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Abstract

Causal reasoning is a fundamental property of
human and machine intelligence. While large
language models (LLMs) excel in many natural
language tasks, their ability to infer causal re-
lationships beyond memorized associations is
debated. This study systematically evaluates re-
cent LLMs’ causal reasoning across three levels
of Pearl’s Ladder of Causation—associational,
interventional, and counterfactual—as well as
commonsensical, anti-commonsensical, and
nonsensical causal structures using the CLAD-
DER dataset. We further explore the effec-
tiveness of prompting techniques, including
chain of thought (COT), self-consistency (SC),
and causal chain of thought (CAUSALCOT),
in enhancing causal reasoning, and propose
two new techniques causal tree of thoughts
(CAUSALTOT) and causal program of thoughts
(CAUSALPOT). While larger models tend to
outperform smaller ones and are generally
more robust against perturbations, our results
indicate that all tested LLMs still have difficul-
ties, especially with counterfactual reasoning.
However, our CAUSALTOT and CAUSALPOT
significantly improve performance over exist-
ing prompting techniques, suggesting that hy-
brid approaches combining LLMs with formal
reasoning frameworks can mitigate these limita-
tions. Our findings contribute to understanding
LLMs’ reasoning capacities and outline promis-
ing strategies for improving their ability to rea-
son causally as humans would. We release our
code and data1.

1 Introduction

Causal reasoning, the ability to infer cause-and-
effect relationships, is a fundamental property of
intelligence (Jin et al., 2023) in humans and ma-
chines alike. While LLMs have achieved signifi-
cant progress in natural language processing (Rad-
ford et al., 2019; Zhao et al., 2024), their ability to

1Our code and data can be found here: https://github.
com/rahulbshrestha/causal-reasoning

perform genuine causal reasoning is debated. Ex-
isting studies indicate that models perform poorly
when facing complex causal structures (Romanou
et al., 2023), engaging in counterfactual reasoning
(Wu et al., 2024b), or applying formal causal rea-
soning when commonsense rules do not apply (Jin
et al., 2023). Some findings suggest that LLMs
act more like “causal parrots”, simply reciting
causal knowledge from their training data rather
than engaging in true causal inference (Zečević
et al., 2023). Understanding and improving LLMs’
causal reasoning capabilities remains critical for
ensuring reliable LLM-supported decision-making,
particularly in high-stakes domains such as health-
care, economics, or public policy.

This study aims to bridge the gap by systemati-
cally evaluating LLMs on causal reasoning tasks,
addressing the following research questions:

1. How well do LLMs perform in different dis-
ciplines of causal reasoning? We evaluate
a diverse set of models on causal reasoning
tasks from the CLADDER dataset (Jin et al.,
2023) spanning Pearl and Mackenzie’s (2018)
Ladder of Causation, including associational,
interventional, and counterfactual reasoning.
The latter two in particular constitute essential
capabilities of humans and machines when
planning and interacting with their environ-
ment.

2. How well do LLMs generalize to causal
reasoning tasks where they cannot rely on
learned commonsense knowledge? We sys-
tematically modify causal problems with anti-
commonsensical and nonsensical perturba-
tions and test LLMs’ performance. This ex-
poses how much LLMs rely on learned world
knowledge when facing unknown causal rea-
soning challenges.

3. Can prompting techniques and external
tools enhance LLMs’ causal reasoning?
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We evaluate zero-shot chain of thought (Ko-
jima et al., 2022), causal chain of thought
(Jin et al., 2023), and chain of thought with
self-consistency (Wang et al., 2023). Finally,
we introduce new causal variants of tree of
thoughts (Yao et al., 2023) and program of
thoughts (Chen et al., 2023) with an integra-
tion of the DoWhy causal inference library
(Sharma and Kiciman, 2020) and demonstrate
how these can elevate causal reasoning perfor-
mance.

Our main contributions include (1) a comprehen-
sive evaluation of recent LLMs’ causal reasoning
abilities, updating previous work, (2) an assessment
of causal reasoning improvements coming through
prompting techniques, and (3) two new prompt-
ing techniques CAUSALTOT and CAUSALPOT to
enhance LLMs’ causal reasoning over previous
baselines, borrowing ideas from formal causal rea-
soning techniques accessible to humans.

2 Background and Related Work

2.1 Ladder of Causation

The Ladder of Causation, introduced by Pearl and
Mackenzie’s (2018), structures causality into three
levels, often referred to as a ladder with three rungs:

Rung 1 (Association): The lowest rung repre-
sents statistical associations and seeks to answer
the question “What?” This level involves identi-
fying patterns or correlations in the data without
implying causation. For example, “What is the
probability of lung cancer among smokers?”

Rung 2 (Intervention): This rung focuses on
the effects of interventions, addressing the question
“What if?” It examines the impact of actively alter-
ing a variable and observing its influence on other
variables. For example, “If I stop smoking, will my
risk of lung cancer decrease?”

Rung 3 (Counterfactual): This highest rung
involves counterfactual reasoning, which answers
the questions “Why?” or “What if I had acted
differently?” This level entails imagining hypo-
thetical scenarios based on observed data. For in-
stance, “Given that I have lung cancer, if I had
never smoked, would I still have developed the
disease?”

2.2 Causal Reasoning with LLMs

LLMs have been proposed for use in several causal
natural language processing (NLP) tasks, such as

causal discovery (e.g., Kıcıman et al., 2024; Long
et al., 2024), causal effect estimation (e.g., Jin et al.,
2023), and counterfactual reasoning (e.g., Lewis
and Mitchell, 2024). Liu et al. (2025) survey ex-
isting work on the interplay between LLMs and
causal inference, separating approaches that use
causal inference frameworks for LLMs and ap-
proaches that use LLMs for causal tasks. Similarly,
Yu et al. (2025) provide a comprehensive overview
of previous work using LLMs for causal reasoning,
dividing into methods that use LLMs as the main
reasoning engine and methods that use LLMs only
as a helper to traditional methods.

While these works often find that LLMs out-
perform existing algorithms in these tasks, LLMs
still seem to have difficulties with some more chal-
lenging tasks. Counterfactual reasoning on hypo-
thetical and unusual causal structures in particular
presents a challenge to LLMs, showing a degrada-
tion of reasoning performance compared to non-
counterfactual settings (Lewis and Mitchell, 2024;
Li et al., 2022; Wu et al., 2024c). Li et al. (2022)
find that counterfactual reasoning of smaller lan-
guage models seems to be largely driven by simple
lexical triggers. They observe that only their largest
model tested, GPT-3, was able to not only override
real-world knowledge in counterfactual scenarios
but also show somewhat greater sensitivity to more
detailed linguistic cues.

Zečević et al. (2023) argue that LLMs merely
behave like “causal parrots” simply reciting causal
knowledge from their training data. This indicates
that LLMs reason in ways different from what
trained humans would do. Chi et al. (2024) dis-
cuss how autoregressive transformer-based LLMs
are not inherently causal. LLMs are able to imi-
tate causal reasoning only as long as similar causal
knowledge is available in their training data (Zhang
et al., 2023) or relevant domain-specific context and
causal knowledge is provided (Cai et al., 2024).

2.3 Causal Reasoning Benchmarks

Multiple LLM-specific causal reasoning bench-
marks and evaluation frameworks have emerged.
Some notable benchmarks include CLADDER (Jin
et al., 2023), CORR2CAUSE (Jin et al., 2024),
CAUSALBENCH (Zhou et al., 2024; Wang, 2024),
CRAB (Romanou et al., 2023), IfQA (Yu et al.,
2023), and CRASS (Frohberg and Binder, 2022).
For a comprehensive list of additional benchmarks,
readers may refer to Liu et al. (2025).
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2.4 Methodological Advances

While many works focus on measuring the causal
reasoning abilities of LLMs, some proposals were
made for how to turn LLMs into better causal rea-
soners. Wu et al. (2024a) explore how causality
can improve LLMs at all stages of their lifecycle,
looking at token embeddings, training, alignment,
inference, and evaluation. Just like with other NLP
tasks, fine-tuning the LLMs may improve their
accuracy also on causal tasks, as shown by Cai
et al. (2024) for causal discovery. Liu et al. (2023)
even found that Code-LLMs seem to acquire better
causal reasoning abilities than text-only LLMs and
tend to be robust against format perturbations.

More advanced prompting techniques such as
chain of thought (Wei et al., 2022b) were shown to
improve reasoning performance of LLMs, although
not with all LLMs and on all reasoning tasks (Wang
and Shen, 2024; Yu et al., 2025). Jin et al. (2023)
introduce a new causal variant of chain of thought
called CAUSALCOT. On CLADDER, they demon-
strate how a GPT-4 LLM achieves 62.03% accuracy
without CAUSALCOT and 70.40% accuracy with
CAUSALCOT.

Gendron et al. (2024) propose a new counterfac-
tual causal inference framework (Counterfactual-
CI) for causal discovery reaching an accuracy
of 60.53% on CLADDER with a GPT-4o LLM.
CARE-CA (Ashwani et al., 2024) attempts to im-
prove LLM causal reasoning by enriching prompts
with relevant causal concepts from a knowledge
graph and counterfactual insights. The authors
demonstrate CARE-CA’s abilities on CLADDER,
reporting a 63.0% accuracy with a T5 LLM, versus
a 60.0% accuracy with T5 alone. Similar to CARE-
CA, the G²-Reasoner (Chi et al., 2024) retrieves
related general knowledge from a vector database
and incorporates it in a goal-oriented prompt to
guide the LLM in the reasoning process. While
the authors do not evaluate the G²-Reasoner on
CLADDER, they report performance improvements
similar to CARE-CA on other datasets.

Yu et al. (2025) use Python scripts to solve 100
causal questions from CLADDER, achieving an ac-
curacy of 76%. However, their method does not
leverage the full potential of external causal infer-
ence tools, merely leveraging Python as a calculator
for relatively simple computations. Their approach
led to only a marginal improvement compared to
the 75% accuracy achieved with CAUSALCOT. In
contrast, our work integrates the external causal

inference library DoWhy (Sharma and Kiciman,
2020) and evaluates performance on a larger, bal-
anced dataset from CLADDER.

3 Methods

3.1 Dataset
Similar to several previous works, our experiments
are based on CLADDER (Jin et al., 2023), a dataset
that tests formal causal reasoning capabilities. The
causal questions in the dataset are represented in
natural language, yet the questions are grounded in
symbolic logic and ground truth answers derived
using an oracle causal inference engine (Pearl and
Mackenzie, 2018).

Choice of CLADDER Arguably, formal causal
reasoning, and CLADDER in particular, make an
ideal test bench for LLMs’ causal reasoning abili-
ties. The necessity to formalize multi-step thought
processes makes transparent whether the LLM
identifies true causation rather than just correla-
tions. Further, the symbolic grounding offers much
potential to comprehensively evaluate the integra-
tion of external tools and reasoning frameworks. A
review of causal reasoning benchmarks by Yang
et al. (2024) referred to CLADDER as “the most
advanced causal benchmark available currently, as
it holistically tests the LLM’s ability to synthesize
several different components into a complex causal
model, and then interprets the effects of interven-
tions or changes within that model”. CLADDER ad-
dresses key design issues identified in other bench-
marks by (1) covering all three rungs of the Ladder
of Causation, including interventional and counter-
factual questions, (2) requiring multi-step causal
reasoning rather than simple one-step answers, and
(3) testing for reasoning rather than retrieval by
including perturbed versions of queries.

Dataset Structure CLADDER questions test the
ability to correctly plan and execute the estima-
tion of a causal effect. Each question has a bi-
nary answer: yes or no. Questions cover all three
rungs of the Ladder of Causation, span across
nine distinct query types (e.g., marginal proba-
bility or average treatment effect), and represent
one of three degrees of alignment with common-
sense knowledge, namely commonsensical, anti-
commonsensical, and nonsensical.

Sampling and Perturbations For our experi-
ments, we sampled 1,000 commonsensical ques-
tions from CLADDER, maintaining a distribution
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of question types similar to the original dataset (see
Appendix A for details on the distribution). We
excluded questions with the “backdoor adjustment”
query type, as they do not require formal calcula-
tions and multi-step reasoning. Unfortunately, the
publicly available CLADDER dataset contains the
anti-commonsensical and nonsensical counterparts
to only some but not all of the commonsensical
questions in our sample. Therefore, we created
new anti-commonsensical and nonsensical pertur-
bations of the 1,000 sampled commonsensical ques-
tions using GPT-4o:

• Anti-commonsensical perturbations: Given
a causal relationship X → Y (e.g., smok-
ing → lung cancer), we replaced Y with a
randomly selected noun unrelated to X (e.g.,
smoking → ice cream sales).

• Nonsensical perturbations: Given a causal
relationship X → Y (e.g., smoking → lung
cancer), both X and Y were replaced with
randomly-generated four-letter words (e.g.,
xacx → msad).

The CLADDER paper applied similar perturba-
tions, including anti-commonsensical and nonsen-
sical variants, but used a fixed set of words for
substitutions. In contrast, we let GPT-4o generate
random words, introducing greater variability in
the perturbations. To ensure grammatical and logi-
cal soundness, we manually verified all generated
perturbations.

Details about the exact prompt used for the per-
turbations can be found in Appendix B. An exam-
ple image illustrating the two perturbations can be
found in Figure 6 in the Appendix.

3.2 Models

We list the models used for our experiments in
Table 1. Our selection includes a diverse range
of open and closed-weight models with different
parameter counts. All models were tested with a
temperature of 1.0 to create sufficient variance in
the answers, especially for generating diverse alter-
native thoughts with some of the tested prompting
methods2.

2We ran tests with GPT-3.5-Turbo and observed only minor
accuracy differences when changing the temperature (average
overall accuracy was 56.6% with temperature 0.0 vs. 57.5%
with temperature 1.0). The CLADDER dataset reports an
accuracy of 52.18% for GPT-3.5-Turbo.

Model Version
Mistral 7B 2024-06-01
WizardLM 2 8x22B 2024-04-16
Llama 3.1 8BB 2024-07-23
Llama 3.1 70B 2024-07-23
Llama 3.1 Nemotron 70B 2024-10-16
Claude 3.5 Haiku 2024-10-22
Claude 3.5 Sonnet 2024-10-22
GPT-3.5-Turbo 2023-11-06
GPT-4o mini 2024-07-18
GPT-4o 2024-08-06
o3-mini 2025-01-31
DeepSeek V3 2025-01-03
DeepSeek R1 2025-01-22

Table 1: LLMs evaluated in this study.

We performed a memorization test to check if the
dataset was part of the models’ training data, simi-
lar to the one performed by Kıcıman et al. (2024).
We found no evidence of the LLMs having memo-
rized CLADDER questions. The prompts used for
this test can be found in Appendix C.

3.3 Prompting Techniques

We test various prompting techniques to see if they
improve the causal reasoning abilities of LLMs.

Input-Output Prompting In this simple base-
line approach, the LLM is prompted with a ques-
tion and an instruction to answer with a ’yes’ or
’no’ in the end.

Zero-shot Chain of Thought In this approach
(CoT), the prompt “Let’s think step by step” (Ko-
jima et al., 2022) is appended to each question.

Causal Chain of Thought We use the causal
chain of thought (CAUSALCOT) prompt from Jin
et al. (2023). CAUSALCOT is a six-step instruc-
tion prompt for solving formal causal inference
problems. The exact prompt can be found in Ap-
pendix B.

Causal Chain of Thought with Self-Consistency
We implement self-consistency (SC) decoding
(Wang et al., 2023) with the CAUSALCOT prompt.
With SC, multiple CAUSALCOT reasoning chains
are sampled from the LLM and their majority an-
swer is selected as the final answer. We evaluate
SC with 3, 5, and 10 parallel reasoning chains (SC-
{3,5,10}).
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….

{Question} + “Generate 3 possible 
solutions for Step 1 of Causal 
Chain of Thought: Extract the 
causal graph ...”

Causal
Graph 1

(6/10)

LLM

1

Causal
Graph 2

Causal
Graph 3

Query 
Type 1

Query 
Type 2

Query 
Type 3

2

LLM

(3/10)(9/10)

3
{Question} + {Causal Graph 2}
“Generate 3 possible solutions for
Step 2 of Causal Chain of Thought:
Identify query type ...”

LLM

Figure 1: Causal tree of thoughts (CAUSALTOT): (1)
The LLM generates three possible causal graphs as the
first step of CAUSALCOT. (2) Each graph is evaluated
with a score between 1 and 10 by the LLM. (3) The
highest-scoring solution, along with the question, is
then used to generate three query types. This iterative
process continues for the six steps of CAUSALCOT.

Causal Tree of Thoughts We propose a new
causal adaptation of the tree of thoughts (Yao et al.,
2023) prompting technique. This CAUSALTOT
technique follows the six distinct steps of CAUSAL-
COT, but is able to consider multiple alternative
thought candidates for each step i = 1, · · · , 6. Un-
like SC, CAUSALTOT self-evaluates thought candi-
dates after each step and selects the best one to pro-
ceed with. Figure 1 provides a high-level overview
of how CAUSALTOT operates, illustrating its it-
erative process of generating, evaluating, and se-
lecting causal thoughts for a question. Throughout
this process, CAUSALTOT maintains a memory of
the reasoning state s = (x, z1···i) consisting of the
causal question x and all causal thoughts z1···i so
far.

For thought generation, CAUSALTOT queries
an LLM pθ with a GENi prompt (see Appendix
B for the exact prompts used) to generate ki alter-
native thought candidates following the thoughts
from previous steps. Hereby, ki and GENi are
different for each of the six steps and are curated

to cater for the unique requirements of each step:

{z(1)i+1, · · · , z
(ki+1)
i+1 } ∼ p

GENi+1

θ (zi+1|s) (1)

For thought evaluation, CAUSALTOT self-
selects the best thought by assigning a score be-
tween 1 and 10 to each thought and continuing
with the highest-scoring thought z∗i :

z∗i ∼ pEV ALi
θ (z∗i |{z(1)i , · · · , z(ki)i }) (2)

where EV ALi is the prompt for voting and se-
lecting the best thought. Once the best thought has
been chosen, the process is repeated for the follow-
ing steps, starting with the GENi+1 prompt again.
This way, CAUSALTOT greedily decodes a causal
chain of thought towards the final answer.

In their error analysis of CAUSALCOT, Jin et al.
(2023) argue that steps 2, 3, and 5 pose the great-
est challenges to the LLM. Further, causal graphs
extracted by the LLM in step 1 sometimes differ
from the ground truth causal graphs. Hence, we
decide to set ki = 3 for i ∈ {1, 2, 3, 5} to ex-
plore alternative thoughts for each of these critical
and error-prone steps. For the two other steps, we
forego any branching (i.e., ki = 1, i ∈ {4, 6}), as
these steps tend to be handled rather reliably by the
LLM.

Causal Program of Thoughts We also intro-
duce a causal version of the program of thoughts
(Chen et al., 2023) prompting technique, which
uses DoWhy (Sharma and Kiciman, 2020), a
Python library for causal inference that supports ex-
plicit modeling and testing of causal assumptions.
CAUSALPOT uses an LLM to generate DoWhy
code c to calculate a causal estimate for a question
x:

c ∼ pCODE
θ (c|x) (3)

The DoWhy code is executed by a Python in-
terpreter f using REPL (LangChain Contributors,
2024). A causal estimate ê is then computed and,
along with the question, provided to the LLM to
generate a final answer y:

ê = f(c) (4)

y ∼ pANSWER
θ (y|x, ê) (5)
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{Question} + 

“Generate doWhy 
code to solve
this question.

Example code:
import dowhy
…”

LLM

{Answer}

1
2

4
5

import dowhy
import numpy as np

n = 1000
p_smoking = 0.54
p_lungcancer = 
0.32
model = 
CausalModel(...)

Python
Interpreter 3

Causal Estimate
= -0.324

Figure 2: Causal program of thoughts (CAUSALPOT):
(1) The question and example code are input into the
LLM. (2) The LLM generates DoWhy code. (3) The
generated code is executed by the Python interpreter to
compute a causal estimate. (4) This estimate is returned
to the LLM. (5) The LLM decides the final answer.

Figure 2 provides a high-level overview of the
CAUSALPOT methodology. The exact CODE
and ANSWER prompts used can be found in
Appendix B. We include three code examples, one
from each rung, in the CODE prompt. These
examples are not part of the sampled dataset and
are intended to guide the LLM in (1) using the
correct libraries from the DoWhy library to solve
the problem, (2) generating artificial data based
on the information in the causal question, which
is used to calculate the causal estimate, and (3)
ensuring that the generated code is in the correct
format for execution by the Python interpreter.

Additionally, in the input prompt, we added an
instruction for the LLM to not mistake p(X | Y )
with p(X ∩ Y ), which we frequently noticed in
our experiments. The LLM would evaluate a state-
ment like “the probability of smoking and lung can-
cer” as p(Smoking | LungCancer) rather than
p(Smoking ∩ LungCancer).

4 Experiments

4.1 LLMs’ Causal Reasoning Performance
RQ1: How well do LLMs perform in different dis-
ciplines of causal reasoning?

To establish each model’s baseline causal rea-
soning performance, we let the models predict the
correct answers using input-output prompting on

reasoning problems from the associational, inter-
ventional, and counterfactual rungs within the com-
monsensical subset of our CLADDER sample. Re-
sults can be seen in the left half of Table 2 (under
RQ1).

The results indicate significant discrepancies be-
tween the LLMs. The weakest model, Mistral
7B, performs only somewhat better than random
guessing while the strongest model, DeepSeek R1,
achieves an average accuracy of 89.1% on the com-
monsensical questions. The largest and most recent
LLMs seem to outperform the smaller and older
LLMs.

The highest accuracy using input-output prompt-
ing reported in the original CLADDER paper (Jin
et al., 2023) on commonsensical questions was
62.27% with GPT-4. In our test, this accuracy is
beaten by 11 out of the 13 evaluated models. While
there may be minor differences in our sample and
testing procedure vs. Jin et al.’s (2023), we hypoth-
esize that the most likely explanation is a strong
general improvement in causal reasoning perfor-
mance in newer generations of LLMs.

When comparing results across the three rungs,
it seems that a majority of the evaluated LLMs gen-
erally perform best on associational questions, fol-
lowed by interventional questions, and lastly coun-
terfactual questions, as the Ladder of Causation
suggests. This is unsurprising, as counterfactual
questions are inherently more complex, requiring a
deeper understanding of advanced causal inference
concepts. We provide example questions from each
rung of the dataset in Appendix D.

The three lowest-performing LLMs, Mistral 7B,
Llama 3.1 8B, and GPT-3.5-Turbo surprisingly per-
form significantly better on interventional prob-
lems than on associational problems. For all but
two LLMs, questions from the counterfactual rung
are the most difficult, showing mostly sharp ac-
curacy drops compared to the other two rungs.
This matches observations in related works that
LLMs have difficulties with counterfactual reason-
ing (Lewis and Mitchell, 2024; Li et al., 2022; Wu
et al., 2024c).

To understand why and how models fail to reach
correct answers, we manually assessed the model
outputs for GPT-4o and GPT-4o mini, represent-
ing two high-performing models of different sizes.
We classify a random sample of 100 incorrectly
answered reasoning questions into four error types:

• Type 1: Misinterprets the question. The
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RQ1 RQ2
Commonsensical Anti-commonsensical Nonsensical

Model Avg. Avg. R1 R2 R3 Avg. R1 R2 R3 Avg. R1 R2 R3
Mistral 7B 53.1 55.3 50.1 63.5 56.5 52.9 50.9 61.4 50.8 51.0 48.9 61.9 47.7
WizardLM 2 8x22B 77.4 79.2 88.4 82.7 68.1 77.4 86.7 86.3 63.6 75.6 83.0 85.8 63.1
Llama 3.1 8B 59.1 64.9 68.1 79.7 54.3 58.6 61.7 69.0 50.3 53.8 57.3 68.0 43.2
Llama 3.1 70B 78.6 79.7 86.2 87.8 69.1 79.0 83.7 89.8 68.8 77.1 81.0 86.8 68.3
Llama 3.1 Nemo. 70B 81.2 82.8 91.4 90.9 70.1 80.7 83.7 88.8 73.6 80.0 85.2 86.8 71.4
Claude 3.5 Haiku 78.0 78.6 87.9 87.3 64.8 79.9 90.4 92.4 63.1 75.5 85.4 87.8 59.3
Claude 3.5 Sonnet 84.1 85.3 94.1 85.8 76.1 84.2 90.4 90.9 74.6 82.8 90.6 87.8 72.4
GPT-3.5-Turbo 57.5 58.2 54.3 72.6 55.0 56.5 52.1 72.1 53.3 57.7 51.9 67.5 58.8
GPT-4o mini 78.4 79.8 92.1 85.3 64.6 78.1 86.7 83.2 66.8 77.2 91.4 77.7 62.6
GPT-4o 82.0 84.3 95.1 90.9 70.1 82.4 90.1 93.9 68.8 79.3 89.9 88.3 64.1
o3-mini 86.8 86.3 96.8 88.3 74.6 86.9 92.3 88.8 80.4 87.1 92.6 89.8 80.2
DeepSeek V3 80.9 81.2 95.8 87.3 63.3 81.5 92.8 88.3 66.6 80.1 92.6 86.3 64.3
DeepSeek R1 88.1 89.1 97.3 86.8 81.9 88.2 94.3 89.8 81.2 86.9 94.3 88.8 78.4
Average 75.8 77.3 84.4 83.8 66.8 75.9 81.2 84.2 66.3 74.2 80.3 81.8 64.1

Table 2: The table shows the causal reasoning accuracy of the evaluated models on the three dataset parts common-
sensical (for RQ1), as well as anti-commonsensical and nonsensical (for RQ2). For each model and dataset part, the
average accuracy per rung (R1: associational, R2: interventional, R3: counterfactual) and the average across the
three rungs are reported. The leftmost column contains the overall average accuracy across all reasoning questions.

Error Type GPT-4o GPT-4o mini
Type 1 42 33
Type 2 23 40
Type 3 8 13
Type 4 27 14

Table 3: For a sample of 100 incorrect answers, we
identify the primary reasoning error that caused the
wrong answer and classify it into one of four types:
misinterprets the question (Type 1), relies on intuition
over computation (Type 2), incorrect data extraction
(Type 3), applies incorrect formula (Type 4).

model misunderstands the causal relationships
in the question.

• Type 2: Relies on intuition over computa-
tion. Instead of performing probability calcu-
lations based on the given data, the model just
provides an intuitive answer.

• Type 3: Incorrect data extraction. The
model extracts incorrect probability data from
the natural language question.

• Type 4: Applies incorrect formula. The
model understands the question but uses the
wrong formula to compute the causal effect.

Table 3 reports the errors observed. Both, GPT-
4o and GPT-4o mini seem to interpret the avail-
able data mostly correctly but fail to determine the

right approach to solve the problem (incl. mis-
interpreting the question and relying on intuition
rather than calculations), or carry out calculations
with an incorrect formula. The smaller GPT-4o
mini seems to rely on intuition more often than its
larger sibling GPT-4o, leading to relatively fewer
calculation-related errors. Since GPT-4o attempts
actual calculations more often, its most common
errors affect the correct execution of these mathe-
matical calculations.

4.2 Reliance on Learned Knowledge

RQ2: How well do LLMs generalize to causal rea-
soning tasks where they cannot rely on learned
commonsense knowledge?

If LLMs do not perform genuine causal reason-
ing but rely on commonsense knowledge acquired
during training, one would expect that performance
drops sharply when models must reason about un-
familiar structures. To test this, we repeat the
previous experiment on the anti-commonsensical
and nonsensical parts of the dataset. The anti-
commonsensical problems contain entities likely
familiar to the LLM, but with uncommon causal
relationships. The nonsensical problems contain
random four-letter words with unfamiliar causal
relationships.

The right half of Table 2 (under RQ2) shows
the results of these experiments. While the two
smallest 7B and 8B LLMs show the largest relative
performance drop, the remaining medium-sized
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and large models seem to reason almost as well
about the anti-commonsensical and nonsensical
problems as about the commonsensical problems,
sometimes even showing a slight accuracy increase.
This could indicate that genuine causal reasoning
about unfamiliar structures is an ability emerging
in LLMs with scale (Wei et al., 2022a). Reason-
ing performance seems to be slightly higher on the
anti-commonsensical problems than on the non-
sensical problems, suggesting that models reason
better when at least the entities are familiar, even
though causal relationships between these entities
are not. This may represent a confirmation of the
results by Li et al. (2022) suggesting that reason-
ing abilities of recent LLMs still somewhat depend
on simple lexical cues, which are present in the
anti-commonsensical problems but not in the non-
sensical problems.

4.3 Improvements through Prompting
Techniques and Tool Usage

RQ3: Can prompting techniques and external tools
enhance LLMs’ causal reasoning?

Prompting techniques and usage of external tools
have been shown to improve LLMs’ reasoning per-
formance, often substantially (Wei et al., 2022b;
Wang et al., 2023; Yao et al., 2023; Xu et al., 2023).
Jin et al. (2023) have demonstrated how the causal
chain of thought (CAUSALCOT) prompting tech-
nique can improve GPT-4’s causal reasoning accu-
racy on CLADDER from 62.03% to 70.40%, on
average. In Section 3, we introduced two new
causal prompting techniques CAUSALTOT and
CAUSALPOT.

Table 4 shows the accuracy of different prompt-
ing techniques on CLADDER using a GPT-4o LLM.
We chose GPT-4o as a base model for this exper-
iment as it strikes a reasonable balance between
competitive reasoning accuracy, low cost, and short
runtime. Interestingly, we observe CAUSALCOT
to perform 2.4%-points worse than input-output
prompting when used with GPT-4o. It is worth not-
ing though that GPT-4o with input-output prompt-
ing already achieves an overall average accuracy
of 82.0%, which is substantially higher than the ac-
curacy Jin et al. (2023) measured for GPT-4. This
may indicate that recent advancements in model
architectures and training procedures made sophis-
ticated prompting techniques dispensable on the
CLADDER problems. Noticeably, simple zero-shot
COT improved causal reasoning accuracy by 1.2%-

points, on average, versus input-output prompting.
Self-consistency (SC) performed similar to input-
output prompting, independent of the number of
parallel reasoning chains.

Our new prompting techniques CAUSALTOT
and CAUSALPOT outperform input-output prompt-
ing by an average of 4.4%-points and 8.8%-points,
respectively. With CAUSALTOT, GPT-4o even
reaches close to the performance of o3-mini and
DeepSeek R1, the strongest reasoning models we
evaluated. With CAUSALPOT, GPT-4o surpasses
o3-mini by 4.0%-points and DeepSeek R1 by 2.7%-
points, on average. This shows that in the domain
of formal causal reasoning, the domain-specialized
prompting techniques applied in CAUSALTOT and
CAUSALPOT can match or even outperform the ex-
tensive but non-specialized test-time thinking done
by o3-mini and DeepSeek R1.

Remarkably, CAUSALTOT outperforms all other
tested prompting techniques on questions from the
associational rung, but loses accuracy on the other
two rungs, especially on counterfactual questions.
On the other hand, CAUSALPOT achieves slightly
lower performance on associational questions than
many of the other prompting techniques but main-
tains a fairly consistent accuracy throughout all
rungs. With that, CAUSALPOT seems to be the
first prompting technique that performs similarly
well on counterfactual questions as on associational
or interventional questions.

An error analysis for each of our methods can be
found in Appendix E.

5 Conclusion

Connecting to previous work on causal reasoning
in LLMs, we have presented a systematic evalua-
tion of causal reasoning abilities of the most recent
LLMs. Our findings indicate that the latest mod-
els perform substantially better than older LLMs
evaluated in previous works. These state-of-the-
art LLMs seem to reason well, even on challeng-
ing causal reasoning tasks and unfamiliar causal
structures. One exception is counterfactual rea-
soning, which still poses significant challenges to
state-of-the-art LLMs. While we found that pre-
vious prompting techniques designed to improve
LLMs’ reasoning performance no longer show the
desired improvements on recent LLMs, we pro-
posed two new causal prompting techniques. As
demonstrated, CAUSALTOT and CAUSALPOT can
significantly elevate reasoning performance, even
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RQ3
Commonsensical Anti-commonsensical Nonsensical

Model Avg. Avg. R1 R2 R3 Avg. R1 R2 R3 Avg. R1 R2 R3
GPT-4o 82.0 84.3 95.1 90.9 70.1 82.4 90.1 93.9 68.8 79.3 89.9 88.3 64.1
GPT-4o + COT 83.2 85.3 95.6 92.9 71.1 83.7 92.6 93.9 69.6 80.7 91.6 90.9 64.6
GPT-4o + CAUSALCOT 79.6 81.1 93.1 88.3 65.3 80.2 91.6 90.9 63.3 77.4 89.1 87.8 60.3
GPT-4o + SC-3 82.2 83.0 93.8 89.8 68.6 82.3 90.6 89.3 70.4 81.3 90.9 89.3 67.6
GPT-4o + SC-5 81.6 82.7 94.1 87.8 68.6 81.2 84.9 84.3 75.9 80.8 88.6 85.3 70.6
GPT-4o + SC-10 82.0 83.5 93.8 90.4 69.6 80.3 89.9 88.8 66.3 82.3 91.1 90.4 69.3
GPT-4o + CAUSALTOT 86.4 87.5 96.3 91.9 76.4 86.5 93.8 93.9 75.4 85.3 92.6 90.9 75.1
GPT-4o + CAUSALPOT 90.8 92.5 91.6 94.4 92.5 90.3 89.1 92.9 90.2 89.6 90.6 91.9 87.4

Table 4: The table shows the causal reasoning accuracy with different prompting techniques using GPT-4o.

of recent LLMs. CAUSALPOT appears to be the
only causal prompting technique that substantially
improves performance on counterfactual reasoning
problems.

Limitations and Future Work

In this paper, we focus exclusively on formal causal
reasoning and do not evaluate LLMs’ capabili-
ties on informal reasoning tasks. This is because
we believe that several works already discuss in-
formal causal reasoning with LLMs and, while
their results are insightful and relevant, we see
formal causal reasoning problems as more suit-
able to assess whether LLMs can genuinely reason.
Nonetheless, our proposed methods CAUSALTOT
and CAUSALPOT were specifically designed for
formal causal reasoning and problem formulations
similar to those included in CLADDER. We leave it
to future work to ideate similar methods that gener-
alize beyond the scope of formal causal reasoning.

Some readers may criticize the limited breadth
of evidence put forward in our analysis, where
we evaluate all methods on CLADDER only, with
CLADDER being a synthetic dataset and our exper-
imental sample being limited to 1,000 examples.
We certainly encourage future work to continue to
evaluate LLMs on several datasets. However, we
also note that CLADDER alone is perhaps one of
the most comprehensive evaluation tasks for formal
causal reasoning (Yang et al., 2024), covering all
rungs of the Ladder of Causation, as well as com-
monsensical, anti-commonsensical, and nonsensi-
cal problem formulations, and nine different query
types. In addition, the authors conduct a broad
range of quality checks including grammaticality,
human readability, and naturalness/perplexity (Jin
et al., 2023). For these reasons, we argue that
CLADDER served as the ideal evaluation bench
to rigorously evaluate our methods within the con-

straints of our resources.
Our anti-commonsensical and nonsensical per-

turbations were generated using GPT-4o, raising
concerns that this may have made it easier for GPT-
4o to recognize its own perturbations, potentially
leading to an artificial inflation of its performance.
However, a similar decline of performance from
commonsensical to anticommonsensical to nonsen-
sical seen in GPT-4o is evident in other LLMs. We
also see a larger performance decline for GPT-4o
than what was reported in the CLADDER paper
(Jin et al., 2023) for GPT-4, suggesting that GPT-
4o scores are not substantially inflated.

For future work, we still recommend evaluating
CAUSALPOT and CAUSALTOT on other formal
causal reasoning datasets, such as Corr2Cause (Jin
et al., 2024), to assess their effectiveness and gen-
eralizability. We believe that leveraging external
libraries could enhance the performance of LLMs
in these tasks.

Ethical Considerations

While we have shed light on the causal reasoning
abilities of current LLMs, no general evaluation can
replace a detailed assessment of a specific LLM in
the context of its final use case. Using LLMs for
causal reasoning comes with risks and our results
should not be seen as a free pass for using LLMs for
purely machine-based decision-making. An over-
simplification of complex causal phenomena may
lead to high-stakes errors, particularly in domains
such as healthcare or public policy. Open dissem-
ination of powerful LLM-based causal methods
risks malicious applications, including generating
deceptive causal claims. Mitigation strategies may
include careful curation of training data, the inte-
gration of formal causal inference tools, transparent
reporting of model capabilities and limitations, and
stricter governance of high-stakes use cases.
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A Comparison of Sampled and Original
Dataset Distributions

Table 5 presents the number of causal questions
across different properties in the sampled and orig-
inal datasets. Figures 3, 4, and 5 illustrate the
data distribution for each metric in both datasets,
showing that the distribution of the sampled dataset
(1,000 causal questions) closely matches that of
the original commonsensical dataset (8,690 causal
questions).

Metric Sampled Original
Answer
No 504 4345
Yes 496 4345
Query Type
Marginal Prob. 209 1702
ATE 174 1518
Conditional Prob. 174 1518
ATT 137 1288
Counterfactual 95 874
NIE 92 870
NDE 73 552
Collider Bias 23 184
Explaining Away 22 184
Rung
Rung 1 405 3584
Rung 2 398 3404
Rung 3 197 1702

Table 5: Number of causal questions per metric for
sampled and original dataset

B Prompts

The code and prompts used for all experi-
ments can be found in https://github.com/
rahulbshrestha/causal-reasoning

Specifically, the prompts used for the memoriza-
tion test, causal chain of thought and program of
thoughts can be found in https://github.com/
rahulbshrestha/causal-reasoning/blob/
main/src/prompts.py

C Memorization Test

To verify that the dataset was not included in the
training data for each model, we conducted a mem-
orization test as outlined in Kıcıman et al.’s (2024).

For the basic test, we asked the LLMs whether
they were familiar with the CLADDER dataset us-
ing the following prompt:
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“Do you know about the dataset CLADDER:
Assessing Causal Reasoning in Language Models?
If yes, please provide the names of the authors, the
number of questions in the dataset, and an example
row from the dataset.”

We observed that all LLMs either fabricated the
information for all three values or stated that they
did not recognize the dataset.

For a more rigorous evaluation, we employed
a memorization test prompt inspired by (Kıcıman
et al., 2024). Details on the exact prompt used
are provided in Appendix B. In this test, the LLM
was tasked with recalling three partial questions
from the dataset. To enhance the likelihood of suc-
cessful reconstruction, the LLM was first provided
with additional contextual information, including
the dataset’s name, URL, a description extracted
from the README file, and two few-shot exam-
ples from the dataset.

The three partial questions are presented below.
The italicized portions were deliberately omitted
from the prompt, and the LLM was expected to
reconstruct them.

Q1: The overall probability of manager signing
the termination letter is 39%. For managers who
don’t sign termination letters, the probability of em-
ployee being fired is 22%. For managers who sign
termination letters, the probability of employee be-
ing fired is 60%. Is employee being fired less likely
than employee not being fired overall?

Q2: For unvaccinated individuals, the probabil-
ity of smallpox survival is 35%. For vaccinated
individuals, the probability of smallpox survival
is 40%. Does vaccination status positively affect
smallpox survival through getting smallpox and
vaccination reaction?

Q3: For infants with nonsmoking mothers, the
probability of high infant mortality is 88%. For in-
fants with smoking mothers, the probability of high
infant mortality is 64%. For infants with smoking
mothers, would it be less likely to see high infant
mortality if the infant had a nonsmoking mother?
Let’s think step by step. Answer with ’yes’ or ’no’
at the end.

We observed that the LLMs failed to reconstruct
the questions accurately, instead generating random
data that did not match the original dataset.

D Sample Questions from CLadder

In this section, we present sample data points from
the CLADDER dataset. The “Info” and “Question”

Figure 3: Comparison of Answer Distributions (Yes/No)
in Original vs. Sampled Datasets

Figure 4: Comparison of Query Types Distributions in
Original vs. Sampled Datasets

Figure 5: Comparison of Rung Type Distributions in
Original vs. Sampled Datasets

together form the causal question. “Answer” rep-
resents the ground truth. “Query Type” indicates
one of nine distinct query categories. “Rung” spec-
ifies the causal hierarchy level of the answer (1 =
Association, 2 = Intervention, 3 = Counterfactual).
“Formal Form” provides the mathematical represen-
tation of the query type, and “Reasoning” outlines
the step-by-step approach to solving the question.

D.1 Rung 1 Question

Info: The overall probability of alarm set by hus-
band is 73%. The probability of alarm not set by
husband and ringing alarm is 10%. The probability
of alarm set by husband and ringing alarm is 40%.

Question: Is the chance of ringing alarm larger
when observing alarm set by husband?

Answer: yes
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Query type: correlation
Rung: 1
Formal form: P (Y |X)

Reasoning:

1. Let X = husband; V2 = wife; Y = alarm clock.

2. X → V2, X → Y , V2 → Y

3. P (Y |X)

4. P (X = 1, Y = 1)/P (X = 1) − P (X =
0, Y = 1)/P (X = 0)

5. P (X = 1) = 0.73
P (Y = 1, X = 0) = 0.10
P (Y = 1, X = 1) = 0.40

6. 0.40/0.73− 0.10/0.27 = 0.18

7. 0.18 > 0

D.2 Rung 2 Question

Info: For CEOs who fire employees and managers
who don’t sign termination letters, the probability
of employee being fired is 43%. For CEOs who fire
employees and managers who sign termination let-
ters, the probability of employee being fired is 81%.
For CEOs who don’t fire employees and managers
who don’t sign termination letters, the probability
of employee being fired is 63%. For CEOs who
don’t fire employees and managers who sign ter-
mination letters, the probability of employee being
fired is 98%. The overall probability of CEO’s
decision to fire the employee is 26%.

Question: Will manager signing the termination
letter decrease the chance of employee being fired?

Answer: no
Query type: ATE
Rung: 2
Formal form:

E[Y |do(X = 1)]− E[Y |do(X = 0)]

Reasoning:

1. Let V1 = CEO; V3 = director; X = manager;
Y = employee.

2. V1 → V3, V1 → X , X → Y , V3 → Y

3. E[Y |do(X = 1)]− E[Y |do(X = 0)]

4.
∑

V1=v P (V1 = v) ∗ [P (Y = 1|V1 = v,X =
1)− P (Y = 1|V1 = v,X = 0)]

5. P (Y = 1|V1 = 0, X = 0) = 0.43
P (Y = 1|V1 = 0, X = 1) = 0.81
P (Y = 1|V1 = 1, X = 0) = 0.63
P (Y = 1|V1 = 1, X = 1) = 0.98
P (V1 = 1) = 0.26

6. 0.74∗ (0.81−0.43)+0.26∗ (0.98−0.63) =
0.38

7. 0.38 > 0

D.3 Rung 3 Question
Info: For those who choose to take the stairs and
penguins who are sad, the probability of penguin
death is 28%. For those who choose to take the
stairs and penguins who are happy, the probability
of penguin death is 60%. For those who choose
to take the elevator and penguins who are sad, the
probability of penguin death is 35%. For those
who choose to take the elevator and penguins who
are happy, the probability of penguin death is 74%.
For those who choose to take the stairs, the prob-
ability of penguin happiness is 57%. For those
who choose to take the elevator, the probability of
penguin happiness is 22%.

Question: Does my decision negatively affect
penguin survival through penguin mood?

Answer: yes
Query type: NIE
Rung: 3
Formal form: E[YX=0,V2=1 − YX=0,V2=0]
Reasoning:

1. Let X = my decision; V2 = penguin mood; Y
= penguin survival.

2. X → V2, X → Y , V2 → Y

3. E[YX=0,V2=1 − YX=0,V2=0]

4.
∑

V2=v P (Y = 1|X = 0, V2 = v) ∗ [P (V2 =
v|X = 1)− P (V2 = v|X = 0)]

5. P (Y = 1|X = 0, V2 = 0) = 0.28
P (Y = 1|X = 0, V2 = 1) = 0.60
P (Y = 1|X = 1, V2 = 0) = 0.35
P (Y = 1|X = 1, V2 = 1) = 0.74
P (V2 = 1|X = 0) = 0.57
P (V2 = 1|X = 1) = 0.22

6. 0.22 ∗ (0.60− 0.28) + (1− 0.22) ∗ (0.74−
0.35)− (0.57 ∗ (0.60− 0.28) + (1− 0.57) ∗
(0.74−0.35)) = 0.0704+0.2964−(0.1824+
0.1671) = 0.3668− 0.3495 = 0.0173

7. 0.0173 > 0
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Step Error Count
Step 1 3
Step 2 18
Step 3 17
Step 4 12

Table 6: For a sample of errors in CAUSALCOT, we
identify the step at which GPT-4o made a mistake.

E Error Analysis

E.1 Causal Chain of Thought

For CAUSALCOT, we conducted an error analy-
sis on 50 samples, categorizing failures based on
the specific step in the prompt where the model
made an error. Table 6 presents our findings. If a
model fails at an earlier step, we do not assess its
performance on subsequent steps. Our results align
with those reported by (Jin et al., 2023), who found
that LLMs most frequently fail at Steps 2, 3, and 5
of CAUSALCOT. Similarly, we observed errors in
Steps 2 and 3, but we did not encounter any cases
where the model successfully completed the first
four steps and then failed at Step 5.

E.2 Chain of Thought with Self-Consistency

To verify that COT-SC produces different answers
for different reasoning chains—i.e., that there is
variation—we analyzed the distribution of ‘yes’
and ‘no’ responses.

As shown in Tables 7 and 8, the model gener-
ated varying distributions of answers. In Table 5.1,
the highest frequency of responses falls into the
(10 yes, 0 no) or (0 yes, 10 no) categories, with
frequencies decreasing from there. This suggests
that sampling different reasoning chains (for nearly
half the dataset) does not significantly impact most
questions. The same pattern holds for SC-5 (5
chains), which may explain why increasing to SC-
10 (10 chains) does not improve accuracy.

Distribution # Answers
(10 yes + 0 no) or (0 yes + 10 no) 403
(9 yes + 1 no) or (1 yes + 9 no) 169
(8 yes + 2 no) or (2 yes + 8 no) 127
(7 yes + 3 no) or (3 yes + 7 no) 128
(6 yes + 4 no) or (4 yes + 6 no) 109
(5 yes + 5 no) 59

Table 7: Distribution of answers in SC-10 (10 chains)

Distribution # Answers
(5 yes + 0 no) or (0 yes + 5 no) 535
(4 yes + 1 no) or (1 yes + 4 no) 246
(3 yes + 2 no) or (2 yes + 3 no) 218

Table 8: Distribution of answers in SC-5 (5 chains)

Step Error Count
Step 1 4
Step 2 23
Step 3 12
Step 4 11

Table 9: For a sample of errors in CAUSALTOT, we
identify the step at which GPT-4o made a mistake.

E.3 Causal Tree of Thoughts

For CAUSALCOT, we conducted an error analy-
sis on 50 samples, categorizing failures based on
the specific step in the prompt where the model
made an error. Table 9 presents our findings. We
categorize mistakes the LLM made in generating
or evaluating thoughts under the same step. If a
model fails at an earlier step, we do not assess its
performance on subsequent steps.

E.4 Causal Program of Thoughts

For CAUSALPOT, we conducted an error analysis
on 50 samples, categorizing failures based on 3
different error types. Results are shown in Table
10.

• Type 1: Incorrect causal graph extracted.
The model extracts an incorrect causal graph
based on the question.

• Type 2: Incorrect library function call. The
model uses the wrong library function when
estimating causal effects. This often results
from misidentifying the required rung type for
solving the causal question.

• Type 3: Incorrect code produced (code ex-
ecution failure). The model generates incor-
rect code due to formatting errors, incorrect
library names, or other issues, causing execu-
tion failures or runtime errors.
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Error Type Error Count
Type 1 10
Type 2 37
Type 3 13

Table 10: For a sample of errors in CAUSALPOT, we classify the primary reasoning mistake into three types.

Commonsensical

The overall probability of smoking 
mother is 87%. For infants with 
nonsmoking mothers, the probability 
of high ice cream sales is 54%. For 
infants with smoking mothers, the 
probability of high ice cream sales is 
31%. Is high ice cream sales less 
likely than low ice cream sales 
overall?

The overall probability of smoking 
mother is 87%. For infants with 
non-smoking mothers, the 
probability of high infant mortality is 
54%. For infants with smoking 
mothers, the probability of high 
infant mortality is 31%. Is high 
infant mortality less likely than low 
infant mortality overall?

The overall probability of lkjh is 87%. 
For infants with non-lkjh, the 
probability of high cdre is 54%. For 
infants with lkjh, the probability of 
high cdre is 31%. Is high cdre less 
likely than low cdre overall?

Anti-commonsensical

Nonsensical

Figure 6: Generating the anti-commonsensical and nonsensical perturbed datasets
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