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Abstract

Measuring how real images look is a complex
task in artificial intelligence research. For ex-
ample, an image of a boy with a vacuum cleaner
in a desert violates common sense. We intro-
duce a novel method, which we call Through
the Looking Glass (TLG), to assess image com-
mon sense consistency using Large Vision-
Language Models (LVLMs) and Transformer-
based encoder. By leveraging LVLMs to ex-
tract atomic facts from these images, we ob-
tain a mix of accurate facts. We proceed by
fine-tuning a compact attention-pooling classi-
fier over encoded atomic facts. Our TLG has
achieved a new state-of-the-art performance
on the WHOOPS! and WEIRD datasets while
leveraging a compact fine-tuning component.1

1 Introduction

People quickly notice something unusual in im-
ages that defy common sense, like Einstein holding
a smartphone. We find it odd even though each
part seems normal. Our brain’s ability to under-
stand normality goes beyond just identifying ob-
jects (Zellers et al., 2019). It involves connecting
visual cues with everyday knowledge.

In this work, we propose a visual commonsense
model that utilizes the observation that LVLMs
may generate contradictory facts when confronted
with images defying common sense (Liu et al.,
2024b). By leveraging LVLMs to extract atomic
facts from these images, we obtain a mix of accu-
rate facts and erroneous hallucinations. Then we
fine-tune a compact attention-pooling model over
encoded atomic facts.

Our results indicate that using the classifier for
basic facts can efficiently spot strange images. Sur-
prisingly, this method outperforms existing more
complex techniques.

1https://github.com/s-nlp/
through-the-looking-glass

In addition, we introduce a synthesized WEIRD
dataset, a dataset of 824 samples of normal and
strange images. Using this dataset, we further con-
firmed the performance of our model.

Our contributions are as follows:

• We present a new method called TLG that
achieved state-of-the-art performance on the
existing dataset of normal and strange images
WHOOPS!.

• We present a new dataset dubbed WEIRD
which is more challenging and nearly four
times larger than WHOOPS!.

2 Related Work

Recently, commonsense reasoning has attracted
substantial interest from the research community,
spanning disciplines within NLP and CV, with nu-
merous tasks being introduced.

Guetta et al. (2023) introduced the
WHOOPS! benchmark, comprised of pur-
posefully commonsense-defying images created
by designers using publicly available image
generation tools like Midjourney. They used a
supervised approach based on BLIP-2 Flan-T5 (Li
et al., 2023a) on multiple scales. The proposed
fine-tuned model managed to outperform a random
baseline, but still falls significantly short of human
performance.

LLMs are capable of producing highly fluent
responses to a wide range of user prompts, but
they are notorious for hallucinating and making
non-factual statements. Manakul et al. (2023b) pro-
posed SelfCheckGPT, a straightforward sampling-
based method that enables fact-checking of black-
box models with zero resources.

To assess consistency among multiple sam-
pled responses, SelfCheckGPT utilizes several
techniques, including BERTScore, an automatic
multiple-choice question answering generation
(MQAG) framework (Manakul et al., 2023a), and
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Figure 1: WEIRD dataset generation process. First, we formed a task pool for the few-shot generation of new
samples from the WHOOPS! benchmark. Next, we randomly sampled few-shots from the task pool and asked
GPT-4o to generate new samples. The samples were then visualized using Dall-E 3 and manually filtered. Good
samples were added to the task pool for the next few-shot sampling.

NLI contradiction scores to detect hallucinations
in the generated responses. However, the most
effective method found was prompting the LLM
to verify if the generations are supported by the
context or not.

Regarding multi-modal case, Jing et al. (2023)
proposed FAITHSCORE, a reference-free and fine-
grained evaluation metric that measures the faith-
fulness of the generated free-form answers from
large vision-language models. The FAITHSCORE
uses multistep approach: (1) identify the descrip-
tive content, (2) extract corresponding atomic facts
from the identified sentences, and (3) the faithful-
ness of all atomic facts is verified according to the
input image by applying Visual Entailment Model
(VEM), which is able to predict whether the image
semantically entails the text. Analogously, NLI has
been used in textual mode to verify premises and
hypotheses and subsequently to detect hallucina-
tions (Maksimov et al., 2024).

Rykov et al. (2025) proposed an approach, in
which LVLM is used to first generate atomic facts
from images, resulting in a combination of accu-
rate facts and erroneous hallucinations. The next
step involves calculating pairwise entailment scores
among these facts and aggregating these values to
produce a single reality score.

Our approach is similar to the preceding meth-
ods, as we also utilize LVLMs to extract atomic
facts from the image. We then train a supervised
model to learn the relationships between the de-
rived facts. If the classifier identifies a high contra-
diction among atomic facts, it indicates that one of
the generated atomic facts is likely a hallucination.
This often occurs when the LVLMs encounter an
unusual image (Liu et al., 2024b), leading to such
inconsistencies in most cases.

WHOOPS! WEIRD

# of samples 204 824
# of categories 26 12
# of sub-categories –– 181
Human baseline 92% 82.22%

Table 1: Comparison details between WHOOPS! and
WEIRD. WEIRD contains 4 times more samples than
WHOOPS!. In addition, WEIRD contains 181 differ-
ent generated commonsense-breaking categories, which
have been grouped into 12 global categories.

3 Dataset

This section describes the datasets we used to eval-
uate our methodology.

3.1 WHOOPS!
To evaluate our methods, we employ the
WHOOPS!2 benchmark, focusing on a subset com-
prising 102 pairs of weird and normal images. Per-
formance is measured by binary accuracy within
this paired dataset, where a random guess would
yield 50% accuracy. To assess human performance,
three annotators were enlisted to categorize each
image as weird or normal, relying on a majority
vote for the final determination. Impressively,the
human baseline reached 92%, indicating that de-
spite subjectivity, there is a clear consensus on what
constitutes weirdness within the specific context of
the WHOOPS! benchmark.

3.2 WEIRD
Due to the fact that the WHOOPS! benchmark
is relatively small, we generated a larger bench-
mark for quantifying image realism to validate our
methodology – WEIRD3.

2Weird and HeterogeneOus Objects, Phenomena, and
Situations

3Weird Examples of Images with Real-life Discrepancies
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Figure 2: The proposed approach TLG for image commonsense consistency evaluation. Using the LVLM-generated
atomic facts about the image, we train a classifier using hidden states from the textual encoder.

The detailed process of WEIRD dataset creation
is shown in Figure 1. Like the Self-Instruct (Wang
et al., 2023) dataset, WEIRD was generated in
an iterative, semi-automatic manner using LLM.
Specifically, we used WHOOPS! as an initial task
pool with few-shot samples. In each iteration, we
randomly sampled 5 pairs of normal and weird
situations, along with the commonsense-breaking
category. Each few-shot sample contains the break-
ing commonsense category, a caption of the normal
image, and a caption of a strange image. The ran-
domly sampled few-shots were passed to GPT-4o
to generate a new category and captions. See the
exact prompt used for generation in Appendix I. In
the next step, these textual captions were used to
generate images with Dall-E 3.

In each iteration, we generated 50 pairs of nor-
mal and strange images, resulting in 100 samples
after each iteration. We also manually filtered out
bad samples. We considered bad samples to be
those with inconsistencies between image and cap-
tion, or with textual noisy captions. For example,
there were many inconsistencies in the captions
that mention celebrities. It turned out that Dall-E
3 struggled with the generation of celebrity faces,
while some strange captions were based on putting
certain celebrities in inappropriate conditions.

In total, we generated 2,000 unique samples of
commonsense-breaking situations before the fil-
tering stage. After filtering, only 824 samples
remained. To evaluate human performance on
WEIRD, we additionally annotated the dataset on
the Yandex Tasks4 crowd-source platform. Each ex-
ample was annotated by five annotators with over-
lapping assignments. In order to introduce crowd
sources to the task, we added 10 training samples.
As a result of the annotation process, Krippen-
dorff’s alpha coefficient of consistency was 0.69
with a human accuracy of 82.22%. WHOOPS! and
WEIRD comparison details can be seen in Table 1.

4https://tasks.yandex.com

4 Visual Commonsense Evaluation
Method using Atomic Fact Extraction

The idea of our method dubbed TLG (Through
the Looking Glass) is inspired by FactScore (Min
et al., 2023): we adopt the principle of atomic
facts generation for trustworthiness verification for
the image modality. Namely, the common sense
evaluation method is based on the classification
of atomic facts generated by LVLMs using textual
encoders. The approach is depicted in Figure 2.

We use LVLMs to collect different atomic facts
that describe different aspects of the scene in the
image. To sample as many different facts as possi-
ble, we use the Diverse Beam Search (Vijayakumar
et al., 2016). So, given an image I and an LVLM,
we sample N facts F = {f1, f2, . . . , fN}, where
F = LVLM(I).

Next, we use a frozen textual encoder to extract
representations H of the generated atomic facts.
Each fact representation is computed as

Hi = Encoder(fi) ∈ RN×T×d, (1)

where T – number of tokens, d – embeddings di-
mensionality.

Since each encoder output H is a set of hidden
representations for each token and fact, we perform
average pooling to extract a single representation
V for each fact. Thus, using the attention masks m
obtained by the encoder tokenizer and the hidden
representations H , we compute a single fact repre-
sentation by averaging the vectors of its tokens

Vi =

∑T
j=1mijHij

∑T
j=1mij + ε

. (2)

Furthermore, we train an attention-based pool-
ing classifier using individual representations V .
This classifier maps each representation to a single
value. Then, we convert a set of attention values
into probabilities using the softmax function:

A = softmax(WaV + ba) ∈ RN . (3)
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Later, these scores are used to perform a
weighted averaging of the set of representations
for each fact into a single representation:

vweighted =

∑N
i=1AiVi∑N
i=1Ai

∈ Rd. (4)

Finally, we classify the final representation by
mapping it to a single common sense violation
probability:

prob = σ(Wcvweighted + bc) ∈ [0, 1]. (5)

5 Experimental Setup

To run the experiments, we strictly follow the eval-
uation setup suggested in WHOOPS! (Guetta et al.,
2023). Thus, we evaluate several models using 5-
fold cross-validation in a supervised configuration.
See the detailed list of checkpoints used for the
main approach and baselines in Appendix E.

For fact generation, we set num_beams
and num_beam_groups to 5, and the
diversity_penalty to 1.0. Regarding penalty,
we find this value to be optimal for adding
diversity and preserving the model’s ability to
follow instructions. For LVLMs, with various
backbone architectures, we utilized the following
prompt for fact generation: “Provide a brief,
one-sentence descriptive fact about this image”.
To generate atomic facts, we used different
LVLMs with different sizes (from 0.5B to 13B)
of the LLaVA architecture. Given the generated
atomic facts, we encode them using several
DeBERTa-v3-large-based encoders.

We also consider the following baselines:

LVLM with the prompt, which was found to
be effective in detecting weird images (Liu et al.,
2024a): “<image> Is this unusual? Please explain
briefly with a short sentence.”

Linear Probing resemble our approach in that it
requires a small learnable component. This base-
line involves learning a logistic regression clas-
sifier on the hidden representation of LLaVAs at
each layer. We consider two setups: (a) using
the <image> as the sole input (Image only), and
(b) using <image> the with a prompt “Provide
a short, one-sentence descriptive fact about this
image” (+Prompt), which was used to generate
atomic facts.

CLIP-based models were evaluated by pass-
ing images and measuring the distance from the
strange and normal classes in a zero-shot set-
ting. In addition, we fine-tuned CLIP in a cross-
validation setting. More details on the hyperparam-
eters and detailed baseline results can be found in
the Appendix C.

LLM zero-shot baselines were represented by
Gemma-2-9B-Instruct and Qwen2.5-7B-Instruct.
As input, we passed generated atomic facts about
the image and asked the model to determine
whether the facts were strange or not using the
following prompt: “Your task is to classify a se-
ries of facts as normal or strange. The set of facts
is strange if some of the facts contradict common
sense. Answer using ’normal’ or ’strange’. Do not
write anything else”.

Furthermore, we used two fine-tuned baselines
based on BLIP2 (Li et al., 2023b): BLIP2 FlanT5-
XL and BLIP2 FlanT5-XXL that were reported
in Guetta et al. (2023).

Moreover, we conducted experiments on knowl-
edge transfer between WEIRD and WHOOPS! for
fine-tunable methods to explore the generalization
ability to another dataset.

6 Results

The results of our experiments on both WHOOPS!
and WEIRD datasets are presented in Table 2. The
proprietary GPT-4o model has been included as
a baseline to illustrate the complexity of bench-
marks for proprietary systems and to demonstrate
the performance gap between human-generated and
proprietary systems. It is not directly comparable
to other open-source methods. The results of the
linear probing baselines can be found in the Ap-
pendix B. For the TLG method and LLM-based
baselines, we used facts produced by LLaVA 1.6
Mistral 7B; see the Appendix F for more details.
The total number of parameters is calculated as the
sum of all parameters in the method. As LLMs and
text encoders use pre-generated atomic facts, we
report their parameters together with the LVLMs
parameters. See also Appendix D for more details
of the generated facts.
TLG achieves an accuracy of 73.54% on
WHOOPS! and 87.57% on WEIRD, demonstrating
the state-of-the-art performance both datasets.
BLIP2 FlanT5 vs. TLG Next, we compare
our best-performing approach to the baselines
from Guetta et al. (2023). TLG outperforms the
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Method # Total Mode WHOOPS! WEIRD

Humans – – 92.00 82.22

BLIP2 FlanT5-XL 3.94B fine-tuned 60.00 71.47
BLIP2 FlanT5-XXL 12.4B 73.00 72.31

BLIP2 FlanT5-XXL 12.4B

zero-shot

50.00 63.84
nanoLLaVA Qwen1.5 0.5B 1.05B 66.66 70.90
LLaVA 1.6 Mistral 7B 7.57B 56.86 61.18
LLaVA 1.6 Vicuna 7B 7.06B 65.68 76.54
LLaVA 1.6 Vicuna 13B 13.4B 56.37 58.36
InstructBLIP Vicuna 7B 7B 61.27 69.41
InstructBLIP Vicuna 13B 13B 62.24 66.58

Qwen2.5 7B Instruct 15.18B zero-shot 67.65 66.46
Gemma2-9B 16.57B 73.04 82.92

LP - LLaVA 13B fine-tuned 73.50 85.26
CLIP 0.65B – 60.78 81.57
TLG (Ours) 8B fine-tuned 73.54 87.57

GPT-4o – zero-shot 79.90 81.64

Table 2: The results of different approaches on WHOOPS! and WEIRD datasets. Both benchmarks are balanced
and accuracy is the evaluation metric. Fine-tuned methods are displayed at the top, while zero-shot methods are
presented in the middle. The best linear probing results for all configurations along with our method are displayed
at the bottom.

original fine-tuned approach (BLIP2-FLAN-T5-
XXL). This suggests that the task of detecting
anomalous images should be tackled by fine-tuning
a compact classifier on either textual representa-
tions or images, rather than adapting an entire
LVLM for this purpose.

Linear Probing and CLIP vs. TLG The results
of our baselines, which were conducted using Lin-
ear Probing and CLIP, are detailed in the Appen-
dices B, C. For the LLaVA models, hidden states
of the Vicuna 13B achieved the second-best accu-
racy on both datasets, with 73.50% on WHOOPS!
with prompt and 85.26% on WEIRD in image-only
mode. Since WHOOPS! is a smaller dataset, evalu-
ating methods with cross-validation results in high
variance, making the ranking of methods less sta-
ble. However, the strong performance on WEIRD
supports the effectiveness of this approach.

As for the CLIP baseline, OpenAI/CLIP excelled
with an accuracy of 60.78% in zero-shot mode for
WHOOPS!. On the other hand, on the WEIRD
dataset, SigLIP outperformed other models, achiev-
ing an accuracy of 81.57% in fine-tuning mode.

LLM Qwen2.5-7B-Instruct achieved a relatively
high score of 67.65% on WHOOPS! and 66.46%
on WEIRD. However, it falls behind Gemma2-9B-
Instruct with a score of 73.04% on WHOOPS!
and 82.92% on WEIRD. Although LLMs show
strong performance, they require more computing
resources than TLG.

GPT-4o performance illustrates the complexity
of the benchmarks for proprietary systems and
demonstrates the performance gap between human-
generated content and proprietary systems (it
should not be directly compared with other open-
source methods). The results are rather surprising;
GPT-4o outperforms all the methods mentioned
here on the WHOOPS! dataset (Guetta et al., 2023).
However, it lags significantly behind all the con-
sidered baselines and our method on the newly
generated WEIRD dataset.

Method # Accuracy

WEIRD→WHOOPS!

BLIP-XL 4B 70.59
BLIP-XXL 12B 72.06
LP (+Prompt) 13B 72.06
LP (Image only) 13B 75.00
TLG (Ours) 8B 74.02

WHOOPS!→WEIRD

BLIP-XL 4B 72.11
BLIP-XXL 12B 75.06
LP (+Prompt) 13B 74.69
LP (Image only) 13B 79.61
TLG (Ours) 8B 83.05

Table 3: Knowledge transfer between datasets.
WEIRD→WHOOPS! means that the approach has been
fine-tuned on the WEIRD dataset and tested on the
WHOOPS! dataset.
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The child is vacuuming the floor 0.60
This is a photo of a child vacuuming the floor 0.12
A child vacuuming a wooden floor -0.28

The man is using a vacuum cleaner on the beach 2.38
This image features a man vacuuming the beach 1.65
The vacuum cleaner is silver -0.25

Figure 3: A pair of images from WHOOPS! with corresponding generated atomic facts. The normal image is on the
left, and the unusual image is on the right.

Knowledge Transfer To measure the knowledge
transfer ability, we fine-tuned a model on one
dataset and tested it on another. The results are
shown in Table 3.

For WHOOPS!, the linear probing baseline with
image-only input on 13B Vicuna backbone with
WEIRD calibration outperforms other approaches
with an accuracy of 75%. However, the TLG ap-
proach with deberta-v3-large-tasksource-nli is a
second best method with an accuracy of 74.02%.
As for WEIRD, TLG trained on WHOOPS! is the
best performing approach - 83.05%. Linear prob-
ing in image-only mode on 13B Vicuna with a
score of 79.61% accuracy. Unlike the previous set-
ting with WEIRD training and WHOOPS! testing,
there is a large gap between the best performing
approach and the second. This probably indicates
that our approach is robust to a small training set,
while linear probing requires a larger amount of
data for calibration.

TLG Attention Scores Analysis Since TLG is
based on a learning classifier that includes part of
assigning an attention weight to each fact, we inter-
preted the meaning of these scores. The example
of the score distribution for images is shown in
Figure 3. In fact, TLG assigns higher attention
weights to facts that violate common sense. In this
example, the fact “The vacuum cleaner is silver
and purple” has a lower score than the more incon-
sistent fact “The man is using a vacuum cleaner on
the beach”. As a result, TLG gives higher scores to
more strange facts, meaning that TLG could also be
used as a pure text reality ranker, rating the realism
of text facts.

7 Conclusion

In this work, we propose a straightforward yet ef-
fective approach to visual common sense recog-
nition. Our method exploits an imperfection in
LVLMs, causing them to generate hallucinations
when presented with unrealistic or strange images.
The method entails transitioning to a text modality
and addressing the problem from this perspective.
Our three-step process involves generating atomic
facts, encoding atomic facts with Transformer-
based text encoder, and training classifier based
on attention-pooling to detect strange images.

Despite the shift in modality, our approach out-
performs previous baselines and other supervised
methods applied in the image domain, including
CLIP-based image encoders and linear probing of
LVLMs.

In addition, we developed a methodology to syn-
thesize strange images. Using this methodology,
we created WEIRD, a dataset consisting of 824
images that include both strange and normal visu-
als, which we have made openly available. Sur-
prisingly, our TLG method outperformed the pro-
prietary GPT-4o on our newly generated WEIRD
benchmark.

Limitations

First, we acknowledge that we did not consider
all possible open LVLMs that became available
recently, such as Qwen2.5-VL. Also, among the
proprietary systems, we only evaluated GPT-4o.
However, we believe that our choice of both pro-
prietary and open models was representative of the
state-of-the-art.
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Second, although we tested several prompts for
zero-shot baselines and selected the best one, more
prompt engineering work could lead to better per-
formance.

Ethics Statement

We have carefully curated the generated WEIRD
dataset, and we have not encountered any inappro-
priate or offensive content within it.
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A Performance on WEIRD with
Standard Deviation
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Figure 4: Accuracy with standard deviation for different
setups

B Linear Probing Baseline

We collect hidden states by passing the image with
corresponding to the setup (Image only, +Prompt)
prompt through LLaVA decoder. The results are
presented in Table 4.

We trained a logistic regression with L2 regular-
ization, with a maximum of 100 iterations and a
tolerance of 0.1 on standardized hidden states.

Model Image only +Prompt

WHOOPS!

LLaVA 1.6 Mistral 7B 67.63 67.13
LLaVA 1.6 Vicuna 7B 73.01 72.02

LLaVA 1.6 Vicuna 13B 69.06 73.50

WEIRD

LLaVA 1.6 Mistral 7B 78.13 81.82
LLaVA 1.6 Vicuna 7B 84.65 83.91

LLaVA 1.6 Vicuna 13B 85.26 84.02

Table 4: Linear probing baseline results on WHOOPS!
and WEIRD.

C CLIP Baseline

We fine-tuned the model for 5 epochs with batch
size 1 using AdamW optimizer with learning rate
1e-3. Other hyperparameters are the same as in the
HuggingFace trainer.

The detailed results for WHOOPS! and WEIRD
are given in Table 5. An interesting result is that
SigLIP is more accurate than the standard CLIP-
based models of OpenAI and LAION.
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Figure 5: Cross-validation accuracy depending on the
LLaVA 1.6 Vicuna 13B index layer for linear probing
on the WEIRD dataset. Layers containing the most
relevant information are in the middle of the decoder.

Model # zero-shot fine-tuned

WHOOPS!

OpenAI/CLIP 0.15B 60.78 56.86
Google/SigLIP 0.88B 50.49 73.01
LAION/CLIP 0.43B 53.92 54.39

WEIRD

OpenAI/CLIP 0.15B 56.15 65.65
Google/SigLIP 0.88B 48.87 81.57
LAION/CLIP 0.43B 57.34 74.86

Table 5: CLIP results on WHOOPS! and WEIRD.

D Analysis of the Generated Facts

Category Keywords

common

common
usual

normal
natural

real

weird

unusual
strange
playful
creative
unreal
weird

real (as not generated)
real

realistic
photo

digital

digital
generated

3D
fantastic
rendering

artistic

Table 6: List of keywords with corresponding categories
to analyze generated atomic facts.
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LLaVA Backbone Type Length ROUGE Cosine
Similarity

Marker words

common weird real digital

WHOOPS!

Mistral-7B normal 61.80 45.46 79.65 9 1 33 37
strange 64.34 46.28 79.57 5 12 19 68

Qwen-0.5B normal 140.15 45.02 83.19 55 4 20 8
strange 144.01 45.07 83.36 46 26 17 17

Vicuna-7B normal 99.57 64.71 88.27 8 0 54 42
strange 103.63 63.75 87.88 5 4 25 66

Vicuna-13B normal 86.69 64.24 88.24 8 0 21 37
strange 92.88 64.64 88.13 4 8 15 58

WEIRD

Mistral-7B normal 72.94 52.43 72.94 24 1 95 201
strange 77.81 51.37 77.81 31 57 79 270

Qwen-0.5B normal 129.17 54.67 68.46 170 24 35 36
strange 131.84 54.70 68.40 184 130 24 69

Vicuna-7B normal 74.39 60.09 68.41 6 1 146 213
strange 79.35 60.32 68.55 3 16 130 262

Vicuna-13B normal 67.13 58.04 69.36 10 0 108 242
strange 69.82 59.08 69.46 3 19 106 291

Table 7: Metrics for generated atomic facts on the WHOOPS! and WEIRD datasets are computed separately for
each of the four models, assessing them on both normal and strange images. ROUGE and Cosine Similarity metrics
evaluate the similarity of facts derived from a single image, while marker words denote the presence of at least one
characteristic marker term in the group of facts. From these results, we can conclude that the facts generated by
llava-v1.6-mistral-7b are of the finest quality in atomicity — they are the briefest and exhibit the greatest semantic
independence.

We measured Cosine Similarity of the generated facts by using all-MiniLM-L6-v25 embedder. We
also calculated ROUGE (Lin, 2004) metric for lexical similarity. We calculate the metric values pair-
wise for each unique pair of facts and then averaging the results. There is no significant difference in
lexical/semantic similarity (as measured by ROUGE and Cosine Similarity) between strange and normal
images within the same LLaVA. However, a significant difference can be observed when comparing
similarity between different LLaVAs. In Table 7 we provide metrics on generated atomic facts. We noticed
that there are several groups of different marker words that all LVLMs tend to generate. Table 6 shows the
exact list of marker words for each observed group.

nanoLLaVA 1.5B generates significantly different facts from all other LLaVA models in terms of
used vocabulary. By analyzing occurring marker words, it becomes evident that nanoLLaVA-1.5 more
frequently employs words from the common and weird sets, indicating a greater tendency to comment on
the plausibility of images and use evaluative terms. Conversely, it uses words from the real and digital
sets less often. The facts of nanoLLaVA-1.5 are significantly longer than others.

LLaVA 1.6 Mistral 7B vs LLaVA 1.6 Vicuna 7B The difference between facts generated by these
two is quite noticeable. The Mistral-based LLaVA generates the shorter responses, and judging by the
ROUGE metric, these responses are less similar to each other. In terms of the atomicity of the generated
facts, the facts produced by Mistral can be considered more qualitative. However, the presence of digital
markers can be misleading for the model.

LLaVA 1.6 Vicuna 7B vs 13B The metrics of both Vicuna-based models are similar; however, the
generations from 13B are shorter on average. We also notice that the facts generated for strange images
are generally longer than those for truthful ones.

5https://hf.co/sentence-transformers/all-MiniLM-L6-v2
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E Checkpoints

For generating atomic facts we leverage the following LVLMs:

• llava-v1.6-mistral-7b-hf: a 7B LVLM with based on a Mistral (Jiang et al., 2023);
• nanoLLaVA-1.5: a 2B LVLM based on a Qwen1.5-0.5B (Bai et al., 2023);
• llava-v1.6-vicuna-7b-hf: a 7B LVLM based on a Vicuna (Chiang et al., 2023);
• llava-v1.6-vicuna-13b-hf: a 13B LVLM based on a Vicuna.

The following encoders were used for our main approach:

• deberta-v3-large: an original DeBERTa without fine-tuning;
• nli-deberta-v3-large: DeBERTa fine-tuned by Sentence Transformer (Reimers and Gurevych, 2019)

on NLI datasets. Specifically, the model was fine-tuned on the SNLI (Bowman et al., 2015) and
MultiNLI (Williams et al., 2018) datasets.

• deberta-v3-large-tasksource-nli: a multi-task text encoder based on DeBERTa-v3-large fine-tuned on
600 tasksource tasks, outperforming every publicly available text encoder of comparable size in an
external evaluation (Sileo, 2024).

As for the CLIP-based baseline, the following models were utilized:

• clip-vit-base-patch32: a pre-trained CLIP model published by OpenAI with 0.15B parameters (Rad-
ford et al., 2021).

• siglip-so400m-patch14-384: a novel image encoder with 0.88B parameters trained by Google. This
encoder inherits the CLIP architecture but features a better loss function (Zhai et al., 2023).

• CLIP-ViT-L-14-laion2B-s32B-b82K: a pre-trained CLIP encoder with 0.43B parameters, trained on
the LAION-2B dataset (Schuhmann et al., 2022).

For the LLM zero-shot baseline, these LLMs were used:

• Qwen2.5-7B-Instruct: a 7B instruction-tuned LLM trained by Qwen (Yang et al., 2024).
• Gemma-2-9b-it: a 9B instruction-tuned LLM trained by Google (Team, 2024).
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F TLG Evaluation Details

Detailed results of TLG evaluation are given in Table 8. A distinct pattern emerges: DeBERTa models
fine-tuned on the tasksource collection outperform methods that rely on alternative text encoders, largely
due to their enhanced encoding capabilities. This superiority can be attributed to extensive fine-tuning on a
diverse range of knowledge-intensive tasks sourced from the tasksource repository. Using tasksource
DeBERTa, the best performance was achieved with Mistral-7B backbone, while the poorest performance
was observed with the smallest Qwen-0.5B model, and Vicuna fell in the middle.

The results, averaged over five folds, for the evaluated text encoders paired with various LLaVAs on
both benchmarks are presented in Table 8. The highest performance for both benchmarks was achieved
by generating facts using LLaVA 1.6 Mistral 7B in conjunction with deberta-v3-large-tasksource-nli as
the text encoder. Thus, we used facts produced by LLaVA 1.6 Mistral 7B in our other approaches and
baselines.

Text Encoder LLaVA Backbone

Mistral-7B Vicuna-7B Vicuna-13B Qwen-0.5B

WEIRD Cross-Validation

deberta-v3-large-tasksource-nli 87.57 80.51 81.37 77.11
nli-deberta-v3-large 77.97 74.00 77.11 74.57
deberta-v3-large 59.92 63.86 63.59 63.29

WHOOPS! Cross-Validation

deberta-v3-large-tasksource-nli 73.54 69.15 64.72 64.68
nli-deberta-v3-large 64.60 63.61 66.59 65.15
deberta-v3-large 49.49 50.48 47.57 53.93

Table 8: The results of our approach with various LVLMs and text encoders for both benchmarks, WHOOPS! and
WEIRD, are presented. Accuracy, averaged over five folds, serves as the performance metric. For both benchmarks,
LLaVa 1.6 Mistral-7B paired with deberta-v3-large-tasksource-nli demonstrates the best outcome. A clear trend
emerges: tasksource DeBERTa outperforms all others, partly due to its superior encoding capabilities. This trend is
clearer for the WEIRD dataset due to its larger size.
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G Examples of Strange Images From WEIRD
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H Examples of Normal Images From WEIRD
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I Prompt for WEIRD Samples Generation Using GPT-4o

Your task is to generate a new COMMONSENSE_CATEGORY, EXPLANATION, NORMAL_CAPTION, STRANGE_CAPTION using
the presented ones from the EXAMPLES.
COMMONSENSE_CATEGORY is the category of common sense disturbance, so follow this information when
creating your own captions, as they must disturb common sense in the same category.
Use presented COMMONSENSE_CATEGORIES only as an example, because you task is to generate a new one.
After generating a new COMMONSENSE_CATEGORY, generate 1 new pair based on this category.
Each pair should start with EXPLANATION. EXPLANATION is a description of an inconsistent situation.
You should create EXPLANATION first.
Next, based on EXPLANATION, generate NORMAL_CAPTION and a STRANGE_CAPTION.
NORMAL_CAPTION describes an image that is suitable for common sense, it does not contradict facts about
the world, etc.
On the other hand, STRANGE_CAPTION contradicts common sense. Also, captions can represent past time,
so a caption about something that happened a long time ago is not strange.
Do not generate something that is too hard to understand or imagine.
Make the captions as specific and descriptive as possible. Describe all the details.
Generate only 1 pair of EXPLANATION, NORMAL_CAPTION and a STRANGE_CAPTION.

EXAMPLES:

COMMONSENSE_CATEGORY: Tool Misapplication
EXPLANATION: A whisk is a kitchen tool specifically designed for mixing ingredients together smoothly
or incorporating air into a mixture, such as when making whipped cream or beating eggs. Its structure,
consisting of multiple loops of wire, is not intended for hammering nails into wood. Using a whisk to
hammer nails is not only ineffective but is likely to damage the whisk and offer no benefit, as its
delicate wires are neither strong nor solid enough to drive nails.
NORMAL_CAPTION: A whisk being used to beat eggs in a bowl
STRANGE_CAPTION: A whisk being used to hammer nails into a wooden plank

COMMONSENSE_CATEGORY: Impossible interaction
EXPLANATION: Cats are known for their playful and curious nature, but they do not have the physical
ability to solve complex math problems, as they lack the understanding and cognitive functions necessary
for such tasks.
NORMAL_CAPTION: a cat playing with a ball of yarn on the floor
STRANGE_CAPTION: A cat solving a complex math equation on a blackboard.

COMMONSENSE_CATEGORY: Untypical behavior
EXPLANATION: Octopuses are sea creatures that live underwater and are adapted to life in the ocean.
However, seeing an octopus wearing clothes, something made specifically for humans to provide warmth
and protection, is highly unusual and outside the realms of normal behavior or biological needs.
NORMAL_CAPTION: An octopus swimming in the ocean.
STRANGE_CAPTION: An octopus wearing a suit and tie.

COMMONSENSE_CATEGORY: Inappropriate Object Utility
EXPLANATION: Hairdryers are designed to dry hair by blowing warm air. Using a hairdryer to open a locked
door is incorrect and impractical, as hairdryers do not have the functionality or mechanism to open
locks.
NORMAL_CAPTION: A person drying their hair with a hairdryer in front of a mirror.
STRANGE_CAPTION: A person using a hairdryer to open a locked door.

Figure 6: Example of prompt used for synthetic samples generation for WEIRD benchmark. In total, 5 random
categories from the task pool were taken on each step of generation. The model is expected to generate a new
common sense category, a new explanation and a pair of caption. Further, captions are used for image generation.
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