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Abstract

We present results from using Probit mod-
els to classify and rank texts of varying
complexity from multiple sources. We
use multiple linguistic sources including
Swedish easy-to-read books and investi-
gate data augmentation and feature reg-
ularisation as optimisation methods for
text complexity assessment. Multi-Scale
and Single Scale Probit models are im-
plemented using different ratios of train-
ing data, and then compared. Overall, the
findings suggest that the Multi-Scale Pro-
bit model is an effective method for clas-
sifying text complexity and ranking new
texts and could be used to improve the
performance on small datasets as well as
normalise datasets labelled using different
scales.

1 Introduction

Measuring or estimating text complexity is essen-
tial in various fields, including readability research
and the adaptation and recommendation of texts
for different audiences. In this paper, text com-
plexity refers only to the linguistic characteristics
that affect how easy or difficult a text is to read,
without considering the interaction between the
text and any particular reader.

Any comprehensive evaluation of text complex-
ity must include three key components. First, lin-
guistic features must be quantified, such as calcu-
lating the average sentence length. Second, rel-
evant linguistic features need to be selected for
evaluation. Third, the impact of each linguistic
feature on text complexity must be assessed, for
example, determining whether longer sentences
increase or decrease complexity and to what ex-
tent. The distinction between effective and inef-
fective evaluations lies in the execution of these

components. The selection of features and the
methods employed to measure them significantly
affect the quality of the evaluation (Bailin and
Grafstein, 2001).

Moreover, text complexity is not defined by a
single superficial quality; rather, it results from
an interplay of various features, each influencing
complexity in distinct ways (Santini and Jönsson,
2020). Understanding how and to what extent
each linguistic feature contributes to overall text
complexity poses an additional challenge. The ap-
proaches for identifying and selecting linguistic
features vary, ranging from employing theoretical
linguistic frameworks and reasoning about feature
impacts (Ellis, 2020) to training machine learn-
ing models on specific features and assessing their
performance (Falkenjack et al., 2013), or even em-
ploying a combination of these methods.

Another aspect of the assessment of text com-
plexity is the type of output that is produced. De-
pending on the purpose of the evaluation, the re-
sults may be in the shape of a single binary classi-
fication of ”easy to read” or ”not easy to read”.
This type of evaluation is traditionally realised
through simple linear functions, or more recently
using machine learning models like the Support
Vector Machine (SVM) that splits texts into two
classes (Benjamin, 2012). Another common eval-
uation method is to use one or a few linguistic
features in a simple equation (often referred to
as readability formulas) and computing a score to
measure the complexity (e.g. the Flesch Reading
Ease formula (Flesch, 1948)). These methods are
beneficial in several ways, but all share a common
downside. When using a few simple features or
classifying texts in a binary manner, much nuance
of text complexity is lost, and comparisons be-
tween texts are less informative (Bailin and Graf-
stein, 2001).

To solve these problems, we propose creating a
model that uses many complex linguistic features
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and classifies or ranks texts into non-binary lev-
els. This approach would, however, usually re-
quire data that are already labelled according to
class or rank. The more features used in the model
to increase the complexity of the evaluation, the
more data is required in each class or rank (Ben-
gio et al., 2000).

One method that has the potential to resolve
many of the issues mentioned above is the Multi-
Scale Probit model, proposed and first imple-
mented in Falkenjack (2018). The Probit model
is a well established statistical model, introduced
in the 1930s (Bliss, 1934b) and used primarily for
classification. It is closely related to the younger
but somewhat more well known Logit model, or
Logistic regression as it is often called in psycho-
metric contexts, but it has some properties which
make it especially suitable for Bayesian mod-
elling (McCulloch et al., 2000).

The Multi-Scale Probit model is a generalisa-
tion of the Bayesian Ordered Probit model and is
capable of training on data labelled into ordered
levels, such as how hard a text is to read, from
multiple text sources. These sources may use com-
pletely different scales, meaning that the levels
need not correspond in any sense between sources
apart from indicating text complexity. There is no
requirement for a minimum amount of texts per
level, which enables the use of data that would
have to be discarded in other approaches. The
key idea behind the model is the presence of a
latent variable that is shared among all labelling
schemes. In this context, that latent variable is
text complexity, with the assumption that the dif-
ferent labelling schemes used across different data
sources all represent measures of that latent vari-
able. Information about the latent variable is cap-
tured in the features, and the model learns how the
latent variable is affected by the features, making
it able to classify and even rank the text complex-
ity of new texts.

We explore how the Multi-Scale Probit model
performs when trained and evaluated on novel
data, consisting of easy-to-read literature for chil-
dren, teenagers, and adults1.

2 Text complexity analysis

Text complexity generally refers to characteristics
of a text that make it more or less cognitively en-
gaging during reading (Vega et al., 2013). Quan-

1https://www.nyponochviljaforlag.se/om-oss/

titative and qualitative assessments of text com-
plexity are of great value, as they can be used in
many fields such as education (e.g. determining
the appropriate material (Fitzgerald et al., 2015)
or automatic essay grading (Valenti et al., 2003)),
customisable text simplification (e.g. determining
which texts to simplify (Štajner et al., 2012)),
or customising texts based on cognitive require-
ments (e.g. for readers with dyslexia (Santini and
Jönsson, 2020)).

Pinpointing the properties of a text that tells us
about its complexity has been proven to be a diffi-
cult and confusing task. The factors that make up
the complexity of a text can themselves create a
hyperplane that spans across a highly multidimen-
sional space.

Classification is a simplified version of this with
the purpose of assigning texts into one or more
classes such as ”easy to read”. Classification ap-
proaches consist of machine learning algorithms,
statistical methods, and other NLP techniques.

Such approaches need to be trained on differ-
ent text features or combinations of features and
then evaluated on their performance in classifying
texts accurately. As model performance becomes
an indirect measurement of the relevance of the
feature(s) to text complexity analysis, the features
used to train models with better performance are
chosen over the features of models with poorer
performance (Falkenjack, 2018). Another cate-
gory of classification algorithms is logistic regres-
sion and its variants. Compared to SVMs and sim-
ilar methods, cf. Schwarm and Ostendorf (2005);
Pitler and Nenkova (2008); Falkenjack (2018), the
binary outcome is modelled as a probability be-
tween 0 and 1. For instance, a book could be clas-
sified as ”easy to read” with a probability of 0.6,
meaning that there is a 60% probability (accord-
ing to the model) that the book is ”easy to read”.
A common approach for such probability estima-
tion is Logistic regression (Hosmer Jr et al., 2013),
or the Logit model, and in this paper we apply a
version of the closely related Probit model.

3 Text complexity features

The most commonly used method for the analysis
of text complexity is automatic evaluation using
quantifiable features of texts, which are then used
to compute one or more ratings of text complex-
ity. These features measure different aspects of the
text and can be categorised into four ordered levels
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of increasing analytical depth, as outlined below.

Shallow features: The features in the first cate-
gory do not contain information about the content
of the text. They simply consist of letter and word
counts; very little or no knowledge of their mean-
ing is necessary to measure or understand shal-
low features. Nevertheless, they have been proven
to be useful for measuring text complexity and
are very simple to extract. The text is processed
through tokenisation to create tokens out of words
(and other components, e.g. delimiters). The to-
kens can be counted either as they are or by tally-
ing the characters they contain. Several traditional
metrics are based on one or more of these features
or variants thereof, cf. Flesch (1948); Björnsson
(1968).

Lexical composition: The lexical composition
of a text targets frequencies of words based on the
lexical category they belong to. The categorisa-
tion process includes lemmatising all words using
a large vocabulary. For Swedish text, a vocabulary
called SweVoc was developed in 2012 for this pur-
pose by Mühlenbock and Kokkinakis (2012). In
SweVoc, each word is represented as a lemma with
some additional information depending on how it
is used, including which category (or categories)
it belongs to. In this research, the following cat-
egories will be used: SweVocD (words related
to every-day matters), SweVocH (high-frequency
words), and SweVocTotal (the total ratio of words
in the text that are part of SweVoc). Because
the SweVoc vocabulary is a subset of the Swedish
language which excludes some complex or spe-
cialised words, it could be assumed that easy-to-
read texts have a higher ratio of SweVoc words
than more complex texts.

Morpho-syntactic features: Morpho-syntactic
features include tagging words and tokens accord-
ing to their part-of-speech (POS). The POS tags
can then be used in a number of text features. In
this research, UnigramPOS features will be used.
The UnigramPOS features are the probabilities of
a unigram occurring in a text, expressed as the ra-
tio of each POS tag per token. Calculating the un-
igram probabilities of a text is a type of language
modelling that can be effective in measuring the
readability of a text (Heilman et al., 2007).

Syntactic features: Although unigram lan-
guage models are effective in capturing content in-
formation and variations in word usage, they lack
the ability to capture syntactic information. The

analysis of syntactic complexity requires parsing
of the text, which involves mapping words and
phrases and their dependencies based on grammat-
ical structures of a sentence. For this research,
the syntactic text features consist of a subset of
features extracted through dependency parsing on
each sentence. These features are: UnigramDep
(probabilities for each dependency relation type),
RightDep (ratio of total dependencies where the
headword occurs after the dependent word), UVA
(unigram probabilities for verbs with a specific
number of dependants), and Lexical density (ratio
of content words).

4 Text complexity as a latent variable

A key idea behind the use of statistical models for
text complexity assessment is the assumption of
a latent variable. As established, text complexity
cannot be measured directly. Instead, it is esti-
mated using one or more linguistic features. Fur-
thermore, text complexity is assessed and labelled
in various ways. For example, texts may be la-
belled as ”easy to read” (with the implication that
regular texts are less ”easy to read”), rated on a
scale of 1 to 7, or categorised into age groups,
among other methods. Although texts from differ-
ent sources may use varying labels and methods
to measure readability, we assume that they share
the underlying latent variable of text complexity.
In other words, variations in text complexity may
be expressed differently, but the concept is consis-
tently modelled across all sources. If data can be
processed appropriately, it enables the latent vari-
able to be statistically modelled and subsequently
used to classify or rank texts.

4.1 The Probit model

The Multi-Scale Probit model we use is a gener-
alisation of the Ordered Probit model which itself
is a generalisation of the Probit model. The Pro-
bit model can be viewed as a linear binary classi-
fier. It can also be considered a Generalized Lin-
ear Model with the inverse of the cumulative dis-
tribution function (CDF) of the Standard Normal
distribution, the Probit function (Bliss, 1934a), as
link function. In essence, the Probit model takes
a vector of covariates xi of the ith observation and
uses it to predict the outcome, or label, yi. It does
so by estimating a coefficient vector β that repre-
sents the effects of xi on the value of yi. In simple
terms, the model can be expressed as ”what is the
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probability that yi is 1, given the information in
xi?”. Mathematically, the Probit model can be ex-
pressed as

P (yi = 1|xi) = Φ(α+ xi
Tβ), (1)

where Φ is the CDF of the Standard Normal dis-
tribution and α is the intercept, defined as a con-
stant value that represents the baseline probability
of yi being 1 even if all covariates are 0.

In the context of text complexity, xi would con-
sist of measurements of linguistic features and yi

would represent a certain label, for example ”easy
to read”. Furthermore, the Probit model can gen-
erally be conceptualised as a latent variable model,
the latent variable y∗ in our application being text
complexity. By setting a threshold γ = −α and
denoting the two binary outcomes as 1 and 2, the
Probit model can instead be expressed as

yi =

{
2 if y∗i > γ

1 otherwise
where y∗i = xT

i β + ϵi

(2)
where y∗i represents the value of the latent vari-

able and ϵi is the error term for the ith observation.
Under this interpretation, we can view the Probit
model as a linear regression over an unobserved,
or latent, real-valued variable which underlies the
assigned labels in the classification problem. If
class 1 represents ”easy to read” and class 2 ’not
easy to read’, this can be expressed as ”if the com-
plexity of a text is above a certain threshold, it
should be classified as ’not easy to read’, other-
wise it should be classified as ’easy to read’”.

This latent variable formulation can be gener-
alised to the case of an ordinal response variable
with possible outcomes C1...Cm by introducing
further thresholds γ1...γm−1 giving rise to the Or-
dered Probit model:

yi =





C1 if y∗i ≤ γ1,

C2 if γ1 < y∗i ≤ γ2,
...
Cm if y∗i > γm−1

(3)

where y∗i is the same as in Equation 2.
The latent variable interpretation of Probit mod-

els lends itself especially well to a Bayesian ap-
proach. Essentially, a Bayesian approach entails
declaring a prior belief, which is then updated us-
ing Bayes Theorem as new evidence is gathered,

generating a posterior belief based on that evi-
dence. These beliefs are commonly referred to as
simply the prior and the posterior. Bayes’ theorem
can be applied for inference of the posterior prob-
ability distribution of the coefficients vector β and
thresholds γ according to the following formula-
tion

P (β,γ | y,X) ∝ P (y | β,γ,X)P (β,γ), (4)

where X = (x1, ...,xn)
T , y = (y1, . . . , yn)

T ,
P (β),γ is the prior and P (y | β,X) is the like-
lihood function. Although this posterior distri-
bution is mathematically intractable, the Markov
Chain Monte Carlo (MCMC) simulation can be
used to estimate the posterior. Gibbs samplers for
both the binary (Albert and Chib, 1993) and ordi-
nal (Cowles, 1996) versions are well established.

The goal of the sampling process for the for-
mulation in Equation 4 is to approximate the joint
posterior distribution of β by estimating marginal
distributions of individual variables.

4.2 The Multi-Scale Probit model

The formulation for the Probit model as a model
for the latent variable in Equation 3 can be ex-
tended further to fit binary and non-binary data
labelled on different scales. Let us take a practi-
cal example to demonstrate these characteristics.
Say we have books sourced from two publishers,
A and B. Publisher A labels its books on a scale
from ’easy’, ’medium’ to ’hard’ based on readabil-
ity. Publisher B labels its books on a scale from
1 to 5, also based on readability. The publishers
use unknown and possibly different methods for
measuring readability, the difference in complex-
ity between each level within either scale is un-
known, and there is no known function translating
between the scales. The only assumption we make
is that the labels are ordered and that they consti-
tute measures of the same phenomenon, i.e. text
complexity. The Multi-Scale Probit model uses
one set of thresholds to discriminate between lev-
els for each scale such that γ(s) is the set of thresh-
olds for scale s. Using our example, the two sets
would be γ(A) = {γ(Aeasy), γ(Amedium), γ(Ahard)} and
γ(B) = {γ(B1), γ(B2), γ(B3), γ(B4), γ(B5)}. Further-
more, the model fits a single latent variable y∗ to
all data, meaning that only a single coefficient vec-
tor β is estimated. The Multi-Scale Probit model
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can therefore be expressed as

yi =





C
(si)
1 if y∗i ≤ γ

(si)
1 ,

C
(si)
2 if γ(si)1 < y∗i ≤ γ

(si)
2 ,

...

C
(si)
m if γ(si)m−1 < y∗i

(5)

for observation i = 1, . . . , n, where y∗i is the
same as in Equations 2 and 3, the response label
yi is measured on scale si, and C

(si)
1 . . . (C

(si)
m de-

notes the labels for scale si. The complete pos-
terior distribution of the joint is estimated using
a variation of the Gibbs sampling algorithm pro-
posed by Cowles (1996) for the Ordinal Probit
model. The conditional posteriors for all sets of
γ(s), β and the latent variable y∗ can be sam-
pled through the process described above. The la-
tent variable estimated by the Multi-Scale Probit
model can be used to order data samples, enabling
total ranking of all data samples. Essentially, the
Multi-Scale Probit allows us to, from some num-
ber of disjunct and partially ordered sets, estimate
a total order on the union of all sets.

The applicability of the Multi-Scale Probit to
our domain has previously been investigated in
Falkenjack et al. (2018).

4.3 Measures for evaluation

Because the Multi-Scale Probit model can be used
for both classification and ranking, we want to
evaluate it using appropriate measures for each
purpose.

As the data we use are not balanced, i.e. there is
not a consistent number of observations per class,
straight accuracy would not be a suitable metric
if we consider the performance as equally impor-
tant for all classes. In such cases, it is common to
use the macro-averaged F1-score (Murphy, 2012,
p. 185). The F1-score of a single class is the har-
monic mean of the precision and the recall for that
class. The macro-averaged F1-score is the average
of the F1-scores for all classes. This value can be
used as an overall measurement of how well the
model performs in regards to classification.

The Multi-Scale Probit estimates a numeric la-
tent variable and can thus be viewed as a model for
ranking in addition to classification. We evaluate
this performance by computing the Kendall rank
correlation coefficient, τ , between the estimated
latent variable and the known observed variable.

Kendall’s τ assesses the ordinal association be-
tween two variables and gives a score between -
1 and 1 depending on the correlation. Since the
observed variable is an ordinal class, giving rise
to a large number of ties, we use a modified ver-
sion called Kendall’s τB specifically made to han-
dle such situations (Kendall, 1945).

Just as the F-measure uses the harmonic mean
between Precision and Recall, we can combine
the classification performance F1 and ranking per-
formance Kendall’s τB using the harmonic mean.
We use this as a combined performance metric for
both classification and ranking in our figures in
Section 7.

5 Data

The majority of data used in this research con-
sisted of books from a corpus called Nypon-Vilja,
consisting of books from Nypon och Vilja, the
largest Swedish publisher of easy-to-read litera-
ture for children, teenagers, and adults. Swedish
easy-to-read literature is catered to people with
reading difficulties, beginner readers, or non-
native readers learning Swedish.

Books from Nypon and Vilja are (generally)
aimed at two different target groups; Nypon at
’children and young’ and Vilja at ’young adults
and adults’. The publisher uses separate scales
(with their own naming schemes), each consisting
of 6 levels, to indicate how easy or difficult a book
is, where the first level (1 and X-Small) is the eas-
iest and the last level (6 and XX-Large) the most
difficult.

Before processing, all books were manually an-
notated based on their alignment with one of two
narrativity dimensions: informational and narra-
tive (McNamara, 2013). Informational text tends
to be non-fictional, written to inform about or ex-
plain a specific topic. Narrative text on the other
hand is typically fictional and story-driven. In or-
der to minimise the effects of variations in lan-
guage use that affect text complexity between di-
mensions of narrativity, only books classified as
narrative are used. Finally, as level 6 from Nypon
contained only 2 books, they were merged with the
books in level 5. This resulted in a dataset of 356
books with 5 levels in Nypon and 6 levels in Vilja,
summarised in Table 1.

The Stockholm-Umeå Corpus (Ejerhed et al.,
2006) (SUC) is a large collection of annotated
Swedish texts written in the 90’s. It contains
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Nypon Vilja
Level N samples Level N samples

1 48 X-Small 4
2 59 Small 14
3 68 Medium 20
4 46 Large 42
5 13 X-Large 38

XX-Large 4
Sum 234 122

Table 1: Number of data samples from each level.

texts in 10 categories including newspaper re-
portage, popular lore, and imaginative prose, writ-
ten for different audiences and with varying writ-
ing styles. The annotations contain information
about linguistic, structural, and functional infor-
mation. In this research, we used a free-for-
use bag-of-sentences version (SUCX 3.0) publicly
available from Språkbanken2. Thus, no text fea-
tures dependent on sentence order are included in
our analysis. Furthermore, in order to minimise
the effects of variations in language use that af-
fect text complexity between genres (Štajner et al.,
2012; Hiebert, 2012; Dell’Orletta et al., 2014),
only texts from the category ’imaginative prose’
were extracted, giving a total of 127 texts from
SUC. This category was assumed to contain texts
in a style the most similar to those extracted from
Nypon och Vilja, being non-informational. The
purpose of using SUC is to obtain a composition of
data at a level of text complexity above all books
from Nypon och Vilja. This is a key assumption
and is based on the rationale that texts from SUC
are written for typical adult readers and not with
the express purpose of being especially easy to
read, meaning text complexity can be assumed to
be higher compared to the books from Nypon och
Vilja.

To extract all necessary linguistic features, all
texts were processed using the StilLett API Ser-
vice (SAPIS) (Fahlborg and Rennes, 2016). The
API service allows for the tokenization, lemma-
tisation, part-of-speech tagging, and dependency
parsing of any text input. It also allows for text
complexity analysis through the SCREAM mod-
ule (Falkenjack et al., 2013) which computes re-
lated metrics.

2https://spraakbanken.gu.se/

6 Model implementation and evaluation

The Multi-Scale model was implemented using a
modified version of the framework developed by
Falkenjack (2018) and executed using R (version
3.6.3) with RStudio (RStudio Team, 2022). The
model uses a set of covariates as input. These co-
variates are the values of metrics extracted through
the data processing step resulting in a total of 47
features, c.f. (Falkenjack, 2018)

Data containing values for all covariates in the
feature set were split into 5 classes for the Nypon
scale and 6 classes for the Vilja scale ordered ac-
cording to their levels. The data were then first
split into training and test sets 500 times, using
different ratios for training and test data, creating
500 models. The training data were used to esti-
mate the full joint posterior distribution described
in Section 4.2 through sampling according to the
scheme described in Falkenjack (2018). This step
was completed to evaluate the performance of the
models. Then, instead of splitting the data into
training and test sets, all data were used to run 20
chains of the Gibbs sampler resulting in a com-
bined set of samples of a full posterior distribution
of the entire dataset. The number of chains was
based on the number of CPU cores available, us-
ing one core per chain to speed up the sampling
process.

Furthermore, the Multi-Scale model by defini-
tion uses multiple scales, meaning the posterior
distribution is sampled using data from both Ny-
pon and Vilja. However, since the Multi-Scale
Probit is a generalised version of an Ordered Pro-
bit model, which uses only one scale, its perfor-
mance on either scale can be compared with a tra-
ditional Ordered Probit sampled using data from
only that dataset. Such models used the same im-
plementation as the Multi-Scale model, but using
one scale at a time. These models will be referred
to as Single Scale models.

After completing the sampling processes, parts
of the resulting posterior distributions were visu-
alised. The posterior was also used for classifica-
tion and ranking, where the performance was eval-
uated by computing values for several evaluation
metrics. For all evaluation metrics above, a higher
positive value indicates better performance. For
visualisation purposes and to enable easier com-
parison between model distributions, mode val-
ues are also plotted. The mode corresponds to the
point with the highest probability density of a dis-
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tribution, i.e. equivalent to the value that appears
most frequently in a discrete probability distribu-
tion.

7 Model performance

The data was randomly separated into 500 dif-
ferent permutations of training and test data, and
models were trained and evaluated for each such
permutation. To assess whether one model gen-
erally outperforms the other we compute the dif-
ference between the posterior mean performance
(F1-scores and Kendall’s τB correlations, respec-
tively, as well as the harmonic mean of them) be-
tween the models for each permutation. Finally,
to further examine how well the models perform
given varying amounts of training data, two differ-
ent split ratios were used: 2/3 training and 1/3 test
data, and vice versa.

With 2/3 of the data used for training, the mean
posterior modes of the performance metrics F1

and Kendall’s τB can be seen in Table 2.

F
(M)
1 F

(S)
1 τ

(M)
B τ

(S)
B

Nypon 0.35 0.35 0.45 0.45
Vilja 0.27 0.4 0.25 0.27

Table 2: Model performance using 2/3 of the data
for training.

We can see that the choice of model makes lit-
tle difference to the performance on the Nypon
dataset but has a noticeable impact for the Vilja
dataset.

Direct comparison of the models is done by
computing the difference of the posterior mean F1

and Kendall’s τB for each model over the 500 data
permutations. This shows that the Multi-Scale
model outperforms the Single Scale model with
respect to the F1-score 54.4% of the time on the
Nypon dataset and 73.4% of the time on the Vilja
dataset. The same comparison of Kendall’s τB
show that the Multi-Scale model is better 62% of
the time on the Nypon dataset and 89.2% of the
time on the Vilja dataset. Figure 1 plots the distri-
bution of differences in the harmonic mean of F1-
score and Kendall’s τB between the models over
all 500 data permutations, showing that the Multi-
Scale model is better in 58.4% and 85.4% of cases
for Nypon and Vilja respectively when both perfor-
mance metrics are considered.

When the ratio of training to test data is re-
versed (i.e. 1/3 of the data used for training, the

−0.10 −0.05 0.00 0.05 0.10
Nypon

Single Scale (41.6 %)
Multi−Scale (58.4 %)

−0.4 −0.2 0.0 0.2 0.4
Vilja

Single Scale (14.6 %)
Multi−Scale (85.4 %)

Figure 1: The posterior distribution for the differ-
ence in posterior harmonic mean of F1-score and
Kendall’s τB between the Multi-Scale and Single
Scale models. (2/3 of the data used for training.)

rest for testing), we see similar differences in over-
all performance on the Vilja dataset but now, the
the difference in overall performance on the Nypon
also shows a marked difference. Figure 2 illus-
trates this for the harmonic mean of F1-score and
Kendall’s τB . However, as expected, the perfor-
mance of both models is slightly lower with mean
posterior modes, as seen in Table 3.

F
(M)
1 F

(S)
1 τ

(M)
B τ

(S)
B

Nypon 0.3 0.29 0.33 0.3
Vilja 0.25 0.24 0.3 0.24

Table 3: Model performance using 1/3 of the data
for training.

This implies that the Multi-Scale model is espe-
cially useful when the availability of training data
is limited.

Meanwhile, Figure 2 shows that the Multi-Scale
model is better in 78.6% and 84.2% of cases for
Nypon and Vilja respectively when both perfor-
mance metrics are considered.

To summarise, the results show that the Multi-
Scale model generally outperforms the Single
Scale model on both datasets, particularly on the
Vilja texts. Furthermore, this performance differ-
ence was greater when using a data split of 1/3
training data and 2/3 test data compared to a 2/3
training and 1/3 test data split. This implies that
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−0.1 0.0 0.1
Nypon

Single Scale (21.4 %)
Multi−Scale (78.6 %)

−0.3 −0.2 −0.1 0.0 0.1 0.2 0.3
Vilja

Single Scale (15.8 %)
Multi−Scale (84.2 %)

Figure 2: The posterior distribution for the differ-
ence in posterior harmonic mean of F1-score and
Kendall’s τB between the Multi-Scale and Single
Scale models. (1/3 of the data used for training.)

the relative improvement of the Multi-Scale Pro-
bit over the single scale Ordered Probit decreases
with the size of the dataset available for training
a single scale model. In other words, the Multi-
Scale Probit model is especially useful in contexts
with sparse and diverse data for training.

7.1 Results of data augmentation

Augmenting both scales with the SUC corpus
added an additional level to both scales above the
other levels. The results of models using 500 aug-
mented data sets with a data ratio of 2/3 training
and 1/3 testing show that the modes of the pos-
terior F1-score and Kendall’s τB show a marked
improvement with an augmented dataset as shown
in Table 4.

F
(M)
1 F

(S)
1 τ

(M)
B τ

(S)
B

Nypon 0.47 0.47 0.71 0.71
Vilja 0.4 0.32 0.7 0.6

Table 4: Model performance using 2/3 of the aug-
mented data for training.

Figure 3 shows that when considering both F1-
score and Kendall’s τB the Multi-Scale model out-
performs the Single Scale model most of the time
for both datasets.

Using 1/3 of the data for training and 2/3 for
testing, as shown in Table 5, reinforces what we

−0.08 −0.04 0.00 0.04 0.08
Nypon

Single Scale (45.2 %)
Multi−Scale (54.8 %)

−0.2 −0.1 0.0 0.1 0.2
Vilja

Single Scale (6 %)
Multi−Scale (94 %)

Figure 3: The posterior distribution for the differ-
ence in posterior harmonic mean of F1-score and
Kendall’s τB between the Multi-Scale and Single
Scale models. (2/3 of the augmented data used for
training.)

saw with the original data and with the 2/3 train-
ing ratio with augmented data. There is only a
small improvement on the larger Nypon dataset
but a more noticeable improvement on the smaller
Vilja dataset.

F
(M)
1 F

(S)
1 τ

(M)
B τ

(S)
B

Nypon 0.4 0.39 0.68 0.67
Vilja 0.35 0.33 0.68 0.56

Table 5: Model performance using 1/3 of the aug-
mented data for training.

Figure 4 again shows the Multi-Scale model
outperforming the Single Scale model most of the
time for both datasets.

The results show that, just as in the previous
section, the Multi-Scale model generally outper-
forms the Single Scale model, particularly when
tested on the smaller Vilja dataset, and that this
improvement is greater when reducing the ratio of
training data.

7.2 Results of regularisation

The regularisation process consisted of inspecting
the marginal posteriors for each of the original 47
features, removing features with a positive or neg-
ative influence certainty % below specific thresh-
olds (25%, 50% and 75%), and then resampling
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Figure 4: The posterior distribution for the differ-
ence in posterior harmonic mean of F1-score and
Kendall’s τB between the Multi-Scale and Single
Scale models. (1/3 of the augmented data used for
training.)

the posterior distributions with each of the three
reduced feature sets. The purpose of the regulari-
sation process was to examine whether the change
of feature set affects the predictive capabilities of
the models.

Using 500 data sets with a ratio of 2/3 train-
ing data and 1/3 testing data, the modes of the
posterior distribution of the harmonic mean align
nearly perfectly for both models across all three
feature sets when tested on the Nypon scale. On
the Vilja scale, the Multi-Scale model slightly out-
performs the Single Scale model across all feature
sets. Furthermore, the modes for both models in-
crease slightly between the first and second feature
sets when tested on both scales. On the Nypon
scale, there is an increase between the second and
third feature sets, but no noticeable increase when
tested on the Vilja scale.

The training/test split was again reversed (1/3
training, 2/3 test) on 500 reduced feature sets of
data. The performance results of the models show
that the modes of the posterior distribution of
the harmonic mean are marginally higher for the
Multi-Scale model compared to the Single Scale
model across all feature sets when tested on the
Nypon scale. On the Vilja scale, the difference in
modes between the two models is greater, approxi-
mately 0.1 higher for the Multi-Scale model across
all feature sets. Furthermore, the modes for both

models increase slightly between the first and sec-
ond feature set when tested on both scales, and a
larger increase between the second and final fea-
ture set when tested on the Nypon scale, but not
the Vilja scale.

8 Conclusion

The purpose of this research was to utilise the
Multi-Scale Probit model in order to enable a stan-
dardised ranking and classification of text com-
plexity, while also exploring how the model can
be optimised. The assessment of text complexity
can be used for a wide range of purposes, making
its development pivotal in the field of natural lan-
guage processing. The results from applying the
Multi-Scale Probit on easy-to-read Swedish books
have indicated that the model outperforms the Sin-
gle Scale model in nearly all cases of classification
and ranking, measured by F1-scores and Kendall
τB correlations. Furthermore, the results accen-
tuate how the output from the Multi-Scale Probit
model can be used in a simple manner to clas-
sify and rank new texts in the same domain, or
adapted to other domains by creating new mod-
els. Through data augmentation and feature reg-
ularisation, the model can be optimised in terms
of computational complexity and performance in
specific contexts. The ability of the Multi-Scale
Probit model to utilise data from different sources,
without the necessity of large data quantities per
category, enables assessments of text complexity
that have previously not been possible. This re-
search has contributed to the goal of developing
methods for classifying and ranking text complex-
ity, with the broader aim of creating a more acces-
sible society for readers with varying needs.
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Yoshua Bengio, Réjean Ducharme, and Pascal Vincent.
2000. A neural probabilistic language model. Ad-
vances in neural information processing systems, 13.

Rebekah George Benjamin. 2012. Reconstructing
readability: Recent developments and recommenda-
tions in the analysis of text difficulty. Educational
Psychology Review, 24:63–88.

CH Björnsson. 1968. Läsbarhet [readability] stock-
holm. Sweden: Liber.

C. I. Bliss. 1934a. The method of probits. Science,
79(2037):38–39.

Chester I. Bliss. 1934b. The Method of Probits. Sci-
ence, 79(2037):38–39.

Mary Kathryn Cowles. 1996. Accelerating monte carlo
markov chain convergence for cumulative-link gen-
eralized linear models. Statistics and Computing,
6:101–111.

Felice Dell’Orletta, Simonetta Montemagni, and Giu-
lia Venturi. 2014. Assessing document and sentence
readability in less resourced languages and across
textual genres. ITL-International Journal of Applied
Linguistics, 165(2):163–193.

Eva Ejerhed, Gunnel Källgren, and Benny Brodda.
2006. Stockholm umeå corpus version 3.0.
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