023) has presented the opportu-
nity to add BERTScore (Zhang et al., 2020), a met-
ric based on contextual embeddings, to the pool of
available metrics for Faroese.

2.2 The Rise of LLMs in Machine
Translation

With the recent rise of LLMs it became apparent
that transformer based MT models are not neces-
sarily the go-to solution anymore when dealing
with automatic translation. The few-shot learn-
ing capabilities of LLMs opened new avenues for
translation with small data. Brown et al. (2020),
with their paper titled "Language Models are Few-
Shot Learners", demonstrated that GPT-3 could
understand and execute tasks, including transla-
tion, with minimal examples through in-context
learning (ICL). This capacity of LLMs to adapt
to specific tasks with just a few guiding examples
represents a shift in paradigm from traditional MT
methods (Lyu et al., 2024), which often rely on
extensive supervised training.

Recently, LLMs have revealed their potential
not only as translator but also evaluators of transla-
tion (Karpinska and Iyyer, 2023; Fernandes et al.,
2023; Huang et al., 2024), reaching state-of-the-art
accuracy with respect to human evaluation (Kocmi
and Federmann, 2023). However, these results
were mostly obtained for high-resource languages,
while the potential of LLMs for translating and
evaluating translation of low-resource languages
remains mostly untapped. In the specific case
of Faroese, studies have already been conducted
to assess how well LLMs understand the lan-
guage within the context of MT. Scalvini and
Debess (2024) evaluated the language comprehen-
sion capabilities of an LLM that targets Nordic
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languages, GPT-SW3, while Debess et al. (2024)
and Simonsen and Einarsson (2024) explored
GPT-4’s performance in Faroese sentiment analy-
sis and translation from Faroese to English, where
it showed good performance.

2.3 The Role of Semantic Textual Similarity
in Prompt Engineering.

While some studies have focused on using a zero-
shot prompting technique to translate, achieving
performance comparable to those of conventional
MT systems (Jiao et al., 2023; Chang et al., 2024),
the potential of few-shot prompting, particularly
in the realm of low-resource languages, invites
further exploration. Prior research has predomi-
nantly relied on the use of randomly chosen trans-
lation examples as prompts. However, emerg-
ing studies have explored structured approaches,
such as Pattern-Exploiting Training (Schick and
Schütze, 2021), K-Nearest-Neighbour (kNN) se-
lection for choosing translation examples from a
pool of high-quality candidates (Vilar et al., 2022;
Zhu et al., 2023) or choosing examples based on
STS (Zhang et al., 2023). Such studies indicate
that the quality of translation examples plays a cru-
cial role in the effectiveness of LLMs for MT.

Despite these advancements, the effectiveness
of using semantically similar translation exam-
ples in MT with LLMs remains an open ques-
tion. Findings by Vilar et al. (2022) and Zhang
et al. (2023) suggest that while example qual-
ity is crucial, STS alone does not strongly corre-
late with improved translation performance. On
the other hand, other research, such as the study
by Moslem et al. (2023) which utilizes lexical
fuzzy matches to find similar translations, points
towards significant benefits from employing se-
mantically related examples. It is worth noting
that most of this research has focused on high-
resource language pairs and previous iterations
of LLMs: these results might not therefore di-
rectly translate to current LLM versions and low-
resource languages. Furthermore, most LLMs are
capable of generating grammatically correct out-
put in high-resourced languages, but often fail
when zero-shot prompted in languages such as
Faroese, making generative language tasks such as
translation and summarization challenging. This
discrepancy highlights the need for further inves-
tigation into the optimal use of example selec-
tion strategies in enhancing LLM-based transla-

tion into low-resource languages. Conditioning on
grammatically correct and good translation exam-
ples has the potential to improve LLM generation
quality for low-resourced languages.

3 Methods

3.1 Prompting GPT-4 for Translation

We prompted the GPT-4 Turbo model
(’gpt-4-1106-preview’) (OpenAI et al.,
2024) for English to Faroese translation in a zero
and few-shot setting. This model was selected
based on its superior performance in Faroese
language generation at the time, as evidenced
by preliminary experiments made by the authors
of this paper. The prompting strategies used are
described below:

• Zero-shot setting.

• Few-shot setting with random selection of 12
parallel sentences from the Sprotin dataset
(Mikkelsen, 2021). We will refer to such
translations as Trand.

• Few-shot setting with selection of 12 paral-
lel sentences from the Sprotin dataset based
on the highest STS with the translation query
(Tsel). Note that the translation query is
in English, so the similarity search is based
on English examples. Their Faroese trans-
lated sentences are then used in the few-shot
prompt.

The Sprotin dataset is, to our knowledge,
the largest collection of high quality human
translated English-Faroese sentences pairs.
STS was quantified by a multilingual model,
Multilingual-E5-large (Wang et al.,
2024), which was the highest ranking multilin-
gual embedding model at the time according to
the MTEB leader board3. The system prompt
specified the proficiency of the chat-bot in the
Faroese language (’You are an expert in the
Faroese language’) and the desired translation
quality (’The translations should be of excellent
quality’). With these settings, we translated from
English to Faroese the test split of the FLORES
dataset (NLLB Team et al., 2022), comprised of
1012 sentences.

3https://huggingface.co/spaces/mteb/
leaderboard
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3.2 Comparison with SOTA MT Models
We benchmark GPT-4’s performance against
two state of the art multilingual MT models,
MADLAD-400 (10B parameters) and NLLB-200
(3B parameters). At the time of writing this paper,
the Google Translate API did not allow access to
the latest model, covering Faroese. Google Trans-
late was therefore not included in the analysis. The
models were used out of the box, without any fine-
tuning for the English-Faroese pair, to translate the
test split of the FLORES-200 dataset.

3.3 Evaluation on the FLORES-200 Test Set
In order to evaluate and compare translations, sev-
eral metrics were used: two string-based met-
rics, BLEU (Papineni et al., 2002) and ChrF
score (Popović, 2015), and one neural metric,
BERTScore (Zhang et al., 2023), and a human
evaluation score. Additionally, GPT-4 was asked
to provide a score estimating how confident it was
in the translation produced. The BERT model pro-
vided to BERTScore for evaluation was, to the best
of our knowledge, the only available BERT model
specifically catering to Faroese, FoBERT (Snæb-
jarnarson et al., 2023). We did not find any other
neural metric that includes Faroese among its tar-
get languages, a situation common to most low
and critically low-resource languages. Human
evaluation was carried out by three linguists who
are native speakers of Faroese. These experts
ranked the four Faroese translations - the human
translation from FLORES, the zero shot transla-
tions, Trand and Tsel - blindly from best to worst (1
to 4) (see Figure 1 for an example of the annotation
setup in Google Sheets). Annotators were pre-
sented with an error type hierarchy to align rank-
ing criteria. According to the hierarchy, sentences
with major errors like incomplete translations or
lexical errors will be ranked lower than sentences
with minor errors such as incorrect inflection or
spelling errors. The human evaluation was per-
formed on a subset of 200 translation queries, ran-
domly selected. In this subset, 12 sentences were
found which yielded two or more identical trans-
lations obtained by different translation methods
(zero-shot, Trand, Tsel or human reference). These
were given the same rank by the annotators 4. The
annotators evaluated the same examples, so that

4the ranking could then be 1, 1, 3, 4 if the top ranked
sentences are identical or 1, 2, 2, 4 if the second place trans-
lations are identical and lastly 1, 2, 3, 3 if the last rankings
are identical

inter-annotator agreement could be compared. For
comparison, we asked GPT-4 to perform the same
ranking task, over the same subset of sentences.

3.4 Replication on Another Source
In order to test the robustness of our human eval-
uation procedure and its findings, we selected
200 sentences randomly from the Sprotin corpus,
and translated them following the three transla-
tion strategies presented in Section 3.1, with the
aim to reproduce human ranking on this subset.
However, the nature of the Sprotin sentences led
us to reconsider our strategy: Sprotin is for the
most part composed by short, simple, everyday
sentences. Such sentences ended up being trans-
lated identically across translation strategies, lead-
ing to 132 sentences out of 200 having at least
two identical translations, 39 having 3 identical
sentences, and 21 having all 4 identical entries
(three GPT-4 translation strategies plus the human
translation). We considered the ranking of these
entries a challenging - if not impossible - task,
and therefore decided to change selection strat-
egy for test sentences. Preliminary results from
this evaluation attempt are discussed in Section 4.
Subsequently, we decided to select 200 sentences
randomly among longer sentences, as defined by
number of tokens in the translation query. The
threshold for selection was 18 tokens, as identi-
fied by rounding up the average number of to-
kens in a Sprotin sentence (8.8 tokens) plus 2 stan-
dard deviations (8.5). The rationale behind this
choice is that longer sentences are more likely to
be more linguistically complex and present more
opportunities for variation in translation quality.
The final subset presented an average of 28.6 to-
kens, roughly 2 tokens longer than that of FLO-
RES (26.8). This selection thus brought the two
subset closer together in terms of average sentence
length. These 200 sentences were then translated
according to the three different translation strate-
gies, and translations were ranked by two human
evaluators from best to worst (1 to 4). Out of 200
translation queries, 4 sentences were not parsed
correctly by GPT-4, yielding to incomplete trans-
lations. These sentences were excluded from the
analysis.

3.5 Annotator Agreement
To assess the degree of agreement among the
raters for the ranking tasks, we employed
Kendall’s Coefficient of Concordance (W). This
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non-parametric statistic is particularly suited for
situations where three or more raters are asked
to order a set of items, as it measures the extent
of agreement among the raters’ rankings (Kendall,
1938). Kendall’s W ranges from 0, indicating no
agreement, to 1, denoting perfect concordance.

Each assignment consisted of three Faroese na-
tive speakers for FLORES and two native speak-
ers for Sprotin providing rankings for four items.
For each assignment, we calculated Kendall’s W
to determine the level of rater agreement. We then
computed the average of these values across all as-
signments to obtain an overall measure of agree-
ment. This approach allowed us to quantify the
consistency of raters’ evaluations across multiple
independent tasks, providing a robust assessment
of inter-rater reliability in the context of our study.

4 Results

4.1 Automated Metrics are Blind

Automated metrics such as ChrF, BLEU and
BERTScore reveal that GPT-4 produces transla-
tions of higher quality with respect to the two MT
models, MADLAD-400 and NLLB-200 (see Ta-
ble 1) on the FLORES dataset. However, when it
comes to comparing the different GPT-4 prompt-
ing strategies in terms of translation performance,
these metrics appear to be "blind" to subtle im-
provements. By "blind," we mean that the au-
tomated metrics are not picking up on the im-
provement in performance when using the selected
method (Tsel) over random (Trand) - an improve-
ment that is evident to human evaluators. Sta-
tistical comparison between the ChrF, BLEU and
BERTScore distributions revealed no statistical
difference in translation quality between zero-shot
translation, Trand and Tsel.

4.2 Human Evaluation on FLORES

Human evaluation revealed a small, but statis-
tically significant difference between Trand and
Tsel. As Figure 2 shows, human evaluation was
consistently ranked first, followed by the STS
driven few-shot translation. We aggregated the
rankings of Trand and Tsel produced by the three
evaluators and compared them statistically by
Mann–Whitney U test, yielding a p-value of 0.006,
indicating that the two distributions are indeed dis-
similar. Interestingly, a slightly less substantial
difference was found comparing Trand with zero-
shot translations (p = 0.026), indicating that pro-

viding random examples is a useful approach, but
there is still a margin of improvement in transla-
tion quality to be exploited by example selection
and prompt optimization. To summarize, Table 2
reports how many times (in percentage) each ap-
proach received the highest rank. Although the hu-
man translation was found to be superior the vast
majority of instances, we see that each approach
was occasionally ranked first, indicating how nu-
anced the differences between the approaches can
be, when in a low-resource scenario.

4.3 Replication on the Sprotin Subset
As mentioned in Section 3, translating randomly
selected sentences from the Sprotin Corpus re-
sulted in many identical translation entries, ren-
dering the set unsuitable for ranking. However,
to gain preliminary insight into the performance of
the different translation methods on this subset, we
counted how often each strategy produced output
identical to the human translation. Interestingly,
we found that Tsel produced the highest number
of human-like translations (47), followed by Trand

(36) and zero-shot (31). When considering the hu-
man reference as the gold standard, these prelimi-
nary results mirror the hierarchy observed in the
human ranking of the FLORES sentences. The
second round of evaluation, concerning the rank-
ing of longer sentences extracted randomly from
Sprotin, showed compatible results with our previ-
ous findings over the FLORES dataset (Figure 3).
We see the human entry being consistently ranked
first, obtaining an overall ranking of 1.5, and the
zero-shot approach being ranked last overall. The
difference between Trand and Tsel is however more
pronounced in the Sprotin subset than what we ob-
served in FLORES. Statistical comparison of the
two distributions yields a p-value of 1.27 e−6, a
strong evidence that the two distributions are in
fact distinct, and that the Tsel strategy produces
statistically better translations. If we take a look
at Table 1, displaying how many times each ap-
proach was ranked first, in percentage, we find re-
markably consistent results between FLORES and
Sprotin, a result which supports the robustness of
our method and findings.

4.4 Annotator Agreement
The average Kendall’s W value obtained was
0.694 for FLORES and 0.752 for Sprotin, indi-
cating a substantial level of agreement among the
raters, which supports the reliability of the ranking
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Figure 1: Example of human evaluation setup in a spreadsheet where 4 is the lowest and 1 is the highest
rank.

Translation Method BLEU ChrF BERTScore F1

MADLAD-400 13.62± 0.53 40.89± 0.54 0.9373± 8× 10−4

NLLB-200 16.79± 0.52 48.05± 0.39 0.9474± 5× 10−4

Zero-shot GPT-4 21.36± 0.50 52.55± 0.39 0.9516± 5× 10−4

Trand few-shot GPT-4 21.09± 0.49 52.36± 0.38 0.9515± 5× 10−4

Tsel few-shot GPT-4 21.77± 0.50 53.24± 0.38 0.9524± 5× 10−4

Table 1: Translation performance of MADLAD-400, NLLB-200, and GPT-4 on the FLORES-200 dataset
for English to Faroese translations.

Figure 2: Human evaluation results, for a sub-
set of 200 FLORES sentences. Translations were
ranked from best to worst (1 to 4). The Trand

(random) and Tsel (selected) distributions are sta-
tistically different, yielding a p-value of 0.006 by
Mann-Whitney U test.

data used in our analyses.

4.5 GPT-4 is Also Blind

The confidence score provided by GPT-4 was in
alignment with human evaluation for what con-
cerns the presence of a statistical difference be-
tween Trand and Tsel (p value = 1.7 e−10), as can
be seen in Figure 5. It is however important to no-
tice how GPT-4 output a confidence score of 0.95
for 93% per cent of translations, a result which is
in line with previous findings by Kocmi and Fed-
ermann (2023). While these results align with hu-
man evaluation, the characteristics of such a dis-

Figure 3: Human evaluation results, for a sub-
set of 200 Sprotin sentences. Translations were
ranked from best to worst (1 to 4). The Trand (ran-
dom) and Tsel (selected) distributions are statisti-
cally different, yielding a p-value of 1.27 e−6 by
Mann-Whitney U test.

tribution make comparison by statistical analysis
less reliable.

To further investigate GPT-4’ s understanding
of translation nuances, we prompted GPT-4 for
translation ranking in a setting that mimics that of
human evaluation: the chatbot was asked to rank
the 4 translation option from best to worst (1 to
4), on the same set of translated sentences evalu-
ated by human experts. Notably, GPT-4 fails to
identify human translation as the best one (Fig-
ure 4). Specifically, GPT-4 ranked Trand statisti-
cally higher than Tsel (p value = 0.026) and human
translation (p value = 7.3e-4). This result there-
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Figure 4: Evaluation rankings assigned by GPT-4,
for a subset of 200 FLORES sentences. Transla-
tions were ranked from best to worst (1 to 4).

Figure 5: Confidence score assigned by GPT-4
to its own translations of the devtest split of the
FLORES-200 dataset. Values for the two distribu-
tions are plotted side by side for ease of visualiza-
tion. The labels ’selected’ and ’random’ refer re-
spectively to Tsel and Trand few-shot translations.

fore shows that GPT-4 is also blind to subtle im-
provements in translation quality and once again
underlines how automated metrics degrade in per-
formance in a low-resource setting.

5 Discussion

5.1 Challenges in Evaluating Low-Resource
Language Translation

During our study, we observed how prompt engi-
neering can in fact provide improvements in trans-
lation quality into low-resource languages such as
Faroese. In order to prove this, we used STS-
based few-shot prompting as a proof of concept.
While human evaluators were able to detect such
improvement, automated scores available for the

language, BLEU, ChrF and BERTScore, failed to
do so. That being said, among the automated
metrics used, BLEU was most sensitive in de-
tecting the improvement of the selected method
(Tsel) over the random method (Trand), albeit the
difference was small (see Table 1), with overlap-
ping confidence intervals, indicating that it was
not able to tell if there was an improvement. In
addition to utilizing the above mentioned auto-
mated metrics and human evaluation, we also uti-
lize a GPT-4 based confidence score, which is a
way to evaluate translation performance from the
model’s own perspective. We hypothesize that
prompt engineering driven improvements are too
nuanced to be detected by currently available au-
tomated metrics, including string-based metrics
(BLEU, ChrF) and BERTScore. GPT-4’s evalu-
ation also presented critical pitfalls, showing how
the model prefers its own output with respect to
the human reference. Higher performance auto-
mated metrics such as COMET and UNITE (Fre-
itag et al., 2022) are not available for Faroese
and for the majority of low-resource languages,
as these neural-based metrics require specific re-
sources like large, high-quality datasets for their
development. Translation into Faroese and related
quality evaluation poses multiple challenges, as
Faroese is not only low-resource but also a mor-
phologically rich language. Evaluating MT for
morphologically rich languages is notoriously dif-
ficult due to the complexity and variability in word
forms. These difficulties are well-documented in
the literature, with studies highlighting the short-
comings of traditional evaluation metrics when
applied to such languages (Freitag et al., 2022).
While it is true that LLMs provide new oppor-
tunities for low-resource languages, such oppor-
tunities cannot be fully taken advantage of for a
lack of appropriate methods to assess related im-
provements. In alignment with statements from
Chang et al. (2024) and Sai et al. (2020), our find-
ings highlight how automated metrics do not cap-
ture the nuances in quality as human evaluators
do. Therefore, we strongly advocate for the de-
velopment of more robust evaluation tools tailored
to low-resource contexts, and in general, for the
extension of neural metrics to low-resource lan-
guages.
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Translation Method Zero-shot Trand few-shot Tsel few-shot Human translation

FLORES - First-Rank (%) 7.83 7.33 11.67 74.33
SPROTIN - First-Rank (%) 7.14 7.65 12.75 74.23

Table 2: Percentage of times the four different translation strategies (human, zero-shot, Trand and Tsel)
were ranked first during human evaluation. Rankings for all evaluators were aggregated in the final
percentage.

5.2 Significance of Semantic Textual
Similarity in Few-shot

Our results demonstrate a small yet statistically
significant improvement in GPT-4’s translation
quality of English to Faroese when using seman-
tically similar examples, as highlighted by human
evaluation. This improvement underscores GPT-
4’s ability to utilize the context that is provided by
semantically similar examples to generate better
translations. By using semantically similar exam-
ples effectively, our study demonstrates a poten-
tial pathway to achieve higher-quality translations
without the need for an overly large dataset. Fur-
thermore, We observed a stronger impact of ex-
ample selection in the Sprotin subset, with respect
to FLORES. This might be due to several factors.
One possible aspect to consider is the type of lan-
guage and domains found in FLORES, which are
sometimes technical and not representative of ev-
ery day speech. Therefore, the Sprotin sentences
might present a better match to the examples (as
they are extracted from the same dataset). More-
over, FLORES is a well known, widely available
test dataset for translation, and there is a non neg-
ligible possibility of it being already included in
GPT-4’s training data. Had the model seen FLO-
RES already, that would limit the impact of the
prompting strategy on translation quality. Our
findings also contribute to the broader understand-
ing of prompt engineering, specifically in the con-
text of low-resource languages. There is a ben-
efit to selecting STS-based examples. Findings
from previous work about the impact of STS are
ambiguous (Vilar et al., 2022; Zhang et al., 2023;
Moslem et al., 2023). However, they were mostly
carried out on high resource languages, for which
GPT-4’s performance is generally of high quality.
Therefore, we could reasonably expect a smaller
margin of improvement, which is harder to detect
unambiguously.

5.3 Limitations and Future Works

Our study, while insightful, has certain limita-
tions that pave the way for future research. The
focus on a single LLM and language constrains
generalizability. Moreover, human evaluation in-
troduces potential biases, particularly in identify-
ing human-written translations. The datasets used
lack Faroese cultural elements, and we cannot rule
out the possibility of GPT-4 Turbo having been
trained on the FLORES dataset. To address these
limitations and expand our understanding, future
work should explore multiple LLMs, including
smaller and domain-specific models, and extend
to other low-resource languages. This broader
approach could improve the evaluation process
and provide insights into the relationship between
translation quality and corpus characteristics. Ex-
perimenting with an increased number of seman-
tically similar examples and longer paragraphs for
translation could enhance quality and offer a more
comprehensive evaluation. As open-source mod-
els for low-resource languages improve, compar-
ing their performance using our semantic similar-
ity approach could be valuable. Lastly, studying
the impact of reference corpus size and domain
specificity on STS performance could deepen our
understanding in diverse linguistic contexts.

6 Conclusion

This study shows that selecting few-shot learn-
ing examples based on STS can improve GPT-4
Turbo’s Faroese translation performance, as con-
firmed by human evaluation. However, current au-
tomated metrics fail to detect these improvements,
highlighting a critical issue in low-resource lan-
guage translation evaluation. While LLMs offer
new opportunities for language generation, the in-
ability of automated metrics to capture progress
in low-resource contexts could widen digital lan-
guage representation disparities. This situation
necessitates expensive human evaluation, poten-
tially hindering advancements. Therefore, we call
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for collaborative efforts to develop metrics specifi-
cally designed for low-resource language contexts.
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Abstract
Traditional data collection methods in
dialectology rely on structured surveys,
whose results can be easily presented
on printed or digital maps. But in re-
cent years, corpora of transcribed dialect
speech have become a precious alterna-
tive source for data-driven linguistic anal-
ysis. For example, topic models can be
advantageously used to discover both gen-
eral dialectal variation patterns and spe-
cific linguistic features that are most char-
acteristic for certain dialects. Multilingual
(or rather, multilectal) language modeling
tasks can also be used to learn speaker-
specific embeddings. In connection with
this paper, we introduce a website that
presents the results of two recent studies in
the form of interactive maps, allowing vis-
itors to explore the effects of various pa-
rameter settings. The website covers two
tasks (topic models and speaker embed-
dings) and three language areas (Finland,
Norway, and German-speaking Switzer-
land). It is available at https://www.
corcodial.net/.

1 Introduction

The traditional data collection method in dialectol-
ogy has relied on structured surveys conducted in
a particular language area. The results of such sur-
veys can be presented in maps, typically one map
per linguistic feature. These collections of maps,
known as dialect atlases, are an important source
of information about dialect divisions of different
languages. For instance, the dialect atlas of Lauri
Kettunen (Kettunen, 1940) still forms the basis of
the division of Finnish dialects, even though it was
collected almost 100 years ago.

As this example shows, dialect atlases were typ-
ically conceived in the first half of the 20th cen-

tury and presented as paper maps. This poses
problems of accessibility for modern dialectology,
where computational models are often applied on
dialect data, e.g. in the subfield of dialectometry
(Goebl, 2011). Some atlases have already been
digitized and can thus be used in computational
analyses (Embleton and Wheeler, 1997; Scherrer
and Stoeckle, 2016; Syrjänen et al., 2016). When
digitized, the atlases are typically presented as
two-dimensional data tables where the columns
present linguistic features and the rows locations.
Digitized atlases also make interactive visualiza-
tions possible (Scherrer, 2023).

In our recent research, we have experimented
with topic modeling (Kuparinen and Scherrer,
2024) and representation learning (Kuparinen and
Scherrer, 2023) to explore the dialectal divisions
arising from corpora instead of atlases. Dialect
corpora typically consist of spoken data (mostly
interviews) which have been phonetically tran-
scribed. Compared to the straightforward two-
dimensional tabular data presented in dialect at-
lases, corpus data is more difficult to analyze com-
putationally, because individual characteristics of
speakers (addressed topics, length of interview,
richness of vocabulary, etc.) are mixed with di-
alect features.

In the following sections, we briefly present the
data and experiments, while focusing on the inter-
active website visualizing the results.

2 Data

We work with three datasets consisting of dialect
interviews or conversations, which have been both
phonetically transcribed and normalized to a stan-
dard variety. The datasets cover the Finnish, Nor-
wegian and Swiss German language areas.

While the topic modeling experiments (Sec-
tion 3.1) only make use of the phonetic tran-
scriptions, the representation learning study (Sec-
tion 3.2) is based on a dialect-to-standard normal-
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ization task and uses both transcription layers.

2.1 Samples of Spoken Finnish

The Finnish data used in the experiments and vi-
sualized on the website comes from the Sam-
ples of Spoken Finnish corpus (fi. Suomen kie-
len näytteitä, SKN).1 The corpus consists of in-
terviews recorded in the 1960s and 1970s in 50
Finnish-speaking locations (Institute for the Lan-
guages of Finland, 2021). There are two speak-
ers per location (with one exception) and approx-
imately one hour of speech per person. The in-
terviews were phonetically transcribed by pro-
fessionals and normalized manually to standard
Finnish. In total, the corpus contains 99 interviews
and represents traditional Finnish dialects compre-
hensively.

2.2 Norwegian Dialect Corpus

For Norwegian, we use a subset of the Nordic
Dialect Corpus (Johannessen et al., 2009), which
contains spoken language data from the North
Germanic languages.2 The Norwegian part
(named Norwegian Dialect Corpus, NDC) is the
largest and most thorough in transcription of the
different subcorpora. There are 684 interviews (ei-
ther with a single interviewee or with several) and
438 individual interviewees. For our experiments
and visualizations, each data point represents the
concatenation of all productions of one intervie-
wee. The recordings were made between 2006
and 2010 and included speakers of different age
groups. The recordings were phonetically tran-
scribed and normalized to Bokmål.

2.3 ArchiMob Corpus (Swiss German)

The Swiss German data comes from the ArchiMob
corpus (Samardžić et al., 2016; Scherrer et al.,
2019), which consists of interviews conducted be-
tween 1999 and 2001.3 It contains 43 phoneti-
cally transcribed interviews, which are used for
the topic modeling experiments. We do not use
this corpus for the representation learning experi-
ments, since only six interviews were normalized
manually (and the rest automatically).

1http://urn.fi/urn:nbn:fi:
lb-2021112221, Licence: CC-BY.

2http://www.tekstlab.uio.no/
scandiasyn/download.html, Licence: CC BY-
NC-SA 4.0.

3https://www.spur.uzh.ch/en/
departments/research/textgroup/ArchiMob.
html, Licence: CC BY-NC-SA 4.0.

3 Experiments

3.1 Topic modeling

The topic modeling experiments are conducted on
all three datasets presented in Section 2. We used
two topic modeling techniques and five tokeniza-
tion techniques to explore the dialect divisions of
the three focus languages. The used models were
non-negative matrix factorization (NMF; Paatero
and Tapper 1994) and latent Dirichlet allocation
(LDA; Blei et al. 2003), while the tokenizations
were complete words, character n-grams from 2
to 4, and Morfessor-based subword tokenization
(Smit et al., 2014). A more thorough explanation
of the methodology and best results can be found
in Kuparinen and Scherrer (2024).

3.2 Representation learning

In the second experiment, we trained a neural ma-
chine translation model to “translate” the phonetic
transcriptions to standardized spelling. We used a
relatively standard setup based on the Transformer
architecture (Vaswani et al., 2017) and subword
tokenization with BPE (Sennrich et al., 2016).
Taking inspiration from multilingual translation
modeling (e.g. Johnson et al., 2017), the speaker
ID was added as the first token of each utterance
on the source side. After training the model, we
extracted the learned embeddings of these speaker
IDs and used them as input data for three dimen-
sionality reduction algorithms.

The dimensionality reduction algorithms were
principal component analysis (PCA; Hotelling
1936), k-means clustering (MacQueen, 1967) and
Ward agglomerative clustering (Ward Jr., 1963).
The PCA is run with three principal components
for visualization purposes (each component repre-
sented as a color in the RGB color scheme), while
the clustering algorithms are run with the number
of clusters ranging from 2 to 20. For further in-
formation on the experimental design and a quan-
titative evaluation of the clustering algorithms, see
Kuparinen and Scherrer (2023).

4 Visualization

The website https://www.corcodial.
net/ provides interactive visualizations of the
two experiments described in the previous section.
The maps are drawn with the Leaflet4 mapping
toolkit. The map backgrounds use the Stamen

4https://leafletjs.com/
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Figure 1: Interactive visualization of a topic modeling experiment for Swiss German. Each point repre-
sents one interview. The colored pie charts reflect the degree of membership in the different topics.

terrain style from Stadia Maps,5 which are based
on OpenStreetMap data.6 The server-side backend
is implemented in Flask.7 All these libraries and
sources are licensed under Creative Commons
or other open source licenses. The current setup
does not require any database, since all the data is
available in precomputed CSV or JSON files.

Figure 1 shows a screenshot of a topic model-
ing experiment. The map itself takes up most of
the screen, whereas the rightmost part is reserved
for user interaction (e.g. to select a different pa-
rameter) and metadata display (e.g. the legend as-
sociating colors to topics). Each point on the map
corresponds to one interview and each color cor-
responds to one inferred topic. The main bene-
fit of topic models is that an interview can “be-
long” to several topics to varying degrees. The
pie charts on the maps show the degree of mem-
bership to the different topics. A simpler visu-
alization that only shows the dominant topic for
each interview, is available by selecting Dominant
topic. Further information about the composition

5https://stadiamaps.com/
6https://www.openstreetmap.org
7https://flask.palletsprojects.com/

of the topics (i.e., the tokens most strongly asso-
ciated with each topic) can be shown in a popup
window (not shown in Figure 1).

Technically, and quite similarly to geographic
information systems in general, such a visualiza-
tion relies on two data files: a corpus-specific Geo-
JSON file that describes the points (with their co-
ordinates and IDs), and a task-specific JSON file
that contains the distribution of topics for each
point. Leaflet makes it easy to add the GeoJSON
file as an additional layer on top of the map back-
ground, and to define the style (e.g. the colors) of
each point based on the JSON file.

A particularity of corpus-based analyses is that
there can be several interviewed persons from the
same place, and the corresponding points on the
map would be superimposed. The current imple-
mentation detects superimposed points and moves
them away from their original locations to ensure
their visibility. We plan to further improve this
functionality.

The representation learning experiment is il-
lustrated by Figures 2 and 3. Figure 2 shows
a PCA of the speaker embeddings of the Nor-
wegian NDC dataset. As is commonly the case
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Figure 2: PCA map fragment of the learned
speaker representations of the NDC dataset. The
three PCA components correspond to the red–
green–blue components of the colors.

with dimensionality reduction techniques, the map
clearly shows the major dialect areas (Southwest-
ern dialects in dark brown, Eastern dialects in red,
central dialects in light blue and northern dialects
in light green), without showing clear-cut borders
between the areas.

Figure 3, on the other hand, visualizes the
speaker embeddings of the Finnish SKN dataset.
In this case, a hierarchical clustering algorithm has
been selected. The result shows clearly identi-
fiable dialect areas corresponding relatively well
with atlas-based divisions.8 An exception is the
cluster represented in blue on the map, which in-
cludes points in the Greater Helsinki area, in a
transition area in the Southwest, as well as in
Northern Finland. At the moment, the visualiza-
tion website supports two clustering algorithms
(Ward and K-means) and any number of clusters

8The dendrogram of the hierarchical clustering can be dis-
played on demand (not shown here).

Figure 3: Cluster map of the learned speaker rep-
resentations of the SKN dataset. The clustering
is created with the Ward algorithm and displays 8
clusters.

between 2 and 10.

5 Conclusion

Following up on our recent research where we
propose to use topic modeling and representation
learning to explore the dialectal divisions arising
from corpora of transcribed dialect speech, we
present an interactive website where it is possi-
ble to view the experimental results in the form
of maps. Different parameter settings and modes
of visualization can be easily chosen.

At the moment, the website covers two tasks
(topic modeling and representation learning) and
three linguistic areas (Finland with the SKN cor-
pus, Norway with the NDC corpus, and German-
speaking Switzerland with the ArchiMob corpus).
The design of the website is modular and permits
the easy inclusion of additional tasks, language ar-
eas and corpora.
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Abstract

Large language models (LLMs) are the
foundation of the current successes of ar-
tificial intelligence (AI), however, they are
unavoidably biased. To effectively com-
municate the risks and encourage mitiga-
tion efforts these models need adequate
and intuitive descriptions of their discrimi-
natory properties, appropriate for all audi-
ences of AI. We suggest bias profiles with
respect to stereotype dimensions based on
dictionaries from social psychology re-
search. Along these dimensions we in-
vestigate gender bias in contextual embed-
dings, across contexts and layers, and gen-
erate stereotype profiles for twelve differ-
ent LLMs, demonstrating their intuition
and use case for exposing and visualizing
bias.

1 Introduction

Amongst many other semantic concepts, large lan-
guage models (LLMs) pick up stereotypes from
the data they are trained on. Unbiased data is
hard to come by, especially in the amounts needed
for the ever-larger models, which are the founda-
tion of the current successes of AI and the respec-
tive hype. Thus bias in these models is basically
unavoidable, making it necessary to understand
its characteristics and extents to communicate the
risks and find ways to mitigate adverse discrimi-
natory effects on affected populations.

Past research on bias has often involved word
embedding association tests (Caliskan et al.,
2017), inspired by the implicit association tests
(IAT) (Greenwald et al., 1998) of social psychol-
ogy. By another inspiration from the social sci-
ences, a newer direction of natural language pro-
cessing (NLP) research transforms opaque em-
beddings into a space of meaningful dimensions

1.0 0.5 0.0 0.5 1.0
projected values

non-religious

progressive

low status

low agency

low ability

low morality

low sociability

Female Names
Male Names religious

traditional *

high status *

high agency *

high ability *

high morality *

high sociability *

Figure 1: 7D stereotype profile for Llama-3-8B,
revealing differences in embeddings of 100
female and 100 male-associated names.
*Statistically significant differences (p<0.05).

(Mathew et al., 2020; Kwak et al., 2021; Şenel
et al., 2022; Engler et al., 2022), enabling new
ways to study concepts. Similar to semantic dif-
ferentials (Osgood et al., 1957), this methodology
relies on antonyms (e.g. fast vs. slow) or opposing
concepts described by lexicons.

In this work we study bias in LLMs by trans-
forming their embeddings based on the stereo-
type content model (SCM) by Fiske et al. (2002),
enabling the study along theoretically and em-
pirically grounded stereotype dimensions. The
SCM entails two primary dimensions originat-
ing from interactions, where people seek to un-
derstand the other party’s intent (dimension of
warmth) and their capabilities (dimension of com-
petence). Stereotypically, women are thereby as-
sociated with higher warmth, and men with higher
competence. Furthermore we employ the ex-
tended model (Abele et al., 2016; Ellemers, 2017;
Goodwin, 2015; Koch et al., 2016), allowing us to
provide detailed 7D bias profiles as shown in Fig-
ure 1.
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dimension direction n terms nadd. additional terms
sociability high 43 nice, friendliness, warmth 199 accomodating, witty

low 42 unfriendly, unsociability, distant 162 acid, withdrawn
morality high 51 humane, morality, benevolent 205 allegiance, true

low 69 untrustworthiness, evil, insincere 635 abandon, wrongful
ability high 40 intelligence, capable, graceful 302 accomplished, ace

low 39 ignorant, stupid, inefficient 160 awkward, unadvised
agency high 42 motivated, autonomous, resolute 256 action, worker

low 39 vulnerable, submission, helpless 113 bowing, unsure
status high 21 superior, wealth, important 187 advantage, win

low 13 poor, insignificant, unsuccessful 117 bankrupt, welfare
politics traditional 12 conventional, conservative 34 classical, capitalist

progressive 16 modern, liberal, democrat 45 contemporary, feminist
religion religious 18 believer, church, god-fearing 146 spirit, testament

non-religious 10 atheist, skeptical, secular 6 unholy, impious

Table 1: Examples of terms and their directions on stereotype dimensions from the theoretically
grounded dictionary by Nicolas et al. (2021). The additional terms were collected from their extended
dictionary created by a semi-automated method. High-level stereotype dimensions are constructed as
follows: warmth = sociability + morality, competence = ability + agency.

Contributions. In summary, we (i) show how
the stereotype content model can be employed
to expose and visualize bias in contextual em-
beddings1, (ii) generate bias profiles for twelve
LLMs for gender-associated names and gendered
terms, displaying overall stereotypical associa-
tions of warmth and competence, (iii) provide in-
sights on stereotype dimensions and gender bias
across context examples and network layers.

2 Related Work

Inspired by the human implicit association test
(Greenwald et al., 1998), Caliskan et al. (2017)
developed the first Word Embedding Association
Test (WEAT) to assess the association between
two target concepts (e.g., scientist vs. librarian)
and two attributes (e.g., male vs. female) in static
word embeddings by cosine similarity and a per-
mutation test. Later Tan and Celis (2019) built a
first approach to measure bias for LLMs using the
contextual embeddings of the words within exam-
ples. The Contextual Embedding Association Test
(CEAT) (Guo and Caliskan, 2021) employs a ran-
dom effects model to quantify bias with sampled
contexts from a corpus.

A newer approach to interpreting the high-
dimensional embedding spaces is again inspired
by a concept from the social sciences; seman-

1Code available at https://github.com/
carolinmschuster/profiling-bias-in-llms

tic differentials (Osgood et al., 1957). Mathew
et al. (2020) introduced POLAR, a transformation
of static word embeddings to a new polar, inter-
pretable space. The polar opposites are antonyms
such as hot-cold or soft-hard, and their word vec-
tors are employed to define the new dimensions,
which were shown to align with human judgment
in an evaluation study. Similar frameworks are Se-
mAxis (An et al., 2018), FrameAxis (Kwak et al.,
2021) and BiImp (Şenel et al., 2022).

More recently, the SensePolar framework was
introduced by Engler et al. (2022), extending the
POLAR approach to contextual word embeddings.
The poles are hereby defined not by the word alone
but by their embedding within sense-specific ex-
ample sentences from a dictionary. The authors
showed that these more interpretable embeddings
can achieve similar performance to regular ones on
natural language understanding (NLU) tasks, and
furthermore confirmed the approach by a human
evaluation study.

Most similar to our work Fraser et al. (2021)
analyzed stereotype dimensions in static em-
beddings, combining the POLAR framework by
Mathew et al. (2020) with the warmth and compe-
tence dimensions of the stereotype content model
(Fiske et al., 2002). They demonstrated that static
word embeddings can recreate the stereotype di-
mensions from literature by predicting the cold-
warm and competent-incompetent associations for
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additional known words, and by further comparing
the results to psychological surveys.

For contextual embeddings Ungless et al.
(2022) measured bias with CEAT (Guo and
Caliskan, 2021) based on the warmth and com-
petence dimensions and in a generation-based ap-
proach Jeoung et al. (2023) elicited evaluation of
different social groups on these dimensions, with
multiple prompting strategies. The stereotype con-
tent model has also been used for de-biasing meth-
ods (Ungless et al., 2022; Omrani et al., 2023).
The researchers suggest that this theory-driven
approach has an advantage because it is social-
group-agnostic and thus does not require iteration
over discriminated groups or previous knowledge
of specific bias.

In another projection approach, Omrani Sab-
baghi et al. (2023) used a maximum margin sup-
port vector classifier to learn the valence subspace
(pleasantness vs. unpleasantness) and projected
the word ‘person’ to this dimension, placing dif-
ferent words in its context. The bias between
words is measured by their effect on the contex-
tualized representation of ‘person’.

This work furthermore relates with a broader
range of studies trying to understand the con-
tents of contextual representations, most notably
by knowledge probing (e.g. Tenney et al. (2019b);
Schuster and Hegelich (2022)). See Cao et al.
(2024) for a recent survey.

3 Experimental Setup

3.1 Stereotype Dimensions & Dictionaries

Our analysis of stereotype dimensions and bias in
LLMs is grounded in the stereotype content model
by Fiske et al. (2002), who showed that there are
two major dimensions of warmth and competence
and that many stereotypes are mixed along these
two. Following Nicolas et al. (2021) we also
study the more fine-grained dimensions of socia-
bility and morality for warmth (Abele et al., 2016)
and ability and agency for competence (Ellemers,
2017; Goodwin, 2015). Expanding the set of con-
cepts by the Agency-Beliefs-Communion model
(Koch et al., 2016), we further include the dimen-
sions of status, politics, and religion. This allows
us to also provide a more detailed and extended
stereotype profile for the LLMs.

Akin to previous work (Fraser et al., 2021; Om-
rani et al., 2023) we use the dictionaries in the sup-

plementary data from Nicolas et al. (2021)2, which
were validated by human evaluation studies, for
the construction of the stereotype space.

The ‘seed dictionary’ is theory-driven, using
terms from literature, while the ‘full dictionary’
contains additional terms collected by a semi-
automated method, identifying synonyms using
the English lexical database WordNet (Miller
et al., 1990)3. Both dictionaries distinguish
seven stereotype dimensions, as shown in Table 1
with examples of terms per dimension and di-
rection. While most dimensions are coded low–
high, the politics dimension is coded progressive–
traditional and the dimension of religion is coded
non-religious–religious.
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Figure 2: Properties of context examples:
Histograms of example counts, numbers of words
and positions of dictionary terms within the
examples.

3.2 Context Examples
As we are working with contextual embeddings
the context of the terms becomes a crucial design
choice for the study of stereotype dimensions and
bias (see also Engler et al. (2022)).

Generated Examples: For our main exper-
iments, we generate gender non-specific con-
texts with Llama-3-8B-instruct (AI@Meta, 2024a;
Dubey et al., 2024) by the instruction to avoid
names and gender-specific pronouns. Thus, no ad-
ditional gender bias is introduced. As synset infor-
mation is available for the terms in the seed dic-
tionary, the prompts for these terms additionally
include the term definition from WordNet (Miller
et al., 1990), allowing a more precise generation
for the specific word meaning.

Dictionary Examples: As in the original
SensePolar paper (Engler et al., 2022), we also

2https://osf.io/yx45f/
3https://wordnet.princeton.edu/
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retrieve context examples from WordNet (Miller
et al., 1990), and only for the seed stereotype dic-
tionary do we manually add examples from other
dictionaries where WordNet does not provide any.

Reddit Examples: We include one setup with
natural data, where we sample term examples
from a Reddit Corpus4, similar as done in the Con-
textual Word Embedding Association Test (Guo
and Caliskan, 2021).

No Context: In this setting only the terms are
passed through the models, preventing contextual-
ization beyond term subwords.

Example properties are shown in Figure 2. We
set the number of examples to five for comparison
and to limit computational time, but there often are
fewer available for the dictionary examples. Dic-
tionary examples are also the shortest, as they are
often short phrases, e.g. “friendly advice”. The
generated examples are the longest with an aver-
age of 20 words. Reddit examples are truncated
on both sides to include context around the term,
which may explain later term positions.

3.3 Polar Projection

For the computation of stereotype dimensions,
we follow the SensePolar framework by Engler
et al. (2022), which is an extension of the POLAR
framework (Mathew et al., 2020) for contextual
embeddings. Hereby, the embeddings are trans-
formed into an interpretable space based on polar
dimensions, which, in our case, are defined by the
stereotype content dictionary. We transform the
embeddings at two levels: (i) Warmth + compe-
tence, and (ii) seven granular dimensions of the
extended stereotype content model.

Similar to Fraser et al. (2021), we take the
words for each stereotype dimension from the
theory-driven ‘seed dictionary’ (Nicolas et al.,
2021), and we average individually the word em-
beddings for the high and for the low classified
words, for which the numbers are shown in Ta-
ble 1. Word lists for warmth (sociability + moral-
ity) and competence (ability + agency) are com-
piled of the words of their subordinate dimensions.

As a first step, we calculate the sense embed-
ding s for a word with its specific sense and
m sense-specific context examples, as shown in
Equation 1. We hereby average the contextual em-
beddings w across the different context examples,

4https://www.kaggle.com/datasets/kaggle/reddit-
comments-may-2015

also averaging across subwords when words are
split due to subword tokenization.

s =
1

m

m∑

j=1

ws
cj (1)

For n words belonging to the pole of a stereo-
type dimension, e.g. “friendliness” and “socia-
bility” for the pole “high sociability”, we aver-
age their sense embeddings to obtain the average
pole embedding p. Next, we stack the vectors and
subtract the low-dimension embeddings from the
high-dimension embeddings to obtain the change
of basis matrix a, describing the newly defined
space with h stereotype dimensions:

p =
1

n

n∑

i=1

si (2)

ah = phhigh − phlow (3)

Regarding the warmth and competence transfor-
mation, there are only two direction vectors. If, for
example, the original contextual embedding has
768 dimensions, the change of basis matrix a has
a shape of (2, 768).

Before projecting a word of interest to the new
dimensions, we compute its embedding x by again
averaging across its context examples as shown in
Equation 4. Following prior work (Engler et al.,
2022) we then project the embedding to the new
interpretable space by the inverted change of basis
matrix as shown in Equation 5.

x =
1

k

k∑

i=1

xci (4)

d = (aT )−1x (5)

The new embedding d in the 2D or 7D stereo-
type space can be interpreted as follows: Simi-
lar to the semantic differential technique, a higher
value signifies a higher association with the high
pole, for example, “high morality”, and a lower
value signifies a more significant association with
the low pole, e.g., “low morality”. By projecting
multiple terms we can compare their differences
on these dimensions.
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Warm
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Compete
nce

Socia
bilit

y

Moral
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Abilit
y

Agency
Statu

s
Politi

cs
Relig

ion

Llama-3-8B (AI@Meta, 2024a) 0.79 0.81 0.66 0.87 0.72 0.77 0.8 0.73 0.74
Llama-3-8B-Instruct (AI@Meta, 2024a) 0.79 0.82 0.65 0.88 0.75 0.77 0.83 0.83 0.81
Llama-3.2-3B (AI@Meta, 2024b) 0.81 0.8 0.63 0.87 0.66 0.76 0.79 0.77 0.62
Llama-3.2-3B-Instruct (AI@Meta, 2024b) 0.78 0.84 0.62 0.88 0.75 0.78 0.81 0.86 0.62
Gemma-2B (TeamGemma et al., 2024a) 0.66 0.67 0.58 0.75 0.66 0.69 0.78 0.58 0.96
Gemma-2-2B (TeamGemma et al., 2024b) 0.7 0.67 0.64 0.8 0.74 0.7 0.75 0.63 0.95
OLMo-1B-hf (Groeneveld et al., 2024) 0.83 0.84 0.76 0.86 0.83 0.77 0.78 0.87 0.6
Bloom-1B7 (Le Scao et al., 2022) 0.79 0.76 0.68 0.87 0.85 0.77 0.62 0.71 0.84
GPT-Neo-125M (Black et al., 2022) 0.66 0.33 0.55 0.75 0.34 0.69 0.41 0.58 0.05
GPT2 (Radford et al., 2019) 0.66 0.67 0.57 0.76 0.53 0.72 0.77 0.6 0.93
AlBERT-base-v2 (Lan et al., 2019) 0.7 0.68 0.62 0.77 0.7 0.69 0.71 0.69 0.65
BERT-base-uncased (Devlin et al., 2019) 0.79 0.83 0.7 0.83 0.8 0.72 0.78 0.72 0.53

Table 2: Accuracy for the direction prediction task. Additional terms in the extended stereotype
dictionary (Nicolas et al., 2021) are embedded and projected to the stereotype dimensions. Projected
positive/negative values predict high/low direction, e.g. a value of -0.3 for warmth is registered as low
warmth. The highest accuracy for each dimension is shown in bold. Please refer to Table 1 for examples
of terms with high and low labels for each dimension.

Projection of Additional Terms To evaluate the
consistency of the stereotype dimensions we fol-
low the approach by Fraser et al. (2021) and
project additional terms from the extended dic-
tionary by Nicolas et al. (2021) to the stereotype
space. Hereby, we use the same types of context
examples as for the polar space creation. For each
term, we predict its direction on its assigned di-
mension by the sign of its polar value, e.g., a value
of -0.5 for sociability is registered as low sociabil-
ity. To calculate the accuracy, we compare these
predictions against the labels in the dictionary.

Projection of Gender-Associated Names &
Gendered Terms For the analysis of gender
bias, we project gender-associated words to our
stereotype dimensions, utilizing two larger binary
‘vocabulary populations’ and individual terms for
transgender and nonbinary gender (see Figure 4).

The largest populations are 100 historically
female-associated names (e.g., Mary, Patricia) and
100 male-associated names (e.g., James, Michael),
taken from the most popular given names of the
last century in the United States5.

Second, we employ binary gendered terms by
definition as utilized in experiments of WEAT
(Math vs. Arts and Science vs. Art) (Caliskan
et al., 2017). For each gender, we project nine
terms:

5https://www.ssa.gov/oact/babynames/decades/century.html

• Female terms: female, woman, girl, sister,
she, daughter, mother, aunt, grandmother

• Male terms: male, man, boy, brother, he, son,
father, uncle, grandfather

As examples for our gendered terms and names,
we use neutral templates, such as “This is
[NAME]” or “This is [TERM]” to provide context
without unnecessarily introducing additional bias
(compare May et al. (2019); Tan and Celis (2019)).
We average across the different templates for a
more robust contextual representation of names
and terms.

For easier interpretation and comparison be-
tween models, we standardize the projected polar
values separately for names and terms, as prelim-
inary work showed that named entities and pro-
nouns can show different average tendencies on
stereotype dimensions. To assess the significance
of the observed differences, we employ t-tests.

3.4 Models
For our evaluation, we project open source models
of multiple generations available in the Hugging-
face Library6 onto stereotype dimensions. Model
names and references are shown in Table 2. Ex-
cept for the layer-wise analysis, we extract their
average contextual representations across all lay-
ers, including the first embedding layer.

6https://huggingface.co/
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4 Results

4.1 Prediction of Direction for Additional
Terms

Predicting the direction on the stereotype dimen-
sions for new terms from the extended stereo-
type dictionary (Nicolas et al., 2021), we find
most studied models can perform this task well,
with different strengths. Table 2 shows the results
when embedding and projecting with the gener-
ated examples. OlMo-1B-hf (warmth and com-
petence) and Llama3.2-3B-Instruct (only compe-
tence) achieve the performance closest to that of
static embeddings by Fraser et al. (2021), where
the FastText-based model scored respectively 0.85
for warmth and 0.86 for competence. OlMO and
the Llama models also perform very well for the
granular dimensions. Predicting morality is the
overall easiest task for the models, while the other
subdimension of warmth, sociability, poses the
most difficult task. Accuracy varies greatly for re-
ligion, where there are 142 high, but only 6 low-
labeled additional terms.

Only GPT-Neo-125M performs worse than
chance for some dimensions, however, this per-
tains only to raw polar values. When we use a
different cut-off than zero for predicting low/high
directions by mean-centering the projected values,
the model achieves much better results, e.g., 0.76
accuracy for warmth and 0.71 for competence.
Similarly, GPT2 and the Gemma models benefit
from a mean-based cut-off value, gaining up to 10
percentage points per dimension. Thus projections
are spread on different ranges of values, but all
models can reasonably discriminate between low
and high-labeled terms on the stereotype dimen-
sions.

4.2 Gender Stereotype Profiles
For all twelve studied LLMs, we find statistically
significant bias for gender-associated names, as
evident in the 2D profiles for warmth and compe-
tence in Figure 3. In line with human bias found
in studies of the stereotype content model (Fiske
et al., 2002), the models highly agree on the rel-
ative associations of female names with warmth
and male names with competence when using the
gender non-specific generated contexts. GPTNeo
poses an exception, where both dimensions are as-
sociated with female names, and for OlMo, the
difference in competence is insignificant.

For the much smaller ‘vocabulary populations’
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Figure 3: 2D stereotype profiles for 100
female/male-associated names (left) and 9
female/male gendered terms (right).
LW/HW = Low/High Warmth. LC/HC =
Low/High Competence. *Dimensions with
statistically significant differences (p<0.05).
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of gendered terms (nine terms per gender), warmth
is the more relevant dimension than competence,
with only the former being significantly biased for
all four Llama-3 models. For some models, e.g.
GPT2, the gendered term differences are small,
but the bias direction is very consistent when com-
paring name and term stereotype profiles. In Fig-
ure 4, we additionally see the projections of five
individual terms beyond binary gender. Nonbi-
nary and transgender-related terms are associated
with lower warmth than binary term means, which
was found for all newer models (studied variants
of LLama3, Gemma, OLMo). For competence,
there was no observable trend. For further and sta-
tistical analyses of individual terms and small vo-
cabulary populations, future work needs to extend
the context examples (as discussed in section 5).

Zooming into the 7-dimensional stereotype pro-
files for Lama-3-8B (see Figure 1) and Llama-
3.2-3B-instruct in Figure 5, we can perceive the
previously shown gender associations in more de-
tail. The profiles between Llama-3 and the newer
and instruction-tuned 3.2 version are quite simi-
lar: Sociability and morality (warmth) are linked
with female names, which is true for 10 and 11 of
all studied models. Ability and agency (compe-
tence) are significantly related with male names,
which is true for 9 and 7 of the studied models.
Also for status, six models show a significant as-
sociation with male names. Furthermore six mod-
els find male names to be more traditional on the
political dimension, while there is no perceivable
trend for religion. For the small populations of
binary gendered terms, there is only one clearly
biased dimension, where seven models agree on a
stereotypical association of sociability with female
terms.

4.3 Context Examples and Bias across Layers

Comparing the performance for generated, dictio-
nary, Reddit examples, and no context across lay-
ers in Figure 6a, we find that the influence of con-
text on the new term prediction task depends on
the model. For Llama-3-8B, the accuracy seems
quite stable compared to the smaller Gemma-2B
variant, where we see high variation across lay-
ers and context types. However, as elaborated
in subsection 4.1, while the cut-off value of zero
works well for most, including all Llama mod-
els, Gemma could better discriminate between
low/high labeled terms by a different cut-off value.
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transgender
Female Terms
Male Terms

HC

HW *

Llama3

Figure 4: 2D Stereotype profile for Llama-3-8B
(see Figure 3) with additional projections of
individual nonbinary terms. LW/HW = Low/High
Warmth. LC/HC = Low/High Competence.
.

For GPT2, the Reddit examples lead to much
lower accuracy, while for BERT, the no context
condition performs markedly worse. Overall the
concepts of warmth and competence behave simi-
larly throughout the layers.

On the right in Figure 6b, we see that bias
across layers is rather consistent for all mod-
els, where higher values signify bias towards
female-associated names/terms and lower values
signify bias towards male-associated names/terms.
Shown by the example of the generated contexts,
stereotypical associations permeate throughout the
networks. In some cases, the first and last layers
behave differently, with a reversed bias direction
compared to the overall model.

5 Discussion

Our results provide substantial evidence of stereo-
type dimensions in the embedding space of LLMs
and a gender bias that predominantly corresponds
to the human bias found in studies of the stereo-
type content model (Fiske et al., 2002). For all
studied models, female names are relatively as-
sociated with higher warmth, and for most mod-
els, male names are associated with higher com-
petence. There is less evidence of bias for the
studied gendered terms, which in part is likely due
to the small groups of only nine terms per gen-
der. The direction of gender differences is, how-
ever, overwhelmingly consistent. We furthermore
find stereotype dimensions and bias across layers,
in line with prior work that semantics are spread
throughout the network (Tenney et al., 2019a).
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Figure 5: 7D stereotype profiles for 100 female/male-associated names (left) and 9 female/male
gendered terms (right) for Llama-3.2-3B-instruct. *Statistically significant differences (p<0.05).

The projection of contextual embeddings based
on the stereotype content model can deliver robust
insights when analyzing large vocabulary groups.
As the magnitude of the values depends on the
properties of the original embedding space, sta-
tistical analysis is employed to assert the signifi-
cance of gender differences. This is viable with
the larger collection of gender-associated names,
also providing context for the differences between
binary gendered terms. For the analysis of small
vocabulary groups or individual terms, e.g. for
comparing terms of binary and nonbinary gender,
increasing the number of context examples offers
potential for statistical tests.

While both 2D and 7D stereotype dimensions
provide interesting results, a significant gender
bias is most evident in the warmth and competence
dimensions. These benefit from the larger num-
bers of low and high-rated words in the dictionar-
ies, increasing the robustness of the concept repre-
sentations. Likely associations are also more sta-
ble when relating to broader concepts. Therefore,
the high-level projection is a suitable first level of
analysis and starting point for bias mitigation.

Significant gender bias, however, may also oc-
cur on a more granular level. Different dimen-
sions can be relevant depending on domains and
tasks, such as progressive-traditional in the realm
of politics, and the mode of projection can be eas-
ily adapted with the presented methodology. A
combined projection with other dimensions such
as valence (unpleasantness vs. pleasantness) (see
e.g. Omrani Sabbaghi et al. (2023)), could provide
even further insights.

As we have shown, the term context can have

a considerable influence on the behavior of the
stereotype dimensions. Thus, examples for pole
and projected terms should be chosen deliberately.
Gender non-specific context is our default choice
because no additional bias is introduced through
the examples and we get a clearer picture of the
bias already present within the pre-trained em-
beddings. Even smaller open-source LLMs are
now able to provide examples with this prop-
erty at scale. However, measurement is certainly
best conducted with domain-specific data when
a specific use case exists. While we use simple
templates as contexts for the gendered terms and
names, these could as well be sampled from a tar-
get domain or be generated to test specific scenar-
ios. For example, similar to May et al. (2019), this
could involve introducing success in a historically
male-dominated field to the term/name context, to
test if a penalty exists for females, as found in psy-
chological studies (Heilman et al., 2004).

While embedding-based methods for bias mea-
surement have been critiqued for their remoteness
from downstream applications (Gallegos et al.,
2024), and are certainly no substitute for task-
specific investigations, they have multiple advan-
tages. First, the methodology does not depend on
natural language datasets that can be leaked into
training data and are therefore applicable to older
and newer models alike. Second, the same stereo-
type dimensions can easily be used for bias mitiga-
tion (Ungless et al., 2022; Omrani et al., 2023), al-
leviating representational harm and the risk that it
influences downstream behavior. Finally, our pa-
per shows they can be exploited for intuitive visu-
alizations exposing gender bias.
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Figure 6: Layerwise visualization of prediction accuracy and gender bias for selected models.

6 Conclusion

Large pre-trained language models reflect the bi-
ases in their training data, which in turn reflect
the biases of their creators. As the foundation
for AI applications, their biases are further prop-
agated, warranting their study to uncover the risks
and promote mitigation efforts.

In this work, we profile gender stereotypes in
twelve LLMs by means of the stereotype con-
tent model of social psychology (Fiske et al.,
2002), thereby theoretically grounding the anal-
ysis, which has in the past been described as
the missing link for bias measurements (Blod-
gett et al., 2020). By a matrix transformation,
the opaque contextual embeddings of the mod-
els reveal interpretable stereotype dimensions.
Along the two major dimensions of warmth and
competence, we find significant bias for gender-
associated names and some evidence of bias for
gendered terms, widely aligned with stereotypes
found in human studies.

The shown presence of stereotype dimensions
in LLMs is a comprehensible replication of se-
mantics in human language, however, the differ-
ential associations of social groups along these
dimensions constitute a representational harm.

Equal treatment starts with equal representation;
stereotypes already statistically significant in em-
bedding space come with the risk of being ex-
ploited in downstream tasks, which could lead to
different and unfair treatment of social groups.
While the first access point would be the training
data itself, the embedding space allows a quantifi-
cation of patterns that is useful for bias assessment
and mitigation. The analysis of embedding spaces
by interpretable dimensions provides a means to
evaluate both functional semantics and harmful as-
sociations that should be ‘unlearned’ to prevent
their propagation.

Awareness of bias in LLMs needs to be in-
creased beyond the expert audience, as biased
models are already deployed, and completely de-
biased models may hardly be attainable, as they
are trained on vast amounts of biased human-
created data. The here presented bias profiles
based on the stereotype content model employ an
intuitive scoring along meaningful scales of op-
posing concepts (e.g. low vs. high warmth), as
proven effective by semantic differentials in hu-
man surveys (Osgood et al., 1957). The result is
a highly visual solution for communicating bias to
wider audiences and users of artificial intelligence.
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7 Limitations

The bias profiles presented in this paper concern
only gender, but there is a whole range of biases to
be profiled in LLMs to evaluate and communicate
representational harms. The scope of analysis was
also constrained to English contextual embedding
spaces and needs to be extended to a multi-lingual
setting in the future.

Furthermore, the focus of this paper was bi-
nary gender, with historically gender-associated
names and gendered terms. While we projected
a few terms for transgender and nonbinary gen-
der to the stereotype dimensions, future analysis
needs to extend the methodology for these smaller
and diverse ‘vocabulary populations’. Increasing
the number of context samples for terms offers po-
tential for greater robustness and applicability of
statistical tests.

Finally, no general bias measurement bench-
mark or method, including the one presented in
this paper, precludes the absolute necessity of
task-specific bias measurements. However, they
can be a piece of the puzzle by revealing learned
general bias tendencies and providing a means to
mitigate and communicate these effectively.
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Abstract

Textual entailment, or the ability to deduce
whether a proposed hypothesis is logically
supported by a given premise, has his-
torically been applied to the evaluation
of language modelling efficiency in tasks
like question answering and text summa-
rization. However, we hypothesize that
these zero-shot entailment evaluations can
be extended to the task of evaluating dis-
course within larger textual narratives. In
this paper, we propose a simple but ef-
fective method that sequentially evaluates
changes in textual entailment between sen-
tences within a larger text, in an approach
we denote as “Entailment Progressions”.
These entailment progressions aim to cap-
ture the inference relations between sen-
tences as an underlying component ca-
pable of distinguishing texts generated
from various models and procedures. Our
results suggest that entailment progres-
sions can be used to effectively distinguish
between machine-generated and human-
authored texts across multiple established
benchmark corpora and our own EP4MGT
dataset. Additionally, our method displays
robustness in performance when evalu-
ated on paraphrased texts, a technique that
has historically affected the performance
of well-established metrics when distin-
guishing between machine generated and
human authored texts.

1 Introduction

As Large Language Models (LLMs) expand and
evolve to accommodate more complex language

generation tasks (e.g., significant advances in ma-
chine translation (Lai et al., 2023), logical rea-
soning (Liu et al., 2023), summarization (Zhang
et al., 2023), complex question answering (Tan
et al., 2023)), we are witnessing a growing num-
ber of machine-generated text (MGT) in both on-
line and offline environments.1 This, in turn, has
raised concerns regarding authenticity and regu-
lations,2, 3 drawing attention to MGT detection as
both a safeguard and indicator for authentic human
authorship, which has become quite a hot topic in
Natural Language Processing (NLP).4

Intuitively, machine-generated texts can display
lexical, syntactic, and semantic properties that are
distinguishable from human authored texts, poten-
tially guiding MGT detection implicitly, as a latent
property, or explicitly as a directly encoded feature
(Georgiou, 2024). For example, MGT detection
methods like entropy and log-likelihood, which
assess the probability of a text being machine gen-
erated based upon individual token probabilities
encoded by a given LLM, take into account how
LLMs functionally operate as next word predictors
(He et al., 2023). Thus, evaluating where LLMs
situationally differ from human authorship in re-
lation to both their observed behaviour and func-
tionality can expand the scope of feature selection
within MGT detection to capture these differences
more effectively and in a more interpretable man-
ner.

Textual entailment, or the relationship between
a given premise and its potentially inferred hy-

1For a comprehensive overview of LLM capabilities see
Guo et al. (2023) and Chang et al. (2024).

2https://eur-lex.europa.eu/legal-conte
nt/EN/TXT/?uri=celex%3A52021PC0206

3https://www.whitehouse.gov/ostp/ai-b
ill-of-rights/

4For an in-depth analysis of the task, existing corpora and
detection methods, see Wu et al. (2023).
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pothesis, has been previously used to evaluate how
LLM text generation differs from human author-
ship in regard to an LLM’s ability to generate
text in accordance with prior informational con-
straints (Dagan et al., 2022). In areas like question
answering and dialogue systems, calculating the
textual entailment between a prior conversation
and a machine-generated response can examine
whether a model produces relevant and accurate
text, a behaviour assumed to be exhibited in hu-
man authorship and communication (Ben Abacha
and Demner-Fushman, 2019; Dziri et al., 2019).
Based on observations of differences in textual
entailment between MGTs and human-authored
texts in relation to prior conversations, an inter-
esting question arises: can textual entailment be
directly encoded and utilized as a feature for MGT
detection?

In this paper, we:
(1) Introduce entailment progressions, a frame-
work in which a given piece of text can be rep-
resented as a series of values, with each value
representing the level of textual entailment be-
tween sentences in a text. These entailment pro-
gressions aim to measure the extent to which a
model generates each individual utterance in logi-
cal reference to its previously generated utterances
(i.e., identifying how new information is intro-
duced in relation to the preceding content: in sup-
port, in contradiction, or with no relation (neu-
tral)). We believe that entailment progressions
provide a unique perspective and should be con-
sidered in qualifying LLM behaviour to achieve a
more in-depth analysis.
(2) Propose a novel dataset, EP4MGT (En-
tailment Progressions for Machine Generated
Text), comprising 70,158 machine-generated re-
sponses across eight state-of-the-art LLMs.5

2 Related Work

The definition of recognizing textual entailment
(RTE) as outlined by Dagan et al. (2005) and later
expanded upon by Korman et al. (2018) is as fol-
lows: “a text T textually entails a hypothesis H
relative to a group of end users G just in case,

5The code and dataset, along with the prompts used for
constructing the corpus, are freely available at: https://
github.com/patriChiril/Entailment-Progr
essions.

typically, a member of G reading T would be jus-
tified in inferring the proposition expressed by H
from the proposition expressed by T”. This defini-
tion incorporates three key aspects of RTE. First, it
does not require any knowledge beyond the justi-
fiable inference that can be made between a given
text and its hypothesis (Feldman, 2003). Second,
this justifiable inference is subject to the charac-
teristics exhibited by a group of end users G, in
which users outside this group may differ in their
inferences due to personal factors that may influ-
ence how they interpret logical relationships (Bos
and Markert, 2005). Third, the logical component
of entailment is textually constrained, rendering it
dependent on linguistic factors such as grammar,
semantic, and syntactical choices (Braun, 2001).

Current RTE modelling approaches require two
main steps. First, the features of premise T and
hypothesis H are extracted in order to represent
the statements in accordance with relevant lin-
guistic mechanisms associated with textual en-
tailment. Second, the statements are fed into a
supervised multi-class classification model which
predicts whether a premise-hypothesis pair pos-
sesses positive (the hypothesis can be inferred to
be true if the premise is true), negative (the hy-
pothesis can be inferred to be false if the premise
is true), or neutral (the hypothesis’ truth is not suf-
ficiently conditional upon the premise being true)
entailment. For an in-depth overview of RTE re-
sources, approaches, and applications, see Putra
et al. (2024).

3 Methodology

3.1 Hypothesis

We incorporate Korman’s RTE approach into the
task of detecting MGT under the premise that de-
termining inference relations between sentences in
a text is a component of identifying authentic hu-
man authorship.

Take, for example, a short story written by Chat-
GPT. While the story may contain relevant content
pertaining to the subject matter and utilize vocab-
ulary similar to its human counterpart, ChatGPT
may employ a more simplistic narrative structure
without the stylistic nuance or variability typical
of human authors. While these LLMs are autore-
gressive models that generate the next token based
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on the previous sequence (without explicitly mod-
elling entailment in the process), our interest lies
in exploring whether certain logical patterns are
internally captured to some degree.

Regardless of the manner in which these eval-
uations are conducted, the structure of a textual
narrative (like a short story) is an identifiable lin-
guistic feature that can be used to distinguish be-
tween texts. We posit that in settings where texts
must be logically structured to advance a given
claim or narrative purpose, sentence-level evalu-
ation can identify and distinguish structural dif-
ferences between different generative processes.
This process involves examining the inference re-
lations between a new sentence and its overarch-
ing premise, as well as between sentences within
the text. RTE models can determine the probabili-
ties of entailment, contradiction, and neutrality be-
tween a sentence and its preceding text (to identify
how the sentence logically corresponds to prior
context). These probabilities can be then assem-
bled into “entailment progressions”, which are
vectors composed of sequentially calculated prob-
abilities of inference relations between a given
sentence and the sentences preceding it.

The formal definition of the entailment progres-
sions of a given text can be expressed as follows:

EP3×n =



c0 c1 · · · cn−1

p0 p1 · · · pn−1

n0 n1 · · · nn−1




where EP is a matrix composed of c, p, n row vec-
tors representing the contradiction, positive, and
neutral entailment probabilities between a sen-
tence at a chosen index and its prior sentences in
a given text. To compute these values at a given
point in a text, we introduce the following equa-
tions:

EP0,i = C(si+1−w:i+1, si+1)

EP1,i = P (si+1−w:i+1, si+1)

EP2,i = N(si+1−w:i+1, si+1)

where E represents the model used for calculating
entailment between a sentence s at a given point in
the text i and the sentences preceding it within a
context window of size w.

Motivated by observed discourse phenomena,
such as the referential connection between (sum-

marizing) titles and the sentences in their corre-
sponding texts, as well as between sentences in
close proximity (Mirkin et al., 2010), entailment
progressions use entailment as a heuristic for iden-
tifying logical relationships between key compo-
nents of a text. Given this emphasis on the logical
relation between a chosen sentence and its over-
arching premise (i.e., a title), we also include the
following equations:

EP0,i = C(p, si)

EP1,i = P (p, si)

EP2,i = N(p, si)

where E represents the model used for calculating
entailment between the general premise defining
the full text p and a sentence or collection of sen-
tences s.

Based on our analysis of existing RTE literature,
we hypothesize that if the logical relationships be-
tween components of a text are distinguishable lin-
guistic features that underlie a set of texts pro-
duced by either models or humans, and if entail-
ment progressions effectively represent this set of
relationships, then entailment progressions can be
used to identify the source of a set of texts. Our hy-
pothesis hinges upon two interconnected inquiries:
Are entailment progressions a meaningful feature
of a text? And, if so, is the governing structure
of these logical relationships reproducible across
texts produced by the same author? We suggest
that our hypothesis can be validated by evaluat-
ing whether entailment progressions can serve as
a feature for identifying and interpreting human
authorship. If we can identify MGTs using only
their entailment progressions, this would exper-
imentally confirm that they are both meaningful
and reproducible features across texts generated
through the same procedure.

3.2 Datasets
We conduct our experiments on two freely avail-
able English corpora from previous studies and
one newly created dataset.
MULTITuDE. This dataset includes 74,081 texts
(comprising 7,992 human-written and 66,089
machine-generated texts), distributed across 11
languages (Macko et al., 2023).6 The human-

6For the purpose of our analysis, we selected only the En-
glish subset of the dataset.
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written portion of the corpus consists of news ar-
ticles from the MassiveSumm dataset (Varab and
Schluter, 2021). The authors used the titles of the
human-written articles for prompting eight differ-
ent LLMs to generate the corresponding MGTs.
Ghostbuster. This corpus includes both
human-authored and ChatGPT-generated text
across three domains: creative writing, news,
and student essays (Verma et al., 2023). The
creative writing collection is sourced from the
/r/WritingPrompts subreddit and contains
both the original prompts and the corresponding
MGT/human-authored texts. The human writ-
ten collection for the news dataset is based on
the Reuters 50-50 authorship identification dataset
(Houvardas and Stamatatos, 2006), while the
student essay dataset contains high school and
university-level essays collected from IvyPanda.7

In order to bypass the fixed structure of some of
these texts (e.g., news articles), while also cover-
ing a diverse set of topics, we build a new dataset,
EP4MGT, through which we aim to assess the dif-
ferences in structure between human-authored and
MGTs, specifically within the context of online
debates and discussions.
EP4MGT. We draw the human-authored texts
from the CMV dataset (Tan et al., 2016),
which consists of user interactions from the
/r/ChangeMyView subreddit. This Red-
dit community features posts in which a user
presents their original beliefs and rationales,
challenging others to contest these view-
points.8 Given a title from the CMV dataset,
we task the following LLMs: ChatGPT,
GPT4 (Achiam et al., 2023), Gemini (Team
et al., 2023), and Mistral (Jiang et al.,
2023) (mixtral-8x7b, mistral-7b,
mistral-small, mistral-medium,
mistral-large) with writing an argument
(that could provide compelling reasoning either in
favour or against the topic) consisting of at least
seven sentences.

It is important to note the varying sentence
lengths (and by extension varying word counts) of

7As the authors did not have access to the original news
headlines or essay prompts, they used ChatGPT to generate
headlines and prompts before creating the corresponding ar-
ticles and essays.

8The dataset can be found at: https://convokit.c
ornell.edu/documentation/winning.html.

the texts included in these corpora. In order to pre-
vent sentence length being a confounding factor
in our analysis, we removed both human-authored
and machine-generated texts that were outliers in
their respective sentence length distributions (e.g.,
texts containing only one or two sentences, groups
of texts that contained fewer than 50 instances of a
specific length). The distribution of the sentence
counts across the various models in the corpora
used in this study is presented in Figure 1, while
Table 1 presents an overview of the filtered and
unfiltered corpora.

DATASET MODEL TOTAL USED

EP4MGT

GPT4 3,658 3,658
ChatGPT 10,000 9,928
gemini-1.0-pro 6,500 5,868
mistral-7b 10,000 10,000
mistral-small 10,000 8,663
mistral-medium 10,000 10,000
mistral-large 10,000 10,000
mixtral-8x7b 10,000 10,000
human-written 10,000 3,864

MULTITuDE

vicuna-13b 3,298 982
llama-65b 3,288 764
GPT4 3,300 1,828
GPT3.5-turbo 3,300 1,262
text-davinci-003 3,300 1,056
alpaca-lora-30b 3,297 749
opt-66b 3,293 755
opt-iml-max-30b 3,287 707
human-written 3,097 1,006

Ghostbuster

claude 1,000 958
GPT 1,000 920
GPT-prompt 1 1,000 884
GPT-prompt 2 1,000 899
GPT-writing 1,000 910
GPT-semantic 1,000 955
human-written 1,000 730

Table 1: Number of machine-generated and
human-written texts in the corpora.

3.3 Experimental Design

To ensure that our hypothesis is satisfied, we de-
sign an experimental setup that effectively ac-
counts for potential confounding limitations that
may arise during analysis.

First, in order to establish a fair comparison
between a set of human-authored and machine-
generated texts, both sets must “further the same
logical premise” and pertain to the same language
generation task. This effectively controls for style
(e.g., news articles, social media discourse, per-
suasive essays) that could otherwise overempha-
size the differences in entailment progressions be-
tween human-authored and model-generated texts.
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Figure 1: Distribution of number of sentences across the various models in the corpora used in this study.

Second, the texts under examination must be
preprocessed in a way that removes any textually
confounding identifiers that can further accentu-
ate comparative differences in entailment progres-
sions. This process involves removing any ele-
ments within the text that are not relevant to the
narrative at hand. These elements include, but
are not limited to, the language in which the texts
are written, identifiable markers from the media
sources (e.g., platforms like Reddit include iden-
tifiable tags), and anomalies in sentence length.
This helps ensure that the analysis focuses solely
on the content of the text.

When controlling for these conditions, we de-
sign an experimental setting that is suitable for de-
termining whether entailment progressions can be
effectively used as a feature for assessing human
and model authorship. This setting involves cal-
culating the entailment progressions for texts from
both human-authored and model-generated sets,
and then training a classification algorithm to dis-
tinguish between the two sources. If the algorithm
performs well on the classification task, then we
can assume that entailment progressions are a vi-
able feature for differentiating between machine-
generated and human-authored texts.

Based on our hypothesis (cf. Section 3.1), we
propose two key approaches for constructing the
entailment progressions. The first approach (de-
noted “Title-Sentence”) involves calculating the
entailment between the general premise of the text
and the sentences within the text. This approach
assesses the logical relationship between each sen-
tence and the premise it (is attempting to) sup-
port. The second approach (denoted “Sentence-
Sentence”) involves calculating the entailment be-

tween a given sentence and its preceding context.
This method uses a sliding context window, exam-
ining a given number of sentences (based on the
selected window size) directly prior to the evalu-
ated sentence.

In line with the experimental design previously
outlined, we generated the Sentence-Sentence en-
tailment progressions using context window sizes
of 1, 2, and 3 sentences for all datasets. Regarding
Title-Sentence entailment progressions, as we do
not have the general premise for the MULTITuDE
and Ghostbuster datasets, we only generate it
for the EP4MGT dataset. In this case, the general
premise is the title of the original human-authored
CMV post, which we used to generate the LLM re-
sponses addressing the argument conveyed by the
title.

While most of the existing datasets (e.g., SNLI
(Bowman et al., 2015), MNLI (Williams et al.,
2017)) address the RTE task at sentence-level, log-
ical connections can go beyond consecutive sen-
tences. As such, we rely on DeBERTa pretrained
on eight RTE datasets, including DocNLI (Yin
et al., 2021), a dataset spanning various lengths
for both premises and hypotheses. For perform-
ing the experiments, we relied on the HuggingFace
transformers library (Wolf et al., 2020).9 To test
our hypothesis, we trained multi-layer perceptrons
(MLPs) with a single hidden layer on these entail-
ment progressions to classify texts within a dataset
as either model-generated or human-authored. It
is important to note that when assembling the
training and testing datasets for the MLP models,

9https://huggingface.co/MoritzLaurer/
DeBERTa-v3-base-mnli-fever-docnli-lin
g-2c
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Figure 2: Examples from the EP4MGT dataset displaying low semantic similarity and high entailment
progression similarity.

EP4MGT ENTAILMENT + MLP MULTITUDE ENTAILMENT + MLP GHOSTBUSTER
ENTAILMENT + MLP

TITLE-SENTENCE CONTEXT-1 CONTEXT-2 CONTEXT-3 ∆ CONTEXT-1 CONTEXT-2 CONTEXT-3 CONTEXT-1 CONTEXT-2 CONTEXT-3

GPT4 0.681 0.832 0.896 0.903 -0.046 vicuna-13b 0.786 0.839 0.827 Claude 0.827 0.804 0.776
ChatGPT 0.743 0.892 0.979 0.979 -0.008 llama-65b 0.570 0.659 0.663 GPT3.5-turbo 0.922 0.922 0.911
gemini-1.0-pro 0.681 0.818 0.897 0.902 -0.031 GPT4 0.784 0.857 0.841 GPT3.5-turbo - prompt 1 0.834 0.825 0.837
mistral-7b 0.735 0.825 0.911 0.915 -0.001 GPT3.5-turbo 0.768 0.810 0.811 GPT3.5-turbo - prompt 2 0.909 0.917 0.871
mistral-small 0.695 0.834 0.939 0.940 -0.042 text-davinci-003 0.720 0.704 0.750 GPT3.5-turbo - writing 0.926 0.920 0.921
mistral-medium 0.718 0.869 0.935 0.939 -0.054 alpaca-lora-30b 0.696 0.657 0.669 GPT3.5-turbo - semantic 0.956 0.906 0.902
mistral-large 0.710 0.869 0.932 0.945 -0.015 opt-66b 0.524 0.661 0.690
mixtral-8x7b 0.723 0.845 0.935 0.936 -0.011 opt-iml-max-30b 0.588 0.768 0.767

Table 2: Macro F1 scores for Title-Sentence and Sentence-Sentence (using context window sizes of 1,
2, and 3 sentences) entailment progressions across the EP4MGT, MULTITuDE, and Ghostbuster
corpora.

we only selected entailment progressions that met
the same conditions (e.g., Sentence-Sentence en-
tailment progressions with a context window size
of 2 sentences).10 Since the entailment progres-
sions vary in length and are sequential, we lever-
aged a Time Series MLP implementation available
through tslearn,11 a Python package dedicated to
time series modelling and machine learning.

10We perform a binary classification task between human-
authored texts and texts generated by a specific LLM (e.g.,
GPT4).

11https://tinyurl.com/TimeSeriesMLPCla
ssifier

4 Results and Discussion

In Figure 2 we showcase two MGTs from the
EP4MGT dataset. Although these two MGTs
are generated by different models (i.e., GPT4
and mistral-large), pertain to different sub-
ject matters, and display low textual similar-
ity (0.0718 as calculated using SentenceBERT
(Reimers, 2019), a modified BERT that derives se-
mantically sentence embeddings that can be com-
pared using cosine similarity), they exhibit high
entailment progression similarity (5.9948 using
Dynamic Time Warping distance, that measures
the similarity between time series (Müller, 2007))

656

https://tinyurl.com/TimeSeriesMLPClassifier
https://tinyurl.com/TimeSeriesMLPClassifier


Figure 3: Mean positive (top) and negative (bottom) entailment progressions of texts from EP4MGT
dataset before (left) and after (right) paraphrasing.

between each other.

Table 2 highlights the performance of our
MLP model when trained solely on various types
of entailment progressions across the EP4MGT,
MULTITuDE, and Ghostbuster corpora. In
our analysis of the two approaches for con-
structing entailment progressions, we observe that
the Title-Sentence approach generally underper-
forms in the EP4MGT dataset. For the EP4MGT
dataset, in terms of F1 score, the performance drop
ranges from 13% to 21% when comparing the
Title-Sentence approach to the Sentence-Sentence
approach with a one-sentence context window
(CONTEXT-1), to two (CONTEXT-2) and three-
sentence (CONTEXT-3) context windows, respec-
tively. While the three-sentence context window
approach consistently outperforms other entail-

ment progression methods in the EP4MGT dataset,
this trend does not hold for the MULTITuDE and
Ghostbuster datasets, where the best perform-
ing method depends on both the model and the
narrative style. Overall, the results show that en-
tailment progressions capture aspects of the eval-
uated text that can help models (like MLP) to
identify human authorship, highlighting the poten-
tial insights entailment progressions could provide
through further exploration.

Similar to recent work leveraging paraphrasing
as a means of evaluating the robustness of different
MGT detection approaches (Verma et al., 2023),
we also examine the change in performance ex-
hibited by our MLP model when trained on the
entailment progressions of the paraphrased texts
(where ∆ = best model F1 - best model
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paraphrased F1). For this, we leveraged the
same methodology as Verma et al. (2023) and
Chakraborty et al. (2023), in which each sen-
tence is individually paraphrased using the Pega-
sus transformer model (Zhang et al., 2020). When
trained on the entailment progressions of the para-
phrased texts from the EP4MGT dataset, the model
exhibits a performance degradation of up to 5% in
terms of F1 score. In addition to these scores, Fig-
ure 3 illustrates the changes in between the mean
positive and negative entailment progressions for
the EP4MGT dataset and their paraphrased coun-
terpart.

5 Conclusion

In this paper, we introduce entailment progres-
sions, a novel representation of the underlying log-
ical structures of textual narratives for identifying
human and model authorship. We also present
EP4MGT, a dataset specifically designed to eval-
uate the logical approaches of humans and those
produced by a suite of state-of-the-art LLMs,
highlighting new avenues for exploring the prop-
erties and scope of entailment progressions as a
latent descriptor of authorship.

Given that entailment progressions can be gen-
erated from any multi-sentence text, their poten-
tial applications could extend to the broader area
of text attribution, thus providing insights in their
utility as identifiers of authorship (be it human
or model-based). This would also position our
framework alongside more traditional lexical, syn-
tactic, and semantic descriptors of style.

In future work, we plan on examining the effec-
tiveness of entailment progressions in other exper-
imental settings, across different languages, tasks,
and genres. Although through our framework we
have successfully detected MGTs in several En-
glish corpora with fixed narrative structure (i.e.,
personal claims, news articles), testing entailment
progressions on datasets in languages with differ-
ent underlying logical conventions or within con-
versational settings (dialogue) with variable logi-
cal constraints could reveal broader applicability.
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Abstract

Large language models (LLMs) have re-
cently gained significant attention for their
capabilities in natural language processing
(NLP), particularly generative artificial in-
telligence (AI). LLMs can also be useful
tools for software documentation technical
writers. We present an assessment of tech-
nical documentation content generated
by three different LLMs using retrieval-
augmented technology (RAG) with prod-
uct documentation as a knowledge base.
The LLM-generated responses were an-
alyzed in three ways: 1) manual error
analysis by a technical writer, 2) auto-
matic assessment using deterministic met-
rics (BLEU, ROUGE, token overlap), and
3) evaluation of correctness by LLM as a
judge. The results of these assessments
were compared using a Network Analy-
sis and linear regression models to inves-
tigate statistical relationships, model pref-
erences, and the distribution of human and
LLM scores. The analyses concluded that
human quality evaluation is more related
to the LLM correctness judgment than de-
terministic metrics, even when using dif-
ferent analysis frameworks.

1 Introduction

Technical communication means creating content
based on factual data, as consistently and clearly
as possible, so that users can easily understand
complex technical concepts. Various profession-
als are involved in it, such as technical transla-
tors, developers, information architects, and tech-
nical writers (Society for Technical Communica-
tion, n.d.). Technical documentation provides spe-
cialized and task-oriented information for the user
on how to use and interact with a given product. It

is not feasible to cover all possible use cases; in-
stead, the focus should be on the main functional-
ities or use cases to maintain objectivity. (Swarts,
2018).

LLMs can be useful not only for code gener-
ation but also for technical writing because they
can simplify the documentation process by gen-
erating drafts when prompted with code snippets.
This can facilitate the work of technical writers
and reduce the effort needed for research. A good
model could lower the technical barriers, automate
lengthy tasks, and act as an extra solution for their
problems (Evtikhiev et al., 2023). However, due
to several facts, one of them possibly being out-
dated training data, LLM-based chatbots can also
hallucinate information that does not accurately
reflect reality. An alternative to tackle this issue
is RAG. It allows external data to be incorporated
into the model, which improves its ability to pro-
vide more relevant or up-to-date responses, based
on the data used to implement the RAG method
(Gao et al., 2023).

This study leverages the content produced by
a chatbot using multiple LLMs (GPT-3.5 Turbo,
GPT-4.0, and Mistral AI 7B) and RAG technology
on a specific topic: Network as Code (NaC) tech-
nical product documentation. Briefly, NaC simpli-
fies the programming of networks, such as auto-
matically adjusting streaming capabilities and im-
proving bandwidth, for example, for online games
or concert streaming (Nokia, 2024).

The LLM responses were evaluated by a techni-
cal writer using an error-typology framework and
an LLM as a judge based on answer correctness.
The aim of this paper is to understand how dif-
ferent (automatic and human) evaluations are dis-
tributed according to the attributed scores and how,
or if, they relate. Additionally, the ultimate pur-
pose is not to show which evaluation is the best
but to offer insights on how performing differ-
ent analyses, for instance, automatic (quantitative)
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and qualitative can complement one another.
We first discuss relevant work on evaluating

LLM output quality (Section 2), and then present
the dataset and evaluation approaches used in this
study (Section 3). We report the comparison of
human, deterministic, and LLM evaluations using
linear regression models, score distributions Sec-
tion 4.1), and Network Analysis (Section 4.2). Fi-
nally, we discuss the implications of the compar-
ison (Section 5) and present the conclusions and
directions for future work (Section 6).

2 Related work

2.1 Leveraging Translation Quality
Evaluation for LLM Analysis

For evaluating the output of LLMs, frameworks
and methods have been applied from other con-
texts, such as (machine) translation quality eval-
uation. Deterministic metrics, such as Bilingual
Evaluation Understudy (BLEU) (Papineni et al.,
2002), which are based on the comparison of a
“gold-standard” human translation and an auto-
matically generated “hypothesis”, have tradition-
ally been used in the machine translation (MT)
field. However, recent advancements in the quality
of generative systems have led to increasing skep-
ticism about their reliability, often showing little
or no correlation with human assessment (Freitag
et al., 2022). BLEU, as well as other metrics such
as Recall-Oriented Understudy for Gisting Evalu-
ation (ROUGE), chrF, and token overlap, are also
used for evaluating LLM generated output (Zhang
and Antonante, 2023).

However, deterministic metrics are not stan-
dalone solutions and should be combined with hu-
man qualitative evaluation. High-quality and gran-
ular standards can again be provided by translation
quality evaluation frameworks where profession-
als manually check and annotate errors according
to their severity following the specified error crite-
ria (Fernandes et al., 2023). Error typologies, such
as the Dynamic Quality Framework (DQF) and the
Multidimensional Quality Metrics (MQM), pro-
vide detailed quality criteria to evaluate transla-
tions based on categories for accuracy, fluency,
style, and design, and attribute point deductions
or penalties according to the severity of the error
identified (Castilho et al., 2018). The combined
DQF-MQM framework defines error categories
and sub-categories, penalties, and thresholds that
can be adjusted by professional evaluators depend-

ing on their current work needs (Castilho et al.,
2018). This framework is commonly used in the
field and is considered a reliable methodology for
translation quality evaluation. Due to its focus on
specific textual features and adjustable categories,
it can also be applied to texts independently of
their type, such as technical content creation.

2.2 LLMs as quality evaluators

Recent work has also investigated how LLMs can
be used as quality evaluators and be prompted
(using instructions) to analyze the output qual-
ity of MT and generative AI. Kocmi and Feder-
mann (2023a) used a GPT-based evaluation metric
called GEMBA-DA for translation quality assess-
ment. Their encoder-only and encoder-decoder
language models used supervised data consisting
of human gold-standard evaluations in the form
of 0 to 100 direct assessments from the WMT22
Metrics shared task. Their approach used zero-
shot prompts requesting different LLMs to score
each source-target pair on a scale from 0 to 100.
The study concluded that this evaluation method
was only successful in GPT-3.5 and larger mod-
els (Kocmi and Federmann, 2023a). Later work
by Kocmi and Federmann (2023b) created an im-
proved model called GEMBA-MQM, which uses
GPT-4 to assess translation quality error spans fol-
lowing the MQM framework criteria as a refer-
ence. The researchers used a more detailed few-
shot prompting technique providing the LLM with
the same instructions a human evaluator would
receive. The work concludes that the GEMBA-
MQM model assessment has higher correlations
with human judgment because of a common trans-
lation quality evaluation framework. It also com-
pares the LLM scores against deterministic met-
rics in the scientifically related literature, such as
BLEU and chrF, to reach this conclusion (Kocmi
and Federmann, 2023b).

These studies indicate that LLMs can provide
state-of-the-art quality evaluations that are more
correlated with human judgment when they learn
or are fine-tuned with human evaluation data, such
as the ones produced with the MQM framework
(Fernandes et al., 2023). Other approaches, such
as those within Continuous-eval packages evalu-
ate LLM-generated text and code with granular
or holistic approaches, including quality and de-
terministic assessment of generative AI content
(Zhang and Antonante, 2023). How to evaluate the
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quality of generative AI content remains, however,
an open question. The present study further ex-
plores this question by evaluating texts generated
for technical documentation purposes and compar-
ing the evaluations provided by deterministic met-
rics and an LLM to a manual assessment by a pro-
fessional technical writer.

3 Material and Methods

3.1 Dataset

The outputs analyzed in this study were gener-
ated with Nokia’s chatbot tool which is internally
used in the company. Nokia authorized its use
for this research. This application allows the in-
gestion of documents, such as Markdown files as
input so the chatbot can provide better responses
based on the knowledge base provided. RAG
can be implemented through technologies such as
LangChain, which enables semantic search on rel-
evant content (LangChain, 2023). Further details
of this implementation cannot be revealed as the
tool is proprietary. The prompts and responses re-
late strictly to the public documentation of NaC.
The dataset includes 12 prompts, each generating
6 different types of responses from three distinct
LLMs: GPT-3.5-turbo-16k, GPT-4-1106-preview
(OpenAI, 2023) and Mistral AI 7B (Mistral AI,
2023) with two different temperature sets to either
0.4, a more deterministic tone, or 0.7, a more cre-
ative one. The chatbot was set to a maximum of
2,048 tokens to avoid overly extensive generated
content. The data were collected and analyzed as
part of a Master’s thesis project in the spring of
2024 (de Souza, 2024).

Zero and few-shot prompt-engineering are the
chosen techniques, in which zero shots are simple
prompts with no further instructions on how the
response should be, and the few-shot ones provide
a simple and limited number of examples or in-
structions for the response (DAIR.AI, n.d.). For
instance, in few-shot prompts that requested an
LLM to generate a documentation page for a given
code snippet about a NaC functionality, instruc-
tions were given on how to organize the documen-
tation page in Markdown language, and the main
technical concepts to be clarified by the LLM were
specified in the prompt.

3.2 Manual evaluation

The responses generated by the different LLMs
were analyzed by a professional technical writer

according to the DQF-MQM framework (TAUS,
n.d.) using error categories adapted for the pur-
pose of prompt analysis. A discussion of the error
analysis is outside of the scope of this paper, but
the list of categories and error evaluations can be
found in a GitHub repository.1 A more detailed
description is given in de Souza (2024). Based
on the errors identified, point deduction penalties
were applied according to the severity of the error
as follows:

• 0 - no points deducted, in which case the re-
sponse is correct.

• 0.25 - deducted when errors do not lead to
loss of meaning or major confusion.

• 0.5 - deducted when errors are significantly
misleading or confusing.

• 0.75 - deducted if errors could affect the com-
pany image, e.g. responses that do not in-
clude or disregard privacy reminders.

More than one penalty could be applied to the
same response if multiple errors were identified in
the same response. After the penalties, each re-
sponse received a total score ranging from 0 (to-
tally irrelevant responses) to 1 (totally correct and
relevant responses).

3.3 LLM quality analysis

A qualitative analysis was also performed with the
Continuous-eval LLM-based correctness package,
which can implement different LLM models to
evaluate answer correctness (Relari, 2023). The
chosen judge model for this study is GPT-4-1106-
preview. The code package allows importing an
LLM, which runs through a JSONL file with mul-
tiple lines, each containing a set of prompt, re-
sponse, and related ground truth contexts. The
generated responses are evaluated according to
their relevance to the prompts, and a total score
is given to each response ranging from 0 to 1 as
follows:

• 0 indicates the response is totally irrelevant to
the prompt.

• 0.25 for responses that are relevant to the
prompt but contain major errors.

1https://github.com/kjp-souza/tech-writing-LLM-human-
evaluation
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• 0.5 for responses that are relevant to the
prompt but are partially correct.

• 0.75 is attributed to responses that are rele-
vant to the prompt and correct.

• 1.0 is for responses that are relevant to the
prompt and complete.

3.4 Deterministic metrics

The human and LLM quality analyses were com-
pared against deterministic metrics, which evalu-
ate the tokens in both prompt and response sets to
leverage their token similarity. This deterministic
analysis was done using the deterministic metrics
also within the Continuous-eval package and are
described as follows (Relari, 2023):

• Token overlap refers to words shared by both
sets of texts (ground truth reference and gen-
erated response).

• ROUGE-L calculates the longest shared sub-
sequence between the generated response and
the ground truth text used as reference.

• BLEU measures how well a generated text
matches a reference text using n-gram preci-
sion, where each n-gram has a specific weight
and applies a brevity penalty to overly short
translations.

3.5 Network Analysis

The different analysis results, including the man-
ual human quality evaluation scores and automati-
cally generated deterministic and LLM-based cor-
rectness scores, were compared in the R statisti-
cal software (R Core Team, 2024). Four different
types of analyses were created: Network Analysis,
linear regression models, score distribution, and
average plots.

The Network Analysis used the bootnet
package (Epskamp et al., 2018), which allows for
estimating the network structure based on the ob-
served data. To obtain a conservative network
model, it was necessary to apply the least ab-
solute shrinkage and selection operator (LASSO)
method. This helped identify only the most impor-
tant edges (relationships) in the network, formed
by nodes, which contain a descriptive label for the
deterministic metrics, human quality evaluation,

and LLM correctness evaluation scores. By do-
ing so, over-fitting is avoided so the model can re-
main interpretable. In other words, Network Anal-
ysis edges can capture how changes in one vari-
able relate to changes in another without putting
a single one in evidence. Furthermore, a tun-
ing parameter value of 0.5 was chosen for the
Extended Bayesian Information Criterion (EBIC),
which helps balance model complexity and good-
ness of fit. A smaller EBIC value indicates a
better-fitting model, in this case, the tuning offers a
moderate level of regularization, which penalizes
very weak connections (edges) in a sparse network
(Nikolaev and Bermel, 2022). Once the network
was estimated, a threshold was applied (setting the
option to true) to remove weak associations based
on correlation strength, leaving only meaningful
connections in a network that becomes easier to
interpret (Nikolaev and Bermel, 2022).

However, to observe if there is any LLM prefer-
ence in common between human and LLM anal-
ysis, linear regression models were created in R
programming language and these use dependent
variables: Human quality and LLM correctness
judgments against multiple independent variables
which indicate different LLMs (GPT-3.5, GPT-
4 and Mistral). The sjPlot library (Lüdecke,
2024) was used to plot and better visualize the
relationship between human and LLM evaluation
scores and model types (Nikolaev and Bermel,
2022). Additionally, a figure visually represent-
ing the distribution of human and LLM scores was
created using the ggplot2R package (Wickham,
2016a), which is part of the tidyverse ecosystem
(Wickham et al., 2019) and used to design graph-
ics according to the grammar of graphics approach
(Wickham, 2016b).

4 Results

4.1 Comparison of human and LLM scores

Figure 1 shows the distribution of scores, detailed
in sections 3.2 and 3.3, according to human quality
evaluation and LLM correctness judgment. The Y
axes contain the response counts, visually repre-
senting the distribution, while the X axes repre-
sent the score distributions according to both hu-
man and LLM judgment columns. The human-
evaluation scores plot has several peaks and is
more evenly distributed, while the LLM one has
2 major peaks with very few outliers, in which
responses got 0 or 1 scores and no 0.5 scores.
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This shows that the human evaluation scores var-
ied more on a scale from 0 to 1 while the LLM al-
most exclusively assigned the scores 0.25 or 0.75
and did not use the score 0.5 at all. Addition-
ally, figure 8 in the appendix A shows the aver-
age scores for automatic metrics and human qual-
ity evaluation (Human QE), which were also gen-
erated using the same R programming language
packages.

Figure 1: LLM and human scores distribution

Linear regression models were used to analyze
the relationships between the dependent variables,
human and LLM correctness judgments, and the
independent variables, which included multiple
language models such as GPT-3.5, GPT-4, and
Mistral. We found this approach to be particu-
larly well-suited for handling categorical indepen-
dent variables, offering significant advantages in
terms of flexibility and interpretability. Specifi-
cally, it allows the quantification of effect sizes
of each language model relative to a designated
baseline, either human or LLM judgment, offer-
ing deeper insights beyond simple comparisons of
group means. Furthermore, the framework accom-
modates extensions such as continuous predictors
and interaction terms, ensuring versatility in our
analysis. These features align seamlessly with our
research objectives, enabling a nuanced and com-
prehensive interpretation of the relationships be-
tween predictors and outcomes.

Figures 2 and 3 illustrate how well an LLM
can predict or explain the quality evaluations by
human and LLM (GPT-4-1106-preview) evalua-

tors. The dependent variables are human qual-
ity evaluation scores and LLM correctness judg-
ments, while the independent variables represent
different LLMs (GPT-3.5, GPT-4, and Mistral),
showcasing their influence on human and LLM as-
sessments and enabling a more precise compari-
son of alignment and similarities in judgment.

Figure 2: Human analysis linear regression model

Figure 3: LLM analysis linear regression model

Both figures show that human and LLM evalua-
tions attributed higher or better scores, which sur-
pass 0.75 on a scale from 0 to 1, to content gen-
erated by the GPT-4 model. However, GPT-3.5
was better evaluated in the human analysis than
in the LLM one. The scores did not drop below
the average of 0.50 for GPT-3.5 in human analy-
sis, while they did in the LLM evaluation scores.
Mistral models received scores below average in
both analyses. However, in LLM analysis, Mis-
tral’s scores exceeded 0.60 points while in the hu-
man one, it did not even reach 0.50 on average.
In conclusion, GPT-4 model responses were better
evaluated by both human and LLM analyses, the
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GPT-3.5 model was better evaluated only in hu-
man analysis and Mistral AI responses were better
evaluated only by the LLM one.

4.2 Network Analysis results
As there is no dependent variable in a Network
Analysis, it is possible to observe different posi-
tive or negative relationships, which indicate be-
haviors among multiple variables, represented by
the evaluation scores, without emphasizing a sin-
gle one. Figure 4 shows a Network Analysis of
all observed variables: qualitative, including hu-
man and LLM, and multiple deterministic met-
rics. It consists of nodes (independent variables)
that are connected by edges (statistical relation-
ships). These variables and edges are connected
in a spiral format representing statistical relation-
ships between them. The goal is to understand
how these variables interact with each other. The
code and logic used here follow the same ones
used in Nikolaev and Bermel (2022).

Figure 4: Correlation Network Analysis

The edges in the network (shown as lines) ex-
plain the co-variation structure among the ob-
served variables. The blue edges indicate a posi-
tive correlation, while the red edges signify a neg-
ative one. The color intensity reflects relationship
strength. Additionally, this method allows observ-
ing the relations between human versus LLM eval-
uation on one side, and the deterministic correct-
ness metrics relation on the other.

Figure 4 shows that human and LLM evalua-
tions are positively correlated, though the strength
of the association is weak to moderate, which can
be observed not only in the network but also in the
calculated strength of association (0.27). A weight
near 0.30 suggests a weak to moderate relation-
ship, while values closer to 1 indicate a stronger
association. On the deterministic side, human
evaluation is in a weak positive association with

the metrics token-overlap recall (0.20), ROUGE-
L precision (0.14), and F1 (0.13). This can be
connected to content accuracy since the more to-
ken overlap there is between the ground truth and
the LLM-generated response, the more it is possi-
ble to trust it was based on precise and verifiable
data. On the other hand, human evaluation has a
moderate negative association with BLEU (-0.33).
This may be due to the brevity penalty assigned by
BLEU to short responses. The LLM temperature
node does not influence other evaluations.

Centrality indices were also employed to vi-
sualize the relationships between automatic and
human evaluation metrics. Figure 5 was gen-
erated using the qgraph package with the
centralityPlot function (Epskamp et al.,
2018). Nodes represent variables, and edges show
statistical relationships in a network. Centrality in-
dices (strength, betweenness, closeness) quantify
node importance as standardized z-scores, with
higher scores indicating greater centrality or in-
fluence relative to the network average. Between-
ness represents the number of times a node lies
on the shortest path between other nodes, indicat-
ing its control over communication in the network;
Closeness is the inverse of the sum of distances
from a node to all other nodes, measuring how
close a node is to all other nodes; and Strength is
the sum of the absolute weights of all edges con-
nected to a node, representing how strongly con-
nected a node is to the network.

Figure 5: Closeness centrality index
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This centrality analysis ordered by closeness re-
veals distinct patterns. The automatic metrics dis-
play more strength and influence due to their quan-
titative nature while interacting with each other,
with token overlap and ROUGE being the strong
ones while BLEU is more peripheral. Human QE
demonstrates a neutral strength compared to the
deterministic metrics. Additionally, the between-
ness index shows that it serves as a bridge between
LLM evaluation and deterministic metrics. This
can be observed through its positive z-score. LLM
evaluation remains relatively isolated, suggesting
a unique perspective that aligns more closely with
human judgment, possibly due to their qualita-
tive nature, than with deterministic metrics. This
highlights the complementary nature of qualitative
and quantitative evaluations, while human or LLM
judgments can provide more holistic assessments,
the quantitative metrics offer a granular analysis of
quantitative aspects of text quality, such as token
overlap. This closeness plot and other centrality
ones also ordered by betweenness and strength are
included in the appendix A.

4.3 Qualitative analysis example

Figures 6 and 7 show an example of the ground
truth reference and a response generated by GPT-
4 for the prompt “Can you provide an example of
attaching a device to a slice using an SDK?”. The
human and LLM quality evaluations for this re-
sponse are given below the figures.

Figure 6: Ground truth context reference

Figure 7: GPT-4 response

• Human evaluation of GPT-4’s response:

“GPT-4 does not use the same style of short-
ening the code by using ellipsis between
parentheses. Instead, it provides example val-
ues that work similarly. This LLM did not
miss nor omit any imports necessary for the
code to work and focused on the main ob-
jective of the question. The additional note
on the prerequisite of having an active slice
is only relevant to the whole documentation
page. Since this is an answer to a direct
question, points were not deducted for that”.
Score: 1.0.

• LLM evaluation of GPT-4’s response:

“The answer is relevant to the question and
correct. It provides a code example of how
to attach a device to a network slice using
an SDK, which aligns with the ground truth
reference. However, it does not mention the
prerequisite of having an active slice or pro-
vide the link to learn about activating a slice,
which is included in the ground truth. There-
fore, it is not entirely complete”. Score: 0.25.

This example illustrates how human and LLM
quality analyses may differ. According to human
evaluation, when prompted with “Can you provide
an example of attaching a device to a slice using an
SDK?”, GPT-4’s response in Figure 7 did not con-
tain code or text errors and was more similar to
the ground truth content in Figure 6, so no points
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were deducted. However, according to the LLM
evaluation, mentioning that it is necessary to have
an active slice before attaching a device is consid-
ered important, and points were deducted from its
evaluation. Perhaps, a human might consider that
it is not necessary to repeat information since the
active slice requirement for device attachment is
mentioned upon slice creation and previous pages
in the documentation.

5 Discussion

As seen in the (4.2), human evaluation is still
somehow correlated with deterministic metrics,
even though not strongly, while LLM evaluation
is peripheral, only associating with the human one.
Overall, the deterministic metrics had higher cor-
relations amongst themselves, mostly likely due to
the token overlap between ground truth and gen-
erated content. It is important to remember that
“hallucinated” responses can also have high token
overlap without necessarily generating more accu-
rate responses relevant to a real use-case scenario.

On the other hand, human and LLM quality
analyses seem more closely related to each other,
even when using different frameworks to evalu-
ate quality. This shows that an increase in the
human evaluation variable relates to an increase
in the LLM one. Additionally, the linear regres-
sion model plots seemed to reflect similarities in
model preference by both human and LLM judg-
ment. However, as the distribution of human qual-
ity evaluation scores had several peaks, it could in-
dicate that the human evaluation had a more varied
score distribution, due to the detailed error typol-
ogy followed by the quality analysis type, while
the LLM analysis mostly considered correctness
and relevance as the main reference. Furthermore,
as illustrated by the qualitative example (4.3), the
assessments of a human evaluator and the LLM do
not always correspond to each other.

6 Conclusion and future work

This paper analyzed technical documentation con-
tent generated by three different LLMs using RAG
technology and compared the responses to product
documentation. Different types of analyses were
done: a qualitative analysis using DQF-MQM er-
ror typology by a technical writer, an automatic
LLM correctness assessment, and a deterministic
evaluation using BLEU, ROUGE, and token over-
lap. The evaluation scores were contrasted and

compared using Network Analysis, linear regres-
sion models, and a histogram with score distribu-
tion. Deterministic metrics have strong relation-
ships with each other, while human analysis cor-
relates moderately with LLM analysis and weakly
with deterministic metrics.

The DQF-MQM translation quality evaluation
framework was found to be a useful model also
for the evaluation of technical writing content and
shows potential for improving evaluation methods
in the generative AI field. The current study is lim-
ited by involving only one technical writer as an
evaluator, but the approach can provide a basis for
further studies involving multiple evaluators. Fu-
ture work could also include integrating such qual-
itative evaluation frameworks to evaluation pack-
ages like Continuous-eval for a more granular ap-
proach to evaluating LLM output.

Overall, the evaluation results indicate that
LLMs are not yet ready as producers of novel
content or standalone solutions for technical writ-
ing content. Future research is likely to con-
tinue exploring methods for enhancing chatbot
responses for technical documentation purposes
through RAG or different prompting techniques
such as chain-of-thought (Wei et al., 2024). Devel-
oping novel and reliable quality evaluation meth-
ods is therefore also an essential challenge for pos-
itive advancements in this area.

7 Limitations

The dataset is relatively small with a total of 72
responses analyzed. However, the responses were
relatively long with several of them comprising
whole Markdown pages. The evaluations, though
subjective with only one evaluator, are informed
by their expertise as a professional technical writer
familiar with the product. Additionally, using a
proprietary RAG chatbot technology limited the
possibility of providing a more detailed technical
description here.
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Figure 9: LLM and human scores distribution
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Figure 10: Human analysis linear regression
model
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Figure 11: LLM analysis linear regression model
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Figure 12: Correlation Network Analysis
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Figure 13: Ground truth context reference
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Figure 14: GPT-4 response
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Abstract

We present MC-19, a new Icelandic histor-
ical corpus containing texts from the pe-
riod 1800–1920. We describe approaches
for enhancing a corpus of historical texts,
by preparing the texts so that they can
be processed using state-of-the-art NLP
tools. We train encoder-decoder mod-
els to reduce the number of OCR errors
while leaving other orthographical varia-
tion be. We generate a separate modern
spelling layer by normalizing the spelling
to comply with modern spelling rules, us-
ing a statistical modernization ruleset as
well as a dictionary of the most common
words. This allows for the texts to be
PoS-tagged and lemmatized using avail-
able tools, facilitating usage of the cor-
pus for researchers and language technolo-
gists. The published version of the corpus
contains over 270 million tokens.

1 Introduction

For most areas of language technology, large text
corpora and other textual resources have become
increasingly important in recent years, not least
due to large language models (LLMs) becoming
ever more pervasive. Textual resources are not
only necessary to train such models to use and
decipher language, but also for question answer-
ing, information extraction and other generative
tasks. With better access to data and tools to work
with linguistic data, data-oriented approaches to
linguistic research and lexicography have become
more common and more useful, allowing more re-
searchers to use such approaches in their work.
Most commonly, large text corpora comprise re-
cent texts. Texts from the digital era, written to be
published online, can be a good tool to study re-
cent changes and variation in language, as well as

recent events and how they are perceived as they
are happening. When we want to study older lan-
guage, the new methods fall short if the data is
lacking. In order to facilitate linguistic research
for older texts, we have compiled a new corpus,
the 19th Century Megacorpus (MC-19). Such re-
search might include diachronic linguistic studies
and syntactic analysis.

The aim of the MC-19 project is to compile as
large a corpus as possible, comprising texts writ-
ten from 1800 to 1920. The first edition of the
corpus contains texts from journals and newspa-
pers published in this period and scanned by the
National and University Library of Iceland (LBS),
but we intend to extend the corpus in a later edi-
tion to also include published books. We use the
OCRed texts published by LBS and develop post-
processing models to find and fix OCR errors in
the texts, while aiming to not change anything
else. Finally, we normalize the texts using mod-
ern spelling.

The contributions of the project, presented in
this paper, include:

• The corpus itself, published in TEI-format1

and in a keyword-in-context (KWIC) search
engine.2 The published corpus contains post-
processed OCRed texts and a version tran-
scribed to modern spelling, PoS-tagged and
lemmatized.

• A list of common OCR-errors when process-
ing Icelandic texts. We manually checked
a wide range of random texts on Tímarit.is
from this period and analyzed the OCR er-
rors. The error list, available on GitHub,3 was
used for generating synthetic training data for
post-processing (see Section 4.2).

1http://hdl.handle.net/20.500.12537/
360

2https://malheildir.arnastofnun.is/
3https://github.com/

stofnun-arna-magnussonar/MC19/OCRerrors
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Figure 1: Token count by year (1801–1920).

• Approaches to post-processing OCR texts
and transcribing to modern spelling. Models
and scripts are available on GitHub.4

2 Why Do We Need a 19th Century
Corpus?

Syntacticians studying Icelandic syntax, linguists
studying word formation, inflectional morphology
or semantics and lexicographers compiling dic-
tionaries have been the most active users of the
Icelandic Gigaword Corpus (IGC, Steingrímsson
et al. 2018; Barkarson et al. 2022). Amongst these
users there has been a call for corpora covering
larger periods and going as far back in time as
possible, in order to further the study of, for ex-
ample, semantic or syntactic change. Language
technologists, working on LLMs, are interested in
studying how different LLMs comprehend older
language in comparison with current language and
to add older texts into the training process to see if
it enhances the models’ abilities to generate infor-
mative texts covering previous time periods. With
MC-19, we aim to facilitate work in all these dif-
ferent fields of research.

As a demonstration of research that could be
furthered with a corpus like ours, we could look at

4https://github.com/
stofnun-arna-magnussonar/MC19

an empirical study on the reflexive passive in Ice-
landic conducted by Árnadóttir et al. (2011). This
construction can be dated back to the 19th century
as Árnadóttir et al. show. To find as old exam-
ples as they could at Tímarit.is, the authors had
to look for word strings. To find different exam-
ples of flýta sér ‘hurry (oneself)’ in the reflexive
passive, they had to search for, e.g., “var flýtt sér”
(‘was hurried oneself’), “var flýtt sjer”, “er flýtt
sér”, “er flýtt sjer”, “verið flýtt sér”, “verið flýtt
sjer”, etc.; they also searched for, e.g., adverbs like
oft ‘often’ intervening between the auxiliary vera
‘be’ and the participle (cf. Árnadóttir et al. 2011,
64).

This is rather time consuming, especially when
one wants to look for as many different verbs as
possible. This is, however, made easier in MC-
19 as the corpus is PoS-tagged and lemmatized
and we can therefore look for both certain word
forms and tags. A search query that looks for the
lemma vera ‘be’ followed by past participle (and
between vera and the participle can be at most
one word) which in turn is immediately followed
by the reflexive pronoun forms sig/sér/sín seems
to return most of the 19th-century examples from
Árnadóttir et al.’s study (but of course not the ones
that differ in structure from the setup in the query).
This search query also returns at least two exam-
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ples from the 19th century that are not reported on
in Árnadóttir et al. (2011).

3 Related Work

A wide range of historical corpora has been com-
piled and made available for different languages.
Many of these are small, less than a million words,
but there are notable exceptions. The Corpus of
Late Modern English Texts (De Smet, 2005) con-
tains over 34 million words in texts from the pe-
riod 1710–1920, and the Royal Society Corpus
(Kermes et al., 2016) includes all publications of
the Philosophical Transactions of the Royal Soci-
ety of London from 1665 to 1869, approximately
32 million tokens. ChroniclItaly (Viola, 2021) is a
corpus of Italian language newspapers published
in the United States between 1898 and 1920,
16.6 million words in total, and the Diorisis An-
cient Greek Corpus contains 10.2 million words
in texts spanning from Homer to the fifth cen-
tury AD (Vatri and McGillivray, 2018). Turning
to Icelandic, the Icelandic Parsed Historical Cor-
pus (IcePaHC, Rögnvaldsson et al. 2012; Wallen-
berg et al. 2024) contains approximately 1 million
words written between the 12th and 21st centuries.
The Saga Corpus (Rögnvaldsson and Helgadóttir,
2011) contains the texts of the Icelandic sagas as
well as a few other historical texts in modernized
editions, and the IGC, which is 2.6 billion words
in total and mostly has texts from the 21st century
and the end of the 20th century, contains a few
thousand words in texts written before the year
1900, all from the IGC-Law (Barkarson and Stein-
grímsson, 2022) subcorpus, containing law texts.

A number of studies have been carried out on
how best to correct historical OCR data. Bjerring-
Hansen et al. (2022) present a pipeline for correct-
ing 19th century Danish fraktur. Their approach
is rather different from ours, starting by chang-
ing “obvious and unambiguous OCR errors”, then
aligning multiple OCR output candidates and per-
form selective correction with reference to these
and finally employing a spell checker.

Different approaches have been taken when do-
ing historical spelling normalization. Schneider
et al. (2017) use machine translation (MT) sys-
tems, translating original spelling into normalized
texts. While they compare rule-based and SMT-
based MT systems, Tang et al. (2018) evaluate
the effectiveness of using neural-based MT for the
task. Bollmann (2019) highlights that there is no

consensus on the state-of-the-art approach to his-
torical text normalization and compares a num-
ber of approaches. He finds that lookups based
on naive memorization are most often effective
for seen tokens, while MT-based methods perform
best in unseen cases.

4 Data Processing

Our data is collected from Tímarit.is, a digital li-
brary platform for newspapers and periodicals that
goes back to the early 19th century. The platform
allows users to search texts, with OCR-generated
text files for each page in the library. Rather than
running our own OCR-models on the pages, which
would have been resource intensive and not neces-
sarily very beneficial, we decided to use the texts
OCRed by the providers of Tímarit.is, LBS. In or-
der to facilitate our work, LBS provided us with
all text files for our project, covering the period in
question, 1800–1920.

So that we could exclude too noisy texts, we
manually checked the OCR quality of newspapers
and periodicals that were candidates for our cor-
pus. The process is described in Section 4.1.

During the selection process we compiled a list
of common OCR errors. We then enlarged it by
extracting a list of OCR errors from manually cor-
rected texts from this period that we had access to.
The information was used to automatically intro-
duce OCR-like errors to correct texts, thus creat-
ing a parallel data set for training models to post-
process OCRed data. We also took random sam-
ples from the texts that we decided to use and man-
ually fixed the OCR errors to create an evaluation
set. We describe this in more detail in Section 4.2.

All the selected texts were run through the post-
processing models we trained, before normalizing
them to modern spelling, using the approaches de-
scribed in Section 4.3. Having the modern spelling
variants we could PoS-tag and lemmatize the texts
using the best available tools for Icelandic, which
are trained on modern texts.

4.1 Data Selection

When selecting the publications to include, we
checked all newspapers and periodicals available
on Tímarit.is from the period 1800–1920, in to-
tal approximately 400 titles. Individual titles were
evaluated by randomly selecting three volumes
(years) and from each of the volumes three pages
were inspected. In total, nine pages were thus
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Error Correct Error Correct
Word Word

3 ð hú3 húð
|> Þ |>jer Þjer
ce æ lceknis læknis
cl d breidcl breidd
h li háskóh háskóli
rn m heirnila heimila

Table 1: Examples of character level OCR-errors.

checked for each title. We used three categories
in our evaluation:

• Green – OCR seems to be accurate and does
not contain a lot of errors;

• Yellow – Most of the text looks good, but er-
rors are common in some parts. These texts
need more rigorous fixing.

• Red – Probably unusable, mostly due to
OCR not giving good results. All periodicals
printed in fraktur are in this category as well
as texts that the OCR model fails to repro-
duce, commonly due to bad print or unusual
layout.

In the final corpus we decided to include every-
thing from the first two categories, green and yel-
low, but leave out all material in the red category,
leaving us with 317 sources deemed usable.

As we performed the checks, common OCR-
errors were recorded. This way, a list of 330 er-
rors were collected, which could later be used to
help with fixing the errors. Examples of this can
be seen in Table 1.

4.2 OCR Post-processing

We carried out post-processing on all texts deliv-
ered to us by LBS, using the approaches described
in Jasonarson et al. (2023). This involved using
an encoder-decoder Transformer model (Vaswani
et al., 2017) trained from scratch using parallel
data containing OCRed texts and manual correc-
tions of these, as well as texts populated with arti-
ficial errors in conjunction with the unspoiled data.

We had access to manually corrected texts from
19th century periodicals and journals, which we
matched to the uncorrected texts.5 This dataset

5These texts are a product of the project Language
Change and Linguistic Variation in 19th-Century Icelandic
and the Emergence of a National Standard, led by Ásta

Original Corrected Frequency
p þ 2,779
i í 1,141
li h 247
rn m 166
m rn 77

Table 2: Examples of automatically extracted er-
rors and statistics on them.

contains in total over 2 million tokens. We also
used this data to gather more examples of OCR
errors and to create statistics on which errors are
the most common, examples of which are shown
in Table 2. In turn, this information was used to
generate a new dataset containing artificial errors.

The data into which the artificial errors were
inserted were texts published between 1830 and
1920, taken from the Icelandic Text Archive.6 By
doing this we have parallel data, with correct texts
on the one hand and the same texts with errors like
the ones commonly found in OCR output on the
other. This data can then be used to train a system
that effectively translates erroneous texts to cor-
rect texts, fixing many errors like the ones found
in Table 1. In total, the artificial corpus contained
almost 3 million tokens. We combined our two
parallel datasets and split it into training and vali-
dation data, with the validation data being 15% of
the total, approximately 750 thousand tokens, and
the training set approximately 4.2 million tokens.

To evaluate the post-processing accuracy, we
created an evaluation set by selecting random
pages from the corpus and manually correct them.
The evaluation set contains in total 18k tokens.

We trained three models, as described in Jason-
arson et al. (2023), the best being a fine-tuned
version of ByT5-base (Xue et al., 2022) which
achieved a word error rate reduction of 55.07% –
cutting the number of erroneous words in half.

4.3 Modernizing the Spelling
We manually modernized the 10,000 most com-
mon words in our training data and created a
lookup dictionary. We also built a statistical
spelling modernization ruleset by iterating over
a small, manually modernized, parallel corpus,
one token at a time, extracting the necessary ed-

Svavarsdóttir at the Árni Magnússon Institute for Icelandic
Studies (e.g. Svavarsdóttir et al. 2014).

6https://clarin.is/en/resources/
textarchive/
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its needed to convert an old token into a modern
one. This resulted in 101 rules, such as je→é and
p→f, both of which are a frequent change from old
tokens to modern ones.

To modernize our corpus, our system iterates
over every sentence in a given original text and
generates a modern counterpart. It looks at every
token in the original sentence and checks whether
it exists in the Database of Icelandic Morphology
(DIM, Bjarnadóttir et al. 2019). If it does, the to-
ken gets added unchanged to the new modern sen-
tence. If the token is not found in DIM, the sys-
tem checks whether the word exists in the man-
ually corrected lookup dictionary, and if so, the
modernized spelling variant gets added to the new
sentence. If a token is shorter than 3 characters,
we do not try to modernize it and simply add it to
the new sentence.

If an original token’s modern counterpart has
not been found at this point, we create an empty
list, which we populate with plausible candidates
that we produce with several methods.

1. Using Kvistur (Daðason et al., 2020), we
check whether the token is a compound word.
If all of its parts exist in DIM, we add it to the
candidate list.

2. We check whether there is a word in DIM
that has a Levenshtein-distance (Levenshtein,
1966) of 1 (or 2, if the token is 12 characters
or longer) from the original token. If it does
and its edit from the original token is found in
our statistical spelling modernization ruleset,
we add it to the list, e.g. if the original token
is eptirlegukind and eftirlegukind is found in
DIM, as p→f is a known spelling moderniza-
tion rule.

3. We apply all of the possible modernization
rules to the token and if any of them produces
a token which exists in DIM, we add it to the
list.

4. We edit the token with two rules. If it ends
with ‘r’, we try adding ‘u’ in front of it, e.g.
hestr→hestur, and check whether the result-
ing token is found in DIM. (Older forms of
nouns often do not have ‘u’ in the ending be-
fore ‘r’.) We also check if doubling a conso-
nant in the token, e.g. bygð→ byggð, results
in a known modern token. If either of these

returns a known modern token, we add it to
the list of plausible candidates.

5. We use two models, a modern GEC model7

and IceBERT.8 We use the former as a
spellchecker to edit the current token, and the
latter, by masking the current token, to guess
which token should be in its place. If either of
these returns a token, which, when compared
to the original token, can be inferred from the
rules in our statistical spelling modernization
dataset, we add it to the candidate list.

When all of these checks are completed, we
simply add the most suggested token to the new
sentence. If all of these methods fail, however, in
producing a plausible candidate, the original token
stays in the modern sentence. In such a case the to-
ken could be an uncommon one, but free of errors,
or it could be the case that the applied methods fail
to suggest the correct form.

4.4 Tagging and Lemmatization

The most accurate PoS-tagger and lemmatizer for
Icelandic are trained to work with modern spelling
varieties. We thus only tag and lemmatize the
normalized version of the texts. We start by
tokenizing the texts using Tokenizer,9 a Python
program developed for tokenizing Icelandic texts.
We use ABLTagger 3.0.0 (Steingrímsson et al.,
2019; Jónsson et al., 2021) for PoS-tagging the
texts. The tagger is reported to have an accuracy
of 96.7% when using cross-validation on MIM-
GOLD (Helgadóttir et al., 2014; Barkarson et al.,
2021), the standard dataset for training and evalua-
tion of PoS-tagging for Icelandic. Nefnir (Ingólfs-
dóttir et al., 2019) is the most suitable lemmatizer
for Icelandic texts, reported to produce only a frac-
tion of the errors other lemmatizers for Icelandic
produce. It uses the tags output by the PoS-tagger
to help with finding correct lemmas, using suffix
substitution rules derived from DIM.

4.5 Data Statistics

MC-19 contains a total of 272,516,487 tokens
from 317 sources. As shown in Figure 1, most of
the tokens are from material published late in the

7ByT5-model: https://
huggingface.co/mideind/
yfirlestur-icelandic-correction-byt5

8https://huggingface.co/mideind/
IceBERT

9https://pypi.org/project/tokenizer/
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Title Period Token Count
Lögberg 1888–1920 41,002,958
Heimskringla 1886–1920 32,486,522
Þjóðólfur 1848–1920 15,364,734
Morgunblaðið 1913–1920 13,175,574
Lögrétta 1906–1920 8,485,516
Austri 1883–1888; 1891–1917 7,183,953
Fjallkonan 1884–1911 6,993,309
Þjóðviljinn + Þjóðviljinn ungi 1886-1915 6,971,801
Skírnir 1827–1920 6,460,688
Norðurland 1901–1920 5,105,768

Table 3: The ten publications in MC-19 that contain the largest number of tokens. The table shows the
period as represented in the corpus. Some of these publications continued to be published after 1920.

period, with more than 50% being from the last 14
years (1907–1920). The first 50 years only contain
approximately 3.5 million tokens (there is no data
in the corpus for the years from 1803 to 1817).

Furthermore, a few publications tower over the
rest, with ten publications containing more than 5
million tokens each, as shown in Table 3. These
ten publications represent more than half the cor-
pus data.

5 Use and Availability

The corpus is published under an open CC BY
4.0 license. It is available online in two differ-
ent forms for different uses and users. It is made
available for search online in a KWIC-portal, pow-
ered by KORP (Borin et al., 2012). Users can
search for word forms in both the original version
(OCRed text) and in the modern spelling transcrip-
tion, with the modern spelling transcription being
PoS-tagged and lemmatized, allowing for more
complicated search in that data. The results are
shown in parallel, so while the user can search us-
ing modern spelling varieties, the original ones are
also shown. This format is expected to mostly be
useful to linguists, lexicographers and students of
Icelandic.

The TEI-version is available for download. It
contains whole sentences in the original version
as well as the normalized version using mod-
ern spelling. The normalized version is further-
more PoS-tagged and lemmatized. We expect this
format to be most useful for language technol-
ogists for analyzing and building tools and lan-
guage models. Linguists competent in program-
ming may also find that working with these an-
notated documents allows for more complicated

analysis and research than when limited to KWIC-
analysis.

6 Conclusion and Future Work

We have presented a new text corpus, MC-19, con-
taining Icelandic texts from the 19th century and
the first decades of the 20th century. The first ver-
sion of this corpus has been published and is made
available in a TEI-format as well as in an online
KWIC-platform, powered by Korp.

While care has been taken to make the texts as
readable and close to the printed material as pos-
sible, using a post-processing step and a spelling-
modernization step, there is always room for im-
provement. The post-processing process reduces
the number of OCR errors by 55.07%. Improving
the performance in this step would make the cor-
pus more accurate and useful. This could possi-
bly be achieved by improving the post-processing
models, for example by generating more artificial
training data or more diverse training data. Some
error reduction may be achieved simply by replac-
ing possible errors with possible corrections, using
our error list. For such an approach, which tends to
be greedy, some measures would need to be taken
to limit the possibility of generating new errors.
This could possibly be achieved by mapping only
from unknown words (containing possible errors)
to known words, calculating the likelihood of the
change using n-grams or perplexity calculations or
other approaches that may prove useful.

While most of the sentences in the corpus are as
printed in the original publications, some are gar-
bled due to problems with OCR that our methods
could not solve. Training a classifier to select bad
sentences for removal could make the corpus an
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even better tool.
The spelling-modernization step helps the user

find common words for which the spelling has
changed, allowing for easier search and usage of
the corpus, but the user will still find that some
words are not modernized. A more thorough ex-
amination of this and improvements in the pro-
cess will help with using the corpus for research.
We intend to revisit these steps for a future ver-
sion of the corpus, integrating additional normal-
ization techniques and manually evaluate the mer-
its of different approaches to this problem. We
also intend to add texts from books published in
the period, and are working on OCR-reading frak-
tur texts. While these texts may not add very much
to this corpus in terms of word count, as the bulk
of published texts in the period is in newspapers
and periodicals, it may show a greater variety, both
in terms of language and content. Available texts
from previous periods, printed and hand-written,
are also being considered for a sister corpus to this
one.
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Abstract
Segmenting languages based on mor-
pheme boundaries instead of relying on
language independent segmenting algo-
rithms like Byte-Pair Encoding (BPE)
has shown to benefit downstream Natu-
ral Language Processing (NLP) task per-
formance. This can however be tricky
for polysynthetic languages like Inuktitut
due to a high morpheme-to-word ratio and
the lack of appropriately sized annotated
datasets. Through our work, we display
the potential of using pre-trained Large
Language Models (LLMs) for surface-
level morphological segmentation of Inuk-
titut by treating it as a binary classifi-
cation task. We fine-tune on tasks de-
rived from automatically annotated Inuk-
titut words written in Inuktitut syllabics.
Our approach shows good potential when
compared to previous neural approaches.
We share our best model to encourage fur-
ther studies on down stream NLP tasks for
Inuktitut written in syllabics.

1 Introduction

The Inuktitut language, indigenous to the north-
ernmost regions of Canada and spoken by roughly
40K speakers, is particularly difficult to adapt NLP
tools for. Not only is the lack of appropriately
sized annotated datasets a big hurdle, but so is
the polysynthetic nature of the language itself.
This linguistic attribute results in a very high av-
erage morpheme-to-word ratio, by some estimates
as high as 4.39 (Roest et al., 2020), where often
times one or two words in Inuktitut can express
what would take a full sentence to express in En-
glish (Mallon, 2000) (see Figure 1). Naturally, this
leads to numerous ways of forming unique and
rare words, each one conveying rich linguistic in-
formation.

Figure 1: An example of an Inuktitut word
written in Inuktitut syllabics, romanized as
“Parimunngauniralauqsimanngittunga”, translat-
ing to a full sentence in English.

To combat similar issues with rare or unique
words in other languages, a common practice is to
pre-process textual data by deploying algorithms
such as BPE (Sennrich et al., 2016) or Sentence-
Piece (Kudo and Richardson, 2018) that are effi-
cient at breaking up words into more digestible
sub-strings. However, these algorithms are lan-
guage independent and split words based on the
frequency of commonly occurring sub-string char-
acter clusters and not on the basis of actual lin-
guistic information. Instead, we turn our atten-
tion to surface-level morphological segmentation,
as explicit morphological information has shown
to be valuable for various down steam NLP tasks
(Dyer et al., 2008; Creutz et al., 2007; Ruoko-
lainen et al., 2016), especially for low-resource
languages (Wiemerslage et al., 2022). Despite the
existence of an invaluable rule-based tool (Farley,
2009) capable of segmenting Inuktitut based on
linguistic information, it is not reliable as it fails
to return segmentations for many words.

In this study, we explore a different approach to
segmenting Inuktitut compared to previous efforts
by leveraging off a pre-trained multilingual LLM
and by turning surface-level morphological seg-
mentation into a binary classification task through
the use of LLMSegm (Pranjić et al., 2024). We
annotate additional training data using the exist-
ing rule-based segmentation tool and evaluate our
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fine-tuned models on a variation of human anno-
tated and automatically annotated test sets. Con-
trarily to the majority of previous studies, which
employ the romanized version of the language, our
setup focuses on segmenting Inuktitut written in
Inuktitut syllabics. By sharing our best perform-
ing model, we hope to inspire others to also con-
duct their research on Inuktitut written in syllabics
without romanizing the language first. Our main
contributions are:

1. We show the potential of deploying pre-
trained LLMs for surface-level morpholog-
ical segmentation of Inuktitut compared to
previous approaches.

2. We encourage more research to be done on
down-steam NLP tasks for Inuktitut written
in syllabics by making our model available1.

2 Background and related work

There are plenty of methods dealing with morpho-
logical segmentation. Here we mention a few re-
lated to our work. Creutz and Lagus (2002) in-
troduced an unsupervised probabilistic morpheme
identifying method that has seen widespread use,
with many related projects following their lead
(Kohonen et al., 2010; Smit et al., 2014). More
recently, Eskander et al. (2020) introduced Mor-
phAGram, another unsupervised approach based
on adaptor grammars (Johnson et al., 2006). Semi-
supervised methods incorporating conditional ran-
dom fields have also been proposed (Ruokolainen
et al., 2014), as well as fully supervised ones
(Cotterell et al., 2015). Additionally, there have
been numerous neural approaches (Wang et al.,
2016; Micher, 2017; Kann et al., 2018) using var-
ious model architectures. Recently, Pranjić et al.
(2024) leveraged off pre-trained LLMs to segment
words by turning morphological segmentation into
a binary classification task. They displayed the ef-
fectiveness of their approach for a number of lan-
guages in a low-resource setting. Additionally,
surface-level segmentation as a community task
has also been highlighted during the 2005 to 2010
Morpho Challenges (Kurimo et al., 2010) and for
a few low-resource languages in the shared task
LowResourceEval-2019 (Klyachko et al., 2020).

1Available here: https://huggingface.co/
matsten/Glot500-m-iuseg

2.1 Previous approaches for segmenting
Inuktitut

The UQAILAUT Inuktitut Morphological Ana-
lyzer (Farley, 2009) is an openly available mor-
phological analyzer for the language, developed at
the National Research Council of Canada (NRC).
The analyzer is a finite state transducer that
makes use of hand-crafted rules to return both
a surface-level morphological segmentation of an
input word, and the lemma of each individual mor-
pheme. The segmentations returned are not al-
ways unambiguous since Inuktitut words can often
be correctly segmented in many ways and, conse-
quently, for many words, more than one segmen-
tation is returned. Unfortunately, the analyzer suf-
fers from a flaw in that for many words, it does
not return any decompositions at all, making it
rather unreliable to use as a pre-processing tool
for downstream tasks. In an effort to cover for
words that UQAILAUT cannot process, Micher
(2017) annotated more training data from the
Nunavut Hansard Inuktitut-English Parallel Cor-
pus 3.0 (Joanis et al., 2020) using the same ana-
lyzer to train a Segmental Recurrent Neural Net-
work (SRNN) (Kong et al., 2016) for both seg-
mentation and tagging of morpheme specific in-
formation. Le and Sadat (2020) took a different
approach and deployed a bidirectional Long-Short
Term Memory (LSTM) incorporating pre-trained
embeddings for Inuktitut. Roest et al. (2020)
trained a transformer (Vaswani et al., 2017) based
model and combined it with UQAILAUT and BPE
to form a 3-step method to segment the language.
More recently, Khandagale et al. (2022) extended
their adaptor grammar based tool MorphAGram
with expert-based linguistic priors for morpholog-
ical segmentation of Inuktitut.

3 Methodology and experimental setup

3.1 Model
For all of our experiments, we utilize Glot500-
m (Imani et al., 2023), a multilingual LLM cov-
ering more than 500 languages, many of which
can be considered low in resources. It builds
upon the XLM-R-base multilingual model (Con-
neau et al., 2020) by extensively extending its vo-
cabulary from 250K tokens to 401K, and through
continued training with a masked language mod-
elling objective. It was trained on Glot500-c2, a

2Available here as a Huggingface dataset: https://
huggingface.co/datasets/cis-lmu/Glot500
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subset of the larger Glot2000-c corpus, contain-
ing roughly 126GB of text covering more than 400
languages, including Inuktitut. The model was
evaluated on a diverse set of tasks and displayed
great improvements on the newly introduced lan-
guages and also performs equal to, or better, than
XLM-R-base on already seen languages.

3.2 Datasets and preprocessing
We make use of the Inuktitut side of the Nunavut
Hansard Inuktitut-English Parallel Corpus 3.03

(Joanis et al., 2020), which contains around 8M
Inuktitut words worth of debate proceedings from
the Legislative Assembly of Nunavut. After run-
ning the recommended accompanying spelling
normalization scripts, we extract each unique
word and end up with a vocabulary of approxi-
mately 1,1M unique words, which we automat-
ically annotate using the UQAILAUT analyzer
(Farley, 2009). For each successfully analyzed
word, it returns either a single or many possi-
ble surface-level morphological decompositions.
Similarly to the reasoning by Micher (2017);
Roest et al. (2020), we assume that words with
single decompositions are the least ambiguous and
therefore the most correctly labeled words. Roest
et al. (2020) even show that training their trans-
former based segmenter on fewer amounts of un-
ambiguous word segmentations is preferred com-
pared to training on many ambiguous ones. We
therefore follow their steps. Since Glot500-m has
seen large parts of the Nunavut Hansard corpus
during pre-training, we make sure that the train,
validation and test/evaluation splits are divided in
such a way that there are no unique words in the
test/evaluation and validation split that also occur
in the Glot500-c dataset. Of a total of 54,138 un-
ambiguously segmented words, 45,231 are used
for training, 3102 for validation and 3102 for
test/evaluation. We refer to this test/evaluation set
as the test set. In order to compare our approach to
UQAILAUT’s performance, we also evaluate our
approach on another dataset separate from our ini-
tial test set. This dataset4, referred to as the gold
set, consists of around 1K hand-annotated Inukti-
tut words based on the most frequently occurring

3https://nrc-digital-repository.
canada.ca/eng/view/object/?id=
c7e34fa7-7629-43c2-bd6d-19b32bf64f60

4https://github.com/
LowResourceLanguages/InuktitutComputing/
blob/master/Inuktitut-Java/ressources/
goldstandardHansard.txt

words in the Nunavut Hansard corpus. However,
it is worth highlighting that, through the work of
(Khandagale et al., 2022), we are made aware of
the flaws of this gold set. Even though they cor-
rected the gold set with the help of linguists and
even added 100 new entries, their version of the
gold set is seemingly absent from their GitHub
repository.

3.3 Turning segmentation into a binary
classification task

We fine-tune our models on binary classification
tasks derived from the annotated Inuktitut words
described in Section 3.2 using LLMSegm (Pranjić
et al., 2024) using the original code5. LLMSegm
derives binary classification tasks from a word by
introducing a custom morpheme boundary token,
represented here as “@”, that is inserted into a
word between two characters. This is repeated for
each unique position between two characters in the
word forming n − 1 tasks where n is the number
of characters in the word and the task is to pre-
dict whether “@” is positioned at a true morpheme
boundary (see Figure 2).

Figure 2: Visualization of the tasks derived from
an Inuktitut word, where the morpheme separator
token denoted by “@” is inserted between each
unique position between two characters. The task
then becomes to predict whether this is a True (1)
or False (0) morpheme boundary.

Additionally, prepended to each individual task
is the same untouched word in its entirety, imme-
diately followed by another custom token called
the word boundary token, represented in text as
“‡”, effectively separating the prepended word and

5Original code is available here: https://github.
com/sharpsy/llm-morphological-segmenter
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the given task (see Figure 3).

Figure 3: Visualization of the full model input for
a single example prediction. Here “‡” represents
the word boundary token and “@” the morpheme
boundary token.

By doing this, Pranjić et al. (2024) hope to pre-
vent the loss of information from the tokens that
the pre-trained model’s tokenizer normally would
split the word into. By additionally including the
untouched word, all original tokens are guaranteed
to be retained in the input since the tokenizer will
be forced to split any tokens in its vocabulary that
bridges across “@”. We experiment both with and
without this addition by performing minimal alter-
ations to the original code. This extra prepended
word will henceforth be referred to as the support-
ing word.

3.4 Working with syllabics
We work with Inuktitut written in syllabics for
two main reasons. Firstly, it is necessary since
Glot500-m was fine-tuned on Inuktitut text writ-
ten in syllabics. Secondly, we hypothesize that
working with Inuktitut written in syllabics, as op-
posed to romanized Inuktitut, might be more ben-
eficial when utilizing LLMSegm given how each
input word is turned into n − 1 classification
tasks. Since many of the syllabic characters often
equate to two or sometimes even three roman char-
acters when transcribing, the average romanized
Inuktitut word often contains many more charac-
ters than the same word written in syllabic char-
acters. Consequently, more tasks would be de-
rived from the romanized word, which on the one
hand would mean more total training samples, but
among these, some might be less relevant. We say
this on the basis of observations from transcription
experiments6 we do to and from syllabics. We take
notice that the vast majority of morpheme bound-
aries in the romanized version of the language oc-
cur between characters, or clusters of characters,
that would normally be transcribed into separate
syllabic characters in the equivalent transcription

6We transcribe using Yudit: https://yudit.org/

of the same word. By working with syllabics, we
thus eliminate segmentation tasks that would oth-
erwise be derived from between roman characters
that are normally represented by the same single
syllabic character (see Figure 4). We deem these
tasks less relevant since, according to our observa-
tions, morpheme boundaries are less likely to oc-
cur between these characters.

Figure 4: The syllabic version of the language al-
lows us to avoid deriving tasks such as classifying
whether a morpheme boundary, denoted by “@”,
is present between “m” and “a”, “k” and “u”, and
“t” and “u”. This is because the character clus-
ters “ma”, “ku” and “tu” are represented as one
syllabic character each, and therefore an internal
boundary between them is unlikely.

This way, not only do we clear our total task
pool of these hypothetically less relevant tasks, but
we also create a more balanced dataset with a more
evenly distributed true-to-false label ratio, as op-
posed to if we stick with the romanized version
of the language. We calculate that out of all the
tasks derived from our syllabic train set, roughly
41% are labeled as true while the rest are false.
We estimate that the same train set in roman char-
acters would have a much lower ratio of roughly
23% true labels. How effective our reasoning is
will however have to be left for future efforts.

3.5 Model fine-tuning

Using the training data described in Section 3.2,
we fine-tune Glot500-m for classification us-
ing LLMSegm by following the original paper
(Pranjić et al., 2024). We utilize the same hyperpa-
rameters of device batch size of 256, learning rate
of 2e-5, weight decay of 0.01, 20 warm up steps
and AdamW optimizer (Loshchilov and Hutter,
2019). Unlike the original paper, we also fine-tune
a second model without the supporting word to in-
vestigate how this affects training and later perfor-
mance. For each fine-tuning set up, we train 10
separate models on randomly sampled variations
of the original training data (with replacement)
and pick the best performing one for evaluation.
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We call the model trained without the supporting
word Glot500-m-iuseg-n and the one with the sup-
porting word Glot500-m-iuseg-s. All model train-
ing is done using 4x Nvidia A100 GPUs.

Figure 5: The evaluation loss and F1-score for
(Glot500-m-iuseg-n) and (Glot500-m-iuseg-s).

During training, we take notice that the model
training with the supporting word improves
slightly faster than the model training without,
both in terms of evaluation loss and evaluation F1-
score (see Figure 5). This suggests that the tokens
of the original unsegmented word produced by the
tokenizer might indeed help retain valuable lin-
guistic information from the pre-training that aids
the fine-tuning process.

3.6 Evaluation

We evaluate our models on the two evaluation sets
described in Section 3.2 (test and gold) and re-
port back F1-score based on the difference be-
tween predicted morpheme boundaries and the ac-
tual boundaries. Much like (Kann et al., 2018;
Roest et al., 2020; Pranjić et al., 2024), we addi-
tionally complement our F1-score by reporting the
accuracy score calculated as the proportion of all
words where every morpheme boundary was cor-
rectly predicted. We then end up with two com-
plementary metrics, one calculated at morpheme-
level and one at word-level. For comparison, we
treat the Glot500-m (Imani et al., 2023) tokenizer
as our baseline and also compare our results to
previous studies where it is applicable. Due to
the UQAILAUT analyzer’s tendency to fail when
presented with certain words, we also evaluate a
combined custom setup where our best perform-
ing model processes these failed words. We call
this setup UQAILAUT+.

4 Results & discussion

We present our results in Table 1 and compare
where possible to the following: AG-SS (Khanda-
gale et al., 2022), Trf. (45K single) and 3-
step (Roest et al., 2020), LSTM with pre-trained
embeddings (Le and Sadat, 2020), SRNN CG
(Micher, 2017) and UQAILAUT (Farley, 2009).
Our fine-tuned models Glot500-m-iuseg-n and
Glot500-m-iuseg-s show the potential of our cho-
sen methods compared to previous neural ap-
proaches in terms of F1-score and accuracy. Both
of our models achieve a worse accuracy on the
gold set, albeit higher F1, compared to the 3-step
setup.

Model/setup Test Gold
F1 Acc. F1 Acc.

Glot500-m tok. 0.59 0.04 0.42 0.18
AG-SS - - 0.60* -
Trf. (45K single) - - 0.68 0.54
3-Step - - 0.74 0.70
LSTM 0.75* - - -
SRNN CG 0.95* - - -
Glot500-m-iuseg-n 0.98 0.89 0.85 0.61
Glot500-m-iuseg-s 0.98 0.90 0.87 0.66
UQAILAUT - - 0.92 0.74
UQAILAUT+ - - 0.95 0.81

Table 1: F1-score and accuracy scores from our
models compared to previous studies. “-” in-
dicates that evaluation metrics for the particular
dataset were never reported or that they can not
be reported. “*” next to a score indicated that
the score was reported on a variation of the same
dataset compared to what was used for evaluation
in this study.

Worth noting is that where Micher (2017)
choose 1K unambiguous samples annotated by
UQAILAUT as their test set and Le and Sadat
(2020) use 250 sentences as their test, we select as
many unambiguous samples as possible who’s ex-
act word form does not also appear in the training
data of the Glot500-m model for a total of 3102.
Hence, they are all evaluated on different amounts
of words, and most likely also different words,
from the Nunavut Hansard corpus (Joanis et al.,
2020). Our model Glot500-m-iuseg-n slightly un-
derperforms Glot500-m-iuseg-s trained using the
supporting word. This would suggest that there is
some benefit to including the supporting word not
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only during training, but also during evaluation,
possibly due to a retention of information from
pre-training. This is also implied to be the case,
since the Glot500-m tokenizer’s decent F1-score
hints to the existence of some underlying knowl-
edge of how to segment Inuktitut words, despite
it returning very few fully correctly segmented
words. None of the neural approaches alone out-
perform the UQAILAUT analyzer in terms of F1-
score and accuracy, even though Glot500-m-iuseg-
s is close. The combined setup UQAILAUT+
however, achieves the highest score on the gold
set. Even though this setup does not improve F1-
score too much, it improves accuracy by a not in-
significant amount.

4.1 Oversegmentation
When examining the predictions on the two eval-
uation sets by our best performing model, we take
notice of its tendency to oversegment words con-
taining fewer than 4 true segmentations, peaking at
words with 0 (see Figure 6). Going from 4 to 8 true
segmentations per word, our best model achieves a
more stable predicted-segmentations-per-word to
true-segmentations-ratio on the test set, but seem-
ingly underpredicts on the gold set for words in the
same range.

Figure 6: The average amount of morpheme
boundaries over-/under predicted by Glot500-m-
iuseg-s (y-axis) for words with n true segmenta-
tions from the test and gold set (x-axis).

Additionally, by calculating isolated F1-scores
on predictions for words with 0-1 true segmenta-
tions, we see that our model performs much worse
in this range compared to F1-scores in all the other
ranges (see Figure 7). This underperformance is
also reflected in the drop in F1-score between eval-
uations on the test set and the gold set, going from
0.98 to 0.87, since the gold set is made up of
around 60% words in the range of 0–1 segmenta-

tions per word. The fact that our model saw many
more words with segmentations in the range of
2-5 compared to the range 0-1 during fine-tuning
might help explain why our model performs worse
for these words. In fact, the average number of
segmentations per word in our train set is much
higher than in the gold set, as displayed in Table
2.

average train test gold

seg./word 3.3 3.5 1.6
char./word 9.2 9.7 6.3

Table 2: Average true segmentations and syllabic
characters per word in the train, test and gold set.

This suspicion is also supported by the higher
F1-scores for words with true segmentations rang-
ing from 2-5. Further building on this argu-
ment, the way the LLMSegm tool turns each an-
notated word into n−1 segmentation tasks ampli-
fies this training imbalance, as words with fewer
segmentations typically contain fewer characters.
This means that our model will see longer words
many more times compared to shorter words. For
this reason, we try to mitigate this imbalance by
fine-tuning additional models where we upsample
words in the segmentation-per-word range of 0-1
by 2x and 3x in the training data but with no posi-
tive effect on performance.

Figure 7: The percentage of words in the dataset
that contain a certain amount of segmentations
per word, as well as F1-score performance of
Glot500-m-iuseg-s on words in each individual
bracket for both the test and gold set.

Ignoring our model’s struggle with shorter
words, we have two possible explanations for why
our models perform worse overall on the hand an-
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notated gold set than on the test set. Since both
the training data and our test set were automati-
cally annotated by UQAILAUT that itself does not
score perfectly on the gold set, we can only as-
sume that some of the training and test data were
also incorrectly annotated. This might have in-
flated the scores on the test set compared to the
gold set, and might also mean that our model will
make the same mistakes when deployed as a pre-
processing tool. We also know that the gold set
contains 1K of the most frequent words in the
Nunavut Hansard corpus, while our model was
fine-tuned on unique words where word frequency
was not taken into consideration.

4.2 UQAILAUT issues

As mentioned previously, the UQAILAUT an-
alyzer is unable to produce decompositions for
many Inuktitut words. This is despite it outper-
forming all other setups. We are unsure of the
exact cause of the UQAILAUT analyzer’s inabil-
ity to process certain words, but a quick look at
these failure cases suggest that it might have to do
with spelling inconsistencies and or not enough
coverage in its hand-crafted rules to account for
these. This might in turn explain why in the
UQAILAUT+ setup, our model was able to cor-
rectly process a few words where UQAILAUT
fails since spelling inconsistencies do not automat-
ically result in a failed attempt thanks to the more
dynamic nature of our neural model. However,
due to the small evaluation dataset, it is not pos-
sible to draw any definitive conclusions.

When evaluating only the UQAILAUT analyzer
on the gold set, we take notice that it fails to re-
turn any decompositions at all for approximately
11% of the words. However, when annotating
the unique words from the Nunavut Hansard cor-
pus to create our dataset, we note that, much like
the observations made by Micher (2017), this per-
centage increases to approximately 30%. This
suggests that, despite its high scores on the gold
set, UQAILAUT is unfit to pre-process real world
texts for downstream NLP tasks on its own since
some very long words would be left unsegmented.
Further, this suggests a performance decrease in a
scenario where we have access to more human an-
notated gold data for evaluation that contains rarer
words and not just the 1K most common ones. In
fact, we calculate that only 20% of all word forms
in the Nunavut Hansard corpus occur more than

once and only 11% more than twice. This abun-
dance of unique words in Inuktitut further high-
lights the importance of continued research in the
field to ultimately benefit downstream NLP tasks.

5 Conclusion

We contribute to ongoing research focusing on
the polysynthetic language Inuktitut by fine-tuning
and sharing a Glot500-m LLM for binary clas-
sification of morpheme boundaries. Our best
model shows promising results when comparing
to previous efforts, despite struggling to segment
words with fewer true segmentation boundaries.
We also show the potential of deploying exist-
ing pre-trained LLMs using LLMSegm even for
under-resources polysynthetics languages without
the need to train anything from scratch. Addition-
ally, we further encourage future studies on down
stream NLP tasks for Inuktitut written in syllabics.
In future efforts, we intend to improve the perfor-
mance of our model, as well as investigate its po-
tential as a pre-processing tool for down stream
NLP tasks such as machine translation.

6 Limitations

The main limitation with LLMSegm is the fact
that it completely relies on the existence of a
pre-trained model that has seen the target lan-
guage during pre-training, which, ironically, ex-
cludes many of the world’s lowest resource lan-
guages. Additionally, being a low-resource lan-
guage, Inuktitut suffers from a lack of well-
balanced human segmented gold data for both
training and evaluation. Thus, it is not possible to
draw solid conclusions based on evaluation on the
only available gold set, and only further highlights
the need for more such data. Our method also
does not take alternative segmentations into con-
sideration, but we still believe that our model can
be used as a pre-processing tool to benefit down
stream performance. Further, the accuracy, as re-
ported by Roest et al. (2020), Pranjić et al. (2024),
and now also by us, is not an ideal metric for eval-
uating a segmenter for polysynthetic languages.
Since this definition of accuracy gives the same
weight to words containing different amounts of
segmentations, a correctly predicted decomposi-
tion of a word containing 1 true segmentation is
valued higher than a word containing 8 true seg-
mentations, where the setup only successfully pre-
dicts 7.
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lak. 2024. LLMSegm: Surface-level morphologi-
cal segmentation using large language model. In
Proceedings of the 2024 Joint International Con-
ference on Computational Linguistics, Language
Resources and Evaluation (LREC-COLING 2024),
pages 10665–10674, Torino, Italia. ELRA and
ICCL.

Christian Roest, Lukas Edman, Gosse Minnema, Kevin
Kelly, Jennifer Spenader, and Antonio Toral. 2020.
Machine translation for English–Inuktitut with seg-
mentation, data acquisition and pre-training. In
Proceedings of the Fifth Conference on Machine
Translation, pages 274–281, Online. Association for
Computational Linguistics.

Teemu Ruokolainen, Oskar Kohonen, Kairit Sirts, Stig-
Arne Grönroos, Mikko Kurimo, and Sami Virpioja.
2016. A comparative study of minimally supervised
morphological segmentation. Computational Lin-
guistics, 42(1):91–120.

Teemu Ruokolainen, Oskar Kohonen, Sami Virpioja,
and Mikko Kurimo. 2014. Painless semi-supervised
morphological segmentation using conditional ran-
dom fields. In Proceedings of the 14th Conference of
the European Chapter of the Association for Compu-
tational Linguistics, volume 2: Short Papers, pages
84–89, Gothenburg, Sweden. Association for Com-
putational Linguistics.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Neural machine translation of rare words
with subword units. In Proceedings of the 54th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1715–
1725, Berlin, Germany. Association for Computa-
tional Linguistics.

Peter Smit, Sami Virpioja, Stig-Arne Grönroos, and
Mikko Kurimo. 2014. Morfessor 2.0: Toolkit for
statistical morphological segmentation. In Proceed-
ings of the Demonstrations at the 14th Conference of
the European Chapter of the Association for Compu-
tational Linguistics, pages 21–24, Gothenburg, Swe-
den. Association for Computational Linguistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, volume 30. Curran Associates, Inc.

Linlin Wang, Zhu Cao, Yu Xia, and Gerard de Melo.
2016. Morphological segmentation with window
lstm neural networks. Proceedings of the AAAI Con-
ference on Artificial Intelligence, 30.

Adam Wiemerslage, Miikka Silfverberg, Changbing
Yang, Arya McCarthy, Garrett Nicolai, Eliana Col-
unga, and Katharina Kann. 2022. Morphological
processing of low-resource languages: Where we
are and what’s next. In Findings of the Association
for Computational Linguistics: ACL 2022, pages
988–1007, Dublin, Ireland. Association for Compu-
tational Linguistics.

696

https://aclanthology.org/W10-2210
https://aclanthology.org/W10-2210
http://arxiv.org/abs/1511.06018
https://doi.org/10.18653/v1/D18-2012
https://doi.org/10.18653/v1/D18-2012
https://doi.org/10.18653/v1/D18-2012
https://aclanthology.org/W10-2211
https://aclanthology.org/W10-2211
https://aclanthology.org/2020.amta-research.15
https://aclanthology.org/2020.amta-research.15
https://aclanthology.org/2020.amta-research.15
http://arxiv.org/abs/1711.05101
http://arxiv.org/abs/1711.05101
https://www.inuktitutcomputing.ca/Technocrats/ILFT.php
https://www.inuktitutcomputing.ca/Technocrats/ILFT.php
https://www.inuktitutcomputing.ca/Technocrats/ILFT.php
https://doi.org/10.18653/v1/W17-0114
https://doi.org/10.18653/v1/W17-0114
https://doi.org/10.18653/v1/W17-0114
https://aclanthology.org/2024.lrec-main.933
https://aclanthology.org/2024.lrec-main.933
https://aclanthology.org/2020.wmt-1.29
https://aclanthology.org/2020.wmt-1.29
https://doi.org/10.1162/COLI_a_00243
https://doi.org/10.1162/COLI_a_00243
https://doi.org/10.3115/v1/E14-4017
https://doi.org/10.3115/v1/E14-4017
https://doi.org/10.3115/v1/E14-4017
https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.3115/v1/E14-2006
https://doi.org/10.3115/v1/E14-2006
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://doi.org/10.1609/aaai.v30i1.10363
https://doi.org/10.1609/aaai.v30i1.10363
https://doi.org/10.18653/v1/2022.findings-acl.80
https://doi.org/10.18653/v1/2022.findings-acl.80
https://doi.org/10.18653/v1/2022.findings-acl.80


Proceedings of the Joint 25th Nordic Conference on Computational Linguistics and 11th Baltic Conference on Human Language Technologies
(NoDaLiDa/Baltic-HLT 2025), pages 697–708

March 3-4, 2025 ©2025 University of Tartu Library

The Devil’s in the Details: the Detailedness of Classes Influences Personal
Information Detection and Labeling

Maria Irena Szawerna†, Simon Dobnik‡, Ricardo Muñoz Sánchez†, Elena Volodina†
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Abstract
In this paper, we experiment with the ef-
fect of different levels of detailedness or
granularity — understood as i) the num-
ber of classes, and ii) the classes’ se-
mantic depth in the sense of hypernym
and hyponym relations — of the anno-
tation of Personally Identifiable Informa-
tion (PII) on automatic detection and la-
beling of such information. We fine-tune
a Swedish BERT model on a corpus of
Swedish learner essays annotated with a
total of six PII tagsets at varying levels of
granularity. We also investigate whether
the presence of grammatical and lexical
correction annotation in the tokens and
class prevalence have an effect on pre-
dictions. We observe that the fewer total
categories there are, the better the over-
all results are, but having a more diverse
annotation facilitates fewer misclassifica-
tions for tokens containing correction an-
notation. We also note that the classes’
internal diversity has an effect on label-
ing. We conclude from the results that
while labeling based on the detailed anno-
tation is difficult because of the number of
classes, it is likely that models trained on
such annotation rely more on the semantic
content captured by contextual word em-
beddings rather than just the form of the
tokens, making them more robust against
nonstandard language.

1 Introduction

Personal information is ubiquitous in many text
genres, posing a unique challenge for those seek-
ing to create and share corpora. While access to
collections of texts is highly desirable from the
perspective of researchers in fields such as lin-
guistics, Natural Language Processing (NLP), or

digital humanities, the potential presence of clues
indicating the identity of the writer or other nat-
ural persons makes them fall under the General
Data Protection Regulation (GDPR, Official Jour-
nal of the European Union, 2016). The GDPR it-
self suggests potential solutions to the problem:
de-identification methods such as anonymization
— the “[c]omplete and irreversible removal [...]
of any information that, directly or indirectly, may
lead to a subject’s data being identified” — or
pseudonymization, the “[p]rocess of replacing di-
rect identifiers with pseudonyms or coded values,”
for which there must exist a mapping between the
original data and the pseudonyms, which is se-
curely stored separately from the pseudonymized
texts (Lison et al., 2021).

Both of these privacy-preserving procedures
presuppose a stage where the Personally Identi-
fiable Information (PII) found in the data is de-
tected. While this can be done manually, it is
time-consuming. While automatic approaches for
both anonymization and pseudonymization have
been proposed (Lison et al., 2021), Szawerna et al.
(2024a) show that there appears to be very little
uniformity in how researchers and corpus creators
choose to classify PIIs. The taxonomies range in
terms of granularity or detailedness, understood as
the number of classes that PIIs are divided into and
their semantic depth in terms of hypernym and hy-
ponym relations (as in WordNet (Miller, 1995)).
For example, Pilán et al. (2022) utilize only one la-
bel, PERSON, to refer to elements such as names,
surnames, nicknames, usernames, etc., which can
be differentiated in other corpora (e.g. Volodina
et al. 2016, 2019; Eder et al. 2020; Alfalahi et al.
2012). Very little work has been done on deter-
mining what level of granularity of PII annotation
is the most suitable for subsequent removal or re-
placement of personal information.

It is worth noting that while the term detec-
tion often includes labeling in other research on
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General category Corresponding detailed categories

personal name
firstname male, firstname female, firstname unknown,
initials, middlename, surname

institution school, work, other institution

geographic
area, city, geo, country, place, region, street nr,
zip code, foreign

transportation transport name, transport nr
age age digits, age string
date date digits, day, month digit, month word, year

other
phone nr, email, url, personid nr, account nr, license nr,
other nr seq, extra, prof, edu, fam, sensitive, gen, def, pl

Table 1: General and detailed categories in the SWELL PII taxonomy. Tags that can be combined with
other categories and therefore were not included in the experiments are crossed out.

PII

personal name age

surname, age string,
. . . age digits

firstname male

Level 1

Level 2

Level 3

Figure 1: Hierarchical ontological structure of PII
categories on the example of selected SWELL cat-
egories.

this topic, we choose to differentiate between the
two: PII detection is the process of determining
whether a text span constitutes a piece of Person-
ally Identifiable Information, while PII labeling
is assigning a PII span a specific class which de-
scribes the type of PII it is (this procedure often,
by default, detects and assigns a specific PII class
at the same time).

In this paper, we set out to investigate what the
effect of the class granularity on PII detection and
labeling in the learner essay domain. We run our
experiments on a set of Swedish texts that are PII-
annotated at varying levels of detailedness. A re-
lated notion is that of the categories’ ontological
structure. As shown in Figure 1, the categories
used in this experiment can be hierarchically ar-
ranged from the most general (level 1) to the most
specific (level 3). Simultaneously, e.g. level 2 cat-
egories are semantically broader (include more se-
mantically varied elements) than the more specific
level 3 categories. How varied the contents of a
category are could have an impact on how easy

it is to automatically detect. While we make an
initial assumption that having a larger number of
more specific labels means that they will be less
internally diverse, labels in one tagset are not nec-
essarily equally internally coherent.

In addition, we are curious to see how various
factors pertaining to the class divisions (e.g. the
class’s frequency) or the word tokens themselves
(e.g. being ungrammatical) influence the perfor-
mance. While improvement in terms of PII de-
tection on the data with more specific annotation
relative to the general one has been previously ob-
served (Sierro et al., 2024), we expect multi-class
classification to be more prone to error.

2 Prior Research

Data for research or training language models
needs to be free from personal information to pro-
tect those who generate it, and the work on au-
tomatic de-identification methods, especially for
texts belonging to domains other than medical or
legal, has gained much traction in the recent years
(Lison et al., 2021).

Much research has gone into testing what kinds
of models perform best for PII detection or la-
beling. Eder et al. (2022) evaluate 9 differ-
ent model architectures and embedding combina-
tions on the PII-annotated corpus of German e-
mails, CODE ALLTAG, reaching the best perfor-
mance with a Transformer-based architecture and
embeddings, optionally combined with noncon-
textual word embeddings. Papadopoulou et al.
(2022, 2023) successfully utilize a combination of
a generic Named Entity Recognition (NER) model
with a gazetteer to detect and classify PIIs in En-
glish (the TAB CORPUS and a set of annotated
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Wikipedia biographies) and employ privacy risk
estimation methods to determine whether a span
should be anonymized or not. Grancharova and
Dalianis (2021) frame the closely related task of
Protected Health Information (PHI) detection as
a Named Entity Recognition and Classification
(NERC) task and obtain good results on it us-
ing two BERT-type language models on Swedish
medical data from the STOCKHOLM EPR PHI
CORPUS. Szawerna et al. (2024b) also use models
of this kind to detect PIIs in the SWELL corpus, a
collection of learner essays in Swedish. Notably,
they forego the labeling step, differentiating only
between PII and non-PII tokens.

It is worth noting that all of the previously men-
tioned PII or PHI detection or labeling studies uti-
lized different data, and only the texts used by Pa-
padopoulou et al. (2022, 2023) — representing a
vastly different domain and a more general tagset
than the texts we work with — are openly avail-
able with the original PIIs in place. Additionally,
all of the papers employed different categories for
the labeling task. As Szawerna et al. (2024a) point
out, differences between PII taxonomies employed
in the de-identification of corpora can be quite
considerable, not only in terms of class granular-
ity but also class overlap. This may be motivated
by the specific characteristics of the de-identified
domains or the end goal: taxonomies used for
pseudonymization seem to feature more classes
than those intended for anonymization, likely be-
cause the class of the PII is later used to gener-
ate a suitable pseudonym. This leads to the results
not being fully comparable. The TAB CORPUS

features fewer, semantically more general classes
(grouping together many different concepts into
one category); it also lexical or grammatical cor-
rection annotation1. This makes it unsuitable for
addressing our research questions without a con-
siderable amount of time going into manual rean-
notation.

However, it remains unclear how and to what
extent the types of classes used in personal infor-
mation detection affect the detection step itself. In
Szawerna et al. (2024a) we consider a more de-
tailed taxonomy more favorable, but we do not test
that. We do, however, point out that what is per-

1This kind of annotation indicates that a token is in some
way at odds with the standard for a given language, e.g. it is
misspelled, the wrong word is used, the wrong grammatical
form is used, or it is a part of a grammatical construction that
is unacceptable from the standard point of view.

sonal is context-dependent and may vary between
domains, so the choice of the labels can also de-
pend on the domain. To the best of our knowledge,
the only study that investigated whether a more di-
verse class division facilitates better PII detection
is the one by Sierro et al. (2024). In this case,
the authors adapted the TAB CORPUS by auto-
matically translating it into Spanish and projecting
the PII categories back into the text. They later
re-annotated the corpus with refined, less ambigu-
ous classes, leading to an increase in the number
of classes. Notably, they also discard the MISC
class, which is used to annotate very semantically
diverse elements. They note an increase in perfor-
mance on the dataset annotated using the refined
tagset, which could be due to the new tagset be-
ing easier for their models to train on, but also due
to manual re-annotation being more reliable than
projection, and some information not being as re-
vealing after translation.

3 Materials and Methods

3.1 Data
The data used in our experiments comes from
the SWELL-PILOT (480 texts) and SWELL-GOLD

corpora (502 texts) (Volodina et al., 2016, 2019;
Språkbanken Text, 2024b,a), consisting of essays
written by adult learners of Swedish as a second
language (L2) at varying proficiency levels, with
varied essay genres and topics. We chose to work
with this data mainly because it is already PII-
annotated with a hierarchical PII tagset and be-
cause its subset, SWELL-GOLD, features correc-
tion annotation which denotes e.g. grammatical
variation in the text. The correction annotation
was only used in evaluation, and our models were
never overtly given that information.

While the released versions of the SWELL cor-
pora2 are pseudonymized, we utilize the texts
in their original form with the unaltered PIIs in
place. We preserve the aforementioned annotation
of what spans contain personal information and of
what kind. This annotation is done following the
SWELL taxonomy (Megyesi et al., 2018), which
consists of 38 types of PIIs (it also includes func-
tional or morphosyntactic tags which we disregard
for the sake of this experiment). Every PII token
gets assigned an appropriate class and a number
used for coreference resolution, which also helps

2SWELL access can be requested at https://sunet.
artologik.net/gu/swell
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Class Bs Is Total
firstname male 234 0 234
firstname female 289 0 289
firstname unknown 49 0 49

initials 0 0 0
middlename 1 0 1
surname 49 2 51
school 44 25 69
work 2 0 2

other institution 65 24 89
area 0 0 0
city 564 23 587
geo 17 0 17

country 400 1 401
place 93 19 112
region 37 2 39

street nr 21 0 21
zip code 7 2 9

transport name 5 1 6
transport nr 14 0 14
age digits 82 0 82
age string 12 0 12
date digits 30 14 44

day 27 0 27
month digit 9 0 9
month word 46 0 46

year 53 0 53
phone nr 7 0 7
email 10 0 10
url 0 0 0

personid nr 0 0 0
account nr 0 0 0
license nr 0 0 0
other nr seq 169 1 170

extra 37 3 40
prof 12 2 14
edu 6 1 7
fam 464 3 467

sensitive 256 114 370

Table 2: Class counts for the detailed PII classes.

Class Bs Is Total
personal name 622 2 624
institution 111 49 160
geographic 1139 47 1186

transportation 19 1 20
age 94 0 94
date 165 14 179
other 961 124 1085

Table 3: Class counts for the general PII classes.

to define the edges of a PII span. These PII cat-
egories can be grouped into 7 general classes (as
shown in Table 1). Therefore, the data can have
the original SWELL classes (Specific), the over-
arching SWELL categories (General), or an even
more general binary distinction whether the ele-
ment is personal or not can be made (Basic; this
corresponds more to a task of PII detection). It is
worth noting that not all of the detailed SWELL
classes are present in the data, and some were
just theorized by the tagset creators to be possi-
ble. Many of the classes are also unlikely to span
more than one token. The annotation can be mod-
ified to follow the inside-outside-beginning (IOB)
schema or not include the distinction between be-
ginning and inside (though the non-PII tokens are
still marked as O in that case). This yields six dif-
ferent sets of classes that can be tested (henceforth
Specific IOB, Specific, corresponding to Level 3
in Figure 1; General IOB, General, correspond-
ing to Level 2; Basic IOB, Basic, corresponding
to Level 1; see also Appendix A for a practical ex-
ample).

When constructing our samples, we want to in-
clude as much context as possible, as we believe
that the personal nature of a text span is context-
dependent. Many of the essays exceed the maxi-
mum input size allowed by the BERT model that
we are using.3 We therefore split such essays into
several chunks. Such a chunk has a maximum size
of 512 BERT sub-word tokens. We ensure that our
data consists of equally many samples containing
at least one token belonging to a PII category as
samples without any and that chunks of the same
essay always appear in the same data split. This
yields a collection of samples with 217,430 non-
PII tokens and 3,348 PII tokens (3,111 B-tokens
and 237 I-tokens). The exact counts for the Spe-
cific and General class sets can be found in Table 2
and Table 3, respectively. It is worth noting that
some classes in the detailed set are not present in
the data at all, and are only theoretically permitted
by the taxonomy. Having considered discarding
some of the data to balance the classes, we have
decided against that, since our dataset is small as
is, and we are curious to see how the prevalence of
certain PII classes influences their labeling.

3Unfortunately, Longformer or a similar model is not
available for Swedish.
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Annotation type Precision Recall F1 F2
Specific IOB 0.794 ± 0.028 0.709 ± 0.059 0.748 ± 0.042 0.724 ± 0.052
Specific 0.867 ± 0.020 0.733 ± 0.053 0.793 ± 0.036 0.756 ± 0.047
General IOB 0.788 ± 0.049 0.770 ± 0.061 0.770 ± 0.043 0.770 ± 0.053
General 0.858 ± 0.026 0.803 ± 0.059 0.828 ± 0.037 0.813 ± 0.050
Basic IOB 0.842 ± 0.021 0.796 ± 0.050 0.808 ± 0.037 0.800 ± 0.045
Basic 0.857 ± 0.019 0.817 ± 0.045 0.836 ± 0.028 0.824 ± 0.038

Table 4: Mean results ± standard deviation over the runs evaluated as detection (whether the token was
detected as any PII class). Bold indicates the overall best scores. Italicized elements in bold are the best
scores if the basic type of annotation were disregarded.

Annotation type Precision Recall F1 F2
Specific IOB 0.497 ± 0.090 0.539 ± 0.083 0.498 ± 0.086 0.519 ± 0.085
Specific 0.591 ± 0.051 0.569 ± 0.062 0.550 ± 0.065 0.558 ± 0.063
General IOB 0.719 ± 0.041 0.727 ± 0.057 0.714 ± 0.049 0.720 ± 0.054
General 0.806 ± 0.039 0.761 ± 0.062 0.770 ± 0.053 0.763 ± 0.059
Basic IOB 0.842 ± 0.021 0.796 ± 0.050 0.808 ± 0.037 0.800 ± 0.045
Basic 0.857 ± 0.019 0.817 ± 0.045 0.836 ± 0.028 0.824 ± 0.038

Table 5: Mean results ± standard deviation over the runs evaluated as labeling (whether the token was
assigned the right class). Bold indicates the overall best scores. Italicized elements in bold are the best
scores if the basic type of annotation were disregarded.

3.2 Model and Code

We take the model from Szawerna et al. (2024b)
that reports the best results, the Swedish BERT
developed by the National Library of Swe-
den4(Malmsten et al., 2020), which is based on
the BERT architecture (Devlin et al., 2019), with
a regular cross-entropy loss. This is confirmed by
our own preliminary testing. Due to the model’s
relatively small size and short fine-tuning time, it
is possible to conduct cross-validation.

In order to fine-tune KB-BERT we utilize
the code for token classification5 included in
the Transformers library together with the model
hosted on HuggingFace (Wolf et al., 2020). This
code makes use of HuggingFace’s Trainer class to
fine-tune a BERT model for classification by dis-
carding its head and replacing it with a new clas-
sification head, which is what is trained for the
classification task at hand, while other pre-trained
knowledge does not get altered. The only notable
change that we make to the default settings of this
classification set-up is decreasing the batch size to
8. For each of our 6 sets of data (which differ

4KB/bert-base-swedish-cased, henceforth KB-
BERT.

5https://github.com/huggingface/trans
formers/tree/main/examples/legacy/toke
n-classification

by annotation type) we conduct a 10-fold cross-
validation.

For the rest of the preprocessing and evaluation
we expand the code provided by Szawerna et al.
(2024b) for working with SWELL data. 6

3.3 Evaluation

For each of the runs, we obtain predictions on the
held-out fold. We report the mean and the standard
deviation across the 10 separate runs for each type
of data. Due to the overwhelming prevalence of
the non-PII tokens and following the example of
e.g. Grancharova and Dalianis (2021), we report
the means and standard deviations of the weighted
averages of precision, recall, F1, and F27 across all
of the PII classes (excluding the scores for non-PII
tokens). Consequently, precision reflects the mod-
els’ ability to avoid falsely flagging a word token
as some PII class, whereas recall illustrates how
well PII tokens can be detected instead of slipping
through the cracks. The rationale behind reporting
an F2 score is that it gives more weight to recall,
and Berg and Dalianis (2020) consider recall to be
a more important measure (as it reflects how many
PII tokens were actually detected, which is a pri-

6https://github.com/mormor-karl/the-d
evils-in-the-details

7F2 = (1 + 22) ∗ precision∗recall
(22∗precision)+recall
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Annotation type
Correction
annotated

Misclassified
Correction-annotated

and misclassified
% of misclassified tokens

that are correction-annotated
Specific IOB 14014 405 47 11.61%
Specific 14014 407 52 12.78%
General IOB 14014 334 64 19.16%
General 14014 294 64 21.77%
Basic IOB 14014 277 67 24.19%
Basic 14014 255 65 25.49%

Table 6: Counts of the correction-annotated tokens, tokens misclassified during testing (in the labeling
task), and the overlap of the two groups per type of PII annotation. Note that the number of correction-
annotated tokens does not change across the PII annotation types and that these results concern only the
data from SWELL-GOLD, as SWELL-PILOT does not include correction annotations.

ority).
However, we want to highlight that a high pre-

cision score is important as well, as avoiding flag-
ging innocuous tokens as PII is essential for pre-
serving as much of the original text as possible,
which affects its later usability in linguistic re-
search or NLP applications. Additionally, we eval-
uate the results both in terms of labeling – whether
a token was assigned the correct class – and detec-
tion – whether the token was correctly identified
as non-PII or any of the PII classes. In the case
of the basic-type annotation, these two evaluations
are equivalent.

We conduct further analysis, the purpose of
which is to study two aspects of label selection: (i)
whether grammatical and lexical divergence from
the standard has an effect on the labeling of per-
sonal information, (ii) how the number of labels
used and the depth of their semantics affects the
labeling. We approximate the former by analyzing
the raw counts of correction-annotated tokens that
were misclassified and what percentage of all mis-
classified tokens they constitute within each anno-
tation type.

4 Results

The mean detection results and the standard devi-
ation over the runs are presented in Table 4. The
same is shown for labeling in Table 5.

Both tables show that the IOB-type annotation
appears to be more difficult to predict. This is
likely due to relatively few PIIs spanning more
than one token, leading to the classifiers having
more issues determining those boundaries; in our
case both the IOB component and the class label
have to match for a token to be counted as cor-
rectly classified. Yet another aspect worth men-

tioning is that in many cases (firstname male,
month word, etc.) the original SWELL an-
notation is intended to describe only one token,
whereas other classes (e.g. school) are likely
to consist of more than one token (see Table 2 and
Table 3). This means that the effect of the IOB
annotation is negligible for most classes.

When it comes to PII detection (Table 4), two
different kinds of annotation excel in different
metrics. Using the Specific annotation leads to the
best precision. However, in terms of recall and the
F-scores, the Basic annotation performs better.

In the labeling task, the basic type of annotation
excels in all evaluation metrics. In the case of Ba-
sic annotation, detection and labeling are the same.
If we consider the types of annotation where these
two tasks are different, then the runs with the best
recall, F1, and F2 for detection are the ones fine-
tuned on the general type of annotation. In the
case of labeling, these runs would be the best on all
of the evaluation metrics. This partly contradicts
the findings of Sierro et al. (2024), who report that
more detailed classes facilitate better PII detection
and labeling. However, the detailed classes in their
experiment were refined based on what they found
to be ambiguous in the original tagset. In our case,
we utilized an existing hierarchical tagset. The dif-
ference in granularity between General and Spe-
cific classes is also much larger, as Sierro et al.
(2024) split the original classes into at most 2 new
classes, while in our data one General class can
correspond to as many as 12 Specific classes.

We can only examine the interplay between the
identification of PIIs and the tokens that were la-
beled for grammatical or lexical errors in different
tagsets (Table 6) on the basis of SWELL-GOLD,
as SWELL-PILOT does not include any correc-
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Figure 2: Per class prediction accuracy for the
General and General IOB annotations (I and B is
merged). The points illustrate the classes’ raw fre-
quencies.

tion annotation. The correction annotations were
not visible to the classifier during training, and
instead we use them to identify the tokens that
were judged to belong to a grammatically or lexi-
cally non-standard span. What appears to be influ-
enced by the annotation type is the number of to-
tal misclassifications, the percentage of those that
consists of correction-annotated tokens, and the
raw counts of correction-annotated misclassified
tokens. It is clear that the more diverse types of an-
notation lead to more misclassifications in general;
however, there is a reverse trend when it comes
to what percent of the misclassified tokens is also
correction-annotated. It follows that more diverse
annotation is less affected by errors than more gen-
eral annotation. This could mean that the poorer
performance noted for more detailed annotation
is caused by the multi-class classification during
labeling being inherently more difficult given the
number of classes, but that the models learn to
connect the more specific tokens better with the
word embeddings and their contexts that represent
the semantics of the text to determine that the span
is a part of some PII. This is also partly reflected
in the major improvement of the scores when the
predictions are reinterpreted from labeling into de-
tection (as the scores for Specific and Specific IOB
then jump by 15 to 30 percentage points).

Figure 2 and Figure 3 show the per-class accu-
racy (disregarding the I and B distinction). Points
indicating the number of instances of the respec-

Figure 3: Per class prediction accuracy for the
Specific and Specific IOB annotations (I and B is
merged). The points illustrate the classes’ raw fre-
quencies.

tive class in the data are overlaid atop the accuracy
bar charts.

Figure 2 shows these statistics for the Gen-
eral and General IOB tagsets. For some of the
classes, prevalence in the data correlates with
accuracy – nearly 1200 tokens belong to the
geographic class, which has high accuracy,
while institution, with around 200 tokens,
shows worse results and the extremely infrequent
transportation class practically never gets
correctly predicted. However, there are classes
that diverge from this trend: despite having al-
most as many instances as geographic, other
has noticeably lower accuracy, implying that they
are difficult to predict. Less frequent classes like
personal name, date, and age achieve high
accuracy scores despite not being as numerous as
some other classes, indicating that they are easier
to predict.

A similar phenomenon can be observed in Fig-
ure 3, which represents the Specific and Spe-
cific IOB tagsets. Classes like city, fam, and
country, have high frequency and high accu-
racy. Many of the infrequent classes practically
never get correctly predicted, and classes with
intermediate frequency, like firstname male
or other nr seq have mediocre accuracy.
Once again there are also frequent classes with
low accuracy (sensitive) and less frequent
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classes with high accuracy (e.g. age digits,
month words) — which, once again, suggests
that some classes can be easy or difficult to predict
regardless of their frequency.

These results suggest that while having many
examples helps the models to learn to predict a
given class, some classes are much easier or much
more difficult to predict than others. The perfor-
mance of some classes is high because of their
high frequency in the dataset, whereas some other
classes are easy to predict despite not being all that
frequent. It therefore appears that it is not only
class frequency, but also class semantics that in-
fluence the accuracy of predictions, with frequent
classes and classes with little internal variation in
meaning performing better.

This might also explain why Sierro et al. (2024)
observed an improvement with a larger number of
classes, as their increase in the number of classes
happened once they split (and subsequently nar-
rowed down the semantics of) vague classes and
disregarded the MISC class, their equivalent of our
sensitive or other. This confirms that iden-
tifying semantically distinct classes for annotation
is crucial for the success of the annotation scheme
and its application in classification tasks. Such la-
beling requires a good understanding and knowl-
edge of the domain.

While the results show what kind of annotation
facilitates the best detection or labeling, the re-
sults of the experiments do not allow us to iden-
tify the overall best type of PII annotation, as this
depends on the subsequent steps. For example, if
the final corpus should contain more specific la-
bels for anonymized spans, then it may be worth
to split the process into detection followed by la-
beling, as detection outperforms labeling at this
level of tagset detail; there are some results from
other tasks which may suggest that such a sep-
aration could be beneficial, e.g. Park and Fung
(2017). Another related observation is that PII en-
tities tend not to appear directly adjacent to other
PII elements belonging to the same class, which
suggests that such boundaries (i.e. IOB-type an-
notation) need not be included, but it may vary for
different labels and domains.

5 Conclusions

We have compared the performance of KB-BERT-
based classifiers on detecting and classifying Per-
sonally Identifiable Information distinguished by a

different number of classes and the semantic depth
or specificity of these classes. We have found
that for PII detection, Basic, non-IOB annotation
yields the best results. When it comes to labeling,
more specific classes do not ensure better results,
possibly due to some of those classes being under-
represented, since frequency does appear to play
some role in how well various classes are detected.
An IOB-style annotation also results in a decrease
in performance versus not differentiating between
beginnings and insides of spans.

We have also found that models fine-tuned on
more basic annotation tend to misclassify words
that are misspelled, misplaced, or syntactically in-
correct more often than models fine-tuned with
more specific classes. We have also observed that
it is not only class imbalance and a low frequency
of a number of the classes, but also the classes’
semantics that influence the accuracy of the pre-
dictions. Semantically less coherent or less con-
strained classes make it much more difficult for the
models to make correct predictions, pointing to the
need for well-defined classes. This emphasizes the
role of understanding the domain for which the an-
notation scheme is designed and raises an impor-
tant issue concerning the cross-domain transfer of
annotation schemes as different classes will have
different frequencies and semantics across these
classes.

While the choice of PII taxonomy is likely to
depend on the needs of the specific case, the re-
sults suggest that using over-detailed classes for
automatic PII detection and labeling may not lead
to optimal performance, at least not without a large
dataset for the model to learn from. The same ap-
plies to the differentiating between the beginning
and the inside of a PII span in IOB-type annota-
tion, which does not lead to better performance,
and therefore should only be included if required
in the specific case.

In these experiments we have shown what kinds
of annotation facilitate PII detection and labeling,
the final choice also depends on the subsequent
task, such as generating pseudonyms or removing
PII spans. As long as the classes are required by
the subsequent steps in a pipeline (e.g. pseudonym
generation) or desired in the final version of the
text (e.g. as placeholders in the anonymized text),
there is a need for a more detailed annotation than
the basic one utilized in our experiment. This also
signals a need for investigating whether the label-
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ing step can be separated from the detection step,
and how the performance of such a setup compares
to classifying the PIIs in a single step.

The overt class imbalance (including the lack of
any PIIs of certain kinds of Specific labeling in the
data) highlights the need for well-curated training
datasets that feature a sufficient number of PIIs of
each kind, either by collecting more data or adjust-
ing the annotation; alternatively, one could also
opt to combine machine learning and rule-based
detection methods (many of the absent Specific
classes, such as account nr, could be more eas-
ily identified using e.g. regular expressions).

6 Future Work

To strengthen our results, these methods should be
applied to larger amounts of training data, poten-
tially resolving issues pertaining to some of the
classes being very difficult for our models to learn
to predict due to their low frequency. Since we
also observe that the semantic vagueness of certain
classes is problematic for the models, it would be
interesting to split those classes into more coher-
ent subclasses and examine what effect that has
– however, this requires manual re-annotation of
those tokens. Equally, we would like to see how
these results compare for different domains where
labels have different distributions in the text or are
entirely different.

The question related to the variability of data
(here in terms of non-standard spelling in the form
of grammatical errors but also other variability
such as unconstrained communication) and its in-
teraction with the selected annotation scheme is
also open for further exploration. An alternative
route would be trying to utilize synthetic data, and,
especially, comparing the performance of models
trained on larger amounts of synthetic data with
models that were only trained on a smaller cor-
pus of authentic data. An intermediate step would
be augmenting the training data using e.g. man-
ually or automatically pseudonymized versions of
the same texts.

It can also be worth exploring whether the same
trends occur when using other BERT-type mod-
els for this task — although KB-BERT has been
shown to perform the best on PII detection in
Swedish texts, perhaps other models do not show
the same trends as it does in these experiments.

We also aim to construct PII detection and PII
labeling models which we plan to release without

any privacy risks. Comparing an approach where
we separate detection and labeling versus where
they are combined in a single step is also an inter-
esting path. Since more granular tagsets seem to
be used for pseudonym generation in many cases,
we consider it worth exploring alternative meth-
ods for pseudonym generation that are not as de-
pendent on the PII taxonomy used, e.g. using lan-
guage models.
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Limitations

One major limitation in our experiments is the
relatively small amount of training data. How-
ever, the particular hierarchical PII taxonomy that
we analyze is only used in the SWELL corpora,
and SWELL-GOLD’s correction annotation sets it
apart from other corpora with hierarchical annota-
tion, such as CODE ALLTAG (Eder et al., 2020).
Unfortunately, SWELL-PILOT is not correction-
annotated, meaning that we can only conduct cer-
tain result analyses on a subset of our data.

Despite the small amount of data, a qualitative
analysis of the errors made by the models was
deemed to be beyond the scope, as it would re-
quire a manual inspection of almost 1000 texts in
six different annotation versions.
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Since it takes a considerable amount of time to
train a BERT-based classifier, we trained on 6 dif-
ferent kinds of annotation, we limited ourselves to
10 runs per annotation type, which does not satisfy
the requirements of applying statistical tests on the
overall performance results.

Ethical Considerations

Since the data that we use to fine-tune our mod-
els includes Personally Identifiable Information, it
cannot be openly shared. We choose not to share
our models to avoid any risks of leakage of per-
sonal information. However, we provide the code
(see subsection 3.2) from which the results can be
generated provided one has access to the data in
the appropriate SWELL format.
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Sundberg, and Mats Wirén. 2019. The SweLL Lan-
guage Learner Corpus: From Design to Annotation.
Northern European Journal of Language Technol-
ogy, 6:67–104.
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A Appendix

Example (1), shows what all the annotation
schemes used in this paper look like on sample
text. The annotation schemes a-f correspond to the
Specific IOB, Specific, General IOB, General, Ba-
sic IOB, and Basic annotations, respectively.

(1) a. My
O

name
O

is
O

Maria
B-firstname female

.
O

I
O

come
O

from
O

Wroclaw
B-city

(
O

that
O

is
O

in
O

Poland
B-country

)
O

.
O

I
O

work
O

at
O

the
O

University
B-work

of
I-work

Gothenburg
I-work

.
O

b. My
O

name
O

is
O

Maria
firstname female

.
O

I
O

come
O

from
O

Wroclaw
city

(
O

that
O

is
O

in
O

Poland
country

)
O

.
O

I
O

work
O

at
O

the
O

University
work

of
work

Gothenburg
work

.
O

c. My
O

name
O

is
O

Maria
B-personal name

.
O

I
O

come
O

from
O

Wroclaw
B-geographic

(
O

that
O

is
O

in
O

Poland
B-geographic

)
O

.
O

I
O

work
O

at
O

the
O

University
B-institution

of
I-institution

Gothenburg
I-institution

.
O

d. My
O

name
O

is
O

Maria
personal name

.
O

I
O

come
O

from
O

Wroclaw
geographic

(
O

that
O

is
O

in
O

Poland
geographic

)
O

.
O

I
O

work
O

at
O

the
O

University
institution

of
institution

Gothenburg
institution

.
O

e. My
O

name
O

is
O

Maria
B

.
O

I
O

come
O

from
O

Wroclaw
B

(
O

that
O

is
O

in
O

Poland
B

)
O

.
O

I
O

work
O

at
O

the
O

University
B

of
I

Gothenburg
I

.
O

f. My
O

name
O

is
O

Maria
S

.
O

I
O

come
O

from
O

Wroclaw
S

(
O

that
O

is
O

in
O

Poland
S

)
O

.
O

I
O

work
O

at
O

the
O

University
S

of
S

Gothenburg
S

.
O
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Abstract

With this paper, we release a Swedish
pronunciation lexicon resource, Braxen
1.0, which is the result of almost 20
years development carried out at the
Swedish Agency for Accessible Media
(MTM). The lexicon originated with a ba-
sic word list, but has continuously been ex-
panded with new entries, mainly acquired
from university textbooks and news text.
Braxen consists of around 850 000 en-
tries, of which around 150 000 are proper
names. The lexicon is released under the
CC BY 4.0 license and is accessible for
public use.

1 Introduction

The mission of the Swedish Agency for Accessi-
ble Media (MTM) includes the production of ac-
cessible materials for individuals with print im-
pairments, such as low vision or dyslexia. This
work primarily involves converting books into ac-
cessible formats such as Braille and talking books.
The talking books are produced through either hu-
man narration or text-to-speech synthesis (TTS).
MTM uses TTS to produce approximately 1 500
university textbooks annually and more than 120
newspapers on a near-daily basis. While com-
mercial TTS voices are used in this production,
the complexity of non-fiction texts often necessi-
tates additional support to ensure accuracy, mainly
through pronunciation instructions. The pronunci-
ation dictionary used at MTM, from which Braxen
is derived, is referred to as MTM-lex for clarity.

The starting point of MTM-lex was CentLex, a
generalised Swedish lexicon for speech technol-
ogy developed at the academic-industrial centre of
excellence CTT in the early 2000s (Jande, 2006).
In 2005, as CTT approached the end of its 10-
year run, MTM made the decision to develop an

in-house TTS system for the production of talk-
ing books (Tånnander, 2018). The pronunciation
lexicon in the MTM TTS started with 55 000 en-
tries from CentLex, and was supplemented with
around 35 000 entries acquired from Svenska
språknämndens uttalsordbok (SUO), 67 000 ord i
svenskan och deras uttal (Garlén, 2003). SUO
was made publicly available by the Institute for
Language and Folklore under the CC-0 license in
2023 (Isof, 2023). MTM has since made sig-
nificant changes and expansions to the lexicon to
meet the substantial demands placed on a pro-
nunciation lexicon used for TTS synthesis of long
and information-rich text, such as university text-
books. An in-house format for a phone alpha-
bet used for phonetic transcriptions was developed
and inflections of baseforms were added along
with hundreds of thousands of new entries, mainly
proper names and domain-specific vocabulary.

As part of an active production process, MTM-
lex is continuously updated, primarily with words
from Swedish newspapers and university text-
books. MTM produces over 120 newspapers in
spoken form, read aloud by TTS. The lexicon is
updated weekly with the 100+ most frequent news
words that are not yet part of MTM-lex. These
pronunciations are then forwarded to the TTS sys-
tem, either as a user lexicon or as SSML inser-
tions in the newspaper document. In addition,
MTM produces around 1 500 Swedish and English
university textbooks with speech synthesis annu-
ally. Frequency lists are computed individually
for most books, and new high-frequency words are
added to MTM-lex. In this way, the lexicon is kept
up-to-date with the current vocabulary of the news
world, as well as with vocabularies from specific
domains, such as medicine or law.

The sharing of Braxen has been approved by
MTM’s legal team. The lexicon can be down-
loaded here: http://www.github.com/
sprakbankental/braxen.
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2 Initial release: Braxen 1.0

Braxen is not identical to the original MTM-lex
and does not include all of its entries or informa-
tion. Firstly, only 5 of the original 27 fields are
included in the first release (see section 4). The re-
maining fields are excluded for one of the follow-
ing reasons: they are internal to MTM, unavailable
for most of the lexicon entries, lacking in quality
or consistency, or simply mere placeholders for fu-
ture information.

Secondly, not all entries are included in the re-
lease. English proper names are included, but ap-
proximately 35 000 general English words are not.
These words were originally transcribed to match
the English variety of a specific Swedish speaker,
which was incorporated into the Swedish TTS sys-
tem mentioned in section 1. As a result, the current
pronunciations differ from more established tran-
scription conventions of English.

As with any lexicon, it is virtually impossible to
guarantee complete accuracy.

For example, all entries do not have complete
PoS information, partially due to the purpose of
the resource. Features that are less important in
speech-oriented dictionaries, such as whether a
word is an adjective or a perfect participle, have
been given less attention. We are also aware that
there are a small number of incorrect entries.

To the best of our knowledge, this remains the
best Swedish resource of its kind available by
some margin.

The release includes full documentation and
Perl scripts for conversion between the native tran-
scription format and IPA, as well as validation
scripts.

3 Statistics

This section presents statistics on a selection of
features of general words (852 000 entries, Table
1) and proper names (151 000 entries, Table 2).

Examining the baseforms of the open part-of-
speech classes of general words, we count approx-
imately 129 000 nouns, 8 000 verbs, and 16 000
adjectives, present and perfect participles.

4 Fields

This section describes the five fields included in
the initial release.

Words Number Example
Baseforms 318 000 lexikon
Inflections 534 000 lexikonen
Swedish 679 000 lexikon
English (35 000) lexicon
Latin 3 500 humanitatis
Norwegian 2 600 langrenn
German 2 000 Krankheit
French 1 700 ouvrière
Other 7 800 áhkku

Table 1: Word statistics. Note that the English
entries are not part of this initial release.

Proper names Number Example
Baseforms 151 000 Stockholm
Inflections 23 000 Stockholms
Swedish 91 000 Göteborg
English 16 000 Gothenburg
Other 44 000 København

Table 2: Proper name statistics.

4.1 Orthography

The orthography is displayed in the letter casing
that reflects the most common form of the word.

4.2 Part-of-speech (PoS)

The PoS field contains part-of-speech tags and
morphological information, following the SUC
standard (Ejerhed and Ridings, 2010).

4.3 Language

The language field generally follows the ISO 639-
2 standard (Library of Congress, 2017) and in-
dicates which language the pronunciation refers
to. Consequently, the same orthography can occur
multiple times and have different pronunciations
depending on language. Detailed identification of
language properties is not a primary task in this
work, but words and proper names are classified
as belonging either to a specific language or to a
pragmatic placeholder category indicating for ex-
ample a continent associated with the word, such
as ’afr’ (Africa) or ’asi’ (Asia). These placeholder
categories are not linguistically accurate, but pave
the way for a more refined classification in a forth-
coming edition by providing accessible classes for
untrained annotators.
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4.4 Pronunciation

The pronunciation field contains the standard pro-
nunciation of the orthography. Only one pronun-
ciation variant is present is this first release of
Braxen. The details of the symbol set, stress and
boundary information are explained in section 5.

4.5 ID

Finally, the ID field contains a unique identifica-
tion number.

5 Phonetic-phonemic transcription

This section describes the Braxen transcriptions
and the symbol set used to encode them. As
Braxen is primarily a pronunciation resource for
real-world Swedish speech technology, and partic-
ularly for TTS synthesis of long, information-rich
texts, much care has been taken to create transcrip-
tions that are useful for this purpose. This goal
takes precedence over strict adherence to any spe-
cific speech or language theory, and even over gen-
erality in terms of language independence.

The Braxen transcriptions are encoded using a
symbol set based on four main design principles,
some of which are language-specific. The symbol
set can be converted to its IPA equivalent using
tools included with the release.

Principle 1: Programming compatibility
Symbols that complicate programming should be
excluded.

Principle 1 primarily rejects characters which
often serve as control characters in programming
languages, such as the SAMPA symbols /{/ and
/@/. It also excludes IPA stress and accent no-
tations such as /"/́ and //, which can complicate
the splitting and parsing of pronunciations. The
principle also underpins the decision to separate
all phonemes by space, as this facilitates split-
ting words and longer entities into phonemes and
makes pronunciation easier to read.

Principle 2: Keyboard accessibility
All symbols should be easily accessible on
a Swedish keyboard without compromising er-
gonomics.

This principle bluntly excludes most IPA sym-
bols and prohibits keyboard combinations (e.g.
combinations involving Shift, Alt, or Ctrl). Conse-
quently, it limits the symbols to lowercase charac-
ters but allows the inclusion of Swedish alphabetic
characters such as “ä” and “ö”.

Principle 3: Visual transparency
Each symbol should preferably resemble its typi-
cal orthographic counterpart or its IPA equivalent.

Principle 3 has various implications, such as us-
ing the colon “:” as the vowel length marker and
“u” for the closed rounded back vowel.

Principle 4: Internal coherence
Each symbol representation should aim for inter-
nal coherence, both within the symbol set and
within individual symbols.

This principle is especially important for multi-
character symbols, where it favours system-
atic compositionality and mnemonically sound
choices.

5.1 Phones
The symbol set consists of 65 phones, 15 of which
are xenophones. These are used for speech sounds
that are not inherently Swedish, for example
/D - dh/ or /õ - on/. In this section, we describe the
rationale behind the notation but refer the reader
to the documentation for a complete list of phones
and their IPA counterparts.

Following Principle 4, we aim for a consis-
tent use of multi-character symbols when a single-
symbol notation is not feasible using the keyboard
alone. The additional characters used are pre-
sented in Table 3 and include the following:

• The colon marks long vowels: /i:/.

• ”h” is attached to speech sounds to signal
some kind of modification of the single sym-
bol, e.g. /S - sh/ and /D - dh/. This means that
we end up with three-character notations of
some English diphthongs, e.g. /E@- eeh/.

• Nasal vowels are followed by “n”: /an, on/.

• Retroflex speech sounds are preceded by “r”:
/rd, rt, rn, rs, rl/.

Symbol Meaning Example
: long i:
h modified dh, oh
n nasalised an

r retroflex rt
x more back rx

modified uu:
0 silent r0

Table 3: Meaning of control characters placed
before or after the main part of the phone.
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• ”x” involves a more back pronunciation of
the original speech sound, e.g. /ö- rx/.

• Similar to attached ”h”, a double notation
of a symbol signals a similar, but different
phoneme, e.g. /u: - u:/ and /uu: - 0:/.

• ”Silent speech sounds”, such as R.P. English
/r/ are followed by ”0”: /r0/.

5.2 Stress

We use three stress and accent symbols (see Table
4): the primary stress with its two accent varia-
tions, and secondary stress. Note that all accent
2 words in Braxen are assigned secondary stress.
In most Swedish phonetic transcriptions, the sec-
ondary stress is assigned compounds only, and left
out in simplex words such as /h “o . p a/. Here,
we acknowledge that we have violated both Princi-
ple 1 (programming compatibility: the single and
double quotes) and Principle 2 (keyboard acces-
sibility: e.g., the Shift key is used for typing ac-
cent 2). However, these symbols are justified by
their clear connection to stress symbols of other
symbol sets: /’/ (primary stress, accent 1) and /,/
(secondary stress) are visually similar to the IPA
symbols, and /”/ (accent 2) visually resembles two
primary stress symbols combined.

5.3 Boundaries

Three types of boundaries are used: word, com-
pound and syllable boundaries, as shown in Ta-
ble 4. Again, Pinciple 2 is violated, this time by
the word boundary ”|”. We find some reassur-
ance in the fact that this symbol is rarely needed
in a pronunciation dictionary, although it is more
frequently used in input for applications such as
speech synthesis. In these cases, word boundaries
are typically inserted automatically.

6 Conclusions and future work

This release of Braxen 1.0 marks a step forward
for Swedish speech technology in that it provides
an accessible and high-quality pronunciation lexi-
con for Swedish speech technology applications.

With its comprehensive symbol set tailored to
Swedish language needs and adherence to prac-
tical design principles, Braxen is well-suited for
TTS synthesis and other real-world applications.
While the current release offers robust function-
ality, several areas remain open for enhancement
and expansion, and a range of activities are already
on the list for upcoming releases:

• Consolidate the excluded 35 000 English
MTM-lex entries, and/or add entries from an
existing English pronunciation dictionary.

• Implement validation that conforms that pro-
nunciations are plausible given their associ-
ated orthography (a complement to existing
validation).

• Correct and include other MTM-lex fields
that might be of interest to others, such
as compound decomposition, pronunciation
variations, and word origin.

• Establishing procedures for regular updates
to the dictionary, in particular automated
transfer of valid additions from MTM-lex to
Braxen.

• Release the full symbol set specification.

• Release a free-standing conversion tool be-
tween the symbol set used in Braxen and
other widespread symbol sets (e.g. SAMPA)
in addition to the existing IPA conversion.

Symbol Meaning Orthography Pronunciation
’ accent 1 boll b ’o l
” accent 2 fotboll f ”u: t - b ,o l
, secondary stress fotboll f ”u: t - b ,o l

unstressed bollen b ’o . l ex n
| word 7-eleven s ’e . v ex n | e . l ’e . v ex n
- compound fotboll f ”u: t - b ,o l
. syllable bollen b ’o . l ex n

Table 4: Stress and boundaries.
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Abstract

Temporal annotations are used to iden-
tify and mark up temporal information, of-
fering definition into how it is expressed
through linguistic properties in text. This
study investigates various discriminative
pre-trained language models of differing
sizes on a temporal relation classification
task. We define valid reasoning strate-
gies based on the linguistic principles that
guide commonly used temporal annota-
tions. Using a combination of saliency-
based and counterfactual explanations, we
examine if the models’ decisions are in
line with the strategies. Our findings sug-
gest that the selected models do not rely on
the expected linguistic cues for processing
temporal information effectively 1.

1 Introduction

Temporal information processig is a fundamen-
tal aspect of natural language and is essential for
NLP applications including question answering
(Chen et al., 2021; Ko et al., 2023), text summa-
rization (Daiya, 2020), and information retrieval
(Gade and Jetcheva, 2024). Transformer-based
pre-trained language models have shown impres-
sive performance in such tasks (Xiong et al., 2024;
Ko et al., 2023; Tai, 2024; Shi et al., 2023). Yet,
their interpretation of time diverges from human
interpretation (Callender, 2011), making it chal-
lenging to evaluate their temporal processing, and
whether they indeed interpret the temporal infor-
mation as expected (Qiu et al., 2023; Jain et al.,
2023).

While temporal benchmarks (Tan et al., 2023a;
Zhou et al., 2019; Ning et al., 2020; Zhou et al.,
2021) have been extensively developed, perfor-
mance metrics alone do not reveal the under-

1https://github.com/sofitere/TRC-XAI

lying mechanisms or explain how conclusions
are reached (Chakraborty et al., 2017). This
study contributes a methodology and an evalua-
tion dataset for evaluating NLP models on tempo-
ral relation classification. We define valid reason-
ing strategies, and use a combination of saliency-
based and example-based explainability methods
to assess whether a model follows these strategies
when making decisions.

Our framework extends the work introduced by
Ray Choudhury et al. (2022). We explore dis-
criminative models of varying sizes to determine
if larger models, trained more extensively on more
data, are also more likely to base their decisions
on valid information retrieval processes. Our find-
ings suggest that while larger models show better
performance on the task, they frequently deviate
from expected reasoning strategies. These results
align with broader concerns about the reliability of
current popular benchmarks, where high accuracy
can mask a reliance on shortcuts or spurious cor-
relations. We discuss the limitations of this frame-
work, together with the opportunities and chal-
lenges of extending it to generative models.

2 Related Work
Temporal Relation Classification. Temporal re-
lation classification (TRC) was first introduced in
TempEval-3 (UzZaman et al., 2013) and gained
popularity with dedicated corpora and annota-
tions for temporal information processing. Mod-
ern TRC methods predominantly use discrimina-
tive pre-trained language models, to generate ro-
bust contextual representations for pairs of event
mentions (Yang et al., 2019; Lin et al., 2019). Fur-
ther advancements include graph-based methods
(Mathur et al., 2021; Zhang et al., 2022; Zhou
et al., 2022) and prompt and masking techniques
(Han et al., 2021; Yang et al., 2024). Despite the
recent surge in the generative models, they still un-
derperform compared to fine-tuned smaller mod-
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Reasoning Step Relevant Features

Context:
Leon won the marathon years after
he underwent surgery in 2011.

Relation: ⟨won, ?, underwent⟩

Identify temporal information Expression: years, 2011
Preposition: after

Map temporal information to event underwent := 2011
won := (years, after)

Determine temporal relationship won := year after 2011
⟨won,AFTER, underwent⟩

Table 1: Valid reasoning steps for determining the temporal relation between a given event pair.

els (Roccabruna et al., 2024; Yuan et al., 2023).

Temporal Annotation. TimeML (Mani et al.,
2006) remains the most widespread format for
temporal annotation, and it became the basis
for ISO standard (Pustejovsky et al., 2010).
TimeML includes conventions to identify and de-
scribe temporal elements in text, including tem-
poral expressions (TIMEX), events, temporal re-
lations (T-LINKS), signals (SIGNAL), and rela-
tion types. TimeBank corpus (Pustejovsky et al.,
2003) has been re-annotated in several projects to
increase the density of T-LINKs (Verhagen et al.,
2007; Rogers et al., 2022; Naik et al., 2019) and
improve its consistency. Its texts have been uti-
lized in subsequent projects providing additional
annotation in other formats, including MATRES
(Ning et al., 2018).

Benchmarks. Benchmarks for temporal pro-
cessing vary widely in format and scope. TimeQA
(Chen et al., 2021) and Tempreason (Tan et al.,
2023b) focus on temporal question answering,
Torque (Ning et al., 2020) on temporal reading
comprehension, adopting question/answering as
format, and MCTACO (Zhou et al., 2019) on tem-
poral commonsense reasoning, adopting multiple-
choice as format. Commonly used benchmarks
have shown some limitations, also here rang-
ing from task and scope. Temporal question-
answering (QA) benchmarks tend to be biased in
their coverage of time spans and question types,
leading to models performing well due to for-
mat biases rather than actual language processing
skills (Tan et al., 2023c). Additionally, bench-
marks with focus on temporal expressions, such
as numeric years, have shown to not represent
the full range of diversity of temporal expressions
(Qin et al., 2021). Benchmarks for reading com-
prehension often assume that performing well ne-
cessitates engaging with cognitive processes of
language understanding (Sugawara et al., 2019;
Weston et al., 2015), implying that higher scores

reflect advances in general language processing
(Ray Choudhury et al., 2022). Performance on
benchmarks alone, while useful, does not neces-
sarily tell us whether the model is right for the
right reasons; if it is not, the benchmark results
may be misleading and not generalize to other data
(Dehghani et al., 2021; Bowman and Dahl, 2021).

Explainability. Explainability methods can ac-
count for some of the limitations of the current
benchmarks by highlighting what information the
model relies on, or where it fails to perform.
They can thus provide means to check to what
degree the models are reliable, i.e. they perform
correctly and consistently for the right reasons
(McCoy et al., 2019; Christianson, 2016). For
this line of research, local and post-hoc methods
have been used to evaluate pre-trained language
models on tasks that demand specific linguistic
skills. Ray Choudhury et al. (2022) apply a com-
bination of these methods to analyze and evalu-
ate models on two linguistic skills required for
a reliable reading comprehension system, finding
that models use shortcuts rather than valid infer-
ence strategies. In the context of LLMs, explain-
ability methods are both important and challeng-
ing. Research efforts are also put into examining
the utility (González et al., 2021), interpretability
(González et al., 2021; Schuff et al., 2022) and re-
liability (Harbecke and Alt, 2020; Spreitzer et al.,
2022; Rahimi and Jain, 2022) of explainability
methods.

Contribution. To date, relevant NLP work on
temporal processing has focused on modeling,
benchmarks and annotation schemes. The use
of explainability methods to explore how models
handle temporal data is largely unexplored. To
the best of our knowledge, this is the first study
to apply saliency-based and example-based inter-
pretability methods to assess whether models rely
on the expected reasoning patterns for temporal
relation classification. We evaluate the validity
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Context: Leon won a marathon years after he
underwent surgery.

Relation: ⟨won,AFTER, underwent⟩

(a) Example of temporal annotation: TIMEX ( blue ), and
SIGNAL ( orange ). These are temporal elements relevant for
expressing the relationship between ’won’ and ’underwent’.

Context: Leon won a marathon years after
he underwent surgery .

Relation: ⟨won,AFTER, underwent⟩

(b) Example of token partitioning into positive ( green ) and

negative ( red ). The models are expected to rely more on the
tokens in the ’positive’ set.

Figure 1: A sample question from the MATRES (Ning et al., 2018) dataset. A model is asked to predict
the temporal relationship between winning a marathon and having brain surgery. Token partitioning is
delivered from the features defined as relevant for determining the temporal relation between two events.

of these methods (via examining their alignment),
and discuss the challenges of evaluating the latest
generative models on temporal relation classifica-
tion.

3 Defining Success Criteria for TRC

Evaluating whether models follow expected rea-
soning involves testing if their decision-making
process are based on valid information retrieval
and inference strategies rather than superficial pat-
terns in the data. Ray Choudhury et al. (2022)
defines three success criteria for NLP systems: a
system must (1) accurately perform on a specific
task, (2) rely on information deemed pertinent to
the task, and (3) maintain consistency under distri-
bution shifts. We evaluate a model’s performance
in TRC against these criteria. We first define the
expected reasoning processes (§ 3.1). We then
assess the model’s adherence to these reasoning
steps by verifying its reliance on valid information
(§ 4.7), and by evaluating its performance consis-
tency across variations in data distribution (§ 4.6).

3.1 What reasoning should a model perform?
To correctly extract and classify temporal rela-
tions, a model must identify linguistic features that
express temporal information, map these features
to the events they describe or modify, and use this
information to deduce the temporal relationship
between the pair of events. We define these as
valid reasoning steps2 (see Table 1 for an exam-

2We recognize that this represents only the minimal infor-
mation on which models (or humans) might rely. For the ex-
ample shown in Table 1, if the context includes details about
Leon breaking his leg, this information could reasonably in-
fluence the understanding of Leon’s chances of winning the
marathon. Nonetheless, the minimally necessary information
in the immediate context would still be salient, and it is a rea-
sonable expectation that either models or humans should rely
on it.

ple). Temporal annotation schemes and guidelines
can be used to clarify which linguistic features are
essential for identifying the temporal relation be-
tween an event pair. We focus on two types of
annotations from the TimeML guidelines (Mani
et al., 2006):

• TIMEX3 tags are utilized for annotating explicit
temporal expressions within text. These ex-
pressions can be absolute (”December 2025”,
”5PM”) or relative (”Mondays”, ”monthly”).
They serve to anchor events to specific times or
durations.

• SIGNAL tags mark words or phrases that cue the
relationships between two entities (e.g. timex to
event, timex to timex, event to event). Common
linguistic features are adverbs (”again”, ”late”,
eventually”) detailing the timing of events, con-
junctions (”before”, ”since”, ”while”) relating
events to each other and subordinate conjunctions
(”because”, ”if”, ”therefore”) expressing condi-
tional or causal relationships. These features in-
dicate the sequence or structure of events, show-
ing their interactions over time.

Essentially, while TIMEX3 tags are used to iden-
tify temporal entities, SIGNAL annotations estab-
lish the links between these entities within the text.
Together, they provide the foundational informa-
tion necessary to understand the temporal relation-
ships among events in texts.

3.2 What reasoning does a model perform?
Having established the reasoning processes a
model should follow, the next step is to as-
sess whether a specific model adheres to these.
Ray Choudhury et al. (2022) uses a combination of
example-based and saliency-based interpretability
methods. These methods are categorized as local
and post-hoc (Molnar, 2022): they focus on indi-
vidual instances and they are applied after model

716



Purpose # Docs #Events #TLinks

TimeBank Training 162 6.6k 6.5k
Aquaint Training 73 4,3k 6.4k
Platinum Validation 20 748 837

Total 275 6k 13.5k

Table 2: Summary of purpose and statistics of the
MATRES (Ning et al., 2018) dataset subsets.

Label # %

BEFORE 6.886 50%
AFTER 4.576 34%
VAGUE 1.644 12%
EQUAL 471 4%

Table 3: Label distribution in the MATRES
(Ning et al., 2018) dataset.

has been trained.

Saliency-based Methods. Saliency-based
methods are a family of methods that offer
feature-centered explanations (Molnar, 2022;
Ding and Koehn, 2021a). These methods offer
different ways of computing a score for each
token, indicating how individual features (to-
ken) affect a model’s decision. By comparing
the saliency scores to a predefined partition
of tokens, these explanations can be used to
determine whether a model is relying on the right
information for correct predictions. Following
Ray Choudhury et al. (2022), we define a partition
of the token space as: tokens a model should find
important (positive), and tokens a model should
not find important (negative) (§ 4.5). If saliency
scores show that a model consistently has higher
scores on the positive compared to the negative
partition of tokens, it suggests that the model
focuses on the ’right’ information.

Counterfactual Explanations. Counterfactual
explanations offer data-centred explanations by
analyzing how changes in the input data can lead
to different model predictions (Molnar, 2022). By
changing parts of the input with alternative valid
tokens that would change the type of temporal re-
lation, these explanations can help determine if a
model is relying on the expected reasoning strate-
gies (§ 4.6). If a model predicts the correct tem-
poral relationship for both original and altered in-
puts, it suggests that the model consistently relies
on the correct information.

Explanation Alignment. For a model to
demonstrate valid reasoning, both saliency and
counterfactual explanations must align across
many instances, suggesting that a model consis-
tently relies on the right information for accurate
predictions.

4 Methodology

4.1 Data
Our experiments are conducted on the MATRES
dataset (Ning et al., 2018). In total, MATRES in-
cludes 275 news articles from TempEval3 (UzZa-
man et al., 2013), annotated for temporal relations
between pair of events. For experimental consis-
tency, we follow the original split for training and
evaluation (Ning et al., 2019), as shown in Table
2. MATRES is annotated for four different tempo-
ral relation classes. The label distribution is shown
in Table 3.

4.2 Models
We experiment with transformer-based encoders
of different sizes from three families: BERT (De-
vlin et al., 2019), RoBERTa (Liu et al., 2019),
and LUKE (Yamada et al., 2020). BERT and
RoBERTa are the classical models to use for this
task; they share a similar architecture but dif-
fer in pre-training scope and optimization (with
RoBERTa also receiving more extensive training,
but without optimization for the next-sentence-
prediction task). They have been used extensively
for temporal relation classification (Liu et al.,
2019).

We also add LUKE (Yamada et al., 2020): the
model enhancing the RoBERTa framework with
entity-aware self-attention, improving contextual
understanding. Since entities are crucial to tem-
poral relation classification (e.g. for recognizing
dates and events), this model could be expected to
improve on base BERT/RoBERTa. For all mod-
els, we experiment with ’base’ and ’large’ ver-
sions. For some cases, larger models have shown
to generalise better (Zhong et al., 2021; Desai and
Durrett, 2020). Part of this project is set to inves-
tigate whether they are also more likely to rely on
the right information. We focus on discriminative
models, as they are known for their robust perfor-
mance in TRC (§ 2). While incorporating gener-
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Original: Leon won a marathon few years after
he underwent surgery.

Relation: ⟨won,AFTER, underwent⟩
Altered: Leon won a marathon few years before

he underwent surgery.
Relation: ⟨won,AFTER, underwent⟩

(a) Simple reversal of temporal conjunctions.

Original: Computers, about to be deployed, are
taking over (..)

Relation: ⟨deployed,AFTER, taking⟩
Altered: Computers, already deployed for

months, are now taking (..)
Relation: ⟨deployed,BEFORE, taking⟩

(b) Label reversal with more extensive editing

Original: If it performs as (..), the design
could be used to (..)

Relation: ⟨performs,BEFORE, used⟩
Altered: If it is used to (..), the design cur-

rently performs as (..)
Relation: ⟨performs,EQUAL, used⟩

(c) Changing a conditional relationship

Original: He took part in the mission. He also
made expeditions to (..)

Relation: ⟨took,VAGUE,made⟩
Altered: He made expeditions to (..). He later

took part in the mission.
Relation: ⟨took,AFTER,made⟩

(d) Sentence reordering

Figure 2: Examples of counterfactual alterations changing the original temporal relation label, with
altered tokens highlighted in yellow.

ative models could be insightful, their limitations
within this framework are addressed in Section 7.

4.3 Fine-Tuning
Each encoder is fine-tuned for TRC using the tok-
enization strategy proposed by Yanko et al. (2023)
and Baldini Soares et al. (2019). The strategy con-
sists in explicitly marking the boundaries of each
event in an input sentence with special tokens. We
define these as [a1], [/a1], [a2], [/a2] and
process each input sentence as following:

Leon [a1]won[/a1] a marathon years after he
[a2]underwent[/a2] surgery.

When a given input is processed by each encoder,
the embeddings of the special tokens are adjusted
based on surrounding tokens. This results in a
context-specific representation for each event. We
concatenate the embedding vectors of the special
tokens and use them for classification by feeding
them into a linear layer on top of each encoder. All
code to reproduce our results, including hyperpa-
rameters, is included with the submission and will
be made public upon acceptance of the paper.

4.4 Evaluation Metrics
We evaluate each encoder using standard eval-
uation metrics for classification: F1 and exact-
match. Given the significant class imbalance in
the MATRES dataset (see Table 3), the F1-score
is particularly important. We report both weighted
and macro-average F1-score. Although exact-

match is less reliable for imbalanced datasets, we
include it for its straightforward interpretability.

4.5 Token partition
We previously defined linguistic features essential
for expressing the temporal relationships between
events (§ 3.1). Token partitioning is guided by
this definition. The positive token partition is de-
fined as all individual tokens that express or clar-
ify the temporal relationship between two events,
such as temporal expressions, prepositions, con-
junctions, and verbs demonstrating tense and as-
pect. The negative token partition is defined as to-
kens that are not part of the positive partition and
do not match the relevant tokens for the event pair,
deemed irrelevant for expressing the temporal re-
lationship. Figure 1 shows the relevant tokens for
an instance, and how these define the partition of
tokens.

4.6 Counterfactual Explanations
Counterfactual explanations are crafted from 300
instances randomly selected from the validation
dataset, with minimal modifications to the origi-
nal input. The queried event pair to the tempo-
ral relation is kept intact3, and changes are limited

3Alterations often involve reversing verb tenses. Since
event pairs are defined by the verb’s base form and English
verb tenses are structured flexibly, most instances can be al-
tered without changing the original event pair. However,
shifting to perfect tenses (e.g., ”will finish,” ”had finished”),
which useful to indicate completed events isn’t always possi-
ble.
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F1 M/avg F1 W/avg EM

LUKE large 0.54 0.70 0.70
LUKE base 0.55 0.67 0.68
RoBERTa large 0.58 0.70 0.72
RoBERTa base 0.56 0.69 0.69
BERT large-uncased 0.58 0.69 0.69
BERT base-uncased 0.52 0.66 0.66

Table 4: Performance of different models on the
MATRES (Ning et al., 2018) dataset.

Original Counterfactual

LUKE large 0.66 0.45
LUKE base 0.60 0.43
RoBERTa large 0.67 0.43
RoBERTa base 0.63 0.41
BERT large-uncased 0.62 0.40
BERT base-uncased 0.61 0.44

Table 5: Performance on counterfactual vs.
original instances (measured as F1 W/avg).

to the surrounding context. The alteration process
involves a two-stage approach: (a) identifying the
positive partition of tokens (§ 4.5), likely to impact
predictions significantly, and (b) modifying these
to change the temporal relationship.
We made alterations of four types, presented in
Table 2. About 67% of instances are altered by
reversing temporal conjunctions (e.g., modifying
”before” or ”after”), or adding modifiers or tempo-
ral expressions. This strategy is often applied to al-
ter BEFORE-AFTER relationships, aligning with
the dataset’s label distribution, where these are the
most common labels. Less frequent methods like
reversing phrase order (≈ 12%) and changing con-
ditional relationships (≈ 21%) targeted the rarer
EQUAL and VAGUE labels.

4.7 Saliency Scores
We obtain saliency scores from two different
methods: Occlusion and Integrated Gradients
(IG).

Occlusion (DeYoung et al., 2020) is a
perturbation-based method. It works by sys-
tematically replacing the input token with a
baseline token and observing the changes in
the model’s output probabilities. The occlusion
score for each token represents the change in the
model’s output probability when the token is oc-
cluded. We select [MASK] as the baseline token
to represent the absence of a specific feature. By
replacing each token one at a time with [MASK],
we remove the specific information provided by
that specific token and observe how its absence
affects the model’s output.

Integrated gradient (Sundararajan et al.,
2017; Molnar, 2022) is a gradient-based method.
This family of methods work by quantifying

how much each token in an input contributes
to the gradient being propagated downstream.
Tokens that have larger impact on the output will
impact the gradient more, and are considered
more influential. IG work by comparing the actual
input against a baseline. We again select [MASK]
as the baseline token, and create baselines based
on the length of the original input. Gradients
are computed along a linear path, from baseline
to actual input, representing a transition from
absence of features to the actual input. The
gradients are accumulated at multiple steps along
the path. The result is a vector for each token,
representing a separate gradient value for each of
a feature’s dimension. We convert these vectors
into a single score per token by applying L2
normalization (Ray Choudhury et al., 2022).

Applying each saliency method results in
four scores per token, representing the individual
token’s impact on a specific class of the MA-
TRES dataset. We aggregate these scores into
a single value by summing 4. over each score.
The resulting score indicates the token’s overall
significance across all classes. Special tokens,
introduced during fine-tuning (§ 4.3), must be
carefully considered. For IG, the special tokens
are included in the baseline inputs, to ensure the
integrity of the input. For Occlusion, they are
not perturbed, allowing to measure the impact
of regular tokens on the representation of the
special tokens, which in turn affects the model’s
predictions.

4Summing or averaging are common approaches for rep-
resenting the influence of a token across classes (Molnar,
2022; Atanasova et al., 2020a). Both might overlook the im-
portance of tokens that are particularly influential for a spe-
cific class.
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Alignment
IG Occlusion

LUKE large 0.19 0.20
LUKE base 0.21 0.18
RoBERTa large 0.11 0.21
RoBERTa base 0.27 0.17
BERT large-uncased 0.52 0.25
BERT base-uncased 0.56 0.28

Table 6: Alignment score between correctly pre-
dicted portions of counterfactual instances and
saliency methods for each model.

Figure 3: Visualization of saliency scores ob-
tained by occlusion for one instance, performed
on BERT-large. The model correctly predicts the
temporal relation between ”won” and ”set”. More
saturated tokens indicate higher saliency.

4.8 Explanation Alignment Score
Recalling § 3.2, explanation alignment happens
when a model accurately predicts both counterfac-
tual and original instances, using the right cues,
as indicated by saliency scores. We calculate an
alignment score from the 300 instances where both
original and counterfactual predictions are accu-
rate. The score reflects the proportion of instances
where the positive partition of tokens has a sta-
tistically significant higher average saliency score
than the negative partition, suggesting reliance on
correct information5. We use a one-tailed indepen-
dence T-test at a 0.05 p-value to assess statistical
significance, testing the null hypothesis that pos-
itive tokens do not have higher average saliency
scores than negative ones, as per Ray Choudhury
et al. (2022).

5 Results & Analysis

5.1 Model Evaluation
Table 4 shows the performance of fine-tuned mod-
els on the MATRES dataset. Across all models,
weighted F1-scores consistently exceed macro F1-
scores, indicating challenges in predicting minor-
ity classes, such as VAGUE. LUKE and RoBERTa
models exhibit similar performance metrics, with
their larger variants showing marginal improve-
ments. However, these improvements are lim-
ited. BERT models show similar trend in im-
proved performance when scaled, but they under-
perform relative to other models. This suggests
that the notion, that larger models might perform

5For a single instance with a random partition of to-
kens, the positive and negative partitions should have similar
saliency scores. For a dataset this translates to them being
significantly different in ≈ 0% of cases.

better for some use cases (Zhong et al., 2021; De-
sai and Durrett, 2020), only partially holds true for
a temporal relation classification on the MATRES
dataset.

5.2 Counterfactual Evaluation
Table 5 shows a comparison of F1-weighted aver-
age scores for the selected models on 300 original
versus counterfactual instances. For all models,
we observe a significant decrease in performance
on counterfactual instances compared to the orig-
inal instances, with an average performance drop
of 20%. This indicates overall challenges in main-
taining expected reasoning when the conditions
change. Contrary to expectations, larger model
variants show a bigger performance drop. This
indicate that larger models are less likely to per-
form well on altered inputs than their smaller vari-
ants. Future work could consider relaxing the cri-
teria that a model’s prediction on a counterfac-
tual scenario must perfectly align with the true
class. Instead, by analyzing prediction probabil-
ities, we might show that models appropriately
adjust their probabilities in response to counter-
factual changes. This is particularly valuable for
classification with unbalanced distribution of la-
bels (Molnar, 2022).

5.3 Explanation Alignment
Table 6 shows the explanation alignment score be-
tween correctly predicted counterfactual instances
against the two selected saliency-based methods.
We observe that IG and Occlusion do not agree on
the alignment scores. This lack of agreement be-
tween the two methods is consistent with previous
findings (Ray Choudhury et al., 2022; Atanasova
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et al., 2020a), and it must be addressed to draw
appropriate conclusions.

The alignment scores with IG indicate that
smaller models, when making correct predictions
for both original and counterfactual cases, are
more likely to rely on relevant information com-
pared to larger models. In contrast, Occlusion
shows no consistent trend across model sizes, with
scores that do not favor either smaller or larger
models.

Potential interpretations for this inconsistency
have been suggested. One interpretation is that IG
may struggle to compute accurate saliency scores
due to the discrete nature of text data (Harbecke
and Alt, 2020), as the intermediate representations
required do not align well with discrete word em-
beddings (Zhao et al., 2023), and therefore the
computed gradients might not produce truthful
saliency scores. Occlusion, potentially more sta-
ble, demonstrates no clear trend favoring model
sizes. Another possible interpretation is that IG
are in fact more faithful (Ray Choudhury et al.,
2022). The trend shown by IG suggests that as
the model’s size increases, the features we define
as important do not align with the model’s strate-
gies for correct predictions. Larger models, with
their increased capacity, might be more likely to
learn complex statistical patterns in the training
data, including spurious ones. If the training data
contain many such correlations, a larger model
might be more prone to learn them and use them
for predictions (Linzen, 2020). This could explain
the higher accuracy of larger models compared to
smaller ones (§ 5.1), but also indicates that larger
models might depend on spurious patterns instead
of relevant information (essentially, being right for
the wrong reasons).

Overall, while the reasons behind inconsisten-
cies remain unclear, the findings question the re-
liability of the selected saliency-based methods in
evaluating model reasoning. Further work might
include alternatives for computing saliency scores,
such as surrogate models LIME (Ribeiro et al.,
2016) and SHAP (Lundberg and Lee, 2017).

6 Discussion

This study investigates selected discriminative
models on a temporal relation classification task.
While numerous benchmarks have been developed
to evaluate models’ temporal processing abili-
ties, our experiments highlight limitations in these

evaluations. Specifically, we adopted one com-
monly used benchmark dataset and found that
models can achieve high accuracy without follow-
ing the expected reasoning patterns. The frame-
work used in this study offers a step toward im-
proving evaluation methodologies by emphasizing
whether models make correct predictions for the
right reasons. It establishes clear success crite-
ria for the task and highlights the role of validat-
ing ”reasoning” to accurately assess model perfor-
mance.

Post-hoc and local explainability methods are
commonly used to determine if model decisions
are justifiable from a human perspective, yet their
reliability and utility is often questioned (Das-
gupta et al., 2022; Saini and Prasad, 2022). Coun-
terfactual explanations are considered as more
truthful (Zhao et al., 2023), but require care-
ful handling to prevent unreliable conclusions.
Saliency scores, on the other hand, may not re-
flect the model’s decision-making process. Dif-
ferent saliency methods can produce conflict-
ing results, meaning that they inconsistently re-
flect the model’s decision process (Jukić et al.,
2023; Ding and Koehn, 2021b; Atanasova et al.,
2020b). Moreover, the lack of a ground truth
for saliency evaluation makes it challenging to
evaluate whether they correctly approximate the
model’s processes (Molnar, 2022).

Having addressed the truthfulness of these
methods, the question of their utility remains.
For this study, we must conclude that the mod-
els follow some other strategy for correct predic-
tion (rather than relying on the expected reason-
ing). Explainability methods should aim to make
a model’s decisions understandable to humans.
However, this is challenging when a model’s rea-
soning processes do not align with human rea-
soning (González et al., 2021). Identifying al-
ternative reasoning strategies or shortcuts through
these explanations is challenging because they are
not necessarily human interpretable (see Figure
36), raising questions about the practical value of
these methods, as they only provide a partial inter-
pretable view of a model’s processes, and fail to
provide actionable insights.

6Similar work (Ray Choudhury et al., 2022; Du et al.,
2021) report both negative and positive impacts on saliency
scores, which we consider as positive contributions regard-
less of probability direction.
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7 Extending to Generative Models

Extending the experiments to adapt modern gen-
erative models, such as LLaMA (Touvron et al.,
2023), GPT (Yenduri et al., 2023), and OLMO
(Groeneveld et al., 2024), presented challenges,
particularly in interpreting saliency scores.

Zhao et al. (2023) provides a taxonomy of ex-
plainability methods for transformer-based lan-
guage models, categorizing them based on train-
ing paradigms (e.g., fine-tuning and prompt-
ing), which influence their goals and effective-
ness. Generative models, primarily prompt-based,
leverage their extensive scale and learned prompts
for task execution. These complex processing
strategies (Wei et al., 2023) make it difficult to iso-
late specific components of the model responsible
for particular decisions. Localized and example-
based explainability methods become less mean-
ingful (Zhao et al., 2023). Moreover, differences
in training objectives (e.g. autoregressive versus
masked language), make it challenging to apply
explainability methods that work reliably across
all model types. Trustworthiness of explanations
is both task and model-dependent (Bastings et al.,
2022). Variations in how models process and pri-
oritize input can result in inconsistencies in the ef-
fectiveness of these methods. This variability un-
derscores that no single explanation method can
be universally treated as a standard across all con-
texts. Consequently, conducting meaningful com-
parisons between different architectures becomes
challenging, as the results may be unreliable or
even misleading. Further research is needed to val-
idate the robustness of such comparative analyses.

In contrast, counterfactual explanations provide
a promising approach for evaluating generative
models. Assessments centered on counterfac-
tual instances could help determine whether these
models maintain consistent reasoning when con-
fronted with alternative scenarios. We leave the
adaption of the presented counterfactual explana-
tions (§ 4.6) to generative models to future work.

Of particular relevance, Roccabruna et al.
(2024) highlights the performance gap between
generative and discriminative models in temporal
relation classification tasks. Encoder-only mod-
els based on RoBERTa consistently outperform
generative models like LLaMA. This performance
gap is attributed to RoBERTa’s ability to fully uti-
lize input context via masked language modeling,
in contrast to LLaMA’s autoregressive objective,

which tends to prioritize final tokens in the in-
put sequence. This underscores the significance
of discriminative models for TRC and reinforces
the value of evaluating whether their decisions are
based on valid and expected reasoning patterns.

8 Conclusion

Temporal annotations are used to mark all linguis-
tic features that express temporal information in
text. We evaluate selected discriminative models
on a temporal relation classification task, exam-
ining whether they rely on these features for cor-
rect predictions. Experiments involve a combina-
tion of counterfactual explanations and saliency-
based methods. High alignment between these
two explanations indicates that a model is follow-
ing a valid processing strategy. We find that this is
not the case for the selected models, meaning that
they might learn spurious correlations or shortcuts
rather than relying on the defined linguistic fea-
tures that form temporal meaning. We evaluate
the limitations of this framework by examining
the utility of the explainability methods used, to-
gether with challenges and potential directions for
extending the framework to generative models.

Limitations

This study focuses on a single dataset and task,
which limits the generalizability of its findings.
Future work could expand the scope by exploring
additional benchmark datasets and tasks to assess
the broader applicability of the proposed frame-
work. Generating and testing a larger number of
counterfactual and original instance pairs would
also provide a more robust evaluation.

Our approach to saliency scores may additional
attention. The current methodology does not ac-
count for the potential negative impact of indi-
vidual tokens on predictions, and it aggregates all
scores without identifying specific tokens that are
particularly influential for a given class.
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Appendix A

BERT (bert-base-uncased, bert-large-
uncased), RoBERTa (FacebookAI/roberta-
base, FacebookAI/roberta-large), LUKE
(studio-ousia/luke-base, studio-ousia/luke-
large) are sourced from the Hugging Face
Transformers library. Each encoder model is
fine-tuned for the task of temporal relation clas-
sification using the architectural and tokenisation
strategies presented by Yanko et al. (2023) and
Baldini Soares et al. (2019). All models are
fine-tuned for the duration of 10 epochs with a
batch-size of 8, using AdamW optimizer. The
learning rate was kept at 1e-05.

Appendix B

Relaxed F1 Relaxed F1 EM
M/avg W/avg

LUKE large 0.61 0.81 0.80
LUKE base 0.61 0.80 0.78
RoBERTa large 0.67 0.82 0.81
RoBERTa base 0.65 0.81 0.79
BERT large-uncased 0.66 0.81 0.78
BERT base-uncased 0.63 0.79 0.77

Table: Performance evaluation on MATRES
(Ning et al., 2018) dataset, using the ”relaxed” F1
metric proposed by Yanko et al. (2023).

VAGUE class was initially introduced in MA-
TRES dataset to account for disagreements that
arise during the annotation process (Ning et al.,
2018). Yanko et al. (2023) introduces a ”related
F1” metric to address the complexities associated
with the class. This evaluation metric excludes
errors where non-VAGUE predictions are made
on VAGUE samples, based on the argument that
VAGUE inherently encompasses both temporal di-
rections (BEFORE and AFTER). Errors in this
class are considered less critical and can be par-
tially disregarded. Similarly, Roccabruna et al.
(2024) take this notion further by completely ex-
cluding the VAGUE class from analysis, arguing
that it does not represent a true temporal relation.
We chose to keep the VAGUE class due to its po-
tential value in generating counterfactual explana-
tions. The class can serve as a middle ground that
can be modified into more definitive temporal re-
lations ( BEFORE, AFTER or EQUAL) or created
by introducing ambiguities into otherwise clear re-
lationships.

Appendix C

This section provides a detailed overview of the
methods used to generate counterfactual explana-
tions, including how alterations were identified
and implemented to ensure semantic correctness.
Four types of possible and semantically correct al-
terations were employed to generate counterfac-
tual explanations:

1. We consider simple temporal relationships
those that contain explicit temporal conjunc-
tions (e.g. ”before”, ”after” and ”while”). For
simple temporal relationships, revering the tem-
poral conjunction and/or changing verb tenses
were sufficient as semantically correct alter-
ations. This strategy most often resulted in re-
versing BEFORE and AFTER relationships.

2. For instances where a direct reversal of tempo-
ral conjunction or verb tense change was not
possible, temporal conjunctions or adverbs (e.g.
”subsequently”, ”already”) and temporal ex-
pressions (e.g. ”months”, ”years”) were added
or removed. This strategy often resulted in al-
tering BEFORE or AFTER relationships to an
EQUAL relationship, or vice-versa.

3. We consider more complex relationships those
that include conditional or causal relationships
between the two events. Focus was put in not
altering the nature of such relationships. For
these cases, reversing the temporal relationship
involved reversing the cause with the effect or
vice-versa.

4. For actions described in separate sentences, re-
ordering the sentences was considered as a valid
semantic alteration. This alteration is possible
and particularly relevant for the dataset at hand,
which is based on news snippets. For the news
domain, the order of mention often dictates the
sequence of events. This strategy often resulted
in altering to or from a VAGUE relationship.
Reordering sentences within the text, by placing
them closer or further apart, either increased or
decreased the contextual dependency between a
pair of actions.
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Common Features Examples

Temporal Expressions:
Tokens that specify
points in time

Absolute expressions, such as
December 2025, at 5PM

Relative expressions, such as
week, Mondays, annually

She started a new job on
September 1st , after moving to the

city.

If it rains tomorrow , the picnic will
be postponed until Sunday .

Temporal Prepositions
and Adverbs: Tokens
used to connect actions
or events to specific
times.

Prepositions such as
at, on, in, during, for, over, by

Adverbials such as
again, late, now, then
eventually, previously,
recently

She started a new job on
September 1st, after moving to the
city.

Recently , he has taken up running
before breakfast at 8AM.

Temporal
Conjunctions: Tokens
used to related events to
each one another.

Conjunctions such as
before, after, while, until,
since
when, as soon as, as long as

She started a new job on Septem-
ber 1st, just after moving to the city.

Recently, he has taken up running
before breakfast every morning.

Subordinate
Conjunction: Tokens
used to express
conditional or causal
relationship between
events or actions.

References to causality such
as
because, therefore, as

References to conditions such
as if, unless, then, so

Because you didn’t reply in time, I
only bought tickets for two.

If it rains tomorrow, then the
picnic will be postponed until
Sunday at noon.

Appendix D: Examples of features that express temporal information. The table is designed to demon-
strate how relevant and important tokens are identified and retrieved in accordance with the annotation
guidelines. Color coding follows the annotation guidelines from TimeML (Mani et al., 2006): orange
is used for signal tokens (SIGNAL), providing cues for how events and temporal expressions are related
to each other; blue is used for specific time expressions (TIMEX3).
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Abstract

We introduce a dataset of high-quality
human-authored summaries of news arti-
cles in Norwegian1. The dataset is in-
tended for benchmarking the abstractive
summarisation capabilities of generative
language models. Each document in the
dataset is provided with three different
candidate gold-standard summaries writ-
ten by native Norwegian speakers, and
all summaries are provided in both of the
written variants of Norwegian – Bokmål
and Nynorsk. The paper describes de-
tails on the data creation effort as well
as an evaluation of existing open LLMs
for Norwegian on the dataset. We also
provide insights from a manual human
evaluation, comparing human-authored to
model-generated summaries. Our results
indicate that the dataset provides a chal-
lenging LLM benchmark for Norwegian
summarisation capabilities.

1 Introduction

One of the key practical use cases of large lan-
guage models (LLMs), is to generate condensed
summaries of texts. Several news publishers al-
ready include LLM-generated summaries as part
of the news stories they publish. Evaluating such
generated summaries, however, remains a chal-
lenge. For Norwegian, one important reason for
this is the lack of gold-standard summaries to
compare to. The current paper introduces a new
and open dataset of high-quality human-authored
summaries of news articles in Norwegian, cover-
ing both of the official written variants; Bokmål
(BM) and Nynorsk (NN). Aiming to make bench-
marking as robust as possible, each document in

1https://github.com/SamiaTouileb/
NorSumm/tree/main and https://huggingface.
co/datasets/SamiaT/NorSumm/tree/main

the dataset is provided with three different can-
didate gold-standard summaries (for each variant,
BM and NN, resulting in six summaries in total for
each news article).

The remainder of the paper is structured as
follows. We first describe the creation of the
human-authored summaries, including the under-
lying data sources, the annotator guidelines, and
corpus statistics. We then move on to describe
a first set of experiments with using pre-trained
LLMs to generate summaries, and then evaluate
them using our new dataset. Importantly, we here
also present the methodology and framework we
use, including factors like prompts and metrics.
We thereafter discuss in detail the setup and re-
sults of our manual human evaluation.

2 Related work

Summarisation datasets are foundational for ad-
vancing the development of techniques for auto-
matic summarisation, as well as for benchmarking
LLMs. There are various approaches developed to
address diverse summarisation challenges, along
with influential datasets to benchmark both extrac-
tive and abstractive methods (Dong et al., 2022;
El-Kassas et al., 2021). Most works on bench-
mark datasets have been done for English, and we
here mention some of the works that focus on sum-
marising news articles.

The CNN/Daily Mail dataset (Hermann et al.,
2015) is one of such influential works. This
dataset was created for the task of reading com-
prehension, but is widely used for summarisation-
related tasks. The dataset consists of news articles
accompanied by a set of bullet points representing
(abstractive) summaries. Subsequent works have
focused on creating resources for various domains,
contexts, and summarisation styles. For instance,
Gigaword (Rush et al., 2015) is extracted from
the Gigaword news corpus and contains sentences
paired with short summaries (headlines). This
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is also an abstractive dataset enabling sentence-
level summarisation. It has however been criti-
cised for only including headlines instead of full
summaries (El-Kassas et al., 2021). The extreme
summarisation (XSum) dataset (Narayan et al.,
2018) was also created from news articles, sourced
from BBC. Each article in this dataset is paired
with a one-sentence summary representing a con-
cise and abstractive summary. The CNN-corpus
(Lins et al., 2019) contains news articles from
CNN paired with highlights and gold-standard
abstractive summaries. However, the corpus is
mostly used for extractive summarisation tasks
(El-Kassas et al., 2021). Efforts have also been
made for multi-document summarisation, such as
Multi-News (Fabbri et al., 2019), which contains
relatively long summaries of multi-news articles
covering the same topic.

Resources for news summarisation in Norwe-
gian are notably scarce. Some efforts to intro-
duce summarization datasets in Norwegian have
relied on machine translation, e.g. based on the
CNN/DailyMail data (Liu et al., 2024). How-
ever, failing to adequately capture nuances of the
target language, as machine translation may pro-
duce non-idiomatic and non-natural-sounding lan-
guage. Another concern is that, being based on
English sources, the original texts are typically
not geared towards issues of primary salience to
a Norwegian context (whether socially, politically,
geographically, or otherwise), which is unfortu-
nate if the goal is to benchmark Norwegian LLMs.

To our knowledge, no freely available, manu-
ally curated summarization dataset, created from
scratch for Norwegian news data exists, making
this work a valuable contribution to advancing re-
search in this field.

3 Human authored summaries

Data sources We use a subset of the news ar-
ticles in the Norwegian event extraction dataset
EDEN (Touileb et al., 2024) as the data source
for summarisation. EDEN contains articles in
BM only, and because creating summaries based
on news articles is a time and effort intensive
task, we here only make use of the dev and test
splits of EDEN, which respectively contain 30
and 33 news articles. EDEN was chosen due
to its high-quality, as it comprises news articles
from the Norwegian Dependency Treebank (Sol-
berg et al., 2014; Øvrelid and Hohle, 2016), and is

a richly annotated dataset covering event triggers
and arguments (Touileb et al., 2024), named enti-
ties (Jørgensen et al., 2019), morphosyntactic an-
notation, and co-reference information (Mæhlum
et al., 2022).

Annotators We hired three annotators with
strong academic backgrounds related to journal-
ism, all Norwegian native speakers. The annota-
tors were fairly compensated following an hourly
contract, and were hired for a period of 6 months.
All annotators have a background in media science
or journalism. The first annotator, has a bache-
lor’s degree in media and communication science,
and has worked as a freelance journalist. The sec-
ond annotator has a bachelor’s degree in journal-
ism, and was finishing up a master’s degree in in-
vestigative journalism while doing an internship in
a leading Norwegian news broadcasting company.
The third annotator, a journalism student, who also
worked part-time as a journalist in a local Norwe-
gian newspaper.

All hired annotators have experience writing
news articles, including the identification of key
information that should be selected to write the ar-
ticle. As the task was to create natural-sounding
summaries that preserved the original meaning of
the news articles, we believe that these annotators
can be referred to as domain experts. In addi-
tion, as we wanted the summaries to be as natural-
sounding as possible, we asked the annotators to
write in their preferred variant of Norwegian. This
has resulted in two annotators writing in BM, and
one annotator writing in NN.

Guidelines The annotators received a detailed
set of guidelines outlining the steps to follow when
authoring the summaries. The guidelines were in-
spired by concrete prompts, shared with us, and
which were used to automatically generate sum-
maries of news articles by one of the biggest media
companies in Norway.

We asked the annotators to write summaries that
reflect the main content of the news articles, but
without providing strong limitations to their lan-
guage use or formulations. We aimed to create
summaries that are as natural-sounding as possi-
ble, and as diverse as possible. Each annotator was
free to write their own summaries, without con-
sulting or discussing details about the content of
the summaries. However, we provided the annota-
tors with an example consisting of a news article
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News article

Mer frukt, men mindre norsk | Forbruket økt med 20 prosent på ti år. Forbruket av frukt og grønt har økt med over
20 prosent i løpet av de siste ti årene. Men den norske produksjonen faller. Hele veksten og mer til av frukt og
grønt kommer fra import. Den norske produksjonen har nemlig falt med 10 prosent siden 1998, skriver Nationen.
Ifølge landbruks- og matminister Lars Peder Brekk (Sp) må de norske kjedene bli flinkere til å samarbeide med
norske produsenter og bøndene må bli flinkere til å produsere det kundene vil ha.

Summary 1 Summary 2 Summary 3

B
ok

m
ål

Forbruket av frukt og grønt har økt
med 20 prosent på ti år.
Hele veksten og mer til av frukt
og grønt kommer fra import da den
norske produksjonen har falt med 10
prosent siden 1998, skriver Natio-
nen.
De norske kjedene må bli flinkere
til å samarbeide med norske pro-
dusenter og bøndene må bli flink-
ere til å produsere det kundene vil
ha ifølge landbruks- og matminister
Lars Peder Brekke (Sp).

Nordmenn kjøper mer frukt og
grønnsaker, samtidig som de norske
bøndene produserer mindre.
Frukt- og grønt-forbruket har økt
med over 20 prosent de 10 siste
årene.
Den norske produksjonen har falt
med 10 prosent siden 1998.
Import av varer dekker den økte et-
terspørselen i det norske markedet.

Forbruket av frukt og grønt har økt
med 20 prosent i Norge de siste ti
årene.
Likevel falt den norske eksporten, og
veksten kommer fra stadig mer im-
port.
Siden 1998 har den norske produk-
sjonen falt med 10 prosent, opplyser
Nationen.
Landbruksministeren sier at kjedene
må bli flinkere til å samarbeide med
norske produsenter, og at bøndene
i større grad må produsere det kun-
dene ønsker.

N
yn

or
sk

Forbruket av frukt og grønt har auka
med 20 prosent på ti år.
Heile veksten og meir av frukt og
grønt kjem frå import då den norske
produksjonen har falle med 10 pros-
ent sidan 1998, skriv Nationen.
Dei norske kjedane må bli flinkare
til å samarbeide med norske pro-
dusenter og bøndene må bli flinkare
til å produsera det kundene vil
ha, ifølge landbruks- og matminister
Lars Peder Brekke (Sp).

Nordmenn kjøper meir frukt og
grønnsaker, samtidig som dei norske
bøndene produserer mindre.
Frukt- og grønt-forbruket har auka
med over 20 prosent dei 10 siste åra.
Den norske produksjonen har gått
ned med 10 prosent sidan 1998.
Import av varer dekker den auka et-
terspørselen i den norske marknaden.

Forbruket av frukt og grønt har auka
med 20 prosent i Noreg dei siste ti
åra.
Likevel fell den norske eksporten, og
veksten kjem frå meir og meir im-
port.
Sidan 1998 har nemleg den norske
produksjonen falle med 10 prosent,
opplyser Nationen.
Landbruksministeren seier at kje-
dene må bli flinkare til å samar-
beida med norske produsentar, og at
bøndene må i større grad produsera
kva kundane ynskjer.

Table 1: Example of a news article and the summaries written by three different native speakers in either
Bokmål (BM) or Nynorsk (NN), and translated into the other respective variety.

paired with its summary to discuss the format and
exemplify the concrete guidelines.

More concretely, the guidelines we provided the
annotators are as follow:

• Make a short and precise summary.

• The summary should be formatted as a bul-
leted list, with each point on a single line.

• The language must be clear, precise, concise,
and easy to understand.

• Journalistic integrity must be maintained, en-
sure that no errors are introduced.

• The summary must address the following
questions: who, what, where, when, and why
it is important to have knowledge of the case
or event presented in the news article.

• The summary must be engaging and high-
light key information from the article.

• The summary should have a maximum char-
acter count of 700, including spaces.

We intentionally decided to keep the annotation
guidelines simple to give annotators the freedom
to write in a natural and authentic style. Rather
than imposing strict constraints, we provided them
with general and broad instructions on the impor-
tance of maintaining journalistic integrity while
clearly, precisely, and concisely creating an infor-
mative summary. We believe that this flexibility
allowed annotators to create more natural and en-
gaging summaries. Our choice of enforcing sum-
maries formatted as bullet-points was in part based
on how news outlets present machine-generated
summaries in the Norwegian news. But also be-
cause we planned to perform a human evaluation
where human-authored summaries will be com-
pared to machine-generated summaries. See Sec-
tion 6 for more details about this analysis.
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Generation and evaluation The annotation
process was carried out using a simple text edit-
ing platform, to provide the annotators a more
straightforward and user-friendly interface. We
had several meetings with the annotators to dis-
cuss the process and the progression of the task.
However, we never aimed for aligning the content
of the human-authored summaries. This was an
intentional decision to create a benchmark dataset
with diversity, as we believe that in the case of
summarisation, there is no unique gold summary
version. We wanted to create a resource that would
provide three diverse summaries for each news ar-
ticle, in each of the written variants BM and NN.

The annotation was conducted in two rounds:
(i) creating human-authored summaries, (ii) trans-
lating human-authored summaries. As previously
mentioned, we gave the annotators the liberty to
write in their preferred Norwegian written variant.
This was to both ensure the creation of naturally-
sounding summaries, but also to create a bench-
mark for both BM and NN.

In the first round of annotation, our three anno-
tators authored 63 summaries each (30 from the
dev split of EDEN and 33 from the test split), fol-
lowing our annotation guidelines. For the second
round of annotation, two of our annotators trans-
lated all summaries from BM to NN, and vice
versa. Here again, the annotators translated sum-
maries to their preferred Norwegian variant.

Since translations between the two written vari-
ants were performed by another annotator, each
human-authored summary has been seen and anal-
ysed by two different annotators. We believe that
this enhances the quality of the summaries, as po-
tential ambiguity or errors could be discovered and
corrected in both versions. This process again
allowed us to create additional human-authored
summaries for each of BM and NN. We provide
more details about the resulting dataset bellow.

Examples Table 1 shows three summaries orig-
inally written in either Bokmål or Nynorsk, and
translated into the other respective variety.

Each summary varies in both content and
length, with Summary 1 being the longest and
Summary 2 being the shortest (in terms of to-
kens). We believe that this diversity contributes to
a benchmark dataset that more accurately reflects
the complexities of generated summaries. Each
summary presents the news article in a unique
way, emphasising different important aspects of

Ann. #Summ. #Sent #Tokens Avg.

BM

A1 63 365 6,695 106.26
A2 63 280 6,221 98.74
A3 63 312 6,472 102.73

189 957 19,042 102.58

NN

A1 63 365 6,843 108.61
A2 63 280 6,280 99.68
A3 63 312 6,459 102.52

189 957 19,582 103.60

Total 378 1,914 38,624 102,17

#Doc. 3,136 49,003 778.92

Table 2: Dataset statistics of the human-authored
summaries. Left to right, the columns show lan-
guage variety (Bokmål/Nynorsk), total number of
summaries, documents, sentences, and tokens, and
finally average token length of summaries. The
bottom row shows the corresponding numbers for
the original news articles.

the case discussed in the news.
The human-authored summaries exhibit differ-

ences in style and news interpretation. Some sum-
maries are more concise, presenting only essential
facts (Summary 1), while others have a more nar-
rative style (Summary 2 and Summary 3) providing
more contextual details. Furthermore, the sum-
maries emphasise on varying aspects, with some
focusing on key events (Summary 1 and Summary
2), while other highlight implications or underly-
ing causes (Summary 3). We believe that this vari-
ation make our summarisation benchmark dataset
more representative, and enables model evaluation
on a diverse set of summaries.

Dataset statistics As previously mentioned, our
dataset uses the dev and test splits of the EDEN
dataset (Touileb et al., 2024) comprising docu-
ments written in Norwegian BM. Given the lim-
ited number of documents in each split (30 in dev
and 33 in test) we present the dataset statistics as
a whole, for the entire summarisation benchmark,
disregarding original splits. This decision aligns
with the intended usage of the dataset as a com-
prehensive benchmark, where treating these splits
separately is not meaningful.

Table 2 shows the main statistics of our sum-
marisation benchmark datasets, in terms of num-
ber of summaries, sentences, tokens, and average
number of tokens, broken down by annotator (A1,
A2, and A3) and variety (BM or NN). We also
provide the total number of sentences, tokens, and
average number of tokens in the original news ar-
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Figure 1: Box plots of summary lengths authored by three different annotators (referred to as A1, A2,
and A3) in either Bokmål (BM) or Nynorsk (NN).

ticles for comparison. As can be seen, the to-
tal number of summaries and sentences is equal
across annotators and Norwegian variety, as all
annotators created summaries (and their transla-
tions) of every news article from EDEN dev and
test splits. However, the number of tokens and the
average number of tokens per summary varies be-
tween the language varieties and the human anno-
tators. The first annotator (A1 in the table) has
authored longer summaries than the other annota-
tors, with annotator 2 creating the shortest ones.

These observations are clearer in the box plot in
Figure 1, where A1, A2, and A3 refer to our three
human annotators, and BM and NN are the two
Norwegian varieties. The figure presents the dis-
tribution of summary (token-) lengths across the
three annotators, and across the BM and NN vari-
eties. Each annotator’s summaries exhibit a range
of lengths, allowing us to observe both individual
tendencies and variations. The longest summary
was written by annotator 1, while the shortest was
written by annotator 2. The median lengths across
all summaries are relatively similar, with lengths
around 100-token. This we believe suggests a
level of consistency in summary length, that also
aligns with the guidelines given to the annotators.

There are also clear differences in term of
ranges. For instance, NN-A2 has a broader range
in summary lengths compared to the others, which
might indicate variance in the level of details pro-
vided in the summaries. In contrast, both NN-A1
and NB-A1 display narrower ranges, implying that
these summaries are more uniform in length with
fewer cases of extreme variations.

The whiskers also vary in length, with NB-A3

exhibiting particularly long whiskers. This sug-
gest a broader range of token counts in the sum-
maries, potentially reflecting a less standardised
approach to summarisation. Outliers are observed
in NN-A2, NN-A2, and NB-A1, and which in-
dicate the presence of significantly shorter sum-
maries than the main distribution. These outliers
might represent instances of summaries that are
either very condensed, lacking details or depth, or
simply based on shorter original news articles.

Overall, the differences between the summaries
are subtle, but still noteworthy. Summaries writ-
ten by annotator 1 appear to have less variability in
length, indicating greater consistence in the sum-
marisation style. Annotator 2 seems to have a less
strict and rigid way of writing summaries, which
might be depending on the original length of the
news article. This diversity in summary length and
variability makes the datasets more natural. This
suggests that models evaluated on this benchmark
would need to handle varying levels of details and
conciseness that necessitate the ability to meet dif-
ferent summarisation styles effectively.

Annotators’ experience and feedback At the
end of the annotation work, we invited annota-
tors to reflect on their main observations and to
discuss the specific aspects of the summarisation
process, as well as particular news articles that
they found most challenging. More concretely, we
asked them to reflect on the annotation process,
challenges and ambiguities in annotation, consis-
tency in annotation, and adherence to the guide-
lines. With regards to the annotation process, the
annotators had different strategies where for ex-
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ample one annotator always started by highlight-
ing named entities, events, facts, and actions to
identify the articles’ main points, while another
annotator read each article twice to verify accu-
racy and to avoid excluding details.

Concise, bulletin-like news articles were
straightforward to summarise, as their structured
formats closely aligned with what they believed
would constitute a good summary. The annotators
had a clear consensus regarding which articles
were relatively straightforward to summarise
and which posed greater difficulties. Sports
articles and disaster-related news, injuries, or
investigations were easier to summarise as they
tend to contain clear and concise information.

The annotators noted that increased complex-
ity within certain articles directly correlated with
the time required to produce high-quality sum-
maries, highlighting the impact of article complex-
ity on the annotation process. Annotators expe-
rienced that presence of subjectivity in the arti-
cle was a factor indicating increased complexity.
This led the annotators to make more choices, in-
creasing the risk of making a misrepresentative
summary. Examples of such “difficult” pieces of
text are: portrait interviews, feature articles, inter-
views, opinion pieces, and reviews. Some articles
lacked sufficient content, which required exter-
nal research and made the creation of a summary
more tedious. Annotators also particularly strug-
gled with long opinion-based articles, as it was dif-
ficult for them to summarise these texts without
misrepresenting opinions as facts. The longer and
the more complex the article, the more difficult it
was for the annotators to reduce the contents to
their essence within the maximum summary size.

All annotators reported their focus on journal-
istic priorities, where the aim was to convey the
most relevant facts from the original news articles.
While they also report a strict adherence to the
guidelines, they still prioritised content accuracy
over strict compliance in some cases. With regards
to the translation part of the process, the annota-
tors felt that the process was smooth and that it
was easy to translate consistently.

4 Evaluation Design

In the following, we illustrate the use of our sum-
marisation dataset as an evaluation benchmark for
a range of openly available Norwegian and multi-
lingual LLMs.

Models We evaluate nine pretrained Trans-
former LLMs as our baselines: NorwAI-Mistral-
7B2, NORA.LLM (NorBLOOM-7B-scratch3,
NorMistral-7B-scratch4, and NorMistral-7B-
warm5; Samuel et al., 2025), NorwAI-Llama2-
7B6, Viking-7B7, Viking-13B8, Mistral-7B-v.019

(Jiang et al., 2023), and falcon-7b10 (Almazrouei
et al., 2023). All the LLMs’ weights are taken
from the Transformers library (Wolf et al.,
2020).

Setup We conduct a zero-shot evaluation of the
previously mentioned LLMs using NorEval11,
an open-source framework for evaluating Norwe-
gian generative LLMs. We integrate our dataset
into NorEval together with 12 diverse prompts
written by Norwegian native speakers, who are au-
thors of this paper. Table 3 illustrates the prompts
– 6 prompts per language variety. As can be seen,
we use a variety of prompting styles to gener-
ate summaries, varying both the placement of the
source article, as well as the verbosity and pre-
cise wording of the instruction. The LLMs’ sum-
maries are generated via the greedy search decod-
ing method.

Performance Metrics We measure the perfor-
mance using standard summarisation evaluation
metrics: ROUGE-L (Lin, 2004) and BERTScore
(Zhang et al., 2020). Our result aggregation pro-
cedure accounts for prompt sensitivity (Voronov
et al., 2024; Lu et al., 2024) and includes two
steps: (i) for each prompt, we compute the maxi-
mum performance scores between the LLM’s out-
put and each of three human-written references
(our human-authored summaries); (ii) we then
maximize the BERTScore across all prompts and
average the resulting ROUGE-L and BERTScore
values over all BM/NN examples.

5 Evaluation Results

Table 4 presents the zero-shot evaluation results
on concatenated development and test sets. In ad-
dition to this evaluation, we conducted a human-

2hf.co/NorwAI/NorwAI-Mistral-7B
3hf.co/norallm/norbloom-7b-scratch
4hf.co/norallm/normistral-7b-scratch
5hf.co/norallm/normistral-7b-warm
6hf.co/NorwAI/NorwAI-Llama2-7B
7hf.co/LumiOpen/Viking-7B
8hf.co/LumiOpen/Viking-13B
9hf.co/mistralai/Mistral-7B-v0.1

10hf.co/tiiuae/falcon-7b
11github.com/ltgoslo/noreval
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Bokmål (BM)

1. Skriv en oppsummering av følgende artikkel med kun noen få punkter: {{article}}\nOppsummering:
2. Oppsummer følgende artikkel med noen få setninger: {{article}}\nOppsummering:
3. {{article}}\nSkriv en kort og presis oppsummering av teksten over. Språket må være klart og lett å forstå. Sørg for å ikke introdusere feil.
Oppsummeringen må dekke følgende spørsmål: hvem, hva, hvor, når, og hvorfor er denne saken viktig å vite om. Oppsummeringen må være
engasjerende og fremheve nøkkelinformasjon fra artikkelen. Oppsummeringen skal inneholde maksimalt 700 tegn, inkludert mellomrom.
4. Gi et kortfattet sammendrag av følgende tekst: {{article}}\n
5. Lag en kort oppsummering som sammenfatter den følgende teksten i noen få punkter:\n{{article}}\n\nOppsummering:
6. Heile artikkelen:\n{{article}}\n\nHovudpunkt:

Nynorsk (NN)

1. Skriv ei oppsummering av følgande artikkel med berre nokre få punkt: {{article}}\nOppsummering:
2. Oppsummer følgande artikkel med nokre få setningar: {{article}}\nOppsummering:
3. {{article}}\nSkriv ein kort og presis oppsummering av teksten over. Språket må vere klart og lett å forstå. Sørg for å ikkje introdusere feil.
Oppsummeringa må dekkje følgande spørsmål: kven, kva, kor, når, og kvifor er denne saka viktig å vite om. Oppsummeringa må vere
engasjerande og framheve nøkkelinformasjon frå artikkelen. Oppsummeringa skal innehalde maksimalt 700 tegn, inkludert mellomrom.
4. Gje eit kortfatta samandrag av følgande tekst: {{article}}\n
5. Lag ein kort oppsummering som samanfattar den følgande teksten i nokre få punkt:\n{{article}}\n\nOppsummering:
6. Hele artikkelen:\n{{article}}\n\nHovedpunkter:

English translation

1. Write a summary of the following article in just a few points: {{article}}\nSummary:
2. Summarise the following article in a few sentences: {{article}}\nSummary:
3. {{article}}\nWrite a short and precise summary of the text above. The language must be clear and easy to understand. Ensure not to introduce errors.
The summary must cover the following questions: who, what, where, when, and why this matter is important to know about. The summary must be
engaging and highlight key information from the article. The summary should contain a maximum of 700 characters, including spaces.
4. Provide a concise summary of the following text: {{article}}\n
5. Create a short summary that encapsulates the following text in a few points:\n{{article}}\n\nSummary:
6. The entire article:\n{{article}}\n\nMain point:

Table 3: Six prompts in BM and NN from NorEval used in our zero-shot evaluation experiments (§5).

Model BM NN Overall

ROUGE-L BERTScore ROUGE-L BERTScore ROUGE-L BERTScore

NorwAI-Mistral-7B 12.14 50.06 10.62 50.78 11.38 50.42
NorwAI-Llama2-7B 13.58 54.44 12.24 54.04 12.91 54.24
norbloom-7b-scratch 20.00 52.40 13.29 49.16 16.6 50.78
normistral-7b-scratch 25.32 58.25 15.28 48.32 20.3 53.28
normistral-7b-warm 17.38 49.86 9.93 41.86 13.6 45.86
Viking-7B 30.56 69.65 25.82 70.34 28.19 70.0
Viking-13B 33.76 70.90 27.38 69.96 30.57 70.4
Mistral-7B-v0.1 9.60 52.36 8.70 47.28 9.15 49.82
falcon-7b 10.61 44.40 9.80 44.06 10.2 44.23

Table 4: Zero-shot evaluation results on concatenated development and test sets by BM and NN. The
best score is in bold, second-best is underlined. The LMs with more limited abilities in Norwegian are
separated by a dashed line.

based evaluation (see §6) to analyse the LLMs’ be-
haviour in more detail given the limitations of the
automatic performance metrics (Gehrmann et al.,
2023; Colombo et al., 2023).

Overall Results We find that all LLMs achieve
acceptable performance on both BM and NN.
Viking-7B and Viking-13B perform the best,
reaching the ROUGE-L of up to 33.76 and
BERTScore of up to 70.34. The larger ver-
sion is insignificantly better than the smaller one.
We also observe that Norwegian monolingual
LLMs (NorwAI-Mistral-7B, NorwAI-Mistral-7B-
pretrain, and NorMistral-7B-warm) can perform
on par with LLMs with more limited abilities in

Norwegian (Mistral-7B-v0.1 and Falcon-7b).

Comparison of BM & NN Comparing the
results between BM and NN, we find that
most LLMs performs better on BM in terms
of ROUGE-L (e.g., the δ-score ranges from
1 to 10 for NorwAI-Mistral-7B-pretrain and
NorBLOOM-7B-scratch, respectively). However,
the BERTScore difference is less pronounced.

The relatively low performance scores suggest
that our summarisation dataset presents a chal-
lenging benchmark. One could argue that using
more advanced, proprietary LLMs, which have
demonstrated higher effectiveness in summarisa-
tion tasks, could yield better results than the mod-
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Figure 2: Screenshot of the interface used during
human evaluation. We present a news article on
top, and two suggestions for summaries. The goal
for the evaluator is to choose the summary they
prefer based on simple criteria (see §6).

els we have evaluated here. However, we chose
to rely exclusively on open-source models with
Norwegian language support to ensure accessibil-
ity and reproducibility for future research.

6 Human evaluation

In addition to model and metric-based evaluations,
we conducted a manual evaluation. For this pur-
pose, a research assistant was hired to develop an
interface where evaluators were shown a news ar-
ticle, followed by two summaries beneath it. An
example of this simple interface is shown in Figure
2. The volunteer evaluators were asked to choose
their preferred summary from a selection of two
summaries: one human-authored and one gener-
ated by a model. However, the evaluators were
not aware of the provenance of each summary.

To ensure that evaluators rank summaries con-
sistently, we provided them with a set of very sim-
ple criteria inspired by evaluations presented in
(Fabbri et al., 2021):

• Relevance: Selection of essential content
from the original news article.

• Consistency: Alignment between the sum-
mary and the source article, ensuring that
the summary contains only factual statements
that can be directly inferred from the source.

• Fluency: Quality of individual sentences,
with particular attention to grammatical cor-
rectness to ensure readability.

We also asked the evaluators to prioritise these
criteria in the following order: relevance > con-

sistency > fluency, with relevance being the most
important and fluency the least. This approach was
designed to assess the quality of the summaries
based on the primary functions of summarisation:
accurately and concisely conveying essential con-
tent. The prioritisation we chose reflects a deliber-
ate emphasis on accuracy and factuality over style.

The link to this evaluation interface was shared
with volunteer colleagues, resulting in a total of
146 responses. In 138 cases, evaluators pre-
ferred the human-authored summaries, while only
8 responses favoured a machine-generated sum-
mary. These preferred machine-generated sum-
maries were produced by the three models Viking-
13B (4 of the preferred summaries), NorBLOOM-
7b-scratch (2 of the preferred summaries), and
NorMistral-7b-warm (2 of the preferred sum-
maries), using prompt nr. 1 (BM) and prompt nr.
2 (BM) in Table 3.

Similarly to the results in Table 4, the best
model metric-wise, Viking-13B, seem to also be
the model most favoured by human evaluators. Al-
though this preference remains limited compared
to the preference of human-authored summaries, it
provides an indication of the quality of summaries
generated by this model compared to the others.

Several issues were identified during the human
evaluation of summaries. These were primarily re-
lated to those generated by the models. We give a
summary of the types of errors that commonly ap-
peared in what follows.

Issues related to relevance the generated sum-
maries often reproduce the initial part of the orig-
inal article, not including important information
presented later, and sometimes even cutting off
mid-sentence. Some summaries were direct copy-
paste of the original article, or were too lengthy,
and occasionally repeating (parts of) the prompts
(e.g. “Skriv en oppsummering av følgende ar-
tikkel med kun noen få punkter: Tilbake til
hverdagen | Helse. Vandrehall [. . . ]”, eng: Write
a summary of the following article in just a few
points: Back to Everyday Life | Health. Walk-
ing hall [. . . ]). Some other summaries were too
short, providing incomplete contexts or unnatural-
sounding sentences.

Issues related to consistency generally, evalua-
tors reported that the summaries were consistent
with the source material. However, some sum-
maries did exhibit repetitions of phrases. Minor
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but significant alterations in the texts, like adding
or omitting words, were also observed. In some in-
stances, the model-generated summaries invented
quotes (e.g. a citation in the summary that did not
occur in the original news text “- Jeg er veldig glad
for at jeg har fått et nytt hjerte, sier Per Arne Olsen
til Tønsbergs Blad.” (eng: ‘- I am very happy
that I have received a new heart, says Per Arne
Olsen to Tønsbergs Blad.”). However, a simple in-
ternet search led us to finding a similar quote in
another news article which seemingly the model
had access to during training), or confused enti-
ties (e.g., mixing between Bill and Hillary Clinton
when mentioned jointly in a news article).

Issues related to fluency similarly to what we
already have mentioned, despite fluency being
largely maintained, certain summaries repeated
identical or similar sentences continuously (more
than 10 times). Additionally, in some cases we
observed missing function words (e.g. the func-
tion word “av” (eng: by) in the sentence “Malis
statsminister Cheick Modibo Diarra har gått av et-
ter å ha blitt pågrepet soldater” (eng: Mali’s Prime
Minister Cheick Modibo Diarra has resigned after
being arrested soldiers) not being included in the
same sentence in the generated summary.)

7 Conclusion and Outlook

This paper introduces a novel dataset of human-
authored summaries of Norwegian news articles
for benchmarking abstractive summarisation. Our
dataset is of high quality and provides for each
news article a set of diverse summaries written
in both Norwegian varieties Bokmål and Nynorsk.
Through comprehensive evaluations using human
evaluators and generative models, we have demon-
strated the robustness and complexity of this
benchmark.

As this is the first freely available human-
authored Norwegian summarisation datasets, we
believe that the impact it will have on bench-
marking current and future LLMs is considerable.
Looking ahead, we see several avenues for devel-
oping models that leverage the particularities of
this dataset to build more robust summarisation
techniques. This dataset allows us to compare the
output of generative models to a distinct set of
human-authored summaries, which will allow us
to generate more naturally-sounding summaries.
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Abstract
Reliable automatic solutions to extract
structured information from free-text nurs-
ing notes could bring important efficiency
gains in healthcare, but their development
is hampered by the sensitivity and limited
availability of example data. We describe
a method for eliciting fictitious nurs-
ing documentation and associated struc-
tured documentation from volunteers and
a resulting dataset of 397 Danish notes
collected and annotated through a cus-
tom web application from 98 participating
nurses. After some manual refinement, we
obtained a high-quality dataset containing
nurse notes with relevant entities identi-
fied. We describe the implementation and
limitations of our approach as well as ini-
tial experiments in a named entity tagging
setup.

1 Introduction

With the emergence of Electronic Health Records
(EHR), the way nurses document their work has
changed drastically. Printed schemas and hand-
written notes were supplanted by computer-based
systems like the Danish Sundhedsplatformen (SP),
aiming to reduce data redundancy and errors (Am-
binder, 2005). To simplify automatic processing
and data reuse, EHR systems emphasize struc-
tured documentation. This choice has been de-
scribed as “Technological somnambulism” (John-
son, 2016) and tends to be at odds with the
preferences of the clinical professionals, who
value usability and flexibility (Rosenbloom et al.,
2011) and experience structured documentation as
time-consuming and inefficient (Brinkmann et al.,
2020; Baumann et al., 2018), frequently leading to
inadequate documentation (Tram, 2017).

Automatic generation of structured documenta-
tion from free-text nurse notes would offer an at-

tractive solution to this dilemma. However, the
development of such systems across countries and
languages is frustrated by the lack of training data
due to the stringent privacy constraints surround-
ing all forms of medical notes (Landolsi et al.,
2023). While some relevant datasets are available
(Johnson et al., 2016), they are specific to the con-
text in which they were produced and may be of
limited use in another location characterised by a
different language, different social context or dif-
ferent healthcare procedures.

In this paper, we describe and evaluate a method
to elicit fictitious nurse notes from volunteering
healthcare professionals based on visual stimuli.
The collected notes closely mirror real free-text
nursing documentation without suffering from the
privacy restrictions of authentic notes. Emphasis-
ing a low time commitment for the volunteers, our
method enabled us to collect a high-quality dataset
of 397 notes from 98 participating nurses. We de-
scribe our procedures for eliciting and curating the
dataset and annotating it for information extrac-
tion as well as initial experiments on automatic ex-
traction of structured data. Our dataset is in Dan-
ish, but the procedure would be easily generalis-
able to other languages.

2 Data collection framework

We collected fictitious examples of nursing notes,
together with structured annotations of their con-
tent, with two goals in mind: 1. The notes col-
lected should mimic authentic nursing notes as
much as possible. 2. The entry threshold for par-
ticipants should be minimal to make recruitment
easier. We used visual stimuli to minimize the
influence of the stimuli on the participants’ word
choice, and imposed a time limit on the text entry
to simulate real-life time pressure.

Figure 1 shows the structure of our web appli-
cation, whose core parts are the stimulus presenta-
tion, note capture and structured annotation. Dif-
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Stimuli

Introduction

Write note Annotate

Highscore/End

Figure 1: Data Collection Process. After annotat-
ing the participant gets the option to repeat or stop.

ferent sets of test participants were used to evalu-
ate the design and offer feedback on the web ap-
plication during the design process. Some of the
test participants were observed doing the process,
other were interviewed afterwards.

(a) ©Bangkok Click Studio / Adobe Stock
Example notes: ”Pt. only slept around 4 hours, despite
medication” and ”Pt. is awake and restless”

(b) ©Andrius Gruzdaitis / Adobe Stock
Example notes: ”Pt. feeling better and is ready to get
discharged later today” and ”Pt. happy with the plan and
will contact the department in case of worsening in symp-
toms”

Figure 2: Stimuli examples

As we considered a denser and more focused
dataset more useful than a sparse dataset covering
many areas, some of the nurse-relevant problem
areas were omitted in the our data collection to in-
crease the number of items per category.

Introduction. The introduction page consists of
a 4-step guide, including three small video clips
demonstrating the process of seeing a stimulus,
writing a note and annotating it.

Initially the introduction included detailed in-
structions to the participants. However, during
testing, most of the test participants did not read
the text and quickly pressed ”next” to move on
to the next step, which led to confusion about the
process. To mitigate this, the text was cut signif-
icantly and the introduction page was redesigned
with three GIF animations demonstrating the pro-
cess. The Facebook post advertising this study
also described that the purpose was to create fic-
titious free-text nursing documentation.

Stimulus presentation. The stimulus display
page features an image or video, a 60-second
countdown timer and a button to manually
progress. The stimulus is drawn uniformly at ran-
dom from 23 unique items (16 pictures, 7 videos),
each chosen to inspire the participants to write rel-
evant nursing documentation. Examples of stimuli
and associated notes are shown in Figure 2.

Note capture. The write note page consists
of 6 fields in which the participants can write
notes based on the 12 nursing-related problem
areas (sygeplejefaglige problemområder) defined
by Styrelsen for Patientsikkerhed (Danish Patient
Safety Authority) (Styrelsen for Patientsikkerhed
(SFPS), 2023), which defines minimum require-
ments for nursing documentation. Given the an-
ticipated limited volume of collected data, certain
problem areas, including pain and sexuality, were
excluded to ensure a more targeted dataset.

A time limit, randomly selected in 9 steps from
20–135 seconds, was imposed on the participants.

Structured annotation. The structured annota-
tion page, shown in Figure 3, is composed of
three sections. On the left, the note intended for
annotation is displayed for the participant. The
right section presents the completed annotations,
while the central area houses the module responsi-
ble for managing the annotation process. The de-
sign of this system adopts a similar layered struc-
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Figure 3: Annotate page

ture found in the schemes of EHRs, with a cate-
gories, subcategories and subsubcategories to nar-
row down the options for the final selected value.
There is a one-to-one relationship between the
highest-level categories and the six fields in the
note capture section.

Highscore. The highscore page showed the top
contributors and gave the participants a choice to
end the process or take one more cycle.

3 Collected data

The study was advertised four times in a Facebook
group with 30,000 nurses, and three medical wards
were visited once each to recruit participants. A
total of 98 nurses participated in the study, pro-
ducing 407 notes and 594 annotations. We expect
that this number could be increased by offering
economic incentives for participation. Every note
and annotations was manually reviewed for qual-
ity control.

3.1 Notes

Most participants produced 1 note (n=34), and the
average number of notes per person is 3.75. Typ-
ical notes are short and concise with an average
length of about 8 words per note, focusing on one
category per note. 16 out of 407 notes (3.9%)
had to be removed, because they had a length of
1 word, because they directly described the stimu-
lus shown or because they were spam.

The length of the notes shows a very slight up-
ward trend as the time limit was increased, but the
effect is not very strong (Figure 5). This might be
attributed to participants having the option to pro-
ceed by clicking “next” at their discretion, before
the timer ran out.

Figure 4: Note capture page

Figure 5: Average Note Length per Timer

3.2 Structured annotations

Each annotation consists of a category, a subcat-
egory, a subsubcategory and a value. Figure 6
shows a note with 4 annotations. The subcategory
is not only used to navigate to the right subsubcat-
egory, it also carries information that relates to the
final value.

Unannotated. 64 of the notes were submitted
without any annotations. 14 were impossible to
annotate, as there was no type of annotation which
would fit the note, 12 were either 1 character long
or cut short, probably because of the time limit,
and 38 were possible to annotate.

Annotated. The remaining 343 notes had anno-
tations. The annotations can be divided into 4
groups, all represented in Figure 6.

1. Exact match: The selected value in the an-
notation has an exact match in the note.
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Annotation Type Count Percentage
Total annotations 594 100.0%
Exact match 297 50.0%
Partial match 106 17.8%
Interpretation 78 13.2%
Incorrect irrelevant 39 6.5%
Incorrect relevant 74 12.5%

Table 1: Annotation Statistics

2. Partial match: The selected value in the
annotation has partial overlap with the note.
This could happen because of two reasons.

(a) The choices offered by the annotation
process forced the use of another word,
than was in the note. The structured
part enforces the use of the Bristol Stool
Scale (Lewis and Heaton, 1997) (which
defines consistencies of stools) where
“type 4” amounts to “soft”.

(b) The entity in the note was misspelled or
in plural form, causing a mismatch with
the structured category.

3. Interpretation/classification: The selected
value can be interpreted by the note. In Fig-
ure 6, the amount of persons is not men-
tioned, however operating a ceiling hoist re-
quires two people, making the annotation
correct.

4. Incorrect: The annotation fits in none of the
above categories. These annotations can be
divided into two categories:

(a) Relevant, where the annotation fits the
theme, but is not present in the note. In
Figure 6 the size of the stool is anno-
tated, but is not present in the note.

(b) Irrelevant, where the annotation is com-
pletely unrelated.

Missing Annotations. Missing annotations
occur when an Exact match or Partial match
annotation is possible, but missing. Omitted pos-
sible Interpretation annotations are not considered
missing due to the subjectivity of this category.
A total of 107 annotations were missing. The
distribution among the types of annotation can be
seen in Table 1.

A total of 64 different subcate-
gory/subsubcategory pairs were used by the

Note: Pt. have had 1 x soft stool. Mobilized to
toilet using ceiling hoist.

category:
Level of mobility

subCategory:
Register level of mobility

subSubCategory:
Help from

Value: 2 persons

subSubCategory:
Aids

Value: ceiling hoist

category:
Elimination

subCategory:
Register stool

subSubCategory:
Size

Value: Large

subSubCategory:
Consistency

Value: Type 4

Figure 6: Top annotations: Left Exact match, right
Interpretation
Bottom annotations: Left Incorrect, right Partial
match .

participants, with the 5 highest having from 22 to
55 entries and the lowest 5 having one entry each.

3.3 Data evaluation
Four people replied to the Facebook post advertis-
ing the study that they did not understand the task,
and another wrote the interface was too confusing.
No other feedback from participants was received.

3.3.1 Notes
A manual review of the notes showed good variety
in word choice (e.g., ’murky’ and ’unclear’ used
interchangeably) and a realistic feel, suggesting
they could have been real nurse documentation.
The goal was to balance stimuli uniformly across
the 6 main categories, but the resulting dataset is
not balanced (Figure 2). This could be because
some stimuli were harder to understand and there-
fore harder to write a note to or because some stim-
uli could be interpreted in multiple ways. For ex-
ample, a picture of a diaper could both represent
elimination and mobility.

3.3.2 Annotations
The structured annotation part posed a greater
challenge for the participants, resulting in 64
unannotated notes (18.6%). However, 12 of those
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Category Count Percentage
Elimination 145 24.4%
Mobility 133 22.4%
Psychological and social 83 14.0%
Sleep and rest 81 13.6%
Communication 78 13.1%
Nutrition 74 12.5%

Table 2: Category distribution

were errors or probably cut short because of the
time limit, which can be expected. 14 were impos-
sible to annotate with the options given to the par-
ticipants. This leaves 38 (11%) of the notes which
were possible to annotate, but had no annotations.

Incorrect annotations amount to 19% of all an-
notations, with 66% of them relevant to the topic
and the rest completely irrelevant. These were re-
moved from the dataset.

Missing annotations also pose a significant
problem. Missing annotations and unannotated
notes may be due the interface of the annotation
process. While the interface mimics a real EHR, it
is not exactly the same. They may also reflect the
restrictions of structured documentation: It is time
consuming, and finding the right category can be
difficult (Brinkmann et al., 2020; Baumann et al.,
2018). With no tangible incentive to spend time
on it, participants may just click next and move on
if they cannot find the right category immediately.

Users had the ability to add their own entity, if
it was not among the options provided by the web
application. This was however not utilized and
that could be the reason for some of the missing
annotations.

64 distinct subCategory/subSubCategory pairs
were utilized by participants, with the majority be-
ing used less than 8 times. This posed a significant
challenge for the experimental part of our study
(extracting structured information from free-text
nurse documentation). To simplify the problem,
the classification part of the annotations was dis-
carded as they represented a very small part of the
annotation. The remaining annotations were either
an exact or partial match, enabling us to reframe
the task as a Named Entity Recognition (NER)
challenge. Here, the subSubCategory represents
the entity type, while the value represents an in-
stance of the entity type.

4 Entity tagging

Exact matches only needed the start and end po-
sitions of the instance to make a complete tag,
which was done automatically using regular ex-
pressions. Tags for the partial matches were done
manually as the value in the original annotation
did not match the instance in the note exactly.

Some annotations were straightforward, while
others required additional work. For example,
participants could choose the color ”yellow” for
urine. However, since the relation to urine was
conveyed in the subcategory, this relation was
lost. To address this, additional entity types were
created. For example the entity type ”OUT”
(as something leaving the body), was created for
words like ”urine” and ”stool”. The resulting
tagset was designed to ensure that, if all entities
were accurately identified and appropriately com-
bined, the original structured annotation could be
reconstructed. After settling on a tagset the pro-
cess of tagging all notes began.

One person tagged the dataset, using approxi-
mately 20 hours. Every note was looked at four
times. Beyond the notes that already had an an-
notations, every non-annotated note were tagged
as well. A total of 23 entity types were used (Ta-
ble 3).

5 Experiments

Extracting entities from the dataset could prove
to be difficult. Some verbs, like ”walk”, belongs
to different categories based on the tense of the
word and the surrounding words. The word ”big”
(”store” in Danish) is used both as a description
of an AMOUNT ”The patient consumed two big
portions of food” or as a MODIFIER ”The pa-
tient have big problems eating” (directly trans-
lated from Danish). Additionally, some entity
types appear much less frequently than others, re-
sulting in an unbalanced dataset where entities
occur between 13 and 201 times. Lastly words
like ”nasogastric tube” (nasalsonde in Danish) and
”Foley cathether” (KAD in Danish) are not com-
mon words and very specific to the medical do-
main, which might affect the results in a negative
way.

5.1 Data split
Due to the size of the dataset, we used k-fold
cross-validation for the evaluation. A value of k=6
was chosen, ensuring each entity type appears at
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Tag Description
PSYCHOLOGICAL A psychological symptom (e.g. sad, happy, angry, frustrated, confused)
PHYSIOLOGICAL A physiological symptom or condition (e.g. constipated, nauseous, bound to

bed)
STATE A state a patient can be in (e.g. sleeping, sleepy, relaxed, awake)
ASSISTIVE DEVICE Items such as walker, lift, hearing aids, diaper
QUANTITY A quantity defined numerically or textually (e.g. 4, 600, one, two)
AMOUNT A non-numerical amount (e.g. big, small, large, huge, several)
PERSONNEL Any hospital personnel or outside personnel (e.g. nurse, doctor, porter, er-

gotherapist, interpreter, he)
PATIENT Any mention of a patient (e.g. Jack, William, pt, patient, him, her)
IN Anything that goes into a patient (e.g. water, food, tubefood)
OUT Anything that goes out of a patient (e.g. aspiration, stool, urine)
CONSISTENCY The consistency of OUT and IN (e.g. soft, hard, liquid, gratin)
UNIT Units of measurement (e.g. ml, mg, x)
COMMUNICATION Everything related to communication with the patient (e.g. Danish, French,

German, deaf, mute, reduced hearing)
COLOR Color of something (e.g. brown, orange, red, green, yellow)
APPEARANCE The appearance of something (e.g. clear, murky, dark)
ACCESS Access on the patient’s body (e.g. catheter, feeding tube, nasogastric tube)
SOCIAL Family members and friends (e.g. daughter, son, neighbor, friend)
MODIFIER A word that modifies the meaning of a word (e.g. much, less, very, good)
NEGATION A word that negates another word (e.g. not, no)
LOCATION A location something can be (e.g. bed, chair, toilet, leaf ear)
TIME An indication of time (e.g. night shift, day shift, upon inspection, yesterday,

tomorrow, after rounds)
ACTION An event that has happened (e.g. eaten, mobilized, instructed, helped)
ACTIVITY An activity the patient can do or can be done to the patient (e.g. walks, eats,

drinks)

Table 3: List of entities

least twice in every split. The data was stratified
based on the entity tags for each note, maintaining
roughly equal occurrences of entity tags and notes
across splits.

5.2 Models
As the notes are in Danish, the number of models
available for testing is limited.

5.2.1 BERTs
Four BERT models and one RoBERTa model will
be tested.

• bert-base-cased (Devlin et al., 2019): An
English BERT model not trained on Danish,
tested here for comparison with Nordic lan-
guage models.

• danishBERT-uncased (Certainly, 2023): A
Danish BERT model trained on 9.5GB of
text.

• bert-base-swedish-cased (KB (Kungliga
Biblioteket), 2023): A Swedish BERT model
trained on 15GB of text. Although Swedish,
it has more training data than Danish models
and it is cased.

• nb-bert-base-cased (Kummervold et al.,
2021): A Norwegian model trained on the
48.9GB Norwegian Colossal Corpus, show-
ing strong results for Danish tasks.

• xlm-roberta-base-cased (Conneau et al.,
2019): A multilingual model based on
RoBERTa, trained on 2.5TB of Common
Crawl data, outperforming mBERT.
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A token classification head was attached on
top of the BERT/RoBERTa models, whereafter
they were fine-tuned with the AdamW algorithm
(Loshchilov and Hutter, 2019).

All models underwent a hyperparame-
ter grid search optimization. The hyper-
parameters finetuned for included epoch
[15, 20, 25, 30, 35, 40, 45], learning rate
[2 · 10−5, 3 · 10−5, 5 · 10−5] and weight de-
cay [0.01, 0.1]. Class weights were used in the
loss function to handle the unbalanced classes.

5.2.2 Conditional Random Field
The Conditional Random Field (CRF) model de-
veloped for this study is supplied with a range of
automatically computable features. These features
include:

• Capitalization status of the current word, the
preceding word, and the following word (up-
percase and title case).

• Numeric status, identifying if the word con-
sists of digits.

• Word2Vec embeddings from a Danish model
(Sørensen, 2020), providing semantic repre-
sentations for each word.

Additionally, the model identifies whether a word
is at the beginning or end of a sentence, and it re-
ceives the same entity tags as the BERT models re-
ceive. The hyperparameters we optimized were c1
and c2 (the ℓ1 and ℓ2 regularization coefficients)
[0.01, 0.1, 0.5, 1.0] and the maximum number of
iterations [50, 75, 100].

5.3 Evaluation strategy

The BERT models and CRF model use the BIO
(Beginning, inside, ouside) tag scheme and a pre-
diction is only correct if the model predicts all
B and I tags associated with an entity. A micro,
macro and weighted avg f1 score is calculated for
each model.

5.4 Results

Table 4 shows the average performance across all
entities on the CRF model and the BERT mod-
els. The results for individual entity types and all
tested models can be seen in Appendix A, Table
6. Not shown in any of the tables is the bert-base-
cased model which achieved a macro f1 score of
0.613.

Figure 7: f1 for each epoch, with all 6 folds for
DanishBERT

6 Discussion

6.1 Data collection and annotation
The note-writing aspect was successful, with most
notes being of high quality and nuanced, indicat-
ing the web application’s effectiveness. However,
the annotation phase presented challenges, requir-
ing significant effort to address low data quality, a
common risk with crowdsourcing (Travis and Bur-
ton, 2023).

There are many reasons which could explain
why the annotation part was less of an success and
unfortunately the only feedback from the partic-
ipants after the web application launched were a
few comments on Facebook. Potential reasons for
the troubles with the annotation part could be:

• The participants did not understand the task.

• The participants found the interface provided
too difficult to use.

• The inherent problems in structured docu-
mentation (time consuming, hard to find the
right categories) (Baumann et al., 2018).

• Too much to be expected from volunteers.

Our expectation was that the participants would
quickly learn how to fill in the structured annota-
tions, as the interface matched what is used in a
real EHR, but the low quality of the annotations
and notes without annotations suggested that this
part remained difficult to use successfully.

There are several options to mitigate these is-
sues:

• Improve the interface of the annotation pro-
cess and put it through a more rigorous test-
ing before beginning the data collection. This
is time consuming, but could lead to better re-
sults.
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CRF danishBERT nb-BERT xlm-roBERTa-base swedishBERT
micro avg 0.740 ± 0.033 0.779 ± 0.018 0.750 ± 0.033 0.763 ± 0.037 0.725 ± 0.029
macro avg 0.704 ± 0.044 0.744 ± 0.018 0.739 ± 0.042 0.732 ± 0.030 0.699 ± 0.031
weighted avg 0.726 ± 0.038 0.783 ± 0.016 0.771 ± 0.032 0.772 ± 0.031 0.736 ± 0.029

Table 4: A comparison between CRF and the BERT models, with average f1 score over a 6-fold-cross
validation run and standard deviation between those runs. The best results are bolded.

• Pay nurses and give more detailed instruc-
tions. This is expensive, but would provide
better quality as the annotators are better in-
structed.

• Lastly the annotation part of the process
could be removed, leaving only the write note
part, which could lead to more notes as it is
an easier task and thus more encouraging for
the participants. However, doing this would
lead to more work, as some of the annotations
done by the participants were directly usable.

The dataset does not cover all nurse-relevant
problem areas, and even the represented nurse-
relevant problem areas are incomplete. This lim-
itation poses a challenge in evaluating the results,
as there might be nuances of nurse documentation
that is harder to capture than others.

Furthermore, the decision to discard annota-
tions based on interpretation in favor of framing
the task as a NER task, inadvertently contributes
to the incompleteness in capturing the full spec-
trum of nursing documentation.

6.2 Information extraction

This section will discuss the results in regards to
extracting entities from the dataset. When observ-
ing the results, one should take into consideration
the high variance in the f1 scores between folds.
Some folds, as illustrated in Figure 7 had a big dif-
ference in f1 score, which both highlights the im-
portance of using a cross-validation strategy, but
also indicates that the results might look differ-
ent if the dataset were larger and more balanced.
When looking at the results of this study, these
things should be kept in mind.

The best model was the DanishBERT achiev-
ing a macro f1 of 0.744. As expected the nb-
BERT, which has been shown to have solid per-
formance on danish , showed similar performance
with a macro f1 of 0.739 and achieved best per-
formance on 8 entities, compared to the danish

which had the best score on only 4 entities. The
xlm-roBERTa-base (multilingual) had a solid per-
formance as well with a macro f1 of 0.732 and best
performance on 6 entities. SwedishBERT only
managed a macro f1 of 0.699.

The CRF model performed well and performed
best of all models in 7 entity types and only hav-
ing a slightly lower macro f1 of 0.704. However,
it did fall short completely on more entities than
the BERT models, indicating that the more com-
putational BERT models are more robust in their
performance.

7 Conclusion

This study aimed to bridge the gap between struc-
tured and free-text documentation in healthcare
using NLP techniques. The initial step involved
constructing a dataset, which was necessary due
to the absence of pre-existing suitable datasets in
this domain. Following dataset construction, the
study focused on extracting relevant information
from nursing documentation within this newly cre-
ated dataset.

The creation of a synthetic dataset of annotated
nurse notes was accomplished through a web ap-
plication. This application presented various stim-
uli to participants, prompting them to write cor-
responding notes. Subsequently, participants an-
notated their notes using categories reflective of
those used in actual EHRs. Overall, the quality
of the notes was high, although not all annotations
were usable. A manual process was employed to
eliminate incorrect annotations and convert the an-
notations into pairs of (entity type, entity). Addi-
tional support entities were manually added, en-
suring that every word relevant to nurse documen-
tation was properly tagged.

The process of extracting meaningful informa-
tion from nurse documentation was approached as
a NER task. Performance evaluation revealed that
the the Danish, Norwegian and multilingual mod-
els had similar performances, with the best being
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the Danish which achieved a macro f1 score of
0.744, surpassing the CRF model, which scored
0.704. This performance difference highlights the
necessity and efficiency of more advanced models
like BERT in handling complex NER tasks.

However, it is important to note that the entity
type/entity instance pairs extracted through this
NER process do not directly correspond to the
structured format which is used in EHRs. This
gap underscores a potential area for future re-
search, where the focus could be on transform-
ing these pairs into EHR-compatible triples. Such
a transformation is crucial for the practical ap-
plication of this research in real-world EHR sys-
tems, potentially facilitating smoother integration
of automated NLP-based documentation tools into
healthcare workflows. Nevertheless, this study
demonstrates that it is possible to generate syn-
thetic nurse notes and extracting information rel-
evant to nurse documentation from them.

8 Ethical Considerations

Our approach mitigates privacy concerns by using
fictitious data, thereby reducing the risk associated
with real patient information. However, there is
a potential concern regarding the applicability of
findings derived from this synthetic dataset, as the
data may not accurately reflect real-world.

9 Limitations

With only 98 nurses participating in the study, the
dataset is relatively small and only encompass a
subset of possible nurse-related categories, poten-
tially limiting its representativeness. Additionally,
the lack of multiple reviewers for note quality as-
sessment and the absence of inter-annotator agree-
ment values for the entities diminish the robust-
ness of the results. Lastly it is important to note
that all of the participants’ status as nurses cannot
be verified, as the Facebook group used does not
authenticate group members credentials.
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A Tables

Models

XLM-BERT DanishBERT swedishBERT nb-BERT CRF

dropout 0.1 0.1 0.1 0.1 -
architecture RoBERTaForTokenClassification BertForTokenClassification -
embedding RoBERTabase BERTbase BERTbase BERTbase -

parameters

epoch 35 35 45 45 -
learning rate 5 · 10−5 5 · 10−5 5 · 10−5 3 · 10−5 -
batch size 8 8 8 8 -
weight decay 0.1 0.01 0.01 0.1 -
c1 - - - - 0.01
c2 - - - - 0.01
max iter - - - - 50
algorithm - - - - lbfgs

Table 5: Training parameters
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Models
Entity type CRF DanishBERT nb-BERT xlm-roBERTa average

support

PATIENT 0.948 ± 0.028 0.963 ± 0.035 0.942 ± 0.021 0.926 ± 0.072 33.5
PSYCHOLOGICAL 0.579 ± 0.034 0.782 ± 0.063 0.805 ± 0.058 0.789 ± 0.098 17.0
ASSISTIVE DEVICE 0.777 ± 0.064 0.814 ± 0.050 0.821 ± 0.051 0.836 ± 0.081 16.8
QUANTITY 0.921 ± 0.104 0.908 ± 0.022 0.931 ± 0.059 0.955 ± 0.031 16.8
ACTION 0.764 ± 0.058 0.713 ± 0.081 0.675 ± 0.084 0.642 ± 0.155 14.5
PHYSIOLOGICAL 0.368 ± 0.151 0.551 ± 0.045 0.615 ± 0.080 0.511 ± 0.135 14.2
TIME 0.502 ± 0.129 0.604 ± 0.147 0.608 ± 0.101 0.602 ± 0.085 11.3
UNIT 0.968 ± 0.044 0.941 ± 0.054 0.885 ± 0.109 0.926 ± 0.085 11.2
OUT 0.712 ± 0.084 0.804 ± 0.041 0.863 ± 0.085 0.869 ± 0.079 11.0
MODIFIER 0.510 ± 0.214 0.688 ± 0.115 0.592 ± 0.132 0.580 ± 0.148 9.8
ACTIVITY 0.661 ± 0.127 0.650 ± 0.125 0.643 ± 0.099 0.714 ± 0.094 9.0
STATE 0.822 ± 0.111 0.903 ± 0.108 0.908 ± 0.081 0.904 ± 0.132 7.5
PERSONNEL 0.761 ± 0.180 0.774 ± 0.178 0.852 ± 0.116 0.794 ± 0.138 7.2
IN 0.635 ± 0.184 0.766 ± 0.109 0.013 ± 0.030 0.630 ± 0.125 6.7
AMOUNT 0.617 ± 0.114 0.702 ± 0.116 0.761 ± 0.115 0.765 ± 0.095 6.3
CONSISTENCY 0.713 ± 0.111 0.707 ± 0.143 0.721 ± 0.101 0.770 ± 0.111 5.5
COMMUNICATION 0.513 ± 0.287 0.588 ± 0.289 0.760 ± 0.181 0.643 ± 0.312 4.8
ASSIS/LOCATION 0.745 ± 0.203 0.843 ± 0.033 0.850 ± 0.150 0.736 ± 0.187 4.0
ACCESS 0.825 ± 0.108 0.806 ± 0.196 0.708 ± 0.220 0.747 ± 0.221 3.5
COLOR 0.900 ± 0.200 0.856 ± 0.245 0.883 ± 0.186 0.867 ± 0.221 3.3
SOCIAL 0.960 ± 0.080 0.867 ± 0.094 0.952 ± 0.067 0.875 ± 0.191 3.2
LOCATION 0.280 ± 0.232 0.000 ± 0.000 0.436 ± 0.261 0.000 ± 0.000 2.8
NEGATION 0.867 ± 0.163 0.778 ± 0.050 0.704 ± 0.137 0.721 ± 0.134 2.8
APPEARANCE 0.560 ± 0.285 0.856 ± 0.151 0.800 ± 0.224 0.759 ± 0.214 2.2

micro avg 0.740 ± 0.033 0.779 ± 0.018 0.750 ± 0.033 0.763 ± 0.037 222.333
macro avg 0.704 ± 0.044 0.744 ± 0.018 0.739 ± 0.042 0.732 ± 0.030 222.333
weighted avg 0.726 ± 0.038 0.783 ± 0.016 0.771 ± 0.032 0.772 ± 0.031 222.333

Table 6: A comparison between different models, with average f1 score over a 6-fold-cross validation
run and standard deviation between those runs. The best result being bolded. swedishBERT not shown.
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Category SubCategory SubSubCategory

Functional Level

Current functional level

Mobility aids: 37

Mobility assistance: 18

Assistance with elimination: 3

Mobility restrictions: 3

Personal hygiene assistance: 2

Habitual functional level
Habitual mobility: 3

Mobility aids: 2

Personal hygiene assistance: 2

Mobilization activity

Mobility aids: 30

Mobility assistance: 17

Mobilization (number of times):
6

Mobilization (where the patient
is mobilized to): 6

Mobilization (distance) in me-
ters: 3

Mobilization (time): 1

Sleep and rest

Habitual sleep
Sleep pattern: 2

Sleep disturbances: 6

Rest Resting state: 9

Sleep registration
Hours slept during shift: 18

Sleep quality: 8

Current state: 8

Sleep/Rest issues
Problems: 23
Measures taken: 7

Table 7: Annotations 1/3

751



Category SubCategory SubSubCategory

Communication

Barriers
Language: 12

Hearing: 10

Cognitive: 8

Communication assistance
Technical aids: 22

Need for interpreter: 17

Need for relatives: 9

Psychological and social
Psychological

Current mental state: 55

Reaction to illness: 11

Habitual mental state: 4

Illness insight: 4

Perception of health: 1

Social Network: 8

Elimination

Aspiration
Amount: 7

Frequency: 5

Color: 3

Stool registration

Consistency: 16

Amount: 15

Frequency: 14

Color: 12

Location: 2

Stool status registration Stool status: 8

Urination registration

Amount in ml: 13

Source: 12

Appearance: 11

Color: 10

Amount: 9

Regular bowel movements
Frequency: 4
Consistency: 3

Table 8: Annotations 2/3
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Category SubCategory SubSubCategory

Nutrition

Current nutritional status
Weight in kg: 2

Height in cm: 1

Assistance to eat and drink
Assistance to drink: 3

Assistance to eat: 2

Diet
Consistency food: 10

Diet: 5

Consistency liquids: 4

Issues
Nausea: 11

Appetite: 9

Swallowing difficulties: 1

Meal registration

Percentage of intake: 13

Problems: 5

Intake via tube as planned: 5

Intake via tube in ml: 3

Table 9: Annotations 3/3

B Description of stimuli

1. A 20-second video of a man trying to eat food in a kitchen, but ends up pushing it away while
frowning.

2. A 20-second video of a man enjoying a sandwhich outside.

3. A picture of an elderly woman receiving food through a nasogastric feeding tube.

4. A picture of an elderly woman walking with a walker in a park.

5. A picture of two healthcare professionals using a ceiling hoist to mobilize a man in a hospital bed,
with a wheelchair at the end of the bed.

6. A 15-second video of a 100-year old woman running.

7. A picture of a healthcare professional assisting a man using a walker.

8. A picture of two healthcare professionals assisting a man walking with elbow sticks.

9. A picture of a man placing a hearing aid in an ear.

10. A video of a young woman using sign language.

11. A video of an interpreter translating Spanish in a hospital setting.

12. A picture of a man lying in a hospital bed, with another man in non-uniform clothing and a doctor
standing besides it.

13. A picture of a happy smiling woman in a hospital gown in a bed.

14. A picture divided in two: To the left a doctor speaking and gesturing with his hands, to the right a
man putting his hands pressed against his head and his face and his brow deeply furrowed.
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15. A picture divided in two: To the left a doctor speaking and gesturing with his hands, to the right a
man with visible tears on his face.

16. A picture of a woman lying in a bed with eyes closed in a dimly lit room.

17. A drawing of a man lying in bed counting sheeps.

18. A 10-second video of a young man walking around restlessly.

19. A drawing of bacteria, with the names of three bacteria known to cause diarrhea.

20. A picture of a diaper.

21. A picture of a person on a toilet.

22. A picture of a urine drainage bag.

23. A 10-second video clip of a woman vomiting in a bag in a restaurant.
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Abstract

Recent work has demonstrated that large
language models can often generate flu-
ent and linguistically correct text, adhering
to given instructions. However, to what
extent can they execute complex instruc-
tions requiring knowledge of fundamental
linguistic concepts and elaborate semantic
reasoning?

Our study connects an established linguis-
tic theory of paraphrasing with LLM-based
practice to analyze which specific types of
paraphrases LLMs can accurately produce
and where they still struggle. To this end,
we investigate a method of analyzing para-
phrases generated by LLMs prompted with
a comprehensive set of systematic linguis-
tic instructions. We conduct a case study
using GPT-4, which has shown strong per-
formance across various language genera-
tion tasks, and we believe that other LLMs
may face similar challenges in comparable
scenarios.

We examine GPT-4 from a linguistic per-
spective to explore its potential contribu-
tions to linguistic research regarding para-
phrasing, systematically assessing how ac-
curately the model generates paraphrases
that adhere to specified transformation
rules. Our results suggest that GPT-4 fre-
quently prioritizes simple lexical or syn-
tactic alternations, often disregarding the
transformation guidelines if they overly
complicate the primary task.

1 Introduction

Large language models (LLMs) can, without doubt,
generate fluent and linguistically correct language
with relevance to given prompts (Sottana et al.,

2023). However, to what extent can they fol-
low complex linguistic instructions and execute
them in a meaningful way? To this end, we pro-
pose a systematic approach for analyzing LLMs in
performing explicit, theoretically grounded para-
phrase transformations in English, using a vali-
dated list of 25 linguistic operations (Bhagat and
Hovy, 2013).

It is necessary to have knowledge of funda-
mental linguistic concepts to follow those special-
ized instructions. This study provides insight into
the capabilities and limitations of LLMs when
faced with such a demanding task. Extending
our understanding on the connections between lin-
guistically grounded theories of paraphrasing and
the practical abilities of LLMs, we hope to im-
prove paraphrasing performance with explicit lin-
guistic operations, with potential applications in
text simplification (Nisioi et al., 2017), computer-
assisted language learning (Mayhew et al., 2020),
machine translation (Callison-Burch et al., 2006;
Mehdizadeh Seraj et al., 2015) and automatic sum-
marization (Gupta and Gupta, 2019).

We conduct a case study analyzing paraphrases
generated by a representative state-of-the-art LLM,
GPT-4 (Achiam et al., 2023), focusing on the abili-
ties of the model to create meaning-preserving and
diverse paraphrases using systematic instructions
related to the 25 paraphrasing categories of Bhagat
and Hovy (2013). Our analysis further looks into
the complexity of individual transformations and
how GPT-4 copes with them with varying degrees
of in-context learning (Brown et al., 2020; Dong
et al., 2024). Furthermore, we study how humans
perceive the produced paraphrases in terms of se-
mantic similarity and linguistic diversity.

The contributions of the paper are the follow-
ing: (1) Our study connects a descriptive theory
of paraphrasing with generative language models
and human perception of sentence-level semantic
similarity. (2) We conduct a limited case study, in-
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Full Name Abbreviation

synonym substitution synonym
antonym substitution antonym
converse substitution converse
change of voice voice
change of person person
pronoun/co-referent substitution pron./co-ref.
repetition/ellipsis repetition
function word variations func. word
actor/action substitution actor/action
verb/’semantic-role noun’ substitution verb/sem. noun
manipulator/device substitution manip./device
general/specific substitution gen./spec.
metaphor substitution metaphor
part/whole substitution part/whole
verb/noun conversion verb/noun
verb/adjective conversion verb/adj.
verb/adverb conversion verb/adv.
noun/adjective conversion noun/adj.
verb-preposition/noun substitution vp./noun
change of tense tense
change of aspect aspect
change of modality modality
semantic implication sem. impl.
approximate numerical equivalences num. eq.
external knowledge ext. knowl.

Table 1: This table lists all the paraphrase defin-
ing transformations from Bhagat and Hovy (2013),
along with their abbreviations as used throughout
this paper, particularly in Figure 2.

vestigating a systematic approach for analyzing the
ability of LLMs to follow complex instructions and
how different degrees of complexity influence the
result of generated paraphrases. (3) To facilitate
further research on controlled paraphrase gener-
ation and the variability of human language, we
publicly release the set of automatically generated
sentence pairs exhibiting diverse transformations,
accompanied by their corresponding human anno-
tations, at https://github.com/Helsinki-NLP/
paraphrase-instructions.

2 Background

Paraphrasing denotes variability in expressed
meaning. Vague definitions such as this one are typ-
ical ways of framing the concept of paraphrasing
in NLP research (Vila et al., 2014). However, pre-
vious research in (computational) linguistics has
presented various, more fine-grained typologies
that outline the linguistic transformations defining
paraphrasing.

Through the lens of existing paraphrase the-
ories (Mel’čuk, 2012; Honeck, 1971; Harris,
1957), Bhagat and Hovy (2013) empirically val-
idate paraphrase examples from two corpora: the

Multiple-translation Corpus (Huang et al., 2002)
and the Microsoft Research Paraphrase Corpus
(MRPC) (Dolan et al., 2004). They outline 25 con-
crete operations with systematic linguistic instruc-
tions of transformations that produce sentences
with near-equivalent meaning. The perspective to
these operations is mostly lexical, focusing on the
specific lexical changes that can be made at the sen-
tence or phrase level to create paraphrases (Bhagat
and Hovy, 2013). However, several of the opera-
tions trigger changes that would traditionally fall
within the domain of syntactic theory. One such
operation would be ellipsis. We list all the trans-
formations defined in Bhagat and Hovy (2013) in
Table 1.

Correctly applying these transformations in au-
tomatic paraphrase generation requires the model
to process fundamental linguistic concepts and
accurately recognize the phrase-level transforma-
tions triggered by the defined lexical operations.
Furthermore, not every transformation is appropri-
ate for every context. Therefore, the model must
thoroughly process the definition and have intri-
cate semantic reasoning abilities to construct sen-
tence pairs that are appropriately suited for the
intended transformation. To this end, we analyze
the capabilities of LLMs in producing paraphrastic
sentence pairs given systematic linguistic instruc-
tions. The transformations span from simple local
changes, such as synonym substitution (to build/to
construct) or change of aspect (studying/studies),
to more complex alterations, such as converse sub-
stitution (buy/sell).

Along with systematic, descriptive defini-
tions, Bhagat and Hovy (2013) provide 1–3 exam-
ples for each paraphrase transformation. Synonym
substitution, for example, is defined as follows:1

Replacing a word/phrase by a synonymous word/phrase,
in the appropriate context, results in a paraphrase of
the original sentence/phrase. This category covers the
special case of genitives, where the clitic ’s is replaced by
other genitive indicators like of, of the, and so forth. This
category also covers near-synonymy, that is, it allows for
changes in evaluation, connotation, and so on, of words
or phrases between paraphrases. Example:

1. Google bought YouTube. ↔ Google acquired YouTube.

2. Chris is slim. ↔ Chris is slender. ↔ Chris is skinny.

These definitions followed by a small number
of examples can be utilized as such in prompts for

1For an exhaustive list of the definitions and examples of
the paraphrase transformations, we refer the reader to Bhagat
and Hovy (2013).
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few-shot in-context learning, where an LLM is in-
structed to generate sentence pairs incorporating
the specific transformations. As few-shot learning
has been shown to be an effective approach for ap-
plying LLMs in various tasks (Brown et al., 2020),
we focus on leveraging the framework of Bhagat
and Hovy (2013) for evaluating few-shot learning
with GPT-4 across a wide range of linguistic oper-
ations related to paraphrasing.

In a contemporary work, Meier et al. (2024)
analyze various paraphrase types generated by
GPT-3.5 by employing more abstract linguistic
definitions of paraphrase phenomena as defined
by Barrón-Cedeño et al. (2013) and Vila et al.
(2014). These phenomena comprise abstract lin-
guistic properties, such as changes based on mor-
pholexicon, structure, and semantics. Each of
these classes is further divided into subclasses and
types, where one type (e.g., same-polarity sub-
stitution) can include multiple concrete transfor-
mations (e.g., synonymy, general/specific substitu-
tion, or exact/approximate alternations) (Barrón-
Cedeño et al., 2013). Meier et al. (2024) select
10 of such types for their analysis. Many of the
selected types focus on local substitutions, such
as inflectional changes, punctuation changes, and
spelling changes, while only a few focus on global
changes that require intricate contextual under-
standing. As opposed to this, we use the typology
of Bhagat and Hovy (2013), which provides an em-
pirically validated list of concrete linguistic trans-
formations for generating paraphrases, along with
their linguistic definitions and examples, covering
a wider range of local and contextual transforma-
tions. These concrete definitions enable a precise
assessment of which specific linguistic features are
well-represented by the chosen LLM and which
areas the model still lacks sufficient knowledge in.

3 Experimental Details

3.1 Data Generation

We apply GPT-42 (Achiam et al., 2023) via the
API to generate potential paraphrase pairs follow-
ing a comprehensive list of paraphrasing opera-
tions (Bhagat and Hovy, 2013). We selected GPT-
4 as a representative and powerful LLM after ini-
tial experiments with various LLMs suggested that
GPT-4 produced the most fluent output, which is
essential for accurately analyzing our setting. We

2gpt-4-turbo-2024-04-09 is used.

Template 1: System Prompt

You are a helpful assistant designed to output
JSON.

Synonym substitution: Replacing a
word/phrase by a synonymous word/phrase, in
the appropriate context, results in a paraphrase
of the original sentence/phrase. This category
covers the special case of genitives, where the
clitic ’s is replaced by other genitive indicators
like of, of the, and so forth. This category also
covers near-synonymy that is, it allows for
changes in evaluation, connotation, and so on,
of words or phrases between paraphrases.
Example:

(a) Google bought YouTube. ⇐⇒ Google ac-
quired YouTube.
(b) Chris is slim. ⇐⇒ Chris is slender. ⇐⇒
Chris is skinny.

Template 2: User Prompt for Simple Sentences

Could you give me 10 more examples follow-
ing the given description? Return the examples
as a list of json objects.

Template 3: User Prompt for Complex Sen-
tences

Could you give me 15 more examples follow-
ing the given description? Generate 5 com-
pound sentences, 5 complex sentences, and 5
compound-complex sentences to showcase a
variety of syntactic structures. It is enough
to perform the operation in only one of the
clauses. Return the examples as a list of json
objects.

Figure 1: Prompt templates we use for generating
the paraphrases.

use the default values provided by the OpenAI
package for all hyper-parameters. Additionally,
we configured the response output of the model to
JSON mode, following the text generation guide-
lines recommended by OpenAI.3

3https://platform.openai.com/docs/guides/
text-generation/json-mode
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Sentence type Example sentence

Simple The company employs 100 workers.
Simple The teacher explained the concept clearly.
Complex Although it was raining, we played football.

Compound-complex
She loves running in the morning, and when she returns, she makes
breakfast.

Compound-complex
She opened a savings account, and she deposited her birthday money,
while her parents watched proudly.

Table 2: A randomly sampled set of five generated sentences along with their corresponding sentence
types.

In paraphrase generation, a set of source sen-
tences is typically given, and the task is to generate
target sentences with the same meaning. In our
experiment, however, we let the model generate
both the source and the target sentences given the
definition and 1–3 examples. Since not all transfor-
mations are possible on just any source sentence,
this allows for the model to come up with suitable
source/target pairs for each transformation. More-
over, we believe that our approach more effectively
encourages the model to engage in deeper semantic
reasoning. When provided with a source sentence,
the model is already primed towards a certain trans-
formation, potentially making the task simpler. In
contrast, when given only a description of a para-
phrase operation along with a few examples, the
model must first fully identify the relationship be-
tween the description and the examples to generate
an appropriate source sentence.

We leverage the definitions and examples given
in Bhagat and Hovy (2013) as prompts for the
LLM, and request it to produce 25 sentence pairs
following the definitions of each of the 25 transfor-
mations. Our initial experiments suggest that when
we only use the definition and the examples as the
prompt, the model predominantly generates rather
short sentences with simple syntactic structures,
which may constrain its ability to execute more
complex paraphrasing transformations. Therefore,
we explicitly prompt the model to generate com-
pound, complex and compound-complex sentences.
Table 2 presents randomly sampled examples of
various sentence types.

The prompts are composed of two parts: sys-
tem prompts and user prompts, as illustrated in
Figure 1. For each paraphrase operation described
in Bhagat and Hovy (2013), we construct a system
prompt following Template 1, adapting the trans-

formation definition and examples as needed. To
generate simple sentence pairs, we use Template
2 as the user prompt. For syntactically complex
sentence pairs, we employ Template 3. These tem-
plates are specifically crafted to guide the model
in producing sentence pairs with varying levels of
syntactic complexity.

Eventually, we generate 10 simple sentences
and 5 each of compound, complex, and compound-
complex sentences for every paraphrase transfor-
mation.

3.2 Collecting Annotations

We collect manual annotations by four indepen-
dent annotators to the generated sentences to an-
swer three key questions: (1) Does the generated
sentence pair follow the given definition of a para-
phrase transformation? (2) Are the generated sen-
tences paraphrases of each others? (3) To what
extent are the generated sentences semantically
equivalent? Each sentence pair is annotated by
all annotators. For evaluating the third question
concerning semantic equivalency, we follow pre-
vious work involving manually annotating para-
phrases (Creutz, 2018; Kanerva et al., 2021), and
use the four-point Likert scale with the following
scores and associated descriptions: 4: Full para-
phrases, 3: Paraphrases in some contexts, 2: Se-
mantically similar sentences but not paraphrases,
1: Unrelated sentences.

The annotators are fluent speakers of English,
and knowledgeable of fundamental linguistic con-
cepts.4 They are provided with the definitions and
examples of each paraphrase operation, as well as

4In addition to some of the authors, we involve colleagues
as annotators, bringing the total number of annotators to four.
Each example is annotated by all four annotators to better
capture the range of human variability and subjectivity in
evaluating paraphrases.
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Annotator Para. Acc. Trans. Acc.

1 0.824 0.688
2 0.869 0.677
3 0.821 0.677
4 0.872 0.744

Average 0.847 0.696

Table 3: Model performance on paraphrase accu-
racy (Para. Acc.) and transformation accuracy
(Trans. Acc.), evaluated by four annotators. Para-
phrase Accuracy measures whether the generated
sentence pairs qualify as paraphrases. Transforma-
tion Accuracy measures whether the sentence pairs
adhere to the predefined transformation operation.

the generated sentence pairs. Appendix A shows a
screenshot of the customized annotation tool.

4 Results and Discussion

4.1 Paraphrase and Transformation
Accuracy

We first focus on evaluating the model’s perfor-
mance with respect to the aforementioned ques-
tions (1) and (2). By transformation accuracy we
understand the proportion of generated sentence
pairs that successfully follow the desired transfor-
mation operation (Question 1). By paraphrase
accuracy we understand the proportion of gener-
ated sentence pairs that are true paraphrases (Ques-
tion 2).

Table 3 presents the obtained paraphrase and
transformation accuracies for all the generated sen-
tence pairs, as assessed by our four expert annota-
tors. It can be seen that GPT-4 generally performs
well at providing alternative expressions that con-
vey the same meaning (average paraphrase accu-
racy is 84.7 %). However, it shows clear limitation
in accurately following the specified transforma-
tions (average transformation accuracy is 69.6 %).
Furthermore, the evaluation results indicate that the
scores provided by the annotators are consistent
and similar. To demonstrate the reliability of our
measurement approach, we compute Fleiss’ Kappa
for the two binary variables in our dataset: para-
phrase accuracy and transformation accuracy. The
Fleiss’ Kappa scores were 0.53 for paraphrase ac-
curacy and 0.71 for transformation accuracy. These
scores indicate moderate and substantial agreement
among annotators, respectively, demonstrating the
robustness of our evaluation methodology and the
inherent subjectivity in evaluating paraphrases.

Figure 2 presents the paraphrase and transfor-
mation accuracies for each individual paraphrase
transformation operation, averaged over the dif-
ferent annotators. The figure clearly illustrates
that the model achieves high results in paraphrase
and transformation accuracies for specific, local
changes, such as synonym substitution, antonym
substitution, change of voice, and change of as-
pect. In contrast, the model appears to struggle
with transformations that require a more nuanced
understanding of context, such as converse sub-
stitution, actor/action substitution, or verb/adverb
conversion.

Next, we provide an analysis across the various
types of paraphrase transformations to better un-
derstand where the model succeeds and the kinds
of mistakes it makes when it struggles.

4.2 Qualitative Analysis

Figure 3 illustrates the correlation between para-
phrase and transformation accuracy. All transfor-
mations except one are located either in the top row
or the right-most column of Figure 3, meaning that
either the transformation or the paraphrasing was
performed successfully (accuracy > 75 %). This is
an excellent result.

The top right corner represents the most suc-
cessful transformations, with a high transforma-
tion accuracy combined with a high paraphrase
accuracy. There are ten such transformations corre-
sponding to 40 % of all 25 types. These are fairly
straightforward or local transformations, such as
replacing synonyms within sentences (started vs.
began) or substituting a word with its negated
antonym (happy vs. not sad). Approximate nu-
merical equivalence (mapping between units) and
external knowledge (the Louvre is a museum) are
also found here. This outcome is not too surpris-
ing given that a number of well-known paraphrase
corpora, such as PPDB (Ganitkevitch et al., 2013)
and MRPC (Dolan et al., 2004), contain similar ex-
amples (cf. Rajana et al., 2017; Bhagat and Hovy,
2013) and the model has most likely been trained
on such data. Moreover, knowing that 125 miles
corresponds to about 200 kilometers can be mem-
orized from the training data rather than actually
being calculated by the model.

There are more transformations in the right-most
column (21) than in the top row (13), indicating
that the system more accurately generates para-
phrases than the desired transformation types.
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Figure 3: Distribution of the 25 transformations
into 3×3 distinct bins depending on paraphrase and
transformation accuracy. There are three intervals
on the axes, corresponding to accuracies between
0.0 and 0.5, above 0.5 up to 0.75, and between 0.75
and 1.0, respectively.

Failures to capture the desired transformation,
while still producing a valid paraphrase, include
the following mistakes: (1) using change of voice
(buy/be bought) instead of converse substitution
(buy/sell), verb/noun conversion (to try/make an at-
tempt) or verb/adjective conversion (to clean/make
clean), (2) confusion between the categories
part/whole (room/house) vs. general/specific (as-
tronomical body/sun), (3) poor metaphor genera-
tion capacity (“a sea of people” vs. “an ocean of
people.”). Apart from the very demanding task of
creating metaphors, the failures here are artefacts

of somewhat artificial, grammatical distinctions,
such that participle forms of verbs (interested) do
not qualify as adjectives (curious).

Failures to reliably produce paraphrases while
still being faithful to the desired transformation
(top row, left and center) comprise manipula-
tor/device substitution (“The photographer (vs.
camera) took stunning photos”) and change of
modality (finds/can find), which in fact can alter
the meaning. Nevertheless these types have been
included in the paraphrase taxonomy of Bhagat
and Hovy (2013), which may seem odd. While it
is possible to produce paraphrases within the limits
of the above transformations, it requires strong se-
mantic reasoning abilities from the model. It must
first generate a source sentence that is comprised of
(potentially limited) concepts that are suitable for
such transformations and then create an effective
paraphrase as a target sentence.

Additionally, the removal of repetition (ellipsis)
is sometimes performed too aggressively and the
meaning is not preserved (“The cat chased the
mouse and the dog chased the squirrel.” vs. “The
cat chased the mouse and the dog did, too.”). The
model may overly prioritize elliptical constructions
similar to the example prompt, failing to generalize
to different kinds of sentence structures. Specifi-
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cally in the above example, it fails to recognize that
omitting the object in the second clause changes
the meaning as the repeated part is the predicate
rather than the object.

The poorest result is obtained for actor/action
substitution (center left), which mostly generates
semantically or grammatically incorrect sentence
pairs: “I love teaching.” vs. “I love teacher.” This
operation is particularly challenging, as it demands
deep contextual understanding. Merely replacing
an actor, such as teacher with a corresponding
action, such as teaching, is not sufficient for pre-
serving the original meaning if the context does not
allow it. The example Bhagat and Hovy (2013) pro-
vide for actor/action substitution is: “I dislike rash
drivers (vs. driving).” It is possible that the train-
ing data has limited examples of correctly applying
this operation, which can result in poor accuracy
in recognizing appropriate concepts and contexts.

4.3 Semantic Equivalence

Our annotators assessed three criteria (Section 3.2),
two of which have been analyzed thoroughly above:
transformation accuracy (Question 1) and para-
phrase accuracy (Question 2). Question 3 on se-
mantic equivalency remains to be studied. Next,
we compare the binary annotations of paraphrase
accuracy (Question 2) to the 4-level Likert scale
annotations (Question 3). The four-level scale of-
fers a more nuanced view on semantic equivalency
than the binary paraphrase classification.

Two out of four annotators had virtually perfect
correlation between the binary paraphrase category
and Likert scale values 4 and 3 ("full paraphrases"
and "paraphrases in some contexts"). The other
two annotators did very similarly, but in addition,
there was a small number of data points (around
3 % and 6 %) in which Likert scale 3 ("paraphrases
in some context") rendered the "not paraphrases"
binary classification. An example where both anno-
tators classified the example as a non-paraphrase
but still assigned it a Likert scale score of 3 is:

“The driver (vs. car) accelerated quickly, but the
passenger felt nervous.” Overall, the binary an-
notations closely align with the detailed results
from the 4-level Likert scale. Consequently, we
do not conduct further analysis on the relationship
between the different annotation granularities but
reserve it for future work.
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(c) Manipulator/device Substitution

Figure 4: Model performance for (a) Actor/action
Substitution, (b) Verb/adjective Conversion, and
(c) Manipulator/device Substitution with increas-
ing number of in-context learning examples. For
each example, we append it to the system prompt
as shown in Template 1 in Figure 1. Results are
based on annotations by one expert annotator.

4.4 Additional In-context Learning
Bhagat and Hovy (2013) do not provide the same
number of examples for all of the 25 transforma-
tions. In fact, 15 transformations have only 1 ex-
ample, 9 have 2, and 1 has 3 examples.5 As LLMs
have been shown to generalize well from few-shot
learning (Brown et al., 2020), and as we observe a
slight correlation between the number of examples
and paraphrase and transformation accuracy6, we
experiment whether providing additional examples

5The example numbers corresponding to each transforma-
tion are shown in Figure 2.

6We report a mean paraphrase accuracies of 0.81, 0.91,
and 0.90, and mean transformation accuracies of 0.66, 0.77,
and 0.80 for operations that have 1, 2, and 3 examples, respec-
tively.
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improves GPT-4’s performance in the more diffi-
cult paraphrase operations (left-most column, and
bottom right of Figure 3). The operations we focus
on are actor/action substitution, verb/adjective con-
version, and manipulator/device substitution, each
having 1 provided example in the original prompt.

Figure 4 presents the model accuracies for para-
phrasing and the specified transformations for three
operations that GPT-4 struggles with. When we
add 2, 5, and 10 additional hand-crafted examples
to the prompt, we do not see consistent improve-
ment. Additional examples may improve the para-
phrasing results, but transformation accuracy does
not increase. In fact, higher paraphrase accuracy
might even be detrimental to transformation accu-
racy, because the model prioritizes paraphrasing,
if the two criteria seem conflicting. The inconsis-
tency in improving with additional ICL examples
suggests that these specific transformations may
be challenging to process, possibly due to a lack
of training data involving such transformations.
Further research is necessary for a deeper under-
standing of this phenomenon.

5 Related Work

Previous work related to diverse paraphrasing has
studied the generation of specific linguistic fea-
tures, for instance on lexical (e.g., Thompson and
Post, 2020) or syntactic level (Iyyer et al., 2018;
Chen et al., 2019; Sun et al., 2021, i.a.), or control-
ling for various granularities (Vahtola et al., 2023).

Additionally, previous research has presented
various taxonomies of paraphrase types for better
understanding of the diverse paraphrase phenom-
ena. Vila et al. (2014) propose a typology of 24
paraphrase types spanning three levels of granu-
larity, while Dutrey et al. (2010) define rephrasing
modifications extracted from the revision history
of Wikipedia. Less fine-grained categorizations
can include for instance differences in specificity
or tone (Kanerva et al., 2021). Bhagat and Hovy
(2013) propose a list of 25 empirically validated
paraphrase transformations with a systematic defi-
nition and examples of each transformation.

Detection and generation of diverse para-
phrases leveraging a corpus of various paraphrase
types (Kovatchev et al., 2018) has been pro-
posed (Wahle et al., 2023). In a concurrent
work, Meier et al. (2024) leverage the linguistic
phenomena defined in Barrón-Cedeño et al. (2013)
to generate specific types of paraphrases. Meier

et al. (2024) also gather human annotations to ana-
lyze the accuracy of GPT-3.5 across the different
paraphrase types and to evaluate how human anno-
tators rank the generated paraphrases. Their find-
ings are in line with ours, suggesting that LLMs
struggle with performing more complex paraphrase
transformations. Conversely to the framework of
paraphrase operations that we use, the phenomena
outlined in Barrón-Cedeño et al. (2013) can often
manifest themselves in various surface-form alter-
nations (i.e., one phenomenon can include multiple
operations) as they attempt to capture the general
phenomena rather than providing specific mech-
anisms for paraphrasing. Furthermore, we focus
on analyzing the performance of LLMs on vari-
ous specific paraphrase transformations given their
detailed linguistic definitions, and connect the the-
oretical perspectives of paraphrasing with genera-
tive language models and human understanding of
semantic similarity.

Another line of related work has focused on
benchmarking various pretrained language models,
such as BERT (Devlin et al., 2019), across a diverse
range of downstream tasks, e.g., GLUE (Wang
et al., 2018), SentEval (Conneau and Kiela, 2018),
and SICK (Marelli et al., 2014), or a limited range
of linguistic phenomena (Marvin and Linzen, 2018;
Jumelet and Hupkes, 2018; Ettinger, 2020; Vahtola
et al., 2022). Diverging from this line of work,
we focus on the capabilities of one state-of-the-art
LLM and connect human perception of semantic
equivalence to the theory and practice of diverse
paraphrasing. In particular, we propose a method
and conduct a pilot study to analyze how LLMs
manage semantic abstractions in the context of
systematically defined paraphrase transformations.

6 Conclusions

In this paper, we design a methodology for testing
LLMs to analyze whether they can follow theoret-
ically motivated instructions in the case of para-
phrase generation. We utilize explicit linguistic
prompts to guide complex transformations and
evaluate the results based on human assessment.

Using this framework, we conduct a focused
case study on the capabilities of GPT-4 in accu-
rately generating paraphrases. This study is based
on 25 paraphrase transformations provided in Bha-
gat and Hovy (2013), whose definitions of the trans-
formations serve as prompts for few-shot learning.
We have customized a web-interface for collecting
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manual annotations for the generated sentences in
order to assess how accurately the model produces
paraphrases that follow the specified transforma-
tions.

Our findings indicate that GPT-4 can effectively
follow detailed linguistic instructions to generate
paraphrastic sentence pairs through simple, local
transformations. However, it often prioritizes sim-
ple lexical or syntactic substitutions for paraphras-
ing instead of following specified transformation
guidelines. This is especially true when the trans-
formations trigger more complex alternations, in-
dicating limitations in controllability and its ability
to process complex linguistic instructions. Further-
more, increasing the number of examples for few-
shot in-context learning does not seem to improve
the model’s ability to accurately produce para-
phrase pairs involving complex operations. This
suggests that the model may still lack sufficient
proficiency in these linguistic structures. Future
work could include a more comprehensive evalua-
tion of how additional few-shot examples, encom-
passing a broader range of operations, influence
performance.

The presented methodology opens many alter-
native directions for further research. The use of
systematic linguistic instructions in text generation
tasks is still very much under-explored. Theoret-
ically controlled prompts may help to further un-
derstand the abilities of LLMs to generalize and
follow explicit rules and guidelines. Such prompts
can also be used to compare and benchmark differ-
ent models about their abstraction capabilities, and
the analysis of the results can also be combined
with interpretability studies of the network itself in
case model weights are openly available.

Limitations

We cover a comprehensive list of transformations,
which requires substantial annotations to properly
analyze the effect of the instructions. The number
of examples for each prompt is still limited in our
study but provides a systematic view on linguis-
tically motivated paraphrase generation. Another
limitation is the focus on one particular model,
GPT-4. Future work could compare the results to
other models to deepen our understanding of what
and how LLMs learn about human language, even
though this is a moving target that is impossible
to handle exhaustively. Preliminary studies indi-
cated that GPT-4 is better in handling the complex

instructions we used than other available models.
This motivated our choice to look at the limitations
of state-of-the-art generative models as GPT-4 abil-
ities in this space currently serve as an upper bound
for all the other LLMs. Additional prompt engi-
neering may also be possible to further push the
results, and chain-of-thought experiments would
also be interesting to study in connection with the
task. Finally, we would also like to extend the ex-
periments and annotations in order to expand the
dataset and the analyses that can be made on top
of the collection.
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A Annotation Setup

Figure 5 presents an example of the web-based
annotation tool we used for collecting the manual
annotations.
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Figure 5: A screenshot of our web-based annotation tool.
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Abstract
The lack of benchmarks in certain do-
mains and for certain languages makes it
difficult to track progress regarding the
state-of-the-art of NLP in those areas, po-
tentially impeding progress in important,
specialized domains. Here, we introduce
the first Swedish benchmark for clinical
NLP: SweClinEval. The first iteration of
the benchmark consists of six clinical NLP
tasks, encompassing both document-level
classification and named entity recogni-
tion tasks, with real clinical data. We eval-
uate nine different encoder models, both
Swedish and multilingual. The results
show that domain-adapted models outper-
form generic models on sequence-level
classification tasks, while certain larger
generic models outperform the clinical
models on named entity recognition tasks.
We describe how the benchmark can be
managed despite limited possibilities to
share sensitive clinical data, and discuss
plans for extending the benchmark in fu-
ture iterations.

1 Introduction

The field of natural language processing (NLP)
has seen several important breakthroughs in the
past decade. Currently, the field is dominated by
pre-trained transformers models (Vaswani et al.,
2017) that can be used to solve a wide and – ide-
ally – diverse set of tasks. The capabilities of
these models have to a large degree been tracked
through the use of benchmarks, significantly help-
ing to drive progress in the area. These evalua-
tion suites test how the models perform on differ-
ent pre-defined tasks and allow for comparisons
between models and approaches.

While there are many benchmarks available,
there are also many potential uses for NLP that

they do not cover. Frequently, evaluations rely on
English data (Joshi et al., 2020; Søgaard, 2022).
However, a model performing well on an En-
glish benchmark in no way guarantees similar per-
formance if the language changes. Additionally,
benchmarks such as GLUE (Wang et al., 2018)
tend to focus on tasks formulated for general-
domain data. With increasing calls for NLP to be
applied to specific domains, such as the clinical
domain, there is a pressing need for benchmarks
that address these areas.

The clinical domain, in particular, suffers from a
lack of datasets for evaluating NLP systems. One
critical reason for this is the inherently sensitive
nature of clinical data. There are multiple stud-
ies (Carlini et al., 2021; Nasr et al., 2023) demon-
strating the potential risks of using sensitive data
for machine learning – let alone sharing data in
their raw form. That said, there are some widely
used resources for clinical NLP. Prominent exam-
ples include the various versions of MIMIC (John-
son et al., 2022) and the i2b2 datasets (Murphy
et al., 2010). Crucially, these datasets predomi-
nantly evaluate NLP systems on data in English or
other higher-resourced languages.

In this paper, we introduce the first Swedish
benchmark based on real clinical NLP data:
SweClinEval. This benchmark consists of datasets
built from electronic health records from the
Health Bank (Dalianis et al., 2015) and includes
a wide range of clinical tasks. These tasks include
three different document-level sequence classifi-
cation tasks and three token-level named entity
recognition (NER) tasks. This introduction of
SweClinEval includes nine different models, and
future additions will be added to the benchmarks
online leaderboard1.

The evaluations presented in this paper show
that many models targeting Swedish data per-

1The leaderboard of SweClinEval is available at:
https://sweclineval.dsv.su.se
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form strongly on our benchmark. However, the
performances vary, and several interesting trends
emerge from our results. These results highlight
the importance of continuing to focus on domain-
specific evaluations for languages other than En-
glish. Our results demonstrate the current state of
Swedish clinical NLP, and the benchmark serves
as an important tool for monitoring progress in this
important NLP domain.

2 Related Research

The NLP community has seen impressive ad-
vances in the past few years with the advent of
LLMs. Several new model architectures have been
proposed since Vaswani et al. (2017) described
the transformer, and new models are released at
a rapid pace. These LLMs aim to be general-
purpose models, with task-specific applications re-
quiring only smaller adjustments in the form of
fine-tuning or prompt engineering. In response
to this new paradigm, there has been an increas-
ing focus on creating benchmarks that capture the
nuanced difference in performance in the growing
plethora of models.

2.1 General-Domain Benchmarks

Benchmarks come with different objectives and
designs. A prominent example is the GLUE
(Wang et al., 2018) family of benchmarks. The
original General Language Understanding Evalu-
ation (GLUE) benchmark aimed to, as the name
suggests, capture a wide range of capabilities that
act as proxies for natural language understanding.
As models have become more powerful, the NLP
community has responded with more varied and
difficult benchmarks. These include the Super-
GLUE (Wang et al., 2019) benchmark that intro-
duces more difficult tasks, and the XGLUE bench-
mark (Liang et al., 2020) that also examines the
multilingual capabilities of models.

2.2 Swedish Benchmarks

The vast majority of papers at NLP conferences
focus on English data (Søgaard, 2022), to the
detriment of smaller and less well-resourced lan-
guages. The introduction of multilingual bench-
marks such as XGLUE is in part a response to this
dominance of English-only datasets.

Another development is the creation of
language-specific benchmarks. For Swedish, this
trend has materialized in the form of benchmarks

such as the Superlim2 (Berdicevskis et al., 2023)
and OverLim3 benchmarks. These benchmarks
mirror the structure of the GLUE family of
benchmarks, but use datasets that specifically use
Swedish data.

An important benchmark, especially for the pur-
poses of this paper, is the ScandEval (Nielsen,
2023) benchmark. This benchmark is multilingual
but focuses mainly on the Scandinavian language
family. LLMs for these languages have been
found to benefit from training on shared datasets.
The ScandEval benchmark was also used to deter-
mine which models to benchmark, as detailed in
Section 3.2.

2.3 Clinical Benchmarks

The most commonly used benchmarks aim to
measure general-purpose capabilities in a general-
domain setting. However, many important appli-
cations of NLP are domain-specific. In this pa-
per, we focus on NLP for clinical data, which has
several domain-specific features. Due to the set-
ting in which they are produced, clinical data are
often riddled with domain-specific acronyms and
terminology that can be harder for general-domain
models to process (Dalianis, 2018). Furthermore,
clinical datasets are difficult to share due to the in-
herently sensitive nature of the data.

Nevertheless, there have been efforts to create
benchmarks that measure the clinical or biomed-
ical capabilities of LLMs. BLURB (Gu et al.,
2021) is a benchmark in the vein of GLUE and in-
cludes a wide range of clinical tasks. This bench-
mark highlighted the shortcomings of general-
domain models and the benefits of using LLMs
specific to the clinical domain. In contrast, the
later Dr. Bench (Gao et al., 2023) benchmark
shows that general-domain models can indeed out-
compete domain-specific models on certain tasks.
These diverging conclusions exemplify the need
for diverse domain-specific benchmarks to moni-
tor the progress of LLMs in the clinical domain.

A recent benchmark highly relevant for
Swedish biomedical NLP is the Swedish Medi-
cal Benchmark introduced by Moëll and Farestam
(2024). This benchmark is comprised of a selec-
tion of four datasets with multiple-choice ques-
tions. These datasets were collected from public

2Superlim is Swedish for super glue, a reference to the
SuperGLUE benchmark.

3https://huggingface.co/datasets/
KBLab/overlim
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sources and probe LLMs for biomedical knowl-
edge. A benefit of using publicly available data is
that the data can be shared. On the other hand,
such data are not representative of the types of
clinical data and tasks encountered when creat-
ing, for example, a system interfacing with patient
records.

The main contribution of this paper is the in-
troduction of the SweClinEval benchmark. This
benchmark is not only focused on the clinical do-
main, but is the first benchmark that monitors the
state of Swedish clinical NLP using real electronic
patient records for realistic clinical tasks.

3 Methods and Materials

Creating this first rendition of SweClinEval in-
volved collecting resources for evaluation and de-
ciding how to conduct the evaluations. This sec-
tion describes the datasets used for the benchmark
and the models that were tested, and how they
were chosen. The design of the evaluations and
the metrics used for comparing models are also de-
scribed.

3.1 Datasets

The benchmark consists of six datasets that are
part of the Health Bank (Dalianis et al., 2015) in-
frastructure4 . The Health Bank consists of over 2
million Swedish electronic health records written
between 2006 and 2014 from a range of different
clinical units in Sweden. The datasets have been
collected for more than a decade, either through
manual annotation or by mining information from
the Health Bank data. Three of the datasets are
document-level classification tasks, and the other
three are token-level NER tasks.

ICD-10 The Stockholm EPR Gastro ICD-10 Cor-
pus (Remmer et al., 2021) is a document-
level classification task where discharge sum-
maries related to gastrointestinal patients are
assigned high-level diagnosis code blocks.
These 10 different code blocks encode infor-
mation about what type of diagnosis was as-
signed to the patient. The task is a multi-label
classification task, meaning that each docu-
ment can be associated with more than one
code block.

4This research has been approved by the Swedish Ethical
Review Authority under permission no. 2019-05679.

ADE The Stockholm EPR ADE ICD-10 Corpus
(Vakili et al., 2022) is another document-level
classification task that determines whether or
not a discharge summary describes a patient
suffering from an adverse drug event. This is
a binary classification problem.

Factuality The Stockholm EPR Diagnosis Fac-
tuality Corpus (Velupillai, 2011; Velupillai
et al., 2011) is the third document-level clas-
sification task. This manually annotated cor-
pus assigns a factuality level to the diagnoses
of each clinical note. These different levels
describe the confidence with which a diag-
nosis was decided. The six different classes
are: Certainly Negative, Probably Negative,
Possibly Negative, Possibly Positive, Proba-
bly Positive, and Certainly Positive.

Factuality NER This version of the Stockholm
EPR Diagnosis Factuality Corpus is a token-
level NER task. The task involves assigning
the same six labels to tokens in each docu-
ment that indicate a diagnosis. The task is to
both detect these diagnoses and assign them a
factuality level. This version also includes an
Other tag for clinically relevant information
that is not indicating factuality.

Clinical Entity NER The Stockholm EPR Clin-
ical Entity Corpus (Skeppstedt et al., 2014)
is a manually annotated NER corpus that de-
scribes a task in which the model needs to
identify clinically relevant terms. These are
divided into four classes: Diagnosis, Find-
ings, Body Parts, and Drugs. The model
needs to detect tokens associated with these
classes and assign them the correct labels.

PHI NER The final corpus used in the bench-
mark is the Stockholm EPR PHI Corpus
(Dalianis and Velupillai, 2010). This corpus
consists of patient records and has been man-
ually annotated for named entities describing
personally identifiable protected health infor-
mation (PHI). Each instance of PHI is as-
signed one of nine classes: First Name, Last
Name, Age, Phone Number, Partial Date,
Full Date, Location, Health Care Unit, and
Organization.

Additional statistics about the six datasets are
listed in Table 1. None of the datasets have been
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adapted for use with prompt-style autoregressive
language models. This limitation is reflected in
the model selection for this paper and adapting the
datasets for broader use is left to future iterations
of SweClinEval.

3.2 Models
Nine different models were included for the exper-
iments in this paper and are listed in Table 2. Two
of these – SweDeClin-BERT and SweClin-BERT
– were specifically created for use in Swedish clin-
ical NLP and have previously shown strong per-
formance on the datasets in SweClinEval (Vakili
et al., 2024). Additionally, seven general-domain
models known to perform well for Swedish data
were included. These seven models were selected
based on their performance in the ScandEval
(Nielsen, 2023) benchmark.

The majority of the models are based on the
BERT/RoBERTa architecture (Devlin et al., 2019;
Liu et al., 2019). The RemBERT (Chung et al.,
2020) and Multilingual E5 Large (Wang et al.,
2024) models are based on their own transformer
architectures. These two models also exhibit the
greatest language diversity in their training data.
The training data for the RoBERTa Large and
BERT Large models from AI Sweden are also
multilingual. These were trained using The Nordic
Pile corpus (Öhman et al., 2023) which consists
mainly of Scandinavian and English data.

Crucially, all nine models are encoder models.
This is a limitation imposed by the nature of the
datasets, as described in the previous section. It is
possible to restructure datasets so that they can be
used autoregressively. However, such a conversion
would be non-trivial and is left for future research.

3.3 Evaluation Procedure
All nine models were trained and evaluated using
the six datasets. To ensure a fair estimate of each
model’s performance, the evaluations were done
using 10-fold cross-validation. This allowed us
to calculate the average performance alongside the
standard deviation, enabling a more fair compari-
son. The comparisons were based on the F1 scores
of each cross-validation.

For each fold in the cross-validation, models
were trained for a maximum of three epochs.
Early stopping was enabled, and the best-
performing checkpoint was used to predict the test
set in each fold. The F1 scores used for the com-
parisons were based on the average score from

each fold and the standard deviation. For the
NER tasks, these were the token-level micro F1
scores. The PHI NER task uses the IOB scheme
to mark where an entity begins and ends, and this
distinction was included in the evaluation. The
document-level sequence classification tasks in-
stead rely on F1 scores weighted for the support
of each class in the test set.

4 Results

Nine models were evaluated using 10-fold cross-
validation for six different datasets, resulting in
540 evaluations. The average F1 scores and their
deviations are listed in Table 3.

For the sequence-level classification tasks, the
highest average F1 scores are consistently ob-
tained using the domain-adapted models. The
same is not true for the token-level NER tasks. For
these tasks, the highest F1 scores were obtained
by the general-domain RoBERTa Large model
from AI Sweden. However, the domain-adapted
SweDeClin-BERT model has the second-highest
average F1 scores for the Factuality NER and Clin-
ical Entity NER tasks.

The different average F1 scores vary substan-
tially between the best- and worst-performing
models. Nevertheless, the standard deviations are
large. This means that many of the averages are
within a standard deviation of a competing model.
This necessarily limits the analysis into which
models are best, since randomness has a strong in-
fluence on the variability in the F1 scores.

In addition to the predictive performance, Ta-
ble 4 also lists the processing time of each model
when performing inference. Unsurprisingly, the
smaller models are faster to run. These figures
are based on the HuggingFace implementations
of each model running on an Nvidia RTX A5000
GPU. Although the exact inference time will de-
pend on the hardware available, the number indi-
cate the relative cost of running these model in a
production environment.

5 Discussion

A few trends emerge from the results in the previ-
ous section. There are also some limitations and
pointers to future work that are important to dis-
cuss. However, we begin by discussing the find-
ings from our results.

As previously mentioned, the highest average
F1 scores in the sequence classification tasks are
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Task Type Classes Documents Tokens

ICD-10 Classification 10 6,062 930,550
ADE Classification 2 21,725 931,778
Factuality Classification 6 3,710 102,223
Factuality NER NER 7 3,822 286,205
Clinical Entity NER NER 4 3,120 178,672
PHI NER NER 9 29,560 282,820

Table 1: Six different datasets were used in the benchmark evaluation. Three of these are NER tasks and
three are sequence classification tasks. This table lists the datasets alongside their size, the number and
classes, and the types of classification they target.

Model Parameters Paper

SweDeClin-BERT 125 M (Vakili et al., 2022)
SweClin-BERT 125 M (Lamproudis et al., 2021)

KB-BERT Base 125 M (Malmsten et al., 2020)
AI Nordics BERT Large 335 M N/A5

AI Sweden RoBERTa Large 355 M N/A6

AI Sweden BERT Large 369 M N/A7

KB-BERT Large 370 M N/A8

Multilingual E5 Large 560 M (Wang et al., 2024)
RemBERT 576 M (Chung et al., 2020)

Table 2: In this initial edition of the SweClinEval benchmark, nine different models were evaluated. All
models are encoder models, and they are listed here in order of parameter count. When available, the
paper that introduced the model is listed. SweDeClin-BERT and SweClin-BERT are the only models
created specifically for Swedish clinical NLP.

achieved by the domain-adapted models. This
indicates that, at least for these tasks, domain
adaptation results in better performance on clin-
ical NLP tasks. On the other hand, this finding
is not as clear when examining the NER tasks.
While the domain-adapted models perform com-
petitively, the best-performing model on all three
NER tasks is AI Sweden’s RoBERTa Large model.

Crucially, the models differ greatly in size. The
smaller models are around three times smaller
than the medium-sized models, and more than
four times smaller than the largest models. The
comparatively strong performance of the domain-
adapted models, which are both small, is more im-

5https://huggingface.co/AI-Nordics/
bert-large-swedish-cased

6https://huggingface.co/
AI-Sweden-Models/roberta-large-1160k

7https://huggingface.
co/AI-Sweden-Models/
bert-large-nordic-pile-1M-steps

8https://huggingface.co/KBLab/
megatron-bert-large-swedish-cased-165k

pressive when seen from this perspective. Domain
adaptation seems to allow smaller models to com-
pete with larger counterparts. Naturally, this leads
to the question of whether this finding holds true
for larger models, too. The two clinical models are
initialized from KB-BERT Base, and an interest-
ing direction for future work could be examining
if initializing from larger models produces analo-
gous results. The RoBERTa Large model from AI
Sweden would be an interesting candidate, given
its strong performance on the NER tasks. In any
case, the benefits from domain adaptation align
with many previous studies (Gu et al., 2021; Lam-
proudis et al., 2021).

Perhaps somewhat surprisingly, parameter
count itself does not seem to be a determining fac-
tor in what models are the strongest. This is not
only the case when comparing domain-adapted
and general-domain models. For example, KB-
BERT Base and KB-BERT Large were both trained
by the same organization, and are from the same
model family. The main difference between the
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Model Size ICD-10 Factuality ADE

Classification Classification Classification

SweDeClin-BERT S 0.832±0.011 0.735±0.018 0.203±0.022
SweClin-BERT S 0.836±0.014 0.731±0.021 0.196±0.014

KB-BERT Base S 0.801±0.015 0.671±0.017 0.185±0.012
AI Nordics BERT Large M 0.811±0.012 0.657±0.025 0.192±0.013
AI Sweden RoBERTa Large M 0.816±0.018 0.594±0.126 0.159±0.028
AI Sweden BERT Large M 0.816±0.012 0.654±0.032 0.167±0.057
KB-BERT Large M 0.801±0.013 0.683±0.019 0.190±0.011
Multilingual E5 Large L 0.824±0.013 0.525±0.074 0.192±0.015
RemBERT L 0.823±0.010 0.379±0.059 0.149±0.050

Model Size Factuality Clinical Entity PHI

NER NER NER

SweDeClin-BERT S 0.623±0.024 0.766±0.034 0.945±0.012
SweClin-BERT S 0.610±0.018 0.754±0.038 0.938±0.014

KB-BERT Base S 0.600±0.025 0.743±0.039 0.941±0.025
AI Nordics BERT Large M 0.612±0.026 0.721±0.039 0.948±0.010
AI Sweden RoBERTa Large M 0.641±0.011 0.779±0.036 0.965±0.009
AI Sweden BERT Large M 0.513±0.185 0.738±0.038 0.854±0.285
KB-BERT Large M 0.552±0.025 0.697±0.046 0.936±0.012
Multilingual E5 Large L 0.603±0.019 0.511±0.339 0.608±0.037
RemBERT L 0.417±0.026 0.600±0.075 0.947±0.011

Table 3: Nine encoder models were evaluated for sequence classification using six different clinical
tasks. Three of the tasks were sequence classification tasks, and three were token-level NER tasks. The
performance is summarized using F1 with standard deviations. The highest F1 of each task is bolded, and
the second highest is underlined. Models are ordered according to ascending parameter count as listed
in Table 2 and categorized as Small, Medium, or Large models.

Model Sequence NER

SweDeClin-BERT 2.86 ms 2.85 ms
SweClin-BERT 2.86 ms 2.84 ms

KB-BERT Base 2.88 ms 2.87 ms
AI Nordics BERT Large 5.60 ms 5.56 ms
AI Sweden RoBERTa Large 6.91 ms 6.05 ms
AI Sweden BERT Large 5.60 ms 5.56 ms
KB-BERT Large 8.76 ms 8.67 ms
Multilingual E5 Large 6.08 ms 6.03 ms
RemBERT 9.38 ms 9.36 ms

Table 4: The different models used in the bench-
mark use different architectures and are of differ-
ent sizes. This table lists the time of each model
for inference on one sample, both for sequence
classification and NER.

models is that the larger model consists of more
parameters and was trained using a much larger
corpus. Nevertheless, KB-BERT Base actually
outperforms its larger counterpart in some cases.

While the large standard deviations call for cau-
tious interpretations of the results, it is at least
clear the larger model is not outperforming its
smaller competitor.

On the other hand, parameter count clearly in-
fluences the inference speed of the models, as in-
dicated in Table 4. While this is not surprising, it
is worth mentioning. Other benchmarks, such as
the GLUE benchmark, do not always present this
information. However, inference speed can be im-
portant in practice, especially when differences in
performance are small. Smaller and faster mod-
els require less expensive hardware, which can be
important in cases where it is not possible to use
cloud providers to run the models. This is fre-
quently the case for clinical uses, due to the sensi-
tivity of clinical data.

6 Conclusions

In this paper, we present SweClinEval – the first
Swedish benchmark for clinical NLP. We evaluate
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a wide range of encoder-style LLMs for six differ-
ent Swedish clinical NLP tasks. This effort repre-
sents the first such evaluation to be conducted, and
forms a basis for future monitoring of the advances
in Swedish clinical NLP.

The results of this first evaluation indicate sev-
eral interesting trends. The benchmark results sug-
gest that domain adaptation is an effective strat-
egy for improving the performance of LLMs in the
clinical domain, at least for small LLMs. Future
research should examine whether this also holds
for larger models. Furthermore, the evaluations
also show that parameter count alone is not enough
to perform strongly in the tasks included in our
benchmark.

The aim of this paper is to enable monitoring of
the progress within Swedish clinical NLP. Due to
privacy constraints, the data cannot be shared. We
strongly encourage others interested in Swedish
clinical NLP to contact us for inclusion in the
benchmark. This pragmatic approach to bench-
marking enables us to monitor the progress that is
being made, which SweClinEval makes possible.

6.1 Limitations

A limitation of the current version of the bench-
mark is that it only supports encoder models. This
is unfortunate, as there is a strong trend towards
using autoregressive models both in fine-tuning
and few-shot settings. Future versions of the
benchmark would benefit from including versions
of the datasets that allow non-encoder models to
be evaluated. This is not trivial but, as demon-
strated by the ScandEval benchmark, it is possible
and is an aim for future iterations of the bench-
mark. Furthermore, we aim to extend the bench-
mark with more datasets for tasks such as summa-
rization and question-answering.

A more significant limitation of SweClinEval
is that currently, only parts of the data can be
shared. This restriction is due to privacy regula-
tions surrounding the inherently sensitive clinical
data from which the datasets were created. How-
ever, two of the datasets – the Stockholm EPR PHI
Corpus and the Stockholm EPR ICD-10 Corpus –
are available in automatically de-identified form
for academic users. As the regulatory environ-
ment around secondary use of private information
changes, it may be possible to share the data more
freely in the future. For now, our view is that Swe-
ClinEval is a pragmatic solution that allows the

Swedish NLP community to monitor the progress
in Swedish clinical NLP.
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Abstract
We report on the development of the first
treebank and parser for Eastern Cretan
in the framework of Universal Dependen-
cies (UD). Eastern Cretan is a living but
under-resourced dialect of Modern Greek.
We have worked on the transcription of
oral material and relied on active annota-
tion and knowledge transfer from GUD,
a treebank of Standard Modern Greek.
Along with its other phonological and
morphosyntactic differences from Stan-
dard Modern Greek, Eastern Cretan (and
other varieties of Modern Greek) makes
heavy use of euphonics and voicing that
have not been included in the UD annota-
tion guidelines so far. We have provided
annotation guidelines for East Cretan eu-
phonics and voicing and included them in
the models. Knowledge transfer from the
treebank of Standard Modern Greek to the
dialectal models helped to initiate annota-
tion via an active annotation procedure.

1 Introduction

The leaps in NLP in recent years have brought
considerable efficiency to language analysis tools.
This rapid progress has reduced the cost of the oral
material-to-linguistically annotated text pipeline
and facilitated knowledge transfer from well re-
sourced languages to less resourced ones. At the
same time it is challenging because the resulting
representation of the less resourced languages may
be biased by the massive evidence collected for
the richly resourced ones (Bird, 2020). In the face
of the increasingly rapid digitization characteris-
ing our era, it is a matter of survival for under-
resourced languages to gain an independent digi-
tal presence that respects their individual nature so
that they can be integrated into modern technolo-
gies and methods of study.

Considering dialects, the available linguistic
data are not only scarce but are also often char-
acterized by a significant lack of consistency in
their orthographic representation. This is due to
the primarily oral nature of these language vari-
eties. Since our goal was to create language mod-
els capable of understanding the current linguistic
reality, it was essential to rely on contemporary
speech data.

The Eastern Cretan treebank1 is the first mor-
phosyntactically annotated treebank of a living
Modern Greek dialect. Annotation complies to
the Universal Dependencies - Version 2 (UD.V2)
guidelines (de Marneffe et al., 2021). For Stan-
dard Modern Greek (SMG) there are two UD.V2
treebanks, GDT and GUD, with GUD being the
most recent one2. GUD contains 1,807 sentences
(25,493 tokens) randomly selected from fiction
texts. We trained models on the Eastern Cretan
treebank only, and on the Eastern Cretan treebank
plus the GUD (henceforth Eastern Cretan+GUD),
to see whether and to what extent SMG can con-
tribute to the development of Eastern Cretan lan-
guage models.

In Section 2, the basic linguistic differences of
the Eastern Cretan dialect from SMG are briefly
presented. In Section 3, we present the linguistic
resources we used and in Section 4, we provide de-
tails about the compilation of the treebank and the
handling of specific morphological and syntactic
phenomena. In Section 5, we discuss the annota-
tion method, and in Section 6 and 7, we present
and comment on the models we developed. In the
last three sections we present the limitations of our
approach and the conclusions we reached.

1https://github.com/
UniversalDependencies/UD_Greek-Cretan

2https://github.com/
UniversalDependencies/UD_Greek-GUD
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2 The Eastern Cretan dialect and its
relation with SMG

Cretan is a language variety of Modern Greek
(MG) primarily spoken on the island of Crete and
by the Cretan diaspora. This includes communi-
ties of Cretan descent who relocated to Hamidieh
in Syria and Western Asia Minor after the 1923
population exchange between Greece and Turkey.
The preservation and development of the dialect
have been influenced by Crete’s long-term isola-
tion from the mainland and the island’s domina-
tion by non-Greek-speaking powers such as the
Arabs, Venetians, and Turks for more than nine
centuries. Cretan is divided into two main dialect
groups —western and eastern— based on phono-
logical, morphological and lexical characteristics.
The two groups share a lot of features that charac-
terise the Cretan dialects. The division aligns with
the island’s administrative boundaries between the
prefectures of Rethymno and Heraklion.

The phenomenon of the gradual decline of MG
dialects in the face of SMG is observed. Beyond
the social and economic reasons for the depopula-
tion of rural areas, which are the natural speaking
environments for these language varieties, efforts
to preserve and reproduce them have not yet taken
on a systematic character. Specifically, the dialects
have not been systematized regarding their ortho-
graphic representation and are not taught.

Unlike most other MG dialects, Cretan is not
endangered and remains widely used as the pri-
mary mode of communication in many parts of the
island. However, as all MG dialects, it is under-
resourced, in particular with regard to resources
that would support its presence in the contempo-
rary technological landscape.

Below we will mention some of the distinctive
features that the Cretan dialect retains, according
to the studies by Kontosopoulos (1969, 2008).

Phonological level

1. Palatalization and affrication of /k/, /g/, /x/,
/G/ before the phonemes /e/, /i/. The cor-
responding cretan allophones in the afore-
mentioned phonetic environment are respec-
tively: [Ù], [dý], [C], [ý]

2. Fricativation of /t/ to /T/ and /d/ to /D/ before
semivocalic phonemes:

• [ta 'ma. tça]→ [ta 'ma. Tça]
• [ku.ve.'dja.zo]→ [ku.ve.'ðja.zo]

3. Realization of the clusters <μπ>, <ντ>,
<Gκ> as voiced plosive phonemes [b], [d],
[g] without the nasal element in any position.

4. Development of the euphonic sounds [e], [n],
and [j] to avoid hiatus in cases of word coar-
ticulation (see also Section 4.3):

• <τον Bάνř>, [ton 'va. no]→
<τονE Bάνř>, [tone 'va. no], ‘Ι put him’

• <ούτE όμπÌασE>, ['u.te 'o.bja.se]→
<ούτE νόμπÌασE>, ['u.te 'no.bja.se], ‘nor did
it swell’

• <η αFορμή>, [i a.for.'mi]→
<η GÌαFορμή> [i ja.for.'mi], ‘the occasion’

5. Elision of the final /n/ in the genitive plural:

• [ton spit.'çon]→ [to spiT.'ço]

6. Stress on the fourth syllable from the end as
opposed to SMG where the so-called ‘law of
three syllables’ demands that no word car-
ries a stress beyond the third syllable from the
end.

• [ef. 'ta.ksa.me.ne]
• [e.'fi.Ga.me.ne]

7. Development of prothetic /a/ or /o/.

• [a.mo.na.'xos]
• [oG.'ńi.Go.ra]

Morphological level

1. Use of different article forms than SMG.

• <τση>, the.GEN.FEM.SG, [tsi] instead of
SMG <της>, [tis]

• <τσÌ>, the.ACC.F.PL, [tsi] instead of
SMG <τÌς>,[tis]

• <τσοÌ>, the.ACC.MASC.PL, [tsi] instead
of SMG <τοUς>, [tus]

2. Inflection suffix <-ομE >instead of SMG <-
οUμE> in the first person plural of verbs in
active voice:

• <έXομE>, ['e.xo.me], instead of SMG
<έXοUμE>, ['e.xu.me], ‘we have’

• <κάνομE>, ['ka.no.me], instead of SMG
<κάνοUμE>, ['ka.nu.me], ‘we do’
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3. Several masculine nouns in <-ος> are used as
neuter nouns:

• <το ńαός>, [to la.'os].neuter, instead of
SMG <ο ńαός>, [o la.'os].masc, ‘the
people’

• <το πńούτος>, [to 'plu.tos].neuter,
instead of SMG <ο πńούτος>, [o
'plu.tos].masc, ‘the wealth’

4. Extension of forms of demonstrative pro-
nouns:

• <τοUτοσές>, [tu.to.'ses], instead
of SMG <τούτος>, ['tu.tos],
‘this.NOM.MASC.SING’

• <EκEÌοσές>, [e.cio.'ses], instead
of SMG <EκEίνος>, [e.'ci.nos],
‘that.NOM.MASC.SING’

5. Verbs ending in <-EύGř> instead of <-Eύř>:

• <XορEύGř>, [xo.'re.vGο] instead of
SMG <XορEύř>, [xo.'re.vο], ‘I dance’

6. In both SMG and Cretan, the future tense
is expressed periphrastically. In contrast to
SMG, which employs one auxiliary element,
Cretan uses two: the subordinating conjunc-
tion <να> and the verb <TέńEÌ>. The verb
<TέńEÌ> can appear in two forms: either in
its indeclinable form, which is considered the
infinitive form of <Tέńř> (‘I want’), or in fi-
nite form, but only for the singular (Chaire-
takis, 2020), e.g.,

• infinitive form: <να πας TέńEÌ>, [na 'pas
'Te.Li], ‘You will go’

• finite form: <να πας TEς> [na 'pas 'Tes],
‘You will go’

• instead of SMG <Tα πας>, [Ta 'pas],
‘You will go’

7. The use of <ξ>, [ks] as a perfective aspect
marker:

• <τραGούδηξα>, [tra.'Gu.Di.ksa] instead
of SMG <τραGούδησα>, [tra.'Gu.Di.sa],
‘I sang’

Lexicological level In the Cretan dialect, a
wealth of words is attested that are not found in
SMG. Most of these words are loanwords from
Turkish and Venetian. The influence of each of
these languages on the Cretan dialect spans four

centuries, with Turkish linguistic influences be-
ing comparatively stronger due to the fact that the
Turkish conquest was more recent. These loan-
words are frequently used to name objects and pro-
cesses related to the material culture of the people.

• <TÌαμπόńÌ>, [Tça.'bo.Li], ‘cretan flute’ <
italic <fiabuolo>

• <ντEńÌκανής> [de.Li.ka.'Nis], ‘the young
man’ < turkic <delikanli>

Some Cretan word forms are used in SMG with
a different meaning.

• <κοUράδÌ>, [ku.'ra.Di] ‘flock of sheep’ in-
stead of SMG ‘faeces’

• <ξανοίGř>, [ksa.'ni.Go], ‘to see’ instead of
SMG ‘fade out (for a colour)’

Finally, the Cretan dialect also attests to stereo-
typical expressions not found in SMG.

• <μÌα οńÌά>, [mña o.'La], Lit. one sip, ‘a little’

• <δίδř τřν αμμαTÌώ μοU>, ['Di.Do ton
a.ma.'Tço mu], Lit. I give to my eyes, ‘I flee
upset’

Syntactic level The weak pronouns that are
functioning as objects are placed after the verb in
contrast with the SMG that places them before the
verb:

• <ρřτώ σE>, [ro.'to se] instead of SMG <σE
ρřτώ>, [se ro.'to], ‘I ask you’

Many verbs take objects in genitive case; in
SMG the same verbs take objects in the accusative
case:

• <ζηńEύGř σοU>, [zi.'le.vGο su] instead of
SMG <σE ζηńEύř>, [se zi.'le.vo], ‘I envy
you’

3 Resources

For the compilation of this corpus, we collected 32
tapes containing material from radio broadcasts in
digital format, with permission from the Audio-
visual Department of the Vikelaia Municipal Li-
brary of Heraklion, Crete. The broadcasts were
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recorded and aired by Radio Mires, in the Mes-
sara region of Heraklion, during the period 1998-
2001, totaling 958 minutes and 47 seconds. The
recordings primarily consist of narratives by one
speaker, Ioannis Anagnostakis, who is responsible
for their composition. The material belongs to the
Eastern Cretan dialect group. In terms of textual
genre, the linguistic content of the broadcasts con-
sists of folklore narratives. Out of the total volume
of material collected, we utilized nine tapes. Cri-
teria for material selection were digital clarity of
speech and the representative sampling among the
entire three-year period of radio recordings.

For the transcription of the recorded speech to
text, the Whisper large−v2 model was utilized.
At the time this process was carried out (April
2023), Whisper large−v2 returned the best results
to small trials with the Cretan data. The tran-
scriptions were edited by a linguist who is na-
tive speaker of the Eastern Cretan dialect. Given
that the Cretan dialect is primarily an oral lan-
guage variety, there is no standardized orthogra-
phy. The general trend in the orthographic rep-
resentation of Cretan is conformity with that of
Standard Modern Greek. We followed that trend,
in an effort to strike a balance among facilitat-
ing knowledge transfer from GUD, representing
the linguistic characteristics of the dialect in the
orthography and aligning with the dominant or-
thographic trends adopted by the dialect’s native
speakers. The handling of the distinctive phono-
logical phenomena of the Cretan language variety,
such as the frequent insertion of euphonic sounds
and the occurrences of voicing, will be discussed
below.

4 The treebank

The annotation of East Cretan has relied on the
UD annotation guidelines for GUD.3 Only devi-
ations and new constructs and forms have been
documented in the guidelines for the East Cretan
treebank that are listed as comments of the GUD
guidelines.

4.1 Morphology

1. For the case of nouns and adjectives, which
form diminutives and augmentatives, it was de-
cided to list the basic word as the lemma, mean-

3https://github.com/
UniversalDependencies/docs/tree/
pages-source/_el

ing the word without the diminutive or augmen-
tative suffix, e.g., <μπEGÌρ-άκÌ>, ‘the little horse’
has been assigned the lemma ‘μπEGίρÌ’ that does
not contain the diminutive suffix <-άκÌ>.

2. As mentioned in Section 2, Morphological
level 6, the (Εastern) Cretan dialect uses a dis-
tinctive periphrastic structure for the future tense,
which is not found in SMG. We annotated these
structures as follows:
• <να πάř TέńEÌ>, [na 'pa.o 'Te.Li], ‘I will go’

να πάř TέńEÌ
AUX VERB AUX

Lemma: να πηGαίνř Tέńř

Morph Feats: Non ordinary annotation Tense=Fut|VerbForm=Inf

root

aux aux

3. The perfect tense is expressed, in addition to
the usual SMG way, with the following structure:
auxiliary verb έXř ‘have’ + passive participle
(Chairetakis, 2020):

(1)
το 'XEÌ ńEομένο
it.ACC has said.PARTICIPLE.ACC

‘He/She has said it’

4. All words of the Cretan dialect that appear
slightly different from their SMG counterparts
were assigned a lemma form that bears the
dialectal linguistic characteristics:

• <BρίXνř>, ['vri.xno] instead of SMG
<Bρίσκř>, ['vri.sko], ‘I find’

4.2 Syntax

Because of the oral nature of the collected lin-
guistic material, we encountered many elliptical
sentences in the corpus. Copulas were often
omitted as well as verb heads: in the example
below the subject FτřXός is promoted as the head
of the sentence.

(2)
ο FτřXός μÌα FοUρνÌά κοUτσούBEńα
the poor.man a bunch kids
‘the poor man had a bunch of kids’

According to the UD guidelines, the non-
promoted dependents (here: <FοUρνÌά>) are con-
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nected with the promoted one using the special re-
lation “orphan”.

4.3 Voicing and Euphonics

Both voicing and euphonics are phenomena due to
the phonetic environment but with no effect on the
syntax and meaning of an utterance. In the Cretan
treebank they are annotated separately.

Voicing in MG is a phonological phenomenon
where, given the sequence of two words, the initial
unvoiced consonant (/ts/, /t/, /p/, /k/) of the second
word is voiced, e.g., /tsi/→/dzi/, /t/→/d/, /p/→/b/,
/k/→/g/.

In contrast, euphonics are sounds that are added
with the phonological procedure of epenthesis,
in order to avoid the hiatus produced by vowel
sequences, e.g., /'u.te 'om.bja.se/ → /'u.te 'n
om.bja.se/ or sequences of consonants, e.g., /'an
'Te.Li/ > /'an e 'Te.Li/. In all cases, the result of
the epenthesis are two open syllables of the type
consonant+vowel.

Below, we first discuss the phenomena briefly
and then we make a proposal for their representa-
tion in the Eastern Cretan UD treebank.

4.3.1 Euphonics in the East Cretan UD
treebank

Εuphonics are vowels or consonants that occur
within a word or between words (3, 4) or at the
end of a word (5). In Cretan (and Modern Greek in
general) their function is to create open syllables
and eliminate hiatuses. For instance, in Eastern
Cretan, the ‘GÌ’ euphonic is used within phonolog-
ical words as a hiatus breaker, so the condition for
its occurrence is the particular hiatus and the exis-
tence of a (phonological) word (Kappa, 2014).

(3)
oÌ GÌ-άńńοÌ
the.NOM.M.PL EUPH-other.NOM.M.PL

‘the others’

(4)
oύτE ν-όμπÌασE
nor.CCONJ EUPH-swell.PERF.3SG.PAST

‘not did it swell’

(5)
κάν΄ τον-E
do.3SG.IMP I .PRON.ACC.M.3SG-EUPH
‘do it’

The textual encoding of euphonics is an issue. In
SMG orthography, the euphonic ‘e’ is attached to
the preceding word (5). We had to define addi-
tional guidelines for Cretan. We did not encode
them as orthographic words because they are sin-

gle sounds and have no morphosyntactic impact
on the utterance. In all cases, we have attached eu-
phonics to the word that precedes or follows them,
on the condition that open syllables are created:

• παÌδÌών-E, child.PL.GEN-EUPH

• τον-E, Ι.PRON.ΑCC.M.3SG-EUPH

• αν-E, if -EUPH

• GÌ-άńńοÌ, EUPH-other.ΝΟΜ.Μ.PL.

The euphonic ‘GÌ’ (3) is encoded with two char-
acters because the Greek alphabet does not have
a dedicated character for the sound [J]. We could
probably use non-Greek characters for them, for
instance in (3) we could use ‘j’. As explained in
Section 3, we retain the Greek alphabet, which is
also used by the speakers of the dialect.

4.3.2 Voicing in the orthography of SMG
SMG orthography uses the following conven-
tions for encoding voicing; these conventions are
adopted by most authors who write in other Greek
varieties:

1. A ‘-ν’ /n/ is added to the end of an article with
the features CASE=ACC|GENDER=MASC|FEM

when it is followed by another word whose first
consonant is voiced in this context but unvoiced
in other contexts.

(6)
την πατρίδα /'ti ba.'tri.ða/
the-ACC.FEM.SG homeland-ACC.FEM.SG

‘the homeland’

2. In all other [word1 word2] sequences where
word2 appears with a voiced first consonant
(while οccurrences of the word with a non-voiced
first consonant are attested in other contexts of
the same dialect) and word1 is not independently
found with a final ‘-ν’, voicing is represented on
word2. In the example below the word ‘μύτη’ is
in the nominative case that does not accept a final
-v with this type of nouns.

(7)

η μύτη τζη /i 'mi.ti dzi/
the-NOM.FEM.SG nose-NOM.FEM.SG

her-GEN.FEM.SG

‘her nose’

The Greek alphabet has no single letter corre-
sponding to the sounds /dz/, /d/ and /b/ so Mod-
ern Greek orthography represents them with two
characters (τζ, ντ and μπ respectively).
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4.3.3 Annotation of euphonics and voicing in
the Eastern Cretan treebank

We use the MSeg|MGloss representation and
the label euphonic for annotating euphonics in
the Cretan treebank. With the MSeg annotation
schema we are able to isolate the euphonic seg-
ments from the rest of the word and handle each
part as a separate token.

GÌάńńοÌ DET
MSeg=GÌ-άńńοÌ|MGloss=euphonic-others

We cannot resort to the MSeg|MGloss representa-
tion in order to annotate voicing because the re-
sults of voicing cannot be separated from the rest
of the word, e.g., in the form of an affix. For
instance, ‘τζη’ (/dzi/) cannot be divided as ‘τζ-
η’ because ‘-η’(/i/) is not a word with the same
morphosyntactic features as ‘τζη’ (recall that voic-
ing has no syntactic or semantic effect). Instead,
we define a feature that differentiates the unvoiced
form from the voiced one. This is a new MISC fea-
ture of the Cretan treebank called Voicing with
values Voiced and Unvoiced.

τζη PRON ... Case=Gen ...
Voicing=Voiced

Voicing characterises all MG dialects, including
SMG, in the environment of the Accusative case
and contributes to the distinction between Ac-
cusative and Nominative case. We do not anno-
tate this type of expected voicing. However, some-
times the voiced version of a word is also used in
environments where no voicing is expected, sug-
gesting that the voiced version is lexicalised and
co-exists and competes with the unvoiced one,
e.g., (dialect of the island of Lemnos) ‘η μπα-
τρίδα’ (/i ba.'tri.ða/) coexists with ‘η πατρίδα’ (/i
pa.tri.ða/), both in the nominative case, singular
number. The question is which lemma should be
assigned to each of the two versions. We assign the
unvoiced version of the lemma to both versions; in
addition, the voiced form is assigned the feature-
value pair Voicing=Voiced. Our choice of
the unvoiced version contributes to the consistency
of the annotation and to knowledge transfer from
SMG to the dialects because SMG usually has the
unvoiced version of the lemma, if it has this lemma
at all.

In the example ΨUXοπόνEσέ ντονE το πα-
παδάκÌ, Lit. felt.sorry him the altar.boy, ‘The altar
boy felt sorry for him’ both unexpected voicing
and euphonics are used because the verb form

‘ΨUXοπόνEσE’ never appears with a final -ν:
ντονE Voicing=Voiced|MSeg=ντον-E
|MGloss=him-euphonic

5 Active annotation

To annotate the Cretan treebank we used active
annotation (Vlachos, 2006) implemented in 6 it-
erative cycles. The first set of 40 unlabelled Cre-
tan samples was annotated with a model trained
on GUD, which represents SMG. In each cycle,
the annotator edited 40 samples from the output,
split in 30 for the training set and 10 for the de-
velopment set, added them to the existing training
and development sets and the model was retrained
on the revised data. For the test set, 30 manually
annotated samples were used. All samples were
randomly selected, with the only criterion being
that each sample contained more than five tokens
to avoid sentences with minimal linguistic infor-
mation.

1st 2nd 3rd 4th 5th 6th
Train 30 60 90 120 150 180

Sentences Dev 10 20 30 40 50 60
Test 30 30 30 30 30 30
Train 448 903 1395 1880 2398 2976

Tokens Dev 175 348 504 728 939 1129
Test 523 523 523 523 523 523

Table 1: East Cretan sentences and tokens per
round.

During this first attempt to develop a UD treebank
of Cretan, the annotation guidelines were devel-
oped as research progressed. Any revisions to the
annotation guidelines were implemented across
the entire training, development and test sets.

6 Including euphonics and voicing in the
models

To introduce euphonics in the model, we process
the input CoNNLU representations of sentences
by transferring information from the MSeg anno-
tation (column 10 of the CoNNLU format) on the
LEMMA, UPOS and XPOS columns and training
the model on the modified treebank4. The origi-
nal word’s UPOS and DEPREL tags are inherited
by the piece of the token that remains after the eu-
phonic is removed (the ‘original word’) and the

4Τhe script for the transformation of the input CONLLU
files can be found at https://anonymous.4open.
science/r/euphonics-7F98
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euphonic is represented as a separate token with
the new XPOS/UPOS tag EUPH that depends on
the original word with the new dependency rela-
tion ‘euph’. The XPOS tag EUPH and the depen-
dency ‘euph’ have been defined for the purposes
of the Eastern Cretan treebank and are used in on-
going work on other varieties of Modern Greek,
including SMG. The tag EUPH was introduced to
the UPOS column to satisfy a requirement of the
processing tool.

We did not use the UPOS X because euphonics
can hardly be called words, at least in the sense
of self-standing linguistic entities that combine a
form with some type of semantic contribution. But
even if euphonics were considered a type of word,
again the X UPOS would not be a choice because
euphonics are clearly parts of the language vari-
eties we study and play a well defined role. These
two facts contrast with the UD annotation guide-
lines about UPOS X: “(UPOS) X is discouraged
for words that clearly belong to the language, even
if they are idiosyncratic in form or distribution
and thus do not neatly fit into other syntactic cate-
gories.” Neither did we use the UPOS PART(icle).
UD define particles as “function words that must
be associated with another word or phrase to im-
part meaning and that do not satisfy definitions of
other universal parts of speech”. Euphonics do not
impart any meaning at all. Finally, we did not
consider them clitics as suggested by one of our
reviewers, because clitics do not define a POS of
their own and we have argued that euphonics can-
not be assigned any of the POS available in UD.

The output of the model that knows about eu-
phonics cannot be used in the active annotation
cycle because its form differs from the form of
the UD treebank. This output contains a modi-
fied XPOS column (which may not be a problem),
no information on the MISC column about voicing
and euphonics while the UPOS column is modi-
fied with an extra tag. We have not applied active
annotation on voicing and euphonics but for future
needs, since the phenomena occur in many MG di-
alects, we will have to post-edit the model’s output
and make it comply with the form of the annota-
tion of the input.

Α complete example is included below featur-
ing the word <ντονE> that contains the voiced
masculine, singular, accusative form of the per-
sonal pronoun <EGώ> ‘Ι’ with the euphonic ‘E’
/e/ attached to it. Similarly, the feature-value pair

“Voicing=Voiced” is added to the list of morpho-
logical features.

2 ντονE EGώ PRON Case=Acc...|Gender=Masc|Number=Sing|Person=3|PronType=Prs

1 obj _ Voicing=Voiced|MSeg=ντον-E|MGloss=him-euphonic

2-3 ντονE _ _ _ _ _ Voicing=Voiced|MSeg=ντον-E|MGloss=him-euphonic

2 τον EGώ PRON _

Case=Acc|Gender=Masc|Number=Sing|Person=3|PronType=Prs|Voicing=Voiced _ 1 obj _

3 E E _ EUPH _ 2 euph _ _

7 Models

For the experiments we used the open source
Stanza package (Qi et al., 2020). The embed-
dings for all experiments were generated by com-
bining the GUD treebank with the Cretan cor-
pus. We used two different settings for the tree-
banks: GUD plus the Eastern Cretan data (hence-
forth GUD+Cretan treebank) that increased at
each round by 40 samples (30 in the training set
and 10 in the development set) and, the Eastern
Cretan samples only that increased exactly in par-
allel with the GUD+Cretan treebank. In both set-
tings, we finetuned the Greek BERT model (Kout-
sikakis et al., 2020) for the tasks of PoS tagging
and dependency parsing.

Metric R1 R2 R3 R4 R5 R6
UPOS 80.12 83.57 85.80 88.64 87.83 89.25
XPOS 79.31 78.09 80.12 82.56 82.35 83.37
UFeats 55.38 63.49 72.82 77.08 76.47 78.70
AllTags 48.68 53.75 59.84 65.92 65.92 68.15
Lemmas 66.53 73.02 77.28 80.12 81.74 81.34
UAS 65.31 73.02 75.25 78.09 75.25 78.50
LAS 45.84 58.22 63.29 65.92 65.52 67.75
CLAS 32.59 46.54 51.47 55.76 55.22 59.33
MLAS 10.37 20.00 30.51 36.06 33.58 40.67
BLEX 14.81 29.23 34.19 40.15 40.67 43.28
ELAS 0.00 0.00 0.00 0.00 0.00 0.00
EULAS 0.00 0.00 0.00 0.00 0.00 0.00

Table 2: Accuracy scores across rounds: East
Cretan treebank. R=Round.

8 Discussion

The results are depicted in Table 2 and 3, and
were obtained using the pre-tokenized text op-
tion provided by Stanza. Figure 1 shows that the
model trained on the GUD+Eastern Cretan tree-
bank consistently outperforms the model trained
on the Eastern Cretan treebank across all rounds
and tasks. Therefore, GUD was an excellent re-
source for knowledge transfer from SMG to East-
ern Cretan models. This result must have been
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Metric R1 R2 R3 R4 R5 R6
UPOS 89.25 92.29 92.49 92.09 92.90 92.90
XPOS 89.25 89.45 89.66 89.45 88.84 89.45
UFeats 83.77 85.40 84.99 87.22 85.60 85.60
AllTags 76.27 78.50 77.28 78.30 77.28 77.48
Lemmas 83.98 87.42 87.83 87.42 89.05 88.44
UAS 84.58 83.98 85.40 87.02 87.02 85.40
LAS 73.83 74.85 77.08 76.88 78.50 78.30
CLAS 66.54 68.56 70.30 70.57 71.64 72.76
MLAS 51.88 55.30 57.14 56.60 55.97 57.09
BLEX 53.76 57.58 60.90 58.87 61.19 61.57
ELAS 0.00 0.00 0.00 0.00 0.00 0.00
EULAS 0.00 0.00 0.00 0.00 0.00 0.00

Table 3: Accuracy scores across rounds:
GUD+Cretan treebank. R=Round.
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Figure 1: Accuracy scores for the GUD+Cretan
& Cretan datasets.

corroborated by the fact that the texts of both lan-
guage varieties are written with the same ortho-
graphic conventions.

After the 4th cycle the GUD+Eastern Cretan
models tend to decrease or stabilize across all ac-
curacy measures, while the Cretan-only models
still improve. This suggests that after the 4th cycle
information from GUD added noise. Therefore, 4
or 5 cycles with GUD were enough for successful
knowledge transfer for this variety of Greek and
the set up we used (40 new samples at each cycle).

In a 7th training round, we applied on the East-
ern Cretan treebank the transformation that intro-
duces euphonics and voicing in the models (see
Section 4.3). The results are shown on Table 4.
The East Cretan treebank returns still improving
results. The test set contained 10 instances of these
phenomena and the training and development sets
67 instances. The model achieved a 100% Recall

and Precision, probably because the forms of voic-
ing and euphonics are very distinctive.

Metric Accuracy
UPOS 89.45
XPOS 85.27
UFeats 78.00
AllTags 68.36
Lemmas 82.36
UAS 78.73
LAS 69.27
CLAS 59.80
MLAS 39.86
BLEX 44.59

Table 4: Accuracy scores for the 7th Round
that includes EUPHONICS-VOICING. East Cre-
tan treebank.

9 Conclusion

We have developed the first UD treebank of East-
ern Cretan, which is a living, non standardised
variety of Modern Greek. We have attempted to
model phenomena new to UD guidelines such as
voicing and euphonics; these phenomena abide
in the dialects of Modern Greek. The success-
ful active annotation procedure and the knowledge
transfer from the GUD treebank of SMG to the
models of Eastern Cretan suggests that a similar
pipeline can facilitate the modelling of other va-
rieties of MG, starting from Western Cretan. We
hope that this treebank will support future efforts
to provide additional digital material from more
native speakers, the textual legacy of East Cre-
tan as well as other, linguistically challenging, di-
alects of Modern Greek.

10 Limitations

A weak point of our approach is that we have re-
lied on data from one speaker only. However, this
was the first time that the full pipeline from oral
data to annotated UD treebanks was studied for a
Greek dialect (here we report on the work after the
Speech-to-Text step). We are currently collecting
data from more speakers from the same area (the
Heraklion prefecture) and aim to enrich the Cre-
tan UD treebank soon. The orthography we used
to transcribe the East Cretan oral material is identi-
cal to the orthography used for SMG and has prob-
ably facilitated knowledge transfer from the tree-
bank of SMG; however, as it has been mentioned,
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this is the orthography preferred by many speakers
of Cretan (and many other dialects of MG). Future
work may try to exploit the existing textual legacy
of the Cretan dialect that occasionally adopts an
orthography partially different from the orthogra-
phy of SMG. The exploitation of non-standardised
textual legacy, especially for under-resourced lan-
guage varieties, for model development is a well-
known problem (Plank, 2016). These said, we
would like to add that we relied a lot on the GUD
guidelines in order to develop the Eastern Cretan
UD guidelines and, while doing so, we did not
have to suppress or alter information particular to
this dialect; this may be an indication of the prox-
imity of these two varieties of Modern Greek and
of the relatively little bias that SMG exerted on the
models of Eastern Cretan.
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Abstract
The language technology moonshot mo-
ment of Generative Large Language Mod-
els (GLLMs) was not limited to English:
These models brought a surge of techno-
logical applications, investments, and hype
to low-resource languages as well. How-
ever, the capabilities of these models in
languages such as Danish were, until re-
cently, difficult to verify beyond qualita-
tive demonstrations due to a lack of ap-
plicable evaluation corpora. We present
a GLLM benchmark to evaluate Danolit-
eracy, a measure of Danish language and
cultural competency across eight diverse
scenarios such as Danish citizenship tests
and abstractive social media question an-
swering. This limited-size benchmark was
found to produce a robust ranking that cor-
relates to human feedback at ρ ∼ 0.8 with
GPT-4 and Claude Opus models achiev-
ing the highest rankings. Analyzing these
model results across scenarios, we find one
strong underlying factor explaining 95% of
scenario performance variance for GLLMs
in Danish, suggesting a g factor of model
consistency in language adaptation.

1 Introduction

Benchmarks shape technologies. By acting as
normative guidelines for technology applications,
benchmarks imply directions of research and de-
velopment that ultimately impact users(Liang et al.,
2022). GLLMs specifically have emerged as a tech-
nology with near-universal impact, including lower-
resource languages such as Danish (Olsen, 2023).
If the challenging task of general GLLM evaluation
is not extended to low-resource languages, practi-
tioners start from scratch for each model use case,
inhibiting practical adoption or possibly resulting
in risky, undertested implementations.

83 GLLMs

🎯

8 Scenarios

Evaluation

Aggregation

Uncertainty Estimation

Factor Analysis

Claude 🔒

🎯

🎯

GPT 4 🔒

Mixtral

Citizenship Tests

#twitterhjerne

Corpus Metric

Prompt
Corpus Metrics

Prompt

Munin

🌍
🌍

🌍

Figure 1: The overall evaluation setup: A collection
of GLLMs, including closed-source (lock symbol)
instruct-tuned (bulls-eye) and multilingual (globe)
ones, were evaluated in Danish across diverse use-
case scenarios.

We take up the challenge of creating a GLLM
evaluation benchmark for Danish, a North Ger-
manic language spoken by 6 million people, primar-
ily in the Nordic country of Denmark. As depicted
in Figure 1, our approach is to create a compila-
tion of small-scale, diverse evaluation scenarios
combined into one general benchmark to reveal
model Danoliteracy. By Danoliteracy we refer to
the level of GLLM real-world knowledge (RWK),
natural language understanding (NLU), and natural
language generation (NLG) in Danish.
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This paper presents the resulting Danoliter-
ate Benchmark, describing evaluation methods,
datasets and model results. We analyze these re-
sults with the goals of validating and exploring
evaluation methodology. An important part of this
analysis is to investigate the feasibility of such eval-
uation: Does this small-scale, language-specific
approach achieve a significant ranking of GLLMs?
Even if a non-spurious leaderboard can be dis-
cerned from the result, it is not enough to validate
the benchmark which might actually show some-
thing orthogonal to Danoliteracy. Thus, as a bench-
mark validation tool, we additionally present a user
survey, collecting the preferences of Danish speak-
ers when interacting with hidden pairs of GLLMs
in an arena A/B test setup.

The availability of a suite of meaningful bench-
mark results allows us to investigate GLLM be-
havior: Initially, we explore which specific models
are most Danoliterate and how different types of
GLLMs compare. Beyond that, we are particularly
interested in capability consistency across tasks:
If a GLLM performs strongly in one Danish use-
case scenario, does this performance generalize to
other Danish scenarios across different domains
and objectives?

We hope so. If the answer is no, practition-
ers are without general results to trust, requiring
a full model re-evaluation for each downstream
use. However, if capability consistency is present,
we should be able to find a single underlying axis
that correlates with performance across diverse sce-
narios. Such a general dimension of Danoliteracy
can be compared to the g factor of general human
intelligence (Spearman, 1904). If one significant,
main factor is found, it implies a level of stability
that can help guide the expectations of practitioners
across GLLM implementations in varying and even
novel Danish tasks.

The contributions presented in this paper can be
summarized as follows:

• An open-source benchmark for GLLMs in
low-resource languages with an evaluation
framework and a live leaderboard site.

• The release of a set of novel evaluation
datasets for Danish.

• Evidence that GPT-4 and Claude Opus mod-
els are currently uniquely capable in Danish,
outperforming other closed models which in
turn overcome open-weights models.

• Evidence suggesting the existence of a Dano-
literacy g factor in GLLMs supported by pre-
liminary results from our open-source human
feedback study.

2 Related Work

2.1 GLLM Evaluation

The hard task of evaluating free-generation, mul-
titask models has been attempted in many ways.
Liang et al. define an empirical approach for re-
vealing model behaviour: Evaluate each model
on a compilation of many scenarios and use-cases
of interest, spanning different languages, domains
and task categories – ideally across multiple per-
formance dimensions in addition to raw model ca-
pability such as efficiency, bias, and robustness
(Liang et al., 2022).

This scenario compilation approach has been
applied in many ways to GLLMs: The HELM
Lite benchmark presents evaluations of GLLMs
on question answering (QA) and translation tasks
(Liang et al., 2023). Influential benchmarks include
the Huggingface OpenLLM Leaderboard (Beech-
ing et al., 2023) and other implementations of the
knowledge-based scenarios MMLU (Hendrycks
et al., 2021) and HellaSwag (Zellers et al., 2019).

These benchmarks mainly use comparison or
similarity algorithms to parse model answers e.g.
for finding a chosen option for multiple-choice QA.
Other approaches include applying other GLLMs
to grade generations (Zheng et al., 2023) (Ope-
nAI, 2023) or using human feedback (Chiang et al.,
2024).

2.2 Low-resource NLP Evaluation

Most broadly reported GLLM evaluations are only
or primarily performed on examples in English.
Approaches to evaluate lesser-resourced languages
include both attempts to compile massively multi-
lingual benchmarks either by automatic translation
(Lai et al., 2023) or dataset curation (Ahuja et al.,
2023).

Other approaches focus on one language exclu-
sively in attempts to evaluate GLLM language per-
formance beyond surface-level lexical or syntacti-
cal literacy. Using this method, practitioners can
align scenario domain, cultural content, and real-
world facts with the setting of the language, though
a lack of relevant data can be problematic (Liu
et al., 2023).
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Specifically in Danish, the comprehensive Scan-
dEval benchmark, which packages scenarios across
eight languages divided into NLU and NLG leader-
boards, implements evaluation on GLLMs in Dan-
ish on eight NLG scenarios with some overlap in
dataset sources with this work (Nielsen, 2023).

2.3 GLLM g Factor
The idea that GLLM performance is strongly corre-
lated across tasks has been noted previously by for
example Ilić who carried out factor analysis on the
Open LLM Leaderboard and GLUE, (Wang et al.,
2018) obtaining results similar to ours (Ilić, 2023).

3 Methods

3.1 Datasets
The eight scenario datasets are divided into three
broad categories: Scenarios testing RWK, scenar-
ios requiring models to perform free NLG and
those that imply solving classical NLU tasks.

Real-world Knowledge

1. Citizenship Test is a novel dataset of 605
multiple-choice questions acquired from gov-
ernmental tests that require applicants for Dan-
ish citizenship to demonstrate familiarity with
national societal structure, culture, and history
(siri.dk, 2023).

2. HyggeSwag is a novel manual translation1 of
125 HellaSwag (Zellers et al., 2019) Activi-
tyNet (Caba Heilbron et al., 2015) questions
testing commonsense natural language infer-
ence as a multiple-choice task to pick the only
completion consistent with real-world logic.

3. Gym 2000 is a small, novel extraction of
50 literature comprehension multiple-choice
questions from the Danish Centre for Read-
ing Research (CRR) aimed at high-schoolers
(Arnbak and Elbro, 2000).

Free NLG

4 #twitterhjerne is a novel abstractive question-
answering dataset containing 78 anonymized
question tweets from the Danish hashtag of
that name, translated to Twitter Brain, where
users ask the social media hive mind for help,
input or recommendations. For each question

1The text was translated by the authors with each transla-
tion being validated by another author completing the infer-
ence task.

Cit. Test [RWK]

HSwag
[RWK]

Gym 2K
[RWK]

#twit. [NLG]

NN [NLG]

AT [NLU]

Cloze [NLU]

DaNE [NLU]

20

40

60

80

100

GLLMs Relative Scores Across Scenarios
GPT 4
Claude Opus
LlaMa 3 70B
DanskGPT-tiny Chat

Figure 2: Selected model normalized results
across the eight scenarios divided into three cat-
egories as described in Section 3.1. Claude Opus is
overtaken by GPT-4 on the NER task but wins on an
NLG task. LlaMa 3 70B, the SOTA open-weights
model, lags behind on NLU and knowledge-based
tasks. A Danish-specialized model with only 1.1B
parameters, DanskGPT-tiny Chat, benchmarks well
in NLG but fails on knowledge and understanding.

tweet, 2-9 reference answer tweets were ex-
tracted making it possible to use the scoreo1o
metric (1).

5 Nordjylland News is an existing news sum-
marization dataset (Kinch, 2023) from which
a subset of 300 short news articles with corre-
sponding summaries were used.

NLU Tasks

6 Cloze Self Test is another small, novel extrac-
tion from CRR materials (Jensen et al., 2015),
this one containing 33 cloze-style questions
evaluated as multiple-choice selection.

7 DaNE is an existing canonical Danish NER
dataset with four entity categories (Hvingelby
et al., 2020) from which a subset of 256 exam-
ples were used.

8 Angry Tweets is an existing sentiment clas-
sification dataset (Brogaard Pauli et al., 2021,
Sec. 4) with three sentiment categories from
which 256 examples were used for multiple-
choice prompts.
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Figure 3: The non-normalized metric scores
across evaluation scenarios for two models that
were judged highly according to human feedback.
Uncertainties are 95% confidence intervals accord-
ing to the bootstrapping procedure and the micro-
average is displayed for each model.

All datasets are released on the Huggingface
Datasets Hub with dataset cards2 except for the
two small datasets extracted from CRR which re-
quire practitioners to re-run data collection for per-
sonal use. More details on dataset licensing and
collection as well as data examples can be found in
Appendix B.

3.2 Evaluation

Each evaluation scenario consisted of a dataset, a
prompt template, and a chosen metric.

Most of the available datasets allowed primarily
for testing discriminative RWK and NLU of the
GLLM by requiring it to select between multiple-
choice answers. For these multiple-choice scenar-
ios, frequency of generating the correct option num-
ber was reported as model accuracy.

Two metrics were used for NLG. First, summa-
rization was implemented using a similarity score
between model summary and a reference summary
s (TM, Tref). Secondly, we implemented abstrac-
tive question answering tasks for the specific type
of dataset D where each question has not just one
correct answer but a corresponding set of reference,
human-generated answers. This was done by scor-
ing GLLMs using the frequency with which gen-
erated answers were the odd-one-out, defined by
the lowest total similarity to all possible answers

2Datasets can be found on danoliter-
ate.compute.dtu.dk/Scenarios

T = {TM} ∪ {Tref, i}i=1..k as shown in Eq. 1.
For similarity scores s, the BERT score algorithm
(Zhang* et al., 2020) based on the DFM Encoder
Large (Enevoldsen et al., 2022) was used.

scoreo1o = PD


TM = argmin

t1∈T

∑

t2∈T
s (t1, t2)




(1)
Finally, few-shot named entity recognition (NER)
was implemented for GLLMs using 3-shot prompt-
ing and the GPT-NER multiple queries idea (Wang
et al., 2023). Here, word-level entity class predic-
tions were aligned and the standard NER micro-
average F1 scores were calculated using the SeqE-
val framework (Nakayama, 2018).

Scenarios were operationalized by prompting
GLLMs in the scenario language, Danish, and
structuring prompts with headers marked with the
# character as in Markdown. In order to use the
same prompts for instruct-tuned and base GLLMs,
prompts started with the instruction and ended with
a text leading towards an answer in the continua-
tion as shown in Figure 4. Prompting and metric
implementation details are covered in Appendix A.

1 Write a one-sentence summary of the
text.

2 # TEXT
3 Lorem ipsum dolor sit amet ...
4 # SUMMARY
5 A summary of the text could be:

Figure 4: The general prompting approach trans-
lated to English.

3.3 Models
Both local prediction of open-weights models and
API access to externally hosted GLLMs were im-
plemented. 54 autoregressive, decoder language
models trained for general text generation were in-
cluded. Models were tested if we saw any reason
to suspect a degree of Danoliteracy, thus including
multilingual models with possibly small amounts
of Danish training data as well as other Main-
land Scandinavian monolingual models but exclud-
ing strictly English-only models. Both base and
instruct-tuned models were evaluated. All model
generation was performed with greedy decoding
and with a maximum number of generated model
tokens of 256. OpenAI’s o1 model was allowed
to generate internal tokens freely. The models run
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scenarios for top performers. Two model nodes are
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not reveal significant benchmark performance dif-
ference at α = 0.05. Together with the special o1
model, Claude Opus and the GPT 4 family models
are consistent winners.

locally ranged in sizes from 124M parameters to
13B parameters, resulting in a total project GPU
use of ∼ 100 hours on a single Nvidia H100.

3.4 The Danoliterate Framework

A modular, open-source evaluation framework was
implemented in Python, using Huggingface Trans-
formers (Wolf et al., 2019) and Datasets (Lhoest
et al., 2021) as central tools as well as Hydra
(Yadan, 2019) and a Weights and Biases-integration
(Biewald, 2020) for structuring experimentation.
This framework, danoliterate, is released on
GitHub3 under the MIT License.

Furthermore, an interactive site displaying the
leaderboard as well as other benchmark results and
examples was produced using the Streamlit frame-
work. See Figure 6 for a screenshot of this frontend
and Appendix A.4 for versions of software depen-
dencies.

3.5 Human Feedback

For a subset of 18 instruct-tuned models, we have
set up a parallel study to collect human judgment
on model performance. Volunteers were presented
with a anonymized pair of models and were asked

3github.com/sorenmulli/danoliterate

Figure 6: A screenshot from the leaderboard front-
end allowing users to explore how model results
change with different metric choices as well as
inspecting model output examples and reading fur-
ther details on evaluation scenarios.

to report their preferred model. This was done
based on side-by-side model answers on at least
three prompts selected by the volunteer from a pool
of 100 prompt examples. Prompt selection was
chosen independently of the Danoliterate Bench-
mark by creating one Danish prompt for each of
100 popular generative AI use-cases according to
Zao-Sanders (Zao-Sanders, 2024). The study is
ongoing: At the time of writing, 477 responses
were analyzed. More details on data collection and
analysis can be seen in Appendix C.

4 Results

4.1 Benchmark Feasibility

Benchmarks must have a sufficiently clear signal
to be useful. The ranking in the final leaderboard
should be determined by meaningful model differ-
ences and influenced minimally by sampling noise.

To quantify benchmark noise, we implemented
blocked bootstrapping, resampling all examples
with replacement and aggregating all N = 8 sce-
nario scores for each of the M = 83 models. For
each K = 10, 000 bootstrap samples, the M ×N
model scenario results were aggregated into one
overall Danoliteracy Index for each model dM.
This index was computed by considering one sce-
nario at a time, assigning to the winner index 100
and to the lowest-scoring model index 0 with a lin-
ear scaling between the two. The micro-average
across the N scenarios is reported as the resulting
Danoliteracy Index of the sample.

The median index is presented as the main
leaderboard of this report4 with top 20 shown in

4The full M×N version can be seen at the live leaderboard
site: danoliterate.compute.dtu.dk/Leaderboard.
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human feedback. Values are normalized Bradley-
Terrey coefficients where two models are connected
if the coefficients are not significantly different in
the ranking model described in Appendix C.3.

Figure 5. For these, pairwise model index compar-
isons were performed using the bootstrap samples,
correcting p values to control the false discovery
rate across 1

2M×(M−1) comparisons (Benjamini
and Hochberg, 1995), presenting significant differ-
ences at α = 5%.

The results show groups of similarly perform-
ing models whose Danoliteracy cannot be distin-
guished. This increases the lower you go: Many
mediocre models, especially non instruct-tuned
models, get dM ∼ 20: As an example, this small-
sample size, curated benchmark cannot reveal a
difference between the base models LlaMa 2 7B,
dL2 = 20, and LlaMa 3 8B, dL3 = 23.

However, robust separation is visible for some
models, providing basis for statements like ”The
different GPT-4 models benchmark at the same
level but clearly perform better than GPT-3 models”
or ”The bigger the Claude 3, the better the perfor-
mance – but even the cheap Haiku version performs
at GPT-3.5 level” or ”Small, Danish-specialized
models like Heidrun can perform at LlaMa 2 70B
level but LlaMa 3 has moved the SOTA for open-
weights models in Danish”. This signal allows us
to learn more about reasons for model performance
which we explore in the next section.

First, we turn to the important question of valid-
ity: We see a robust benchmark signal resulting in

a significant ranking but must question the mean-
ing of the signal. One superficial indication of a
meaningful signal is that, as expected, the rank-
ing correlates significantly with model parameter
counts5 ρ ∼ 0.6. However, more importantly: We
find that it does correlate with the preliminary re-
sults of our Danish human judgement survey.

Ranking human judgement using the Bradley-
Terry model as in (Chiang et al., 2024, Sec. 4), we
achieve a ranking shown in Figure 7. We observe
meaningful differences compared to the Danoliter-
acy Index: For example, Claude models are more
competitive against GPT 4 and the title as best
included open-weights model is taken by Nexus-
flow Starling (Zhu et al., 2023) from LlaMa 3 70B.
Crucially, however, the general ranking is similar,
resulting in a correlation6 of ρ ∼ 0.8 with the Dano-
literacy Index for these 18 judged models. We note
this as a high value. As a comparison, the Danolit-
eracy index has a weaker correlation with English
benchmarks like HELM Lite and the Open LLM
Leaderboard7, ρ ∼ 0.5.

Thus, the results from our monolingual sce-
nario compilation approach differ from those from
English benchmarks while importantly, showing
high correspondence to judgments made by Danish
speakers.

4.2 Model Outcomes

The leading models are familiar, proprietary top
products. Though LlaMa 3 reaches GPT 3.5 level,
Figure 8 shows that most models capable in Danish
do not have openly available weights. Furthermore,
these top performers are generally also large and
instruct-tuned: Quantitatively, models get about ∼
0.5 further Danoliteracy Index points per additional
billion parameters and around ∼ 15 from instruct-
tuning8.

The substantial requirements of dataset and
model scale as well as creation of instruct datasets
might explain why nationally anchored organiza-
tions have not been able to come up with Danish-
first models competing with the multilingual behe-
moths. Such multilingual models have the advan-

5Here, only 38 open models with known parameter counts
were considered. α = 5% confidence interval: [0.37; 0.78].

6α = 5% confidence interval: [0.6; 0.9]
7This is based on 12 models that overlap between this

benchmark and HELM Lite (α = 5% confidence interval:
[−0.2; 0.8]) and the 15 that overlap with the Open LLM
Leaderboard (α = 5% confidence interval: [0.; 0.8]).

8From fitting a naïve linear model on the results including
only models with known parameter counts, see Appendix D.1
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Figure 8: Model Danoliteracy Index for groups of
models. For the models tested in Danish, closed
weights dominate open-weights in a remarkably
clear way. Bigger models are better and on this
benchmark, instruct-tuning is necessary to achieve
high benchmark scores.

tage of linguistic and factual knowledge enhance-
ment across training languages which also benefit
them in the monolingual setting.

4.3 Capability Dimensionality

The previous analysis primarily considered the ag-
gregated benchmark results across scenarios. What
is going on at the scenario level? While different
model capability profiles can be seen, exemplified
in Figure 2 and Figure 3, the main first impres-
sion is that model performance at one benchmark
scenario strongly predicts performance at other sce-
narios: One principal component explains 75% of
the model result variance across the eight scenarios.

This finding leads us to the conclusion that a
"general factor of Danoliteracy" exists. We investi-
gate this further using Exploratory Factor Analysis
(EFA) on the M ×N scenario result matrix, ana-
lyzing the underlying result dimensionality: How
many factors are needed to explain the variance
induced by model results over the N scenarios?

This analysis, further detailed in Appendix D.2,
shows a sharp drop in factor eigenvalue when mov-
ing from one to two factors as shown in Figure 9.
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Figure 9: Factor Analysis on model results across
eight scenarios reveal one underlying dimension of
Danoliteracy deemed significant by Horn’s Parallel
Analysis.
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Figure 10: The scenarios most contributing to
the underlying signal of Danoliteracy: The fac-
tual multiple-choice evaluation scenario contain-
ing Danish citizenship tests most strongly explains
benchmark performance.

According to both Horn’s Parallel Analysis (Horn,
1965) and the Kaiser Criterion requiring relevant
factors to have λ > 1 (Kaiser, 1960), the resulting
number of significant factors is 1. Loadings for this
factor is shown in Figure 10 suggesting that the
RWK scenarios of HyggeSwag and, importantly,
the Danish culturally aligned Citizenship Test sce-
nario explain the largest part of the dynamics of the
model results.

GLLM capability being consistent across differ-
ent tasks is not just suggested by this benchmark:
Carrying out the same analysis for Scandinavian
and English scenario compilations shows an under-
lying benchmark dimensionality much lower than
scenario count, with significant factor count close
to 1 as seen in Table 1.
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Benchmark D σF1 σF2 FK FPA

Danoliterate 83× 8 93% 7% 1 1
ScandEval Da. 199× 8 88% 12% 1 2
ScandEval Full 199× 24 77% 16% 2 2
HELM Lite 90× 10 78% 19% 2 2
OpenLLM 2859× 6 97% 3% 1 2

Table 1: How much variance did the first and
second factors in EFA explain for the Danoliterate
Benchmark as well as the ScandEval benchmark,
both full and Danish subset (Nielsen, 2023), En-
glish benchmarks HELM Lite (Liang et al., 2022)
and OpenLLM (Beeching et al., 2023) as of January
2025. Leaderboard dimensionality, model count ×
scenario count, is presented along with suggested
significant factor count by the Kaiser criterion and
Parallel Analysis: All benchmarks have an impor-
tant first component.

5 Conclusions

Based on the ability to robustly discover model
groupings at different Danish capability levels and
correlate these rankings with human feedback, we
conclude that a scenario compilation approach can
meaningfully reveal GLLM capabilities. We show
that, in Danish, open-weights GLLMs currently lag
behind large, closed, multilingual, instruct-tuned
models, such as GPT-4 and Claude Opus.

For our evaluation setup, we observe one un-
derlying factor in model capability across the di-
verse test scenarios. This observation is supported
by similar structures in other Danish, English and
multilingual scenario compilations which we con-
sider a positive result for low-resource evaluation:
By using curated and language-specific scenarios,
the general landscape of GLLM capabilities for a
given low-resource language can be meaningfully
inferred even if resources limit the scale.

6 Concerns of the Ethical Impacts

This work releases a benchmark and leaderboard
with the hope of a positive outcome of increased un-
derstanding of potentials and limitations of GLLMs
in Danish. However, we note some risks in the use
of such leaderboards.

The results presented here only focus on model
capability but, on the leaderboard site, versions of
other important dimensions for model applicabil-
ity are presented; such as model efficiency, model
likelihood calibration and model generated output
toxicity. However, these are presented with a dis-
claimer as preliminary results and our work on

other crucial dimensions such as GLLM perfor-
mance fairness across gender and nationalities or
robustness to input noise have not been released
due to limitations to current datasets to robustly
carry out these analyses.

There is an increased risk of bias, fairness and
toxicity violations in low-resource languages to
which models are less tuned. Problematically,
when the evaluation situation is also low-resource,
these risks might be undiscovered for practitioners
that only focus on a model capability. Further work
is crucially needed but for now, the leaderboard
site displays a disclaimer against blindly trusting
that high benchmark numbers mean predictable
downstream performance or applying GLLMs with
unchecked assumptions about robustness, fairness,
bias, and toxicity.

7 Limitations

The study only focuses on one language, Danish,
with limited comparisons to other language results.

The presented benchmark consists of eight spe-
cific scenarios: Although we find high correlation
between scenario results, all our statements about
model performance on Danish in general are evi-
dently biased by the scenario selection. A similar
statement can be made about prompt and metric de-
sign decisions though these seem robust in ablation
studies in Appendix A.

We stress the importance of the uncertainty quan-
tification for this benchmark where all scenarios
are small-scale, n < 1, 000: The bootstrap analy-
sis revealed some model result differences, such
as Mixtral 8x7B (dM = 54) and Qwen1.5 7B
Chat (dM = 50), are not significant at the de-
sired level and might be spurious. Other differ-
ences such as that between GPT-4 and Claude Opus
might be obscured by the important Citizenship
Test scenario, where these models achieve close
to 100% accuracy (Figure 3), being saturated by
SOTA GLLMs. Though most other scenarios still
show far-from-perfect accuracy, more difficult sce-
narios are needed to accommodate future develop-
ments.

As all evaluation data is publicly available, un-
intentional or malignant dataset contamination is
possible. This issue requires attention but might,
in the short-term, be less of a risk for low-resource
language evaluation with smaller and less widely
published corpora.
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A Evaluation Methodology

A.1 Prompting

An example of a prompt following the structure
shown in Figure 4 is the Citizenship Test example
shown in Figure 11.

1 Svar kun med tallet for den rigtige
mulighed.

2 # SPØRGSMÅL
3 Hvilket af følgende lande har flest

indvandrere og efterkommere i
Danmark oprindelse i?

4 # SVARMULIGHEDER
5 1. Pakistan
6 2. Iran
7 3. Tyrkiet
8 # SVAR
9 Svaret er mulighed nummer

Figure 11: Prompting of an example from the
Citizenship Test scenario. Translated, this question
prompt reads: Answer only with the number cor-
responding to the correct answer. # QUESTION
From which of the following countries do the high-
est number of immigrants and descendants in Dan-
mark have their roots? # OPTIONS 1. Pakistan 2.
Iran 3. Turkey # ANSWER The answer is option
number.

Alternatives Some prompt alternatives to the ap-
proach shown in Figures 4 and 11 were run for a
subset of GLLMs: For the Citizenship Test sce-
nario, Table 2, results were similar when not pre-
senting options to the models, instead parsing their
output choice by selecting the option with highest
similarity to their generation. The same table sug-
gests that changing the Citizenship Test scenario
to a simpler prompt without markdown headers
lowered results minimally..

For the summarization task, Nordjylland News,
an alternative prompt with longer and more detailed
instructions had no effect on model results shown
in Table 3.

Translating all instruction text in the prompt for-
mat while keeping data content in Danish main-
tained or improved non-Danish model results, Ta-
ble 4 on the Gym 2000 scenario.

A.2 GLLM Output Parsing

Multiple-choice A numbered option was consid-
ered selected if it was the only number generated
by the model. In the case of multiple generated
option numbers, the most frequent number was

Std. Simple Q No opt.
Gemini Pro 85± 1 78± 1 79± 1

GPT 3.5 Turbo 82± 1 77± 1 82± 1

Mistral 7B Instruct 47± 2 50± 2 49± 2

Mistral 7B 45± 2 44± 2 41± 2
Dano. Mistral 7B 43± 2 45± 2 59± 2
LlaMa 2 7B 39± 2 42± 2 36± 2
Dano. LlaMa 2 7B 37± 2 40± 2
Dummy Baseline 36± 2 36± 2 36± 2

Table 2: Alternative prompting and scoring ap-
proaches to the Citizenship Test run for a subset
of models including a baseline outputting a fixed,
random string and Danish-tuned versions of base
GLLMs. Std. is the prompt version presented in the
benchmark, Figure 11, Simple Q removes the first
instruction and the markdown headers, simply pre-
senting the question, the options and the final text.
No opt. asks the question openly without multiple-
choice options, choosing argmax similarity score,
as in Section 3.2, as model choice. Presented with
95% Wald confidence interval.

Std. Detailed
Gemini Pro 74± 2 74± 2

GPT 3.5 Turbo 73± 2 74± 2

Mistral 7B Instruct (v0.2) 70± 2 71± 2
Mistral 7B 62± 3 58± 3
Dano. Mistral 7B 57± 3 59± 3
Dano. LlaMa 2 7B 52± 3 58± 3
LlaMa 2 7B 54± 3 56± 3
Dummy Baseline 43± 3 43± 3

Table 3: Impact of Nordjylland News alternative
prompting.

chosen. Maximum generation likelihood-based se-
lection was also implemented and is available for
open-weights models on the frontend leaderboard
but is not presented here.

GPT-NER Following (Wang et al., 2023), for
each example, the GLLM was prompted four times,
once for each entity category in the DaNE dataset
(Hvingelby et al., 2020). The model was instructed
to mark all words belonging to this entity cate-
gory with @. These were parsed to one, multi-class
prediction, handling overlap by selecting the gener-
ation with highest likelihood for models exposing
probabilities. To mitigate small errors resulting in
catastrophic results, model output annotated words
were aligned using Levenshtein matching to the
input example word list (Levenshtein, 1966).
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Std. English
Gemini Pro 61± 8 64± 8

GPT 3.5 Turbo 45± 9 52± 9

Danoliterate Mistral 7B 48± 9 36± 8

Mistral 7B 39± 8 45± 9
Mistral 7B Instruct (v0.2) 36± 8 42± 9
LlaMa 2 7B 33± 8 33± 8
Danoliterate LlaMa 2 7B 27± 7 30± 7
Dummy Baseline 21± 6 21± 6

Table 4: How the Gym 2000 results change if the
prompt instructions are in English. The instruct-
tuned models handle this strongly while the Dano-
literate Mistral model fails to to perform under
English prompting.

A.3 Metrics

Differences in results for the similarity-based met-
rics used for #twitterhjerne and Nordjylland News
summarization are presented in Tables 5 and 6.
Model rank is minimally changed.

Odd-
one-
out

Avg.
sim.

Min.
sim.

Max.
sim.

GPT 3.5 Turbo 29± 5 64± 5 61± 5 66± 5

Gemini Pro 31± 5 63± 5 61± 5 66± 5

GPT 4 35± 5 63± 5 61± 5 66± 5
SOLAR 10.7B Instruct 50 ±

6
62 ±
5

60 ±
5

65 ±
5

LlaMa 2 13B Chat 60 ±
5

61 ±
5

58 ±
5

63 ±
5

Mistral 7B Instruct 64 ±
5

62 ±
5

59 ±
5

64 ±
5

Dano. Mistral 7B 96 ±
1

54 ±
6

52 ±
6

57 ±
6

Dano. LlaMa 2 7B 97 ±
1

53 ±
6

50 ±
6

55 ±
6

OpenAI Davinci 002 99 ±
0.3

52 ±
6

49 ±
6

54 ±
6

LlaMa 2 7B 100 51 ±
6

49 ±
6

53 ±
6

Mistral 7B 99 ±
0.3

50 ±
6

48 ±
6

52 ±
6

Dummy Baseline 100 44 ±
6

43 ±
6

46 ±
6

Table 5: Standard version of #twitterhjerne using
the odd-one-out metric (1) compared to a simpler
metric just reporting average similarity score.

A.4 Software Dependencies

The relevant Python packages and their versions
are presented in Table 7. Python version 3.11.8 was
used.

BERT
similar-
ity

ROUGE-
1

ROUGE-
L

Gemini Pro 74± 2 35± 3 28± 2

GPT 3.5 Turbo 73± 2 32± 2 25± 2

GPT 4 73± 2 32± 2 23± 2
SOLAR 10.7B Instruct 71± 2 28± 2 20± 2
Mistral 7B Instruct 70± 2 25± 2 18± 2
LlaMa 2 13B Chat 69± 2 17± 2 12± 1
Mistral 7B 62± 3 16± 1 12± 1
Dano. Mistral 7B 57± 3 11± 1 8± 1
OpenAI Davinci 002 55± 3 9± 1 7± 1
Dummy Baseline 43± 3 11± 1 8± 1
LlaMa 2 7B 54± 3 6± 1 5± 1
Dano. LlaMa 2 7B 52± 3 5± 1 4± 0.5

Table 6: Nordjylland News summarization results
presented with an alternative lemma-based similar-
ity score. The score is computed by lemmatizing
text using the SpaCy framework (Honnibal et al.,
2020) and then computing the ROUGE score (Lin,
2004)

.

Library Version
google-cloud-aiplatform 1.38.1

openai 0.28.1
anthropic 0.21.3

groq 0.4.2
pandas 1.5.3
datasets 2.14.5

transformers 4.36.1
torch 2.1.1

evaluate 0.4.0
rouge_score 0.1.2
bert_score 0.3.13

huggingface_hub 0.19.4
hydra-core 1.3.2

Table 7: Evaluation framework Python dependen-
cies and used versions.

B Evaluation Corpora Details

B.1 Data Permissions

1. Citizenship Test: All rights reserved
”Styrelsen for International Rekruttering og
Integration”. Written permission was given
for the data to be re-released as an appendix
to Academic work.

2. HyggeSwag: MIT.

3. Gym 2000: Unreleased. Written permission
was given by CRR for Academic use but not
for re-releasing the dataset.

4. #twitterhjerne: CC-By-4.0.

5. Nordjylland News: CC-0-1.0.
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6. Cloze Self Test: Unreleased. Written permis-
sion was given by CRR for Academic use but
not for re-releasing the dataset.

7. DaNE: CC-By-Sa-4.0-

8. Angry Tweets: CC-By-4.0.

B.2 Data Content

All novel datasets were manually inspected for of-
fensive content. Some crime-related and sexual
themes were found in Nordjylland News exam-
ples but deemed unproblematic. The #twitterhjerne
dataset was manually anonymized, removing all
examples with personally identifiable content.

B.3 Examples

Below, one prompted example per evaluation cor-
pus is presented.

1. Citizenship Test: See Figure 4.

2. HyggeSwag

1 Svar kun med tallet for den
rigtige fortsættelse af
sætningen

2 # SÆTNING
3 En gruppe venner sidder på

slæder på toppen af bakken.
De to venner

4 # SVARMULIGHEDER
5 1. er udstyr kørende ned ad

bakken med en udstyrsrem på.
6 2. presser deres rygge op mod en

klippe.
7 3. skubber en slæde med et reb,

da hele bakken er dækket
med sne.

8 4. skubbes ned ad bakken, og de
glider til bunden.

9 # SVAR
10 Den rigtige fortsættelse er

mulighed nummer

3. #twitterhjerne

1 Skriv et kort tweet på dansk,
der besvarer nedenstående
spørgsmål. Svar kun med
tweetet.

2 # TWEET MED SPØRGSMÅL
3 Sønnen vil gerne lave

#pebernødder. De par gange
jeg har prøvet det, blev de
kun OK. Er der nogen, der
kan anbefale en opskrift?
#twitterhjerne

4 # TWEET MED SVAR
5 Et svar kunne være:

4. Gym 2000

1 "Selv før jeg lærte Max Kelada
at kende, var jeg
indstillet på ikke at kunne
lide ham. Krigen var lige
blevet afsluttet, og
passagertrafikken på de
store oceandampere var
livlig. Det var meget
vanskeligt at få plads, og
man måtte finde sig i at
tage, hvad skibsagenterne
tilbød én. Man kunne ikke
vente at få en kahyt for
sig selv, og jeg var
temmelig taknemmelig over
at få en, hvor der kun var
to køjer. Men da jeg
erfarede navnet på min
medpassager, sank mit
humør. Det betød lukkede
koøjer, så det ikke ville
være muligt at få den
mindste smule frisk luft om
natten. Det var ubehageligt
nok at dele kahyt i fjorten
dage med hvem som helst
(jeg rejste fra San
Francisco til Yokohama),
men jeg ville have været
mindre bekymret ved tanken,
hvis min medpassagers navn
havde været Smith eller
Brown."

2

3 Svar kun med tallet for den
rigtige mulighed

4 # SPØRGSMÅL
5 Hvorfor var det svært at få en

kahyt for sig selv?
6 # SVARMULIGHEDER
7 1. Det var moderne at tage på

krydstogt.
8 2. Det var midt i ferieperioden
9 3. Mange mennesker flyttede til

USA
10 4. Krigen var lige forbi.
11 # SVAR
12 Svaret er mulighed nummer

5. Cloze Self Test

1 "Henrik bladede frem til siderne
med boligannoncer. Deres
lejlighed var <MASK> for
lille til dem, så nu ledte
de efter noget større. De
ville gerne flytte lidt
tættere på kysten. De ledte
efter en lille gård , hvor
der var plads til at holde
et par heste ."

2 Erstat det maskerede ord i
ovenstående tekst (markeret
med '<MASK>') med et af
følgende ord: indrettet,
solgt, annonceret, blevet.
Svar *kun* med det rigtige
ord:

6. Nordjylland News

1 Skriv et kort dansk resumé på én
enkelt sætning af følgende
tekst.
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2 # TEKST
3 Manden kom kørende på Sønder

Havnevej ved kiosken på
havnen i Aalbæk, da han
påkørte flere afmærkninger
på stedet og fortsatte
direkte ind i den bygning,
hvor kiosken holder til.
Der skete i forbindelse med
påkørslen skade på
bygningen. Uden for sad en
mand, og han blev i lav
fart påkørt af bilen ført
af 53-årig mand. Den
uheldige kiosk-gæst blev
kørt til sygehuset med
lettere skader.
Nordjyllands Politi
oplyser, at den 53-årige
blev anholdt og sigtet for
at køre i spirituspåvirket
tilstand. Han er efter endt
afhøring løsladt igen.

4 # RESUMÉ
5 Et resumé på en sætning er:

7. Angry Tweets

1 Vurdér, om sentimentet i
følgende tweet er
'positiv', 'neutral' eller
'negativ'. Svar kun med et
enkelt ord.

2 # TWEET
3 @USER Klæk det æg!
4 # SENTIMENT:
5 Sentimentet var

8. DaNE (prompting for location)

1 Fuldfør annotering af sidste
eksempel i opgaven.

2 Her er en lingvists arbejde med
at annotere entiteter af
typen 'lokation'.

3 # TEKST
4 Det blev naboens store, sorte

hund også, "siger
Københavns politidirektør,
Poul Eefsen,
galgenhumoristisk til B.T.
efter et stort smykkekup i
hans Holte-villa og en
række tilsvarende kup i
området.

5 # ANNOTERING
6 Det blev naboens store , sorte

hund også , " siger
@@Københavns##
politidirektør , Poul
Eefsen , galgenhumoristisk
til B.T. efter et stort
smykkekup i hans
Holte-villa og en række
tilsvarende kup i området .

7 # TEKST
8 Diskussionen om forklaringen på

det "japanske økonomiske
mirakel" har især drejet
sig om, hvorvidt man kunne
nøjes med økonomiske
faktorer i sin forklaring,
eller om det også er
nødvendigt at inddrage

særlige kulturelle og
historiske forhold for at
finde en rimelig forklaring.

9 # ANNOTERING
10 Diskussionen om forklaringen på

det " japanske økonomiske
mirakel " har især drejet
sig om , hvorvidt man kunne
nøjes med økonomiske
faktorer i sin forklaring ,
eller om det også er
nødvendigt at inddrage
særlige kulturelle og
historiske forhold for at
finde en rimelig forklaring
.

11 # TEKST
12 De lyssky fremmede elementer af

enhver art, der har sneget
sig til landet, er fjenden.

13 # ANNOTERING
14 De lyssky fremmede elementer af

enhver art , der har sneget
sig til landet , er fjenden
.

15

16 # TEKST
17 "Vi tar'en tysker frem, vi

tar'en tysker tilbage, vi
tar'en tysker frem, åååårrr
så ryster vi ham lidt!"

18 # ANNOTERING

C Survey

C.1 Survey Design and Instructions

For 100 GLLM use-cases divided into six cat-
egories (Zao-Sanders, 2024), we translated use-
cases and categories into Danish and crafted an
example prompt in Danish corresponding to that
theme. We saved model answers from 18 mod-
els andf used them in the survey to allow interac-
tiveness without requiring infrastructure for true
dynamic model responses.

The survey front-end allowed volunteers to pick
between the 100 prompts separated into categories,
seeing model outputs from ”Model A” and ”Model
B” side-by-side, streamed with a delay of 0.1 sec-
onds between each word to simulate model genera-
tion. The volunteer was then instructed to try out at
least a total of three prompts before answering. The
answer consists of a question of preference, with
optional additional Likert scales for each model
and a text field for more details. The user instruc-
tion was in Danish meant Two models have now
been secretly selected for you: Model A and Model
B. Test them out by choosing a prompt under a
category that interests you. Look at the models’
responses and get an impression of both A and B.
Now choose a new prompt and please provide your
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Figure 12: A screenshot of the survey UI presented
to users. Under header 1, users select prompts of
their interest. Header 2 contains model answers
side-by-side and in header 3, volunteers fill in their
preference and can get model identities revealed
and move on to another pair.

assessment after at least 3 prompts.9. See Figure
12 for an overview of the A/B test user interface.

C.2 Volunteers
The survey is openly available online, inviting users
to voluntarily try out the A/B tests, filling out their
preferences. The survey was promoted on social
media networks and newsletters. Most of the pro-
motions were made on channels for AI enthusiasts
or professionals. Volunteers were made aware that
the data would contrubute to studies into GLLM
evaluation in Danish.

Volunteers could optionally fill in demographic
details before carrying out A/B test which is shown
in Figure 13 suggesting a bias towards young, male
AI professionals.

9Da.: Nu er der i hemmelighed valgt to modeller for dig:
Model A og Model B. Afprøv dem ved at vælge en prompt
under en kategori, der interesserer dig. Se modellernes svar
og få et indtryk af både A og B. Vælg nu en ny prompt og giv
endelig din vurdering efter mindst 3 prompts.
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Figure 13: Demographic details filled out by survey
volunteers.

Work is ongoing to increase scale and diversity
of respondents.

C.3 Ranking Model

All 18 models included in the survey were sam-
pled uniformly and the user model preference was
used for ranking. An initial version ranking is the
model win frequency presented in Table 8. As a
model for the human preferences, we follow Chi-
ang et al. to employ the Bradley-Terry model in
a non-parametric fashion, using the sandwich ro-
bust standard errors (Chiang et al., 2024, Sec. 4,
Sec. 5, Appendix B). The approach produces a
linear model coefficient per model with estimated
standard errors. These can be used for a paired
Wilk’s test to present significance of differences at
α = 0.05 level.

D Analysis Methodology Details

D.1 Model Outcomes Linear Model

The model

dm = β0 + β1pM + β2I(M∈ instruct) + ε, (2)

where ε ∼ N (0, σ2) and pm is the number of
model parameters in billions, was fitted with re-
sults shown in Table 9.

D.2 Factor Analysis

For the EFA on the 83 × 8 scenario results, the
Bartlett Sphericity (Bartlett, 1951) p value is
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Lower Estimate Upper
Claude Opus 87% 94% 100%
Claude Sonnet 65% 76% 89%
GPT 4o 65% 76% 88%
Gemini Pro 59% 71% 85%
Claude Haiku 59% 71% 83%
GPT 4 Turbo 2024-04-09 55% 67% 80%
Starling 7B 53% 65% 81%
GPT 3.5 Turbo 48% 61% 72%
Heidrun 7B Chat 35% 48% 61%
Gemma 7B In. 29% 44% 60%
Mixtral 8x7B 24% 40% 56%
LlaMa 3 70B 24% 40% 53%
LlaMa 3 8B In. 19% 32% 44%
SOLAR 10.7B In. 17% 29% 41%
Munin NeuralBeagle 13% 26% 39%
Qwen1.5 7B Chat 11% 22% 33%
Mistral 7B In. v0.2 9% 20% 30%
DanskGPT-tiny Chat 6% 18% 29%

Table 8: How frequently each model wins their
A/B tests with uncertainty estimation to a 95% con-
fidence interval from bootstrapping blocked per
volunteer.

Parameter Value Std. error t-value
β̂0 17 2 8
β̂1 15 3 5
β̂2 0.4 0.01 4
σ̂ 9

Table 9: Linear model fitted with R̂2 = 0.6 to the
Danoliteracy Index for 38 open-weights models
with known parameter counts.

< 2 · 10−16 and the Kaiser-Meyer-Olkin Test
(Kaiser, 1970) yields a variance proportion of
90%, both suggesting that the data is usable
for EFA. Fitting an EFA using the Scikit-learn
Factor Analysis model yields λ1 = 5.9, λ2 = 0.3.
Explained factor variance is calculated as eigen-
value proportion of summed eigenvalues, and the
analysis is repeated for scenario results acquired
from the open API at scandeval.com/danish-nlg/, at
crfm.stanford.edu/helm/lite/v1.3.0/#/leaderboard,
and using the OpenLLM Leaderboard Scraper
GitHub project10. The datasets updated to most
recent versions on January 13th, 2025.

All datasets were subjected Horn’s Parallel Anal-
ysis (Horn, 1965) simulating 1000 datasets of
same shape but without correlation structure: This
was implemented using the Python package horns
(Mathias, 2024).

10github.com/Weyaxi/scrape-open-llm-leaderboard
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Abstract

In this work, we approach event extrac-
tion from Norwegian news text using a
generation-based approach, which formu-
lates the task as text-to-structure genera-
tion. We present experiments assessing the
effect of different modeling configurations
and provide an analysis of the model pre-
dictions and typical system errors. Finally,
we apply our system to a large corpus of
raw news texts and analyze the resulting
distribution of event structures in a fairly
representative snap-shot of the Norwegian
news landscape.

1 Introduction

Event extraction is a central information extraction
task that is aimed at extracting structured represen-
tations of real-world event information provided in
unstructured texts, commonly expressed in terms
of an event trigger and its arguments in the text.
While modeling approaches to this task have tra-
ditionally been based on sequence-labeling at the
token level (Ji and Grishman, 2008; Du and Cardie,
2020; Lin et al., 2020), more recent approaches
have allowed for a structure decoding that is less
constrained by the exact input string. In particular,
the widespread adoption of pre-trained language
models based on encoder–decoder architectures
have allowed for the formulation of this task as
text-to-structure generation (Lu et al., 2021; Wang
et al., 2023).

Current event extraction systems typically focus
on English, with noteworthy exceptions for other
large languages like Chinese and Arabic. This fo-
cus is largely due to the availability of manually
annotated datasets in these languages (Doddington
et al., 2004; Song et al., 2015). The newly released
Norwegian event detection dataset EDEN (Touileb
et al., 2024) contains manual annotation of news

texts from newspapers as well as transcribed news
broadcasts and enable large-scale event extraction
from Norwegian news sources.

In this paper, we present the NorEventGen sys-
tem for Norwegian event extraction, which builds
on recent developments in the formulation of event
extraction as text-to-event structure generation,
mapping sentences into linearized event structures.
While developing this system using the recently re-
leased EDEN dataset, we also evaluate a number of
modeling choices related in particular to the format
of the input data and the task formulation. Specif-
ically, we analyze the choice of pre-trained Nor-
wegian language model, the localization of event
labels using translation and the reliance on explicit
trigger word identification for event argument ex-
traction. We provide a detailed analysis of the gen-
erated event structures and examine typical errors
of our system. Finally, we apply our system to a
large collection of news texts from a range of dif-
ferent sources and provide a preliminary analysis
of the extracted event structures.

The paper is structured as follows. The next sec-
tion presents related work, before section 3 presents
a system description for our approach. We further
describe experimental set-ups in section 4, and dis-
cuss the results in section 5. Section 6 presents
a use case for our system on a large Norwegian
news corpus, before we summarize our finding and
contributions section 7.

2 Related work

2.1 Event detection

Event extraction has commonly been approached as
a supervised classification task approached through
sequence labeling. Classification-based methods
typically perform event extraction via several more
specific subtasks (trigger detection and classifica-
tion, argument detection and classification), and ei-
ther solve these separately with a pipeline-based ap-
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proach (Ji and Grishman, 2008; Li et al., 2013; Liu
et al., 2020; Du and Cardie, 2020; Li et al., 2020) or
infer these subtasks jointly at the token-level (Yang
and Mitchell, 2016; Nguyen et al., 2016; Liu et al.,
2018; Wadden et al., 2019; Lin et al., 2020). Mov-
ing beyond sequence-labeling, event extraction has
also been approached as structured prediction into
graph structures (You et al., 2022).

More recently, however, approaches that solve
the event extraction task as a generation task have
received more attention, mapping a text into a
linearized event structure or even a natural lan-
guage representation of the event. For a recent
survey of generative approaches to event extrac-
tion, see (Simon et al., 2024). Of particular rel-
evance to our work, however, is the Text2Event
system of Lu et al. (2021) which pioneered the text-
to-structure approach to event extraction, jointly
modeling event detection and argument extraction
using a T5 encoder–decoder model (Raffel et al.,
2020): Given an input sentence, the model gener-
ates a structured representation of an event in the
form of an S-expression (i.e., an associative dictio-
nary of labels and values), constrained decoding is
enforced to restrict the output vocabulary to valid
tokens at each step. The latter is show to be particu-
larly helpful for small training sets. Their ablation
study also includes curriculum learning and shows
that using natural language tokens for argument
roles is preferable to arbitrary tokens.

In an effort to further generalize the text-to-
structure approach, Lu et al. (2022) introduce UIE
– unified information extraction. UIE formalises a
unified ”structural extraction language” for encod-
ing different information elements for different IR
tasks, and includes IE-specific pre-training that re-
moves the need for constrained decoding. Inspired
by instruction tuning, Wang et al. (2023) further
build on this to propose InstructUIE, where differ-
ent IE tasks are reformulated into the task of natural
language generation with instructions that include
a description of the output format.

2.2 Event datasets

There are several manually annotated datasets
for event extraction for English and a few other
resource-high languages, such as Arabic and Chi-
nese. The Automatic Content Extraction (ACE)
program (Doddington et al., 2004) was an early
effort in this space that resulted in several richly
annotated datasets including entities, relations, and

events for English, Arabic, and Chinese. The En-
glish ACE dataset has been widely used for de-
velopment of event extraction systems and anno-
tates 8 distinct event types (e.g. Life, Conflict,
Transaction), along with 33 subtypes (e.g.
Conflict.Attack) and 22 event-specific sub-
types that adorn specific event trigger words in
the text along with their event arguments (e.g.
Attacker, Agent, and Recipient).

The ERE (Song et al., 2015) dataset, also re-
ferred to as Light ERE comprises the same event
types and subtypes as ACE. Compared to ACE,
ERE adopts a more simplified scheme by merg-
ing tags (Aguilar et al., 2014). ERE also comes
in a version with richer annotations, dubbed Rich
ERE (Song et al., 2015), which is aimed at enabling
document-level event co-reference and extends on
the ACE event ontology by incorporating 9 event
types and 38 event arguments (You et al., 2023).

The MAssive eVENt detection dataset
(MAVEN) (Wang et al., 2020), was introduced
to cover more general event types, compared to
ACE and ERE. It comprised 4,480 Wikipedia
documents, containing 168 event types covering
118,732 event mentions. This dataset is only
annotated for event types, which are derived from
FrameNet (Baker et al., 1998). In MAVEN, first
candidate event triggers were semi-automatically
identified, followed by an automatic labeling
phase, before human annotators provided the final
annotations.

3 NorEventGen: text to event records

Our system is built upon Text2Event (Lu et al.,
2021), with inspiration from InstructUIE (Wang
et al., 2023), as described in Section 2.1 above.
Our system differs from Text2Event by applying no
constraints on generation and from InstructUIE by
using the input sequence only without instructions.
This means approaching event extraction as a text-
to-structure problem. Given the input sequence
x = x1, ..., x|x|, NorEventGen directly generates
the event records in a linearized, structured for-
mat with a pretrained Norwegian encoder–decoder
model.

3.1 Structured event records

Event records are represented in a structure
similar to a linearized parse tree, where multiple
event records are just sub-trees. As shown
in Figure 1, an event record is structured as
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Encoder-Decoder LM

Paul Gascoine    sitter     arrestert 
Paul Gascoine      sits       arrested

mistenkt for å ha          overfalt 
suspected to have        assaulted 

en mann      mandag kveld
a man           Monday evening

(( ARREST-JAIL  arrestert )
                                arrested
  ( PERSON  Paul Gascoine )
                      Paul Gascoine
  ( CRIME  overfalt en mann mandag kveld ))
                   assaulted a man Monday evening
(( ATTACK  overfalt
                      assaulted
  ( ATTACKER  Paul Gascoine )
                            Paul Gascoine
  ( TARGET  en mann )
                       a man
  ( TIME  mandag kveld ))
                 Monday evening

Figure 1: The architecture of NorEventGen. The model takes raw text as input and generates event records
in a structured format. In this example, there are two events: (i) an ARREST-JAIL with its trigger
“arrestert” and arguments Person and Crime and (ii) an ATTACK event with its trigger “overfalt” and
associated Attacker, Target and Time arguments.

((Event type trigger (arg role1
arg1)(arg role2 arg2)), and there are
two events (ARREST-JAIL, ATTACK) from the
example sentence. For a sentence that does not
describe any event, empty event records are simply
“()”. To differentiate from text snippets and labels
for event records, during implementation, the
structure indicators “()” are replaced with special
tokens <extra id 0> and <extra id 1>,
which are trained together with the model. Event
records can easily be retrieved via reading
structured event records as trees.

3.2 Text to structure framework
With the above mentioned structured represen-
tations, NorEventGen generates structured event
records via a transformer-based encoder–decoder
T5 model (Raffel et al., 2020). For an input se-
quence x = x1, ..., x|x|, NorEventGen outputs
structured event records y = y1, ..., y|y|. First, the
raw text sequence x is processed by the encoder
into hidden states H:

H = Encoder(x1, ..., x|x|) (1)

With encoded input tokens, the decoder pre-
dicts the output structure token-by-token in an auto-
regressive manner. At each generation step i, the
i-th token yi of the output and the decoder hidden
state hd

i are generated as following:

yi,hd
i = Decoder([H;hd

1 , ...,hd
i−1]) (2)

Decoder(·) predicts the conditional probability
p(yi|y < i, x) for the token yi. Prediction termi-
nates once the end symbol (<eos>) is generated.

Split #Sents #Tokens #Events #Arguments

Train 20,968 326,145 4,584 7,416
Dev 1,919 35,668 387 626
Test 3,365 57,413 834 1,257

Table 1: Statistics of the Norwegian EDEN dataset.

Compared with some previous studies which
treat labels (event ontology) as specific symbols
or enforce various constraints during the decoding
process, our text-to-structure framework treats la-
bels as natural language tokens and employs greedy
decoding during the generation stage. By verbal-
izing and generating the labels, the model learns
event schema knowledge during training.

4 Experiments

In the following, we present the details of our ex-
perimental setup, and the specific experiments con-
ducted as evaluation of our model.

4.1 Experimental setup

EDEN The recently released Event DEtection for
Norwegian (EDEN) dataset (Touileb et al., 2024)
generally adopts the ACE annotation schema and
further adapts it to the annotation of news data and
transcribed news broadcasts in Norwegian. The
event ontology of EDEN defines 34 event types
and 28 event argument roles. In total, it contains
data from 630 documents containing over 500k
tokens and almost 6,000 unique events. Detailed
statistics can be found in Table 1.

Pre-trained LMs As mentioned above, we will
be using the T5 architecture (Raffel et al., 2020) for
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the underlying base model. We experiment with
two different versions pre-trained for Norwegian,
named North-T51 and NorT5 (Samuel et al., 2023).
Both come in several sizes, and we here use North-
T5 base (220 million parameters) and large (770M),
and NorT5 base (228M) and large (808M). The
main difference is that while the NorT5 models
were trained from scratch for Norwegian, the North-
T5 models are based on the multilingual mT5 (Xue
et al., 2021) (including the tokenizer) with further
fine-tuning for Norwegian.

Evaluation Event extraction is evaluated on two
key elements: 1) an event trigger is correctly pre-
dicted if the event type and trigger word(s) match
a reference trigger; 2) an event argument is cor-
rectly predicted if its role type, event type, and
argument word(s) match a reference argument. We
report F measure (F1) for the following four met-
rics: Trg-I (trigger identification), Trg-C (trigger
classification), Arg-I (argument identification), and
Arg-C (argument classification). Since our system
directly generates event records, the offset of the
generated tokens in the input sequence is unknown;
when evaluating trigger and argument identifica-
tion, we therefore require an exact match towards
a substring of the input text.

System comparison We compare our NorEvent-
Gen with JSEEGraph (You et al., 2023), a semantic-
graph-parsing approach with previously reported
results for the EDEN dataset. JSEEGraph differs
fundamentally from our NorEventGen, since it is
essentially an extract-and-classify approach.

Implementation detail All the reported models
were trained on a single node of Nvidia RTX3090
GPU. We adopt AdamW (Loshchilov and Hutter,
2019) to optimize model weights with the learning
rate of 6e− 6. We train all the models with batch
size of 16 for 25 epochs. All the hyper-parameters
are tuned on the development set of EDEN.

4.2 Experiments on label translation

Most event ontologies are formulated in English,
including that of EDEN, which adopts the ACE
annotation schema in English for the annotation
of Norwegian texts. As such, the serialized event
structures contain a mixture of Norwegian and En-
glish (see Figure 1). When monolingual models

1For access and more information about the North-family
of models, please see; https://huggingface.co/
north

Model Trans Trg-I Trg-C Arg-I Arg-C PLM

JSEEGraph 69.1 68.0 52.4 51.5 XLMR-large

NorEventGen

61.8 47.4 48.5 47.4
NorT5-base

✓ 69.0 66.0 55.4 52.7
63.1 61.1 51.8 50.1

NorT5-large
✓ 69.4 66.8 56.8 54.9

61.3 57.9 44.4 42.0
North-T5-base

✓ 61.7 58.1 45.2 42.9
66.7 64.2 54.7 52.6

North-T5-large
✓ 67.6 65.7 56.0 54.3

Table 2: Experimental results on EDEN (F1-score, %).
Trg-I and Trg-C correspond to event trigger identification and
classification; Arg-I and Arg-C correspond to event argument
identification and classification. Trans indicates whether the
labels are translated into Norwegian.

are used on non-English datasets, this language
mix might affect model performance. To exam-
ine the influence of English labels on Norwegian
event generation, we translate the ontology (event
types and argument roles) into Norwegian, so that
both labels and texts are in Norwegian. By compar-
ing the results on original and translated datasets,
we can evaluate to what extent the event structure
language influences the results.

4.3 Experiments on trigger essentiality in
structured event generation

As mentioned above, event extraction has tradi-
tionally been approached as a token-based classi-
fication task, which explicitly anchors the event
structures to tokens in the input. This means that
the classification of the event type is explicitly re-
lated to the event trigger word. For the current
approach, this relation is less constrained, and
it is therefore possible to evaluate the extent to
which event extraction performance relies on the
generation of the event triggers. Although the
task of event extraction includes both event de-
tection and argument extraction, the evaluation of
arguments is exclusive of the trigger words, and
is only affected by event type prediction. With
our NorEventGen framework, it is convenient to
re-structure the output by excluding the trigger
text generation, by simply updating the structured
event record to ((Event type (arg role1
arg1)(arg role2 arg2)). Together with the
change of task formulation, we introduce “Evt-C”
(event type classification) as the metric to evalu-
ate event type prediction; an event type is correctly
predicted if it matches a gold event type. The evalu-
ation metric for event arguments remains the same.
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PLM Trans Top 5 difficult event types

NorT5-base ✓ END-ORG, TRIAL-HEARING, START-POSITION, START-ORG, ELECT
END-ORG, START-ORG, CHARGE-INDICT, CONVICT, TRIAL-HEARING

NorT5-large ✓ START-ORG, TRIAL-HEARING, END-ORG, BE-BORN, TRANSFER-MONEY
START-ORG, TRIAL-HEARING, CONVICT, CHARGE-INDICT, END-ORG

North-T5-base ✓ START-ORG, BE-BORN, END-ORG, TRIAL-HEARING, CHARGE-INDICT
INJURE, END-ORG, TRIAL-HEARING, PHONE-WRITE, START-ORG

North-T5-large ✓ END-ORG, BE-BORN, TRIAL-HEARING, CONVICT, START-ORG
END-ORG, START-ORG, TRIAL-HEARING, CONVICT, BE-BORN

Table 3: Top 5 difficult event types for our models to predict, mesured by F1 scores of Trg-C (event
trigger classification). Trans indicates whether the labels are translated into Norwegian.
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Figure 2: Event type distributions in EDEN test set versus our best model’s predictions.

PLM Evt-C Arg-I Arg-C

NorT5-base 61.3 30.4 28.5
NorT5-large 63.6 21.5 20.6
North-T5-base 54.7 28.0 25.3
North-T5-large 59.0 22.2 21.2

Table 4: Experimental results with trigger text ex-
traction excluded (F1-score, %). “Evt-C” refers to
event type classification; Arg-I and Arg-C corre-
spond to event argument identification and classifi-
cation

5 Results and discussion

We here present the results of NorEventGen on Nor-
wegian event extraction with generative modeling.
We first present the overall performance for dif-
ferent model configurations, before discussing the
role of label translation and trigger generation, as
described above. We then provide a more in-depth

analysis of the generated event structures with a
specific focus on invalid generations and present
an error analysis for the best performing system.

5.1 Overall performance

As shown in Table 2, our results align quite closely
with those of JSEEGraph. Compared with previ-
ous work, our system shows better performance
on event argument extraction; our best-performing
system presents an improvement of around 4 per-
centage points on both argument identification and
classification F1 scores. However, on trigger ex-
traction, only large models are on par with previous
work.

In terms of the choice of pretrained LMs, NorT5
generates better results than North-T5 across differ-
ent model sizes, which is especially true for base
models. For model size, moving from a base model
to a large model, we find that the results improve
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PLM Trans Event type Trigger Argument role Argument
#Invalid #Gold #Pred #Invalid #Gold #Pred #Invalid #Gold #Pred #Invalid #Gold #Pred

NorT5-base
0 881 614 2 881 614 1 1,524 1010 7 1,524 1,010

✓ 1 881 803 8 881 883 1 1,524 1,374 16 1,524 1,374

NorT5-large
0 881 656 0 881 656 1 1,524 1,030 4 1,524 1,030

✓ 2 881 956 10 881 956 1 1,524 1,595 10 1,524 1,595

North-T5-base
0 881 856 1 881 856 0 1,524 1,527 4 1,524 1,527

✓ 1 881 939 3 881 939 0 1,524 1,649 5 1,524 1,649

North-T5-large
0 881 1,065 5 881 1,065 0 1,524 1,835 10 1,524 1,835

✓ 0 881 997 5 881 997 1 1,524 1,698 3 1,524 1,698

Table 5: Invalid generations. Valid tokens are the event ontology (event types and argument roles) and the
input sequence. For each item, the number of invalid instances are listed; “#Gold” and “#Pred” refer to
the number of reference and predicted instances. “Trans” refers translated ontology into Norwegian.

considerably.
In terms of event types, as shown in Table 3,

difficult event types to predict are largely shared
across all of our models, and these event types
are somewhat less frequent (as shown in Fig-
ure 2a). In particular, three event types (END-ORG,
START-ORG, TRIAL-HEARING) are always
among the top 5 difficult event types. Under dif-
ferent experimental setups, certain event types can
also be difficult to predict; for instance, INJURE
event even ranks as the most difficult event type
for North-T5-base model trained on EDEN with
translated labels.

5.2 Label translation

We further find that translating the language of the
event ontology is beneficial for all models, in par-
ticular for the NorT5 model. The fact that the gain
for North-T5 is less could be due to the fact that the
model is continually trained from a multilingual T5
model, so it has substantial knowledge of English.
In contrast, as a monolingual model trained from
scratch for Norwegian, NorT5 is able to benefit
more from the translated labels.

5.3 The importance of trigger generation

From Table 4, it is clear that excluding trigger gen-
eration (in both training and testing) dramatically
affects the performance negatively for both event
type prediction and argument extraction, in particu-
lar the latter. The scores for argument identification
and classification are almost halved across all mod-
els. For event type classification, the F1 scores are
also considerably lower. To sum up, trigger word(s)
generation lies at the core of structured event record
generation, since it is the strong indicator of event
types, which further affect the evaluation of event
arguments.

In terms of pretrained LMs, NorT5 performs bet-
ter than North-T5 in both base and large variants.
Considering the individual subtasks, the large mod-
els tend to perform better than the base versions
on event type generation, but worse on argument
generation, in this particular set-up.

5.4 Analysis of generated event structures

The task of event extraction relies on extraction and
classification, namely extracting text spans (event
trigger / argument) from the input sequence and la-
belling (event type / argument role) them. As such,
in the context of generation, only tokens from the
event ontology and the input sequence are valid
generations. Since we do not apply additional de-
coding constraints during generation, the model is
forced to learn the event ontology knowledge and
attend to input tokens. Table 5 presents statistics
for the generated event type labels, trigger words,
argument role labels and argument words for the
various model configurations. In general, models
trained with NorT5 tend to under-predict, while
models trained with North-T5 tend to over-predict.
The number of predicted arguments is strongly in-
fluenced by the number of predicted event triggers,
i.e., more predicted triggers come with more pre-
dicted arguments.

When it comes to the generation of invalid event
triggers or arguments, as shown in Table 5, such
invalid generations are minimal. In terms of event
ontology, across all settings, the model rarely gen-
erates event type or argument role labels outside
the ontology knowledge contained in the training
data. There are maximum 2 cases out of hundreds
of instances, for both event type and argument role.
When it comes to extracting text spans from the
input tokens for event triggers and arguments, we
find that there are more cases of invalid generations.
In general, the number of invalid trigger words is
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consistently lower than that of invalid arguments
for the same model. We also find that the models
using label translation seem to generate a higher
proportion of invalid arguments than the models
trained on non-translated event structures. The last
rows of Table 6 provides an example of invalid
trigger/argument generations.

5.5 Error analysis

There are various errors made by our model, as
summarized in Table 6. Similar to classification-
based models, our model predicts either wrong
event type or argument role, and can extract wrong
text spans for trigger or argument, e.g. in the
case of the partially overlapping triggers “statlige
tilskudd”. Errors are also prevalent in cases of
nested event arguments, which is a common chal-
lenge for event extraction systems (You et al.,
2023). In Table 6, we see that the Entity ar-
gument of the End-Position event is nested
within the Position argument, a relation that
the system does not accurately predict.

Generation-based methods also introduce some
new error types, namely invalid generations, as
discussed above. These errors commonly occur
in generated trigger word(s) or argument word(s)
where the model generates words that do not occur
in the original input text. We find that our model
would generate synonyms of the gold tokens, like
the listed example; “frijent” and “frifinn” are syn-
onyms, both meaning “acquit”. We also find that
it is possible for the model to output just part of a
token, like “sør” from “sørover”.

6 Use case: event extraction from
Norwegian news

One of the main use cases for event extraction
systems is the automated analysis of large collec-
tions of news texts. An interesting question is
whether the distribution of event types in newer
news sources is similar to that found for the
EDEN dataset (based on the somewhat dated news
sources from the Norwegian Dependency Tree-
bank(Øvrelid and Hohle, 2016)). We here apply
our best model2 on a newly collected news corpus
dubbed the Norwegian MediaCorpus3. The Media-
Corpus collects millions of news articles in 2010s

2Our best model is trained with NorT5-large on EDEN
with translated event ontology.

3The corpus can be accessed online on: https://
clarino.uib.no/korpuskel/corpora

from three major media houses in Norway: Ame-
dia, Schibsted, and TV 2. Given its size, the corpus
provides a representative sample of the Norwegian
news landscape. Table 7 provides detailed statis-
tics of the corpus. We randomly select a smaller
set from the entire MediaCorpus to test our model;
specifically, we select 200,000 articles from each
media house. Detailed statistics are shown in Ta-
ble 7.

6.1 Event types distribution in MediaCorpus
As shown in Figure 2b, on the test set of EDEN, the
event types produced by our model share a similar
distribution with the gold event types (Figure 2a).
The distribution of predicted event types for the
selected subset of MediaCorpus is shown in Fig-
ure 3, which also resembles the one on the EDEN
test set, with a long tail. Even though the most
frequent event type is still MEET, the proportion
is much larger, and none other event types are on
par. As shown in Table 8, among the top 10 trigger
words for MEET event, apart from explicit words
related to meetings, half of them are related to sport
matches and Word Cup even ranks as the top 10.
The event ontology of EDEN does not cover sports
event types, though they are often news-worthy, but
those events are predicted into the closet event type
in the ontology, namely MEET. This phenomenon
may indicate that frequent event types reported in
the news will still be predicted, though not covered
by the ontology itself.

Other frequent event types are TRANSPORT,
TRANSFER-OWNERSHIP, TRANSFER-MONEY,
ATTACK, and INJURE. Similarly, the least fre-
quent event types in the MediaCorpus overlap
with those in EDEN, such as SUE, ACQUIT, and
DIVORCE. In summary, EDEN represents the Nor-
wegian news landscape relatively well, and our
NorEventGen model trained on the same dataset
has value in real-life application.

6.2 Article tag vs event types
Each article in MediaCorpus has one or more cus-
tom tags. These are tags that have been manu-
ally assigned by journalists to the article in ques-
tion. There are 287,687 unique tags in the en-
tire MediaCorpus. Such a large set of article tags
can be attributed to the authors’ creativity and the
lack of a consistent tag set. The most frequent
tag nyheter (“news”) is incredibly vague, and
about 20% of the articles would be assigned this
tag. Sports related tags are also among the most
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Error type Gold Pred

Wrong event type
Input: Skole evakuert etter trusler på Internett

School evacuated after threats on the Internet

Event type: TRANSPORT
Trigger: evakuert
Artifact: Skole

Event type: ATTACK
Trigger: evakuert
Target: Skole

Wrong trigger
Input: nye St. Olavs hospital ikke kan forvente flere statlige tilskudd.

new St. Olavs hospital cannot expect more government grants.

Event type: TRANSFER-MONEY
Trigger: tilskudd

Event type: TRANSFER-MONEY
Trigger: statlige tilskudd

Missing argument
Input: Ledelsen av EU skifter fortsatt hvert halvår.

The leadership of EU changes still every six months.

Event type: END-POSITION
Trigger: skifter
Position: Ledelsen av EU
Entity: EU

Event type: END-POSITION
Trigger: skifter
Position: Ledelsen av EU

Invalid trigger
Input: Han tilsto det ene drapet, men ble frikjent for drapet på sløgedal Paulsen.

He confessed the one murder, was acquitted of the murder of Sløgedal Paulsen.

Event type: ACQUIT
Trigger: frijent

Event type: ACQUIT
Trigger: frifinn

Invalid argument
Input: · · · å selge trålfartøy med konsesjon sørover, mens det er helt kurant å selge andre veien.

· · · to sell trawlers with license in the south, while it is normal to sell the other way

Event type: TRANSFER-OWNERSHIP
Trigger: selge
Artifact: trålfartøy med konsesjon

Event type: TRANSFER-OWNERSHIP
Trigger: selge
Artifact: trålfartøy med konsesjon
Place: sør

Table 6: Typical errors made by our best-performing model trained with NorT5-large.
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Figure 3: Predicted event types distribution on selected set of MediaCorpus.

frequent tags, and football stands out from other
sports as fotball(“football”) is the third most
frequent tag. In real life, sports is an important

news-worthy topic, but the related event types are
not covered in the event ontology of EDEN.

To better evaluate the relationship between
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Figure 4: Frequencies of document tag and event type (predictions on selected set of MediaCorpus)

Source #Docs #Sents #Tokens

Entire corpus
Amedia 5,263,591 139,482,285 2,218,694,185
Schibsted 2,710,885 67,802,274 1,089,613,721
TV 2 585,772 12,741,165 192,327,865

Selected set
Amedia 200,000 3,767,797 58,515,290
Schibsted 200,000 5,572,248 91,012,216
TV 2 200,000 3,914,595 55,298,721

Table 7: Statistics of MediaCorpus.

article tags and event types, tags similar to
nyheter and sports-related tags are excluded.
The frequencies of article tag vs event type are
shown in Figure 4. In general, a strong co-
relation between article tag and event type is
not clear. There are several tags that frequently
co-occur with events: innenriks (“domes-
tic”), krim (“crime”), utenriks (“abroad”),
and underholdning (“entertainment”). These
tags often occur together with ATTACK, DIE,
MEET, TRANSPORT, TRANSFER-MONEY and
TRANSFER-OWNERSHIP events. It is clear that
events about violence and economic activities are
news-worthy both domestically and abroad.

7 Conclusion

In this paper, we address event extraction from
Norwegian news with a generation-based method.
Our experiments on the Norwegian EDEN dataset
show that our NorEventGen model is able to ac-

kampen match
møte meeting
kamp match
kamper matches
møter meet
møtet the meeting
møtte met
besøk visit
kampene the matches
VM World Cup

Table 8: Top 10 trigger words for MEET event in
the predictions of the selected MediacCorpus.

quire event ontology knowledge and generate to-
kens from the input sequence for event triggers and
arguments, thus it is not necessary to implement
constraints during the generation process. In our
experiments, we also find that it is highly beneficial
to localize the event ontology to the target language,
in our case Norwegian, and using a monolingual
Norwegian model is more beneficial. Beyond the
EDEN dataset, we extend our system to process
a large corpus of raw Norwegian news texts. By
applying our model to this broader dataset, we an-
alyze the predicted event distribution, providing
insights into the types of events prevalent in Nor-
wegian news. This analysis serves as a snapshot
of the Norwegian news landscape and illustrates
the potential applications of our approach for large-
scale event analysis in less-resourced languages.
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Abstract

We present SNAKMODEL, a Danish
large language model (LLM) based on
LLAMA2-7B, which we continuously
pre-train on 13.6B Danish words, and
further tune on 3.7M Danish instructions.
As best practices for creating LLMs for
smaller language communities have yet
to be established, we examine the effects
of early modeling and training decisions
on downstream performance throughout
the entire training pipeline, including (1)
the creation of a strictly curated corpus
of Danish text from diverse sources; (2)
the language modeling and instruction
tuning training process itself, including
the analysis of intermediate training
dynamics, and ablations across different
hyperparameters; (3) an evaluation on
eight language and culturally-specific tasks.
Across these experiments SNAKMODEL

achieves the highest overall performance,
outperforming multiple contemporary
LLAMA2-7B-based models. By making
SNAKMODEL, the majority of our pre-
training corpus, and the associated code
available under open licenses, we hope to
foster further research and development in
Danish Natural Language Processing, and
establish training guidelines for languages
with similar resource constraints.1

1 Introduction

The landscape of large language models (LLMs)
has seen rapid expansion, with an increasing

' These authors contributed equally.
1The code and data scripts are available here:

https://github.com/nlpnorth/snakmodel/.

trend towards open-weight releases for a broader
range of languages. Notable English-centric ex-
amples include Pythia (Biderman et al., 2023), Vi-
cuna (Zheng et al., 2023), Mistral (Jiang et al.,
2023), Qwen (Bai et al., 2023), Llama2 (Tou-
vron et al., 2023), Llama3 (Dubey et al., 2024),
OLMo (Groeneveld et al., 2024), and Phi (Ab-
din et al., 2024). Simultaneously, recent efforts
have extended LLMs to multilingual settings, in-
cluding models such as mT5 (Xue et al., 2021),
Bloom (Le Scao et al., 2023), Aya (Üstün et al.,
2024; Singh et al., 2024), RomanSetu (J et al.,
2024), and EuroLLM (Martins et al., 2024).

As anglocentric and/or multilingual LLMs have
nonetheless continued struggling to adapt to lower-
resource settings—especially with respect to prag-
matic and sociolinguistic factors (Hershcovich
et al., 2022; Cao et al., 2023; Naous et al., 2024;
Wang et al., 2024)—there is growing interest in
language-specific LLMs, either tailored to a single
language (see Related Work; Section 2) or special-
ized for a small set of similar languages (SiloAI,
2024; Dou et al., 2024). However, the best practices
for creating such language-adapted LLMs have yet
to be established—especially for smaller language
communities with resource limitations with respect
to data, compute, or both.

Danish offers a particularly interesting testbed
among these smaller languages. As a mid-resource
language, which is typologically related to English
and has largely overlapping character sets, it has
sufficient textual data for LLM adaptation, yet is
far from the levels of its neighbors (e.g., Swedish;
Ekgren et al., 2024). Additionally, it lacks ad-
vanced resources like native instruction-tuning data
or human-preference data, making it necessary to
use translated datasets for which the downstream ef-
fects on model functionality are not yet well under-
stood. Linguistically, Danish has also been shown
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to be more challenging to learn for humans than its
neighbors due its phonological complexity (Trecca
et al., 2021; Christiansen et al., 2023), which re-
sults in downstream effects on discourse, such as
additional conversational redundancy (Christiansen
et al., 2023; Dideriksen et al., 2023).

With the goal to provide the Danish commu-
nity with a custom-adapted resource, as well as to
establish better-grounded guidelines for creating
LLMs in languages with similar linguistic charac-
teristics and resource constraints, we present and
analyze SNAKMODEL-7Bbase/instruct, two LLMs de-
signed specifically for the Danish language. Our
base model builds upon LLAMA2-7B, which we
continuously pre-train on a diverse collection of
Danish corpora comprising 350M documents (sen-
tences/paragraphs) and 13.6B words, before tuning
it on 3.7M Danish instruction-answer pairs. We
evaluate our model against contemporary LLAMA2-
7B-based models on the Danish part of the ScandE-
val benchmark (Nielsen, 2023) that encompasses
both language and culture-specific tasks. By re-
leasing not just the related artifacts (final model,
intermediate checkpoints, pre-training data, code),
but by also analyzing the effects of early decisions
in the training and model design process on inter-
mediate training dynamics and downstream perfor-
mance, we aim to provide resources that are not
just relevant for Danish, but for LLM adaptation in
general.

Contributions. This work contributes:

• A large, diverse, high-quality collection of
Danish corpora, totaling 350M documents
with 13.6B words (Section 3). We provide
scripts to collect and process the data.

• SNAKMODEL-7Bbase/instruct, two open-weight
7B-parameter language models continuously
pre-trained and instruction-tuned specifically
for Danish, for which we release all related
artefacts, and extensively analyze the model’s
intermediate training dynamics (Section 4).

• An evaluation comparing SNAKMODEL-
7Binstruct and contemporary Danish models,
which analyzes performance with respect to
language and cultural tasks (Section 5).

• A consolidation of our findings into recom-
mendations for efficiently training LLMs un-
der similar resource constraints (Section 6).

2 Related Work

Continuously Pre-trained LLMs. Previous
work has shown that for both encoder and de-
coder language models (LM), continuous pre-
training is the de facto standard for adapting an
LM to a specific domain (Han and Eisenstein,
2019; Alsentzer et al., 2019; Lee et al., 2020;
Gururangan et al., 2020; Nguyen et al., 2020)
or another language, such as German (LeoLM-
Team, 2024), Spanish and Catalan (Ǎguila Team,
2023), Finnish (Luukkonen et al., 2023), Dutch (Ri-
jgersberg and Lucassen, 2023; Vanroy, 2024),
Italian (Bacciu et al., 2024), Japanese (Rakuten
Group et al., 2024), Basque (Etxaniz et al., 2024),
Swedish (AI-Sweden, 2024), Modern Greek (Vouk-
outis et al., 2024), Norwegian (NORA.LLM-Team,
2024), or multiple languages (Xue et al., 2021;
Alves et al., 2024; Üstün et al., 2024; Costa-jussà
et al., 2022; Martins et al., 2024; Dou et al., 2024;
Nguyen et al., 2024; Aryabumi et al., 2024; Dang
et al., 2024).

Open Large Language Models. Recent open
language models can be broadly divided into open-
source LLMs and open-weight LLMs. The main
difference is that open-weight releases include at
least a basic description of the training data, as well
as the model weights themselves. For open-source
LLMs, instead, the (non-trivial) expectation is to
have all resources released, including data, training
scripts, evaluation scripts, and model weights. We
follow previous endeavors such as Pythia (Bider-
man et al., 2023), OLMo (Groeneveld et al., 2024),
Latxa (Etxaniz et al., 2024), and Meltemi (Vouk-
outis et al., 2024), and release most sources of
our training data, including training and evaluation
scripts, as well as the model weights.

Danish Language Resources. In-language re-
sources are the fundamental building block for
further training an LLM for the Danish language.
There are several open-source toolkits for Dan-
ish, including models and datasets (Pauli et al.,
2021; Enevoldsen et al., 2021). Additionally,
there are several Danish-specific large corpora
of raw text, such as DaNewsroom (Varab and
Schluter, 2020) and Danish Gigaword (Strømberg-
Derczynski et al., 2021). Additionally, Danish
subsets can be found in public resources built on
crawled web data such as CommonCrawl (Wenzek
et al., 2020) and CulturaX (Nguyen et al., 2023).
In this work, we collect and combine a variety of
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sources for wider coverage, before pre-processing
them through a joint pipeline.

Danish Large Language Models. Previous en-
deavors at training LLMs that cover the Danish lan-
guage include Ciosici and Derczynski (2022), who
trained a T5 model (Raffel et al., 2020) for Dan-
ish. More recently, within the decoder-only fam-
ily of models, Munin (Danish-Foundation-Models-
Team, 2024) and Viking (SiloAI, 2024) were re-
leased. Munin is based on Mistral-7B (v0.1 Jiang
et al., 2023) and is further pre-trained on the
Danish Gigaword Corpus (Strømberg-Derczynski
et al., 2021) containing 1B words. However, the
model seems to underperform compared to its base
model counterpart, indicating some form of catas-
trophic forgetting. Viking is based on LLAMA2-
7B, and pre-trained from scratch on a mix of En-
glish, Finnish, Swedish, Danish, Norwegian, Ice-
landic and code (SiloAI, 2024). In this work,
SNAKMODEL-7Binstruct is continuously pre-trained
for Danish, and outperforms its original checkpoint,
as well as all other currently available Danish mod-
els with a comparable size.

3 Data & Pre-processing

3.1 Pre-training
Our Danish pre-training data, as shown in Table 1,
initially encompassed 927M documents and 24.6B
words, as measured by the Unix wc command. The
data is sourced from diverse platforms, for which
we verify appropriate licensing (wherever possible),
and include:

Bookshop (cc-by-4.0). EU Bookshop text
from OPUS (Tiedemann, 2012), as integrated
by Skadiņš et al. (2014). It contains well-edited,
official EU publications across diverse topics, con-
verted automatically from PDFs.

CC-100 (UNK). A cleaned version of a 2018
CommonCrawl dump (Wenzek et al., 2020), repro-
ducing data from Conneau et al. (2020). It consists
of web data, filtered using the fastText language
classifier (Joulin et al., 2017).

CulturaX (odc-by + cc0). mC4 (v3.1.0)
combined with accessible OSCAR cor-
pora (Nguyen et al., 2023).

DaNewsroom (UNK). Scraped from 19 news out-
lets (Varab and Schluter, 2020), originally for sum-
marization. We use the full news articles instead of
summaries.

DATASET ORIGINAL + FASTTEXT
Docs Words Docs Words

Bookshop 8.65M 208M 6.80M 187M
CC-100 344M 7.82B 256M 7.16B
CulturaX 449M 14.8B 333M 13.7B
DaNewsroom 24.2M 391M 11.3M 369M
Dawiki 1.70M 62.4M 1.20M 57.3M
FTSpeech 2.03M 43.3M 1.69M 40.9M
Gigaword 62.0M 1.02B 39.3M 898M
OpenSubtitles 30.2M 207M 19.6M 156M
Reddit 4.50M 73.9M 2.37M 64.0M
Twitter 1.69M 21.9M 406K 6.61M

TOTAL 927M 24.6B 672M 22.6B
+ DEDUPLICATION 350M 13.6B

Table 1: Preprocessing Steps. Data in number of
words using wc command. In the Original column,
we already use a pre-defined Danish slice of the
dataset. In the FastText column, we apply another
round of language identification to the data. In the
Deduplication row, we combine all data and dedu-
plicate it, which results in around 350M documents
and 13.6B words for the pre-training process.

Dawiki (cc-by-sa). Cleaned Wikipedia data
from 01-01-2024 (Attardi, 2015).

FTSpeech (FT-OD + FT-TV). A
transcription-based corpus from Danish par-
liamentary data (Kirkedal et al., 2020), used in
language modeling due to its large text volume.2

Gigaword (cc0 + cc-by). Danish Giga-
word (Strømberg-Derczynski et al., 2021) covers a
range of domains including wiki, books, web, and
social media data.

OpenSubtitles (UNK). Danish data from OPUS
OpenSubtitles (Lison and Tiedemann, 2016; Tiede-
mann, 2016).3

Reddit (UNK). Danish Reddit data from
ConvoKit (Chang et al., 2020), specifically
Denmark.corpus.zip.

Twitter (MIT). Data from the public Twitter
stream,4 reclassified using our own pipeline due
to inaccurate language labels.

To refine the overall concatenated dataset,
we implemented a preprocessing pipeline using
fastText (Joulin et al., 2017)5 for language iden-

2FT-OD and FT-TV refer to Folketing’s open data and
Folketing TV license.

3http://www.opensubtitles.org/
4https://archive.org/details/

twitterstream
5Using the lid.176.bin model with a threshold of 0.6.
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tification and text-dedup (Mou et al., 2023)6

for text deduplication. The language identification
process eliminated 28% of the documents while
retaining 92% of the tokens, indicating that many
short documents were removed, where language
prediction was less confident. The deduplication
step further reduced the corpus by 48% in docu-
ment count and 40% in token count. We antici-
pated significant content overlap between CC-100
and CulturaX, which underlines the importance
of deduplication in creating a more efficient and
representative dataset. These preprocessing steps
reduced our dataset to approximately 350M docu-
ments with 13.6B words. Following the open LLM
approach, we release all scripts used for collecting
and processing the data.

3.2 Instruction Tuning

As for most mid-to-low resource languages, Dan-
ish (Joshi et al., 2020) currently lacks human-
generated instruction tuning data, and instead re-
lies on automatically translated data from English,
which itself may be generated by LLMs. From
these sources, we select the following three after
manually inspecting them for quality:

SkoleGPT (Professionshøjskole, 2024) : A sub-
set of OpenOrca (Lian et al., 2023), which was au-
tomatically translated into Danish and filtered for
quality, containing 21.6k instruction-output pairs.

Danish OpenHermes (Mabeck, 2024) : A sub-
set of the automatically generated OpenHermes
dataset (“Teknium”, 2023), which was automat-
ically translated into Danish. It contains 98.7k
instruction-output pairs.

Aya Collection (Singh et al., 2024) : A collec-
tion of 44 datasets, which were automatically trans-
lated based on instruction templates from fluent
speakers. While the underlying Aya Dataset, on
which these translations are based, was created by
native speakers, the Danish portion of this data con-
tains less than 100 instances, leading us to opt for
the translations instead. We use 3.6M instruction-
output pairs from the Danish subset of the data.

Together, these data sources sum up to a total
of 3.7M instruction-answer pairs, which we train
SNAKMODEL-7Bbase on in Section 4.2.

6https://github.com/ChenghaoMou/
text-dedup

Parameter Value

Data Split

Training data 96.9%
Validation data 3.1%

Training Configuration

Vocabulary size 32,000
Context length 4,096
Training steps 12,500
Warmup steps 1,250
Number of epochs 1
Global batch size 512

Optimizer Parameters (AdamW)

β1; β2 0.9; 0.95
ϵ 10−5

Peak learning rate 1.5× 10−5

Minimum learning rate 5× 10−8

Weight decay 0.1
Gradient clipping 1.0

Table 2: Pre-training Hyperparameters and Con-
figuration Details. We show the hyperparameter
details of SNAKMODEL-7Bbase pre-training.

3.3 Evaluation Framework
For evaluation, we use the SCANDEVAL bench-
mark (Nielsen, 2023) covering eight tasks. The
tasks cover named entity recognition (NER;
DANSK by Hvingelby et al., 2020), sentiment anal-
ysis (SENTI; AngryTweets by Pauli et al., 2021),
linguistic acceptability (LA; ScaLA7), abstrac-
tive summarization (SUMM; Nordjylland-News
by Kinch, 2023), commonsense reasoning (CSR;
translated HellaSwag by Zellers et al., 2019), and
question answering (QA; ScandiQA8). The bench-
mark also include culture-specific datasets, namely
Danske Talemåder (TM; Nielsen, 2023), which
prompts for meanings behind common proverbs,
and a collection of official Danish Citizenship Tests
(CT; Nielsen, 2024). Evaluation metrics differ
per task, and are indicated as F1, macro-averaged
F1 (mF1), micro-averaged F1 (µF1), BERTScore
(BERTS.; Zhang et al., 2020), and Accuracy (Acc.).

4 Model Training

4.1 Language Modeling Pre-training
Training Details. We continuously pre-train
from LLAMA2-7Bbase (Touvron et al., 2023). We
show configuration and hyperparameter details

7Based on the Universal Dependencies dataset from (Kro-
mann and Lynge, 2004).

8ScandiQA is a translation of the English MKQA
dataset (Longpre et al., 2021) and does not strictly focus on
Scandinavian knowledge.
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in Table 2. For further pre-training and fine-tuning,
we make use of the Megatron-LLM library (Cano
et al., 2023), based on the Megatron-LM library.9

We use the same tokenizer as LLAMA2-7B, byte-
pair encoding (BPE; Sennrich et al., 2016) as im-
plemented in the SentencePiece toolkit (Kudo and
Richardson, 2018), with a vocabulary size of 32K
subwords. As Danish and English share the same
Indo-European language family, we assume large
overlap in vocabulary subwords. Hence, we do not
re-train nor extend the vocabulary.

Hardware and Emissions. SNAKMODEL-
7Bbase is trained on private infrastructure with
one node, containing four NVIDIA A100-PCIe
40GB GPUs. The node has an AMD Epyc 7662
128 Core Processor and 1TB of RAM. Total
time of training took 8,928 GPU hours (93 days
× 24 hours × 4 GPUs) between March–June
2024. The average carbon efficiency was 0.122
kgCO2eq/kWh during this time in Denmark.10

This is equivalent to 272.3 kg CO2 eq. emitted,
based on the Machine Learning Impact calculator
(Lacoste et al., 2019).11

Loss Trajectories. In Figure 1, we show the
continuous pre-training process of SNAKMODEL-
7Bbase in terms of loss curve based on perplexity.
The loss shows a declining gain over time. We
speculate that the model is close to convergence
or that the learning rate is reduced, although previ-
ous work has shown that downstream performance
can still increase with more training after loss and
perplexity have converged (Liu et al., 2023).

Leakage. The training data of LLAMA2-7B is
not public. However, since it was released in July
2023 after the ScandEval benchmark, we investi-
gate potential test data leakage by prompting the
model for information about the dataset (inspired
by Sainz et al., 2023; Balloccu et al., 2024), as well
as completions for the first five sentences of each
dataset. This process yielded no evidence that the
evaluation datasets were included during training.

For SNAKMODEL-7Bbase, we have access to all
training data, such that we can search for 200 ran-
dom 8-grams from each of our datasets in the raw
data. We find that a small amount (6/200) of the
tweets from AngryTweets are included in our Twit-

9https://github.com/NVIDIA/Megatron-LM.
10According to https://app.electricitymaps.

com/map.
11https://mlco2.github.io/impact.
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Figure 1: SNAKMODEL-7Bbase Pre-training Be-
haviour. We report the stable language model loss
during training and validation.

ter sample (without labels). The DANSK NER
dataset was completely included (without labels),
as it was sampled from Gigaword, and many parts
of the ScaLA dataset were also included in its orig-
inal form in GigaWord and CC100. The code for
all leakage tests is included in our code repository.

4.2 Instruction Tuning

Starting from SNAKMODEL-7Bbase, we train our
model on the Danish instruction datasets outlined
in Section 3.2.

Training Details. For instruction tuning, we opt
for the more parameter-efficient low-rank adapta-
tion (LoRA; Hu et al., 2022), to enable faster it-
erations across multiple ablations (different tem-
plate formats and base models), and to more eas-
ily analyze the intermediate training dynamics
(Section 4.3). Nonetheless, we choose a substan-
tially higher-parameter setup than is commonly
employed when using LoRA (Hu et al., 2022;
Dettmers et al., 2023), in order to approximate
full fine-tuning as closely as possible given our
computational budget. Specifically, we use rank
r = 128 adaptation matrices, which are applied
to all parameters within the model without quan-
tization (Dettmers et al., 2023). We train for one
epoch over our instruction data using the AdamW
optimizer with a constant learning rate of 2×10−4,
and a global batch size of 64.

Instruction Template. The formatting of
instruction-answer pairs is an important design de-
cision with significant downstream impacts (Sclar
et al., 2024). For our adaptation context (LLAMA2-
7B + Danish), we therefore ablate across three
templates: (1) CONCAT, which concatenates
instructions and answers; (2) CHAT, which wraps
the instruction in special [INST]/[/INST]
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(a) SNAKMODEL-7Bbase
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(b) SNAKMODEL-7Binstruct
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(c) Instruction Tuning Dynamics
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Figure 2: SNAKMODEL Training Dynamics of LM pre-training, instruction tuning, and multi-epoch
instruction tuning, as measured on the ScandEval (validation) tasks of linguistic acceptability (LA), named
entity recognition (NER), sentiment analysis (SENTI), summarization (SUMM), commonsense reasoning
(CSR), question answering (QA), proverb meaning (TM), and citizenship tests (CT).

delimiters following LLAMA2-7Bchat
12; (3)

ALPACA, following a multi-line format with
instruction/input/answer headers (Wang et al.,
2023), which we translate into Danish.

Instruction tuning using the CHAT format leads
to the highest overall scores on the validation split
of our evaluation benchmark (56.37 avg.). CON-
CAT performs comparably (55.52 avg.), however
we observe that models trained using this template
frequently generate continuations to an instruction,
instead of an answer. ALPACA performs worst
(53.26 avg.), and we observe that when prompting
models without correctly terminating the instruc-
tion, the CHAT model consistently terminates the
instruction on its own (by generating [/INST]),
while the ALPACA model often struggles to do so.

4.3 Training Dynamics

We next investigate our models’ intermediate train-
ing dynamics to establish how much language mod-
eling and/or instruction tuning are required to ob-
tain a certain level of performance (evaluated ac-
cording to Section 3.3), and whether these trajecto-
ries differ across task types.13

Language Modeling. By tracking the valida-
tion performance of the non-instruction-tuned
SNAKMODEL-7Bbase checkpoints across pre-
training, we aim to identify when the English base

12Note that these delimiters are not split by the tokenizer.
13The intermediate checkpoints can be found

here: https://huggingface.co/NLPnorth/
snakmodel-7b-base/tree/main for SNAKMODEL-
7Bbase and https://huggingface.co/NLPnorth/
snakmodel-7b-instruct for SNAKMODEL-7Binstruct.

model begins adapting to Danish. Figure 2a shows
performance on the Danish ScandEval tasks from
start (LLAMA2-7Bbase) to finish (SNAKMODEL-
7Bbase). For SENTI, SUMM and CSR, perfor-
mance remains relatively consistent, while for LA,
TM and CT performance gradually increases until
4,000–6,000 steps before converging.

Meanwhile, we see performance decreases for
NER and QA, with the latter dropping from 61.9%
F1 to around 20% within the first 2,000 steps.
We attribute these changes to two respective hy-
potheses: for NER, answers are enforced to be in
JSON-format in ScandEval. As our pre-training
data consists exclusively of natural language, the
model’s output distribution may skew away from
tokens such as “{}”, required for this task. For
QA, we qualitatively observe that SNAKMODEL-
7Bbase tends to generate continuations to the pro-
vided questions, instead of answers. Additionally,
it does so in Danish, which may be detrimental
to performance, since many answers in QA are
English names.

Instruction Tuning. Next, we investigate the
effect of applying instruction tuning at different
points during Danish pre-training, in order to as-
sess when it starts becoming beneficial. Fig-
ure 2b shows the validation performance of in-
termediate SNAKMODEL-7Bbase checkpoints af-
ter instruction-tuning, i.e., from LLAMA2-7Bbase +
INSTda (instruction-tuning on Danish instruction–
completion pairs) until our final SNAKMODEL-
7Binstruct (fully pre-trained SNAKMODEL-7Bbase
+ INSTda). Once again, performance for most tasks
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Figure 3: Layer-wise Weight Divergence of
SNAKMODEL-7Bbase as measured in total SSAs.
Darker bars represent EMB and LMH respectively.

is surprisingly stable throughout training. We fur-
ther do not observe the same performance drops
for NER and QA as during language modeling
pre-training, showing that instruction tuning recov-
ers these original functionalities. Additionally, we
observe a general performance increase across the
board. In particular, performance for LA, TM, and
CT climbs and converges after 2,000–5,000 steps
of Danish pre-training, and subsequent instruction-
tuning. This indicates that training on less than
half of our corpus may already be sufficient to ob-
tain close-to-final performance. Interestingly, the
largest performance improvements are observed for
benchmark tasks based on Danish data, instead of
translations (e.g., LA, TM, CT).

In terms of the training dynamics of instruction
tuning itself, Figure 2c shows how one epoch of
instruction tuning is already sufficient to obtain
most performance gains, including the performance
recovery of NER and QA. While there may be
some benefit to one or two additional instruction
tuning epochs, we believe that at this scale, they
can be skipped in favor of efficiency. Since the
use of duplicate data across epochs has however
also been shown to negatively affect downstream
performance (Biderman et al., 2023), we leave the
exploration of this trade-off to future work.

Weight Divergence Analysis. Lastly, we take a
closer look at changes within the model to iden-
tify which parameters are most strongly affected by
Danish language adaptation. To measure weight di-
vergence, we follow Müller-Eberstein et al. (2024)
and measure the principal subspace angles (SSAs;
Knyazev and Argentati, 2002) of each parame-
ter before and after adaptatation (0◦/90◦ ↔ sim-
ilar/dissimilar). Across layers, Figure 3 shows how
there is a slightly higher rate of change towards
the penultimate layers of the model. This may be
representative of cross-lingual encoding early in

EMB Q K V O G W W LMH
Parameter Types

0

2

4

6

SS
As

Figure 4: Parameter-wise Weight Divergence of
SNAKMODEL-7Bbase as measured in mean SSA.
Darker bars represent EMB and LMH respectively.

the model, and subsequent target language special-
ization in later layers (Wendler et al., 2024).

Figure 4 provides a more granular view of which
parameter types are changing within each layer:
Most updates per layer appear to be concentrated
in the gate G and up-projection W↑ of the SwiGLU
feed-forward block (Shazeer, 2020), while the
down-projection W↓ and self-attention parameters
(Q, K, V , O) are relatively unaffected. For the
self-attention parameters, we hypothesize that this
lack of change could be an effect of the relatively
high syntactic similarity of English and Danish,
requiring less adaptation for in-sequence depen-
dencies. Interestingly, this pattern is also observed
when adapting speech recognition models to under-
resourced settings (Müller-Eberstein et al., 2024).

The initial embedding layer (EMB) as well as
final language modeling head (LMH) also diverge
to a comparable degree as G and W↑, which is to
be expected given their importance to receiving
and generating text in a new language. In terms
of token-level changes within EMB and LMH (as
measured by the absolute difference of each token
row before and after adaptation), we observe larger
updates to subwords, which occur both in Danish
and other Germanic languages (e.g., “ er”, “ ik”,
“ billion”), while subwords in other scripts appear
to be least affected. Overall, our findings indicate
that future work may be able to train language-
specific models more efficiently by focusing exclu-
sively on the EMB, G, W↑ and LMH parameters.

5 Final Results and Analysis

Benchmark Results. Using our final model con-
figurations, we present our results on the test split
of the Danish portion of ScandEval in Table 3. We
compare SNAKMODEL-7Binstruct against variants
built on the same base model, including the orig-
inal LLAMA2-7Bbase and LLAMA2-7Bchat. In ad-
dition, we train +INSTda variants of these English
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TASK → LA NER SENTI SUMM CSR QA TM CT AVG.
↓ MODEL (mF1) (µF1) (mF1) (BERTS.) (Acc.) (F1) (Acc.) (Acc.)

LLAMA2-7B BASED LLMS

LLAMA2-7Bbase 33.43 22.31 61.54 65.50 29.76 63.54 38.69 57.05 46.48
LLAMA2-7Bchat 47.42 24.63 62.35 66.15 32.24 61.34 46.67 55.18 49.50

LLAMA2-7Bbase + INSTda 36.10 28.48 62.86 66.43 29.04 64.40 49.10 58.46 49.35
LLAMA2-7Bchat + INSTda 43.40 29.70 65.92 65.81 30.95 62.46 57.26 55.59 51.39
VIKING-7B 33.67 17.18 49.48 61.96 25.11 56.29 23.97 34.90 37.82

SNAKMODEL-7Bbase 56.28 19.91 57.42 58.95 30.47 18.52 69.14 60.93 46.45
SNAKMODEL-7Binstruct 52.91 29.76 66.70 66.61 29.46 64.66 71.05 71.88 56.63↑10.15

MISTRAL-7B BASED LLMS

MISTRAL-7B-V0.1 38.38 32.66 54.53 66.47 37.39 64.55 64.50 71.56 53.76
MUNIN-7B-ALPHA 53.03 28.71 43.77 67.27 42.68 63.44 83.01 77.91 57.48
MUNIN-7B-V0.1DEV0 57.02 28.74 50.72 67.89 42.17 64.41 93.45 85.82 61.28↑7.52

Table 3: Results (Test) on the ScandEval Benchmark. We evaluate LLAMA2-7Bbase, as well as the
chat version against SNAKMODEL-7Binstruct and other 7B models in ScandEval (best results in blue). In
the subsequent rows, we test the same LLAMA2-7B tuned the Danish instruction tuning data (+ INSTda).
In the final rows, we show the Mistral-based models (best results in orange). We evaluate in F1, macro-
averaged F1 (mF1), micro-averaged F1 (µF1), BERTScore (BERTS.; Zhang et al., 2020), and Accuracy
(Acc.).

LLAMA2-7B models on the same Danish instruc-
tion datasets as SNAKMODEL-7Binstruct, in order
to isolate the effect of Danish language modeling
pre-training. Finally, we include comparisons to
the Viking-7B model (SiloAI, 2024) and similarly-
sized models based on the Mistral model suite
(Jiang et al., 2023; Danish-Foundation-Models-
Team, 2024).

Overall, SNAKMODEL-7Binstruct outperforms all
other LLAMA2-7B-based models, including those
with access to the same set of Danish instruction-
tuning data, with a final average benchmark score
of 56.63. The performance improvements over
the English model are particularly pronounced for
sub-tasks based on natural Danish data, including
LA (33.43→ 52.91), TM (38.69→ 71.05), and
CT (57.05→ 71.88). While the Mistral-7B-based
models outperform SNAKMODEL-7Binstruct by up
to 4.65% abs., this approximately matches the base
model performance difference between Mistral-7B-
v0.1 and LLAMA2-7Bbase which spans 7.28%.

Qualitative Behaviors. Since ScandEval scores
are largely computed using constrained generation,
we would like to highlight some qualitative obser-
vations from when models generate text without
constraint. First, we find that LLAMA2-7B models
fail to generate Danish text consistently, even when
explicitly prompted to do so (confirming the find-
ings by Puccetti et al., 2024). Since they nonethe-

less achieve non-trivial benchmark scores under
constrained generation, we hypothesize, that they
obtain some Danish language functionality during
their original, primarily English pre-training. Our
custom LLAMA2-7B models to which we add Dan-
ish instruction tuning (+INSTda) generate Danish
responses (even when prompted in English), high-
lighting that a relatively small amount of trans-
lated Danish instructions is sufficient to bias mod-
els towards generating output in a new language.
Nonetheless, the fact that SNAKMODEL-7Binstruct,
which is trained on non-translated Danish text out-
performs the models trained on translated data,
highlights the importance of curating high-quality
native-language data for the adaptation target.

6 Guidance for Future Work

From our final evaluation, as well as our analysis of
the training dynamics of SNAKMODEL-7Binstruct,
we next consolidate some guidance for future work
adapting English LLMs to languages with similar
linguistic properties and resource constraints.

Data. As we found large overlaps across data
sources, as well as large amounts of non-Danish
or irrelevant data (Section 3), applying stringent
pre-processing standards is important when work-
ing with smaller languages—especially when auto-
matic filtering tools may be biased towards larger,
related languages (e.g., Swedish).
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Training. Our training dynamics analysis (Sec-
tion 4.3) showed that despite our total 13.6B word
pre-training corpus, applying instruction tuning af-
ter 2,000–5,000 steps of Danish pre-training (i.e.,
less than half of the corpus) may already be suf-
ficient to obtain close-to-final performance. For
instruction tuning itself, one epoch over translated
data appears to be sufficient to amplify instruction-
following functionalities in the target language.
Nonetheless, training on non-translated target lan-
guage data is important to improve performance on
more culturally specific tasks based on native data
(i.e., LA, TM, and CT).

Finally, our weight divergence analysis revealed
that most parameter updates are consolidated in the
embeddings, feed-forward up-projections, and lan-
guage modeling head. As English and Danish share
a relatively similar syntactic structure, languages
with more distinctive typologies may nonetheless
exhibit larger changes to the self-attention param-
eters. For model adaption across a comparable ty-
pological distance as English and Danish however,
focusing training efforts on the aforementioned pa-
rameter types—in addition to employing existing
parameter-efficient fine-tuning techniques (e.g., Hu
et al., 2022; Dettmers et al., 2023)—may therefore
yield even higher efficiency gains.

7 Conclusion

In this work, we introduced the SNAKMODEL

suite, which includes a 7B-parameter base and
instruction-tuned LLM for Danish, in addition to
its pre-training and instruction-tuning data, inter-
mediate checkpoints, and evaluation. By analyzing
design decisions related to data curation and train-
ing dynamics, we further consolidated guidelines
for future work adapting LLMs to new languages,
to foster research not just in Danish, but in language
communities with similar resource constraints.

Limitations

What Went Wrong and What Decisions We
Took. Our training process encountered several
challenges across multiple runs. In Run 1, we be-
gan by restarting training from the LLAMA2-7B
checkpoint using the identical learning rate the orig-
inal model had been trained on. However, we faced
gradient explosion at iteration 2,031, which we
attempted to mitigate through gradient clipping.
Despite this effort, server crashes at step 3,500 and
persistent gradient explosions forced us to halt the

run after approximately 46 days, with a final lan-
guage model loss of ±1.77. For Run 2, we halved
the peak learning rate to 1.5 × 10−4 and adjusted
other parameters, but gradient explosion recurred
at step 1,390, leading us to terminate the run after
about 10 days with a final loss of ±1.79. In Run
3, we significantly reduced the peak learning rate
to 1.5 × 10−5, reasoning that as we were contin-
uing pre-training, we should aim for a rate lower
than Llama2’s final learning rate. This approach
has shown effective, with the training reaching it-
eration 12,500 after approximately 93 days and
achieving a language model loss of ±1.72.
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Slovenia. European Language Resources Association
(ELRA).

Hong Liu, Sang Michael Xie, Zhiyuan Li, and Tengyu
Ma. 2023. Same pre-training loss, better downstream:
Implicit bias matters for language models. In Inter-
national Conference on Machine Learning, pages
22188–22214. PMLR.

Shayne Longpre, Yi Lu, and Joachim Daiber. 2021.
MKQA: A linguistically diverse benchmark for mul-
tilingual open domain question answering. Transac-
tions of the Association for Computational Linguis-
tics, 9:1389–1406.

Risto Luukkonen, Ville Komulainen, Jouni Luoma,
Anni Eskelinen, Jenna Kanerva, Hanna-Mari Kupari,
Filip Ginter, Veronika Laippala, Niklas Muennighoff,
Aleksandra Piktus, Thomas Wang, Nouamane Tazi,
Teven Scao, Thomas Wolf, Osma Suominen, Samuli
Sairanen, Mikko Merioksa, Jyrki Heinonen, Aija
Vahtola, Samuel Antao, and Sampo Pyysalo. 2023.
FinGPT: Large generative models for a small lan-
guage. In Proceedings of the 2023 Conference on

Empirical Methods in Natural Language Processing,
pages 2710–2726, Singapore. Association for Com-
putational Linguistics.

Magnus Mabeck. 2024. Danish openhermes.
https://huggingface.co/datasets/
Mabeck/danish-OpenHermes.

Pedro Henrique Martins, Patrick Fernandes, João Alves,
Nuno M. Guerreiro, Ricardo Rei, Duarte M. Alves,
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3522, Portorož, Slovenia. European Language Re-
sources Association (ELRA).

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023. Llama 2: Open founda-
tion and fine-tuned chat models. ArXiv preprint,
abs/2307.09288.

824

https://huggingface.co/datasets/alexandrainst/danish-citizen-tests
https://huggingface.co/norallm/normistral-7b-warm
https://huggingface.co/norallm/normistral-7b-warm
https://aclanthology.org/2021.nodalida-main.53
https://aclanthology.org/2021.nodalida-main.53
https://aclanthology.org/2021.nodalida-main.53
https://huggingface.co/datasets/kobprof/skolegpt-instruct
https://huggingface.co/datasets/kobprof/skolegpt-instruct
https://aclanthology.org/2024.acl-long.817
https://aclanthology.org/2024.acl-long.817
https://aclanthology.org/2024.acl-long.817
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://arxiv.org/abs/2403.15484
https://arxiv.org/abs/2403.15484
https://github.com/Rijgersberg/GEITje
https://github.com/Rijgersberg/GEITje
https://hitz-zentroa.github.io/lm-contamination/blog/
https://hitz-zentroa.github.io/lm-contamination/blog/
https://openreview.net/forum?id=RIu5lyNXjT
https://openreview.net/forum?id=RIu5lyNXjT
https://openreview.net/forum?id=RIu5lyNXjT
https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.18653/v1/P16-1162
https://arxiv.org/abs/2002.05202
https://www.silo.ai/blog/viking-7b-13b-33b-sailing-the-nordic-seas-of-multilinguality
https://www.silo.ai/blog/viking-7b-13b-33b-sailing-the-nordic-seas-of-multilinguality
https://aclanthology.org/2024.acl-long.620
https://aclanthology.org/2024.acl-long.620
http://www.lrec-conf.org/proceedings/lrec2014/pdf/846_Paper.pdf
http://www.lrec-conf.org/proceedings/lrec2014/pdf/846_Paper.pdf
https://aclanthology.org/2021.nodalida-main.46
https://aclanthology.org/2021.nodalida-main.46
https://huggingface.co/projecte-aina/aguila-7b
https://huggingface.co/projecte-aina/aguila-7b
https://huggingface.co/datasets/teknium/openhermes
https://huggingface.co/datasets/teknium/openhermes
http://www.lrec-conf.org/proceedings/lrec2012/pdf/463_Paper.pdf
http://www.lrec-conf.org/proceedings/lrec2012/pdf/463_Paper.pdf
https://aclanthology.org/L16-1559
https://aclanthology.org/L16-1559
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2307.09288


Fabio Trecca, Kristian Tylén, Anders Højen, and Morten
H. Christiansen. 2021. Danish as a window onto lan-
guage processing and learning. Language Learning,
71(3):799–833.

Ahmet Üstün, Viraat Aryabumi, Zheng Yong, Wei-Yin
Ko, Daniel D’souza, Gbemileke Onilude, Neel Bhan-
dari, Shivalika Singh, Hui-Lee Ooi, Amr Kayid, Fred-
die Vargus, Phil Blunsom, Shayne Longpre, Niklas
Muennighoff, Marzieh Fadaee, Julia Kreutzer, and
Sara Hooker. 2024. Aya model: An instruction fine-
tuned open-access multilingual language model. In
Proceedings of the 62nd Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 15894–15939, Bangkok, Thai-
land. Association for Computational Linguistics.

Bram Vanroy. 2024. Fietje 2: An open and efficient llm
for dutch.

Daniel Varab and Natalie Schluter. 2020. DaNews-
room: A large-scale Danish summarisation dataset.
In Proceedings of the Twelfth Language Resources
and Evaluation Conference, pages 6731–6739, Mar-
seille, France. European Language Resources Asso-
ciation.

Leon Voukoutis, Dimitris Roussis, Georgios
Paraskevopoulos, Sokratis Sofianopoulos, Prokopis
Prokopidis, Vassilis Papavasileiou, Athanasios
Katsamanis, Stelios Piperidis, and Vassilis Katsouros.
2024. Meltemi: The first open large language model
for greek.

Wenxuan Wang, Wenxiang Jiao, Jingyuan Huang, Ruyi
Dai, Jen-tse Huang, Zhaopeng Tu, and Michael Lyu.
2024. Not all countries celebrate thanksgiving: On
the cultural dominance in large language models. In
Proceedings of the 62nd Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 6349–6384, Bangkok, Thailand.
Association for Computational Linguistics.

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa
Liu, Noah A. Smith, Daniel Khashabi, and Hannaneh
Hajishirzi. 2023. Self-instruct: Aligning language
models with self-generated instructions. In Proceed-
ings of the 61st Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 13484–13508, Toronto, Canada. Association
for Computational Linguistics.

Chris Wendler, Veniamin Veselovsky, Giovanni Monea,
and Robert West. 2024. Do llamas work in English?
on the latent language of multilingual transformers.
In Proceedings of the 62nd Annual Meeting of the
Association for Computational Linguistics (Volume 1:
Long Papers), pages 15366–15394, Bangkok, Thai-
land. Association for Computational Linguistics.

Guillaume Wenzek, Marie-Anne Lachaux, Alexis Con-
neau, Vishrav Chaudhary, Francisco Guzmán, Ar-
mand Joulin, and Edouard Grave. 2020. CCNet:
Extracting high quality monolingual datasets from
web crawl data. In Proceedings of the Twelfth Lan-
guage Resources and Evaluation Conference, pages

4003–4012, Marseille, France. European Language
Resources Association.

Linting Xue, Noah Constant, Adam Roberts, Mihir Kale,
Rami Al-Rfou, Aditya Siddhant, Aditya Barua, and
Colin Raffel. 2021. mT5: A massively multilingual
pre-trained text-to-text transformer. In Proceedings
of the 2021 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 483–498, On-
line. Association for Computational Linguistics.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali
Farhadi, and Yejin Choi. 2019. HellaSwag: Can a ma-
chine really finish your sentence? In Proceedings of
the 57th Annual Meeting of the Association for Com-
putational Linguistics, pages 4791–4800, Florence,
Italy. Association for Computational Linguistics.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q.
Weinberger, and Yoav Artzi. 2020. Bertscore: Evalu-
ating text generation with BERT. In 8th International
Conference on Learning Representations, ICLR 2020,
Addis Ababa, Ethiopia, April 26-30, 2020. OpenRe-
view.net.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin,
Zhuohan Li, Dacheng Li, Eric Xing, et al. 2023.
Judging llm-as-a-judge with mt-bench and chatbot
arena. Advances in Neural Information Processing
Systems, 36:46595–46623.

825

https://doi.org/10.1111/lang.12450
https://doi.org/10.1111/lang.12450
https://aclanthology.org/2024.acl-long.845
https://aclanthology.org/2024.acl-long.845
https://huggingface.co/BramVanroy/fietje-2
https://huggingface.co/BramVanroy/fietje-2
https://aclanthology.org/2020.lrec-1.831
https://aclanthology.org/2020.lrec-1.831
https://arxiv.org/abs/2407.20743
https://arxiv.org/abs/2407.20743
https://aclanthology.org/2024.acl-long.345
https://aclanthology.org/2024.acl-long.345
https://doi.org/10.18653/v1/2023.acl-long.754
https://doi.org/10.18653/v1/2023.acl-long.754
https://aclanthology.org/2024.acl-long.820
https://aclanthology.org/2024.acl-long.820
https://aclanthology.org/2020.lrec-1.494
https://aclanthology.org/2020.lrec-1.494
https://aclanthology.org/2020.lrec-1.494
https://doi.org/10.18653/v1/2021.naacl-main.41
https://doi.org/10.18653/v1/2021.naacl-main.41
https://doi.org/10.18653/v1/P19-1472
https://doi.org/10.18653/v1/P19-1472
https://openreview.net/forum?id=SkeHuCVFDr
https://openreview.net/forum?id=SkeHuCVFDr


Proceedings of the Joint 25th Nordic Conference on Computational Linguistics and 11th Baltic Conference on Human Language Technologies
(NoDaLiDa/Baltic-HLT 2025), pages 826–832

March 3-4, 2025 ©2025 University of Tartu Library

Got Compute, but No Data: Lessons From Post-training a Finnish LLM

Elaine Zosa1 Ville Komulainen2 Sampo Pyysalo2

1Silo AI, Finland 2TurkuNLP, University of Turku, Finland
firstname.lastname@{silo.ai,utu.fi}

Abstract

As LLMs gain more popularity as chat-
bots and general assistants, methods
have been developed to enable LLMs to
follow instructions and align with human
preferences. These methods have found
success in the field, but their effectiveness
has not been demonstrated outside of
high-resource languages. In this work, we
discuss our experiences in post-training an
LLM for instruction-following for English
and Finnish. We use a multilingual LLM
to translate instruction and preference
datasets from English to Finnish. We
perform instruction tuning and preference
optimization in English and Finnish and
evaluate the instruction-following capa-
bilities of the model in both languages.
Our results show that with a few hundred
Finnish instruction samples we can ob-
tain competitive performance in Finnish
instruction-following. We also found
that although preference optimization in
English offers some cross-lingual bene-
fits, we obtain our best results by using
preference data from both languages.
We release our model, datasets, and
recipes under open licenses at https:
//huggingface.co/LumiOpen/
Poro-34B-chat-OpenAssistant.

1 Introduction

Foundational LLMs are language completion
models that need to be finetuned after pretrain-
ing to be able to respond to user questions and
follow instructions (Ouyang et al., 2022). This
post-training process involves supervised finetun-
ing where the model is trained to act as an assistant
by training on a dataset of prompt-response pairs.
Preference optimization further aligns the model

to human preferences such as helpfulness, harm-
lessness, and honesty (Bai et al., 2022). These
methods have resulted in LLMs becoming more
capable of answering complex questions involv-
ing reasoning, coding, math, and science (e.g.,
Dubey et al., 2024; Jiang et al., 2024; Team et al.,
2024). The effectiveness of these methods, how-
ever, have not been demonstrated for smaller and
less-resourced languages, such as Finnish.

One of the major challenges we face in post-
training in smaller languages is the scarcity of
training data. The situation is even more challeng-
ing for commercial settings as most of the datasets
available today are generated by LLMs with re-
strictive licenses. The availability of evaluation
benchmarks for chat models in small languages is
also an issue. Popular benchmarks such as MT-
Bench (Zheng et al., 2024) and IFEval (Zhou et al.,
2023) are designed for English models and have
not been adapted for use in a multilingual setting. 1

In this paper, we discuss our experiences
in post-training an LLM in Finnish and En-
glish. We use the LLM that we want to fine-
tune to machine-translate instruction and pref-
erence datasets into Finnish. We use a com-
mercial machine-translation service to translate
a widely-used instruction-following evaluation
(IFEval) benchmark into Finnish. We experi-
mented with different combinations of Finnish and
English data in instruction tuning and preference
optimization. We also experimented with differ-
ent methods to improve vanilla instruction tuning.

2 Related Work

The post-training of base LLMs, popularised in In-
structGPT (Ouyang et al., 2022), can be broadly
divided into two categories: instruction tuning
and preference optimization. Instruction tuning,

1While revising this paper, a multilingual, multi-turn IFE-
val was released (He et al., 2024), but it does not include
Finnish.
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also known as supervised finetuning (SFT), trains
a base LLM to answer questions and follow in-
structions by training on a dataset of prompt-
response pairs with a language modeling objec-
tive. Preference optimization further improves
the model’s ability to follow conversations and
teaches a model to generate responses that align
with human preferences by showing the model
samples of desirable and undesirable responses (or
a ranking of responses). Direct preference opti-
mization (DPO; Rafailov et al. (2024)) is a reward-
free preference optimization technique that opti-
mizes directly on the preference data and does not
require training a separate a reward model. It is a
popular alternative to reward-based methods such
as proximal policy optimization (PPO; Schulman
et al. (2017)) because it is less computationally ex-
pensive and achieves promising results.

Post-training LLMs in a multilingual setting
is an under-explored topic (Üstün et al., 2024;
Lai et al., 2023; Martins et al., 2024). Pre-
vious studies have experimented with monolin-
gual and multilingual instruction tuning of mul-
tilingual base LLMs (Shaham et al., 2024; Chen
et al., 2024). These studies show that monolin-
gual instruction tuning transfers some instruction-
following capability to the other languages in the
model but is dependent on the amount of multi-
lingual data that the base LLM was trained on. A
few studies have investigated multilingual prefer-
ence optimization (Lai et al., 2023; Dang et al.,
2024). Lai et al. generated synthetic preference
datasets for 26 languages and performed reward-
based preference optimization on BLOOM and
Llama 7B models. Their results show that pref-
erence optimization offers a slight improvment
over SFT. Dang et al., however, point out that
these preference-optimized models still underper-
form compared to massively multilingual LLMs
that are finetuned only with SFT.

The scarcity of instruction and preference
datasets is a major challenge in post-training
LLMs for smaller languages. Previous efforts
to assemble finetuning datasets through machine
translation, crowd-sourcing, and synthetic data
generation include (Üstün et al., 2024; Lai et al.,
2023; Dang et al., 2024). Evaluating open-
ended responses of chat models in small languages
is also a challenge. Previous studies have in-
vestigated using LLM-as-a-judge in multilingual
settings but these studies focused on standard

NLP tasks such as summarization and question-
answering (Hada et al., 2024; Ahuja et al., 2023).

3 Experimental setup

We use Poro 34B as the base LLM (Luukkonen
et al., 2024). Poro is trained on 1T tokens of En-
glish, Finnish, and code, with 129B tokens for
Finnish. We use the Transformer Reinforcement
Learning library (TRL; (von Werra et al., 2020))
for instruction tuning and preference optimization.
We finetune all of the model parameters in our ex-
periments.2

We use 32 AMD MI250X GPUs in our exper-
iments. For SFT, we use a micro batch size of 4
and a gradient accumulation step of 1, resulting in
a global batch size of 128. We use a learning rate
of 2e-5 with a warmup rate of 0.1 and finetune for
3 epochs. For DPO, we use a global batch size of
64, learning rate of 5e-7, warmup rate of 0.1, and
train for 5 epochs.

4 Datasets

SFT We use a curated version OpenAssistant 2
(OASST2; (Köpf et al., 2024)) containing the top-
ranked English conversations. This dataset has
4,692 samples.3

We translate OASST2 into Finnish using Poro
with few-shot prompting. Poro has been shown to
produce higher-quality Finnish translations com-
pared to other open MT systems (Luukkonen et al.,
2024). For this reason, we did not experiment with
translations from other open MT models and focus
our efforts on the Poro-translated dataset. We use
heuristics to clean up the translations. After post-
translation cleaning, our OASST2 Finnish data has
4,399 samples.

DPO We use the HelpSteer2 preference
dataset (Wang et al., 2024), which consists of
publicly-sourced prompts and LLM-generated
completions4. We use the helpfulness scores
included in the dataset to obtain 7,221 preference
pairs (chosen and rejected responses). We also

2We experimented with LoRA finetuning (Hu et al.,
2021), but our results indicated that full finetuning achieved
better performance.

3The curated dataset is https://huggingface.
co/datasets/sablo/oasst2_curated. The full
dataset is https://huggingface.co/datasets/
OpenAssistant/oasst2.

4We initially chose this dataset because it has a
commercially-friendly license. Recently, however, Lam-
bert et al. pointed out that HelpSteer2 includes ShareGPT
prompts which have a questionable legal provenance.
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translate this dataset into Finnish using Poro.
After post-translation cleaning, we end up with
6,037 preference pairs in our Finnish HelpSteer2
dataset.

5 Evaluation

We use the Instruction Following (IFEval) bench-
mark to evaluate instruction-following perfor-
mance (Zhou et al., 2023). IFEval has 541
prompts where a prompt contains verifiable in-
structions that can be checked with a determinis-
tic program, circumventing the need of an LLM
or human as judge. Examples of instructions in-
clude adding keywords to the response, formatting
the response in JSON, or responding in a specified
language.5

We translate the IFEval prompts into Finnish us-
ing DeepL 6. IFEval has 31 prompts that require
the response language to be in a language other
than English. We exclude these prompts for this
work due to Poro being constrained to only En-
glish and Finnish. We report the results for the
remaining 510 prompts only. IFEval reports strict
accuracy and loose accuracy where loose accuracy
accepts minor transformations in the responses.
For the sake of clarity, we report only the strict
accuracy in this work.

We run evaluations through the LM Evaluation
Harness (Gao et al., 2024). The translated IFEval
is available at https://huggingface.co/
datasets/LumiOpen/ifeval_mt.

6 Experiments

Multilingual SFT Finnish instruction data is
more difficult to obtain compared to English;
therefore, we want to investigate how the amount
of Finnish instruction data affects performance.
We construct data mixes from the English and
Finnish OASST2 datasets such that we start with
just the English data and gradually introduce
more Finnish samples into the mix starting from
10% of the Finnish data and then going up to
100%. We call these data mixes en-fi-Xpct
(i.e., the data mix with just the English sam-
ples is called en-fi-0pct while the data mix
with all the English and Finnish samples is called
en-fi-100pct). By default, we do not mask
prompts during training (i.e., we incorporate the

5See the IFEval paper for the complete list of instructions
and their descriptions.

6https://www.deepl.com/

data mix EN (%) FI (%)
Resp
lang (%)

en-fi-0pct 36.39 31.41 47.45
en-fi-10pct 39.97 32.69 90.00
en-fi-20pct 37.67 28.60 93.52
en-fi-40pct 39.20 30.90 96.27
en-fi-60pct 39.20 32.95 94.90
en-fi-80pct 38.56 33.84 96.27
en-fi-100pct 39.97 34.48 95.68

Table 1: Instruction-level accuracy on English and
Finnish IFEval of the SFT models trained on dif-
ferent data mixes. Response language refers to the
proportion of responses classified as Finnish for
the Finnish IFEval.

losses from the prompt and completion tokens).
We train SFT models on all the data mixes using
the same hyperparameters.

Improving vanilla SFT We investigate whether
we can improve SFT by adding noise to the
word embeddings in the instruction data (NEF-
Tune; Jain et al. (2024)). We also experiment
with prompt masking where the loss is calculated
only on the completion tokens. Our baseline for
these experiments is the SFT model trained on the
en-fi-100pct data mix.

Multilingual DPO We opt to use DPO for pref-
erence tuning as it has been found to fare bet-
ter in IFEval, in addition to being more stable
and requiring less compute (Dubey et al., 2024).
We tuned the β parameter of DPO with values
{0.01, 0.05, 0.1} and found β = 0.05 to be op-
timal. We experiment with using either the En-
glish or Finnish datasets and using both. As our
baseline, we use the SFT model trained on the
en-fi-100pct data mix.

7 Results and Discussion

Multilingual SFT In Table 1, we show the
instruction-level accuracy of the SFT models on
the English and Finnish IFEval. We also show the
proportion of responses to Finnish IFEval that are
in Finnish as classified by langdetect7. For
English IFEval, the performance is comparable
across the data mixes which is expected because
the different data mixes contain same number of
English samples. For Finnish, the best perfor-
mance is from the data mix with all the English

7https://pypi.org/project/langdetect/
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Figure 1: Accuracy by instruction category on En-
glish and Finnish IFEval of SFT model trained on
the en-fi-100pct data mix.

and Finnish samples (en-fi-100pct). How-
ever, compared with the data mix with just 10%
of the Finnish data (around 400 samples), the dif-
ference is less than 2 percentage points. If we
finetune using only the English data, the resulting
model can still follow Finnish instructions but less
than half of the responses are in Finnish, which is
not desirable.

For the response language, SFT models trained
on data mixes containing 20% and above of the
Finnish data have comparable rates of Finnish re-
sponses of over 93%. We reviewed the 22 re-
sponses from the en-fi-100pct model that
were classified as not Finnish. We found that 19
of them are in Finnish but mixed with other lan-
guages such as English and German. We also
found that the model tends to respond in a mixture
of English and Finnish when asked to respond in
a specific format, such as JSON or XML. This is
likely because JSON tends to be treated as code in
the instruction dataset and our translation pipeline
did not translate code blocks which sometimes in-
clude comments in English.

Figure 1 shows the accuracy by instruction cat-
egory of the en-fi-100pct model. The model
struggles most with the combination category—
this category includes combined instructions such
as giving two responses that are separated by a
given separator or repeating the prompt without
modification before giving the response proper.
The poor performance is probably because the in-
struction contains multiple steps that must be fol-
lowed in order to give a correct response. For in-
stance, if the model gives two responses but these

Model EN (%) FI (%)
Resp
lang (%)

baseline 39.97 34.48 95.68
prompt masking 39.84 32.56 96.27
NEFTune 38.05 32.69 96.47
DPO-en 43.55 36.65 94.70
DPO-fi 41.76 36.01 95.49
DPO-both 44.69 37.80 95.49

Table 2: Instruction-level accuracy on English and
Finnish IFEval English for the prompt masking,
NEFTune, and DPO experiments. The baseline
is an SFT model trained on the en-fi-100pct
data mix.

responses are numbered instead of separated by an
asterisk, the response is considered incorrect. The
model also struggles with punctuation instructions
such as avoiding the use of commas likely because
texts without commas are rare in the dataset.

Overall, the results indicate that finetuning
with a few hundred Finnish instruction samples
achieves results close to finetuning with ten times
that amount. In terms of instruction types, the
model struggles with multi-step instructions and
unusual instruction types. Previous work has
indicated that carefully curating the instruction
dataset is vital to a strong SFT model (Zhou et al.,
2024). In future, we aim for a smaller but higher-
quality data by, for instance, removing highly sim-
ilar prompts, diversifying tasks, and curating the
sources of the samples.

Prompt masking and NEFTune In Table 2 we
show the accuracy of the models trained with
prompt masking and NEFTune compared to the
baseline model.

In our experiments, models trained with NEF-
Tune fail to achieve better scores compared to
the plain vanilla SFT baseline. As noted by Jain
et al., the performance of NEFTune was found to
be dataset dependent. One key difference in our
study is that we train on a multi-turn dataset. We
leave further examination of NEFTune and other
noise augmentation techniques for future work.
We find that prompt masking does not improve
over the baseline. This result is in line with find-
ings from Shi et al. where they show that incor-
porating the loss from the prompt is beneficial for
smaller datasets such as LIMA (Zhou et al., 2024)
with 1,030 examples.
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Multilingual DPO Table 2 shows the results
from our DPO experiments compared to the SFT
model. The model optimized only on English
preference data (DPO-en) improved performance
on English IFEval by around 3 percentage points
and also showed some improvement in Finnish
IFEval. This provides further evidence that pref-
erence optimization in English benefits other lan-
guages in the model (Dang et al., 2024). The
DPO model trained only on Finnish (DPO-fi),
on the other hand, showed smaller improvements
on both English and Finnish IFEval and, in fact,
has slightly lower performance than DPO-en on
the Finnish benchmark. The model trained on
both languages (DPO-both) achieved the best
performance on both benchmarks but compared to
DPO-en, the improvements are marginal.

In terms of the response language, DPO did not
improve the Finnish response rates compared to
the SFT model. This might be because we opti-
mized the model on monolingual preference pairs
(the chosen and rejected responses are in the same
language). Improving the response language of
multilingual models through preference optimisa-
tion is an area we will explore in future work.

8 Conclusions and Future Work

In this work we share our findings from post-
training Poro 34B in English and Finnish. Due
to the scarcity of Finnish post-training datasets
we opted to machine-translate instruction and
preference datasets using Poro. To evaluate the
results of our experiments, we translate IFEval,
a widely-used instruction-following evaluation
benchmark. We experimented with using different
combinations of English and Finnish data in SFT
and found that using all available data from both
languages gave the best performance overall.
Using only 10% of the Finnish instruction data
(around 400 samples), however, still gives com-
petitive performance. We contribute to Finnish
LLM development by releasing our datasets,
recipes, and model with open licenses at https:
//huggingface.co/LumiOpen/
Poro-34B-chat-OpenAssistant.

In future we want to explore different ways
of obtaining more Finnish data by, for instance,
generating synthetic instruction and preference
datasets. We will use these synthetic datasets to
further investigate other alignment and finetuning
methods. Additionally, we are interested on de-

veloping an evaluation benchmark for open-ended
conversations in Finnish that takes cultural and lin-
guistic nuances into account.
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