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Abstract

Open-vocabulary audio language models
(ALMs), like Contrastive Language Audio
Pretraining (CLAP), represent a promising
new paradigm for audio-text retrieval using
natural language queries. In this paper, for the
first time, we perform controlled experiments
on various benchmarks to show that existing
ALMs struggle to generalize to linguistic vari-
ations in textual queries. To address this issue,
we propose RobustCLAP, a novel and compute-
efficient technique to learn audio-language
representations agnostic to linguistic variations.
Specifically, we reformulate the contrastive
loss used in CLAP architectures by introducing
a multi-view contrastive learning objective,
where paraphrases are treated as different
views of the same audio scene and use this for
training. Our proposed approach improves the
text-to-audio retrieval performance of CLAP
by 0.8%-13% across benchmarks and enhances
robustness to linguistic variation. We make our
code publicly available 1

1 Introduction

As user-generated audio content expands at an
unprecedented pace, developing methods to index
and search effectively across an ever-growing
database becomes crucial. Open-vocabulary audio
language models (ALMs) such as CLAP (Elizalde
et al., 2023a,b) have emerged as a promising
solution to this problem, achieving state-of-the-art
(SOTA) results in text-based audio retrieval (Wu*
et al., 2023). In a typical setting, a user would use
a natural language query to describe an acoustic
scene with various audio events and then use
it to retrieve audio files that match the query.
Natural language offers a powerful and intuitive
interface for indexing and searching through audio

1
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Figure 1: ALMs like CLAP struggle with linguistic vari-
ations in queries (Text), such as paraphrases (Text-P),
resulting in a significant drop in retrieval performance.
Our method, RobustCLAP, mitigates this issue while
improving overall retrieval accuracy.

databases. It allows end-users to describe virtually
any concept and provides the creative freedom to
use linguistically diverse expressions to describe
the scene. However, while humans naturally adapt
to such linguistic variations, whether ALMs can
generalize to these variations at test time remains
to be determined. Our preliminary results suggest
that the answer is no, and ALMs can observe up
to a 16% drop in text-to-audio (T2A) retrieval
performance on standard benchmarks with only
slight changes in the wording of the text. This
limitation can further lead to inconsistent retrieval
results across natural language queries with the
same intent (see Figure 1 for an example)
Main Contributions: To this end, in this paper,
we present two novel contributions:

1. We present the first study to evaluate the ro-
bustness of ALMs for T2A retrieval. We
construct five new benchmarks (synthetically
with human-in-the-loop) to evaluate the per-
formance of CLAP models in T2A retrieval
across linguistically varied queries with simi-
lar intent. Our evaluation shows a consistent
drop in retrieval recall scores (0.1% - 16%)
across our benchmarks, highlighting the vul-
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nerability to linguistic variation.

2. We propose RobustCLAP, a simple yet effec-
tive method to train CLAP-like ALMs that are
robust to linguistic variations in input queries.
We continually fine-tune pre-trained CLAP
using a novel multi-view contrastive objec-
tive that gradually aligns the paraphrased cap-
tions with original captions and audio. By
training on only a fraction of the original pre-
training data, our method improves T2A re-
trieval performance on the original and para-
phrased benchmarks by 0.8%-13%, demon-
strating increased robustness to linguistic vari-
ation while maintaining computational and
data efficiency.

2 Related Work

2.1 Retrieval With Query Variations

Although the effects of query variations for text
(Zuccon et al., 2016; Voorhees and Harman, 1999)
or image retrieval (Kim et al., 2024) have been
explored before, there have been few attempts to
address this issue in audio retrieval tasks such as
Clotho (Drossos et al., 2019) and AudioCaps (Kim
et al., 2019). Most prior efforts to improve audio
language models (ALMs) have focused either
on scaling the models (Wu* et al., 2023) or
enhancing their reasoning capabilities (Ghosh
et al., 2024b). However, as audio retrieval using
ALMs is increasingly being used in tasks like audio
captioning and question answering (Kong et al.,
2024; Ghosh et al., 2024a), ensuring robustness to
linguistic variation is critical to maintaining their
effectiveness in real-world applications.

2.2 Synthetic Data For Retrieval

Synthetic data generation has been widely studied
in text-based representation learning and infor-
mation retrieval. InPars (Bonifacio et al., 2022),
InParsv2 (Jeronymo et al., 2023) and Promptaga-
tor (Dai et al., 2022) generate synthetic queries
from unlabelled documents for language encoder
training. DINO (Schick and Schütze, 2021) gen-
erates synthetic textual similarity pairs for training
cross-encoders while Gecko (Lee et al., 2024) ex-
tensively uses LLMs to generate synthetic queries
and hard-negatives. LARMOR (Khramtsova
et al., 2024) uses LLMs to generate synthetic data
to adapt textual retrievers to a specific domain.
On the other hand, synthetic data for improving

audio-language models (ALMs) is still under
explored. Approaches like CompA (Ghosh et al.,
2024b) pioneer the use of synthetic data to improve
general and compositional representation of ALMs
and train their models from scratch. In contrast,
our approach adapts any off-the-shelf CLAP model
and, with minimal additional training, enhances its
robustness to linguistic variations while preserving
its pre-trained knowledge and capabilities.

3 Methodology

3.1 Paraphrased Audio Text Retrieval
Benchmark

To study the impact of linguistic variation in input
queries, we introduce new benchmarks by carefully
extending the following five audio-text retrieval
benchmarks with their paraphrased captions: 1)
AudioCaps (Kim et al., 2019) 2) Clotho (Drossos
et al., 2019) 3) DCASE (Lagrange et al., 2022) 4)
Audioset Strong Labels (Hershey et al., 2021) and
5) SoundDesc (Koepke et al., 2023).

To obtain the paraphrased captions, we generate
new captions such that the vocabulary and the
linguistic structure differ while preserving the key
concepts and intent. This task requires linguistic
expertise and a strong understanding of the concept
behind real-world sounds. For instance, accurately
differentiating between a bird’s "tweet" and a
"chirp" involves recognizing subtle differences in
tone and context, which are crucial for maintaining
the accuracy and relevance of the paraphrases.
On the other hand, Large Language Models
(LLMs) have shown remarkable aptitude in
natural language understanding and real-world
common-sense knowledge. Consequently, we
propose using LLMs to generate paraphrased
captions in a two-step process: Step 1: We instruct
the LLM to generate a paraphrase based on
custom human-written ICL examples for each
benchmark. Step 2: We instruct the LLM to
carefully reason (Wei et al., 2023) whether the
paraphrase is accurate and to correct it if required.
We detail these steps and give examples below.

Paraphrase Generation: We instruct the LLM
to generate an initial paraphrase (Text-P’) of the
original caption, such that we describe the acoustic
events using varied vocabulary and sentence struc-
tures while preserving the original meaning. We
give an example below:
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Benchmark ⟶ AudioCaps Clotho Audioset SL SoundDesc DCASE

Model ↓ TEST TEST-P TEST TEST-P TEST TEST-P TEST TEST-P TEST TEST-P

ML-ACT 35.53 34.87 27.54 23.90 21.52 17.91 08.72 06.06 10.12 08.77
MSCLAP-22 84.74 84.63 86.74 43.94 27.73 23.72 14.33 11.87 39.91 30.99
MSCLAP-23 80.77 77.63 51.14 42.12 55.12 39.15 38.27 24.89 47.84 39.21
CompA 97.17 96.23 51.28 42.49 43.03 40.24 33.32 23.56 49.54 39.51
LAION-CLAP 97.80 95.92 52.03 43.98 46.91 41.94 24.62 18.09 44.73 37.81
RobustCLAP 98.64 98.22 57.27 53.47 57.44 53.64 25.48 21.54 54.66 50.35

Table 1: Recall@10 scores (higher is better) for text-to-audio retrieval on the original test set (TEST) and paraphrased test set
(TEST-P). All ALMs show a consistent, significant drop in performance on TEST-P. RobustCLAP not only improves overall
retrieval performance on TEST but also mitigates the drop in TEST-P. The best scores for each benchmark are highlighted in
bold.

Sample caption, paraphrase and cor-
rected paraphrase

Text: A person talking which later imitates
a couple of meow sounds.
Text-P’: An individual speaks, subsequently
mimicking some cat cries.
Text-P: An individual speaks, subsequently
mimicking some cat meows.

Paraphrase Correction: It is crucial that the para-
phrased caption accurately conveys the nuances of
the original acoustic events. To ensure this, we in-
struct the LLM to evaluate the paraphrase for both
accuracy and specificity, making corrections where
necessary. For example, in the paraphrase above,
the LLM identified that "cat cries" typically implies
a distressed or loud sound, which may not align
with the softer or more playful tone often associ-
ated with "meows" As a result, the LLM corrects
the paraphrase to use "meows" ensuring it better
reflects the intended meaning.

For these tasks, we employ LLaMA-3-
70B (AI@Meta, 2024) with in-context learning
examples crafted by humans. Following insights
from (Shen et al., 2022) we conducted a qualitative
study to evaluate the quality of paraphrase genera-
tion and correction. Paraphrase Quality: Human
evaluators rated 100 random paraphrases on a 1-5
Likert scale, with an average score of 4.89. Para-
phrase Correction: For 50 paraphrases and their
corrected versions, evaluators preferred the cor-
rected captions 98% of the time. We refer readers
to Appendix F, B.2 for additional details on the
implementation and evaluation.

3.2 Improving CLAP With Paraphrases
To improve the robustness of audio retrieval to lin-
guistic variation, we propose further training of a
pre-trained CLAP model using paraphrases of the
training data. Specifically, we reformulate the stan-
dard CLAP loss as a multi-view contrastive loss
that uses two levels of paraphrases as two views to
gradually align the text representations with their
paraphrased counterparts. At the first level (T p1),
only the linguistic structure is modified while main-
taining the same vocabulary. At the second level
(T p2), both the vocabulary and structure are altered.
By presenting the model with progressively more
complex paraphrases at each training step, we en-
able it to learn a more generalizable mapping be-
tween semantic content and its diverse linguistic
expressions. This enhances the model’s robustness
to linguistic variations in real-world queries.

A CLAP model takes in an input of an audio-
text pair (A, T ) and comprises i) audio-encoder
eA = E(A) and (ii) text encoder eT = E(T ). In
this notation, we compute similarity score as:

S(T, I) = exp(1τ ⋅
e
⊤
T eA∥eT∥∥eA∥) , (1)

where τ is a learned temperature parameter.
Contrastive Loss For a generated paraphrase
T

pk
i , k ∈ {1, 2} produced from the text Ti corre-

sponding to audio Ai, we compute the constrastive
loss L

pk as a combination of the following two
losses:

L
T
pk = ∑

i

[− log ( S(T pk
i , Ti)

∑j S(T pk
i , Tj))] (2)
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L
A
pk = ∑

i

[− log ( S(T pk
i , Ai)

∑j S(T pk
i , Aj))] (3)

Overall, the final loss is computed as follows:

Lfinal = Lclap + L
p1 + L

p2 (4)

Here, Lclap is the original CLIP-loss (Radford
et al., 2021) used to train the CLAP models. This
is necessary to prevent the CLAP model from for-
getting its knowledge acquired during pretraining.

4 Experimental Setup

Training Dataset: We train our model on a combi-
nation of AudioCaps (Kim et al., 2019) and Clotho
(Drossos et al., 2019), which we augment with our
two levels of paraphrased captions.
Evaluation Dataset: For T-A retrieval, we
adopt the evaluation setup from previous work
(Koepke et al., 2023) and employ AudioCaps,
Clotho, Audioset SL (Hershey et al., 2021), Sound-
Desc (Koepke et al., 2023) and DCASE (Lagrange
et al., 2022). We evaluate for Recall@10.
Baselines: For baselines we use ML-ACT (Mei
et al., 2022), MSCLAP-22 (Elizalde et al.,
2023a), MSCLAP-23 (Elizalde et al., 2023b),
CompA (Ghosh et al., 2024b) and LAION-CLAP
(Wu* et al., 2023). We use LAION-CLAP as the
base model for RobustCLAP.

5 Results And Analysis

Quantitative Analysis: Table 1 shows that current
ALMs struggle with linguistic variations, as
evidenced by a significant drop (0.1%-16%) in
recall scores for paraphrased captions compared
to the original captions. In contrast, RobustCLAP
not only 1) improves recall scores on the original
benchmarks by 0.8% to 13% compared to its base
model but also 2) mitigates the performance drop
on the paraphrased benchmarks, improving scores
by 2% to 12% compared to the respective second
best-performing model. CompA and MSCLAP-23,
being trained on SoundDesc, perform better on
that dataset. However, they show a significant
10-14% drop on the paraphrased SoundDesc
benchmark, illustrating that fine-tuning can worsen
the issue. We evaluate RobustCLAP on zero-shot
audio classification tasks using ESC-50 (Piczak,
2015) and FSD50K (Fonseca et al., 2022). CLAP
gets a mAP@10 score of 94.25 and 52.20, while
RobustCLAP gets 94.07 and 52.81, respectively,

on ESC-50 and FSD-50K. We observe a negli-
gible drop in performance, which indicates that
prior knowledge is retained. RobustCLAP also
outperforms ALMs on paraphrased audio-to-text
retrieval, these results are indicated in Table 7.

Qualitative Analysis: We conducted a qualitative
experiment to assess how often CLAP retrieves in-
correct audio compared to RobustCLAP. We sam-
pled 100 instances where CLAP failed to retrieve
the correct audio for a paraphrased query, while
RobustCLAP succeeded. We then asked human
evaluators to listen to the audio retrieved by CLAP
and judge whether they matched the query. The
results showed that in 97% of cases, the retrieved
audios were indeed incorrect, while only 3% were
correct. The latter result highlights a challenge in-
herent in retrieval benchmarks like AudioCaps and
Clotho, where a small set of audio files may contain
the same acoustic events, mainly when only one or
two events are present. Moreover, we observed the
following three common mistake patterns. First,
CLAP often prioritizes sound events mentioned di-
rectly in the query, showing a spurious correlation
to non-paraphrased sound events. Second, while
the model captures the dominant context or set-
ting of the scene, it frequently lacks precision in
identifying all the sound events mentioned in the
query. Finally, CLAP fails to recognize attributes
or modifiers of a sound event.

Impact Of Sound Event And Attributes: In an
acoustic scene, such as the "steady humming of
an engine," the sound event refers to the sound and
entity producing the sound (e.g., the "humming of
an engine"); sound attributes describe its qualities
(e.g., "steady"). We study how paraphrasing these
elements affects retrieval performance by instruct-
ing the LLM to replace specifically the event and
attributes with synonyms while maintaining the
original linguistic structure. In Table 2 we observe
that paraphrasing sound attributes leads to a 3.8%
drop in Recall@1, while RobustCLAP significantly
reduces this decline to just 0.4%. However, it is
important to note that only 20% of the samples
contain sound attributes, which limits the overall
effect of this variation. Paraphrasing sound sources,
on the other hand, has a much more significant
impact, with recall dropping by as much as 15%.
RobustCLAP mitigates this effect substantially,
reducing the performance drop to 3%.

902



Dataset Model

CLAP RobustCLAP

AudioCaps 65.51 68.54
+ Sound attributes mod. 61.96 68.12

+ Sound events mod. 50.24 65.48

Table 2: We paraphrase sound attributes (row 1) and sound
events (row 2), keeping the linguistic structure fixed, to study
their impact on R@1 scores. Sound attributes contribute to the
drop, while sound events have a greater impact. RobustCLAP
mitigates the effects of these paraphrases.

6 Conclusion

This paper shows that current audio language
models lack robustness to linguistic variation
in natural language inputs. To demonstrate this
phenomenon, we extend several audio-text retrieval
benchmarks with paraphrased captions generated
through a two-step LLM-based process. To
address this issue, we propose a simple mitigation
strategy, training CLAP models with a multi-view
contrastive loss on a small set of paraphrased
data. The resulting model, RobustCLAP, improves
retrieval recall scores on the original benchmarks
and their paraphrased versions while retaining its
prior pre-trained knowledge. We hope our work
fuels further studies into improving the robustness
of audio-language models.
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8 Limitations and Future Work

As part of future work, we would like to address
the following limitations of RobustCLAP:

• We utilize LLM to generate the paraphrases
for training and testing. Even though we
use diverse human-written in-context exam-
ples and a correction mechanism, some para-
phrases might not be exactly accurate due to
hallucinations by the LLM.

• We have primarily experimented with diverse
audio benchmarks, in future this work can
be extended to related domains like music
retrieval and speech retrieval.

• We use relatively shorter audio segments, in
future this work can extended to long audio.
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In the appendix we provide:

• Section B: Dataset Details

• Section C: Model Details

• Section D: Additional Results

• Section E: Additional Implementation Details

• Section F: Prompts Used
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B Dataset Details

In this section we describe in detail the benchmarks
that we used for evaluation. In Section B.1 we
describe in detail the datasets that we used. De-
tailed information about samples present in these
are given in Table 3. In Section F.1 we further detail
our paraphrase generation and correction mecha-
nism prompts.

B.1 Benchmark Datasets

AudioCaps: The Audioscaps (Kim et al., 2019)
dataset is a large-scale captioning dataset devel-
oped by google. It has 46K audio clips with 10 sec
duration sourced from Audioset (Gemmeke et al.,
2017) along with textual descriptions written by
human annotators. They give detailed descriptions
of the audio, highlighting specific sound events,
their sources, and the context.
Clotho: The Clotho (Drossos et al., 2019) dataset
is an audio captioning dataset with sound clips (15-
30 seconds) sourced from Freesound. People have
captioned them, describing environments, music,
and activities. Along with AudioCaps it is one of
the most widely used audio-retrieval benchmarks.
Audioset SL: Audioset SL (Strong Labels) (Her-
shey et al., 2021) is a significant component of
Google’s Audioset project (Gemmeke et al., 2017),
which involves annotating over 2 million 10-second
audio clips from YouTube with specific labels.
These labels include sounds like "dog barking,"
"car engine," or "crowd cheering." Although it does
not provide full captions, the extensive sound event
labeling in Audioset SL provides a rich source for
generating artificial captions. We use these tempo-
rally strong audio event labels and instruct an LLM
to generate a natural language audio caption.
SoundDesc: The SoundDesc (Koepke et al., 2023)
is a dataset that provides detailed descriptions for
diverse sound clips. It includes everyday sounds,
natural environments, and specific events. Each
clip is paired with a detailed description capturing
the sound’s essence, source, and context.
DCASE: The Detection and Classification of
Acoustic Scenes and Events (DCASE) (Lagrange
et al., 2022) dataset is a comprehensive collection
of audio recordings. It includes various environ-
ments like streets, parks, and indoor settings, each
annotated with specific sound event or acoustic
scene labels. This dataset is crucial for the DCASE
community challenges, fostering advancements in
the field. It’s essential for developing and evaluat-

ing models that recognize and classify sounds in
complex environments.

Benchmark # Audio Samples # Captions

Train Test Train Test

AudioCaps 49,275 958 49,275 4,790
Clotho 3,840 1,045 19,200 5,225
Audioset SL N/A 1,471 N/A 1,471
SoundDesc 23,085 3,250 23,085 3,250
DCASE N/A 997 N/A 997

Table 3: Overview of the datasets used, including the number
of audio samples and captions available for both training and
testing.

Score Guideline

1 Completely different meanings with no semantic overlap.

2 Paraphrased caption shares some similar words but convey different overall meanings.

3 Common topic but differ in details or emphasis

4 Largely similar meanings with minor variation in detail

5 The core information being conveyed is same

Table 4: The likert scale guideline used for paraphrase quality
assessment.

B.2 Benchmark Paraphrase Evaluation
We conduct a qualitative analysis to study both
the final paraphrases as well as the performance of
paraphrase correction. The volunteers for this study
were computer science MS and PhD students.
Paraphrase Generation: In this experiment, we
sample 100 random paraphrases and ask human
paraphrases and ask human evaluators to listen to
the audio and read the original caption and rate the
paraphrase on a LIKERT scale of 1-5. Overall, we
obtained an average score of 4.89 indicating that
our pipeline of generation and subsequent correc-
tion if required is able to generate good paraphrases.
The Likert scale guidelines are presented in Table 4.
Paraphrase Correction: Following (Piczak, 2015)
we conduct an experiment to understand if users
prefer the corrected paraphrases as opposed to origi-
nal paraphrases. We sample 50 random paraphrases
and their final corrected versions. We then ask hu-
man evaluators to choose one caption which de-
scribes the audio better. The corrected versions of
the paraphrases were preferred 98% of the time.

C Model Details

C.1 Baseline Details
ML-ACT (Mei et al., 2022). This model uses a
PANN modlel trained on Audioset (Gemmeke et al.,
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2017) and a BERT (Devlin et al., 2019) model
and employs the NT-Xent loss adapted from self-
supervised learning.
LAION-CLAP (Wu* et al., 2023). This is a
contrastive language-audio pretraining (CLAP)
model from LAION-AI trained on LAION-Audio-
630K (Wu* et al., 2023), a large collection
of 633,526 audio-text pairs from different data
sources. To improve the model’s ability to handle
audio inputs of variable lengths and boost overall
performance, it integrates a feature fusion mecha-
nism and keyword-to-caption augmentation. This
enables the model to effectively align and process
both audio and text data for enhanced learning.
LAION-CLAP Music (Wu* et al., 2023). This is a
music-specific version of the LAION-CLAP model.
This version is trained both on audio and music,
with the LAION-Audio-630K dataset contributing
a major portion of its training data. The details of
the music-text data being used for training are not
specified.
MS-CLAP 22 (Elizalde et al., 2023a). This is
a contrastive language-audio pretraining (CLAP)
model from Microsoft. This version is trained on
128k audio and text pairs.
MS-CLAP 23 (Elizalde et al., 2023b). This is
a follow-up to the MS-CLAP 22, from Microsoft.
This version of CLAP uses two innovative encoders
and is trained on massive 4.6M audio-text pairs. To
learn audio representations, the authors trained an
audio encoder on 22 audio tasks instead of the stan-
dard training of sound event classification. To learn
language representations, they trained an autore-
gressive decoder-only model instead of the stan-
dard encoder-only models.
CompA (Ghosh et al., 2024b). This is a CLAP
model that is trained specifically to enhance its
compositional reasoning abilities. The authors in-
troduce improvements to contrastive training by
incorporating composition-aware hard negatives,
allowing for more precise and focused training.
Additionally, they propose a modular contrastive
loss designed to help the model learn fine-grained
compositional understanding.

D Additional Results

D.1 Performance On Zero-Shot Audio
Classification

We evaluate CLAP and RobustCLAP on zero-
shot audio classification task (ZSAC) on the ESC-
50 (Piczak, 2015) and FSD-50K (Fonseca et al.,

Model ESC-50 FSD-50K

CLAP 94.25 53.20

RobustCLAP 94.07 52.81

Table 5: Zero-shot audio classification results in terms of
mAP@10. We observe there is negligible performance de-
crease for RobustCLAP compared to CLAP

2022) datasets. CLAP gets a mAP@10 score of
94.25 and 52.20, while RobustCLAP gets 94.07
and 52.81, respectively, on ESC-50 and FSD-
50K. We observe negligible performance decreases,
demonstrating that our approach does not lead to
catastrophic forgetting of previously learned knowl-
edge. Fine-tuning the CLAP model on AudioCaps
and Clotho enables it to capture the descriptive
features (of individual acoustic events), which are
beneficial for audio retrieval based on rich natural
language descriptions. However, it doesn’t neces-
sarily help CLAP learn the discriminative features
necessary for zero-shot audio classification.

D.2 Error Analysis

We conduct a manual study of CLAP and Ro-
bustCLAP model performance. We sample 100
instances, where for a given paraphrased query,
CLAP is not able to correctly retrieve audio
whereas RobustCLAP is able to retrieve the au-
dio correctly. We asked human evaluators to listen
to the retrieved audio and score whether the audio
retrieved by CLAP was correct. The main findings
are

• In 97% of the cases, the audio retrieved by
CLAP were actually wrong (We highlight
some common mistake patterns later in our
discussion)

• In 3% of the cases, the audio retrieved was
correct according to the given query. This is
a challenge inherent in retrieval benchmarks
like AudioCaps, Clotho, where a small num-
ber of audio files might contain the exact same
acoustic events, especially when only one or
two events are present.

Overall, we were able to verify that CLAP was
indeed retrieving the incorrect audio files, whereas
RobustCLAP was able to retrieve the correct audio.
We noticed some common mistake patterns that we
highlight below.
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1) Spurious correlation to non-paraphrased
sound events: CLAP tends to prioritize sound
events that are directly mentioned in the query
without any paraphrasing. In this case, audios
which are retrieved may contain an exact sound
event such as “wind noise” or “background
music” but overall have a completely different
meaning compared to the given query. In the
examples below the events “background music”
and “gurgling and bubbling noises” are spuriously
correlated during retrieval

Error Example

Paraphrased Query: A man’s voice is
heard alongside background music and TV
noise, then interrupted by kids’ giggles and
chatter.
Retrieved Audio Description: A kid is
speaking while rattling and tapping sounds
are heard amidst the background music,
with occasional breathing sounds and mech-
anisms in the background.
Paraphrased Query: Continuous music is
accompanied by two instances of gurgling
and bubbling noises.
Retrieved Audio Description: Water is
poured, splashing and splattering, followed
by gurgling and bubbling sounds, with a per-
son breathing in the background towards the
end.

2) Captures the dominant context but lacks pre-
cision: In this case the model understand the domi-
nant context or the setting of the scene, but fails to
precisely capture all the sound events in the query.

Error Example

Paraphrased Query: In an urban environ-
ment, a man talks as machines and vehicles
hum in the background, punctuated by a
final thud.
Retrieved Audio Description: A man is
speaking amidst urban traffic noise, accom-
panied by birds chirping and wind blowing.
Explanation: CLAP is able to capture the
context of a man speaking in urban setting,
but does not capture the vehicle hum, but
includes bird and wind sound.

3) Does not capture sound attributes: In this

case, the CLAP model fails to accurately capture
the attributes that act as modifiers to a sound event.

Error Example

Paraphrased Query: A serene ambiance
is created by an orchestra of bird melodies,
punctuated by turkey calls and faint vehicle
hums.
Retrieved Audio Description: A bird
is singing along with occasional squawks
amidst a constant vehicle noise.
Explanation: While CLAP model is able
to capture most of the events, listening to
the audio shows that a faint vehicle noise
(which is in the background and muted) is
a big contrast from a constant vehicle noise
(which is in the foreground and loud)

D.3 Statistical Significance Test
We use a bootstrapping method to collect recall
metrics for both CLAP and RobustCLAP. This in-
volves repeatedly sampling with replacement from
the test set and then computing the recall for each
resampled set. These sets of recall values are used
to perform a t-test, and we conclude that the im-
provement of RobustCLAP over CLAP is statisti-
cally significant.

E Additional Implementation Details

Model # Params Link

ML-ACT 140M https://github.com/XinhaoMei/audio-text_retrieval

MSCLAP22 196M https://github.com/microsoft/CLAP

MSCLAP23 159M https://github.com/microsoft/CLAP

CompA 300M https://github.com/Sreyan88/CompA

LAION-CLAP 158M https://github.com/LAION-AI/CLAP/

Table 6: ALMs used in our project and their size (in millions
of parameters). We use official implementations of these
models

E.1 Model Parameters
The ALMs that consists of an audio-encoder and a
BERT like text encoder. Typically these models are
under 300M parameters, refer to Table 6 for more
details. We use a Llama3-70B which consists of
70B parameters to generate paraphrases for training
and validation.

E.2 Compute Infrastructure
RobustCLAP is trained on four NVIDIA A100
GPUs and takes around 2 hours to converge. Infer-
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ence only requires 1 A100 GPU. To perform infer-
ence on the LLama3-70B model we use 4 NVIDIA
A100 GPUs.

E.3 Implementation Software And Packages:
For all the ALMs that we implement we use their
original GitHub repository. We provide links to
these in Table 6. We build RobustCLAP on top of
LAION-CLAP repository and use their base mod-
els. To perform accelerated inference on Llama3-
70B we use vllm 2

E.4 Potential Risks:
Our approach involves using an LLM to gener-
ate paraphrases for training and evaluation. While
LLMs can sometimes hallucinate or produce in-
correct or toxic outputs, we mitigated these risks
through a qualitative analysis of the generated para-
phrases. In our analysis, we observed no toxic
outputs, and the paraphrases were of consistently
high quality.

F Prompt Details

2
https://github.com/vllm-project/vllm
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F.1 Paraphrase Generation And Correction Prompts

Paraphrase Generation Prompt

<s>[INST] I will provide you with an audio caption of an audio. Paraphrase the
caption while accurately describing the nuances and technical terms. Here are some
input-output examples:
Input Caption: Gunfire, followed by a click and shattering glass.
Paraphrase Caption: Shots ring out, then a click and glass breaks into fragments.

Input Caption: Pots clatter as water flows from a turned-on faucet.
Paraphrase Caption: Utensils clatter while liquid streams from an open tap.

Input Caption: A man and woman laugh, followed by a man shouting and a woman
joining in with childlike giggles.
Paraphrase Caption: A couple chuckles, then a male yells, and a female responds
with youthful giggles.

Input Caption: A woman delivers a formal address.
Paraphrase Caption: A female presents an official speech.

Input Caption: High-pitched snoring echoes repeatedly.
Paraphrase Caption: Sharp snores resound over and over.
Here is the Input Caption: Constant rattling noise and sharp vibrations [/INST]

Prompt Paraphrase Correction

<s>[INST] I will provide you with an audio caption of an audio and its paraphrase. I
want you to tell me if the caption is accurately paraphrased especially check if the
paraphrased sound events convey the same nuance.Suggest if correction is required
and provide corrected paraphrase by give your reasoning. Here are some input-output
examples:
Input Caption: :A man talking as metal clanks together followed by footsteps on
grass while insects buzz in the background.
Paraphrase Caption: A male speaks as metallic objects collide, succeeded by the
sound of steps on a lawn amidst a gentle humming of bugs.
Correction: foo
Corrected Paraphrase Caption:A male speaks as metallic objects clatter, succeeded
by the sound of steps on a lawn amidst a gentle humming of bugs
Reasoning: The term "collide" broadly implies contact but lacks the specific
metallic sound detail conveyed by "clank." Using "metallic objects chime" or
"metallic clatter" would better capture the resonant sound characteristic of metal
without reusing the original word.

Input Caption:Men speak as someone snores.
Paraphrase Caption: Males converse amidst a person’s heavy breathing.
Correction: foo
Corrected Paraphrase Caption:Males converse amidst a person’s disruptive nasal
noises.
Reasoning: "Heavy breathing" generally suggests deep breaths and lacks the unique,
disruptive nature associated with snoring. A phrase like "disruptive nasal noises"
more accurately conveys the irritating and unmistakable sounds of snoring,
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highlighting its potential to interrupt or disturb. This emphasizes not only the
sound but also the common reaction to it.

Input Caption:An ambulance travels with the siren blaring loudly and moves through
traffic.
Paraphrase Caption: A rescue vehicle speeds along with its alarm wailing at full
volume and navigates through congested roads.
Correction: bar
Corrected Paraphrase Caption:Not required
Reasoning: This is accurate.

Input Caption:An idle vehicle engine running.
Paraphrase Caption: A stationary car motor hums continuously.
Correction: bar.
Corrected Paraphrase Caption:Not required.
Reasoning: This is accurate.

Input Caption:A toy helicopter flying followed by wind blowing into a microphone.
Paraphrase Caption: A miniature aircraft whirs as it moves through the air, then a
gust of air hits the recording device.
Correction: foo
Corrected Paraphrase Caption:A miniature aircraft whirs as it moves through the air,
followed by wind rushing continuously against the recording device.
Reasoning: The phrase "wind blowing into a microphone" suggests a continuous or
ambient wind noise, which is not precisely captured by "a gust of air hits the
recording device." To better reflect the ongoing nature of the sound, the
paraphrase could use "as wind rushes against the recording device" or as ’wind
continuously interacts with the recording device.’

Input Caption:A man and a woman talking as paper crinkles.
Paraphrase Caption: A male and female converse amidst the rustling of documents.
Correction: bar
Corrected Paraphrase Caption:Not required
Reasoning: This is accurate.

Input Caption:White noise and then birds chirping.
Paraphrase Caption: A gentle hum precedes the sweet sounds of avian creatures.
Correction: foo
Corrected Paraphrase Caption:A continuous static hum precedes the crisp chirping of
birds.
Reasoning: The term ’gentle hum’ suggests a softer, more subdued sound compared to
’white noise,’ which generally implies a more consistent, static-like background
noise. To maintain the specific quality of ’white noise,’ a more precise
description like ’continuous static hum’ could be used instead of ’gentle hum.’
Additionally, ’the sweet sounds of avian creatures’ does not capture the
distinctive, rhythmic chirping of birds. A term like ’crisp chirping’ would more
accurately reflect the clear, melodic nature of bird calls.

Input Caption: Music is playing.
Paraphrase Caption: A melody fills the air.
Correction:[/INST]

910



F.2 Paraphrase Samples

AudioCaps
TEXT: People are talking while a motor vehicle engine is revving.
TEXT-P: A group of individuals engage in conversation amidst a car engine’s loud,
rapid revving.

TEXT: A lady laughing while a baby cries, then the lady speaks and a couple men also
talk as well
TEXT-P: A female bursts into laughter as an infant wails, then she utters words and
a pair of males join in the conversation too.

TEXT: Clicks followed by gunshots and breathing then some speaking
TEXT-P: Series of clicks precede gunfire, labored breathing, and subsequent
conversation.

TEXT: Metal clanking followed by steam hissing as a truck engine is running then
accelerating
TEXT-P: Clattering metal sounds precede a continuous hissing of steam as a lorry’s
motor hums and gains speed.

TEXT: A goat bleating with people speaking
TEXT-P: A goat lets out a loud, nasal cry while individuals converse.

Clotho
TEXT: Water goes down a drain pipe while water is dripping.
TEXT-P: Liquid flows down a drainage tube as droplets fall.

TEXT: The ripping of paper occurs at evenly spaced intervals.
TEXT-P: The tearing of a document happens at regular time gaps.

TEXT: Metal sliding together such as swords or knives.
TEXT-P: Metallic blades scraping against each other, similar to clashing swords.

TEXT: Someone walking slowly, their feet are crunching leaves.
TEXT-P: A person strolls at a slow pace, their footsteps crushing foliage.

TEXT: A man and woman are talking among themselves while others chat in the
background.
TEXT-P: A gentleman and lady converse privately amidst murmurs of surrounding
discussions.

Audioset SL
TEXT: A camera shutter is snapped twice during an ongoing music session.
TEXT-P: A camera shutter clicks twice, punctuating the ongoing musical performance.

TEXT: A vehicle is moving through an urban area filled with traffic noise,
accompanied by a rooster’s crowing and various bird vocalizations.
TEXT-P: A car navigates through a bustling cityscape with constant traffic din,
interspersed with a rooster’s loud, shrill crowing and varied bird vocalizations.

TEXT: Music plays while occasional mechanisms and impact sounds are heard,
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including thuds and a ticking sound, with additional sound effects.
TEXT-P: Music plays alongside intermittent mechanical noises, occasional thuds, and
a steady ticking, accompanied by additional sound effects.

TEXT: A vehicle is accelerating in the midst of a noisy crowd and hubbub with
people talking in the background.
TEXT-P: Amidst a chaotic and loud crowd with murmurs of conversation, a vehicle
rapidly gains speed.

TEXT: A man speaks in a small room filled with mechanisms, where rodents are
scurrying around.
TEXT-P: A male voice is audible amidst machinery sounds and rodents scurrying
around in a confined space.

SoundDesc
TEXT: A monkey makes close-up snake alarm calls with birds in the background.
TEXT-P:A monkey’s loud, close-up warning cries mix with bird sounds.

TEXT: Two seals challenge each other with close-up calls and snorts, accompanied by
surf.
TEXT-P: Two seals get up close and personal, growling and snorting at each other.

TEXT: Chaffinches, crossbills, and great tits sing amidst the rustling of trees in
high wind.
TEXT-P: Birds like chaffinches and crossbills belt out their tunes as the trees
creak in the gusty breeze.

TEXT: A vintage car approaches, stops, and switches off.
TEXT-P: Old-school wheels roll up, come to a stop, and kill the engine.

TEXT: A lesser black-backed gull vocalizes closely, then attacks a juvenile, amidst
herring gulls.
TEXT-P: A lesser black-backed gull squawks loudly, then swoops in on a young bird,
surrounded by herring gulls.

DCASE
TEXT: A continuous chirp while birds chatter quietly in the background and then a
meow from a cat.
TEXT-P:Birds chat softly in the background as a steady chirp flows, interrupted by
a cat’s meow.

TEXT: A truck drives by while a woman speaks in the background.
TEXT-P: A woman chats away as a truck zooms past in the distance.

TEXT: A train is coming closer and closer, then passes.
TEXT-P: A locomotive approaches, getting louder, then zooms by.

TEXT: Continuous 8-bit arcade game sounds that are building in pitch.
TEXT-P: Retro arcade sounds amp up, getting higher pitched

TEXT: A group of girls laughing harder and louder as time goes by.
TEXT-P: Girls’ giggles escalate to uncontrollable laughter over time.
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Retrieval Type ⟶ Text-to-Audio Retrieval Audio-to-Text Retrieval

Benchmark Model R@1 ↑ R@10 ↑ R@1 ↑ R@10 ↑

TEST TEST-P TEST TEST-P TEST TEST-P TEST TEST-P

AudioCaps

ML-ACT 08.36 07.92 35.53 34.87 07.97 06.42 29.17 26.14
MSCLAP-22 39.18 36.99 84.74 84.63 33.33 16.50 79.41 59.35
MSCLAP-23 37.30 24.24 80.77 77.63 28.42 22.57 77.84 68.44
CompA 67.81 58.72 97.17 96.23 46.02 31.17 88.59 78.97
LAION-CLAP 65.51 54.64 97.80 95.92 43.36 32.60 89.86 80.14
RobustCLAP 68.54 66.35 98.64 98.22 45.76 40.96 89.34 86.31

Clotho

ML-ACT 12.87 11.42 27.54 23.90 13.20 12.03 52.71 48.87
MSCLAP-22 36.19 29.78 86.74 43.94 19.76 12.24 51.89 45.93
MSCLAP-23 37.03 30.47 51.14 42.12 22.87 16.26 61.53 51.19
CompA 36.39 29.11 51.28 42.49 17.14 11.97 53.44 44.34
LAION-CLAP 36.75 32.54 52.03 43.98 37.03 30.72 81.91 74.83
RobustCLAP 39.43 38.66 57.27 53.48 39.43 37.32 82.49 82.30

Audioset SL

ML-ACT 04.31 04.01 21.52 17.91 05.54 03.77 22.02 18.91
MSCLAP-22 06.45 04.74 27.73 23.72 07.00 05.57 30.38 26.03
MSCLAP-23 21.02 16.85 55.12 39.15 15.43 13.46 51.66 46.29
CompA 11.82 10.19 43.03 40.24 15.70 13.18 53.36 43.77
LAION-CLAP 14.41 11.62 46.91 41.94 16.52 11.90 52.75 43.71
RobustCLAP 21.82 19.10 57.44 53.64 15.84 14.41 50.37 47.99

SoundDesc

ML-ACT 01.10 00.65 08.72 06.06 00.74 00.60 08.96 07.32
MSCLAP-22 02.33 01.96 14.33 11.80 01.84 01.44 09.72 09.63
MSCLAP-23 09.75 05.53 38.27 24.89 06.58 05.72 26.36 25.60
CompA 06.80 04.03 33.32 23.56 04.21 03.32 20.86 17.26
LAION-CLAP 05.82 03.17 24.62 18.09 03.23 02.34 17.75 13.63
RobustCLAP 05.45 05.02 25.48 21.54 03.78 02.95 19.08 16.92

DCASE

ML-ACT 01.47 01.12 10.12 08.77 02.93 02.87 13.50 11.63
MSCLAP-22 09.82 07.02 39.91 30.99 10.53 05.71 39.71 27.08
MSCLAP-23 13.84 10.43 47.84 39.21 15.64 11.73 49.24 40.92
CompA 14.84 10.61 49.54 39.51 14.44 08.92 48.54 35.10
LAION-CLAP 13.34 11.23 44.73 37.81 17.25 10.93 54.86 43.53
RobustCLAP 17.45 15.95 54.66 50.35 14.84 13.14 48.65 45.94

Table 7: Text-to-audio and audio-to-text on the original test set (TEST) and paraphrased test set (TEST-P). All ALMs show a
consistent, significant drop in performance on TEST-P. RobustCLAP not only improves overall retrieval performance on TEST
but also mitigates the drop in TEST-P. The best scores for each benchmark are highlighted in bold.
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