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Abstract

Large language models (LLMs) have gained
popularity in recent years for their utility in var-
ious applications. However, they are sensitive
to non-semantic changes in prompt formats,
where small changes in the prompt format can
lead to significant performance fluctuations.
In the literature, this problem is commonly
referred to as prompt brittleness. Previous
research on prompt engineering has focused
mainly on developing techniques for identi-
fying the optimal prompt for specific tasks.
Some studies have also explored the issue of
prompt brittleness and proposed methods to
quantify performance variations; however, no
simple solution has been found to address this
challenge. We propose Mixture of Formats
(MOF), a simple and efficient technique for
addressing prompt brittleness in LLMs by di-
versifying the styles used in the prompt few-
shot examples. MOF was inspired by com-
puter vision techniques that utilize diverse style
datasets to prevent models from associating
specific styles with the target variable. Empir-
ical results show that our proposed technique
reduces style-induced prompt brittleness in var-
ious LLMs while also enhancing overall perfor-
mance across prompt variations and different
datasets.

1 Introduction

Large language models (LLMs) are useful for
many applications and tasks i.e., content gener-
ation, translation, text analysis, etc. One of the
popular techniques for adapting pre-trained LLMs
to specific tasks that has emerged in recent years is
prompt engineering (Liu et al., 2023; Tonmoy et al.,
2024; Chen et al., 2023). Prompt engineering in-
volves carefully crafting task-specific instructions
and a few input-output demonstrations (prompts)
to guide LLMs without changing their parameters
(Sahoo et al., 2024). The popularity of prompt engi-
neering can be attributed to the fact that it does not

require labeled data and only needs a few demon-
strations in prompts containing few-shot examples
(Liu et al., 2023). Prompting is also generally com-
putationally cheaper than supervised fine-tuning
techniques since the model parameters are not mod-
ified (Sahoo et al., 2024).

Existing prompting techniques include zero-shot
prompting (Radford et al., 2019), few-shot prompt-
ing (Brown et al., 2020), chain-of-thought (CoT)
prompting (Wei et al., 2022), and automatic chain-
of-thought (Auto-CoT) prompting (Zhang et al.,
2023). Most research on prompting techniques has
focused on identifying or designing good prompts
for specific tasks (Zhou et al., 2023b; Wan et al.,
2023). However, a key problem often overlooked
by these techniques is the sensitivity of LLMs to
meaning-preserving changes in prompts. Exam-
ples of such changes include adding extra spaces,
replacing two colons with one, changing the order
of few-shot examples, or varying the choice of few-
shot examples (He et al., 2024; Sclar et al., 2024;
Lu et al., 2022; Wan et al., 2023). This problem is
sometimes referred to as prompt brittleness (Zhou
et al., 2023a). Prompt brittleness contributes to
LLMs being unreliable and prevents their adoption
in high-risk domains such as healthcare.

In this work, we focus on style-induced prompt
brittleness as illustrated in Figure 1, and propose
Mixture of Formats (MOF) to address it. MOF
is a simple and computationally efficient prompt-
ing technique where each few-shot example in the
prompt is presented in a distinct style. Furthermore,
the model is instructed to rewrite each example us-
ing a different style, as shown in Figure 2. MOF
was inspired by ideas from computer vision that
involve learning from datasets with diverse styles
to prevent models from associating styles with the
target variable (Arjovsky et al., 2019; Kamath et al.,
2021; Yin et al., 2021; Wald et al., 2021; Ngweta
et al., 2023; Li et al., 2021). We evaluate the effec-
tiveness of MOF prompting using datasets from var-
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ious tasks within SuperNaturalInstructions (Wang
et al., 2022), comparing its performance against
traditional prompts. Our experiments focus on few-
shot prompting, where a traditional prompt refers
to a regular few-shot prompt, and a MOF prompt
is a few-shot prompt that has been converted into
the MOF style, as demonstrated in Figure 2.

Figure 1: A demonstration of how small changes to the
prompt format style can sometimes lead to incorrect
predictions in LLMs.

2 Related work

Traditional prompt engineering techniques.
Several prompt engineering techniques have been
proposed in recent years. Zero-shot prompting is a
technique in which a prompt contains a description
of the task and no training data is required (Radford
et al., 2019). Unlike zero-shot prompting, few-shot
prompting adds a few input-output demonstrations
to the prompt to further help the model understand
the task (Brown et al., 2020). Both zero-shot and
few-shot prompting techniques enable the applica-
tion of LLMs on new tasks without extensive train-
ing (Sahoo et al., 2024). For reasoning and logic
tasks, prompting techniques that have been pro-
posed include chain-of-thought (CoT) (Wei et al.,
2022) and automatic chain-of-thought (Auto-CoT)
(Zhang et al., 2023). CoT is a prompting technique
that encourages LLMs to do step-by-step reasoning
(Wei et al., 2022). Since manually creating CoT
examples is time-consuming and not easily scal-
able, Zhang et al. (2023) proposed Auto-CoT to
automatically guide LLMs to generate reasoning
steps using a "Let’s think step by step" statement
in the prompt.

These traditional prompting techniques can be
adapted to the MOF format by applying differ-

ent formatting styles to each prompt example, as
demonstrated in Figure 2. In this paper, we focus
on the application of MOF to few-shot prompting.

Optimizing for the best prompt. This line of
work focuses on optimizing and identifying the
most effective prompt for a given task. Zhou et al.
(2023b) propose the automatic prompt engineer
(APE), an approach that enables the generation
and selection of prompt instructions automatically.
APE involves analyzing input queries, generating
candidate prompt instructions, and then using rein-
forcement learning to select the best prompt (Zhou
et al., 2023b). Similarly, Wan et al. (2023) pro-
pose a method where an LLM generates zero-shot
outputs for given inputs, followed by selecting
high-quality few-shot examples to construct an im-
proved prompt, focusing on consistency, diversity,
and repetition. Since automatic prompt optimiza-
tion (APO) methods focus on optimizing instruc-
tion or optimizing few-shot examples, Wan et al.
(2024) propose a technique to optimize for both,
and compare its performance with the performance
of techniques that only optimize instructions or ex-
amples. Yang et al. (2024) present Optimization
by PROmpting (OPRO), a method that leverages
LLMs as optimizers by describing the optimiza-
tion task in natural language (Yang et al., 2024).
Pryzant et al. (2023) propose Prompt Optimiza-
tion with Textual Gradients (ProTeGi), which em-
ploys text gradients guided by beam search and
bandit selection techniques for automatic prompt
optimization (Pryzant et al., 2023). Additionally,
Khattab et al. (2024) introduce DSPy, a framework
that replaces hard-coded prompt templates with a
systematic approach for building language model
pipelines. Other methods for identifying optimal
prompts include (Feffer et al., 2024; Sorensen et al.,
2022; Yin et al., 2023).

Unlike existing methods in this area that repeat-
edly search for optimal prompts per task and model,
our goal is to reduce style-induced prompt brittle-
ness using an efficient and straightforward recipe
illustrated in Figure 2.

Quantifying prompt brittleness in LLMs. Sev-
eral works have shown that LLMs are sensitive to
changes in prompt formats (Sclar et al., 2024; He
et al., 2024; Voronov et al., 2024) and to the or-
der of few-shot examples in the prompt (Lu et al.,
2022). Sclar et al. (2024) propose FormatSpread, a
method to efficiently measure performance varia-
tions in LLMs caused by prompt format changes,
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Figure 2: An illustration of how to convert a traditional prompt into a MOF prompt. This example serves as a
simple demonstration of the conversion process. In the actual experiments, datasets use various formats such as
Passage:: {} , Answer:: {} for dataset task280, SYSTEM REFERENCE : {}. ORIGINAL REFERENCE : {}.
ANSWER : {} for dataset task1186, and Tweet:{} , Label:{} , Answer:{} for dataset task905. These formats
are generated using FormatSpread (Sclar et al., 2024), as described in Section 3.1. The datasets used are described
in Table 3.

by computing the performance difference (spread)
between the best-performing format and the worst-
performing format. Due to the sensitivity of LLMs
to prompt format variations, Polo et al. (2024) pro-
pose PromptEval, an efficient method for evaluat-
ing LLMs on multiple prompts instead of a single
prompt. Similarly, Mizrahi et al. (2024) propose
metrics for multi-prompt evaluation of LLMs.

While these approaches are valuable tools
for quantifying prompt brittleness, our proposed
method focuses on mitigating it, particularly the
brittleness arising from style variations in prompt
formats.

Prompt ensembles. Arora et al. (2022) introduce
Ask Me Anything (AMA), a prompting approach
that transforms inputs into a question-answering
format to encourage open-ended responses. AMA
generates multiple imperfect prompts and com-
bines the responses using a weak supervision strat-
egy to produce the final output (Arora et al., 2022).
Similarly, Voronov et al. (2024) propose Template
Ensembles, an approach that aggregates model pre-
dictions across multiple prompt templates. How-
ever, both methods are computationally expensive,
as they require aggregating predictions from mul-
tiple prompts. Furthermore, unlike our proposed
method, they do not specifically address prompt
brittleness caused by style variations in prompt for-
mats.

3 Mixture of Formats

Style-induced prompt brittleness in LLMs is simi-
lar to problems observed in computer vision, where
small changes to an image’s style (eg. color or

background) can affect the model’s ability to make
accurate predictions (Nagarajan et al., 2020). In
computer vision, various approaches have been de-
veloped to address this issue, often involving learn-
ing from diverse datasets (Arjovsky et al., 2019;
Ngweta et al., 2023; Kamath et al., 2021; Yin et al.,
2021; Wald et al., 2021; Li et al., 2021). The un-
derlying idea is that exposure to diverse data points
helps the model disassociate styles from the tar-
get variable. Drawing inspiration from these tech-
niques, we propose Mixture of Formats (MOF), a
novel prompting strategy that deviates from tradi-
tional ways of crafting prompts by employing a
distinct style format for each few-shot example in
the prompt. To further reinforce model understand-
ing, we have the model rewrite the question and
answer of each example using a different format
style, as illustrated in Figure 2. The effectiveness
of this approach is evaluated in the subsequent sub-
sections.

3.1 Experiments

Let X denote input queries for a task, and Y de-
note the target variable. Given N observations of
inputs X and their corresponding targets Y as data
D = {Xn, Yn}Nn=1, we automatically build a tradi-
tional prompt and its MOF prompt version, each
containing 5 few-shot examples, and use them for
inference with an LLM. The traditional prompt is
created using FormatSpread (Sclar et al., 2024),
while the MOF prompt is generated by modifying
FormatSpread to incorporate diverse formats within
the few-shot examples, as illustrated in Figure 2.

Using FormatSpread, we create 10 traditional
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(a) llama-3-70b-instruct (b) llama-2-13b-chat

(c) llama-2-13b (d) falcon-11B

Figure 3: Comparing the performance spread of traditional prompts and MOF prompts. Spread is a metric for
quantifying style-induced prompt brittleness and it is obtained by taking the difference between the best performing
prompt (maximum accuracy) and the worst performing prompt (minimum accuracy). MOF prompts perform
comparably or outperform traditional prompts in most datasets and in some datasets, traditional prompts have better
performance.

prompt variations and 10 MOF prompt variations.
From the 10 prompt variations, for both traditional
and MOF prompts, we compute performance accu-
racies for each prompt format across various tasks.
The goal is to compare the style-induced prompt
brittleness between traditional prompts and MOF
prompts. As in Sclar et al. (2024), we measure
brittleness by calculating the performance spread,
defined as the accuracy difference between the best-
performing and worst-performing prompt formats.
The evaluation pipelines for traditional and MOF
prompts are summarized in Algorithm 1 and Algo-
rithm 2, respectively.

Datasets We perform experiments on datasets
covering various tasks from SuperNaturalInstruc-
tions (Mishra et al., 2022; Wang et al., 2022). Due
to limited computational resources, we randomly
selected 16 datasets and for each dataset we use
1000 samples and a batch size of 100. The datasets
used are described in Table 3.

Baselines, metrics, and LLMs used In our ex-
periments, we use traditional few-shot prompts as
our baselines, where we compare the performance

of LLMs when using traditional prompts versus
MOF prompts. A primary focus of this work is
to determine whether MOF prompting can min-
imize performance variations (spread) in LLMs
when prompt format styles change. The perfor-
mance spread is obtained by taking the difference
between the highest performing prompt (denoted
as "Max Accuracy" in the results tables) and the
minimum performing prompt (denoted as "Min Ac-
curacy"). The spread value ranges from 0.0 to 1.0,
where values closer to 0.0 indicate that the LLM
is more robust and less sensitive to style changes,
while values closer to 1.0 suggest that the LLM
is highly sensitive to these changes. Additionally,
for both traditional and MOF prompts, we com-
pute the average accuracy across all 10 prompt
variations to assess the overall performance of
MOF prompts relative to traditional prompts. We
use four LLMs in our experiments: falcon-11B,
Llama-2-13b-hf, Llama-2-13b-chat-hf, and
llama-3-70b-instruct.

We emphasize that while MOF prompting can
be applied and compared with other existing tra-
ditional prompting techniques, such as automatic
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Table 1: Best performing format (Max Accuracy) and worst performing format (Min Accuracy) results for both
traditional prompts and MOF prompts for llama-3-70b-instruct. MOF prompts improve the Min Accuracy and
the Max Accuracy over traditional prompts in most cases.

Task Traditional Prompts MOF Prompts
Min Accuracy Max Accuracy Min Accuracy Max Accuracy

task280 0.811 0.860 0.880 0.900
task317 0.139 0.229 0.712 0.795
task1347 0.248 0.524 0.464 0.535
task1612 0.624 0.839 0.787 0.851
task1502 0.443 0.666 0.479 0.639
task161 0.472 0.507 0.475 0.512

chain-of-thought (Auto-CoT) (Zhang et al., 2023)
and the automatic prompt engineer (APE) (Zhou
et al., 2023b), this paper focuses on applying MOF
prompting to regular few-shot prompting and com-
paring their performances, due to limited computa-
tional resources.

Generating responses for evaluation To gener-
ate a response for a given question, a traditional or
MOF prompt is combined with the question and
then passed to an LLM to generate the response.
The generated response is then compared to the
ground-truth answer to calculate the model’s accu-
racy.

3.2 Results

We perform experiments to evaluate whether MOF
prompts reduce prompt brittleness in LLMs by
comparing their spread with traditional prompts.
We also assess improvements by analyzing the best
(Max Accuracy) and worst (Min Accuracy) per-
forming prompts. Finally, we evaluate overall per-
formance by comparing the mean accuracies across
all 10 prompt variations for both prompt types.

Minimizing prompt brittleness Figure 3
shows that MOF prompting effectively reduces
style-induced prompt brittleness across several
datasets and LLMs, with a notable 46% reduc-
tion in task280 using Llama-2-13b. While
MOF prompts generally perform as well or
better than traditional prompts, exceptions
occur in task190 (llama-3-70b-instruct),
task1612 (llama-2-13b-chat), and task320
(falcon-11B), where traditional prompts perform
better. Investigating why MOF fails on these
datasets is an important future direction.

Best and worst performing prompts Results
for the best-performing prompt (Max Accuracy)
and worst-performing prompt (Min Accuracy) for
both traditional and MOF prompting are reported
in Table 1. We observe that MOF prompting not
only reduces spread but also improves both mini-
mum and maximum accuracies. Average accuracy
results across all 10 prompt variations for both tradi-
tional and MOF prompts are discussed in Appendix
A.

4 Conclusion and future work

Addressing prompt brittleness remains a challenge,
particularly when caused by changes in prompt for-
mat styles. In this work, we introduce a simple
and efficient prompting technique, MOF, and eval-
uate its effectiveness in addressing style-induced
prompt brittleness. The preliminary results are
promising, with significant improvements over tra-
ditional prompting in many datasets, as shown in
Figure 3.

Future directions include integrating MOF with
techniques like chain-of-thought (CoT) and auto-
matic prompt engineer (APE), comparing its per-
formance with methods that aggregate results from
multiple prompts such as AMA (Arora et al., 2022)
and Template Ensembles (Voronov et al., 2024),
and conducting experiments with larger LLMs like
GPT-4, Claude 3.5 Sonnet, Falcon 40B, and Llama
3.1 405B. Additionally, analyzing MOF’s failures
on certain datasets is a crucial area for further ex-
ploration.

We hope this work will inspire further research
into addressing prompt brittleness in LLMs, and
the code for this project is publicly available on
GitHub.1

1Code: github.com/lilianngweta/mof.
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A Appendix

Average accuracy across all 10 prompt variations Up to this point, we have examined the performance
in minimizing prompt brittleness, as well as the performance of the best and worst performing prompts.
In this section, we focus on the performance of traditional and MOF prompts across all 10 prompt
variations for each. The average accuracy across these 10 prompt variations for both traditional and MOF
prompts is reported in Table 2. For all LLMs, we find that MOF prompts perform nearly as well as tra-
ditional prompts, with MOF prompts generally leading to significant overall mean accuracy improvements.

Algorithm 1 Traditional prompts evaluation pipeline

1: Input: Data D
2: Create 10 variations of traditional prompts using FormatSpread (Sclar et al., 2024).
3: Use the created traditional prompt variations to generate responses.
4: Evaluate each of the 10 traditional prompts and save results.
5: Compute the average accuracy across all 10 traditional prompt variations.
6: Identify the best performing prompt, the worst performing prompt, and compute the spread.
7: Output: Return accuracies for the best performing prompt (max accuracy), worst performing prompt

(min accuracy), the spread, and the average accuracy across all 10 traditional prompt variations.

Algorithm 2 MOF prompts evaluation pipeline

1: Input: Data D
2: Create 10 variations of MOF prompts using a modified FormatSpread (Sclar et al., 2024) that

incorporates diverse styles in the few-shot examples as illustrated in Figure 2.
3: Use the created MOF prompt variations to generate responses.
4: Evaluate each of the 10 MOF prompts and save results.
5: Compute the average accuracy across all 10 MOF prompt variations.
6: Identify the best performing prompt, worst performing prompt, and compute the spread.
7: Output: Return accuracies for the best performing prompt (max accuracy), worst performing prompt

(min accuracy), the spread, and the average accuracy across all 10 MOF prompt variations.
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Table 2: Average accuracy results across 10 prompt variations for traditional prompts (denoted as Trad Mean Acc)
and MOF prompts (denoted as MOF Mean Acc). For all LLMs, MOF prompts perform comparable and in most
cases have a higher overall average accuracy than traditional prompts.

(a) Llama-2-13b-chat

Task Trad Mean Acc MOF Mean Acc

task280 0.853 0.841
task317 0.578 0.749
task1612 0.471 0.490
task1502 0.596 0.579
task161 0.199 0.278

(b) Llama-2-13b

Task Trad Mean Acc MOF Mean Acc

task280 0.635 0.842
task317 0.564 0.725
task1612 0.564 0.505
task1502 0.489 0.485
task161 0.245 0.371

(c) falcon-11B

task Trad Mean acc MOF Mean acc

task280 0.727 0.802
task317 0.501 0.672
task1612 0.638 0.553
task1502 0.305 0.493
task161 0.390 0.387

(d) llama-3-70b-instruct

task Trad Mean acc MOF Mean acc

task280 0.836 0.890
task317 0.154 0.770
task1612 0.800 0.821
task1502 0.600 0.593
task161 0.496 0.492

Table 3: Datasets from SuperNaturalInstructions (Mishra et al., 2022; Wang et al., 2022) that we used in our
experiments.

Dataset ID Dataset Description

task280 A text categorization dataset that involves classifying sentences into four types of stereotypes: gender, profession,
race, and religion.

task317 A stereotype detection dataset that involves classifying sentences into various types of stereotypes.

task1347 A text matching dataset that involves classifying the semantic similarity of two sentences on a scale of 0 - 5.

task1612 A textual entailment dataset derived from the SICK dataset, that involves accurately classifying labels to show the
relationship between two sentences.

task1502 A toxic language detection dataset that involves classifying the type of tweet in HateXplain.

task161 A dataset focused on counting the words in a sentence that contain a specified letter.

task158 A dataset that involves counting the number of times a word occurs in a sentence.

task1186 A text quality evaluation dataset that involves evaluating the naturalness of system generated reference.

task190 A textual entailment dataset that involves choosing whether two given sentences agree, disagree, or neither with each other.

task1284 A text quality evaluation dataset that involves evaluating the informativeness of system generated reference.

task607 A toxic language detection that involves determining whether or not the post is intentionally offensive.

task163 A dataset that involves counting the number of words in the sentence that end with a specified letter.

task905 A toxic language detection dataset that involves determining whether the given category of a tweet is true or false.

task320 A stereotype detection dataset that involves determining whether a given target pertaining to race in two sentences is
a stereotype.

task316 A stereotype detection dataset that involves classifying whether a sentence is stereotype or anti-stereotype.

task162 A dataset that involves counting the words in a sentence that begin with a specified letter.
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