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Abstract

Optical Character Recognition (OCR) is
crucial to the National Library of Nor-
way’s (NLN) digitisation process as it con-
verts scanned documents into machine-
readable text. However, for the Sámi
documents in NLN’s collection, the OCR
accuracy is insufficient. Given that
OCR quality affects downstream pro-
cesses, evaluating and improving OCR for
text written in Sámi languages is nec-
essary to make these resources accessi-
ble. To address this need, this work
fine-tunes and evaluates three established
OCR approaches, Transkribus, Tesseract
and TrOCR, for transcribing Sámi texts
from NLN’s collection. Our results show
that Transkribus and TrOCR outperform
Tesseract on this task, while Tesseract
achieves superior performance on an out-
of-domain dataset. Furthermore, we show
that fine-tuning pre-trained models and
supplementing manual annotations with
machine annotations and synthetic text im-
ages can yield accurate OCR for Sámi lan-
guages, even with a moderate amount of
manually annotated data.

1 Introduction

Optical Character Recognition (OCR) converts
scanned documents into machine-readable text,
which is crucial for making digitised materials
available for search and analysis. For the Na-
tional Library of Norway (NLN), the OCR out-
put, among others, facilitates search for the on-
line library (Nettbiblioteket1) and underpins analy-
sis tools like the DH-Lab toolbox (Birkenes et al.,
2023). However, while OCR quality is high for
most Norwegian documents, it falls short for Sámi

1https://www.nb.no/search

documents. The resulting text is insufficient for
both search and for use in research or as a basis
for language technology.

NLN has material in five Sámi languages: North
Sámi, South Sámi, Lule Sámi, Inari Sámi and
Skolt Sámi. Thus, developing an accurate OCR
model for Sámi texts is important for NLN’s mis-
sion to store and disseminate the materials in the
library collection. Furthermore, for languages
with limited resources, like Sámi languages, it is
vital that the available resources are accessible to
be searched and used for research. This paper de-
scribes a twofold contribution towards this goal:

1. Developing an OCR model for Sámi lan-
guages that improves the transcription accu-
racy of Sámi text in NLN’s collection.

2. Comparing different OCR approaches in
terms of transcribing smaller languages such
as languages in the Sámi family.

2 Background

2.1 Sámi languages in the National Library
of Norway’s collection

Of the around 650 000 books and 4.6 million
newspaper issues in NLN’s digitised collection,
about 3000 and 4500 are classified as Sámi, re-
spectively. The classification generally means that
the texts are written in Sámi, though some may
just address Sámi-related topics.

With more than 20 000 speakers North Sámi is
the most widely spoken Sámi language in Nor-
way, Sweden and Finland, and it makes up the
largest part of the Sámi collection at NLN. The
other Sámi languages in NLN’s collection all have
less than 500 speakers. South and Lule Sámi are
spoken in Norway and Sweden, and the collection
contains a good amount of South and Lule Sámi
books. Skolt Sámi, previously spoken in Nor-
way and Russia, is now mainly spoken in Finland,

98

https://www.nb.no/search


along with Inari Sámi, which has only ever been
spoken in Finland. There is much less material in
these languages in the collection (< 20 books in
total).

All five languages have standardised orthogra-
phies that were made or revised in the 1970s, 80s
or 90s (Laakso and Skribnik, 2022; Olthuis et al.,
2013; Magga, 1994), but the collection also in-
cludes earlier works that predate the standardised
norms. To some extent these books contain non-
standard letters or glyph-shapes and most words
are spelled in ways differing from contemporary
orthographies.

The Sámi written languages have letters not
found in the Norwegian alphabet, but it varies
from language to language which letters and how
many. The alphabets have some letters in com-
mon, but none are identical. See Table 1 for an
overview of these characters.

North South Lule Inari Skolt

Áá Áá Áá
Ââ Ââ
Ää Ää

Ïï
Õõ

Öö
Čč Čč Čč
Đđ Đđ Đđ
Ŋŋ Ŋŋ Ŋŋ Ŋŋ
Šš Šš Šš
Ŧŧ
Žž Žž Žž

Ʒʒ
Ǥǥ
Ǧǧ
Ǩǩ
Ǯǯ
ʹ
ʼ
ˈ

Table 1: Overview of non-Norwegian characters
used in the contemporary orthographies of the
Sámi languages in the collection

2.2 Related work

While early OCR approaches often relied on
hand-crafted image features combined with shape-
and text-analysis (Smith, 2007), modern solu-
tions use deep learning based models to learn in-
formative features from the data itself. In par-

ticular, developments like convolutional neural
networks (CNNs), bidirectional long-short-term-
memory (LSTMs) (Hochreiter and Schmidhuber,
1997) and the Connectionist Temporal Classi-
fication (CTC) loss (Graves et al., 2006) has
yielded state-of-the-art results (Shi et al., 2016;
Puigcerver, 2017; van Koert et al., 2024; Tarride
et al., 2024). Recently, transformer-based machine
learning advancements have led to transformer-
based OCR models such as TrOCR (Li et al.,
2023).

OCR pipelines have also been developed for
collections of digitised documents: Tesseract
(Smith, 2007) is an open-source OCR framework
for line segmentation and text recognition which
includes pre-trained OCR models for several lan-
guages2 and training scripts for training and fine-
tuning on custom data. Since 2018, Tesseract has
also supported LSTMs.

Another example is Transkribus, a proprietary
platform for the recognition of printed and hand-
written documents with a built-in interface for
(semi-)manual transcription. The platform sup-
ports layout analysis and text recognition, us-
ing pre-existing or custom-trained models. The
text recognition models are based on PyLaia
(Puigcerver, 2017; Tarride et al., 2024), which
uses a combination of CNNs and bidirectional
LSTMs. Transcriptions can be exported, though
models are restricted to use within the platform.

A recent advancement is transformers-based
OCR. TrOCR is a state-of-the-art text recognition
model that combines powerful transformer models
for vision and language (Li et al., 2023). Specif-
ically, TrOCR combines the “encoder” of a vi-
sion transformer (ViT) (Dosovitskiy et al., 2021),
with the language generating “decoder” of a ro-
bustly optimised Bidirectional encoder represen-
tations from transformers approach (RoBERTa)
model (Liu et al., 2020). TrOCR is specialised
for text recognition, and will not perform ancil-
lary tasks, like layout analysis. Moreover, while
TrOCR is shown capable of outperforming Tran-
skribus and Tesseract (Ströbel et al., 2023; Li et al.,
2023), it is still a relatively recent algorithm, and
there is still a need to assess its accuracy for low-
resource languages.

OCR quality greatly impacts downstream pro-
cesses (Lopresti, 2008; Järvelin et al., 2016; Ev-
ershed and Fitch, 2014). Consequently, parts of

2but none for the Sámi languages
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a digitised collection with challenges like unusual
fonts, bad scan quality or text in a low-resource
language, will be less accessible. Several works
have, thus, focused on improving OCR quality for
texts with such challenges by e.g. using an ensem-
ble of image preprocessing transforms (Koistinen
et al., 2017), comparing various OCR- or hand-
written text recognition (HTR)-models for smaller
languages (Maarand et al., 2022; Memon et al.,
2020; Tafti et al., 2016; Koistinen et al., 2017; He-
liński et al., 2012) or post-correcting outputs (Pon-
celas et al., 2020; Duong et al., 2021).

OCR for low-resource languages is particularly
challenging. Not only is there much less labelled
data for training, but this problem is exacerbated
further by potential changes in orthographies. Ri-
jhwani et al. (2023) showed that including OCR
in a semi-automatic annotation suite can aid anno-
tation – even for a low-resource language such as
Kwak’wala, where automatic annotation is diffi-
cult. Similarly, Yaseen and Hassani (2024) trained
a Tesseract-based OCR system for Kurdish, an-
other low-resource language. Agarwal and Anas-
tasopoulos (2024) presented a concise survey of
OCR for low-resource languages with a focus
on Indigenous Languages of the Americas. Fi-
nally, Partanen and Rießler (2019) presented an
OCR model for the Unified Northern Alphabet,
used in the Soviet Union between 1931 and 1937
for Northern Minority languages (which includes
Kildin Sámi).

3 Methods

3.1 Data

The main source for the data used in this work is
NLN’s digitised collection. Our goal was to create
an OCR model for all languages in the collection,
rather than one for each language, as this would
allow for the most efficient integration into NLN’s
digitisation pipeline. However, we realised early
that including Skolt Sámi would be difficult be-
cause of the three apostrophe characters that indi-
cate pronunciation. This makes transcription dif-
ficult without a certain level of language profi-
ciency. Thus, we proceeded with North, South,
Lule and Inari Sámi.

In addition to data from NLN, we also used text-
data data from the GiellaLT corpora3 as basis for
synthetic text images and data from the Divvun &

3https://giellalt.github.io/

South North Lule Inari

D
oc

s

GT 5 3 2 3
Pred 265 1810 235 0
Val 2 8 2 3
Test 4 7 4 5

L
in

es

GT 208 5572 81 280
Pred 7082 70413 6781 0
Synth 76971 76949 76970 76497
Val 53 1837 36 109
Test 195 353 137 163
OOD 0 122 0 0

Table 2: Distribution of documents and lines
in each of the Sámi languages in the different
datasets. GT, Val and Test refer to the data splits
of the manually annotated data. Pred is the auto-
matically annotated dataset, Synth is the synthetic
dataset (natural language text but generated im-
ages) and OOD is the OOD Giellatekno test set.

Giellatekno fork of tesstrain4 as basis for an out-
of-domain (OOD) test set.

Training data

We trained OCR models using manually tran-
scribed data, machine transcribed data, and syn-
thetic data5. See Table 2 for an overview.

Manually transcribed data We used Tran-
skribus6 (Kahle et al., 2017) to create the train-
ing data from the images of scanned pages. We
used the platform’s layout analysis, manually ad-
justing the results where necessary, then applied
text recognition to the documents. Initially, we
used a standard model provided by Transkribus.
As we progressively corrected the recognised text,
we trained new models, which were applied to
recognise text in new documents, which we man-
ually corrected to create the manually transcribed
data.

Following this procedure, we transcribed 58
Sámi book and newspaper pages to create a manu-
ally transcribed training set, henceforth referred to
as Ground Truth Sámi (GT-Sámi).

4https://github.com/divvungiellatekno/
tesstrain/tree/main/training-data/nor_
sme-ground-truth

5As these texts contain copyrighted materials, the tran-
scribed data sets can not be shared openly.

6We used the Transkribus Expert Client v1.28.0 and
https://app.transkribus.org v4.0.0.150

100

https://giellalt.github.io/
https://github.com/divvungiellatekno/tesstrain/tree/main/training-data/nor_sme-ground-truth
https://github.com/divvungiellatekno/tesstrain/tree/main/training-data/nor_sme-ground-truth
https://github.com/divvungiellatekno/tesstrain/tree/main/training-data/nor_sme-ground-truth
https://app.transkribus.org


Additionally, we already had 82 pages with
2998 manually transcribed Norwegian text lines
(produced similarly as for GT-Sámi) that we in-
cluded as training data. We refer to this data as
Ground Truth Norwegian (GT-Nor).

Synthetic data To add more annotated Sámi text,
we created synthetic data, which we refer to as the
Synthetic Sámi dataset (Synth-Sámi). We used the
SIKOR Sámi text corpus (SIKOR, 2021) as a ba-
sis of well-formed Sámi text, and generated im-
ages for the text lines (adding an uppercase version
for ≃ 10% of the lines), using CorpusTools7

to parse the XML files in the converted-
directory of the corpus-sma8, corpus-sme9,
corpus-smj10 and corpus-smn11 reposito-
ries. The images were created with Pillow12 and
Augraphy (Groleau et al., 2023), with variation
in fonts and colours, and a varying degree of im-
perfections and noise added, resulting in 307 387
lines13.

Automatically transcribed data As mentioned
earlier, we trained Transkribus models incremen-
tally while annotating data. Eventually, our Tran-
skribus model14 performed well on North, South
and Lule Sámi, and we decided to automatically
transcribe a larger amount of Sámi text with this
model. We extracted page 30 from North, South
and Lule Sámi books in NLN’s collection and
transcribed them automatically, which resulted in
2380 pages forming the Predicted Sámi (Pred-
Sámi) dataset. This boosted the amount of data,
but naturally, the transcriptions may not be correct.

Validation data
To evaluate during training and to select the best
performing models for each architecture, we cre-
ated a validation dataset. This dataset consists
of 25 pages manually transcribed following the
procedure described for GT-Sámi. Lines were

7https://github.com/divvun/CorpusTools
8https://github.com/giellalt/

corpus-sma/
9https://github.com/giellalt/

corpus-sme/
10https://github.com/giellalt/

corpus-smj/
11https://github.com/giellalt/

corpus-smn/
12https://python-pillow.org/ (Version 10.4.0)
13Code to generate synthetic data is on GitHub: https:

//github.com/Sprakbanken/synthetic_text_
images

14Transkribus modelID 115833, publicly available in Tran-
skribus

selected from different books than the GT-Sámi
training data while keeping a similar language dis-
tribution.

Test data
To compare the OCR approaches we used two test
sets: one from NLN’s collection and one from
Divvun & Giellatekno’s tesstrain data.

NLN test data As a goal of this work was to
improve the transcriptions of Sámi documents in
NLN’s collection, we created a test set based on
current transcriptions (baseline) of 21 pages from
18 books and 2 newspapers provided by NLN15.
NLN stores these transcriptions as Analyzed Lay-
out and Text Object-Extensible Markup Language
(ALTO-XML) files with line segmentations and
transcriptions. By matching the ALTO-XML tran-
scriptions with manually annotated data, we cre-
ated a test-set containing 848 text-lines.

Giellatekno test data The Giellatekno test data
nor-sme was made for evaluating OCR reading of
dictionares. It consists of 122 lines of dictionary
data, thus text both in Norwegian and (contempo-
rary) North Sámi. The dataset is available on Giel-
latekno’s GitHub16 We refer to this dataset as the
OOD Giellatekno test set.

3.2 Evaluation metrics

Following previous work (Neudecker et al., 2021;
Agarwal and Anastasopoulos, 2024), we used the
character error rate (CER) and word error rate
(WER) evaluation metrics. Specifically, we calcu-
lated collection level CER and WER (concatenat-
ing lines, with a space to separate them for WER)
with Jiwer17.

We also calculated an F1 score for characters
specific to the different Sámi languages, and an
overall F1 score for all non-Norwegian Sámi char-
acters. The F1 score is given by F1 = 2TP/(2TP+
FN + FP), where TP, FP and FN is the number

15We chose distinct books for the train, validation and test
sets. However, due to few Inari Sámi books, 1 book is in both
the train and test sets and 2 are in both the validation and test
sets, but there is no page-overlap.

16https://github.com/divvungiellatekno/
tesstrain/tree/main/training-data/nor_
sme-ground-truth. We have corrected four transcrip-
tions and used our corrected version of the test set which can
be found on https://github.com/MarieRoald/
tesstrain/tree/fix-transcriptions/
training-data/nor_sme-ground-truth

17https://github.com/jitsi/jiwer (Version
3.0.4)
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of true positives, false positives and false nega-
tives, respectively. To measure TP, FP and FN
in an OCR-setting, we only considered character
counts, not location. Thus, for a given charac-
ter, c, we set TPc = min(n

(true)
c , n

(pred)
c ), FN =

max(n
(true)
c − n

(pred)
c , 0) and FP = max(n

(pred)
c −

n
(true)
c , 0), where n

(true)
c and n

(pred)
c are the number

of c characters in the ground truth and predicted
transcriptions, respectively. To compute an over-
all F1, we combined the TP, FN, and FP across all
lines and characters-of-interest.

To examine the types of errors our models
made, we calculated the most common errors.
Specifically, we used Stringalign (Moe and Roald,
2024), which implements optimal string align-
ment. Note that, in theory, multiple alignments
can exist (e.g. if two letters are swapped), in which
case Stringalign picks one.

3.3 Models and training

A goal of this work was evaluating different state-
of-the-art OCR frameworks for Sámi text recog-
nition. Specifically, we compared Transkribus,
Tesseract and TrOCR. For each approach, we
trained on several dataset combinations and chose
the model based on mean(CER, WER) on the val-
idation data for test-set evaluation.

Transkribus
We used Transkribus Expert for training Tran-
skribus models18. We used standard parameters,
but opted “Using exsisting line polygons for train-
ing”, and changed the batch size from 24 to 1219.
We set 100 as maximum numbers of epochs, and
20 as early stopping. We used Transkribus print
M120 as base model for 4 of the 5 models. All
Transkribus models were run with the setting “Use
language model”21.

Tesseract
We used the official tesstrain repository22 and
Tesseract 5.4.1 for training. We experimented with
both training models from scratch and fine-tuning

18https://help.transkribus.org/
model-setup-and-training

19We changed this parameter after advice from the Tran-
skribus team due to problems with the training stopping with
exitCode = 1

20Transkribus ModelID 39995
21Which uses PyLaia’s n-gram model functionality to in-

form character predictions (Tarride et al., 2024).
22https://github.com/tesseract-ocr/

tesstrain (Version 1.0.0, commit hash 45cacc5)

existing models. During early experiments, we
tried fine-tuning Norwegian, Finnish, and Esto-
nian models using our Sámi dataset, and observed
that the model with the Norwegian base adapted
faster and performed better on our validation set.
Thus, we continued training with the Norwegian
base23.

As tesstrain does not support dynamic learning
rate and only exposes a few training hyperparam-
eters to the user, we trained our models in 1-20
epoch increments, updating the learning rate until
the model checkpoints no longer showed improve-
ments on the validation set.

TrOCR
We used Huggingface Transformers (Wolf
et al., 2020) to fit the TrOCR models,
initialising with the parameters from the
microsoft/trocr-base-printed reposi-
tory. This model is pre-trained on both synthetic
and printed text (Li et al., 2023). For fine-tuning,
we had an initial learning rate of 10−6, decreasing
it by a constant amount for each iteration until it
reached 10−7 at the final iteration. For models
fine-tuned without Pred-Sámi, we trained for 200
epochs, evaluating and storing model parameters
every fifth epoch. However, due to the data size
and hardware limitations, models that included
Pred-Sámi were only fine-tuned for 100 epochs,
evaluating and storing model parameters every
second epoch and selecting the checkpoint with
the lowest validation CER.

Pre-training with synthetic data
We trained additional TrOCR and Tesseract mod-
els using synthetic data to assess the effect of
adding such data24. After training all models with-
out synthetic data, we retrained with the small-
est amount of hand-annotated data (GT-Sámi) and
best performing data combination, this time ini-
tialising with a model pre-trained on Synth-Sámi.

In particular, due to time and hardware limita-
tions, we trained models on synthetic data in two
stages inspired by the two-stage procedure in e.g
(Li et al., 2023). For the first stage, we trained for
five epochs on Synth-Sámi. For the second stage,
we initialised with the best checkpoint from the

23https://github.com/tesseract-ocr/
tessdata_best/blob/main/nor.traineddata

24We did not train Transkribus models with synthetic data
as it does not support an easy way to train based on line im-
ages and because of its page-based pricing model.

102

https://help.transkribus.org/model-setup-and-training
https://help.transkribus.org/model-setup-and-training
https://github.com/tesseract-ocr/tesstrain
https://github.com/tesseract-ocr/tesstrain
https://github.com/tesseract-ocr/tesstrain/commit/45cacc5c05929a0d8a19d19104d4a0718877a91c
https://github.com/tesseract-ocr/tessdata_best/blob/main/nor.traineddata
https://github.com/tesseract-ocr/tessdata_best/blob/main/nor.traineddata


w
/o

ba
se

G
T-

Sá
m

i

G
T-

N
or

Pr
ed

-S
ám

i

Sy
nt

h
ba

se

Transkribus Tesseract TrOCR
CER WER mean CER WER mean CER WER mean

✓ ✓ 1.59 5.67 3.63 5.53 24.70 15.11
✓ 1.28 4.34 2.81 2.05 9.84 5.95 1.98 9.29 5.64
✓ ✓ 1.31 4.35 2.83 2.37 11.39 6.88 1.95 8.88 5.42
✓ ✓ 1.48 4.02 2.75 1.85 8.17 5.01 1.28 5.00 3.14
✓ ✓ ✓ 1.07 3.58 2.33 1.81 7.96 4.89 1.32 5.14 3.23
✓ ✓ 1.78 8.78 5.28 1.15 5.04 3.09
✓ ✓ ✓ 1.08 4.29 2.69
✓ ✓ ✓ ✓ 1.79 7.70 4.75

Table 3: CER, WER, and mean(CER, WER) on the validation set. The checkmarks indicate whether
models were trained from scratch (i.e. not fine-tuning an existing base model) (first column) and what
datasets were part of the training data

first stage (lowest CER) and continued training on
real data.

4 Results

Code for training Tesseract and TrOCR models,
creating synthetic data and more detailed dataset
information is available through the supplement
on GitHub25.

4.1 NLN validation data

Transkribus models

As shown in Table 3, CER and WER decreased
when we used the Transkribus Print M1 as the
base model in addition to GT-Sámi. Hence, we
continued to use the base model in the subsequent
training. Supplementing GT-Sámi with GT-Nor
did not improve performance, while supplement-
ing with Pred-Sámi increased CER but decreased
WER. However, adding both GT-Nor and Pred-
Sámi led to the best-performing model on the val-
idation set.

Tesseract models

From Table 3, we see that the model trained on
GT-Sámi with a Norwegian base model greatly
outperformed the corresponding model without
a base model. We therefore continued training
all Tesseract models from the Norwegian base
model. Adding GT-Nor to the training data wors-
ened the validation performance. However, adding

25https://github.com/Sprakbanken/
nodalida25_sami_ocr

Pred-Sámi to the training data improved valida-
tion performance, and adding both further im-
proved the performance. Using Synth-Sámi also
improved performance, and the model performed
best in terms of mean(CER, WER) when all train-
ing datasets were used.

TrOCR models
For TrOCR, we observed that including GT-Nor
in the training had a slight improvement when
only training with GT-Sámi and no improvement
when training with GT-Sámi and Pred-Sámi (see
Table 3). Moreover, while including Pred-Sámi
improved performance, pre-training with Synth-
Sámi had a larger effect. The overall best-
performing model was trained with both Synth-
Sámi and Pred-Sámi in addition to GT-Sámi.

4.2 NLN test data

Table 4, shows that while Transkribus achieves a
lower CER for most languages, it obtains a higher
WER and a lower special character F1-score com-
pared to TrOCR. Tesseract performed worst on
this dataset. However, all models greatly improve
compared to the baseline, with the CER and WER
being reduced by factors between 3.8 and 5.6.

The special character F1-score in Table 4 shows
that the baseline struggles with non-Norwegian
Sámi characters. While the F1 score does not
take letter position into account, we also see the
same pattern reflected in Table 5, which shows
that seven of the ten most common mistakes for
the baseline are replacing a non-Norwegian Sámi
special character. In contrast, we see that our three
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Transkribus Tesseract TrOCR Baseline

CER ↓ [%] Overall 0.61 0.89 0.74 3.38
South 0.33 1.09 0.33 2.05
North 0.53 0.73 1.20 3.99
Lule 0.34 0.26 0.66 2.46
Inari 1.22 1.43 0.43 4.36

WER ↓ [%] Overall 3.19 4.65 2.96 18.71
South 2.42 7.45 2.33 15.98
North 1.66 2.90 3.41 20.08
Lule 3.27 1.84 3.47 13.27
Inari 6.18 7.13 2.40 22.62

Sámi letter F1 ↑ [%] Overall 96.03 93.81 96.97 52.54
South 90.24 83.02 93.92 24.52
North 98.57 97.13 97.27 55.85
Lule 97.91 97.88 97.06 51.75
Inari 94.70 93.22 98.84 68.61

Table 4: CER, WER and Sámi letter F1 on NLN test data. The score for each language and overall score
across languages are listed. Transkribus, Tesseract and TrOCR refer to the best performing model on
the validation set for each model type. Baseline is the current OCR output in the online library. The
downward arrows indicate that a low score is better, while the upward arrow indicates that a high score
is better.

models make fewer mistakes, and their ten most
common mistakes are less systematically replac-
ing distinctive Sámi characters and include, e.g.
insertions and deletions.

4.3 Giellatekno test data
In contrast to the NLN test data, the Tesseract
model performed the best on the OOD test data
from Giellatekno for all metrics (see Table 6).
Transkribus was worst in terms of CER and WER,
while TrOCR was worst in terms of the F1 score.

In Table 7, we see the most common errors on
the Giellatekno test set. The Transkribus model
seems to have a tendency to add punctuation
marks, and mistake the letter ø for e. All mod-
els fail to transcribe ü (of which there are only two
in the Giellatekno test set). This is not surprising,
as the letter rarely appears in the training data 26.

5 Discussion and conclusions

From Tables 3 and 4, we observe a jump in perfor-
mance for the test set compared to the validation
set. This increase is expected, as the test set an-
notations are of higher quality (more accurate line
segmentations).

26The letter ü appears 59 times in Synth-Sámi, 9 times in
Pred-Sámi and 5 times in GT-Nor.

We see that applying a two-stage training using
synthetic data for the first stage always improved
the results. As such, if manual annotations are lim-
ited, the addition of synthetic data is worth con-
sidering. Furthermore, while the Pred-Sámi im-
proved performance, its effect was less than in-
cluding synthetic data. It would, thus, be interest-
ing to investigate if further training on Synth-Sámi
could eliminate the effect of Pred-Sámi. Finally,
we note that including GT-Nor had a minimal ef-
fect when combined with Pred-Sámi. This find-
ing, combined with the effect of pre-trained base
models, suggests that language-independent fea-
tures are already learned by the base models and
highlights the value of language-specific data for
fine-tuning on low-resource languages.

Unfortunately, as this work focuses on low-
resource languages, few digitised texts exist.
There is, therefore, a slight overlap between the
books (but not pages) in the test set and the valida-
tion and training sets for Inari Sámi which could
bias our results for the Inari Sámi language. Still,
Inari Sámi obtained the worst CER and WER for
Transkribus and the worst CER and second worst
WER for Tesseract. Despite low amount of Inari
Sámi, we included it in our analysis as there is
an overlap between this alphabet and the North
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Transkribus Tesseract TrOCR Baseline
Error ne nm nc Error ne nm nc Error ne nm nc Error ne nm nc

‘â’�‘á’ 16 35 287 ‘ï’� ‘i’ 24 27 160 ‘Á’�‘A’ 9 11 28 ‘á’�‘å’ 313 418 1136
‘â’�‘a’ 14 35 287 ‘â’�‘á’ 22 29 287 ‘’ � ‘l’ 7 – – ‘ï’� ‘i’ 137 139 160
‘Á’�‘A’ 9 10 28 ‘d̄’�‘d’ 12 14 173 ‘Š’�‘S’ 6 6 6 ‘â’�‘å’ 103 180 287
‘/’� ‘ ’ 9 9 10 ‘Á’�‘A’ 10 11 28 ‘’ � ‘i’ 5 – – ‘–’�‘-’ 75 77 82
‘i’� ‘ï’ 7 13 3299 ‘’ �‘d’ 8 – – ‘’ � ‘ ’ 4 – – ‘š’�‘s’ 72 95 215
‘d̄’�‘d’ 7 11 173 ‘’ �‘á’ 7 – – ‘i’ � ‘ï’ 4 21 3299 ‘d̄’�‘d’ 48 61 173
‘š’� ‘’ 6 6 215 ‘’ � ‘i’ 7 – – ‘á’� ‘å’ 4 14 1136 ‘á’�‘a’ 46 418 1136
‘ä’�‘á’ 5 6 150 ‘s’�‘S’ 7 8 1509 ‘Č’�‘C’ 4 4 8 ‘â’�‘á’ 30 180 287
‘ï’� ‘i’ 5 5 160 ‘â’�‘å’ 6 29 287 ‘á’� ‘a’ 3 14 1136 ‘â’�‘ä’ 26 180 287
‘’ �‘-’ 4 – – ‘.’ � ‘’ 5 6 509 ‘a’�‘u’ 3 8 3247 ‘č’�‘c’ 26 62 163

‘a’�‘b’: model transcribed “a” as “b” ne: Error count
‘a’� ‘’ : model incorrectly deleted “a” nm: Misses of the character left of �
‘’ �‘b’: model incorrectly inserted “b” nc: Occurrences of the character left of �

Table 5: Top ten most common errors on the NLN test data. Transkribus, Tesseract and TrOCR refers to
the best performing model on the validation set for each model type. Baseline is the current OCR output
in the online library.

Transkribus Tesseract TrOCR

CER ↓ [%] 0.70 0.12 0.43
WER ↓ [%] 5.85 1.02 3.31
F1 ↑ [%] 100.00 100.00 98.33

Table 6: CER, WER and Sámi letter F1 on the
OOD Giellatekno test set. The downwards arrows
indicate that a low score is better, while the up-
wards arrow indicates that a high score is better.

Sámi alphabet, and our OCR models could im-
prove upon NLN’s transcription for Inari Sámi.

All models improved considerably compared to
the baseline and are good candidates for a re-OCR
process. If transcription accuracy is the main fo-
cus, then Transkribus appears to perform the best.
However, while Tesseract achieved the worst per-
formance for the NLN test set, it performed the
best on the OOD Giellatekno test set. Tesseract
also has other benefits: it is available as open-
source software and requires less compute than a
TrOCR model.

While language-specific annotations are valu-
able, they are demanding to create, particularly for
low-resource languages without good base mod-
els for semi-automatic annotations. However, our
results show that by fine-tuning pre-trained mod-
els and augmenting manually annotated data with
machine-annotated data and synthetic text images,

we can achieve accurate OCR for Sámi languages,
even with modest amounts of manual annotations.

6 Further work

As NLN’s collection includes works predating
the standardised Sámi orthographies, a more ac-
curate evaluation of the OCR could be gained
by examining performance across different time
periods. Moreover, training specialised models
to transcribe non-standard letters or glyph-shapes
could enable more detailed down-stream studies
of changes in orthographies. Another gap is train-
ing OCR for other Sámi languages, such as Skolt
Sámi.

Given that our results show that initialising on a
dataset of synthetic text images was beneficial, it is
worth exploring further. The models in this work
are only trained on synthetic data for five epochs,
indicating that potential improvements could be
made by training on synthetic data for longer, i.e.
until convergence. Moreover, creating a larger
synthetic dataset with greater variation of text,
fonts and augmentations (e.g. additional scan-
ning augmentations or simulating non-standard or-
thographies), could improve the results further.

As this study focuses on the text recognition
step of the OCR pipeline and compares three mod-
els, future research should explore additional OCR
components and models. E.g. examining the ef-
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Transkribus Tesseract TrOCR
Error ne nm nc Error ne nm nc Error ne nm nc

‘’ � ‘.’ 12 – – ‘ü’� ‘i’ 1 2 2 ‘ü’� ‘ï’ 2 2 2
‘ø’�‘e’ 4 5 13 ‘ü’� ‘u’ 1 2 2 ‘’ � ‘,’ 1 – –
‘’ � ‘,’ 2 – – ‘t’� ‘f’ 1 1 220 ‘t’ � ‘l’ 1 2 220

‘ü’�‘u’ 2 2 2 ‘n’�‘m’ 1 1 164 ‘te’�‘s’ 1 2 28
‘’ �‘k’ 1 – – ‘l’ � ‘’ 1 1 169

‘ø’�‘o’ 1 5 13 ‘o’�‘n’ 1 1 149
‘c’� ‘’ 1 1 23 ‘m’�‘n’ 1 1 69

‘c’ �‘e’ 1 1 23
‘-’ �‘–’ 1 1 18
‘N’ �‘ž’ 1 1 9
‘=’�‘2’ 1 1 4
‘x’�‘s’ 1 1 2

‘a’�‘b’: model transcribed “a” as “b” ne: Error count
‘a’� ‘’ : model incorrectly deleted “a” nm: Misses of the character left of �
‘’ �‘b’: model incorrectly inserted “b” nc: Occurrences of the character left of �

Table 7: Top ten most common errors on the OOD Giellatekno test data. Transkribus, Tesseract and
TrOCR refers to the best performing model on the validation set for each model type.

fect of different line segmentation models and as-
sessing if performance can be improved by fine-
tuning the line segmentation or using end-to-end
models. Additionally, extending the range of mod-
els examined — to include tools such as PyLaia
(Puigcerver, 2017; Tarride et al., 2024) (which
is part of Transkribus’ pipeline), Loghi (van Ko-
ert et al., 2024), GOT-OCR (Wei et al., 2024)
or larger TrOCR models — could yield improve-
ments. Lastly, including post processing, e.g. with
tools from GiellaLT (Pirinen et al., 2023), could
improve OCR quality.
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