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Abstract

Frame semantics provides an explanation for
how we make use of conceptual frames, which
encapsulate background knowledge and asso-
ciations, to more completely understand the
meanings of words within a context. Unfor-
tunately, FrameNet, the only widely available
implementation of frame semantics, is limited
in both scale and coverage. Therefore, we in-
troduce a novel mechanism for generating task-
specific frames using large language models
(LLMs), which we call Generative FrameNet.
We demonstrate its effectiveness on a task that
is highly relevant in the current landscape of
LLMs: the interpretable storage and retrieval
of factual information. Specifically, Genera-
tive Frames enable the extension of Retrieval-
Augmented Generation (RAG), providing an
interpretable framework for reducing inaccu-
racies in LLMs. We conduct experiments to
demonstrate the effectiveness of this method
both in terms of retrieval effectiveness as well
as the relevance of the automatically gener-
ated frames and frame relations. Expert anal-
ysis shows that Generative Frames capture a
more suitable level of semantic specificity than
the frames from FrameNet. Thus, Generative
Frames capture a notion of frame semantics that
is closer to Fillmore’s originally intended def-
inition, and offer potential for providing data-
driven insights into Frame Semantics theory.
Our results also show that this novel mecha-
nism of Frame Semantic-based interpretable
retrieval improves RAG for question answer-
ing with LLMs—outperforming a GPT-4 based
baseline by up to 8 points. We provide open
access to our data, including prompts and Gen-
erative FrameNet.1

1 Introduction, Motivation and Context

Frame semantics (Fillmore et al., 2006) is a lin-
guistic theory that emphasizes understanding word

1https://github.com/H-TayyarMadabushi/
Generative-FrameNet

meanings through the semantic and conceptual
“frames” or “schemas” within which they operate.
This theory is exemplified by FrameNet, a manu-
ally curated dataset of frames designed to repre-
sent commonly occurring concepts (Baker et al.,
1998; Ruppenhofer, 2006).2 Although FrameNet
has been touted for its utility in improving tasks
such as textual entailment, it has also been crit-
icized for its limited coverage and for being too
abstract to effectively support many downstream
applications (e.g., Burchardt et al. (2009)). In this
work, we propose a novel mechanism for generat-
ing domain-specific frames at the appropriate level
of abstraction for a given downstream task. We
refer to this approach and the resultant frames as
Generative FrameNet.

We focus on the downstream task of retrieving
relevant facts to answer specific questions. We
demonstrate a method for generating more contex-
tually relevant frames that retain their utility in the
evolving landscape of LLMs, which have the inher-
ent tendency to generate plausible sounding, yet
inaccurate output. This phenomenon, referred to as
“hallucinations,” has been a significant stumbling
block in broad deployment of LLMs in applications
requiring accuracy (Ji et al., 2023). Hallucinations
themselves are not limited to factual inaccuracies,
and include other modes of failure.

The capabilities of LLMs typically improve with
an increase in their “size,” which is a combination
of a model’s parameters and the size of the pre-
training corpus. Until recently, this was seen by
some as being evidence that further scaling would
eventually address the shortcomings of LLMs, in-
cluding hallucinations. For example, LLMs were
claimed to develop “emergent abilities”: specif-
ically, it was believed that LLMs, when scaled
to several billion parameters developed capabili-
ties including those required to solve tasks involv-

2https://framenet.icsi.berkeley.edu/

https://github.com/H-TayyarMadabushi/Generative-FrameNet
https://github.com/H-TayyarMadabushi/Generative-FrameNet
https://framenet.icsi.berkeley.edu/
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ing reasoning in humans, thus indicative that the
LLMs were developing reasoning skills (Wei et al.,
2022b). More recent work, however, has shown
that this is not the case and that LLMs instead de-
velop a single capability, which they leverage to
solve tasks (Lu et al., 2023). This capability, called
“in-context learning,” is, roughly put, the ability of
models to solve a particular task based on a few
examples provided in the prompt (Brown et al.,
2020; Chowdhery et al., 2023). Lu et al. (2023)
further suggest that the process of instructional fine-
tuning LLMs to understand instructions (Wei et al.,
2022a), enables models to leverage the same “in-
context” abilities even in the absence of examples.
This finding indicates that further scaling, while
providing improved instruction following abilities,
will not grant models the broader capacity for gen-
eral reasoning.

The fact that LLMs are not likely to develop the
ability to reason has profound implications to work
on improving them, including to mitigating halluci-
nations. It implies that we must explore alternative
approaches. This is especially the case when it
comes to factual hallucinations as the ‘parametric
memory’ in LLMs is orders of magnitude smaller
than the pre-training data (Ji et al., 2023). As such,
they must necessarily use some method of com-
pressing their pre-training data. Without the ability
to distinguish between the information that is rele-
vant and what is not relevant in their pre-training
data, their method of compression defaults to be
the memorisation of frequent information. Less
frequently occurring facts are not explicitly stored
and instead the model has access to only statistical
approximations. Given that the exact information
stored is not explicit and also different for models
of different scale and training regimes, the only way
to get around hallucination is to explicitly provide
LLMs with all but the most common information.

The most effective method of providing such
information, and therefore mitigating factual in-
accuracies to date has been Retrieval Augmented
Generation (RAG), which involves the inclusion
of relevant information to the prompt (Lewis et al.,
2020). However, RAG comes with its own short-
comings. The retrieval of information relevant to
answering a query is not straightforward (Gao et al.,
2024). While LLMs can handle some noise in the
retrieved context provided, a dramatic increase in
noise unsurprisingly leads to deteriorating perfor-
mance of models. This problem becomes even
more important when the query requires reasoning

over multiple facts, each of which are progressively
semantically further from the query. Overall, be-
cause logically connected information is not always
semantically similar, existing keyword and distri-
butional similarity based search and information
retrieval (IR) systems are poorly suited for the spe-
cific IR requirements of LLMs (Fleischer et al.,
2024). Existing methods of dealing with this prob-
lem in IR are not interpretable, and the deep neural
methods relying on embeddings introduce another
opaque mechanism, making failures difficult to di-
agnose and fix. Given this context, this work makes
the following contributions:

1. We propose a novel mechanism of generating
relevant frames at the level of abstraction re-
quired for specific problems using LLMs that
we call Generative FrameNet.

2. We show the effectiveness of these frames on
the task of retrieving relevant information for
answering questions that remains extremely
relevant even in the context of LLMs.

3. We additionally demonstrate, through a man-
ual expert evaluation, the quality and rel-
evance of these frames, showing that our
method has the potential to provide data-
driven resources and insights for the theory of
Frame Semantics.

The rest of this paper is organised as follows: §2
provides an overview of Frame Semantics, and §3
provides an overview of our use of Frame Seman-
tics for retrieval. We then demonstrate the short-
comings of an existing Frame Semantic resource,
FrameNet (§4), before detailing our methods of
generating and using custom frames for indexing
facts in §5. §6 present our results including the ef-
fectiveness of our methods in addition to a manual
analysis of the frame resource we create, before
concluding in §7.

2 Frame Semantics

Frame semantics (Fillmore et al., 2006) is a theory
of linguistics that emphasises that the meanings
of words are best understood by the semantic and
conceptual “frames” or “schemas” within which
they function. As Fillmore puts it, “words rep-
resent categorisations of experience, and each of
these categories is underlain by a motivating situa-
tion occurring against a background of knowledge
and experience” (Fillmore et al., 2006, 373-374).
A frame is the cognitive structure or background
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against which the meaning of a word is defined and
understood. Frames organise knowledge based on
typical situations, actions, or common experiences.

A frame influences how the meanings of words
are interpreted in different contexts. This facili-
tates basic word sense distinctions such as river
“bank” and financial “bank”, but also nuanced in-
terpretations of words such as “guilty” in everyday
or religious contexts as opposed to legal contexts.
Additionally, when a word invokes a frame, it also
invokes related concepts within that frame. For
example, the word “sell” invokes a commercial
transaction frame involving a seller, a buyer, an
item being sold, and a price. Thus, the frame helps
to predict and explain the use of other related words
and the roles they play within the same context.

3 Frame Semantic Retrieval

This section provides an overview of Frame Seman-
tic Retrieval, our proposed mechanism of storing
and indexing factual information to aid effective
retrieval.

3.1 Development & Evaluation Data

In evaluating our mechanism of retrieval, we make
use of Entailment Bank (Dalvi et al., 2021), which
comprises science questions from school years 4 to
6, along with relevant facts and “entailment trees”.

Question How might eruptions affect plants?

Associated
“Factoids”

F1: eruptions emit lava;
F2: eruptions produce ash clouds;
F3: plants have green leaves;
F4: plant producers die without sunlight;
F5: ash clouds block sunlight.

Inference
Steps

F2 + F5 implies I1: eruptions block sun-
light;
F4 + I1 implies I2: eruptions can cause
plants to die.

Answer eruptions can cause plants to die.

Table 1: Example question from Entailment Bank and
associated factoids. LLMs find it significantly easier to
generate the required entailment trees when presented
with all relevant facts, demonstrating the continued rele-
vance of effective and interpretable IR.

Consider Table 1, which presents an example from
the Entailment Bank dataset. The original task
involves building an entailment tree—a tree con-
sisting of inference steps—and consists of three
sub-tasks at different levels of difficulty:
Task 1 presents the model with all relevant facts

and requires the construction of the entailment tree;
Task 2 requires the model to perform the same task,
but with 15 to 25 distractor facts included;
Task 3 involves first extracting the relevant facts
before constructing the entailment tree.
The authors find that even a relatively small model,
T5-11B (Raffel et al., 2020), can perform relatively
well on Tasks 1 and 2, when fine-tuned. Task 3,
they find, is much harder, highlighting the impor-
tance of efficient retrieval (see Dalvi et al. (2021)
for details).

3.2 Frame Semantics for Information
Indexing and Retrial

Overall, these results reinforce our earlier points:
retrieval is non-trivial and improving retrieval has
the potential to significantly boost model perfor-
mance. In the example presented above, using
search terms derived just from the question (e.g.,
“eruption”) including more complex combinations
(e.g., “eruption and plants”) may not effectively
retrieve relevant information. Additionally, if the
search terms are too broad, it can cause the retrieval
of a significant number of irrelevant facts. Both the
lack of relevant facts and a large number of unre-
lated facts can hinder the model’s performance.

Fillmore’s Frame Semantics theory posits that
when the question of Table 1 is presented to an En-
glish speaker, the question would evoke a volcanic
eruption frame and a plant life frame, including
the frame elements of those frames. We contend
that frame structures facilitate capturing the level
of specificity found in the associated factoids, i.e.
frame elements such as “lava, ash, plants, sunlight,”
and the level of specificity needed to reason about
such questions. Triggering such frames activates
the elements, priming speakers to reason about the
question using the relevant concepts (e.g., Bodner
and Masson (2003)). Thus, this work is motivated
by the hypothesis that we can significantly narrow
the search space if we index facts—stored as plain
text—according to the frames they invoke and use
the frames associated with the question along with
the relations between frames to retrieve relevant
facts. To test our hypothesis, we focus our experi-
ments on the retrieval of relevant facts.

Importantly, using frames associated with ques-
tions and relevant factoids, along with frame re-
lations, offers an inherently interpretable method
of indexing and retrieval. This approach also has
the added benefit of enabling easy updates to fast-
changing information.
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3.3 Task: Relevant Fact Retrieval

Our choice of the specific task is motivated by our
earlier observation that LLMs can perform reason-
ably well at answering complex questions when
provided with relevant facts alongside some distrac-
tors. However, as described in the previous section,
the retrieval of these relevant facts poses a signifi-
cant challenge. Therefore, we focus on the task of
retrieving relevant factoids for answering questions
in Entailment Bank. Specifically, we focus on the
information extraction subtask required in Task 3
described in §3.1. Notice that the effective retrieval
of facts would simplify Task 3 to Task 2, the task
of building entailment trees given the relevant facts
and some distractors. Given how effective T5-11B
(which by current standards consists of relatively
few parameters) is on Task 2, simplifying Task 3 to
Task 2 provides a template for solving tasks based
exclusively on retrieved facts, which would in turn
help with the mitigation of factual hallucinations in
LLMs. We slightly modify Task 3 by constructing
the corpus of facts that we extract from using all
the facts required by any question across the rele-
vant data split, instead of the complete text book
corpus which is harder to process. This limitation
is not a significant drawback, as we can always add
more facts if needed. We have chosen not to do so
currently due to cost constraints, but this could be
addressed in the future by leveraging open LLMs.
Regardless, we evaluate Frame Semantic retrieval
and the baselines on exactly the same set of ques-
tions and facts to ensure a fair comparison to past
work (Dalvi et al., 2021). All experiments are run
on the complete Entailment Bank test set consisting
of 340 questions and 1,109 corresponding factoids.

3.4 Empirical Evaluation Metrics

Given the nature of our task, we select Recall@k
as our evaluation metric. The average length of
entailment trees in the Entailment Bank dataset is
7.6 with very few having more than 10. Given
that Task 2 (described previously in §3.1) includes
between 15 and 25 distractors, we test our meth-
ods using Recall@k for k ∈ 35, 40, 45. Success
in this setting will demonstrate that our retrieval
mechanism can effectively simplify Task 3, which
requires retrieval from the entire corpus, into the
simpler Task 2, which involves building entailment
trees based on relevant facts and a few distractors.

3.5 Baselines

We use two different baselines, against which we
compare the effectiveness of Frame Semantic in-
dexing and retrieval. We briefly test a third base-
line using frames from FrameNet, but find it to be
particularly ill-suited for this task (for a manual
comparison of Generative Frames and FrameNet
frames in this context, see §4.1). Consequently, we
discontinue further exploration. The first baseline
a simple keyword match baseline and is chosen
due to our emphasis on interpretability and ease
of correction. Since Frame Semantic retrieval im-
plicitly provides interpretability, we choose a base-
line that is similarly transparent. We first generate
search terms by feeding the relevant question to
RAKE (Rose et al., 2010), a tool for effectively
extracting search terms. We then perform a sim-
ple string match to extract all factoids that con-
tain the keywords. The second baseline we use is
not directly comparable as it is not interpretable.
This consists of using an LLM to generate relevant
search terms. Both baselines can be boosted using
several techniques. However, we choose not to test
these methods, as the purpose of this study is not
create a mechanism that outperforms existing meth-
ods, but to establish the feasibility of the Frame
Semantic indexing and retrieval process which has
the advantages of being interpretable and based on
cognitive linguistic theory.

4 FrameNet

Prior to the introduction of Generative Frames, cre-
ated using LLMs (§5), we explore the effectiveness
of FrameNet, an existing online database based
on Frame Semantics, for the task at hand. The
goal of FrameNet is to catalogue English words
and their associated semantic frames, defining the
various roles and relations in a frame and illustrat-
ing these with example sentences. Each “frame” in
FrameNet captures a specific type of event, relation,
or entity and the roles associated with it.

FrameNet is the product of years of manual ef-
fort. Unfortunately, the 1200 frames of FrameNet
remain limited to the domains of annotated data and
do not have broad coverage of all the frames that a
single speaker would build up over a lifetime of ex-
perience. Indeed, such a coverage goal is ludicrous
given the time and expense of manually construct-
ing FrameNet. This challenge motivated our data-
driven generation of semantic frames, which we
will describe in §5.1. Nonetheless, to clearly justify
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our choice to leverage Generative Frames in lieu of
the existing FrameNet, we evaluate both FrameNet
and our generated frames for suitability as an exter-
nal knowledge base in our RAG approach.

4.1 Manual Frame Evaluation

We randomly sampled a set of questions from
Entailment Bank such that we had five non-
overlapping samples totaling 29 lines (questions
and factoids) each. These 29 lines included 5 ques-
tions and the related supporting factoids for that
question; questions were included for coherency
but only factoids were annotated, as having the rel-
evant frames for each factoid should provide the
relevant factoids for the question, as described in
§3. Each sample was used for a manual annotation
and evaluation task designed to examine the cover-
age of FrameNet as well as the semantic granularity
of any relevant frames. We report full annotation
procedures and details in Appendix A; here we
briefly summarize the tasks and FrameNet results.
These tasks were repeated for the same samples
with our Generative Frames as well; the results for
that evaluation are reported in Section 6.1.

The first task, presented to two annotators, evalu-
ates and provides judgments on the semantic gran-
ularity of the frames assigned by an automatic
FrameNet tagger (Chanin, 2023) to one Entailment
Bank sample. The frames are assigned in order
of the detection of triggers for that frame in that
sentence. For example:
Entailment Bank Factoid: gases released during the
use of fossil fuels causes global warming.
Tagged Frames: USING, CAUSATION

For each frame assigned, the annotators assign a
value from 1-3, where 1 indicates that the frame
is too general to be useful in capturing the most
salient concepts of the instance, 2 is a useful level
of specificity, and 3 is too specific to capture the
salient concepts invoked by the instance.

The second task, presented to the same two an-
notators, asks each annotator to assign up to two
FrameNet frames to another Entailment Bank sam-
ple. In addition, for each instance, the annotator
responds to a question as to whether the potentially
applicable frames are too similar, and therefore
can’t be distinguished as to which is a better fit,
and a separate question as to whether the resource
lacks adequate coverage for capturing the seman-
tics of the instance.

4.2 FrameNet: Manual Evaluation Results

The first task exploring the granularity of the
frames demonstrated that the vast majority of
frames tagged were too general to be useful (17
out of 25 annotation instances had modal values
of “1: too general” across the frames assigned to
that instance). Consider the example above: The
USING frame was found to be too general by both
annotators while the CAUSATION frame was found
to be too general by one but of a useful granularity
by the other annotator. These frames are triggered
by the lexical items “use” and “causes” respectively.
As the matrix verb, “cause” is certainly more cen-
tral to an understanding of the factoid, but both are
general concepts that can be applied to a range of
sentences from many different conceptual domains.

The second task exploring the coverage of
FrameNet demonstrated that it lacks coverage for
the semantic domains of the Entailment Bank data;
i.e. the natural world. Both annotators found
that FrameNet lacked sufficient frame coverage for
about 80% of the 24 factoid instances in the sample.
Our Inter-Annotator Agreement (IAA) calculations
for both tasks are presented in Appendix A.3.

Overall, our manual evaluation of FrameNet
shows that, despite the immense value in the care-
fully curated resource, there are still broad swaths
of domains such as the natural world that lack suit-
able coverage in FrameNet. Although frames can
be triggered by and assigned to our data, these
frames are too general to effectively capture the se-
mantics of the domain in order to support reasoning
and answering questions about it. This motivates
the data-driven, semi-automatic development of a
novel Frame Semantic resource, described next.

5 Frame Semantic Generation: Methods
and Qualitative Analysis

In this section, we detail the methods used for
frame generation, Frame Semantic indexing, and re-
trieval. Table 2 exemplifies all stages of the method-
ology. Given that one objective is to maintain in-
terpretability and to potentially provide data-driven
insights to the theory of Frame Semantics, we per-
form a qualitative analysis of the outputs of each
of the stages. An empirical evaluation of the effec-
tiveness of these methods is presented in §6.2.

The mechanism of retrieving information based
on Frame Semantics consists of three distinct tasks:
frame identification, duplicate testing, and frame
relation identification. The first step of the frame
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Task Prompt Output Example

Frame Identification

During pre-processing,
facts are indexed by the
the frames they invoke

During inference,
relevant facts are ex-
tracted based on frames
invoked by the question
and additional frames
that are related

What is the single/two most important frame,
based on the theory of Frame Semantics, rel-
evant for answering the question/fact below.
Do not include frames about answering ques-
tions or reasoning, that is implied. Do not in-
clude frames which are metaphorical. Ensure
the the name of the frame is as descriptive
as possible. Output a single frame and join
words in the frame by underscores. Output
nothing but the name of the frame.
Question 1: How does the appearance of a
constellation change during the night?
Answer 1: celestial_motion
. . .
Problem:
Question Problem: <QUESTION>
Answer Problem:

Input Question: Tides, such as those along
the coast of Massachusetts, are caused by
gravitational attractions acting on Earth.
Why is the gravitational attraction of the
Moon a greater factor in determining tides
than the gravitational attraction of the much
larger Sun?
Output Frame: GRAVITA-
TIONAL_INFLUENCE

Check if the new frame
must be added to the
frame set

Used during infer-
ence

The following question has been tagged with
the single frame listed. Is this frame signif-
icantly different from existing frames listed
and should it be added as a new frame? Re-
spond with True if it is significantly differ-
ent otherwise False. Respond with True and
False only.
Example Question: From Earth, the Sun ap-
pears brighter than any other star because the
Sun is the
Example Tagged Frame:proximity
Example Existing Frames 2: CELES-
TIAL_MOTION
Example Answer: True
. . .
Question Problem: <INPUT QUESTION>
Tagged Frame Problem: <INPUT NEW
FRAME>
Existing Frames Problem: <INPUT EXIST-
ING FRAME>
Answer Problem:

Input Question: Melinda learned that days
in some seasons have more daylight hours
than in other seasons. Which season receives
the most hours of sunlight in the Northern
Hemisphere?
Input Frame Assigned: SEA-
SONAL_VARIATION_IN_DAYLIGHT
Input List of Existing Frames:
DAYLIGHT_VARIATION, SEA-
SONAL_ADAPTATION, SEA-
SONAL_BEHAVIOR, SEASONAL_CHANGE,
SEASONAL_VARIATION
Output (Add SEA-
SONAL_VARIATION_IN_DAYLIGHT to
Frame Set?): False
Action Taken: Question tagged with DAY-
LIGHT_VARIATION

Identifying Frame
Relations

Used during infer-
ence

Listed below is a single frame relevant to a
question. List those frames which are most
likely to be associated with the facts required
to answer this question. These frames are
based on the theory of Frame Semantics.
Do not include frames about answering
questions or reasoning, that is implied. Do
not include frames which are metaphorical.
[. . . ]
Example Question 1: Stars are organized
into patterns called constellations. One
constellation is named Leo. Which statement
best explains why Leo appears in different
areas of the sky throughout the year?
Example Question Frame: CELES-
TIAL_MOTION
Example Output Frames: CON-
STELLATION_CLASSIFICATION,
STAR_CLASSIFICATION, CELES-
TIAL_MOTION
Problem Question : <QUESTION>
Problem Question Frame : <FRAME>
Problem Output Frames:

Input Question: Which measurement is best
expressed in light-years?
Input Question Frame: DIS-
TANCE_IN_ASTRONOMY
Output set of Frames Related to Question
Frame: CELESTIAL_DISTANCE, ASTRO-
NOMICAL_UNIT, SPATIAL_MEASUREMENT

Table 2: Prompts and associated outputs for each step in frame based indexing and retrieval. Terms enclosed in
<brackets> represent placeholders and . . . represent up to 5 similar in-context examples that are substituted with the
actual examples, question or frame during inference. See text (Section 5) for detailed description of each of the
steps.
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identification task is a pre-processing step, which
involves creating relevant frames where required,
and indexing all relevant factoids based on be-
tween two and four of the most prominent frames
that they invoke (See Row 1 of Table 2). After
pre-processing, at inference time, the single most
important frame associated with the question (the
question frame, also depicted in Row 1 of Table 2)
is identified.

The second task is to check for duplicate frames:
in order to ensure that newly generated frames are
not too similar to existing frames, we perform a du-
plication test, also using GPT-4, depicted in Row 2
of Table 2. This duplication test involves retrieving
the five most semantically similar frames (using
SentenceBERT based vector similarity) from the
previously generated set and prompting GPT-4 to
either (a) determine if the new frame should be
added or (b) decide if one of the existing frames is
sufficient, selecting the most appropriate one.

The third task is to identify frame relations. We
identify frames associated with the question frame,
which are likely to be associated with factoids rele-
vant to answering the original question, but sepa-
rated by one or more logical steps (frame relations,
depicted in Row 3 of Table 2). We conduct the du-
plication test for the related frames as well before
introducing them to our Generative Frames.

The complete prompts are made openly avail-
able on our project site. In all cases, we prompt
GPT-4 (OpenAI et al., 2024) using a temperature
of 0 to ensure reproducible results. Overall, this
method allows us to use an LLM to generate can-
didate frames and to match these with previously
generated frames, thus allowing us to build a frame
based index of factoids that we use for retrieval
through similarly generated frames associated with
questions during inference.

This method supports two key functions: (a) gen-
erating frames associated with a given text, and (b)
identifying frame relations at a single level of sepa-
ration. While further traversal through additional
levels of frame relations is technically possible, we
opted against this due to the potential for noise.
Future work will focus on developing a more struc-
tured and hierarchical frame architecture, which
could allow traversal beyond a single step while
maintaining precision. In the next two sections,
we provide greater details on the frame and frame
relation identification steps.

5.1 Frame Identification

There are two difficulties in identifying the frames
associated with facts or questions. The first is the
necessity to define a complete set of frames, and
the second is the linking of these frames to the rel-
evant fact or question. In addition to our manual
evaluation of FrameNet (§4.1), we conducted ex-
ploratory experiments using FrameNet as a defini-
tive source of all frames, which we used to compare
against facts and questions from Entailment Bank;
we showed that FrameNet is inadequate for our re-
search purpose for two reasons. First, FrameNet’s
focus on ‘trigger’ words to identify frames is prob-
lematic. This emphasis on individual trigger words,
likely influenced by the tools available at the time
of FrameNet’s inception, overlooks the fact that a
sentence, as a whole, might invoke a frame that
is difficult to identify through trigger words alone,
which themselves can be challenging to extract
within sentences. Second, as mentioned in our
manual evaluation findings, the frames available
within FrameNet cover a limited set of domains,
which overlap minimally with the frames that are
appropriate for the Entailment Bank dataset.

To address these issues, we bootstrap the cre-
ation of frames using an LLM, specifically GPT-4.
We prompt GPT-4 to generate frames relevant to
the input fact or question, allowing us to organi-
cally expand our set of frames. We use in-context
examples, selected from the training set, to enable
the model to better output relevant frames. This
process involves initially prompting the model to
generate frames without in-context examples for
facts and questions in the training set one at a time.
From these outputs, we identify outputs deemed
relevant and of sufficient quality and use them as
in-context examples to refine the model’s perfor-
mance. These in-context examples are made avail-
able alongside the data released with this work.

We start with an empty ‘frame set’ and itera-
tively generate frames associated with facts and
questions. For each fact or question, the frames
output by GPT-4 are compared with the existing
frames previously generated (or none in the initial
instances). This duplication test is also done with
the help of GPT-4. We first extract 5 frames, whose
frame names are most semantically similar to that
of the newly generated frame. This is done using
Sentence BERT (Reimers and Gurevych, 2019),
an effective semantic similarity metric that orig-
inally relied on BERT (Devlin et al., 2019), but
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now makes use of custom contextual embeddings.
We then prompt GPT-4 to determine if the newly
generated frame must be added to the frame set.

As an example, GPT-4, when prompted to gen-
erate frames related to the Entailment Bank factoid
“the gravitational pull of the sun on earth’s oceans
causes the tides,” might generate GRAVITATIONAL

INFLUENCE and TIDAL MOVEMENT. These frames
are compared against the existing frames and the
frame GRAVITATIONAL INFLUENCE might be re-
placed by the similar frame GRAVITATIONAL AT-
TRACTION already in our frame set. If a similar
frame is not found, the original frame is added to
the frame set. This same process is then used to
generate frames associated with questions. We find
that GPT-4 is a poor judge of identifying frames
which are truly different form those already in the
frame set. Thus, we always augment the origi-
nal set of frames with five existing frames whose
names are most semantically similar to the original.
See also Table 2 for more examples.

5.2 Frame Relations

We call the overlap between the frames invoked by
a question and those invoked by the facts necessary
for answering that question a first-order overlap.
This first-order overlap isn’t sufficient for extract-
ing all facts relevant to answering a question. As
such, we require a means of identifying relations
between frames, so we can expand the set of rele-
vant frames, as a proxy for the reasoning process.

Instead of importing definitions of frame re-
lations, for example from FrameNet, we gener-
ate these relations using a data-driven approach.
Specifically, we extract questions and associated
facts from the training data. We then assign frames
to both the questions and the facts using the meth-
ods described previously. The frames associated
with the questions and the corresponding facts are
assumed to hold a latent relation, which we use
to generate similar frame relations at the time of
answering questions. This is done by prompting
GPT-4 with the relevant question and the frame
associated with the frame and requiring GPT-4 to
generate frames relevant to answering the ques-
tion. While these relations are currently simplistic,
we believe that iteratively refining them with in-
put from linguists can make them more nuanced.
Row three of Table 2 presents the prompt and an
example output of this step.

6 Results

6.1 Qualitative Analysis & Evaluation

A qualitative analysis of resultant frames and frame
relations demonstrates the effectiveness of this
method. Table 2 presents some of the frames and
frame relations automatically generated using the
methods described above. The results are far from
perfect, but are interesting from the perspectives
of the diversity and adaptability they present. We
note that these results are achieved though prompt-
ing alone. Given that LLMs, such as GPT-4, are
unlikely to be designed to solve tasks such as this,
it is not surprising that there is much room for im-
provement, although the results demonstrate the
feasibility of this method. To robustly evaluate the
quality of the frames and compare to FrameNet,
we conduct the same two manual evaluation tasks
described in §4.1, except this time we use our set
of 941 Generative Frames resulting from the data-
driven process described in §5.

The first evaluation task examines the semantic
granularity of the frame assigned to a factoid in
the same Entailment Bank sample evaluated for
FrameNet (see §4.1 and Appendix A.1). Annota-
tors supply a 1-3 value judgment on each Genera-
tive Frame automatically assigned in the process
of our pipeline, where 1 indicates that a frame is
too general, 2 indicates that a frame is of a useful
granularity for reasoning about the question, and 3
is too specific. When using our Generative Frames,
the majority were found to be of a useful granular-
ity for capturing the semantics of the factoid (15
of 24 annotation instances, 63%, had modal values
of “2: useful” across the frames assigned to that
instance). In comparison to FrameNet, for which 0
frames were thought to be too specific, 2 of the in-
stances received modal values of “3: too specific”.
Only one instance had a modal value of “1: too
general”, although 5 instances were tied for modal
values of 1 or 2.

The second task evaluates the coverage of the
frame resource (Appendix A.2). The same two
annotators were tasked with assigning up to two
Generative Frames to the same sample previously
evaluated for FrameNet (§4.1). Additionally, the
annotators responded to one question as to whether
the potentially applicable frames are too similar,
and one question as to whether the resource lacks
adequate coverage. Given that our frames were
generated to capture the Entailment Bank data, it
is unsurprising that the two annotators agreed that
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the resource had adequate coverage for 100% of
the instances in the sample. Although our Gener-
ative Frames lack a search or annotation interface
parallel to what was used during FrameNet anno-
tation (instead annotators were simply presented
with a long text list of all Generative Frames along
with definitions and frame elements), the annota-
tors agreed upon at least one of the assigned frames
in 83% of 24 instances. This agreement is much
higher than for FrameNet, which was 63%. This
demonstrates that while it can be difficult to agree
upon a triggered frame when the frames are very
general (as in FrameNet), annotators tend to agree
upon the triggered frame when it is of a more pre-
cise granularity in capturing the semantics of the
factoid.

Overall, our evaluation shows that the Genera-
tive Frames have high coverage of our domain, and
that coverage involves frames that are of a useful
granularity for capturing the salient semantics of
factoids, facilitating reasoning about the questions
to which those factoids relate.

6.2 Empirical Evaluation

Recall@
RAKE
Search
(Baseline 1)

GPT-4
Search
(Baseline 2)

Frame
Semantic
Retrieval
(our method)

@35 0.330 0.385 0.439
@40 0.333 0.390 0.464
@45 0.338 0.396 0.473

Table 3: Recall@k between 35 and 45 comparing
Frame Semantic retrieval to search based retrieval where
the search terms are generated using a traditional key-
word based method (RAKE) and using GPT-4. It is
notable that Frame Semantic retrieval performs signif-
icantly better than both baselines across all selected
values of k.

We present an empirical evaluation of the Frame
Semantic retrieval methods described above. We
compare the performance of Frame Semantic re-
trieval to the two search-based baselines described
in Section 3.5. We present the results in Table
3. Overall, we find that Frame Semantic retrieval
outperforms both the simple search-based base-
line, as well as the baseline where search terms
are generated using GPT-4, by a significant margin.
Recall that we test our methods using Recall@k
for k ∈ 35, 40, 45 to take into account the fact
that this allows us to demonstrate that our retrieval
mechanism can effectively simplify Task 3, which
requires retrieval from the entire corpus, into Task
2, which involves building entailment trees based

on relevant facts and a few distractors. Our re-
sults show that we do effectively narrow down the
search space and demonstrates the feasibility of
frame-based indexing.

Frame semantic indexing and retrieval has sig-
nificant advantages—each stage can be improved
by fine-tuning LLMs for the specific purpose. Most
importantly, the transparent nature of this process,
which outputs frames at each stage, allows for the
analysis and ‘debugging’ of each stage.

7 Conclusions and Future Work

This work presents a novel mechanism of gener-
ating relevant frames of the appropriate level of
abstraction for any domain. We demonstrate the
use of these frames in the challenging task of inter-
pretable IR. Our qualitative manual evaluation and
empirical evaluation demonstrate that our hypothe-
sis, that we can effectively narrow the search space
by indexing facts according the the frames they in-
voke along with related frames via frame relations,
is supported. Thus, this work demonstrates the
feasibility and effectiveness of this method in both
retrieval and the automatic generation of frames
which, when scaled to multiple tasks, also has the
potential to provide data-driven insights to the the-
ory of Frame Semantics.

In future work, we will create models that are
fine-tuned for each of the tasks within this ap-
proach: frame generation, identification and frame
relation identification. This approach is feasible, as
the necessary training data can be bootstrapped us-
ing in-context examples and manual quality checks.
We will also extend this work to multiple tasks. We
emphasise that this work also provides a template
for effectively integrating cognitive linguistics and
LLM research, benefiting both fields.

Limitations

Our experiments are based on a single task in a
specific domain. As a proof of concept of a novel
method that is based on cognitive linguistic theory,
these experiments are effective in showcasing the
feasibility of this method. However, demonstrating
the effectiveness of this method on multiple tasks
is required for a more rigorous test, which we leave
to future work. Additionally, our experiments, how-
ever, do not extend to testing LLMs for reduced
hallucinations; prior work implies that improved
retrieval will indeed lead to reduced hallucinations,
but it is left to future work to rigorously test this.
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each sentence. The frames are assigned in order
of the detection of triggers for that frame in that
sentence.

Example 1:
Entailment Bank Factoid: gases released during
the use of fossil fuels causes global warming
Assigned Frames: USING, CAUSATION

The sentences and annotations were presented
to two linguist annotators who are native English
speakers trained in linguistics and semantic role
annotation schemas. In a spreadsheet, each
annotator provided a judgement on each frame
assigned. The judgement options were numerical
values 1-3 corresponding to:

1=Frames are about a high-level concept and not
helpful in summarising the question or factoid
beyond what kind of factoid/question it is
2=Frames are about the topic and helpful in
summarising the question/factoid
3=Frames are too specific to the topic at hand and
provide very little in way of generalisation
NA=The frame assigned is not applicable at all; i.e.
a tagger error

For the first task, we report the modal judgment
value (e.g., 1, 2, or 3) across all frames tagged for
that question/factoid. This gives us a broad sense
of the granularity of the frames despite the fact
that different instances have different numbers of
frames tagged. We also measure Inter-Annotator
Agreement (IAA) by computing simple agreement
in the form of the percentage of frame judgments
agreed upon across the two annotators.

A.2 Evaluation Task 2: Coverage of the
Frame Resource

The second task explores the coverage of the
Entailment Bank domain and the ability of the
two annotators to assign appropriate frames to
the second sample of questions and factoids.
Each annotator is presented with each line of the
Entailment Bank sample in a spreadsheet, and
asked to leverage the online FrameNet search
to find and assign up to 2 relevant frames. For
each annotation instance, the annotator is asked to
respond “yes,” or “no”:

Q1: The 2 frames assigned are too similar; I cannot
tell which is more appropriate

Q2: The resource lacks coverage for capturing this
question/factoid

For the first question, annotators could also re-
sponsd “NA” if only one frame was determined
to be applicable. For the second question, even if
one frame was determined to be triggered by the
question or factoid, the annotator could respond
“yes - the resource lacks coverage...” if the frame
was applicable but so general that it was not useful
in capturing the semantic domain invoked by the
instance.

For the second task, we report the percentage
of “yes” and “no” answers to each question across
all annotation instances. We report this for each
annotator with the expectation that the percentages
should be similar. We also report IAA of the frame
assignment task in the form of the percentage of
agreed upon assigned frames out of the total num-
ber of instances. Each annotation instance can be
counted as a single match if either of the up to two
assigned frames matched.

A.3 IAA Results

FrameNet, Annotation Task 1 Our Inter-
Annotator Agreement (IAA) analysis found that
the annotators agreed upon the same value for
an assigned frame in 39 out of 48 frames (again,
1-4 frames can be assigned per instance), for
an agreement percentage of about 81%. Thus,
although the task is subjective, annotators tend to
agree on the values assigned.

FrameNet, Annotation Task 2 The IAA analysis
of the second task finds that annotators agreed
upon the frame assigned (or that no applicable
frame existed) in 63% of the 24 instances. Since
annotators responded that 80% of the instances
lacked frame coverage that succinctly captured
the factoid, it is reasonable that IAA would be
somewhat low for this task.3 The disagreements
involved related frames; for example:
Example 2
Entailment Bank Factoid: Color is a kind of
property
Annotator 1 Frame: COLOR

3Our IAA is lower than the relatively high frame agreement
reported in Burchardt and Pennacchiotti (2008) of 88%, where
FrameNet frames were assigned to text instances in support
of a textual entailment task. Their frame assignment was
limited to frames evoked by certain lexical triggers assigned in
a previous step, so it is a simper task with much more limited
choices.
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Annotator 2 Frame: COLOR_QUALITIES

Generative Frames, Annotation Task 1 In
our IAA analysis of the first task, we find that
annotators agreed on the value judgement of the
automatically assigned Generative Frame in 65%
of the 71 total frames assigned (instances could
be assigned up to 4 frames). This IAA is slightly
lower than that of the FrameNet evaluation, likely
because all of the FrameNet frames were very
general, whereas the Generative Frames have a
greater range from too general to too specific.

Generative Frames, Annotation Task 2 Given
that our frames were generated to capture the En-
tailment Bank data, it is unsurprising that the two
annotators agreed that the resource had adequate
coverage for 100% of the instances in the sample.

However, the annotators did not agree upon the
extent to which the applicable frames were too
similar. One annotator only found 2 applicable
frames for 3 of the 24 instances (for all others only
one frame was assigned), and answered that the 2
frames were sufficiently distinguishable in all 3 of
those cases. The other annotator found 2 applicable
frames for 13 of the 24 instances, and answered
that in all 13 cases, the 2 frames were too similar
to distinguish. This reinforces the notion that the
frames are of a finer semantic granularity in com-
parison to FrameNet, but also demonstrates that the
annotators may have approached this task differ-
ently. While FrameNet has a nice search interface
for its frames, we currently have no such tool for
the Generative frames. Thus, one annotator may
have taken an approach of searching through our
spreadsheet listing Generative Frames until a well-
fitting frame was found and then stopping, while
the other may have searched more broadly to find
multiple frames.

The annotators agreed upon at least one of the
assigned frames in 83% of the 24 instances. This
agreement is much higher than the equivalent for
FrameNet, which was at 63%.
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