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Abstract

The pretraining of state-of-the-art large
language models now requires trillions of
words of text, which is orders of magni-
tude more than available for the vast ma-
jority of languages. While including text
in more than one language is an obvious
way to acquire more pretraining data, mul-
tilinguality is often seen as a curse, and
most model training efforts continue to fo-
cus near-exclusively on individual large lan-
guages. We believe that multilinguality can
be a blessing: when the lack of training
data is a constraint for effectively training
larger models for a target language, aug-
menting the dataset with other languages
can offer a way to improve over the ca-
pabilities of monolingual models for that
language. In this study, we introduce
Poro 34B, a 34 billion parameter model
trained for 1 trillion tokens of Finnish, En-
glish, and programming languages, and
demonstrate that a multilingual training
approach can produce a model that sub-
stantially advances over the capabilities of
existing models for Finnish and excels in
translation, while also achieving competi-
tive performance in its class for English and
programming languages. We release the
model parameters, scripts, and data under
open licenses at https://huggingface.
co/LumiOpen/Poro-34B.

1 Introduction

Neural language models based on the transformer
architecture (Vaswani et al., 2017) have led to sub-
stantial advances in natural language processing.
Encoder-only transformer models such as BERT
(Devlin et al., 2019) have advanced the state of the
art in a broad range of classification tasks, while

decoder-only models such as GPT (Radford et al.,
2018) have redefined what can be achieved by
generative models, opening new areas of study in
prompting and in-context learning. The success of
these models is related in substantial part to their
scaling properties: training larger models on more
data leads to better results and even entirely new
capabilities (Brown et al., 2020). Studies refining
our understanding of the optimal balance of model
size and training steps have increased the demands
on data (Hoffmann et al., 2022b), and many re-
cent models optimize further for inference-time
efficiency by training smaller models on more data
(Sardana and Frankle, 2023).

These developments have introduced increasing
demands for textual data, with many recent models
pretrained on a trillion tokens or more (e.g. Touvron
et al., 2023; Almazrouei et al., 2023; MosaicML,
2023; Li et al., 2023; Lozhkov et al., 2024; Groen-
eveld et al., 2024). While such resources can still
be assembled from internet crawls for a few of the
languages best represented online, for the vast ma-
jority of human languages we have already run out
of data for training the largest of language models
(Joshi et al., 2020; Villalobos et al., 2022). While
it is standard to repeat training data, repetition can
lead to reduced sample efficiency and degradation
of performance (Hernandez et al., 2022): Muen-
nighoff et al. (2024) estimate that the value of rep-
etition starts to diminish rapidly after four epochs
and that repetition ceases to add information around
40 epochs. The availability of data is thus currently
a limit for monolingual training for all but a few of
the highest-resourced languages.

Multilingual training offers one obvious solution
for increasing the amount of training data available,
and a large number of multilingual transformer
models have been introduced (e.g. Conneau et al.,
2020; Lin et al., 2022b; Le Scao et al., 2022; Wei
et al., 2023). However, despite the intuitive appeal
of augmenting training data with texts in other nat-
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Figure 1: Pretraining data distribution.

ural languages, multilinguality is frequently seen
as a negative – commonly referred to as the curse
of multilinguality (Conneau et al., 2020). While
there have been studies of the tradeoffs between
monolingual and multilingual training (Fujinuma
et al., 2022; Chang et al., 2023) as well as efforts
to enhance models specifically for multilinguality
(Pfeiffer et al., 2022) and to introduce additional
language capabilities to existing models (Gogoulou
et al., 2023; Kew et al., 2023; Zhao et al., 2024;
Ibrahim et al., 2024), state-of-the-art generative
models are still frequently trained near-exclusively
on large languages such as English, with only lim-
ited efforts specifically focusing on optimizing per-
formance for smaller languages. In this study, we
explore how to lift data limitations to create state-
of-the-art large generative models from scratch for
smaller languages, drawing on the understanding
emerging in recent studies on how to make the most
of limited data and assure that multilinguality is
a blessing rather than a curse. Some key lessons
from previous work include 1) limited multilin-
guality instead of a large number of languages
(Conneau et al., 2020; Chang et al., 2023) 2) match-
ing scripts (e.g., Latin) (Fujinuma et al., 2022) and
3) matching language families (Pyysalo et al.,
2021), 4) incorporating a cross-lingual signal us-
ing translation pairs (Anil et al., 2023; Wei et al.,
2023), 5) oversampling target language data up
to four epochs (Muennighoff et al., 2024) and 6)
augmenting natural language with programming
language data (Madaan et al., 2022; Aryabumi
et al., 2024).

We chose to specifically target the Finnish lan-
guage, which is an interesting case for study as it
is a Uralic language with no large close neighbours

in its language family, necessitating more distant
transfer than, for example, between English and
another Germanic language. While the language
is natively spoken by under six million people, its
resources are still sufficient to consider a monolin-
gual training approach for larger generative models.
In a recent study, Luukkonen et al. (2023) com-
bined several web crawls and curated sources of
Finnish to create a dataset of approximately 40B
tokens and introduced the monolingual FinGPT
models trained from scratch for 300B tokens. With
approximately 8 epochs, the repetition of data is ex-
pected to show diminishing returns (Muennighoff
et al., 2024), and the largest of these models show
signs of data limitations, with the 8B parameter
model outperforming the 13B in benchmarks. We
believe it should be possible to overcome these
limitations by applying the lessons listed above.
While we cannot match language families, we train
for four epochs over the Finnish data and augment
it with both English and programming language
data as well as an explicit cross-lingual signal from
translation pairs. We pursue this approach to create
Poro 34B, training a 34B parameter model for a to-
tal of 1T tokens – 25 times more than the available
Finnish data – and evaluate the model in detail on
Finnish, English, and programming language tasks.
We find that the model not only achieves the goal
of substantially advancing over the performance of
existing Finnish models, but is also competitive in
its class of open models on English and code as
well as remarkably strong in translation tasks.

2 Pretraining data

For pretraining Poro 34B, we rely on datasets
that have been previously preprocessed to remove
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low-quality texts and boilerplate, filter toxic con-
text, and deduplicate repeated texts. We illustrate
the pretraining data distribution in Figure 1 and
describe the data briefly in the following. Data
sources are detailed in Table 4 in the Appendix.

Finnish For Finnish pretraining data, we draw
on the resources recently introduced by Luukko-
nen et al. for creating the FinGPT model fam-
ily. We exclude the ePub and Lehdet resources
provided by the National Library of Finland for
that work as they could not be shared due to copy-
right limitations, but use the remaining sources of
data, totalling to a 32B token monolingual corpus.
The majority of the Finnish data originates from
web crawls (approx. 84%) complemented with
news sources (approx. 2%), Project Lönnrot, the
Finnish equivalent of Project Gutenberg copyright-
free book corpus (approx. 0.5%), Wikipedia (ap-
prox. 0.5%) and Finnish online discussion forum
contents from Reddit and Suomi24 (approx. 13%).
Following the rule of thumb proposed by Muen-
nighoff et al. (2024), we upsample the 32B to-
kens of Finnish so that four epochs over the data
are made during training. Consequently, approxi-
mately 13% of the total tokens seen in pretraining
are Finnish.

English For English pretraining data, we pri-
marily use SlimPajama (Soboleva et al., 2023),
a cleaned and deduplicated subset of the RedPa-
jama corpus1 (Together Computer, 2023), from
which we excluded data from the books category
due to their copyright status. We supplemented this
dataset with the Project Gutenberg public domain
books data from the Dolma corpus2 (Soldaini et al.,
2024). We train for one epoch over the 542B tokens
of the English data, which thus represents slightly
over half of the 1T total training tokens.

Programming Languages To introduce data rep-
resenting various programming languages (referred
to hereinafter as “code" for short) into our pretrain-
ing, we make use of the Starcoder corpus (Li et al.,
2023), a processed subset of The Stack corpus3

(Kocetkov et al., 2023). The original corpus con-
sists of 208B tokens, which we oversample 1.5x so
that approximately a third of the tokens seen during
pretraining represent code.

1https://huggingface.co/datasets/
togethercomputer/RedPajama-Data-1T

2https://huggingface.co/datasets/allenai/dolma
3https://huggingface.co/datasets/bigcode/

the-stack

Cross-lingual data We introduce a cross-lingual
signal into pretraining by including translation ex-
amples from OPUS (Tiedemann, 2009). Specifi-
cally, we use the English-Finnish examples from
the Tatoeba dataset (Tiedemann, 2020) to generate
instruction-formatted translation examples. The
Tatoeba training data was reformatted into a mini-
malistic instruction-following format by recasting
each English-Finnish translation pair into a docu-
ment with the following format:

<|user|>Translate into Finnish: {{en}}
<|assistant|>{{fi}}

Where {{en}} and {{fi}} are the English and
Finnish texts (resp.) of the translation pair. We ad-
ditionally reverse the translation order (i.e., Finnish
to English instead of English to Finnish) for a to-
tal of two documents for each sentence pair. No
weighting is applied to the approximately 8B to-
kens of cross-lingual data, which thus represents
slightly under 1% of the pretraining tokens.

3 Methods

In this section, we describe the method used to
create the Poro 34B tokenizer, the pretraining setup,
and provide an estimate of the compute cost of
pretraining the model.

3.1 Tokenization
The choice of tokenizer has a broad range of im-
pacts, not only on the efficiency of training and
inference but also the capabilities of trained mod-
els (Rust et al., 2021; Petrov et al., 2023; Ali et al.,
2023). As we were not aware of any existing to-
kenizer that would be a good fit for our combi-
nation of languages and code, we created a new
tokenizer for our model. Specifically, we trained
a custom byte-level BPE tokenizer using the same
pre-normalization as the FinGPT tokenizer. We
selected a vocabulary size of 128K tokens, aiming
to achieve low fertility on the targeted languages
while keeping the vocabulary reasonably small.
The tokenizer was trained on a uniform distribu-
tion of samples of the Finnish, English and code
datasets.

We assess the fertility of the tokenizer on the
English and Finnish sentences from the devtest por-
tion of the widely used Flores-101 benchmark for
machine translation (Goyal et al., 2022), which al-
lows for a degree of cross-lingual comparability.
For code, we use an approximately 1M character
sample of lines from the Starcoder held-out test
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Figure 2: Tokenizer fertility comparison (lower is better).

data.4 Figure 2 provides a comparison of the fertil-
ity of the tokenizer compared to selected reference
tokenizers (see Section 4). We find that on this data
the new Poro 34B tokenizer has at least broadly
comparable fertility to the lowest-scoring tokenizer
on each of Finnish, English, and code, as well as
the lowest average fertility of the compared tok-
enizers.

3.2 Pretraining
We next briefly present the key model and train-
ing parameters (detailed in Table 5 in the Ap-
pendix A.1) and the pretraining software and con-
figuration.

Architecture Poro 34B is a decoder-only model
with a parameter count of 34 billion, sharing its
architecture with FinGPT (Luukkonen et al., 2023)
and BLOOM (Le Scao et al., 2022). It incorporates
layer normalization immediately following the in-
put embedding layer for better training stability
and uses ALiBi (Press et al., 2021) as its positional
encoding method. The model consists of 54 layers
with a hidden dimension of 7168 and a total of 56
attention heads.

Training We train to 1T tokens, intentionally
exceeding the Chinchilla compute-opimality esti-
mate (Hoffmann et al., 2022a) of approximately
700B tokens for a model of this size, thus gaining
inference-time efficiency for the cost of additional
compute investment in pretraining (Sardana and
Frankle, 2023). We train with a sequence length of
2048 tokens5 using a cosine learning rate scheduler
with a maximum learning rate of 1.5e-4, decaying
to a minimum of 2e-5 over 990B tokens, and a
linear warmup of 10B tokens. Our global batch

4We only sample lines with at least 10 alphabetic characters
to avoid very short lines.

5We acknowledge that this can be considered limiting by
today’s standards, but this limitation can be relieved by meth-
ods for extending the context length, for example via linear
extrapolation (Press et al., 2021) or interpolation (Al-Khateeb
et al., 2023).

size is 2048 samples totaling to 4194304 tokens
per optimization step.

Software Poro 34B was trained on the LUMI
supercomputer GPU partition, which is powered by
AMD MI250X GPUs. The majority of open source
frameworks for large language model pretraining
are made to be primarily NVIDIA-compatible,
and we required scalable AMD-compatible train-
ing software. Thus, we adopted the Megatron-
DeepSpeed fork6 introduced by (Luukkonen et al.,
2023), which has optimized kernels converted from
CUDA to be compatible with AMD ROCm, and
has been demonstrated to be a viable solution for
large model pretraining on LUMI. The hardware
used to train the model is described in detail in
Appendix A.3.

Configuration Considering the hardware avail-
able and the selected hyperparameters such as batch
size, a configuration of 128 nodes was chosen for
the training of the model, resulting in a world size
of 1024. The training was done using activation
checkpointing, a micro batch size of 1, gradient
accumulation of 16, and a 3D parallelism strategy
of tensor parallel degree 2, pipeline parallel degree
4, resulting in a data parallel degree of 128. This
allowed total training cycle throughput of 49618
TFLOPs and 174378 tokens/second.

3.3 Compute cost

Following (Groeneveld et al., 2024), we estimate
the carbon footprint of our pretraining by multiply-
ing the theoretical upper bound of the total power
used by the GPUs when they are utilized at 100%
with the carbon intensity factor of LUMI. Taking
into account the systems’s power usage effective-
ness (PUE) value of 1.04,7 we approximate the total
power consumption to be 448MWh. As LUMI is

6https://github.com/TurkuNLP/
Megatron-DeepSpeed

7https://www.lumi-supercomputer.eu/sustainable-future/
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powered by fully renewable electricity, we assume
the carbon intensity factor to be 0.8 This brings our
emissions to a total of 0 tCO2eq. It is important
to note that we only take into account power con-
sumption of the GPUs used, as the consumption of
the entire node was not logged during training.

4 Evaluation

We thoroughly analyze the capabilities of the model
for Finnish, English and code, first briefly re-
porting perplexity results and then focusing on
community-standard benchmarks for evaluating
generative models. We then assess the quality
of Finnish text generated by the model and fi-
nally evaluate the model’s translation capability
from English to Finnish (and vice versa). For
comparison, we include results for the state-of-
the-art Finnish language models, FinGPT 8B and
FinGPT 13B (Luukkonen et al., 2023), and a se-
lection of similarly-sized general-purpose open
source base language models trained on broadly
comparable numbers of tokens for English9:
Llama 33B (Touvron et al., 2023), MPT 30B (Mo-
saicML, 2023), and Falcon 40B (Almazrouei
et al., 2023). We also provide results for Star-
Coder base (Li et al., 2023) as a reference for per-
formance on code tasks.

4.1 Data and experimental setup

We assess the perplexity of the model on the
same data used to evaluate tokenizer fertility (Sec-
tion 3.1), namely Flores-101 devtest English and
Finnish and a sample of the StarCoder test data.
As token-level perplexity is dependent on tokeniza-
tion, it cannot be used to directly compare mod-
els with different tokenizers. We therefore report
character-level perplexity PPLc following Ekgren
et al. (2022), normalizing by character rather than
token count when calculating perplexity.

We benchmark the capabilities of the model in
Finnish using the FIN-bench10 dataset (Luukko-
nen et al., 2023), which covers a variety of tasks
to assess various aspects of model capabilities in

8We acknowledge that this assumption can be contested.
As (Groeneveld et al., 2024) note: "LUMI is powered entirely
by hydroelectric power and some sources (Ubierna et al., 2022)
measure the carbon intensity factor of hydroelectric power to
be 0.024."

9We chose English models of similar size and training
token budget rather than state-of-the-art models to more di-
rectly assess the effects of our multilingual training setup on
performance in English.

10https://github.com/TurkuNLP/FIN-bench

Finnish, combining selected tasks translated and
manually corrected from English BIG-bench (Sri-
vastava et al., 2022) with additional Finnish tasks.
We evaluate all FIN-bench results in a 3-shot set-
ting using the standard metrics defined for the
benchmark. For English evaluations, we use LM
Eval Harness (Gao et al., 2023) to evaluate with
the following datasets: ARC Challenge (Clark
et al., 2018), GSM8K (Cobbe et al., 2021), Hel-
laSwag (Zellers et al., 2019), MMLU (Hendrycks
et al., 2021), TruthfulQA (Lin et al., 2022a), and
Winogrande (Sakaguchi et al., 2019). We selected
these evaluations based on their use as English lan-
guage benchmarks by Beeching et al. (2023) and
use an identical testing configuration here. Pro-
gramming language proficiency is assessed via
the Bigcode Evaluation Harness (Ben Allal et al.,
2022) with the HumanEval (Chen et al., 2021), and
MBPP (Austin et al., 2021) benchmarks, employ-
ing the pass@10 metric for evaluation.

To evaluate the quality of Finnish text generation,
we generate responses to the translated MT-Bench
questions with few-shot prompting (Zheng et al.,
2023). We use a few-shot prompt because this
benchmark is designed for chat models and we are
evaluating base models. Moreover, we want to
unlock the Finnish generation capabilities of the
English-focused models by providing in-context
examples in Finnish. We use GPT-4 Turbo and
human judges to assess the quality of the responses.
Finally, to evaluate translation performance, we use
both the Flores-101 devtest (Goyal et al., 2022) as
well as the Tatoeba test sets (Tiedemann, 2020) in
an 8-shot setting, following Zhu et al. (2023).

4.2 Perplexity

Table 1 summarizes the results of the perplex-
ity evaluation as mean character-level perplexity
PPLc for various models over the sentences/code
lines. We find that Poro 34B has comparatively low
(good) PPLc on all three datasets, including the
best result for Finnish. Poro 34B is to the best of
our knowledge the only open model specifically
trained for this combination of languages, and it
is thus not surprising that it has the best overall
average in this evaluation. While perplexity is not
necessarily predictive of downstream performance
and these datasets only represent a part of the rele-
vant distribution, the result suggests that the model
has learned all of its target languages well.
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Poro 34B Llama 33B MPT 30B Falcon 40B FinGPT 8B FinGPT 13B StarCoder
Finnish 1.89 2.98 2.89 3.57 1.94 1.92 3.83
English 1.87 1.81 1.89 1.85 2.55 2.46 2.38
Code 3.21 4.27 3.58 3.65 25.1 27.3 3.15
Average 2.32 3.02 2.79 3.02 9.86 10.6 3.12

Table 1: Character-level perplexity for Poro 34B and selected reference models (lower is better).

Poro 34B Llama 33B MPT 30b Falcon 40B FinGPT 8B FinGPT 13B Starcoder
Finnish 66.28 53.36 53.22 42.58 49.69 48.92 45.55
English 50.57 59.96 52.62 49.87 31.47 32.85 35.44
Code 41.80 37.67 39.18 38.57 - - 49.06

Table 2: Average benchmark results for Finnish, English and code for Poro 34B and selected reference
models.
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Figure 3: Poro 34B performance progression on
FIN-bench. For reference, dotted lines show re-
sults for the best-performing monolingual FinGPT
model and the massively multilingual BLUUMI
model (Luukkonen et al., 2023), an extension of
BLOOM (Le Scao et al., 2022) with Finnish.

4.3 Benchmark results

The overall results of the benchmark evaluations
are summarized in Table 2 and detailed in Ap-
pendix A.2. We find that Poro 34B is the best-
performing model for Finnish in this comparison,
substantially outperforming the best previously in-
troduced monolingual Finnish model. We further
analyzed the progression of the Finnish capabili-
ties by evaluating Poro 34B checkpoints at 10%
intervals on FIN-bench. These results are summa-
rized in Figure 3. Interestingly, the model outper-
forms the best FinGPT model already after 100B
tokens of training (10%) despite the relatively small
proportion of Finnish in the Poro 34B data and
the fact that the FinGPT models were trained on

300B tokens in total. These results indicate that
our limited multilingual approach is effective for
creating stronger models for Finnish than possible
through monolingual training and demonstrate that
the model is benefiting substantially from its train-
ing data in other languages even when tested on
Finnish tasks.

For English, we find that the model achieves
broadly comparable results to the MPT 30B and
Falcon 40B models, both of which were trained for
1T tokens of predominantly English data. This indi-
cates that the limited multilingual training approach
has not notably detracted from the English capa-
bilities of the model. The best-performing open
model in this comparison is Llama 33B, which
was trained for longer (1.4T tokens), also predom-
inantly on English data. We find that Poro 34B
is nevertheless a capable model in its class also
for English, despite not optimizing specifically for
English performance. The programming language
benchmarks indicate that Poro 34B is more capable
on code than the other natural language-focused
models, while the code-focused StarCoder model
clearly outperforms all of the other models. We at-
tribute the relatively high performance of Poro 34B
on code to the comparatively large proportion of the
training data dedicated to code. As with English,
we consider the performance of the model on code
a positive addition even though code generation
was not a primary goal in creating the model.

Finally, we note a surprising finding arising
from the Finnish evaluation: two of the larger
English-focused models (Llama 33B and MPT
30B) score higher than the previously introduced
smaller monolingual Finnish models on the FIN-
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Figure 4: Win counts of reference models against Poro 34B on Finnish MT-Bench as judged by GPT-4
Turbo.

bench benchmark. While FIN-bench tasks are in
Finnish, the benchmark consists of multiple-choice
rather than generation tasks, has been produced in
substantial part through translation from English,
and includes tasks with little emphasis on natural
language (esp. arithmetic). We hypothesize that
the comparatively high performance of the English-
focused models on this benchmark might not indi-
cate that they can generate fluent Finnish, which
also calls the Finnish proficiency of Poro 34B into
question. We study this question specifically in the
following section.

4.4 Open-ended generation

To assess the ability of the models to generate co-
herent and grammatically correct Finnish, we cre-
ate a Finnish version of MT-Bench (Zheng et al.,
2023), a benchmark for open-ended conversations
that uses LLM-as-a-judge evaluation. We excluded
math and coding questions to focus specifically on
the natural language generation capabilities of the
models. To create the benchmark, we initially trans-
lated the questions into Finnish using DeepL,11 and
the translations were then manually corrected by
native Finnish speakers to create the final evalu-
ation dataset. To evaluate base models using the
data, we similarly translated and corrected the few-
shot URIAL prompt (Lin et al., 2024). 12 We use
pairwise judging to compare between Poro 34B and
the competing models’ responses and use GPT-4
Turbo as the judge model.

To assess the reliability of the model as a judge
and provide further insight into the quality of the
generations, we additionally set up an annotation
platform where two native Finnish speakers were

11https://www.deepl.com
12We did not modify the judge prompts as previous work

has found that keeping the prompt in English produces better
results (Ahuja et al., 2023).

asked to pick a preference between a response gen-
erated by Poro 34B and a competing model.13 The
judges are given the same judging prompt as GPT.
The model names are hidden from the judges, and
we randomly select the position of each response in
every response pair to account for positional bias.

We found that the two human judges highly
agree with each other, picking the same winner
88.8% of the time, and found an even higher agree-
ment between GPT and each human judge: 91.6%
between annotator 1 and GPT and 89.5% between
annotator 2 and GPT. Figure 4 shows the win
counts of the reference models against Poro 34B as
judged by GPT-4 Turbo.

In manual analysis after the initial annotation,
we found that the FinGPT models often struggled
with the few-shot format, failing to follow ques-
tions or only giving short, minimal answers, while
Poro 34B was better able to comply with questions
and given requirements, such as listing a specified
number of items. However, we found that Poro 34B
also often hallucinated and did not follow all in-
structions, and we would not consider its responses
to be at a level of consistency and quality required
for user-facing applications, which is not an unex-
pected result given that it is a base model not specif-
ically fine-tuned or otherwise aligned for such use.
Despite outperforming FinGPT models on the FIN-
bench benchmark, The English-focused models
appeared to be unfit for Finnish generation: their
generations had the surface appearance of Finnish
text but were largely nonsensical and incoherent.
This result underlines the need to include multiple
perspectives when evaluating models: a high score
on a multiple-choice benchmark may not indicate
practical capability to generate coherent text in a
language.

13We did not separately compensate the human judges as
they are co-authors of this paper.
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We make the Finnish MT-Bench available
under an open license and provide the model
generations at https://github.com/LumiOpen/
FastChat/tree/main/fastchat/llm_judge.

4.5 Translation
General-purpose language models have shown
promising results on translation benchmarks on
multiple languages (Vilar et al., 2023; Garcia et al.,
2023; Alves et al., 2024). Following Zhu et al.
(2023), we evaluated Poro 34B for English to
Finnish translation and vice versa on the first 100
sentences of the Flores-101 test data by prompting
the model with eight translation examples sampled
randomly from the development set, formatting
the examples simply as <src>=<trg>. We further
evaluated Poro 34B and three strong open-source
translation models on the Tatoeba test set with more
than 11,000 sentences: OPUS-MT (Tiedemann and
Thottingal, 2020), NLLB-1.3B (Costa-jussà et al.,
2022), and M2M-100-12B (Fan et al., 2021)14. We
used the standard SentencePiece BLEU (spBLEU)
as our metric. The results of both evaluations are
shown in Table 3.15 These results demonstrate that
Poro 34B is a remarkably strong translator, outper-
forming not only dedicated open-source translation
models but even Google Translate, and scoring
roughly on par with GPT-4 in this evaluation. We
attribute this result to the combination of strong
Finnish and English capabilities and the inclusion
of a comparatively large number of translation ex-
amples in the pretraining data.

It should be noted, however, that the Tatoeba
and Flores sentences are relatively short and sim-
ple, and this evaluation does thus not capture the
full picture of the translation capabilities of the
evaluated models. We aim to assess the translation
capability of Poro 34B more comprehensively on
longer texts, especially texts that might include dif-
ferent modalities such as tables and code, in future
work.

5 Discussion and conclusions

In this study, we have considered the challenges
that the availability of data poses for pretraining

14We did not evaluate the GPT models and Google Translate
on Tatoeba because of the associated API costs.

15We attempted to reproduce some of the Flores-101 results
reported by (Zhu et al., 2023) and obtained a slightly higher
result for GPT-4 in Eng-Fin translation (37.5 instead of 35.33)
and slightly lower results for M2M-12B and NLLB-1.3B (31.4
and 26.6, respectively). For the sake of consistency, we present
the results from that study without modification.

Flores-101 Tatoeba
Model En-Fi Fi-En En-Fi Fi-En
ChatGPT 33.4 35.9 - -
GPT-4 35.3 40.2 - -
Google 37.3 39.0 - -
M2M-12B 33.3 33.8 36.7 41.3
NLLB-1.3B 30.0 35.4 40.2 55.7
OPUS-MT 37.2 35.6 46.7 58.4
Poro 34B 37.6 39.8 47.3 60.5

Table 3: spBLEU on the Flores-101 devtest and
Tatoeba test sets. Flores-101 results except for
OPUS-MT and Poro 34B are from Zhu et al.
(2023).

large generative models for smaller languages and
explored a limited multilingual approach to cre-
ate Poro 34B, a 34B-parameter model trained on
1T tokens of Finnish, English, and code, includ-
ing 8B tokens of Finnish-English translation pairs.
We thoroughly evaluated the model and found it
to substantially advance over the performance of
existing models for Finnish while also perform-
ing competitively in its class of open models for
English and code generation, as well as achieving
remarkably good results in translation tasks. Two
human judges and GPT-4 Turbo found the texts
generated by Poro 34B to be superior to the com-
peting models.

Our model architecture and the Finnish datasets
included follow those of the FinGPT family of
monolingual Finnish models, which were con-
strained by the available Finnish training data. The
superior performance of our model in Finnish eval-
uations demonstrates that multilingual training can
lift such limitations, allowing further scaling of
models focused on smaller languages. In future
work, we hope to explore this effect more system-
atically to answer some of the many questions that
remain open regarding the training of large gener-
ative models for smaller languages, including the
impacts of covering multiple smaller languages and
the effect of the size of data available in the target
languages.

A number of the choices made in training
Poro 34B were made with incomplete information
regarding their specific impacts on the final model.
For example, we opted to include a comparatively
large amount of programming language data as
well as instruction-formatted translation examples
in the pretraining data, the latter on the assumption
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that this would provide a cross-lingual signal that
would strengthen the ability of the model to benefit
from data in a more distantly related language (En-
glish). While this approach is intuitively appealing
and the performance of our model suggests that it
has at a minimum not notably detracted from the
capabilities of the model, we did not as part of this
work have the resources to conduct ablation stud-
ies nor to explore alternative ways to incorporate
cross-lingual information in pretraining. We aim to
study these questions further in future work.

We hope that our approach can serve as a tem-
plate for the creation of larger models for other
smaller languages and that the model introduced
in this work can serve as both as a focus of re-
search in its own right as well as a starting point
for further pretraining, finetuning and alignment
to create useful models, tools and methods not
only for Finnish but also other languages. We
release the model weights as well as all relevant
documentation and software fully openly at https:
//huggingface.co/LumiOpen/Poro-34B.

Limitations

Our study applies a pretraining recipe that com-
bines insights on effective multilingual and data-
constrained model training from a variety of previ-
ous studies. While the findings of these studies are
supported by a broad range of relevant experimen-
tal results, we did not have the resources to perform
separate ablation experiments specifically assess-
ing the impact that various parts of our combined
pretraining recipe (e.g., four repetitions of target
language data and the inclusion of a translation sig-
nal) have on the resulting model. Thus, while we
believe that our results demonstrate the pretraining
recipe to be effective for creating state-of-the-art
models for data-constrained languages, our work is
limited in leaving many questions open regarding
specific choices that form part of that recipe.

Poro 34B is a base model and as such has not
been aligned to follow instructions and engage in
conversations. It has not been evaluated on safety
and toxicity benchmarks. As we have noted in our
language generation evaluation, Poro 34B does not
adequately follow instructions and has the tendency
to generate texts with hallucinations. Further re-
search is needed to improve the model in terms
of factuality, safety, and alignment in English and
Finnish. We encourage developers using Poro 34B
to be aware of the potential risks associated with

LLMs such as non-factual outputs, harmful lan-
guage, and perpetuation of biases and stereotypes.
We recommend that developers finetune Poro 34B
to meet their specific needs and codes of conduct.

Ethical considerations
We are committed to open science, transparency
and accessibility in our work. While we acknowl-
edge the concerns and the potential for negative
impacts associated with making powerful gener-
ative models and the technology to create them
more widely available, we believe that in the case
of Poro 34B the positives clearly outweigh the neg-
atives. We discuss some specific concerns and their
mitigations in the following.

Poro 34B is a base model trained in substantial
part on texts sourced from web crawls, which are
known to include biases, toxicity and factual errors.
While we have selected curated text sources that
have been extensively filtered to remove problem-
atic material, no such filtering is perfect. Like all
language models, Poro 34B is a product of its in-
puts, and its output may reflect issues in its training
material. Furthermore, as Poro 34B is a base model
that has not been finetuned for any specific purpose,
extra care should be taken when interpreting its out-
put, and the model should not be used as is in any
application with potential for significant impact on
people’s rights or well-being. We emphasize these
limitations in the model card published with the
model.

Pretraining large language models is computa-
tionally intensive, and the creation of large mod-
els can have substantial environmental impacts.
Poro 34B was trained on the LUMI supercomputer,
which is powered entirely by renewable energy re-
sources. According to the official specifications,
the carbon intensity factor of LUMI’s operation is
considered to be zero. This approach effectively
minimizes the carbon footprint associated with the
computational aspects of training our model.

Though concerns about the capabilities of fron-
tier models to cause catastrophic harm have been
discussed in the literature, a model of Poro 34B’s
size and training duration does not represent new
frontier capability and releasing the model does not
introduce any new classes of risk.
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A Appendix

A.1 Training details
It has been our aim throughout this work to release Poro 34B fully openly, including model weights,
pretraining configuration, the pretraining and evaluation data, and all associated scripts and tools. We
provide here additional details of these to facilitate accurate reproduction of our work. The pretraining
data sources are detailed in Table 4, and the model and pretraining hyperparameters in Table 5.

Dataset Language Reference

SlimPajama English https://huggingface.co/datasets/cerebras/SlimPajama-627B
Starcoder Code https://huggingface.co/datasets/bigcode/starcoderdata
Tatoeba challenge Eng-Fin https://huggingface.co/datasets/tatoeba
Project Gutenberg English https://huggingface.co/datasets/allenai/dolma
Parsebank Finnish https://turkunlp.org/finnish_nlp.html
mC4 https://huggingface.co/datasets/mc4
CC-Fi https://github.com/TurkuNLP/CC-Fi
Fiwiki https://fi.wikipedia.org/wiki
Lönnrot http://www.lonnrot.net
Suomi24 http://urn.fi/urn:nbn:fi:lb-2021101527
Reddit-Fi https://www.reddit.com/r/Suomi
STT http://urn.fi/urn:nbn:fi:lb-2019041501
Yle http://urn.fi/urn:nbn:fi:lb-2017070501
Yle http://urn.fi/urn:nbn:fi:lb-2021050401
Yle http://urn.fi/urn:nbn:fi:lb-2019050901
Yle http://urn.fi/urn:nbn:fi:lb-2021050701

Table 4: Data sources

Architecture hyperparameters Pretraining hyperparameters

Parameters 34B Global Batch Size 2048
Precision bfloat16 Learning rate 1.5e-4
Layers 54 Total tokens 1000B
Hidden dim 7168 Warmup tokens 10B
Attention heads 56 Decay tokens 1000B
Vocab size 131072 Decay style cosine
Sequence length 2048 Min. learning rate 2e-5
Activation GELU Adam (β1, β2) (0.9, 0.95)
Position embedding ALiBi Weight decay 2e-5
Tied embeddings True Gradient clipping 1.0

Table 5: Model and training hyperparameters
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A.2 Detailed benchmark results
Tables 6, 7, and 8 show the detailed benchmark results for Finnish, English, and code.

Benchmark Poro 34B Llama 33B MPT-30b Falcon-40b FinGPT 8B FinGPT 13B Starcoder
Analogies 77.69 61.54 57.69 43.85 40.0 36.15 46.15
Arithmetic 54.28 47.74 57.25 51.06 41.96 45.23 48.41
Cause and Effect 67.97 60.78 58.82 46.41 66.01 69.28 54.90
Emotions 55.00 45.00 39.37 16.88 45.62 38.75 23.13
Empirical Judg. 62.63 43.43 43.43 34.34 32.32 36.36 44.44
General Knowl. 75.71 48.57 37.14 22.86 51.43 40.00 22.86
Intent Recogn. 83.24 77.75 77.31 46.24 51.43 58.24 65.03
Misconceptions 53.73 51.49 50.00 50.00 51.45 45.52 47.01
Paraphrase 58.50 53.00 52.50 54.50 49.50 45.50 47.50
Sentence Ambig. 66.67 45.00 56.67 48.33 48.33 53.33 51.67
Similarities Abst. 73.68 52.63 55.26 53.95 68.42 69.74 50.00
Average 66.28 53.36 53.22 42.58 49.69 48.92 45.55

Table 6: FIN-Bench Finnish benchmark results

Benchmark Poro 34B Llama 33B MPT-30b Falcon-40b FinGPT 8B FinGPT 13B Starcoder
ARC-Challenge 53.16 61.61 55.80 50.51 25.34 24.31 30.29
Hellaswag 77.77 84.64 82.23 77.01 42.91 46.77 47.22
MMLU 46.29 58.13 47.27 46.13 23.34 23.64 32.11
TruthfulQA 41.66 42.84 38.44 41.64 43.80 44.58 40.06
Winogrande 72.77 80.27 74.82 81.53 53.19 57.53 54.85
GSM8K 11.75 32.27 17.13 2.43 0.22 0.22 8.11
Average 50.57 59.96 52.62 49.87 31.47 32.85 35.44

Table 7: English benchmark results

Benchmark Category Poro 34B Llama 33B MPT-30b Falcon-40b Starcoder
HumanEval Python 37.20 34.15 35.37 34.15 45.12
MBPP Python 47.40 41.20 43.00 43.00 53.00
Average 41.80 37.67 39.18 38.57 49.06

Table 8: Code benchmark results

A.3 Hardware
Poro 34B was trained on the LUMI-G GPU partition of the LUMI supercomputer, located in Finland.
LUMI is, at the time of this writing, the third fastest supercomputer in Europe, and the 8th fastest
in the world (https://www.top500.org/). LUMI is also ranked 7th greenest by the Green500 list
(https://www.top500.org/lists/green500/).

The LUMI-G partition has 2978 nodes, with each node having four AMD MI250x GPUs with 128GB
of memory each, and a single 64-core CPU. The MI250x is a multi-chip module (MCM), with dual-GCD
(graphics compute die) design, which in practice means a node has eight logical devices, each logical
device with access to 64GB of high bandwidth memory.

Each node has four 200Gbps Slingshot-11 network interconnects. The nodes are connected together in
a dragonfly topology. During benchmarking and scale testing we did not observe the network topology as
a limiting factor for the required collective operation sizes. The total of 800 Gbps per-node bandwidth
proved to be more than sufficient, and the communication overhead was minimal during training.
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