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Abstract

Temporal annotations are used to iden-
tify and mark up temporal information, of-
fering definition into how it is expressed
through linguistic properties in text. This
study investigates various discriminative
pre-trained language models of differing
sizes on a temporal relation classification
task. We define valid reasoning strate-
gies based on the linguistic principles that
guide commonly used temporal annota-
tions. Using a combination of saliency-
based and counterfactual explanations, we
examine if the models’ decisions are in
line with the strategies. Our findings sug-
gest that the selected models do not rely on
the expected linguistic cues for processing
temporal information effectively 1.

1 Introduction

Temporal information processig is a fundamen-
tal aspect of natural language and is essential for
NLP applications including question answering
(Chen et al., 2021; Ko et al., 2023), text summa-
rization (Daiya, 2020), and information retrieval
(Gade and Jetcheva, 2024). Transformer-based
pre-trained language models have shown impres-
sive performance in such tasks (Xiong et al., 2024;
Ko et al., 2023; Tai, 2024; Shi et al., 2023). Yet,
their interpretation of time diverges from human
interpretation (Callender, 2011), making it chal-
lenging to evaluate their temporal processing, and
whether they indeed interpret the temporal infor-
mation as expected (Qiu et al., 2023; Jain et al.,
2023).

While temporal benchmarks (Tan et al., 2023a;
Zhou et al., 2019; Ning et al., 2020; Zhou et al.,
2021) have been extensively developed, perfor-
mance metrics alone do not reveal the under-

1https://github.com/sofitere/TRC-XAI

lying mechanisms or explain how conclusions
are reached (Chakraborty et al., 2017). This
study contributes a methodology and an evalua-
tion dataset for evaluating NLP models on tempo-
ral relation classification. We define valid reason-
ing strategies, and use a combination of saliency-
based and example-based explainability methods
to assess whether a model follows these strategies
when making decisions.

Our framework extends the work introduced by
Ray Choudhury et al. (2022). We explore dis-
criminative models of varying sizes to determine
if larger models, trained more extensively on more
data, are also more likely to base their decisions
on valid information retrieval processes. Our find-
ings suggest that while larger models show better
performance on the task, they frequently deviate
from expected reasoning strategies. These results
align with broader concerns about the reliability of
current popular benchmarks, where high accuracy
can mask a reliance on shortcuts or spurious cor-
relations. We discuss the limitations of this frame-
work, together with the opportunities and chal-
lenges of extending it to generative models.

2 Related Work
Temporal Relation Classification. Temporal re-
lation classification (TRC) was first introduced in
TempEval-3 (UzZaman et al., 2013) and gained
popularity with dedicated corpora and annota-
tions for temporal information processing. Mod-
ern TRC methods predominantly use discrimina-
tive pre-trained language models, to generate ro-
bust contextual representations for pairs of event
mentions (Yang et al., 2019; Lin et al., 2019). Fur-
ther advancements include graph-based methods
(Mathur et al., 2021; Zhang et al., 2022; Zhou
et al., 2022) and prompt and masking techniques
(Han et al., 2021; Yang et al., 2024). Despite the
recent surge in the generative models, they still un-
derperform compared to fine-tuned smaller mod-

714

https://github.com/sofitere/TRC-XAI


Reasoning Step Relevant Features

Context:
Leon won the marathon years after
he underwent surgery in 2011.

Relation: ⟨won, ?, underwent⟩

Identify temporal information Expression: years, 2011
Preposition: after

Map temporal information to event underwent := 2011
won := (years, after)

Determine temporal relationship won := year after 2011
⟨won,AFTER, underwent⟩

Table 1: Valid reasoning steps for determining the temporal relation between a given event pair.

els (Roccabruna et al., 2024; Yuan et al., 2023).

Temporal Annotation. TimeML (Mani et al.,
2006) remains the most widespread format for
temporal annotation, and it became the basis
for ISO standard (Pustejovsky et al., 2010).
TimeML includes conventions to identify and de-
scribe temporal elements in text, including tem-
poral expressions (TIMEX), events, temporal re-
lations (T-LINKS), signals (SIGNAL), and rela-
tion types. TimeBank corpus (Pustejovsky et al.,
2003) has been re-annotated in several projects to
increase the density of T-LINKs (Verhagen et al.,
2007; Rogers et al., 2022; Naik et al., 2019) and
improve its consistency. Its texts have been uti-
lized in subsequent projects providing additional
annotation in other formats, including MATRES
(Ning et al., 2018).

Benchmarks. Benchmarks for temporal pro-
cessing vary widely in format and scope. TimeQA
(Chen et al., 2021) and Tempreason (Tan et al.,
2023b) focus on temporal question answering,
Torque (Ning et al., 2020) on temporal reading
comprehension, adopting question/answering as
format, and MCTACO (Zhou et al., 2019) on tem-
poral commonsense reasoning, adopting multiple-
choice as format. Commonly used benchmarks
have shown some limitations, also here rang-
ing from task and scope. Temporal question-
answering (QA) benchmarks tend to be biased in
their coverage of time spans and question types,
leading to models performing well due to for-
mat biases rather than actual language processing
skills (Tan et al., 2023c). Additionally, bench-
marks with focus on temporal expressions, such
as numeric years, have shown to not represent
the full range of diversity of temporal expressions
(Qin et al., 2021). Benchmarks for reading com-
prehension often assume that performing well ne-
cessitates engaging with cognitive processes of
language understanding (Sugawara et al., 2019;
Weston et al., 2015), implying that higher scores

reflect advances in general language processing
(Ray Choudhury et al., 2022). Performance on
benchmarks alone, while useful, does not neces-
sarily tell us whether the model is right for the
right reasons; if it is not, the benchmark results
may be misleading and not generalize to other data
(Dehghani et al., 2021; Bowman and Dahl, 2021).

Explainability. Explainability methods can ac-
count for some of the limitations of the current
benchmarks by highlighting what information the
model relies on, or where it fails to perform.
They can thus provide means to check to what
degree the models are reliable, i.e. they perform
correctly and consistently for the right reasons
(McCoy et al., 2019; Christianson, 2016). For
this line of research, local and post-hoc methods
have been used to evaluate pre-trained language
models on tasks that demand specific linguistic
skills. Ray Choudhury et al. (2022) apply a com-
bination of these methods to analyze and evalu-
ate models on two linguistic skills required for
a reliable reading comprehension system, finding
that models use shortcuts rather than valid infer-
ence strategies. In the context of LLMs, explain-
ability methods are both important and challeng-
ing. Research efforts are also put into examining
the utility (González et al., 2021), interpretability
(González et al., 2021; Schuff et al., 2022) and re-
liability (Harbecke and Alt, 2020; Spreitzer et al.,
2022; Rahimi and Jain, 2022) of explainability
methods.

Contribution. To date, relevant NLP work on
temporal processing has focused on modeling,
benchmarks and annotation schemes. The use
of explainability methods to explore how models
handle temporal data is largely unexplored. To
the best of our knowledge, this is the first study
to apply saliency-based and example-based inter-
pretability methods to assess whether models rely
on the expected reasoning patterns for temporal
relation classification. We evaluate the validity
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Context: Leon won a marathon years after he
underwent surgery.

Relation: ⟨won,AFTER, underwent⟩

(a) Example of temporal annotation: TIMEX ( blue ), and
SIGNAL ( orange ). These are temporal elements relevant for
expressing the relationship between ’won’ and ’underwent’.

Context: Leon won a marathon years after
he underwent surgery .

Relation: ⟨won,AFTER, underwent⟩

(b) Example of token partitioning into positive ( green ) and

negative ( red ). The models are expected to rely more on the
tokens in the ’positive’ set.

Figure 1: A sample question from the MATRES (Ning et al., 2018) dataset. A model is asked to predict
the temporal relationship between winning a marathon and having brain surgery. Token partitioning is
delivered from the features defined as relevant for determining the temporal relation between two events.

of these methods (via examining their alignment),
and discuss the challenges of evaluating the latest
generative models on temporal relation classifica-
tion.

3 Defining Success Criteria for TRC

Evaluating whether models follow expected rea-
soning involves testing if their decision-making
process are based on valid information retrieval
and inference strategies rather than superficial pat-
terns in the data. Ray Choudhury et al. (2022)
defines three success criteria for NLP systems: a
system must (1) accurately perform on a specific
task, (2) rely on information deemed pertinent to
the task, and (3) maintain consistency under distri-
bution shifts. We evaluate a model’s performance
in TRC against these criteria. We first define the
expected reasoning processes (§ 3.1). We then
assess the model’s adherence to these reasoning
steps by verifying its reliance on valid information
(§ 4.7), and by evaluating its performance consis-
tency across variations in data distribution (§ 4.6).

3.1 What reasoning should a model perform?
To correctly extract and classify temporal rela-
tions, a model must identify linguistic features that
express temporal information, map these features
to the events they describe or modify, and use this
information to deduce the temporal relationship
between the pair of events. We define these as
valid reasoning steps2 (see Table 1 for an exam-

2We recognize that this represents only the minimal infor-
mation on which models (or humans) might rely. For the ex-
ample shown in Table 1, if the context includes details about
Leon breaking his leg, this information could reasonably in-
fluence the understanding of Leon’s chances of winning the
marathon. Nonetheless, the minimally necessary information
in the immediate context would still be salient, and it is a rea-
sonable expectation that either models or humans should rely
on it.

ple). Temporal annotation schemes and guidelines
can be used to clarify which linguistic features are
essential for identifying the temporal relation be-
tween an event pair. We focus on two types of
annotations from the TimeML guidelines (Mani
et al., 2006):

• TIMEX3 tags are utilized for annotating explicit
temporal expressions within text. These ex-
pressions can be absolute (”December 2025”,
”5PM”) or relative (”Mondays”, ”monthly”).
They serve to anchor events to specific times or
durations.

• SIGNAL tags mark words or phrases that cue the
relationships between two entities (e.g. timex to
event, timex to timex, event to event). Common
linguistic features are adverbs (”again”, ”late”,
eventually”) detailing the timing of events, con-
junctions (”before”, ”since”, ”while”) relating
events to each other and subordinate conjunctions
(”because”, ”if”, ”therefore”) expressing condi-
tional or causal relationships. These features in-
dicate the sequence or structure of events, show-
ing their interactions over time.

Essentially, while TIMEX3 tags are used to iden-
tify temporal entities, SIGNAL annotations estab-
lish the links between these entities within the text.
Together, they provide the foundational informa-
tion necessary to understand the temporal relation-
ships among events in texts.

3.2 What reasoning does a model perform?
Having established the reasoning processes a
model should follow, the next step is to as-
sess whether a specific model adheres to these.
Ray Choudhury et al. (2022) uses a combination of
example-based and saliency-based interpretability
methods. These methods are categorized as local
and post-hoc (Molnar, 2022): they focus on indi-
vidual instances and they are applied after model
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Purpose # Docs #Events #TLinks

TimeBank Training 162 6.6k 6.5k
Aquaint Training 73 4,3k 6.4k
Platinum Validation 20 748 837

Total 275 6k 13.5k

Table 2: Summary of purpose and statistics of the
MATRES (Ning et al., 2018) dataset subsets.

Label # %

BEFORE 6.886 50%
AFTER 4.576 34%
VAGUE 1.644 12%
EQUAL 471 4%

Table 3: Label distribution in the MATRES
(Ning et al., 2018) dataset.

has been trained.

Saliency-based Methods. Saliency-based
methods are a family of methods that offer
feature-centered explanations (Molnar, 2022;
Ding and Koehn, 2021a). These methods offer
different ways of computing a score for each
token, indicating how individual features (to-
ken) affect a model’s decision. By comparing
the saliency scores to a predefined partition
of tokens, these explanations can be used to
determine whether a model is relying on the right
information for correct predictions. Following
Ray Choudhury et al. (2022), we define a partition
of the token space as: tokens a model should find
important (positive), and tokens a model should
not find important (negative) (§ 4.5). If saliency
scores show that a model consistently has higher
scores on the positive compared to the negative
partition of tokens, it suggests that the model
focuses on the ’right’ information.

Counterfactual Explanations. Counterfactual
explanations offer data-centred explanations by
analyzing how changes in the input data can lead
to different model predictions (Molnar, 2022). By
changing parts of the input with alternative valid
tokens that would change the type of temporal re-
lation, these explanations can help determine if a
model is relying on the expected reasoning strate-
gies (§ 4.6). If a model predicts the correct tem-
poral relationship for both original and altered in-
puts, it suggests that the model consistently relies
on the correct information.

Explanation Alignment. For a model to
demonstrate valid reasoning, both saliency and
counterfactual explanations must align across
many instances, suggesting that a model consis-
tently relies on the right information for accurate
predictions.

4 Methodology

4.1 Data
Our experiments are conducted on the MATRES
dataset (Ning et al., 2018). In total, MATRES in-
cludes 275 news articles from TempEval3 (UzZa-
man et al., 2013), annotated for temporal relations
between pair of events. For experimental consis-
tency, we follow the original split for training and
evaluation (Ning et al., 2019), as shown in Table
2. MATRES is annotated for four different tempo-
ral relation classes. The label distribution is shown
in Table 3.

4.2 Models
We experiment with transformer-based encoders
of different sizes from three families: BERT (De-
vlin et al., 2019), RoBERTa (Liu et al., 2019),
and LUKE (Yamada et al., 2020). BERT and
RoBERTa are the classical models to use for this
task; they share a similar architecture but dif-
fer in pre-training scope and optimization (with
RoBERTa also receiving more extensive training,
but without optimization for the next-sentence-
prediction task). They have been used extensively
for temporal relation classification (Liu et al.,
2019).

We also add LUKE (Yamada et al., 2020): the
model enhancing the RoBERTa framework with
entity-aware self-attention, improving contextual
understanding. Since entities are crucial to tem-
poral relation classification (e.g. for recognizing
dates and events), this model could be expected to
improve on base BERT/RoBERTa. For all mod-
els, we experiment with ’base’ and ’large’ ver-
sions. For some cases, larger models have shown
to generalise better (Zhong et al., 2021; Desai and
Durrett, 2020). Part of this project is set to inves-
tigate whether they are also more likely to rely on
the right information. We focus on discriminative
models, as they are known for their robust perfor-
mance in TRC (§ 2). While incorporating gener-
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Original: Leon won a marathon few years after
he underwent surgery.

Relation: ⟨won,AFTER, underwent⟩
Altered: Leon won a marathon few years before

he underwent surgery.
Relation: ⟨won,AFTER, underwent⟩

(a) Simple reversal of temporal conjunctions.

Original: Computers, about to be deployed, are
taking over (..)

Relation: ⟨deployed,AFTER, taking⟩
Altered: Computers, already deployed for

months, are now taking (..)
Relation: ⟨deployed,BEFORE, taking⟩

(b) Label reversal with more extensive editing

Original: If it performs as (..), the design
could be used to (..)

Relation: ⟨performs,BEFORE, used⟩
Altered: If it is used to (..), the design cur-

rently performs as (..)
Relation: ⟨performs,EQUAL, used⟩

(c) Changing a conditional relationship

Original: He took part in the mission. He also
made expeditions to (..)

Relation: ⟨took,VAGUE,made⟩
Altered: He made expeditions to (..). He later

took part in the mission.
Relation: ⟨took,AFTER,made⟩

(d) Sentence reordering

Figure 2: Examples of counterfactual alterations changing the original temporal relation label, with
altered tokens highlighted in yellow.

ative models could be insightful, their limitations
within this framework are addressed in Section 7.

4.3 Fine-Tuning
Each encoder is fine-tuned for TRC using the tok-
enization strategy proposed by Yanko et al. (2023)
and Baldini Soares et al. (2019). The strategy con-
sists in explicitly marking the boundaries of each
event in an input sentence with special tokens. We
define these as [a1], [/a1], [a2], [/a2] and
process each input sentence as following:

Leon [a1]won[/a1] a marathon years after he
[a2]underwent[/a2] surgery.

When a given input is processed by each encoder,
the embeddings of the special tokens are adjusted
based on surrounding tokens. This results in a
context-specific representation for each event. We
concatenate the embedding vectors of the special
tokens and use them for classification by feeding
them into a linear layer on top of each encoder. All
code to reproduce our results, including hyperpa-
rameters, is included with the submission and will
be made public upon acceptance of the paper.

4.4 Evaluation Metrics
We evaluate each encoder using standard eval-
uation metrics for classification: F1 and exact-
match. Given the significant class imbalance in
the MATRES dataset (see Table 3), the F1-score
is particularly important. We report both weighted
and macro-average F1-score. Although exact-

match is less reliable for imbalanced datasets, we
include it for its straightforward interpretability.

4.5 Token partition
We previously defined linguistic features essential
for expressing the temporal relationships between
events (§ 3.1). Token partitioning is guided by
this definition. The positive token partition is de-
fined as all individual tokens that express or clar-
ify the temporal relationship between two events,
such as temporal expressions, prepositions, con-
junctions, and verbs demonstrating tense and as-
pect. The negative token partition is defined as to-
kens that are not part of the positive partition and
do not match the relevant tokens for the event pair,
deemed irrelevant for expressing the temporal re-
lationship. Figure 1 shows the relevant tokens for
an instance, and how these define the partition of
tokens.

4.6 Counterfactual Explanations
Counterfactual explanations are crafted from 300
instances randomly selected from the validation
dataset, with minimal modifications to the origi-
nal input. The queried event pair to the tempo-
ral relation is kept intact3, and changes are limited

3Alterations often involve reversing verb tenses. Since
event pairs are defined by the verb’s base form and English
verb tenses are structured flexibly, most instances can be al-
tered without changing the original event pair. However,
shifting to perfect tenses (e.g., ”will finish,” ”had finished”),
which useful to indicate completed events isn’t always possi-
ble.
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F1 M/avg F1 W/avg EM

LUKE large 0.54 0.70 0.70
LUKE base 0.55 0.67 0.68
RoBERTa large 0.58 0.70 0.72
RoBERTa base 0.56 0.69 0.69
BERT large-uncased 0.58 0.69 0.69
BERT base-uncased 0.52 0.66 0.66

Table 4: Performance of different models on the
MATRES (Ning et al., 2018) dataset.

Original Counterfactual

LUKE large 0.66 0.45
LUKE base 0.60 0.43
RoBERTa large 0.67 0.43
RoBERTa base 0.63 0.41
BERT large-uncased 0.62 0.40
BERT base-uncased 0.61 0.44

Table 5: Performance on counterfactual vs.
original instances (measured as F1 W/avg).

to the surrounding context. The alteration process
involves a two-stage approach: (a) identifying the
positive partition of tokens (§ 4.5), likely to impact
predictions significantly, and (b) modifying these
to change the temporal relationship.
We made alterations of four types, presented in
Table 2. About 67% of instances are altered by
reversing temporal conjunctions (e.g., modifying
”before” or ”after”), or adding modifiers or tempo-
ral expressions. This strategy is often applied to al-
ter BEFORE-AFTER relationships, aligning with
the dataset’s label distribution, where these are the
most common labels. Less frequent methods like
reversing phrase order (≈ 12%) and changing con-
ditional relationships (≈ 21%) targeted the rarer
EQUAL and VAGUE labels.

4.7 Saliency Scores
We obtain saliency scores from two different
methods: Occlusion and Integrated Gradients
(IG).

Occlusion (DeYoung et al., 2020) is a
perturbation-based method. It works by sys-
tematically replacing the input token with a
baseline token and observing the changes in
the model’s output probabilities. The occlusion
score for each token represents the change in the
model’s output probability when the token is oc-
cluded. We select [MASK] as the baseline token
to represent the absence of a specific feature. By
replacing each token one at a time with [MASK],
we remove the specific information provided by
that specific token and observe how its absence
affects the model’s output.

Integrated gradient (Sundararajan et al.,
2017; Molnar, 2022) is a gradient-based method.
This family of methods work by quantifying

how much each token in an input contributes
to the gradient being propagated downstream.
Tokens that have larger impact on the output will
impact the gradient more, and are considered
more influential. IG work by comparing the actual
input against a baseline. We again select [MASK]
as the baseline token, and create baselines based
on the length of the original input. Gradients
are computed along a linear path, from baseline
to actual input, representing a transition from
absence of features to the actual input. The
gradients are accumulated at multiple steps along
the path. The result is a vector for each token,
representing a separate gradient value for each of
a feature’s dimension. We convert these vectors
into a single score per token by applying L2
normalization (Ray Choudhury et al., 2022).

Applying each saliency method results in
four scores per token, representing the individual
token’s impact on a specific class of the MA-
TRES dataset. We aggregate these scores into
a single value by summing 4. over each score.
The resulting score indicates the token’s overall
significance across all classes. Special tokens,
introduced during fine-tuning (§ 4.3), must be
carefully considered. For IG, the special tokens
are included in the baseline inputs, to ensure the
integrity of the input. For Occlusion, they are
not perturbed, allowing to measure the impact
of regular tokens on the representation of the
special tokens, which in turn affects the model’s
predictions.

4Summing or averaging are common approaches for rep-
resenting the influence of a token across classes (Molnar,
2022; Atanasova et al., 2020a). Both might overlook the im-
portance of tokens that are particularly influential for a spe-
cific class.
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Alignment
IG Occlusion

LUKE large 0.19 0.20
LUKE base 0.21 0.18
RoBERTa large 0.11 0.21
RoBERTa base 0.27 0.17
BERT large-uncased 0.52 0.25
BERT base-uncased 0.56 0.28

Table 6: Alignment score between correctly pre-
dicted portions of counterfactual instances and
saliency methods for each model.

Figure 3: Visualization of saliency scores ob-
tained by occlusion for one instance, performed
on BERT-large. The model correctly predicts the
temporal relation between ”won” and ”set”. More
saturated tokens indicate higher saliency.

4.8 Explanation Alignment Score
Recalling § 3.2, explanation alignment happens
when a model accurately predicts both counterfac-
tual and original instances, using the right cues,
as indicated by saliency scores. We calculate an
alignment score from the 300 instances where both
original and counterfactual predictions are accu-
rate. The score reflects the proportion of instances
where the positive partition of tokens has a sta-
tistically significant higher average saliency score
than the negative partition, suggesting reliance on
correct information5. We use a one-tailed indepen-
dence T-test at a 0.05 p-value to assess statistical
significance, testing the null hypothesis that pos-
itive tokens do not have higher average saliency
scores than negative ones, as per Ray Choudhury
et al. (2022).

5 Results & Analysis

5.1 Model Evaluation
Table 4 shows the performance of fine-tuned mod-
els on the MATRES dataset. Across all models,
weighted F1-scores consistently exceed macro F1-
scores, indicating challenges in predicting minor-
ity classes, such as VAGUE. LUKE and RoBERTa
models exhibit similar performance metrics, with
their larger variants showing marginal improve-
ments. However, these improvements are lim-
ited. BERT models show similar trend in im-
proved performance when scaled, but they under-
perform relative to other models. This suggests
that the notion, that larger models might perform

5For a single instance with a random partition of to-
kens, the positive and negative partitions should have similar
saliency scores. For a dataset this translates to them being
significantly different in ≈ 0% of cases.

better for some use cases (Zhong et al., 2021; De-
sai and Durrett, 2020), only partially holds true for
a temporal relation classification on the MATRES
dataset.

5.2 Counterfactual Evaluation
Table 5 shows a comparison of F1-weighted aver-
age scores for the selected models on 300 original
versus counterfactual instances. For all models,
we observe a significant decrease in performance
on counterfactual instances compared to the orig-
inal instances, with an average performance drop
of 20%. This indicates overall challenges in main-
taining expected reasoning when the conditions
change. Contrary to expectations, larger model
variants show a bigger performance drop. This
indicate that larger models are less likely to per-
form well on altered inputs than their smaller vari-
ants. Future work could consider relaxing the cri-
teria that a model’s prediction on a counterfac-
tual scenario must perfectly align with the true
class. Instead, by analyzing prediction probabil-
ities, we might show that models appropriately
adjust their probabilities in response to counter-
factual changes. This is particularly valuable for
classification with unbalanced distribution of la-
bels (Molnar, 2022).

5.3 Explanation Alignment
Table 6 shows the explanation alignment score be-
tween correctly predicted counterfactual instances
against the two selected saliency-based methods.
We observe that IG and Occlusion do not agree on
the alignment scores. This lack of agreement be-
tween the two methods is consistent with previous
findings (Ray Choudhury et al., 2022; Atanasova
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et al., 2020a), and it must be addressed to draw
appropriate conclusions.

The alignment scores with IG indicate that
smaller models, when making correct predictions
for both original and counterfactual cases, are
more likely to rely on relevant information com-
pared to larger models. In contrast, Occlusion
shows no consistent trend across model sizes, with
scores that do not favor either smaller or larger
models.

Potential interpretations for this inconsistency
have been suggested. One interpretation is that IG
may struggle to compute accurate saliency scores
due to the discrete nature of text data (Harbecke
and Alt, 2020), as the intermediate representations
required do not align well with discrete word em-
beddings (Zhao et al., 2023), and therefore the
computed gradients might not produce truthful
saliency scores. Occlusion, potentially more sta-
ble, demonstrates no clear trend favoring model
sizes. Another possible interpretation is that IG
are in fact more faithful (Ray Choudhury et al.,
2022). The trend shown by IG suggests that as
the model’s size increases, the features we define
as important do not align with the model’s strate-
gies for correct predictions. Larger models, with
their increased capacity, might be more likely to
learn complex statistical patterns in the training
data, including spurious ones. If the training data
contain many such correlations, a larger model
might be more prone to learn them and use them
for predictions (Linzen, 2020). This could explain
the higher accuracy of larger models compared to
smaller ones (§ 5.1), but also indicates that larger
models might depend on spurious patterns instead
of relevant information (essentially, being right for
the wrong reasons).

Overall, while the reasons behind inconsisten-
cies remain unclear, the findings question the re-
liability of the selected saliency-based methods in
evaluating model reasoning. Further work might
include alternatives for computing saliency scores,
such as surrogate models LIME (Ribeiro et al.,
2016) and SHAP (Lundberg and Lee, 2017).

6 Discussion

This study investigates selected discriminative
models on a temporal relation classification task.
While numerous benchmarks have been developed
to evaluate models’ temporal processing abili-
ties, our experiments highlight limitations in these

evaluations. Specifically, we adopted one com-
monly used benchmark dataset and found that
models can achieve high accuracy without follow-
ing the expected reasoning patterns. The frame-
work used in this study offers a step toward im-
proving evaluation methodologies by emphasizing
whether models make correct predictions for the
right reasons. It establishes clear success crite-
ria for the task and highlights the role of validat-
ing ”reasoning” to accurately assess model perfor-
mance.

Post-hoc and local explainability methods are
commonly used to determine if model decisions
are justifiable from a human perspective, yet their
reliability and utility is often questioned (Das-
gupta et al., 2022; Saini and Prasad, 2022). Coun-
terfactual explanations are considered as more
truthful (Zhao et al., 2023), but require care-
ful handling to prevent unreliable conclusions.
Saliency scores, on the other hand, may not re-
flect the model’s decision-making process. Dif-
ferent saliency methods can produce conflict-
ing results, meaning that they inconsistently re-
flect the model’s decision process (Jukić et al.,
2023; Ding and Koehn, 2021b; Atanasova et al.,
2020b). Moreover, the lack of a ground truth
for saliency evaluation makes it challenging to
evaluate whether they correctly approximate the
model’s processes (Molnar, 2022).

Having addressed the truthfulness of these
methods, the question of their utility remains.
For this study, we must conclude that the mod-
els follow some other strategy for correct predic-
tion (rather than relying on the expected reason-
ing). Explainability methods should aim to make
a model’s decisions understandable to humans.
However, this is challenging when a model’s rea-
soning processes do not align with human rea-
soning (González et al., 2021). Identifying al-
ternative reasoning strategies or shortcuts through
these explanations is challenging because they are
not necessarily human interpretable (see Figure
36), raising questions about the practical value of
these methods, as they only provide a partial inter-
pretable view of a model’s processes, and fail to
provide actionable insights.

6Similar work (Ray Choudhury et al., 2022; Du et al.,
2021) report both negative and positive impacts on saliency
scores, which we consider as positive contributions regard-
less of probability direction.

721



7 Extending to Generative Models

Extending the experiments to adapt modern gen-
erative models, such as LLaMA (Touvron et al.,
2023), GPT (Yenduri et al., 2023), and OLMO
(Groeneveld et al., 2024), presented challenges,
particularly in interpreting saliency scores.

Zhao et al. (2023) provides a taxonomy of ex-
plainability methods for transformer-based lan-
guage models, categorizing them based on train-
ing paradigms (e.g., fine-tuning and prompt-
ing), which influence their goals and effective-
ness. Generative models, primarily prompt-based,
leverage their extensive scale and learned prompts
for task execution. These complex processing
strategies (Wei et al., 2023) make it difficult to iso-
late specific components of the model responsible
for particular decisions. Localized and example-
based explainability methods become less mean-
ingful (Zhao et al., 2023). Moreover, differences
in training objectives (e.g. autoregressive versus
masked language), make it challenging to apply
explainability methods that work reliably across
all model types. Trustworthiness of explanations
is both task and model-dependent (Bastings et al.,
2022). Variations in how models process and pri-
oritize input can result in inconsistencies in the ef-
fectiveness of these methods. This variability un-
derscores that no single explanation method can
be universally treated as a standard across all con-
texts. Consequently, conducting meaningful com-
parisons between different architectures becomes
challenging, as the results may be unreliable or
even misleading. Further research is needed to val-
idate the robustness of such comparative analyses.

In contrast, counterfactual explanations provide
a promising approach for evaluating generative
models. Assessments centered on counterfac-
tual instances could help determine whether these
models maintain consistent reasoning when con-
fronted with alternative scenarios. We leave the
adaption of the presented counterfactual explana-
tions (§ 4.6) to generative models to future work.

Of particular relevance, Roccabruna et al.
(2024) highlights the performance gap between
generative and discriminative models in temporal
relation classification tasks. Encoder-only mod-
els based on RoBERTa consistently outperform
generative models like LLaMA. This performance
gap is attributed to RoBERTa’s ability to fully uti-
lize input context via masked language modeling,
in contrast to LLaMA’s autoregressive objective,

which tends to prioritize final tokens in the in-
put sequence. This underscores the significance
of discriminative models for TRC and reinforces
the value of evaluating whether their decisions are
based on valid and expected reasoning patterns.

8 Conclusion

Temporal annotations are used to mark all linguis-
tic features that express temporal information in
text. We evaluate selected discriminative models
on a temporal relation classification task, exam-
ining whether they rely on these features for cor-
rect predictions. Experiments involve a combina-
tion of counterfactual explanations and saliency-
based methods. High alignment between these
two explanations indicates that a model is follow-
ing a valid processing strategy. We find that this is
not the case for the selected models, meaning that
they might learn spurious correlations or shortcuts
rather than relying on the defined linguistic fea-
tures that form temporal meaning. We evaluate
the limitations of this framework by examining
the utility of the explainability methods used, to-
gether with challenges and potential directions for
extending the framework to generative models.

Limitations

This study focuses on a single dataset and task,
which limits the generalizability of its findings.
Future work could expand the scope by exploring
additional benchmark datasets and tasks to assess
the broader applicability of the proposed frame-
work. Generating and testing a larger number of
counterfactual and original instance pairs would
also provide a more robust evaluation.

Our approach to saliency scores may additional
attention. The current methodology does not ac-
count for the potential negative impact of indi-
vidual tokens on predictions, and it aggregates all
scores without identifying specific tokens that are
particularly influential for a given class.
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Appendix A

BERT (bert-base-uncased, bert-large-
uncased), RoBERTa (FacebookAI/roberta-
base, FacebookAI/roberta-large), LUKE
(studio-ousia/luke-base, studio-ousia/luke-
large) are sourced from the Hugging Face
Transformers library. Each encoder model is
fine-tuned for the task of temporal relation clas-
sification using the architectural and tokenisation
strategies presented by Yanko et al. (2023) and
Baldini Soares et al. (2019). All models are
fine-tuned for the duration of 10 epochs with a
batch-size of 8, using AdamW optimizer. The
learning rate was kept at 1e-05.

Appendix B

Relaxed F1 Relaxed F1 EM
M/avg W/avg

LUKE large 0.61 0.81 0.80
LUKE base 0.61 0.80 0.78
RoBERTa large 0.67 0.82 0.81
RoBERTa base 0.65 0.81 0.79
BERT large-uncased 0.66 0.81 0.78
BERT base-uncased 0.63 0.79 0.77

Table: Performance evaluation on MATRES
(Ning et al., 2018) dataset, using the ”relaxed” F1
metric proposed by Yanko et al. (2023).

VAGUE class was initially introduced in MA-
TRES dataset to account for disagreements that
arise during the annotation process (Ning et al.,
2018). Yanko et al. (2023) introduces a ”related
F1” metric to address the complexities associated
with the class. This evaluation metric excludes
errors where non-VAGUE predictions are made
on VAGUE samples, based on the argument that
VAGUE inherently encompasses both temporal di-
rections (BEFORE and AFTER). Errors in this
class are considered less critical and can be par-
tially disregarded. Similarly, Roccabruna et al.
(2024) take this notion further by completely ex-
cluding the VAGUE class from analysis, arguing
that it does not represent a true temporal relation.
We chose to keep the VAGUE class due to its po-
tential value in generating counterfactual explana-
tions. The class can serve as a middle ground that
can be modified into more definitive temporal re-
lations ( BEFORE, AFTER or EQUAL) or created
by introducing ambiguities into otherwise clear re-
lationships.

Appendix C

This section provides a detailed overview of the
methods used to generate counterfactual explana-
tions, including how alterations were identified
and implemented to ensure semantic correctness.
Four types of possible and semantically correct al-
terations were employed to generate counterfac-
tual explanations:

1. We consider simple temporal relationships
those that contain explicit temporal conjunc-
tions (e.g. ”before”, ”after” and ”while”). For
simple temporal relationships, revering the tem-
poral conjunction and/or changing verb tenses
were sufficient as semantically correct alter-
ations. This strategy most often resulted in re-
versing BEFORE and AFTER relationships.

2. For instances where a direct reversal of tempo-
ral conjunction or verb tense change was not
possible, temporal conjunctions or adverbs (e.g.
”subsequently”, ”already”) and temporal ex-
pressions (e.g. ”months”, ”years”) were added
or removed. This strategy often resulted in al-
tering BEFORE or AFTER relationships to an
EQUAL relationship, or vice-versa.

3. We consider more complex relationships those
that include conditional or causal relationships
between the two events. Focus was put in not
altering the nature of such relationships. For
these cases, reversing the temporal relationship
involved reversing the cause with the effect or
vice-versa.

4. For actions described in separate sentences, re-
ordering the sentences was considered as a valid
semantic alteration. This alteration is possible
and particularly relevant for the dataset at hand,
which is based on news snippets. For the news
domain, the order of mention often dictates the
sequence of events. This strategy often resulted
in altering to or from a VAGUE relationship.
Reordering sentences within the text, by placing
them closer or further apart, either increased or
decreased the contextual dependency between a
pair of actions.
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Common Features Examples

Temporal Expressions:
Tokens that specify
points in time

Absolute expressions, such as
December 2025, at 5PM

Relative expressions, such as
week, Mondays, annually

She started a new job on
September 1st , after moving to the

city.

If it rains tomorrow , the picnic will
be postponed until Sunday .

Temporal Prepositions
and Adverbs: Tokens
used to connect actions
or events to specific
times.

Prepositions such as
at, on, in, during, for, over, by

Adverbials such as
again, late, now, then
eventually, previously,
recently

She started a new job on
September 1st, after moving to the
city.

Recently , he has taken up running
before breakfast at 8AM.

Temporal
Conjunctions: Tokens
used to related events to
each one another.

Conjunctions such as
before, after, while, until,
since
when, as soon as, as long as

She started a new job on Septem-
ber 1st, just after moving to the city.

Recently, he has taken up running
before breakfast every morning.

Subordinate
Conjunction: Tokens
used to express
conditional or causal
relationship between
events or actions.

References to causality such
as
because, therefore, as

References to conditions such
as if, unless, then, so

Because you didn’t reply in time, I
only bought tickets for two.

If it rains tomorrow, then the
picnic will be postponed until
Sunday at noon.

Appendix D: Examples of features that express temporal information. The table is designed to demon-
strate how relevant and important tokens are identified and retrieved in accordance with the annotation
guidelines. Color coding follows the annotation guidelines from TimeML (Mani et al., 2006): orange
is used for signal tokens (SIGNAL), providing cues for how events and temporal expressions are related
to each other; blue is used for specific time expressions (TIMEX3).
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