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Abstract

This paper explores the performance of en-
coder and decoder language models on mul-
tilingual Natural Language Understanding
(NLU) tasks, with a broad focus on Ger-
manic languages. Building upon the Scan-
dEval benchmark, initially restricted to
evaluating encoder models, we extend the
evaluation framework to include decoder
models. We introduce a method for eval-
uating decoder models on NLU tasks and
apply it to the languages Danish, Swedish,
Norwegian, Icelandic, Faroese, German,
Dutch, and English. Through a series of ex-
periments and analyses, we also address re-
search questions regarding the comparative
performance of encoder and decoder mod-
els, the impact of NLU task types, and the
variation across language resources. Our
findings reveal that encoder models can
achieve significantly better NLU perfor-
mance than decoder models despite hav-
ing orders of magnitude fewer parameters.
Additionally, we investigate the correlation
between decoders and task performance
via a UMAP analysis, shedding light on
the unique capabilities of decoder and en-
coder models. This study contributes to a
deeper understanding of language model
paradigms in NLU tasks and provides valu-
able insights for model selection and evalu-
ation in multilingual settings.

1 Introduction

Language models have attained remarkable Natu-
ral Language Understanding (NLU) performance,
both with encoder-based architectures like BERT
(Devlin et al., 2018) and and decoder-based archi-
tectures like GPT-3 (Brown, Tom and Mann, Ben-
jamin and Ryder, Nick and Subbiah, Melanie and

Kaplan, Jared D and Dhariwal, Prafulla and Nee-
lakantan, Arvind and Shyam, Pranav and Sastry,
Girish and Askell, Amanda and others, 2020). The
encoder models have excelled in capturing con-
textual information for downstream tasks through
masked language modeling objectives, while de-
coder models have shown strong generative capa-
bilities by autoregressively predicting subsequent
tokens based on preceding context.

Since the “ChatGPT boom” in 2023, the research
community has been increasingly focused on de-
coder models (Zhao et al., 2023) for both Natural
Language Generation (NLG) and NLU tasks. How-
ever, few studies have systematically compared
the performance of encoder and decoder models
across a diverse range of NLU tasks, and the studies
that exist have primarily focused on English. This
leaves a gap in our understanding of how the two
language model paradigms perform in multilingual
settings across different languages and tasks.

Nielsen (2023) introduced the ScandEval bench-
mark and evaluated encoder language models on
four different natural language understanding tasks
in Danish, Swedish, Norwegian (Bokmål and
Nynorsk), Icelandic and Faroese. In this paper,
we bridge this gap by extending the ScandEval
benchmark to encompass the evaluation of decoder
models on multilingual NLU tasks, as well as ex-
panding the language resources to include German,
Dutch and English.

Our main research question is

Which language model paradigm is bet-
ter suited for NLU?

We will answer this question with the languages
Danish, Swedish, Norwegian, Icelandic, Faroese,
German, Dutch and English as a case study. To
concretise our main question, we will study the
following research questions in this paper:

(Q1) Can state-of-the-art finetuned encoder models
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achieve significantly better NLU performance
than state-of-the-art decoder models?

(Q2) Does the answer to (Q1) depend on the type
of NLU task?

(Q3) Does the answer to (Q1) vary along the lan-
guage resource spectrum, from low- to high-
resource?

Our main contributions of this paper are the fol-
lowing:

1. We extend the ScandEval benchmarking
framework with few-shot evaluation of de-
coder models and release this extension open-
source.

2. We extend the languages supported by the
ScandEval benchmarking framework by Ger-
man, Dutch and English. Together with
Danish, Swedish, Norwegian, Icelandic and
Faroese, ScandEval now provides coverage of
all Germanic languages except Afrikaans and
the Frisian languages.

3. We evaluate an extensive suite of both encoder
and decoder models on NLU tasks in all of
the supported languages and publish these on
public leaderboards.

4. We give a positive answer to (Q1), showing
that encoder models achieve significantly bet-
ter NLU performance than encoder models in
several languages. This depends on the lan-
guage in question however, giving a partially
positive answer to (Q3).

5. We also show that the decoder models are
heavily biased towards the question answer-
ing task (even models that are not instruction
tuned), and a UMAP analysis shows that the
performance distribution of decoder models
follow a different “path” than encoder mod-
els, from the worst to best performing models.
This gives a positive answer to (Q2).

2 Related Work

2.1 Comparing Encoder and Decoder Models
There has been a number of studies in recent
years comparing encoder models to decoder mod-
els. Zhong et al. (2023) compared GPT-3.5-turbo
(January 2023 version) to (finetuned versions of)
the base and large versions of BERT (Devlin et al.,

2018) and RoBERTa (Liu et al., 2019) on the En-
glish GLUE benchmark (Wang et al., 2018). They
find that GPT-3.5-turbo is on average on par with
the base-sized encoder models, but falls short of
the large-sized ones. They also note that despite
being on par with the base-sized models, there is a
big discrepancy between the models on individual
tasks, with GPT-3.5-turbo for instance being better
on the inference tasks while being worse on the
paraphrase tasks. We note however that they only
evaluate the decoder model in a zero-shot setting,
and furthermore they only evaluate the models on
25 samples for each class in the development split,
leading to a potential lack of robustness in their
evaluation.

Wang et al. (2023) compares GPT-3.5-turbo
(January 2023 version) to a finetuned version of
the base-sized BERT model on 18 English bench-
mark datasets related to sentiment analysis. Like
Zhong et al. (2023), they find that the zero-shot
performance of GPT-3.5-turbo is on par with the
base-sized BERT model, and that the few-shot per-
formance of GPT-3.5-turbo (with 27 few-shot ex-
amples) is slightly better than BERT, on average.
Their test sets contained, on average, 538 samples,
which is a significant improvement over Zhong
et al. (2023). However, the narrow focus on the
evaluation tasks as well as only benchmarking a
single encoder and decoder model makes it hard to
generalise the results to other tasks and models.

Kocoń et al. (2023) built a benchmark suite of
25 tasks, where 21 of these tasks are classification
tasks (binary, multi-class and multi-label), 3 being
question answering tasks and the last one being a
token classification task. Two of the classification
tasks are in Polish and the rest in English. They
compare the zero-shot and few-shot performance
of GPT-3.5-turbo (January 2023 version) to the
state-of-the-art encoder performance on each task.
GPT-3.5-turbo is generally found to be worse than
state-of-the-art encoder models. They also evaluate
GPT-4 on five of the tasks (inference, question-
answering and emotion datasets), and only find
GPT-4 to be marginally better than GPT-3.5-turbo,
still far off the encoder models.

Qiu and Jin (2024) compare GPT-3.5-turbo (Jan-
uary 2023 version) to a finetuned version of the
base-sized BERT model on three manually curated
English multi-class classification datasets with 19,
12 and 7 test samples, respectively, where they find
that the BERT model performs marginally better
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than GPT-3.5-turbo in a few-shot setting (and that
the zero-shot performance is significantly worse).
The tiny test sets make it hard to generalise the
results, however.

2.2 Benchmarks of Generative Language
Models

In recent times, several benchmarks of generative
language models have been introduced. The ma-
jor ones are EleutherAI’s Evaluation Harness (Gao
et al., 2023), Hugging Face’s Open LLM Leader-
board (hug) which uses the Evaluation Harness
as evaluation engine, and Stanford University’s
HELM (Bommasani et al., 2023). These are firstly
all English-only benchmarks, making it hard to gen-
eralise the results to other languages, and they only
include point estimates of the dataset performance,
and thus do not necessarily provide a robust assess-
ment of the models. Further, these benchmarks are
exclusively for decoder models, and thus does not
provide a way to compare encoders with decoders.

There has been several language-specific bench-
marks introduced as well. NorBench (Samuel
et al., 2023) is a collection of Norwegian evaluation
datasets moreso than a dedicated evaluation frame-
work. Further, several datasets in this collection
(NorQuAD, NoReC and NorNE) are already part
of ScandEval. SuperLim (Berdičevskis et al., 2023)
falls into the same category for Swedish. DUMB
(de Vries et al., 2023) is a Dutch benchmarking
framework, which is only focused on encoder mod-
els. Danoliterate (Holm, 2024) is a Danish bench-
marking framework which is solely focused on
evaluating decoder models, and whose datasets
largely overlap with the Danish datasets in ScandE-
val, albeit with a different evaluation methodology.
Aside from language modelling performance, the
Danoliterate benchmark also measures calibration,
efficiency, toxicity and fairness. While the develop-
ment of language-specific benchmarks is important,
it leads to too little overview of trends across bench-
marks and languages and incentivises model devel-
opment focused on monolingual models ignoring
a potential broader appeal. ScandEval provides a
unified and robust approach for comparison across
model categories and Germanic languages.

Benchmarking is not the only way to evaluate
language models. A new “arena approach” has
been popularised by the LMSYS Arena (Chiang
et al.), where users can submit a prompt and get two
responses from two anonymised models at random,

and have to evaluate the responses. The Arena is
predominantly used for English, but also currently
supports six other languages. This approach is a
promising way to evaluate language models, but
we fear that it is not as suitable for low-resource
languages due to the need of many volunteers to
evaluate the responses.

Lastly, the Scandinavian Embedding Benchmark
(Enevoldsen et al., 2024b) complements ScandEval
and focuses on evaluating embedding models on a
wide range of tasks in the Scandinavian languages.

3 Datasets

In this section we present the datasets that we are
evaluating the models on, all of which are now
included in the ScandEval framework. We should
note that these datasets either (a) already existed
prior to this publication or (b) are small extensions
of existing datasets. An overview of all the datasets
can be found in Table 1.

3.1 Named Entity Recognition

For Norwegian, Swedish and Icelandic we use
the NorNE (Jørgensen et al., 2020), SUC 3.0
(Gustafson-Capková and Hartmann, 2006), MIM-
GOLD-NER (Ingólfsdóttir et al., 2020) datasets,
which were already included in the ScandEval
framework. For Faroese we replace the previous
WikiANN-fo dataset (Rahimi et al., 2019) with the
new human annotated FoNE dataset (Snæbjarnar-
son et al., 2023). We also replace the previous
DaNE dataset (Hvingelby et al., 2020) with the
new DANSK dataset (Enevoldsen et al., 2024a)
covering a wider variety of domains. For Ger-
man, Dutch and English we add the established
NER datasets GermEval (Benikova et al., 2014),
the Dutch part of CoNLL-2002 (Sang, 2002), and
the English CoNLL-2003 (Sang and De Meulder,
2003).

3.2 Sentiment Classification

We re-use the sentiment classification datasets An-
gryTweets (Pauli et al., 2021), NoReC (Velldal
et al., 2018) and SweReC (Svensson, 2017), for
Danish, Norwegian and Swedish, respectively. For
German, Dutch and English we add the existing
datasets SB10k (Cieliebak et al., 2017), Dutch So-
cial (Gupta, 2022) and SST5 (Socher et al., 2013).
We convert SST5 to the standardised trinary (neg-
ative, neutral, positive) format by converting the
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Dataset Language #Train #Val #Test #Shots
NER

DANSK (Enevoldsen et al., 2024a) Danish 1,024 256 1,024 8
SUC 3.0 (Gustafson-Capková and Hartmann, 2006) Swedish 1,024 256 2,048 8
NorNE-nb (Jørgensen et al., 2020) Norwegian Bokmål 1,024 256 2,048 8
NorNE-nn (Jørgensen et al., 2020) Norwegian Nynorsk 1,024 256 2,048 8
MIM-GOLD-NER (Ingólfsdóttir et al., 2020) Icelandic 1,024 256 2,048 8
FoNE (Snæbjarnarson et al., 2023) Faroese 1,024 256 2,048 8
GermEval (Benikova et al., 2014) German 1,024 256 1,024 8
CoNLL-nl (Sang, 2002) Dutch 1,024 256 1,024 8
CoNLL-en (Sang and De Meulder, 2003) English 1,024 256 2,048 8

Sentiment Classification
Angry Tweets (Pauli et al., 2021) Danish 1,024 256 2,048 12
SweReC (Svensson, 2017) Swedish 1,024 256 2,048 12
NoReC (Velldal et al., 2018) Norwegian 1,024 256 2,048 12
SB10k (Cieliebak et al., 2017) German 1,024 256 1,024 12
Dutch Social (Gupta, 2022) Dutch 1,024 256 1,024 12
SST5 (Socher et al., 2013) English 1,024 256 2,048 12

Linguistic Acceptability
ScaLA-da (Nielsen, 2023) Danish 1,024 256 2,048 12
ScaLA-sv (Nielsen, 2023) Swedish 1,024 256 2,048 12
ScaLA-nb (Nielsen, 2023) Norwegian Bokmål 1,024 256 2,048 12
ScaLA-nn (Nielsen, 2023) Norwegian Nynorsk 1,024 256 2,048 12
ScaLA-is (Nielsen, 2023) Icelandic 1,024 256 2,048 12
ScaLA-fo (Nielsen, 2023) Faroese 1,024 256 1,024 12
ScaLA-de (Nielsen, 2023) German 1,024 256 2,048 12
ScaLA-nl (Nielsen, 2023) Dutch 1,024 256 2,048 12
ScaLA-en (Nielsen, 2023) English 1,024 256 2,048 12

Question Answering
ScandiQA-da (Nielsen, 2023) Danish 1,024 256 2,048 4
ScandiQA-sv (Nielsen, 2023) Swedish 1,024 256 2,048 4
NorQuAD (Ivanova et al., 2023) Norwegian Bokmål 1,024 256 2,048 2
NQiI (Snæbjarnarson and Einarsson, 2022) Icelandic 1,024 256 1,024 4
GermanQuAD (Möller et al., 2021) German 1,024 256 2,048 4
SQuAD-nl (Havinga, 2023) Dutch 1,024 256 2,048 4
SQuAD (Rajpurkar et al., 2016) English 1,024 256 2,048 4

Table 1: All the datasets used in the NLU evaluation. Note that these have been re-sized and do not
represent the sizes of the original dataset.
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“very negative” and “very positive” labels to “nega-
tive” and “positive”, respectively.

3.3 Linguistic Acceptability
For linguistic acceptability we re-use the ScaLA
datasets for all the Scandinavian languages, and
extend the ScaLA datasets by applying the ScaLA
method from Nielsen (2023) to German, Dutch and
English by using the German (McDonald et al.,
2013), Dutch (van der Beek et al., 2002) and En-
glish (Zeldes, 2017) dependency treebanks.

3.4 Extractive Question Answering
Here we use the ScandiQA dataset (Nielsen, 2023)
for Danish and Swedish, but replace the manu-
ally translated Norwegian ScandiQA dataset with
the new curated NorQuAD dataset (Ivanova et al.,
2023). We further add the new Natural Questions
in Icelandic dataset (Snæbjarnarson and Einars-
son, 2022) for Icelandic. For German and English
we add the existing extractive question-answering
datasets GermanQuAD (Möller et al., 2021) and
SQuAD (Rajpurkar et al., 2016), respectively. For
Dutch we add the machine translated version of
SQuAD to Dutch (Havinga, 2023).

4 Methodology

4.1 Formulating NLU Tasks as Generative
Tasks

In this section we describe how we rephrase the
NLU tasks as text-to-text tasks, which makes it
possible to evaluate generative models on the tasks.
We formulate all the tasks as few-shot tasks, gener-
ally formatted as follows:

[prefix prompt]

[document prefix]: [document]

[label prefix]: [label]

(...)

[document prefix]: [document]

[label prefix]:

We found that the separation of the few-shot
examples with double newlines makes it easier to
know when to stop the generation - for the same
reason, we ensure that there are no double newlines
in any of the documents. See the prompts used for
the English datasets in Table 2; a full table of the
prompts used for all the tasks in all the languages
can be found in (Nielsen et al., 2024).

For the sentiment classification task, we sim-
ply have the models generate translations of the
three labels (positive, negative and neutral). For
the linguistic acceptability task, also a text classi-
fication task, we use the translations of “yes” and
“no” as the two labels, corresponding to whether
the document is grammatically correct or not. For
the extractive question answering task, we have the
model output the answer directly. For this task we
found that changing the label prefix from “Answer”
to “Answer in max 3 words” resulted in a drastic
improvement, due to many of the answers of in-
struction tuned models starting with unnecessary
text akin to “The answer is”. Lastly, for the named
entity recognition task, we require the output to
be a JSON dictionary (ISO/IEC 21778:2017), with
keys being the translated named entity tags, and
values being lists of named entities of that category.
To ensure that we are not biasing the evaluation to-
ward models knowing the JSON format, we employ
structured generation using the outlines package
(Louf, 2023), which modifies the logits outputted
by the model to ensure that the output is always a
valid JSON dictionary in the aforementioned for-
mat.

4.2 Evaluation Methodology

We keep the evaluation methodology for the gen-
erative models to be as close to the methodology
for encoder models in Nielsen (2023). We think of
the few-shot examples as analogous to training ex-
amples for encoder models. Indeed, as von Oswald
et al. (2023) shows, this assumption is theoretically
grounded. We thus evaluate the models 10 times,
where on each iteration we sample few-shot ex-
amples at random from the training split, and we
evaluate the model on a bootstrapped version of the
test split. As with the encoder models, this allows
us to take into account more noise in evaluation
process, resulting in more robust evaluation scores.

The number of few-shot examples for each
dataset was determined on a heuristic basis, where
we wanted to include as many examples as possi-
ble, while making sure that the token count was
sufficiently low to not bias the evaluation towards
models with a longer context length. All the NER,
sentiment classification and linguistic acceptabil-
ity datasets have prompt sizes around 1,000 tokens
with the Mistral-7B-v0.1 tokeniser (Jiang et al.,
2023), with the question answering datasets having
around 2,000 tokens. This is also the reason for
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Task Prefix Prompt Example Prompt
Named entity
recognition

Below are sentences and JSON dictionaries with the
named entities that occur in the given sentence.

Sentence: [text]
Named entities: [label]

Sentiment classification The following are tweets are their sentiment, which can
be ’positive’, ’neutral’ or ’negative’.

Tweet: [text]
Sentiment: [label]

Linguistic acceptability The following are sentences and whether they are gram-
matically correct.

Sentence: [text]
Grammatically correct: [label]

Question answering The following are texts with accompanying questions
and answers.

Text: [text]
Question: [question]
Answer in max 3 words: [label]

Table 2: The English prompt templates used for the datasets. See all the prompt templates in (Nielsen
et al., 2024).

the discrepancy with the NorQuAD dataset, as the
samples are much longer than the other question
answering datasets.

4.3 Score Aggregation Method

From the raw scores of the 10 evaluations per
dataset, we need to aggregate the model scores into
a single score. We want an aggregation method
that satisfies the following criteria:

1. Task Fairness: Each task should be weighted
equally.

2. Comparison: If we evaluate models in mul-
tiple languages, then it should be possible to
meaningfully compare the language scores of
these models with each other.

3. Robustness: If two models do not have a
significantly different score on a dataset, then
the aggregated score should reflect this.

4. Magnitude Preservation: The magnitude of
the difference between the dataset score of two
models should be reflected in the aggregated
score.

5. Minimal Change: Adding a new model
should minimally affect the aggregated scores
of the other models.

Before we introduce our chosen aggregation
method, we will briefly discuss some common ag-
gregation methods and how they do not satisfy the
criteria.

The mean score is the most common aggrega-
tion method, which would simply be the mean of
the 10 scores for each dataset, and then the mean of
the dataset scores for each task. This method does
not satisfy the Task Fairness criterion, as it does

not take into account that metrics have different
ranges and variances. The Comparison criterion is
also not satisfied, as datasets vary from language to
language, with some datasets being more difficult
than others. It does, however, satisfy the Robust-
ness, Magnitude Preservation and Minimal Change
criteria.

The mean rank is another common aggrega-
tion method, where we compute the rank of each
model on each dataset, and then take the mean of
the ranks. This method satisfies the Task Fairness
criterion, as it re-casts the scores into a common
comparable framework, which therefore weights
each task equally. For the same reason, it also sat-
isfies the Comparison criterion (it is important here
that we evaluate all the models on all the languages
for this to be satisfied). It does not satisfy the Ro-
bustness and Magnitude Preservation criteria, by
definition of rank. It partially satisfies the Minimal
Change criterion, since it only affects the scores of
the models which are worse than the new model.

We thus see that the mean score and mean rank
methods satisfy a disjoint set of the criteria, but
that they together satisfy all the criteria. Based
on this observation, we introduce the mean rank
score method, defined as follows. For each dataset,
we start by sorting the models by their mean score
on the dataset. As with a rank, we assign the best
model with rank score 1. For the next best model,
we conduct a one-tailed Welch’s t-test to see if the
next best model is significantly worse than the first
model (p < 0.05). If so, we compute the absolute
difference between the mean score of the two mod-
els, and divide that by the standard deviation of all
the mean scores of the models on the dataset.

We then add this to the rank score of the first
model. We continue this process for all the mod-
els to get the rank scores for the dataset, and to
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compute the overall score for the model, we take
the mean of the rank scores for the datasets. An
overview of this aggregation method can be found
in (Nielsen et al., 2024). We note that the mean
rank score has an intuitive interpretation: it is the
average number of standard deviations from the
best scoring model (+1).

This metric satisfies Task Fairness since we nor-
malise all the scores by dividing by the standard
deviation of the dataset scores. The Robustness
criterion is satisfied due to our use of a one-tailed
Welch’s t-test. The Magnitude Preservation crite-
rion is also satisfied, as the magnitude of the dif-
ference between the dataset score of two models is
reflected in the rank score. It also satisfies Compar-
ison, as we compare the models on a common scale
(same argument as the mean rank method). Finally,
the Minimal Change criterion is partially satisfied,
as adding new models only minimally changes the
score of existing models. Concretely, adding new
scores will affect the standard deviation normalis-
ing factor (this effect tends to zero as the number of
models grows, however), and if the model beats all
the other models then all the scores will be affected,
due to the relative nature of the metric.

5 Analysis

5.1 Comparative Performance Analysis on
High- and Low-resource Languages

Excerpts of the English, Danish and Icelandic
leaderboards can be found in Table 3, Table 4 and
Table 5, respectively. We found that these three
represent three main categories of languages with
respect to the open-closed source divide. Simi-
lar excerpts for the remaining languages (Swedish,
Norwegian, Faroese, German and Dutch) can be
found in (Nielsen et al., 2024). The full leader-
boards for all the languages can be found at https:
//scandeval.com.

From the English results we see that the state-of-
the-art decoder model GPT-4-0613 (Achiam et al.,
2023) is still outperformed by the DeBERTa-v3-
large and DeBERTa-v3-base models (He et al.,
2020) as well as the ELECTRA-base model (Clark
et al., 2020). Here GPT-4-0613 is, on average, 0.44
standard deviations worse than the best model. The
same pattern is seen for Norwegian, Dutch, Ger-
man and Faroese; see (Nielsen et al., 2024) for the
corresponding leaderboard excerpts.

In contrast, on the Danish leaderboard, the top-3
models are all decoder models, with GPT-4-0613

Model ID Decoder Score (↓)
microsoft/deberta-v3-large ✗ 1.09
microsoft/deberta-v3-base ✗ 1.29
google/electra-base-discriminator ✗ 1.39
gpt-4-0613 ✓ 1.44
FacebookAI/roberta-large ✗ 1.46
FacebookAI/roberta-base ✗ 1.51
microsoft/mdeberta-v3-base ✗ 1.53
gpt-4-1106-preview ✓ 1.54
gpt-4o-2024-05-13 ✓ 1.64
AI-Sweden-Models/roberta-large-1160k ✗ 1.64
gpt-3.5-turbo-0613 ✓ 1.78
mistralai/Mistral-7B-v0.1 ✓ 1.91

Table 3: Excerpt of the English ScandEval leader-
board.

and GPT-4-1106-preview (OpenAI, 2023b) in the
lead, followed by the closed-source DanskGPT-
Chat-Llama3-70B model from Syv.AI1, being a
continuation of the Llama-3-70B model (AI@Meta,
2024). The GPT-4-0613 model is, on average, 0.24
standard deviations from the best model. Similar
results were found with Swedish; see (Nielsen et al.,
2024) for the corresponding leaderboard excerpt.

Lastly, for Icelandic, we see that the encoders
and decoders are tied in performance, with the
mDeBERTa-v3-base model and the GPT-4-1106-
preview model being the top models. The GPT-
4-1106-preview model is, on average, 0.24 stan-
dard deviations from the best model. We note that
Icelandic is the only language where the switch
from GPT-4 (gpt-4-0613) to GPT-4-turbo (gpt-4-
1106-preview) resulted in a significant increase in
performance. We speculate that this is due to the
collaboration between OpenAI and Iceland (Ope-
nAI, 2023a).

We can thus give an affirmative answer to re-
search question (Q1), showing that encoder models
can achieve significantly better NLU performance
than decoder models, even though they have an
order of magnitude fewer model parameters. For
(Q3), we see that this varies between languages, but
without being correlated to the language resource
spectrum.

5.2 Task Analysis
In this section we analyse our research question
(Q2), asking whether the NLU performance results
from the previous section is dependent on the type
of NLU task.

Firstly, we analyse whether the score distribu-
tion across the four NLU tasks is different for the
encoder and decoder models. This is done by apply-
ing a UMAP (McInnes et al., 2018) to the results
of a given leaderboard, which is a dimensionality

1https://www.syv.ai/
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Model ID Decoder Score (↓)
gpt-4-0613 ✓ 1.24
gpt-4-1106-preview ✓ 1.25
syvai/danskgpt-chat-llama3-70b ✓ 1.29
AI-Sweden-Models/roberta-large-1160k ✗ 1.39
danish-foundation-models/encoder-large-v1 ✗ 1.40
meta-llama/Meta-Llama-3-70B ✓ 1.40
AI-Sweden-Models/Llama-3-8B-instruct ✓ 1.44
gpt-4o-2024-05-13 ✓ 1.46
ltg/norbert3-large ✗ 1.50
NbAiLab/nb-bert-large ✗ 1.54
vesteinn/DanskBERT ✗ 1.56
google/rembert ✗ 1.61
intfloat/multilingual-e5-large ✗ 1.62
gpt-3.5-turbo-0613 ✓ 1.68
FacebookAI/xlm-roberta-large ✗ 1.71

Table 4: Excerpt of the Danish ScandEval leader-
board.

Model ID Decoder Score (↓)
microsoft/mdeberta-v3-base ✗ 1.33
gpt-4-1106-preview ✓ 1.34
gpt-4o-2024-05-13 ✓ 1.43
vesteinn/ScandiBERT-no-faroese ✗ 1.48
google/rembert ✗ 1.57
vesteinn/XLMR-ENIS ✗ 1.59
gpt-4-0613 ✓ 1.79
mideind/IceBERT-large ✗ 1.85
vesteinn/FoBERT ✗ 1.87
meta-llama/Meta-Llama-3-70B ✓ 2.03
FacebookAI/xlm-roberta-large ✗ 2.34
gpt-3.5-turbo-0613 ✓ 2.51
mistralai/Mistral-7B-v0.1 ✓ 2.96

Table 5: Excerpt of the Icelandic ScandEval leader-
board.

reduction method that both takes into account the
global and local structure of the underlying data -
it can thus be viewed as a middle ground between a
principal component analysis (Pearson, 1901) and a
t-distributed stochastic neighbour embedding (Hin-
ton and Roweis, 2002). The resulting reduction
thus contains a single two-dimensional representa-
tion of each model. UMAP plots for the English,
Danish, Swedish, Norwegian, German and Dutch
leaderboards can be found in Figure 1, where we
also mark the mean rank score for each model, as
well as whether the model is generative.

We see that the worst and best performing
models have similar distributions, irrespective of
whether they are generative or not. However, we
also note that the rest of encoder and decoder mod-
els follow different “paths” in the UMAP space,
leading to our hypothesis that the different archi-
tectures have different task preferences.

In Figure 2 we show the correlation between
a model being generative and its performance on
the four NLU tasks. We see that being genera-
tive is a strong predictor for good question an-
swering performance, as well as poor named en-
tity recognition and linguistic acceptability perfor-
mance. The correlation is weaker for sentiment

classification and varies across languages. We also
see that these findings seem to generalise across
languages, both high- and low-resource. The large
question answering performance persists for non-
instruction-tuned decoder models (see the leader-
boards at https://scandeval.com), showing a
likely side-effect of the pre-training algorithm or
the architecture of decoder models making them
better at this task. We also note that generative
models perform substantially better at the English
sentiment classification dataset SST5 compared to
the other sentiment classification datasets - we will
return to this in the discussion.

6 Discussion

Having a good mean rank score is not the only thing
that matters when choosing a model for a given
task. Model size, inference speed and whether the
model has publicly available weights are all impor-
tant factors to consider. For this reason, we also
include these metadata in the leaderboard, and we
encourage the community to consider these factors
when choosing a model for a given task.

Some of the datasets in the benchmark are trans-
lations of American datasets, which we acknowl-
edge is not ideal and encourage the development
of gold-standard replacements of these. This con-
cerns the Dutch question answering dataset, which
is machine translated, as well as the Danish and
Swedish question answering datasets, where the
questions and answers have been manually trans-
lated. Manual translations are typically better than
machine translations, but it nevertheless means that
the content is biased towards questions pertinent to
the American context. Some datasets are further-
more missing. This concerns Icelandic and Faroese
sentiment analysis, as well as Faroese question an-
swering. Efforts are currently underway to remedy
this.

Lastly, we note that the English sentiment clas-
sification dataset SST5 is the only dataset where
generative models perform substantially better than
encoder models. We speculate that this is either due
to the dataset simply being significantly easier than
the others, or that the test data has leaked into the
pretraining datasets of the generative models. The
dataset is part of the FLAN collection (Wei et al.),
which is for instance included in the Dolma dataset
(Soldaini et al., 2024), which is used to pretrain the
OLMo model (Groeneveld et al., 2024), being one
of the generative models that is performing very
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Figure 1: UMAP plots of the models on the ScandEval leaderboards.

Figure 2: The correlation between a model being
generative and its performance on the NLU tasks.

well on this dataset. Leakage is therefore possible,
and we encourage the community to investigate
this further.

7 Conclusion

We have extended the ScandEval benchmark to in-
clude the evaluation of decoder models, as well
as including three new languages: German, Dutch
and English. From the analysis of the correspond-
ing results we found that encoder models can
achieve significantly better NLU performance than

decoder models despite having orders of magni-
tude fewer parameters, but that this varies between
languages. We have also shown that being genera-
tive is strongly correlated with both good question
answering performance and poor performance for
named entity recognition and linguistic acceptabil-
ity. Our analysis showed that the “path” from the
worst to the best-performing models in the UMAP
space is different for encoder and decoder models,
indicating an architecture-specific task-preference.
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