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Abstract

We consider the well-known and important
tasks of clone detection and information re-
trieval for source code. The most standard
setup is to search clones inside the same lan-
guage code snippets. But it is also useful to
find code snippets with identical behaviour in
different programming languages. Neverthe-
less multi- and cross-lingual clone detection
has been little studied in literature. We present
a novel training procedure, cross-consistency
training (CCT) leveraging cross-lingual sim-
ilarity, that we apply to train language mod-
els on source code in various programming
languages. We show that this training is ef-
fective both for encoder- and decoder-based
models. The trained encoder-based CCT-LM
model achieves a new state of the art on POJ-
104 (monolingual C++ clone detection bench-
mark) with 96.73% MAP and AdvTest (mono-
lingual Python code search benchmark) with
47.18% MRR. The decoder-based CCT-LM
model shows comparable performance in these
tasks. In addition, we formulate the multi-
and cross-lingual clone detection problem and
present XCD, a new benchmark dataset pro-
duced from CodeForces submissions.

1 Introduction

Clone detection is crucial in software development
for identifying semantically similar code, aiding
in unification, refactoring, and side effect control.
Originally formulated for C/C++ by Mou et al.
(2016), the task has since expanded to other lan-
guages, with the next step being multilingual clone
detection. This work introduces a new multilin-
gual dataset XCD and establishes baseline models.

Early clone detection relied on algorithmic
methods (Baker, 1993; Krinke, 2001), later evolv-
ing into machine learning-based approaches (Li
et al., 2017; Thaller et al., 2020; Gotmare et al.,

*Equal contribution.

2021) that embed code snippets for similarity-
based retrieval. We propose CCT, a novel training
technique that enhances code embeddings, achiev-
ing state-of-the-art results on both POJ-104 (Mou
et al., 2016) and our new XCD dataset. Addition-
ally, we demonstrate that CCT-LM, trained with
CCT, is also effective for code search, as formu-
lated by Lu et al. (2021b).

Main Contributions CCT – A pretraining
method for aligning multilingual code snippets.
XCD – A novel multilingual clone detection
dataset from CodeForces. State-of-the-art results
on POJ-104 and XCD with CCT-LM. CCT-LM
achieves state-of-the-art on AdvTest for code
search.

2 Related Work

Our methods are inspired by natural language pro-
cessing, thus related work includes both pure NLP
and source code processing.

Datasets. Husain et al. (2019) presented the
CodeSearchNet dataset constructed from a GitHub
dump where the authors split method bodies into
the code itself and a description. This dataset
contains 2 million code snippet-description pairs
in 6 programming languages, including Python.
This dataset was partially used by Hasan et al.
(2021) who combined CodeSearchNet and three
other datasets into a larger one. From Code-
SearchNet they used the Java part and Python
part translated automatically into Java. The re-
sulting dataset contains 4 million code snippet-
description pairs. There are two main datasets
for clone detection: POJ-104 (Mou et al., 2016)
and BigCloneBench (Wang et al., 2020). POJ-104
represents a comparatively small corpus of C++
solutions from a student judging system. Big-
CloneBench comprises a vast dataset containing
automatically mined data in the Java language.

Code Search. Gu et al. (2018) introduced
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dense vector representations for code search, train-
ing two recurrent neural networks for source code
and text. Feng et al. (2020) used a language
model to produce these representations. Gotmare
et al. (2021) employed three Transformer-based
models for hierarchical encoding but found pa-
rameter sharing reduced quality. In contrast, our
model uses a single Transformer decoder to embed
queries and documents, omitting the classifier.

Clone Detection. One of the first successful
deep learning approaches was CClearner (Li et al.,
2017) that used text extracted from a program
and its AST features and had a simplistic mul-
tilayer perceptron architecture for clone classifi-
cation on a closed code base. More recent deep
learning models include graph neural networks on
ASTs (Wang et al., 2020) and employ pretrained
language models Villmow et al. (2022).

Language models for source code. BERT-
like models, initially successful in natural lan-
guage processing, have been adapted for pro-
gramming languages. Several pre-trained models
have emerged, including CodeBERT (Feng et al.,
2020), a bimodal model trained on masked lan-
guage modeling (MLM) and replaced token detec-
tion; GraphCodeBERT (Guo et al., 2021), which
incorporates abstract syntax trees for training; and
SynCoBERT (Wang et al., 2021), which lever-
ages multimodal contrastive learning with iden-
tifier and AST edge prediction. More recently,
autoregressive decoder models like DeepSeek-
Coder (Guo et al., 2024) have gained prominence,
focusing on source code generation tasks such as
code completion and documentation generation.

3 Datasets

In this work we use two kinds of datasets, one for
clone detection and another for code search.

Code Search. For code search we use the
CodeSearchNet dataset introduced by Husain et al.
(2019). The original version of CodeSearchNet
consists of natural language queries paired with
most relevant code snippets in six programming
languages. Each snippet represents the code of a
function collected from GitHub open source code.

CodeSearchNet AdvTest
AdvTest is a Python-only dataset derived from

the CodeSearchNet corpus by Lu et al. (2021b),
pairing functions with text where the first docu-
mentation paragraph serves as the query (Husain
et al., 2019).

Lu et al. (2021b) found that normalizing func-
tion and variable names significantly reduces
Mean Reciprocal Rank (MRR) scores, dropping
from 0.809 to 0.419 for RoBERTa (Liu et al.,
2019) and 0.869 to 0.507 for CodeBERT (Feng
et al., 2020). They improved dataset quality by
filtering unparsable code, overly short/long docu-
ments, special tokens, and non-English or empty
texts, resulting in 251 820 training, 9 604 valida-
tion, and 19 210 test examples.

To assess generalization, AdvTest normalizes
function and variable names in the development
and test sets, replacing them with generic tokens
(e.g., func, arg i). Unlike prior works (Husain
et al., 2019; Feng et al., 2020), which evaluated
on 1 000 candidates per query, AdvTest uses the
entire test set, increasing difficulty. The train-
ing data, derived from the filtered CodeSearch-
Net (Husain et al., 2019), retains raw code and ap-
plies language-specific tokenization. Performance
is measured using Mean Reciprocal Rank (MRR).

Clone Detection. In the clone detection task,
the problem is to retrieve semantically similar
codes given a code as the query. To train and test
models for clone detection, we use the POJ-104
dataset introduced by Mou et al. (2016). It comes
from a pedagogical programming open judge (OJ)
system that automatically judges the validity of
submitted source code for specific problems by
running the code. The POJ-104 dataset consists
of 104 problems and includes 500 student-written
C/C++ programs for each problem. The clone de-
tection here is, given a program’s source code, to
retrieve other programs that solve the same prob-
lem. The problems are grouped into three sets
with 64/16/24 problems for training, validation,
and testing respectively. The default metric for
the POJ-104 dataset is Mean Average Precision
(MAP), where the average precision (AP) is de-
fined as AP =

∑100
i=1(Ri − Ri−1) · Pi, where Ri

and Pi are the precision and recall at threshold i,
i.e., computed taking into account only top i items
from the candidate list. MAP is the mean AP over
all queries. It is important to mention that for POJ-
104 the maximal possible i is 499 since there are
only 500 candidates in total.

3.1 XCD Dataset
Existing works have not thoroughly explored the
multilingual capabilities of code language mod-
els. To address this gap, we introduce XCD,
a new multilingual clone detection and code re-
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trieval dataset. The dataset supports three eval-
uation settings: full comparison (binary classifi-
cation like BUCC (Xu et al., 2018)), **retrieval-
style clone detection** (similar to POJ-104 (Mou
et al., 2016)), and a hybrid approach

We constructed XCD using CodeForces sub-
missions, selecting 110 problems with 100 ac-
cepted solutions per problem in five languages
(Python, Java, C#, C++, C), totaling 55,000 snip-
pets.

Evaluation Setups Full Comparison Binary
classification of test set pairs (n2 comparisons).
Each pair is positive if solving the same prob-
lem, otherwise negative. Evaluated using F1-
score (Sasaki et al., 2007).

Retrieval Style Tasked with retrieving 100
snippets per language solving the same problem
from 11,000 positive snippets. Evaluated using
MAP@100 (Mou et al., 2016).

Hybrid Evaluation Includes all snippets in the
same language, making it more challenging (sim-
ilar to AdvTest). Evaluated using MRR@R (Lu
et al., 2021b).

Cross-Lingual Evaluation Extends all setups
across multiple languages to assess cross-lingual
code understanding.

Additional Labeling Beyond solution status
(Accepted/Not Accepted), we also mined error
statuses from 97M code snippets across 10+ pro-
gramming languages. CodeForces provides 15
verdicts, which we categorized into four groups:

1. Defect – Runtime errors (e.g., division by
zero, stack overflow).

2. Skip – Judging errors (e.g., rejected due to
unclear reasons).

3. Accepted – Passed all tests.
4. Wrong – Failed tests or constraints (e.g.,

time/memory limit exceeded).
This additional labeling enhances dataset utility

for error prediction and robust code retrieval.

4 Method

In this section, we introduce our pre-training ap-
proach CCT (Cross-Consistency Training). Its
goal is to robustly learn the embedding space of
code snippets and create a strong alignment be-
tween snippets solving the same problems across
programming languages. The difference between
strong and weak alignment is illustrated in Fig. 1:
in a weakly aligned embedding space, the near-
est neighbor might be a semantically similar snip-

querydocumentrelevantnon-relevant cppjava pythonStrong Alignment Weak Alignment
Figure 1: Strong and weak cross-lingual alignment.

pet from a different language but generally most
neighbors are in the same language, while in a
strongly aligned space the similarity is purely se-
mantic and does not care about the language at all.

To achieve strong alignment, we employ a con-
trastive learning objective LXCD: for a randomly
code snippet, we train the vector representations
of the source code tokens in such a way that their
aggregation, for example, averaging or last token,
is closer to the source code, which solves the same
problem regardless of the programming language.
This ensures that the embeddings of the source
code differentiates between related snippets and
random or similar but different (hard negative)
snippets effectively.

Noise-contrastive estimation and losses. To
learn a language-agnostic cross-lingual represen-
tation space, we propose a training procedure
based on noise contrastive estimation (NCE). Let
X and Z be some finite sets and sθ : X × Z →
R be a relevance score function differentiable in
θ ∈ Rd. The goal is to learn θ such that the clas-
sifier x 7→ argmaxz∈Z sθ(x, z) has the optimal
expected loss. This leads to conditional density
estimation: for every x ∈ X

pθ (z|x) =
esθ(x,z)∑

z−∈Z esθ(x,z−)
(1)

with θ∗ = arg min
θ

Ex,z [− log pθ (z|x)] being the

optimum. In practice, optimizing this objective di-
rectly is infeasible: if Z is large the normalization
term in (1) is intractable. Therefore, NCE uses
subsampling, so (1) becomes

πθ (z|x) =
esθ(x,z)∑

z−∈Bx,z
esθ(x,z−) + esθ(x,z)

, (2)

where Bx,z = {z−1 , z−2 , . . . , z−n } is a set of nega-
tives sampled from Z that do not match the pos-
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itive answer z+ for this x. NCE also often uses
objectives similar to (2) but with πθ (ẑ|z) where z
and ẑ come from the same space, and the objective
corresponds to some similarity function.

Cross-lingual objective. Contrastive learning
frequently employs pretext tasks to learn data rep-
resentations without the need for labeled exam-
ples. In the context of learning from a multilingual
set of documents, a possible pretext task would be
to train a network to differentiate between docu-
ments with similar content but written in different
languages (positive pairs) and those with dissimi-
lar content (negative pairs). This leads to the loss
function:

LXCD(θ) = E(ẑ,z)∼WXCD
[− log πθ (ẑ|z)] , (3)

where WXCD is a distribution on the set of pairs of
submissions in different programming languages
from the XCD dataset (Section 3) that shows if the
submissions are solving the same problem or not.

Hard negative mining. Previous works on con-
trastive learning show the importance of training
on hard negative samples (Qu et al., 2021; Izacard
and Grave, 2020). They used iterative training to
get hard negatives, but our data already contains
strong negative examples as preliminary solutions
from the same users that solve the same problems
but fail some tests (that is why a user would submit
an updated solution to get the “Accepted” verdict).
Thus, we mine hard negative examples as failed
solutions from the same user; if there are none we
use failed solutions from random users, and only if
there are none (e.g., for an unpopular problem) we
use a random submission for a random problem.

5 Experiments

In this section, we describe the details about data
pre-training and our CCT pipeline for multilingual
clone detection and code search tasks.

Pretraining. We train two models, one is
encoder-based, which is initialized with pretrained
GraphCodeBERTbase (Guo et al., 2021); we call
the resulting model CCT-LMenc. Another one
is decoder-based, which is initilized with a pre-
trained DeepSeek-Coder-1.3B model (Guo et al.,
2024); we call the resulting model CCT-LMdec.
Similarity scores are calculated based on dot prod-
ucts of the last token vector representations, but
we also researched using various types of poolings
and allowing bidirectional attention.

Hyperparameters. We use the AdamW opti-
mizer with learning rate 5e-5, weight decay 0.01,

Clone Code
detection search
(MAP) (MRR)

Endcoder-only

RoBERTa-base (Liu et al., 2019) 76.67 18.33
CodeBERT (Feng et al., 2020) 82.67 27.19
SynCoBERT (Wang et al., 2021) 88.24 38.10
CodeRoBERTa — 42.35
GraphCodeBERT (Guo et al., 2021) 85.16 —
CasCode (Gotmare et al., 2021) — 43.98
Villmow et al. (2022) 91.34 —
CCT-LMenc 96.73 47.18

Decoder-only

CodeGen (Nijkamp et al., 2023) 89.68 —
CodeGPT (Lu et al., 2021a) 87.96 —
SantaCoder (Allal et al., 2023) 83.98 —
Phi-1 (Gunasekar et al., 2023) 92.72 —
CCT-LMdec 95.84 37.61

Table 1: Results on code clone detection on the POJ-
104 dataset and code search on the AdvTest dataset.

and linear learning rate decay. We use gradient ac-
cumulation for pretraining with an effective batch
size of 2000.

Monolingual Results. Tab. 1 presents the re-
sults of CCT-LM models compared to existing ap-
proaches, showing that CCT-LM outperform all
previous models by a large margin in this mono-
lingual setting. Thus, strong alignment enforced
by CCT pretraining is not only helpful for multi-
lingual transfer but also improves the latent space
structure in general. It is important to mention,
that CCT pretraining works for both encoder- and
decoder-based models, improving the results.

5.1 Multi- and Cross-lingual Evaluation

For these types of evaluation on XCD we use sev-
eral setups described in Sec. 3.1. Since these se-
tups are computationally intensive we work only
with encoder-based models.

Multilingual Results
The top half of Tab. 2 presents multilingual re-

sults on the proposed XCD dataset. Interestingly,
knowledge transfer from the POJ-104 dataset does
not improve performance, and metrics remain low.
However, CCT-LM significantly outperforms oth-
ers, likely due to its multilingual pretraining ap-
proach. BM25 is not evaluated in this setup, as it
is unsuitable for document comparison.

For retrieval-based evaluation, CCT-LMenc out-
performs all baselines, providing a viable solution,
while GraphCodeBERT fails across all program-
ming languages. BM25, a strong baseline for nat-
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Python Java C# Ruby JS Haskell PHP OCaml Perl Avg

Multilingual setting

Full Comparison, F1 measure

GraphCodeBERTbase 0.02 0.05 0.00 0.04 0.00 0.02 0.01 0.03 0.01 0.02
GraphCodeBERTPOJ

base 0.04 0.00 0.01 0.06 0.07 0.08 0.06 0.06 0.06 0.05
CCT-LMenc 22.24 18.39 17.33 23.33 10.46 17.64 21.43 17.01 16.40 18.24

Retrieval Style, MAP@100

BM25 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
GraphCodeBERTbase 7.21 9.25 1.33 4.28 1.59 5.78 6.08 2.90 10.37 5.42
GraphCodeBERTPOJ

base 30.12 24.63 23.54 32.78 36.64 24.45 37.21 33.94 45.33 32.07
CCT-LMenc 87.42 55.99 65.35 72.12 74.32 81.05 83.21 71.53 71.89 73.65

Hybrid, MRR@20

BM25 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
GraphCodeBERTbase 2.08 5.42 0.22 2.59 0.80 1.99 2.90 1.40 5.23 2.51
GraphCodeBERTPOJ

base 27.10 20.04 19.44 30.98 28.37 19.70 32.89 30.08 39.98 27.62
CCT-LMenc 74.97 62.08 58.77 80.60 74.56 62.27 81.21 72.64 79.16 71.80

Cross-lingual setting

Full Comparison, F1 measure

GraphCodeBERTbase 0.01 0.01 0.00 0.01 0.00 0.01 0.01 0.01 0.01 0.01
GraphCodeBERTPOJ

base 0.01 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
CCT-LMenc 8.92 9.46 4.78 6.01 7.33 5.82 6.47 5.33 3.56 6.40

Retrieval Style, MAP@100

BM25 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
GraphCodeBERTbase 3.18 5.24 0.23 1.77 1.15 3.38 3.12 1.90 16.27 4.02
GraphCodeBERTPOJ

base 12.83 14.75 9.33 12.78 17.16 15.94 19.53 16.01 23.88 15.80
CCT-LMenc 44.82 20.34 23.33 35.01 32.57 40.07 43.36 36.66 37.80 34.88

Hybrid, MRR@20

BM25 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
GraphCodeBERTbase 1.24 2.42 0.34 1.28 0.82 0.93 1.43 0.76 2.15 1.26
GraphCodeBERTPOJ

base 20.12 13.08 10.37 17.28 12.62 19.70 14.31 18.08 18.33 15.98
CCT-LMenc 30.83 22.77 19.32 32.66 31.64 20.80 31.59 40.42 39.40 29.93

Table 2: Multilingual clone detection in two evaluation setups on the XCD dataset.

ural language information retrieval, does not work
for clone detection, as it relies on identical tokens,
which are often sparse even in similar code snip-
pets.

The hybrid evaluation setup confirms these
findings: BM25 remains ineffective, code lan-
guage models demonstrate some knowledge trans-
fer across solutions, and training on POJ-104
clone detection leads to a noticeable performance
boost. However, CCT-LMenc consistently outper-
forms all methods, establishing a new benchmark
for multilingual code-related tasks.

Cross-lingual Results. Our results in this set-
ting are presented in the bottom half of Tab. 2.
All conclusions derived for the multilingual case
(above) apply here too, but in comparison to the
multilingual setting, cross-lingual tasks are signif-
icantly harder and all values are lower. We suggest
that the difference in the results across program-
ming languages could be caused by the imbalance
in the pretraining dataset.

6 Conclusion

Understanding semantic similarity is crucial for
language processing, enabling solutions for vari-
ous tasks in natural and programming languages.
In this work, we presented CCT-LM, a new
method that enhances this capability via a novel
CCT pretraining approach, demonstrating its ef-
fectiveness in clone detection and code search.
We introduced a novel task of multilingual clone
detection and the XCD dataset for multilingual
source code analysis, formalized in two evaluation
setups.

The proposed CCT-LM models (encoder- and
decoder-based) outperformed strong baselines in
clone detection and code search. CCT-LMenc

excelled across all setups for multi- and cross-
lingual evaluation, showing that CCT pretrain-
ing improves semantic similarity understanding in
language models.

We hope our method benefits other source code
processing tasks, left for future work, and believe
modifications of our approach could aid NLP and
other machine learning fields.
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7 Limitations

We have studied several programming languages,
including Python and Java, in our XCD setup;
although all our methods seem to be language-
agnostic, a further study for other languages would
be interesting, especially since all considered lan-
guages are interpreted rather than compiled (like
C/C++). Many inputs exceed 512 tokens; we
used standard truncation for evaluation (taking
into consideration only the beginning of the code),
which may be suboptimal, and more suitable in-
put representations could be found. We expect
our model to improve with training on long docu-
ments. We also suppose that the model would ben-
efit from increasing the batch size by using more
powerful hardware with more memory. Note also
that while CCT-LM significantly improved state of
the art in clone detection and code search.
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Java Ruby PHP Go JS Avg

CodeBERTbase 46.37 50.65 37.83 50.65 50.48 47.19
GraphCodeBERTbase 47.33 59.95 37.47 60.28 52.04 51.41
CCT-LMenc 48.71 62.25 42.78 61.44 51.06 53.24

Table 3: Zero-shot retrieval; F1 score, CodeSearchNet.

Clone Code Defect
Detection Search detection

GraphCodeBERT (MAP) (MRR) (Acc)

Base 85.16 45.80 62.51
Base + LXCD 95.92 29.93 61.05
Base + LXCD + LLM 95.67 47.18 63.68
Base + LXCD + LLM 96.03 45.22 64.91
Base + LXCD + LLM + SL 96.46 47.33 -
Base + LXCD + LLM + Lerr + SL 96.73 47.57 65.58

Table 4: GraphCodeBERT variations: clone detection
on POJ-104, code search on AdvTest, defect detection
on Devign; SL denotes the size limit.

Table 5: A comparison of DeepSeek-Coder 1.3b varia-
tions: clone detection on POJ-104, code search on Ad-
vTest

A Analysis

Zero-shot Results. We investigated zero-shot
transfer from Python to Java, Ruby, PHP, Go, and
JavaScript on the CodeSearchNet dataset for pre-
viously introduced code language models and our
CCT-LM. The zero-shot results are presented in
Table 3. As evidence for the power of pretrained
language models, we see that existing approaches
show rather good results even though they have
not been trained on the retrieval task. By lever-
aging its multilingual ability, CCT-LM improves
over the baselines in the zero-shot setup for all lan-
guages except JavaScript (JS).

Latent space structure. Figure 1 showed
an abstract representation of the basic CCT idea
of semantically aligned language-agnostic embed-
ding space. Figure 2 turns this theory into prac-
tice with projections of actual embeddings for
sample code snippets before and after CCT train-
ing. The snippets represent solutions for 12 sam-
ple tasks in six programming languages. We see
that after CCT, representations of code snippets
are not aligned by language but rather by prob-
lem (Fig. 2b), while their alignment had been
language-dependent before CCT (Fig. 2a).

This illustrates that CCT training significantly
improves the multilingual latent space for code
snippets, making it semantic and language-
agnostic.

problem D18 G656 G784 D795 A795 K774J795 E795 D926 C953 F953 F926

CodeBERT CCT

(a) Projected embeddings of 12 coding problems.

language java cpp python c csharp ruby

CodeBERT CCT

(b) The same embeddings by programming language.

Figure 2: Sample multilingual embeddings.

Ablation Study. In this section, we study the
effects of various parts of CCT. Table 5 shows the
results of several DeepSeek-Coder-based models
on clone detection, code search tasks. We com-
pare the DeepSeek-Coder base model with differ-
ent pretraining poolings and attention types.
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