
Lattice @MultiGEC-2025:
A Spitful Multilingual Language Error Correction System Using LLaMA

Olga Seminck1, Yoann Dupont1, Mathieu Dehouck1,
Qi Wang1, Noé Durandard1, Margo Novikov1

1LaTTiCe UMR8094 : CNRS, ENS-PSL, Sorbonne-Nouvelle, Paris, France
olga.seminck@cnrs.fr, yoann.dupont@sorbonne-nouvelle.fr,

mathieu.dehouck@cnrs.fr, qi.wang@cnrs.fr, noe.durandard@psl.eu,
margosha.novikova@gmail.com

Abstract

This paper reports on our submission to
the NLP4CALL shared task on Multilingual
Grammatical Error Correction (MultiGEC-
2025) (Masciolini et al., 2025). We developed
two approaches: fine-tuning a large language
model, LLaMA 3.0 (8B), for each MultiGEC
corpus, and a pipeline based on the encoder-
based language model XLM-RoBERTa. Dur-
ing development, the first method significantly
outperformed the second, except for languages
that are poorly supported by LLaMA 3.0 and
have limited MultiGEC training data. There-
fore, our official results for the shared task
were produced using the neural network sys-
tem for Slovenian, while fine-tuned LLaMA
models were used for the eleven other lan-
guages. In this paper, we first introduce the
shared task and its data. Next, we present our
two approaches, as well as a method to detect
cycles in the LLaMA output. We also discuss a
number of hurdles encountered while working
on the shared task.

1 Introduction

South American camelids are infamous for spit-
ting at each other and at people’s faces. Working
on the MultiGEC-2025 shared task on grammati-
cal error correction, we realized that LLaMA 3.0
is no different.

Grammatical Error Correction (GEC) is a fun-
damental task in Natural Language Processing
(NLP) for bureautics and educational settings,
aimed at automatically identifying and correcting

This work is licensed under a Creative Commons
Attribution 4.0 International Licence. Licence details:
http://creativecommons.org/licenses/by/4.0/.

grammatical errors in written texts. As a help-
ing tool in second language acquisition (Volod-
ina et al., 2023), it is essential for addressing
diverse learning needs and backgrounds (Loem
et al., 2023) that GEC be able to handle various
modes of correction, such as minimal and fluency
edits,. Minimal edit correction focuses on address-
ing grammatical errors while preserving the origi-
nal form and structure of the text, whereas fluency
correction involves rewriting texts to enhance id-
iomaticity and achieve greater naturalness (Davis
et al., 2024). The errors to identify are not limited
to grammatical errors; other types such as ortho-
graphical, syntactical and lexical errors need also
be considered.

Research in GEC has advanced significantly
over the past decades, from rule-based methods
(Sidorov et al., 2013) to statistical approaches
(Yuan and Felice, 2013), followed by neural net-
work models (Bryant et al., 2023), and most re-
cently, large language models (LLMs), such as
OpenAI’s GPT and Meta’s LLaMA LLMs (Davis
et al., 2024).

The objective of the NLP4CALL shared task,
MultiGEC-2025 (Masciolini et al., 2025), is to
perform grammatical error correction (GEC) on
12 languages: Czech, English, Estonian, Ger-
man, Greek, Icelandic, Italian, Latvian, Russian,
Slovene, Swedish, and Ukrainian. The shared
task requires rewriting texts produced by language
learners to make them either grammatically cor-
rect (minimal edits) or both grammatically correct
and idiomatic (fluency edits) (Table 1).

In this paper, we present the systems sub-
mitted by our team, Lattice, to the MultiGEC-
2025 shared task, which was hosted as part of
the 14th Workshop on Natural Language Pro-

Olga Seminck, Yoann Dupont, Mathieu Dehouck, Qi Wang, Noé Durandard and Margo Novikov. Lattice
@MultiGEC-2025: A Spitful Multilingual Language Error Correction System Using LLaMA. Proceedings of the 14th

Workshop on Natural Language Processing for Computer Assisted Language Learning (NLP4CALL 2025).
University of Tartu Library. 34–41.

34



cessing for Computer-Assisted Language Learn-
ing (NLP4CALL). The structure of this paper is
as follows: first, we provide an overview of the
dataset introduced by the organizers. Next, we de-
scribe the two methods we developed: one based
on fine-tuning the LLaMA 3.0 model (Touvron
et al., 2023), and the other based on the XLM-
RoBERTa language model (Conneau et al., 2020),
followed by a method to detect and remove cycles
in the LLaMa output that we used to enhance the
results. Finally, we present an analysis of our sys-
tem’s results in relation to the particularities of the
17 different corpora included in the shared task’s
data.

Input My mother became very sad, no
food. But my sister better five
months later.

Minimal
Correction

My mother became very sad,
and ate no food. But my sister
felt better five months later.

Fluency
Correction

My mother was very distressed
and refused to eat. Luckily,
my sister recovered five months
later.

Table 1: An example of an input text with reference
corrections (minimal and fluency edits).

2 Data

Table 2 presents detailed statistics of the cor-
pus, including the number of essays, word counts,
and sentence counts, calculated using the syn-
tok tokenizer provided by the MultiGEC organiz-
ers. These statistics focus exclusively on the origi-
nal written essays (i.e., excluding rewritten essays
produced by our systems). The data highlights
the structural diversity across the datasets, with es-
say lengths varying significantly depending on the
source language of each dataset.

On average, each essay contains 277 tokens.
Notably, Icelandic essays are considerably longer,
with the IceEC dataset averaging 1,004 tokens per
essay and the IceL2EC dataset averaging 818 to-
kens. Similarly, Slovene essays in the Solar-Eval
dataset average 642 tokens per essay. In contrast,
the Russian dataset has a significantly lower av-
erage, with essays containing only 38 tokens per
essay.

Most datasets follow the traditional split of ap-
proximately 80% for training, 10% for develop-
ment, and 10% for testing. However, there are ex-
ceptions. The Slovene dataset is relatively small,
consisting of only 109 essays. Its splits are notably
unbalanced, with 10 essays in the training set, 50
in the development set, and 49 in the test set. In
contrast, the Russian dataset is split more evenly,
with 42% allocated for training, 33% for develop-
ment, and 25% for testing.

3 Methods

3.1 Baseline
The MultiGEC organizers offer a one-shot multi-
lingual baseline leveraging the LLaMA 3.1 8B In-
struct model. In this approach, a single example in
English is incorporated into the prompt, address-
ing binary scenarios that focus on either minimal
edits or fluency edits.

3.2 Fine-tuned LLaMA 3.0 8B
The methodology applied by our team was peft
(parameter-efficient fine-tuning) with 4-bit Nor-
malFloat quantization using QLora (Dettmers
et al., 2024), a method based on Low-Rank Adap-
tation (LoRA) (Biderman et al., 2024), for fine-
tuning the LLaMA 8B 3.0 model (Touvron et al.,
2023). We choose peft due to its higher efficiency
in terms of computational requirements and its
ability to prevent model collapse and catastrophic
forgetting 1. We utilized a single RTX 3090
GPU with 24GB of RAM for training and testing.
The process consumed approximately 97% of the
available memory, indicating that experimenting
with a heavier model would likely be infeasible
given our current infrastructure.

During the development phase, we observed
that fine-tuning a model on each training set and
then applying it to the corresponding development
set led to improved performance compared to us-
ing a single model per language. We thus decided
to fine-tune one model per corpus, resulting in 17
models in total. During the test phase, training
data consisted of the concatenation of the Multi-
GEC training and development sets, as we no-
ticed that corpora with more training data tended
to achieve higher performance.

During the development phase, we also ob-
served that essays lacking a strong punctuation

1https://ai.meta.com/blog/how-to-fine-tune-llms-peft-
dataset-curation/

Proceedings of the 14th Workshop on Natural Language Processing for Computer Assisted Language Learning (NLP4CALL 2025)

35

https://ai.meta.com/blog/how-to-fine-tune-llms-peft-dataset-curation/
https://ai.meta.com/blog/how-to-fine-tune-llms-peft-dataset-curation/


Lang. Source Split #Essays #Sents. #Tokens
train 227 3,245 44,261

Czech NatForm dev 88 1,537 22,206
test 76 1,433 19,962
train 3,620 6,463 87,345

Czech NatWebInf dev 1,291 2,270 31,118
test 1,256 2,059 26,963
train 2,057 27,741 331,953

Czech SecLearn dev 173 2,608 32,106
test 177 2,710 35,264
train 3,247 18,198 280,268

Czech Romani dev 179 900 14,616
test 173 967 15,706
train 4,040 37,341 680,405

English Write & Improve dev 506 4,307 89,132
test 504 4,911 93,419
train 206 2,849 33,923

Estonian EIC dev 26 366 4,491
test 26 385 4,344
train 1,202 14,400 189,162

Estonian EKIL2 dev 150 1,853 24,546
test 151 1,676 23,103
train 827 8,455 117,345

German Merlin dev 103 1,102 15,762
test 103 1,029 13,361
train 1,031 12,167 207,606

Greek GLCII dev 129 1,538 26,385
test 129 1,525 24,640
train 140 7,146 141,439

Icelandic IceEC dev 18 784 16,028
test 18 905 19,178
train 155 5,470 124,750

Icelandic IceL2EC dev 19 741 18,899
test 19 595 14,329
train 651 6,620 83,419

Italian Merlin dev 81 818 10,704
test 81 845 10,562
train 813 17,254 148,701

Latvian LaVA dev 101 2228 18,514
test 101 2,091 17,995
train 2,539 5,191 90,424

Russian RULEC-GEC dev 1,969 2,688 45,260
test 1,535 5,321 92,337
train 10 253 5,062

Slovene Solar-Eval dev 50 1,672 31,365
test 49 1,775 33,515
train 402 6,294 120,433

Swedish SweLL gold dev 50 724 13,232
test 50 653 12,066
train 1,706 29,429 460,385

Ukrainian UA-GEC dev 87 1,318 23,953
test 79 1,089 20,030

Table 2: MultiGEC data statistics (original files using the syntok tokenizer).

marker at the end often resulted in excessively
long outputs. To address this, we added a stop to-
ken (“$$$”) to the end of each essay. After gener-
ation, these stop tokens were removed.

To formalize the roles of the prompt, input, and
correct output, we transformed the data into a .json
format. The prompt it the same for all 17 cor-
pora and is taken from the original provided base-

Proceedings of the 14th Workshop on Natural Language Processing for Computer Assisted Language Learning (NLP4CALL 2025)

36



line: ”You are a grammatical error correction
tool. Your task is to correct the grammaticality
and spelling of the input essay written by a learner.
Return only the corrected text and nothing more.”

The tokens per essay were counted using the
LLaMA tokenizer2. For each corpus, the maxi-
mum number of tokens was used to determine the
maximum generation length, which was set to this
number plus 15%. For example, for Italian, the
maximum token length was 478, so this parame-
ter was set to 550. Keeping this number as low
as possible is important because setting it too high
significantly slows down the prediction process.

For all languages, we used batches of 10 essays
and set the gradient accumulation parameter to 4
steps. The number of optimization steps is pro-
vided in Table 3. Initially, we set the number of
optimization steps to 500. However, after train-
ing about half of the models, we realized that we
did not have enough time left before the system
submission deadline, so we trained the remaining
models with fewer optimization steps.

We did not conduct quantitative research on the
relationship between the number of optimization
steps and model performance. Therefore, it is pos-
sible that similar performance could be achieved
with fewer optimization steps or that better perfor-
mance could be obtained with more optimization
steps.

3.2.1 Detection of Cycles in LLaMA’s
Outputs

Despite using a stop token (“$$$”) to help the
model interrupt the generation process, the model
still occasionally loops and repeats the same sen-
tence (or a few sentences) until it reaches the al-
lotted number of tokens for the current essay.

In order to mitigate this undesired behaviour,
we passed the outputs of the LLaMA model to an
ad-hoc repetition detector which works as follows:
Given a string of characters si with i ranging from
0 to l, the length of the string. For each character
n-gram r (n = 15 in this case), we get the sorted
list of indices at which r appears in s. From this
list, we compute the distance between each pair of
consecutive occurrences of r. Eventually, if there

2Note that this is a different tokenizer from the syntok
tokenizer used to count the number of tokens in Table 2. The
syntok tokenizer is used to separate words and punctuation
symbols in order to compute the various scores of a proposed
correction, while LLaMA’s tokenizer is used internally by the
language model for vectorizing its inputs in order to deal with
rare or out of vocabulary words.

are at least 20 occurrences of r with 10 or more
pairs of the same distance, especially toward the
end of the essay, we flag the essay.

In theory, a model could recover from a cycle
since its internal state evolves during the gener-
ation process, and it could also experience very
long cycles. However, in practice, detecting 10 or
more similarly spaced occurrences of 15 charac-
ters at the end of an essay was sufficient for cap-
turing LLaMA’s loops.

This tool was used for both diagnosis and in-
tervention. When only a few essays are flagged
for loops, we address them with a simple rule. If
the loop is a well-formed sentence (i.e., it starts
with an uppercase letter and ends with punctua-
tion), we cut the essay after the first occurrence
of the loop. If the beginning of the loop can be
found in the original essay, we append the end of
the original essay to our correction. If the loop
is not a well-formed sentence, we cut at the end
of the last well-formed sentence before the loop
and append the rest of the original essay. This ap-
proach helps avoid losing too much of the essay if
the loop occurs early in the text.

For example, in the Czech NatForm corpus,
out of the 646 essays, two had loops (30 repe-
titions of 115 characters for one, and 41 repeti-
tions of 42 characters for the other). The 30 rep-
etitions correspond to the sequence “Na druhém
boku je zástrčka na sluchátka. Na vrchu mobilu
je zástrčka na nabı́jenı́, USB kabel a tlačı́tko na
vypnutı́.” The detected r is actually “. Na druhém
bok”, since it is present in the original essay, we
remove the repeating section and replace it with
the end of the original essay.

Fined-tuned Llama did not generate looping
text on most corpora. The Czech NatWebInf had
one problematic essay (out of 1256) due to a long
string of dashes “-”. There was one problematic
essay in the Greek GLCII corpus (out of 481),
and one in the Ukrainian UA GEC corpus (out
of 456). However, from the 49 Slovene Solar-
Eval essays, 11 were problematic (22.44%) and
virtually all Icelandic essays were problematic as
well. As a result, we decided to use use the XLM-
Roberta detect and correct model (described be-
low) for Slovene and to simply return the original,
untouched texts for Icelandic.

Proceedings of the 14th Workshop on Natural Language Processing for Computer Assisted Language Learning (NLP4CALL 2025)

37



Lang. Source #Optimization Steps
Czech NatForm 150
Czech NatWebInf 500
Czech SecLearn 200
Czech Romani 150
English Write & Improve 200
Estonian EIC 150
Estonian EKIL2 150
German Merlin 500
Greek GLCII 150
Icelandic IceEC 500
Icelandic IceL2EC 500
Italian Merlin 500
Latvian LaVA 500
Russian RULEC-GEC 150
Slovene Solar-Eval 50
Swedish SweLL gold 150
Ukrainian UA-GEC 200

Table 3: The number of optimization steps per corpus during the fine-tuning of the LLaMA models.

3.3 Detect and Correct Errors with
XLM-Roberta

This alternative approach models the task as a two-
stage prediction. The first stage involves detecting
errors in the source data as a token labeling task.
The second stage revolves around using a masked
language model to generate a token as a replace-
ment of a token labeled as an error in the first
stage. In both stages, we used XLM-RoBERTa
encoder-based language model (Conneau et al.,
2020).

For the first stage, we need to create a labeled
corpus from the source and gold essays. We ap-
ply a variant of the Needleman-Wunsch algorithm
used to compute Levenshtein distance. In the clas-
sic algorithm, every error is given a weight of 1,
which could cause some misalignment when there
is a string of errors. To prevent misalignment of
tokens, we give a (usually) lower weight to substi-
tution edits to favor them instead of deletions and
insertions. The actual weight for substitutions is
computed using the ratio function provided by
the python library called ”Levenshtein”3.

Once we have collected all the edit operations
to transform an original sentence into its reference
counterpart, we use these edits to create labels on
the tokenized original sentence. Deletions (a to-
ken that is present in the original sentence but not
the reference) are labeled “-”. Insertions (a to-
ken from reference that should be added to the
sentence) are ignored as they cannot be processed

3The library is available at the following URL: https:
//github.com/rapidfuzz/Levenshtein

easily as part of a token classification task. Sub-
stitutions (when a token was in original sentence
was partially aligned with a token in its reference
counterpart) can be mapped to labels with a vary-
ing degree of granularity. We tried two variants: a
coarse-grain and a fine-grain label scheme. In the
fine-grain label scheme, we computed labels given
predefined error types. We handled three casing
modifications: to lower case, to upper case and to
title case. We also modeled suffix modification for
only the last letter, the tag is the letter to use to cor-
rect the token. Errors that did not fit into any previ-
ous case were given a generic error label marked
as ”<mask>”. In the coarse-grain label scheme,
only the ”<mask>” label is used.

The token classification model is trained by
fine-tuning XLM-RoBERTa embeddings with the
flair library (Akbik et al., 2019).

For prediction, unlabeled essays are first tok-
enized using the syntok library4. The fine-tuned
token classification model is then applied to la-
bel the data using the flair library. When the la-
bel represents a predefined correction to apply (to
lower/upper case, substitute last letter, etc.), it is
directly applied to the token. When a token is la-
beled with the generic error label, we apply XML-
Roberta as a masked language model (MLM) to
output the best token given the context of the sen-
tence. The only optimization we tried is providing
a threshold for the probability of the token that the
MLM predicts. We used a threshold probability of
0.75 to apply a change. That is, the probability of

4https://github.com/fnl/syntok/

Proceedings of the 14th Workshop on Natural Language Processing for Computer Assisted Language Learning (NLP4CALL 2025)

38

https://github.com/rapidfuzz/Levenshtein
https://github.com/rapidfuzz/Levenshtein
https://github.com/fnl/syntok/


the predicted token by XLM-roberta has to be at
least 0.75 or else the token is left unchanged.

In the end, labels other than ”<mask>” and
deletions were scarce and not well recognized by
trained models. The final flair model used the
coarse-grain label scheme.

4 Results

Systems are evaluated on automatic metrics cat-
egorized into two groups : reference-based met-
rics, including GLEU, Precision, Recall and F0.5

scores, and reference-free metrics, represented by
the Scribendi score. Precision, Recall, and F0.5

scores are computed using a modified version of
the ERRANT scorer (Bryant et al., 2017), with
the F0.5 score assigning twice the weight to pre-
cision compared to recall. Additionally, a human
evaluation experiment is planned for a subset of
submitted results following the shared task. The
official evaluation was carried out on the CodaLab
competition platform5 based on the GLEU score.

In Table 4, we reported the official GLEU and
F0.5 scores of our system and those of the baseline
approach. Scores outperforming the baseline are
reported in green; scores lower than the baseline in
red. We note that we outperform the baseline for
most languages, but we obtained very poor results
for German, Icelandic and Slovene.

The failure with German is easy to explain: dur-
ing the prediction phase, the system’s execution
was interrupted, not predicting all the needed out-
put. , preventing it from predicting all the neces-
sary output. Unfortunately, this issue was not no-
ticed by our team, and we submitted an incomplete
file. For the publication of this paper, we reran our
pipeline correctly and obtained a GLEU score of
75.49 for this language.

However, for Icelandic and Slovene, we en-
countered serious problems. At first glance,
the output appeared deviant, with the same sen-
tences being repeated over and over. Therefore,
we decided to submit the Icelandic corpus as it
was, without modification, and to use the XLM-
RoBERTa-based system for the Slovene dataset.

5 Discussion

5.1 Heterogeneity of the MultiGEC datasets

It is worth noting that the corpora exhibit high
variability in annotation, which is crucial to con-

5https://codalab.lisn.upsaclay.fr/competitions/20500

sider when utilizing the MultiGEC dataset. The
variation across corpora helps explain why devel-
oping one model per corpus yields better results
than using one model per language.

For example, the choice of whether or not to
capitalize addresses can differ from one corpus
to another. Additionally, the learners of the lan-
guage who wrote the original essays may come
from different backgrounds. For instance, among
the four different corpora for Czech, there are es-
says written by native students from elementary
and secondary schools (NatForm), informal web-
site texts (NatWebInf), essays written by Romani
ethnic minority children and teenagers (Romani),
and essays written by non-native speakers (Ro-
mani). The errors produced by these different pro-
files of speakers are undoubtedly specific to their
age and social context, and therefore, the correc-
tions are as well.

5.2 LLaMA-3.0’s Pathological Output for
Icelandic and Slovene

Our hypothesis is that these languages are ill
supported by the LLaMA 3.0 model. Although
Meta claims that it has been pre-trained on over
30 languages with high-quality data, non-English
data accounts for only about 5% of the total pre-
training corpus.6

We noticed that there is some Slovene
Wikipedia data in LLaMA 3.0 (Touvron et al.,
2023), but we suspect that it may not be suffi-
cient. Additionally, the MultiGEC training data
for Slovene are very limited. We found no ev-
idence that LLaMA 3.0 possesses knowledge of
Icelandic. This is further supported by an analysis
of the tokenization performed by LLaMA.

If we look at the average number of characters
per token for each set of essays, English, which
is the default language of LLaMA, has 3.90 char-
acters/token, German has 3.04 characters/token,
Italian has 2.77 characters/token, and Icelandic
has 1.83 and 1.87 characters/token (IceEC and
IceL2EC, respectively), which is the lowest of all
the languages present in the shared task data.

The average word length is 4.48 characters in
English, and 4.31 and 4.65 characters (IceEC and
IceL2EC, respectively) in Icelandic. Therefore,
the token length difference cannot be explained by
a word length difference alone. We suspect that
this may be part of the explanation for the patho-

6https://ai.meta.com/blog/meta-llama-3/

Proceedings of the 14th Workshop on Natural Language Processing for Computer Assisted Language Learning (NLP4CALL 2025)

39

https://codalab.lisn.upsaclay.fr/competitions/20500
https://ai.meta.com/blog/meta-llama-3/


Language Source GLEU Lattice GLEU Baseline F0.5 Lattice F0.5 Baseline

Czech

NatWebInf 65.06 53.91 56.24 32.93
Romani 53.70 48.35 45.99 37.65

SecLearn 49.95 45.77 48.61 46.18
NatForm 71.45 76.08 31.99 37.46

English Write & Improve 77.90 75.15 53.79 41.58

Estonian EIC 44.02 36.47 22.73 24.38
EKIL2 56.96 51.12 38.07 31.13

German Merlin 0.05 69.56 14.09 52.58
Greek GLCIIC 51.49 45.07 44.07 43.07

Icelandic IceEC 83.92 80.52 0.00 8.19
IceL2EC 39.79 39.93 0.00 8.14

Italian Merlin 69.96 65.13 40.59 42.64
Latvian LaVA 67.25 48.86 57.77 44.69
Russian RULEC-GEC 77.77 79.02 38.16 34.71
Slovene Solar-Eval 54.34 58.96 5.52 29.45
Swedish SweLL gold 59.88 58.40 40.01 41.46

Ukrainian UA-GEC 74.00 68.03 51.29 22.66

Table 4: Comparison of our results with the baseline model on the minimal edits task. Results outperforming the
baseline are highlighted in bold green, while those underperforming the baseline are in red.

logical behavior of our models with respect to this
language.

Another reason for the poor performances of
LLaMA seems to be the length of the essays. For
all corpora except the Icelandic and Slovene ones,
the average essay length is below 500 tokens (cal-
culated with LLaMA’s tokenizer), ranging from
33.6 tokens per essay on average for the Czech
NatWebInf corpus to 460.8 tokens per essay for
the Ukrainian UA GEC corpus. English Write-
AndImprove2024 essays is 188.8 tokens long on
average. Slovene Solar-Eval essays are on average
1248.0 tokens long, the Icelandic IceL2EC essays
are 1849.2 tokens long and the Icelandic IceEC es-
says are 2496.8 tokens long on average (calculated
by the LLaMA tokenizer). Here again, the differ-
ence between Icelandic and English cannot simply
be explained by the average token length differ-
ence. Icelandic essays are really longer than En-
glish ones and it seems that LLaMA has a harder
time with longer inputs.

6 Distribution of Code

The code is available on GitHub under
the MIT licence at the following address:
https://github.com/lattice-8094/MultiGEC. It can
be used to reproduce our results. Given the sen-
sitivity of the data and the possibility of models
leaking training data or hackers recovering the
training data by inference attacks (Truex et al.,
2021; Zhang et al., 2024), we will only distribute
the program code. The data must be acquired

by contacting the MultiGEC-2025 organizers.
Researchers can obtain our models after making a
personal request via email.

7 Conclusion and Future Work

We found that fine-tuning a multilingual large lan-
guage model was a successful approach for most
languages in the MultiGEC dataset, outperforming
the baseline (using an LLM in a zero-shot setting).
However, the model to be fine-tuned should have
a minimal amount of knowledge about each target
language for success. In this regard, we encoun-
tered difficulties with Slovenian and Icelandic.

Recently, we came across the Goldfish mod-
els (Chang et al., 2024): monolingual language
models for 350 languages, including Icelandic and
Slovenian, which propose smaller language mod-
els but with higher-quality data. It would be in-
teresting to repeat the experiment using the Gold-
fish models and investigate whether the results for
under-resourced languages can be improved.

References
Alan Akbik, Tanja Bergmann, Duncan Blythe, Kashif

Rasul, Stefan Schweter, and Roland Vollgraf. 2019.
FLAIR: An easy-to-use framework for state-of-the-
art NLP. In NAACL 2019, 2019 Annual Confer-
ence of the North American Chapter of the Asso-
ciation for Computational Linguistics (Demonstra-
tions), pages 54–59.

Dan Biderman, Jacob Portes, Jose Javier Gonzalez Or-
tiz, Mansheej Paul, Philip Greengard, Connor Jen-

Proceedings of the 14th Workshop on Natural Language Processing for Computer Assisted Language Learning (NLP4CALL 2025)

40

https://github.com/lattice-8094/MultiGEC


nings, Daniel King, Sam Havens, Vitaliy Chiley,
Jonathan Frankle, Cody Blakeney, and John P. Cun-
ningham. 2024. Lora learns less and forgets less.

Christopher Bryant, Mariano Felice, and Ted Briscoe.
2017. Automatic annotation and evaluation of error
types for grammatical error correction. In Proceed-
ings of the 55th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), pages 793–805, Vancouver, Canada. Associa-
tion for Computational Linguistics.

Christopher Bryant, Zheng Yuan, Muhammad Reza
Qorib, Hannan Cao, Hwee Tou Ng, and Ted Briscoe.
2023. Grammatical error correction: A survey of
the state of the art. Computational Linguistics, page
1–59.

Tyler A Chang, Catherine Arnett, Zhuowen Tu, and
Benjamin K Bergen. 2024. Goldfish: Monolingual
language models for 350 languages. arXiv preprint
arXiv:2408.10441.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal,
Vishrav Chaudhary, Guillaume Wenzek, Francisco
Guzmán, Edouard Grave, Myle Ott, Luke Zettle-
moyer, and Veselin Stoyanov. 2020. Unsupervised
cross-lingual representation learning at scale.

Christopher Davis, Andrew Caines, Oistein Andersen,
Shiva Taslimipoor, Helen Yannakoudakis, Zheng
Yuan, Christopher Bryant, Marek Rei, and Paula
Buttery. 2024. Prompting open-source and commer-
cial language models for grammatical error correc-
tion of english learner text. ArXiv, abs/2401.07702.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and
Luke Zettlemoyer. 2024. Qlora: Efficient finetuning
of quantized llms. Advances in Neural Information
Processing Systems, 36.

Mengsay Loem, Masahiro Kaneko, Sho Takase, and
Naoaki Okazaki. 2023. Exploring effectiveness of
GPT-3 in grammatical error correction: A study
on performance and controllability in prompt-based
methods. In Proceedings of the 18th Workshop on
Innovative Use of NLP for Building Educational
Applications (BEA 2023), pages 205–219, Toronto,
Canada. Association for Computational Linguistics.

Arianna Masciolini, Andrew Caines, Orphée
De Clercq, Joni Kruijsbergen, Murathan Kur-
falı, Ricardo Muñoz Sánchez, Elena Volodina,
and Robert Östling. 2025. The MultiGEC-2025
shared task on multilingual grammatical error
correction at NLP4CALL. In Proceedings of the
14th Workshop on Natural Language Processing
for Computer Assisted Language Learning, Tallin,
Estonia. University of Tartu.

Grigori Sidorov, Anubhav Gupta, Martin Tozer, Do-
lors Catala, Angels Catena, and Sandrine Fuentes.
2013. Rule-based system for automatic grammar

correction using syntactic n-grams for English lan-
guage learning (L2). In Proceedings of the Seven-
teenth Conference on Computational Natural Lan-
guage Learning: Shared Task, pages 96–101, Sofia,
Bulgaria. Association for Computational Linguis-
tics.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro,
Faisal Azhar, et al. 2023. Llama: Open and effi-
cient foundation language models. arXiv preprint
arXiv:2302.13971.

Stacey Truex, Ling Liu, Mehmet Emre Gursoy, Lei
Yu, and Wenqi Wei. 2021. Demystifying member-
ship inference attacks in machine learning as a ser-
vice. IEEE Transactions on Services Computing,
14(06):2073–2089.

Elena Volodina, Christopher Bryant, Andrew Caines,
Orphée De Clercq, Jennifer-Carmen Frey, Elizaveta
Ershova, Alexandr Rosen, and Olga Vinogradova.
2023. MultiGED-2023 shared task at NLP4CALL:
Multilingual grammatical error detection. In Pro-
ceedings of the 12th Workshop on NLP for Computer
Assisted Language Learning, pages 1–16, Tórshavn,
Faroe Islands. LiU Electronic Press.

Zheng Yuan and Mariano Felice. 2013. Constrained
grammatical error correction using statistical ma-
chine translation. In Proceedings of the Seven-
teenth Conference on Computational Natural Lan-
guage Learning: Shared Task, pages 52–61, Sofia,
Bulgaria. Association for Computational Linguis-
tics.

Xinhao Zhang, Olga Seminck, and Pascal Amsili.
2024. Remember to forget: A study on verbatim
memorization of literature in large language models.
In Proceedings of the Fifth Conference on Computa-
tional Humanities Research, Aarhus, Danmark.

Proceedings of the 14th Workshop on Natural Language Processing for Computer Assisted Language Learning (NLP4CALL 2025)

41

http://arxiv.org/abs/2405.09673
https://doi.org/10.18653/v1/P17-1074
https://doi.org/10.18653/v1/P17-1074
https://doi.org/10.1162/coli_a_00478
https://doi.org/10.1162/coli_a_00478
http://arxiv.org/abs/1911.02116
http://arxiv.org/abs/1911.02116
https://api.semanticscholar.org/CorpusID:266999848
https://api.semanticscholar.org/CorpusID:266999848
https://api.semanticscholar.org/CorpusID:266999848
https://doi.org/10.18653/v1/2023.bea-1.18
https://doi.org/10.18653/v1/2023.bea-1.18
https://doi.org/10.18653/v1/2023.bea-1.18
https://doi.org/10.18653/v1/2023.bea-1.18
https://aclanthology.org/2025.nlp4call-1.1/
https://aclanthology.org/2025.nlp4call-1.1/
https://aclanthology.org/2025.nlp4call-1.1/
https://aclanthology.org/W13-3613/
https://aclanthology.org/W13-3613/
https://aclanthology.org/W13-3613/
https://aclanthology.org/2023.nlp4call-1.1
https://aclanthology.org/2023.nlp4call-1.1
https://aclanthology.org/W13-3607/
https://aclanthology.org/W13-3607/
https://aclanthology.org/W13-3607/

