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Abstract
Segmenting languages based on mor-
pheme boundaries instead of relying on
language independent segmenting algo-
rithms like Byte-Pair Encoding (BPE)
has shown to benefit downstream Natu-
ral Language Processing (NLP) task per-
formance. This can however be tricky
for polysynthetic languages like Inuktitut
due to a high morpheme-to-word ratio and
the lack of appropriately sized annotated
datasets. Through our work, we display
the potential of using pre-trained Large
Language Models (LLMs) for surface-
level morphological segmentation of Inuk-
titut by treating it as a binary classifi-
cation task. We fine-tune on tasks de-
rived from automatically annotated Inuk-
titut words written in Inuktitut syllabics.
Our approach shows good potential when
compared to previous neural approaches.
We share our best model to encourage fur-
ther studies on down stream NLP tasks for
Inuktitut written in syllabics.

1 Introduction

The Inuktitut language, indigenous to the north-
ernmost regions of Canada and spoken by roughly
40K speakers, is particularly difficult to adapt NLP
tools for. Not only is the lack of appropriately
sized annotated datasets a big hurdle, but so is
the polysynthetic nature of the language itself.
This linguistic attribute results in a very high av-
erage morpheme-to-word ratio, by some estimates
as high as 4.39 (Roest et al., 2020), where often
times one or two words in Inuktitut can express
what would take a full sentence to express in En-
glish (Mallon, 2000) (see Figure 1). Naturally, this
leads to numerous ways of forming unique and
rare words, each one conveying rich linguistic in-
formation.

Figure 1: An example of an Inuktitut word
written in Inuktitut syllabics, romanized as
“Parimunngauniralauqsimanngittunga”, translat-
ing to a full sentence in English.

To combat similar issues with rare or unique
words in other languages, a common practice is to
pre-process textual data by deploying algorithms
such as BPE (Sennrich et al., 2016) or Sentence-
Piece (Kudo and Richardson, 2018) that are effi-
cient at breaking up words into more digestible
sub-strings. However, these algorithms are lan-
guage independent and split words based on the
frequency of commonly occurring sub-string char-
acter clusters and not on the basis of actual lin-
guistic information. Instead, we turn our atten-
tion to surface-level morphological segmentation,
as explicit morphological information has shown
to be valuable for various down steam NLP tasks
(Dyer et al., 2008; Creutz et al., 2007; Ruoko-
lainen et al., 2016), especially for low-resource
languages (Wiemerslage et al., 2022). Despite the
existence of an invaluable rule-based tool (Farley,
2009) capable of segmenting Inuktitut based on
linguistic information, it is not reliable as it fails
to return segmentations for many words.

In this study, we explore a different approach to
segmenting Inuktitut compared to previous efforts
by leveraging off a pre-trained multilingual LLM
and by turning surface-level morphological seg-
mentation into a binary classification task through
the use of LLMSegm (Pranjić et al., 2024). We
annotate additional training data using the exist-
ing rule-based segmentation tool and evaluate our
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fine-tuned models on a variation of human anno-
tated and automatically annotated test sets. Con-
trarily to the majority of previous studies, which
employ the romanized version of the language, our
setup focuses on segmenting Inuktitut written in
Inuktitut syllabics. By sharing our best perform-
ing model, we hope to inspire others to also con-
duct their research on Inuktitut written in syllabics
without romanizing the language first. Our main
contributions are:

1. We show the potential of deploying pre-
trained LLMs for surface-level morpholog-
ical segmentation of Inuktitut compared to
previous approaches.

2. We encourage more research to be done on
down-steam NLP tasks for Inuktitut written
in syllabics by making our model available1.

2 Background and related work

There are plenty of methods dealing with morpho-
logical segmentation. Here we mention a few re-
lated to our work. Creutz and Lagus (2002) in-
troduced an unsupervised probabilistic morpheme
identifying method that has seen widespread use,
with many related projects following their lead
(Kohonen et al., 2010; Smit et al., 2014). More
recently, Eskander et al. (2020) introduced Mor-
phAGram, another unsupervised approach based
on adaptor grammars (Johnson et al., 2006). Semi-
supervised methods incorporating conditional ran-
dom fields have also been proposed (Ruokolainen
et al., 2014), as well as fully supervised ones
(Cotterell et al., 2015). Additionally, there have
been numerous neural approaches (Wang et al.,
2016; Micher, 2017; Kann et al., 2018) using var-
ious model architectures. Recently, Pranjić et al.
(2024) leveraged off pre-trained LLMs to segment
words by turning morphological segmentation into
a binary classification task. They displayed the ef-
fectiveness of their approach for a number of lan-
guages in a low-resource setting. Additionally,
surface-level segmentation as a community task
has also been highlighted during the 2005 to 2010
Morpho Challenges (Kurimo et al., 2010) and for
a few low-resource languages in the shared task
LowResourceEval-2019 (Klyachko et al., 2020).

1Available here: https://huggingface.co/
matsten/Glot500-m-iuseg

2.1 Previous approaches for segmenting
Inuktitut

The UQAILAUT Inuktitut Morphological Ana-
lyzer (Farley, 2009) is an openly available mor-
phological analyzer for the language, developed at
the National Research Council of Canada (NRC).
The analyzer is a finite state transducer that
makes use of hand-crafted rules to return both
a surface-level morphological segmentation of an
input word, and the lemma of each individual mor-
pheme. The segmentations returned are not al-
ways unambiguous since Inuktitut words can often
be correctly segmented in many ways and, conse-
quently, for many words, more than one segmen-
tation is returned. Unfortunately, the analyzer suf-
fers from a flaw in that for many words, it does
not return any decompositions at all, making it
rather unreliable to use as a pre-processing tool
for downstream tasks. In an effort to cover for
words that UQAILAUT cannot process, Micher
(2017) annotated more training data from the
Nunavut Hansard Inuktitut-English Parallel Cor-
pus 3.0 (Joanis et al., 2020) using the same ana-
lyzer to train a Segmental Recurrent Neural Net-
work (SRNN) (Kong et al., 2016) for both seg-
mentation and tagging of morpheme specific in-
formation. Le and Sadat (2020) took a different
approach and deployed a bidirectional Long-Short
Term Memory (LSTM) incorporating pre-trained
embeddings for Inuktitut. Roest et al. (2020)
trained a transformer (Vaswani et al., 2017) based
model and combined it with UQAILAUT and BPE
to form a 3-step method to segment the language.
More recently, Khandagale et al. (2022) extended
their adaptor grammar based tool MorphAGram
with expert-based linguistic priors for morpholog-
ical segmentation of Inuktitut.

3 Methodology and experimental setup

3.1 Model
For all of our experiments, we utilize Glot500-
m (Imani et al., 2023), a multilingual LLM cov-
ering more than 500 languages, many of which
can be considered low in resources. It builds
upon the XLM-R-base multilingual model (Con-
neau et al., 2020) by extensively extending its vo-
cabulary from 250K tokens to 401K, and through
continued training with a masked language mod-
elling objective. It was trained on Glot500-c2, a

2Available here as a Huggingface dataset: https://
huggingface.co/datasets/cis-lmu/Glot500
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subset of the larger Glot2000-c corpus, contain-
ing roughly 126GB of text covering more than 400
languages, including Inuktitut. The model was
evaluated on a diverse set of tasks and displayed
great improvements on the newly introduced lan-
guages and also performs equal to, or better, than
XLM-R-base on already seen languages.

3.2 Datasets and preprocessing
We make use of the Inuktitut side of the Nunavut
Hansard Inuktitut-English Parallel Corpus 3.03

(Joanis et al., 2020), which contains around 8M
Inuktitut words worth of debate proceedings from
the Legislative Assembly of Nunavut. After run-
ning the recommended accompanying spelling
normalization scripts, we extract each unique
word and end up with a vocabulary of approxi-
mately 1,1M unique words, which we automat-
ically annotate using the UQAILAUT analyzer
(Farley, 2009). For each successfully analyzed
word, it returns either a single or many possi-
ble surface-level morphological decompositions.
Similarly to the reasoning by Micher (2017);
Roest et al. (2020), we assume that words with
single decompositions are the least ambiguous and
therefore the most correctly labeled words. Roest
et al. (2020) even show that training their trans-
former based segmenter on fewer amounts of un-
ambiguous word segmentations is preferred com-
pared to training on many ambiguous ones. We
therefore follow their steps. Since Glot500-m has
seen large parts of the Nunavut Hansard corpus
during pre-training, we make sure that the train,
validation and test/evaluation splits are divided in
such a way that there are no unique words in the
test/evaluation and validation split that also occur
in the Glot500-c dataset. Of a total of 54,138 un-
ambiguously segmented words, 45,231 are used
for training, 3102 for validation and 3102 for
test/evaluation. We refer to this test/evaluation set
as the test set. In order to compare our approach to
UQAILAUT’s performance, we also evaluate our
approach on another dataset separate from our ini-
tial test set. This dataset4, referred to as the gold
set, consists of around 1K hand-annotated Inukti-
tut words based on the most frequently occurring

3https://nrc-digital-repository.
canada.ca/eng/view/object/?id=
c7e34fa7-7629-43c2-bd6d-19b32bf64f60

4https://github.com/
LowResourceLanguages/InuktitutComputing/
blob/master/Inuktitut-Java/ressources/
goldstandardHansard.txt

words in the Nunavut Hansard corpus. However,
it is worth highlighting that, through the work of
(Khandagale et al., 2022), we are made aware of
the flaws of this gold set. Even though they cor-
rected the gold set with the help of linguists and
even added 100 new entries, their version of the
gold set is seemingly absent from their GitHub
repository.

3.3 Turning segmentation into a binary
classification task

We fine-tune our models on binary classification
tasks derived from the annotated Inuktitut words
described in Section 3.2 using LLMSegm (Pranjić
et al., 2024) using the original code5. LLMSegm
derives binary classification tasks from a word by
introducing a custom morpheme boundary token,
represented here as “@”, that is inserted into a
word between two characters. This is repeated for
each unique position between two characters in the
word forming n − 1 tasks where n is the number
of characters in the word and the task is to pre-
dict whether “@” is positioned at a true morpheme
boundary (see Figure 2).

Figure 2: Visualization of the tasks derived from
an Inuktitut word, where the morpheme separator
token denoted by “@” is inserted between each
unique position between two characters. The task
then becomes to predict whether this is a True (1)
or False (0) morpheme boundary.

Additionally, prepended to each individual task
is the same untouched word in its entirety, imme-
diately followed by another custom token called
the word boundary token, represented in text as
“‡”, effectively separating the prepended word and

5Original code is available here: https://github.
com/sharpsy/llm-morphological-segmenter
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the given task (see Figure 3).

Figure 3: Visualization of the full model input for
a single example prediction. Here “‡” represents
the word boundary token and “@” the morpheme
boundary token.

By doing this, Pranjić et al. (2024) hope to pre-
vent the loss of information from the tokens that
the pre-trained model’s tokenizer normally would
split the word into. By additionally including the
untouched word, all original tokens are guaranteed
to be retained in the input since the tokenizer will
be forced to split any tokens in its vocabulary that
bridges across “@”. We experiment both with and
without this addition by performing minimal alter-
ations to the original code. This extra prepended
word will henceforth be referred to as the support-
ing word.

3.4 Working with syllabics
We work with Inuktitut written in syllabics for
two main reasons. Firstly, it is necessary since
Glot500-m was fine-tuned on Inuktitut text writ-
ten in syllabics. Secondly, we hypothesize that
working with Inuktitut written in syllabics, as op-
posed to romanized Inuktitut, might be more ben-
eficial when utilizing LLMSegm given how each
input word is turned into n − 1 classification
tasks. Since many of the syllabic characters often
equate to two or sometimes even three roman char-
acters when transcribing, the average romanized
Inuktitut word often contains many more charac-
ters than the same word written in syllabic char-
acters. Consequently, more tasks would be de-
rived from the romanized word, which on the one
hand would mean more total training samples, but
among these, some might be less relevant. We say
this on the basis of observations from transcription
experiments6 we do to and from syllabics. We take
notice that the vast majority of morpheme bound-
aries in the romanized version of the language oc-
cur between characters, or clusters of characters,
that would normally be transcribed into separate
syllabic characters in the equivalent transcription

6We transcribe using Yudit: https://yudit.org/

of the same word. By working with syllabics, we
thus eliminate segmentation tasks that would oth-
erwise be derived from between roman characters
that are normally represented by the same single
syllabic character (see Figure 4). We deem these
tasks less relevant since, according to our observa-
tions, morpheme boundaries are less likely to oc-
cur between these characters.

Figure 4: The syllabic version of the language al-
lows us to avoid deriving tasks such as classifying
whether a morpheme boundary, denoted by “@”,
is present between “m” and “a”, “k” and “u”, and
“t” and “u”. This is because the character clus-
ters “ma”, “ku” and “tu” are represented as one
syllabic character each, and therefore an internal
boundary between them is unlikely.

This way, not only do we clear our total task
pool of these hypothetically less relevant tasks, but
we also create a more balanced dataset with a more
evenly distributed true-to-false label ratio, as op-
posed to if we stick with the romanized version
of the language. We calculate that out of all the
tasks derived from our syllabic train set, roughly
41% are labeled as true while the rest are false.
We estimate that the same train set in roman char-
acters would have a much lower ratio of roughly
23% true labels. How effective our reasoning is
will however have to be left for future efforts.

3.5 Model fine-tuning

Using the training data described in Section 3.2,
we fine-tune Glot500-m for classification us-
ing LLMSegm by following the original paper
(Pranjić et al., 2024). We utilize the same hyperpa-
rameters of device batch size of 256, learning rate
of 2e-5, weight decay of 0.01, 20 warm up steps
and AdamW optimizer (Loshchilov and Hutter,
2019). Unlike the original paper, we also fine-tune
a second model without the supporting word to in-
vestigate how this affects training and later perfor-
mance. For each fine-tuning set up, we train 10
separate models on randomly sampled variations
of the original training data (with replacement)
and pick the best performing one for evaluation.
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We call the model trained without the supporting
word Glot500-m-iuseg-n and the one with the sup-
porting word Glot500-m-iuseg-s. All model train-
ing is done using 4x Nvidia A100 GPUs.

Figure 5: The evaluation loss and F1-score for
(Glot500-m-iuseg-n) and (Glot500-m-iuseg-s).

During training, we take notice that the model
training with the supporting word improves
slightly faster than the model training without,
both in terms of evaluation loss and evaluation F1-
score (see Figure 5). This suggests that the tokens
of the original unsegmented word produced by the
tokenizer might indeed help retain valuable lin-
guistic information from the pre-training that aids
the fine-tuning process.

3.6 Evaluation

We evaluate our models on the two evaluation sets
described in Section 3.2 (test and gold) and re-
port back F1-score based on the difference be-
tween predicted morpheme boundaries and the ac-
tual boundaries. Much like (Kann et al., 2018;
Roest et al., 2020; Pranjić et al., 2024), we addi-
tionally complement our F1-score by reporting the
accuracy score calculated as the proportion of all
words where every morpheme boundary was cor-
rectly predicted. We then end up with two com-
plementary metrics, one calculated at morpheme-
level and one at word-level. For comparison, we
treat the Glot500-m (Imani et al., 2023) tokenizer
as our baseline and also compare our results to
previous studies where it is applicable. Due to
the UQAILAUT analyzer’s tendency to fail when
presented with certain words, we also evaluate a
combined custom setup where our best perform-
ing model processes these failed words. We call
this setup UQAILAUT+.

4 Results & discussion

We present our results in Table 1 and compare
where possible to the following: AG-SS (Khanda-
gale et al., 2022), Trf. (45K single) and 3-
step (Roest et al., 2020), LSTM with pre-trained
embeddings (Le and Sadat, 2020), SRNN CG
(Micher, 2017) and UQAILAUT (Farley, 2009).
Our fine-tuned models Glot500-m-iuseg-n and
Glot500-m-iuseg-s show the potential of our cho-
sen methods compared to previous neural ap-
proaches in terms of F1-score and accuracy. Both
of our models achieve a worse accuracy on the
gold set, albeit higher F1, compared to the 3-step
setup.

Model/setup Test Gold
F1 Acc. F1 Acc.

Glot500-m tok. 0.59 0.04 0.42 0.18
AG-SS - - 0.60* -
Trf. (45K single) - - 0.68 0.54
3-Step - - 0.74 0.70
LSTM 0.75* - - -
SRNN CG 0.95* - - -
Glot500-m-iuseg-n 0.98 0.89 0.85 0.61
Glot500-m-iuseg-s 0.98 0.90 0.87 0.66
UQAILAUT - - 0.92 0.74
UQAILAUT+ - - 0.95 0.81

Table 1: F1-score and accuracy scores from our
models compared to previous studies. “-” in-
dicates that evaluation metrics for the particular
dataset were never reported or that they can not
be reported. “*” next to a score indicated that
the score was reported on a variation of the same
dataset compared to what was used for evaluation
in this study.

Worth noting is that where Micher (2017)
choose 1K unambiguous samples annotated by
UQAILAUT as their test set and Le and Sadat
(2020) use 250 sentences as their test, we select as
many unambiguous samples as possible who’s ex-
act word form does not also appear in the training
data of the Glot500-m model for a total of 3102.
Hence, they are all evaluated on different amounts
of words, and most likely also different words,
from the Nunavut Hansard corpus (Joanis et al.,
2020). Our model Glot500-m-iuseg-n slightly un-
derperforms Glot500-m-iuseg-s trained using the
supporting word. This would suggest that there is
some benefit to including the supporting word not
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only during training, but also during evaluation,
possibly due to a retention of information from
pre-training. This is also implied to be the case,
since the Glot500-m tokenizer’s decent F1-score
hints to the existence of some underlying knowl-
edge of how to segment Inuktitut words, despite
it returning very few fully correctly segmented
words. None of the neural approaches alone out-
perform the UQAILAUT analyzer in terms of F1-
score and accuracy, even though Glot500-m-iuseg-
s is close. The combined setup UQAILAUT+
however, achieves the highest score on the gold
set. Even though this setup does not improve F1-
score too much, it improves accuracy by a not in-
significant amount.

4.1 Oversegmentation
When examining the predictions on the two eval-
uation sets by our best performing model, we take
notice of its tendency to oversegment words con-
taining fewer than 4 true segmentations, peaking at
words with 0 (see Figure 6). Going from 4 to 8 true
segmentations per word, our best model achieves a
more stable predicted-segmentations-per-word to
true-segmentations-ratio on the test set, but seem-
ingly underpredicts on the gold set for words in the
same range.

Figure 6: The average amount of morpheme
boundaries over-/under predicted by Glot500-m-
iuseg-s (y-axis) for words with n true segmenta-
tions from the test and gold set (x-axis).

Additionally, by calculating isolated F1-scores
on predictions for words with 0-1 true segmenta-
tions, we see that our model performs much worse
in this range compared to F1-scores in all the other
ranges (see Figure 7). This underperformance is
also reflected in the drop in F1-score between eval-
uations on the test set and the gold set, going from
0.98 to 0.87, since the gold set is made up of
around 60% words in the range of 0–1 segmenta-

tions per word. The fact that our model saw many
more words with segmentations in the range of
2-5 compared to the range 0-1 during fine-tuning
might help explain why our model performs worse
for these words. In fact, the average number of
segmentations per word in our train set is much
higher than in the gold set, as displayed in Table
2.

average train test gold

seg./word 3.3 3.5 1.6
char./word 9.2 9.7 6.3

Table 2: Average true segmentations and syllabic
characters per word in the train, test and gold set.

This suspicion is also supported by the higher
F1-scores for words with true segmentations rang-
ing from 2-5. Further building on this argu-
ment, the way the LLMSegm tool turns each an-
notated word into n−1 segmentation tasks ampli-
fies this training imbalance, as words with fewer
segmentations typically contain fewer characters.
This means that our model will see longer words
many more times compared to shorter words. For
this reason, we try to mitigate this imbalance by
fine-tuning additional models where we upsample
words in the segmentation-per-word range of 0-1
by 2x and 3x in the training data but with no posi-
tive effect on performance.

Figure 7: The percentage of words in the dataset
that contain a certain amount of segmentations
per word, as well as F1-score performance of
Glot500-m-iuseg-s on words in each individual
bracket for both the test and gold set.

Ignoring our model’s struggle with shorter
words, we have two possible explanations for why
our models perform worse overall on the hand an-
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notated gold set than on the test set. Since both
the training data and our test set were automati-
cally annotated by UQAILAUT that itself does not
score perfectly on the gold set, we can only as-
sume that some of the training and test data were
also incorrectly annotated. This might have in-
flated the scores on the test set compared to the
gold set, and might also mean that our model will
make the same mistakes when deployed as a pre-
processing tool. We also know that the gold set
contains 1K of the most frequent words in the
Nunavut Hansard corpus, while our model was
fine-tuned on unique words where word frequency
was not taken into consideration.

4.2 UQAILAUT issues

As mentioned previously, the UQAILAUT an-
alyzer is unable to produce decompositions for
many Inuktitut words. This is despite it outper-
forming all other setups. We are unsure of the
exact cause of the UQAILAUT analyzer’s inabil-
ity to process certain words, but a quick look at
these failure cases suggest that it might have to do
with spelling inconsistencies and or not enough
coverage in its hand-crafted rules to account for
these. This might in turn explain why in the
UQAILAUT+ setup, our model was able to cor-
rectly process a few words where UQAILAUT
fails since spelling inconsistencies do not automat-
ically result in a failed attempt thanks to the more
dynamic nature of our neural model. However,
due to the small evaluation dataset, it is not pos-
sible to draw any definitive conclusions.

When evaluating only the UQAILAUT analyzer
on the gold set, we take notice that it fails to re-
turn any decompositions at all for approximately
11% of the words. However, when annotating
the unique words from the Nunavut Hansard cor-
pus to create our dataset, we note that, much like
the observations made by Micher (2017), this per-
centage increases to approximately 30%. This
suggests that, despite its high scores on the gold
set, UQAILAUT is unfit to pre-process real world
texts for downstream NLP tasks on its own since
some very long words would be left unsegmented.
Further, this suggests a performance decrease in a
scenario where we have access to more human an-
notated gold data for evaluation that contains rarer
words and not just the 1K most common ones. In
fact, we calculate that only 20% of all word forms
in the Nunavut Hansard corpus occur more than

once and only 11% more than twice. This abun-
dance of unique words in Inuktitut further high-
lights the importance of continued research in the
field to ultimately benefit downstream NLP tasks.

5 Conclusion

We contribute to ongoing research focusing on
the polysynthetic language Inuktitut by fine-tuning
and sharing a Glot500-m LLM for binary clas-
sification of morpheme boundaries. Our best
model shows promising results when comparing
to previous efforts, despite struggling to segment
words with fewer true segmentation boundaries.
We also show the potential of deploying exist-
ing pre-trained LLMs using LLMSegm even for
under-resources polysynthetics languages without
the need to train anything from scratch. Addition-
ally, we further encourage future studies on down
stream NLP tasks for Inuktitut written in syllabics.
In future efforts, we intend to improve the perfor-
mance of our model, as well as investigate its po-
tential as a pre-processing tool for down stream
NLP tasks such as machine translation.

6 Limitations

The main limitation with LLMSegm is the fact
that it completely relies on the existence of a
pre-trained model that has seen the target lan-
guage during pre-training, which, ironically, ex-
cludes many of the world’s lowest resource lan-
guages. Additionally, being a low-resource lan-
guage, Inuktitut suffers from a lack of well-
balanced human segmented gold data for both
training and evaluation. Thus, it is not possible to
draw solid conclusions based on evaluation on the
only available gold set, and only further highlights
the need for more such data. Our method also
does not take alternative segmentations into con-
sideration, but we still believe that our model can
be used as a pre-processing tool to benefit down
stream performance. Further, the accuracy, as re-
ported by Roest et al. (2020), Pranjić et al. (2024),
and now also by us, is not an ideal metric for eval-
uating a segmenter for polysynthetic languages.
Since this definition of accuracy gives the same
weight to words containing different amounts of
segmentations, a correctly predicted decomposi-
tion of a word containing 1 true segmentation is
valued higher than a word containing 8 true seg-
mentations, where the setup only successfully pre-
dicts 7.
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