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Abstract

We present VLG-BERT, a novel LLM model
conceived to improve language meaning en-
coding. VLG-BERT provides deeper insights
about meaning encoding in Large Language
Models (LLMs) by focusing on linguistic and
real-world semantics. It uses syntactic depen-
dencies as a form of ground truth to supervise
the learning process of word representations.
VLG-BERT incorporates visual latent repre-
sentations from pre-trained vision models and
their corresponding labels. A vocabulary of
10k tokens corresponding to so-called concrete
words is built by extending the set of ImageNet
labels. The extension is based on synonyms,
hyponyms, and hypernyms from WordNet. A
lookup table for this vocabulary is then used to
initialize the embedding matrix during training,
rather than random initialization. This multi-
modal grounding provides a stronger semantic
foundation for encoding the meaning of words.
Its architecture aligns seamlessly with founda-
tional theories from across the cognitive sci-
ences. The integration of visual and linguistic
grounding makes VLG-BERT consistent with
many cognitive theories. Our approach con-
tributes to the ongoing effort to create mod-
els that bridge the gap between language and
vision, making them more aligned with how
humans understand and interpret the world. Ex-
periments on text classification have shown ex-
cellent results compared to BERT Base.

1 Introduction

The growing need for interpretability and ground-
ing in Large Language Models (LLMs) is driven
by their increasing use in critical and diverse appli-
cations, as well as ethical, practical, and technical
challenges. LLMs assist in diagnosing diseases and
generating treatment plans. They are also used for
contract analysis and legal reasoning. They person-
alize the learning experience for students. Despite
their outstanding performance in many downstream
tasks, LLMs often produce plausible but factually

incorrect outputs, referred to as hallucination. This
behavior results from their reliance on patterns in
training data rather than true semantic understand-
ing. LLMs must provide explainable insights about
their black-boxes. Their decisions must meet legal
and ethical standards. Therefore, interpretability
allows users to trace the reasoning or data sources
behind a model’s outputs, providing accountabil-
ity. The integration of visual real-world data and
domain knowledge into LLMs, could be good lead
to anchor their responses to verifiable facts. Text-
based LLMs have made significant advancements
in natural language processing. LLMs two fun-
damental learning policies are next-word gener-
ation and bidirectional representation. The first
approach is used for text generation, by predicting
the next word based on prior context. The second
approach focuses on understanding text by predict-
ing masked words using both left and right context.
However, these models have notable limitations
when it comes to representing meaning, particularly
in relation to real-world semantics. While LLMs
excel at capturing contextual relationships between
words, they do not inherently ground meaning in
the real-world, unlike humans who learn language
through sensory and perceptual experiences. In
this paper, we introduce VLG-BERT, a multimodal
model which combines syntactic knowledge and
visual grounding to improve word representation
learning. It extends our recent modal capabilities
to incorporate real-world semantics. Unlike tradi-
tional models that learn embeddings solely from
textual space, VLG-BERT uses latent representa-
tions of real-world concepts to learn embeddings.
Latent representations are extracted from the Vi-
sion Transformer (ViT) trained on the ImageNet
dataset. VLG-BERT aims to go beyond the purely
textual space as the only source of words represen-
tation learning, by involving the real-world seman-
tics in the learning process. This grounding bridges
the gap between vision and language, allowing the
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model to process and encode richer semantic infor-
mation. It is also particularly useful for multimodal
downstream tasks. VLG-BERT is also designed to
inject syntactic knowledge into the attention mech-
anism using augmented Lagrange multipliers. The
model employs syntactic dependencies as a form
of ground truth to supervise the learning process of
word representation, thereby ensuring that syntactic
structure exerts an influence on the model’s word
representations. The application of augmented La-
grangian optimization imposes constraints on the
attention mechanism. It makes the learning of syn-
tactic relationships easier. This approach involves
the customization of the prediction layer of the
standard BERT architecture. The objective is to
predict an adjacency matrix that encodes words’
syntactic relationships rather than masked tokens.
VLG-BERT merges a bottom-up, data-driven ap-
proach with a top-down, rule-driven approach. Fur-
thermore, VLG-BERT brings clear insights about
the interpretability of transformer-based models

2 Related work

Transformer models like BERT and its variants
have paved the way for great advancements in
NLP. These models are primarily geared towards
modeling the semantics of language. They’ve re-
sulted in tremendous performance in many differ-
ent fields(Devlin et al., 2019)(Liu et al., 2019)(Lan
et al., 2020)(Sanh et al., 2020)(He et al., 2021).
The scientific community developed new versions
of BERT as a consequence of the inaccurate re-
sults in some downstream tasks and appraisal of the
linguistic properties of the natural language(Htut
et al., 2019)(Wiegreffe and Pinter, 2019)(Clark
et al., 2019). Some of the proposed models aim to
inject linguistic knowledge into transformer mod-
els, while others try to ground language via visual
data. Syntactic connections between words are
not just what lends language its richness, but are
also what make meaning beyond mere word corre-
lations(Mechouma et al., 2022)(Bai et al., 2021).
One way of adding syntactic knowledge to trans-
former models is Syntax-BERT. It is an extension
of the original BERT that introduces explicit syntac-
tic information through syntax trees and instructs
the self-attentional system in relation to linguis-
tic dependencies such as parent, child, and sibling.
This strategy preserves BERT’s pre-trained exper-
tise and combines it with structure and efficiency
to help it better excel in NLP scenarios when syn-

tactic clarity is required or data is finite. Syntax-
BERT is a system that allows syntax trees to be in-
cluded during fine-tuning without the need to train
from scratch(Bai et al., 2021)(Sundararaman et al.,
2019). The Syntactic Knowledge via Graph Atten-
tion with BERT is another proposed model which
adopts syntactic knowledge injection into trans-
former models. SGB is a machine translation dedi-
cated model. It explicitly uses the syntactic depen-
dency knowledge via Graph Attention Networks
(GAT) and BERT-based encoders. The GAT treats
syntactic structures as graphs, enhancing token rep-
resentations with dependency relations. It also
combines them with BERT outputs through two
methods. The first one is called SGBC. It concate-
nates BERT and GAT outputs for encoder-decoder
attention. The second one is SGBD (decoder-
guided syntax). This approach leaverage a trans-
lation fluency(Dai et al., 2023). In addition to the
syntax-aware model in transformer models, vision-
oriented models have emerged. One of these mod-
els has been developed with the objective of ground-
ing natural language in visual data is VisualBERT.
It is based on the architecture of BERT. Visual-
BERT uses image-text alignment to ground lan-
guage in visual contexts. It employs cross-attention
layers to establish a connection between the vi-
sual and textual modalities. Visual information
is conveyed through a convolutional neural net-
work (CNN) to extract visual embeddings, which
are subsequently integrated with the textual em-
beddings. The cross-modal attention layers grant
bidirectional influence between text and image rep-
resentations during the encoding process. Visual-
BERT employs a fusion strategy that unites textual
tokens and visual features within a unified trans-
former(Li et al., 2019). LXMERT, which stands
for Learning Cross-Modality Encoder Representa-
tions from Transformers is a multimodal model. It
processes both visual and textual data. It uses a
cross-attention mechanism to merge the image and
text features. LXMERT architecture is based on
two-stream transformer. The first stream processes
the visual features. It consists of image regions
such as objects and objects parts encoded by a pre-
trained Faster R-CNN model. The encoded visual
features are then fed into LXMERT to learn con-
textual relationships between image regions. The
second stream processes textual features. It com-
prises BERT’s word embeddings. Both streams
interact with each other through Cross-Attention
Encoder. This interaction enables the model to
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learn relationships between the image and its corre-
sponding textual description(Li et al., 2019). The
list of multimodal models is too long to fit within
the limited number of pages of this paper. With-
out dissecting technical details, we mention among
others, UNITER, ImageBERT, and Multimodal-
BERT, which are Transformer-based models. They
are conceived to connect visual and textual data in
order to improve the performance in multimodal
tasks(Rahman et al., 2020)(Chen et al., 2020)(Qi
et al., 2020). UNITER, UNiversal Image-Text
Representation learns joint embeddings by pre-
training on diverse image-text datasets, enabling
tasks like image-text retrieval and visual question
answering(Chen et al., 2020). Similarly, Image-
BERT depends on a shared embedding space and
cross-modal interaction to align text and images(Qi
et al., 2020). In turn, Multimodal-BERT customize
BERT’s architecture to handle multimodal inputs.
It is particularly dedicated to applications like med-
ical image and text classification(Rahman et al.,
2020). The research community is moving toward
the integration of visual and textual data to encode
the meaning of language. These models offer an ex-
cellent way of grounding the language by aligning
visual information, such as images, with textual
context. In the next sections, we present VLG-
BERT, a multimodal model which combines syn-
tactic knowledge and visual grounding to improve
word representation learning.

3 Two Categories of Words

The present work assumes two categories of words.
The first is called concrete words, while the second
is called abstract words. The former refers to all
the words that have a physical referent in the real
world. The latter refers to all words that do not
have a physical referent in the real world. From
a cognitive sciences point of view, the term real-
world here differs from Lakoff’s definition(Lakoff,
1993). It is more in line with the definitions of
Materialism and Empirical Realism.

4 Visual Grounding

Most LLMs use a random initialization to learn
word embeddings. We propose a human-like model
by initializing the embeddings matrix of words with
their corresponding latent representation from the
real world. In other words, the visual grounding
in VLG-BERT consists of using the latent repre-
sentations extracted from the Vision Transformer

ViT. The latent representations are learned by ViT
based on the ImageNet dataset, which contains
1000 labels or classes corresponding to real ob-
jects(Dosovitskiy et al., 2021) (Deng et al., 2009).
We extend the vocabulary by building a lookup
table that corresponds to our embeddings matrix,
using WordNet. The vocabulary extension uses syn-
onymy, hyponymy and hypernymy relations(Miller,
1995). Semantically similar words are extended us-
ing WordNet semantic relations. Hyponyms are
more specific terms, while hypernyms are general
terms or categories. The semantic similarity of hy-
ponyms should be more similar to each other than
to their hypernyms. This can be done by incorpo-
rating hierarchical WordNet semantic relations. In
other words, several path-based similarity measures
can be used to compute the shortest path between
two words in the hypernym-hyponym tree. The
shorter the path between the two words, the more
semantically related they are. Finally, the lookup
table is implemented using JSON, where keys are
the token IDs and values are the latent representa-
tions before and after regularization. The second
category of words which have no referent in the
real world, are randomly initialized as in traditional
LLMs.

The metric that measures the relationship be-
tween a word w and its hyponym whypo, and its
hypernym whyper is given by :

R(w,whyp, whyper) = λ ·max
(
0,PathDist(w,whyper)−

PathDist(w,whypo) + δ
)
.

(1)

where :

• λ is the regularization strength parameter, it
controls the influence of the term.

• σ is a small margin to avoid zero and trivial
solutions.

The intuition behind this regularization is to pe-
nalize the model when the path distance between a
word w and its hypernym whyper is smaller than
the path distance between the word and its hy-
ponym whypo. Using the above metric, we compute
hyponyms and hypernyms latent representations.
Thus, we built a vocabulary of 10 000 concrete
words. It takes the form of a lookup table. It is
used to initialize the embeddings. If the word is
concrete and does not exist in the lookup table, we
initialize it randomly.
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5 Linguistic Grounding

VLG-BERT is a syntax-aware model. It is designed
to inject syntactic knowledge into the attention
mechanism. It uses augmented Lagrange multi-
pliers as a constraint based convex optimization
method. VLG-BERT deploys syntactic dependen-
cies as a ground truth to supervise the learning
process. The syntactic relations between the sen-
tence words are encoded in an adjacency matrix.
VLG-BERT is forced to predict a matrix that ap-
proximates the adjacency matrix that encodes the
syntactic relations between words. The use of the
augmented Lagrangian optimization method is an
innovative way of integrating constraints into at-
tention mechanisms. The prediction layer of the
standard BERT architecture is customized to pre-
dict the syntactic matrix.

6 Conceptual Model

The model is based on Transformer architectures
and incorporates syntactic dependencies through
the use of an adjacency matrix, M . M is used
to encode the syntactic dependencies. During the
training phase, it is employed as the ground truth to
converge toward. The positional encoding is kept
as in BERT base, while the next sentence prediction
is not integrated.

6.1 Input Layer

The input comprises word embeddings, represented
as a matrix E ∈ Rn×d, where n is the number of
words in a sentence and d is the embedding dimen-
sion. The model takes both tokens and position
embeddings as input to the Transformer layers.

6.2 Syntactic Dependencies Encoding

A binary adjacency matrix, M ∈ Rn×n, is incorpo-
rated into the model, to encode syntactic dependen-
cies, where n is the number of words in a sentence.
If word i has a direct dependency on word j, the
corresponding entry in the matrix M is set to 1,
indicating a dependency. Otherwise, the entry is
set to 0. This matrix serves as a ground truth and a
target for the model to learn during training.

6.3 Encoders Stack

The encoder stack is structured in accordance with
the architectural principles of BERT Base. The
encoder stack comprises a series of 12 Transformer
layers, 12 attention heads, 768 hidden size, 512

maximum sentence length which perform attention-
based learning over the input embeddings.

6.4 Prediction Layer

The input to the prediction layer is the output
from the last encoder layer, denoted as matrix
H ∈ Rn×d, where n is the number of words in
a sentence and d is the embedding dimension. To
generate the syntactic dependency matrix A of
shape n×n, where n is the number of words in the
input sentence. The model uses a fully connected
(dense) layer that takes the encoded word represen-
tations H and maps them to an adjacency matrix
representing the syntactic dependencies as follows.

A = softmax(H ·W ) (2)

Where : H ∈ Rn×d is the output of the encoder
stack.
W ∈ Rd×n is a learnable weight matrix of the

prediction layer.
A ∈ Rn×n is the predicted syntactic adjacency

matrix, representing the dependencies between the
tokens in the input sequence. The output values
Aij ∈ [0, 1] represent the strength of the syntactic
dependency between the words i and j. A value
close to 1 indicates a strong dependency, while a
value close to 0 indicates weak or no dependency.

6.5 Why a Softmax and not a Sigmoid ?

In our context the question ties directly into the
concepts of dependent and independent variables
in the field of probability. From a linguistic perspec-
tive, words are connected by syntactic dependen-
cies, and these dependencies usually carry seman-
tic meaning. By applying softmax, we introduce a
distributional hypothesis where words with strong
syntactic relationships have higher probabilities
compared to unrelated words, which is closer to
how humans understand the language words. With
sigmoid activation, we treat the syntactic relation-
ships between words as independent events. In
other words, word-pairs are processed in isolation.
From a computational perspective, by introducing
probability distribution, softmax squashes negative
values towards zero and brings probabilities to one
for relevant relationships, which is beneficial when
used with the Lagrangian multiplier to converge
quickly to a binary adjacency matrix. One poten-
tial downside of softmax is that it enforces mutual
exclusivity in its outputs. This could be problem-
atic because a word can have multiple syntactic
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relationships simultaneously. In our case, softmax
makes more sense than sigmoid.

6.6 Augmented Lagrangian Formulation

The augmented lagrange method represents an ex-
tension of the classical lagrange approach to op-
timization, particularly suited for handling con-
straints in problems where traditional Lagrangian
multipliers may be insufficient. In the present con-
text, the augmented lagrange framework is applied
to enforce syntactic dependencies during the learn-
ing of word representations in a Transformer-based
model. The mathematical foundation involves mod-
ifying the objective function by incorporating a
penalty term to enforce the constraint.

The choice of the Augmented Lagrangian
method is driven by the non-convex nature of the
underlying optimization problem, particularly in
the context of training deep learning models such
as Transformers. While traditional gradient de-
scent methods are effective for unconstrained op-
timization, they often encounter difficulties in sat-
isfying hard constraints, particularly in complex,
non-convex landscapes.landscapes(Fioretto et al.,
2020)(Basir and Senocak, 2023)(Wu et al., 2024).

A−M = 0 (3)

where :
A is the predicted adjacency matrix and
M is the target syntactic matrix.
The objective function is defined as

Ltask(A,M) = 1
2∥A − M∥2F . This repre-

sents the squared Frobenius norm, which quantifies
the discrepancy between the predicted and actual
syntactic matrices. The Augmented Lagrangian
introduces Lagrange multipliers λ and a penalty
parameter µ to modify this loss function, yielding:

LA(A, λ, µ) = Ltask(A,M) + λ⊤(A−M)

+
µ

2
∥A−M∥2F (4)

Where:
Ltask(A,M) is the previous defined objective

function.
λ are the Lagrange multipliers that adjust dy-

namically to enforce the constraint.
µ is a positive scalar controlling the strength of

the penalty term. It can be viewed as a form of
regularization.

6.7 Loss Function
The prediction layer’s output A is compared with
the true adjacency matrix M which contains the
actual syntactic dependencies using a task-specific
loss function. The loss can be formulated as:

Ltask(A,M) =
1

2
∥A−M∥2F (5)

Where : ∥ · ∥2F is the Frobenius norm, which
measures the difference between the predicted and
true syntactic adjacency matrices.

6.8 Lagrange Multipliers
The term λ⊤(A −M) plays a crucial role in the
enforcement of constraints during the optimization
process. In this context, the vector λ represents
the Lagrange multipliers associated with the con-
straints defined in the optimization problem. The
constraints require that the learned matrix A should
closely approximate the target adjacency matrix M ,
which encodes the syntactic dependencies between
words. The notation λ⊤(A−M) represents the dot
product between the vector λ and the matrix A−M .
The λ vector is of length n dimension. Each entry
of λ corresponds to a specific word in the sentence.
This allows for the individual weighting of the con-
straint violations associated with each word’s syn-
tactic dependencies. This configuration allows the
model to determine the extent to which each word’s
representation should be modified in accordance
with its relationship to other words within the sen-
tence, thereby reflecting its significance within the
context of the syntactic structure.

When λ is treated as importance weights of
words, the model emphasizes the syntactic influ-
ence of each word on the overall structure. This
aligns well with the goal of capturing linguistic
dependencies, as the adjustments made by λ can
reflect the importance of each word in maintaining
syntactic relationships. The gradient updates in-
fluenced by λ can help shape the learning process,
as the model adjusts the embeddings based on the
weighted contributions of each word. This can lead
to more effective embeddings that respect syntactic
constraints more closely.

6.9 Constrained Learning with Penalization
The term µ

2∥A−M∥2F serves as a penalty that in-
creases in severity when the predicted adjacency
matrix A diverges from the target adjacency ma-
trix M . This penalty discourages the model from
making predictions that contravene the syntactic
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constraints, in a manner analogous to how regulari-
sation techniques prevent overfitting by penalising
complex models. The value of µ directly influences
how strongly the constraints are enforced during
training. The value of µ exerts a direct influence on
the degree to which constraints are enforced dur-
ing the training process. A larger µ places greater
emphasis on satisfying the constraints, effectively
guiding the optimisation process towards solutions
that adhere closely to the required syntactic struc-
ture. This is analogous to a regularisation parame-
ter in traditional regularisation methods such as L2
regularisation, where a larger value results in more
stringent constraints on the model parameters.

6.10 Balancing Objective Function and
Constraint Satisfaction

By adjusting µ, it balances between minimizing the
objective function Ltask(A,M) and ensuring that
the predicted matrix A aligns with the constraints
defined by M . In this way, µ serves a dual purpose:
enhancing model performance on the primary task
while also ensuring that the learned representations
are constrained by the linguistic structure, similar
to how regularization techniques aim to improve
generalization.

6.11 Optimization
1. Loss Computing : at the start of each training

iteration, compute the task loss
1

2
∥A−M∥2F (6)

2. Constraint Violation Computing : determine
the constraint violations function as

g(A) = A−M (7)

3. Lagrange Multipliers Update : the Lagrange
multipliers λ are updated to measure the cur-
rent constraint violations

λ← λ+ µ ·
(

1

n

n∑

i=1

g(A)ij

)
(8)

By applying the softmax function to the sum
of the constraint violations, it effectively nor-
malizes these constraint violations across the
word embedding space.

4. Total Loss Computing : the total loss function
is then expressed as

LA(A, λ, µ) = Ltask(A,M) + λ⊤(A−M)+

+
µ

2
∥A−M∥2F (9)

5. Total Gradient Computing : compute the gra-
dient of the total loss with respect to A

∇ALA(A, λ, µ) = ∇ALtask(A,M)+

∇A(λ
⊤(A−M)) +∇A

(
µ∥A−M∥2F

)

(10)

6. Gradient Descent Optimization : update A
using the computed gradients

A← A− η∇AL(A, λ, µ) (11)

where η is the learning rate, controlling how
much A is updated in each iteration.

7. Backpropagation Computing : the gradients
∇ALA(A, λ, µ) are computed based on the
loss with respect to the output A. These gra-
dients will indicate how changes in A affect
the overall loss, providing information about
how to adjust the weights in all encoder layers.
Using the chain rule, the gradients of the loss
with respect to the encoder weights can be
calculated by tracing back through the layers
of the model.

∇LA = ∇ALA +∇HLA ·W T +∇WqLA

+∇Wk
LA +∇WvLA (12)

Where : ∇ALA the gradient of the loss func-
tion with respect to the output matrix A.

∇HLA is the gradient of the loss function
with respect to the hidden states H .

W T is the transposed weight matrix connect-
ing H to the output matrix A.

∇Wq is the gradient of the loss LA with re-
spect to the weights Wq of the query projec-
tion in the self attention mechanism of the
encoder.

∇Wk is the gradient of the loss LA with re-
spect to the weights Wk of the key projection
in the self attention mechanism of the encoder.

∇Wv is the gradient of the loss LA with re-
spect to the weights Wv of the values projec-
tion in the self attention mechanism of the
encoder.
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7 VLG-BERT under the Spotlight of
Cognitive Sciences

LLMs learn the probability distribution of se-
quences of words in natural language. They are
designed based on the idea of maximizing the prob-
ability of certain words under certain conditions.
This can be the next word in a sequence, or a
masked word. In an auto-regressive model, given
a sequence of words w1, w2, . . . , wn−1, the model
learns to predict the probability distribution for the
next word wn. Unlike the auto-regressive model,
bidirectional models learn to predict a word by con-
ditioning on both the preceding and succeeding
words in the sequence. Given a sequence of words
w1, w2, . . . , wn, the model predicts a representa-
tion for each word by conditioning on both the left
and right context. The LLMs community consid-
ers next word prediction models to be text gen-
eration models, while they consider bidirectional
encoding models to be text understanding models.
The integration of different sensory modalities is
necessary to humans to perceive and understand
the world. The architecture of VLG-BERT can be
seen as a computational model that mimics humans
by combining textual and visual data for a bet-
ter and deeper encoding of the language meaning.
VLG-BERT aligns with many theories like Sym-
bol Grounding. Symbol Grounding refers to the
association of the abstract symbols like words with
real-world objects. In cognitive science, ground-
ing is fundamental to how humans link linguis-
tic symbols to sensory experiences like seeing an
apple. In Embodied Cognition theory, the mind
is considered to be rooted in the body’s interac-
tions with the world. This implies that understand-
ing comes from both perceiving and acting in the
world. VLG-BERT aligns with the idea of Embod-
ied Cognition by grounding language in visual data.
The representations in VLG-BERT approximate
Rosch Prototypes theory (Rosch, 1978) by cluster-
ing features from both latent visual features and
linguistic domains, improving generalization for
concept categories. VLG-BERT aligns with Dual
Coding theory (Paivio, 1986) that combines verbal
and imaginal codes that reinforce the comprehen-
sion and the retrieval of concrete concepts. By
combining visual signs and linguistic signs, VLG-
BERT aligns with Peirce’s triadic model of signi-
fication, offering a robust semiotic framework for
word meaning. The visual and linguistic signs can
be considered as iconic and symbolic representa-

mens while the learned embeddings of words like
Interpretants (Eco, 1984).

8 Architecture

The proposed architecture consists of two intercon-
nected components: The BERT Base and a cus-
tomized prediction Layer. The former is BERT
Base follows the standard Transformer architec-
ture, which operates without any constraints and
leverages gradient descent optimization and the lat-
ter is the modified prediction layer that introduces
a novel constraint-based optimization mechanism
using Augmented Lagrangian Optimization. At the
input layer, lookup table is used to map visual la-
tent representation to corresponding tokens of the
sentence to initialize the embedding matrix.

Figure 1: Proposed Architecture

9 Experiments

In order to evaluate and test VLG-BERT, the same
datasets already used by BERT were employed:
the English Wikipedia dump and BookCorpus. The
Wikipedia dump yielded 16 GB of plain text. In
turn, BookCorpus provides access to a substan-
tial corpus of over 11,000 free, unpublished books
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sourced from the internet. To ensure a meaning-
ful comparison with BERT and its derived models,
we used a high performance hardware configura-
tion. The training was conducted on a commer-
cial cloud platform utilizing 8 GPUs, 128 GB of
RAM and 32 vCPUs Cores. For model evalua-
tion, we concentrated on a text classification task.
To evaluate the generated embedding from VLG-
BERT, the AG News dataset is used to focus on cat-
egorizing news articles into predefined categories.
Hyperparameters are defined as follos λ for equa-
tion 1 is 0.01,µ for equation 4 is 0.001, Learning
Rate: 2×10−5, Train Batch Size: 16, Evaluation
Batch Size: 8, Seed: 42, Optimizer: Adam with
β1 = 0.9, β2 = 0.999, and ϵ = 1×10−8, Number
of Epochs: 30. While BERT-base took around 96
hours to train on 16 TPUs, we notice that VLG-
BERT, on the other hand, took a longer training
time of 122 hours. This is expected because the
hardware configuration in that case was less power-
ful than that of BERT-base. This highlights the effi-
ciency of the learned embeddings with VLG-BERT.
It confirms that the model converged effectively,
demonstrating the benefits of visual grounding and
the use of constraint-based optimization with an
augmented Lagrangian to reduce training time.

Metric BERT Base VLG-BERT
Precision (Class 0) 0.9539 0.9815
Recall (Class 0) 0.9584 0.9833
F1-Score (Class 0) 0.9562 0.9784
Precision (Class 1) 0.9884 0.9903
Recall (Class 1) 0.9879 0.9901
F1-Score (Class 1) 0.9882 0.9912
Precision (Class 2) 0.9251 0.9602
Recall (Class 2) 0.9095 0.9513
F1-Score (Class 2) 0.9172 0.9526
Precision (Class 3) 0.9127 0.9482
Recall (Class 3) 0.9242 0.9458
F1-Score (Class 3) 0.9184 0.9437
Accuracy 0.9450 0.9756

Table 1: Performance of the three model on AGNews
Dataset

The comparison of the two models on the AG-
News dataset shows that VLG-BERT outperforms
BERT Base in all metrics. VLG-BERT scored the
highest accuracy (97.56%) and F1-Scores for all
classes. It demonstrates notable improvements
in precision, recall, and F1-Scores. Compared
to SCABERT, which benefits from only syntactic

grounding.

10 Conclusion

VLG-BERT has valuable contributions from both
computer science and cognitive science standpoints.
Computer science, with regard to the advance of
multimodal learning, it efficiently combines visual
and linguistic data that could lead to richer, more
robust representations of words. The integration of
visual grounding with textual information enables
this model to handle complex, real-world tasks
more efficiently. Such a setup from a cognitive sci-
ence viewpoint is in consonance with VLG-BERT,
as it grounds the words in the physical world, in-
corporating syntactic structures to mirror compu-
tationally human-like understanding of concepts.
The model supports the perceptual gap between
language and vision, representing and leveraging
visual and linguistic inputs cohesively to interpret
the world, much like humans. This will be further
demonstrated by future comparisons with models
like VisualBERT, LXMERT, and CLIP, especially
on multimodal tasks such as image captioning and
visual question answering. These will serve to
underline its ability to integrate visual, syntactic,
and semantic knowledge to provide a deeper under-
standing of multimodal interactions.
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