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Abstract

Tracking a patient’s cognitive status early in
the onset of the disease provides an opportu-
nity to diagnose and intervene in Alzheimer’s
disease (AD). However, relying solely on mag-
netic resonance imaging (MRI) images with
traditional classification and regression mod-
els may not fully extract finer-grained informa-
tion. This study proposes a multi-task Fusion
Language Image Question Answering model
(FLIQA-AD) to perform AD identification and
Mini Mental State Examination (MMSE) pre-
diction. Specifically, a 3D Adapter is in-
troduced in Vision Transformer (ViT) model
for image feature extraction. The patient
electronic health records (EHR) information
and questions related to the disease work as
text prompts to be encoded. Then, an AD-
Former model, which combines self-attention
and cross-attention mechanisms, is used to cap-
ture the correlation between EHR information
and structure features. After that, the extracted
brain structural information and textual con-
tent are combined as input sequences for the
large language model (LLM) to identify AD
and predict the corresponding MMSE score.
Experimental results demonstrate the strong
discrimination and MMSE prediction perfor-
mance of the model, as well as question-answer
capabilities. 1

1 Introduction

Alzheimer’s disease (AD) is one of the most com-
mon forms of dementia. It takes several years from
the onset of normal cognition (NC) to AD, so it
provides an opportunity for early diagnosis and
intervention. The Mini-Mental State Examination
(MMSE) is a widely used cognitive assessment tool
for evaluating the progression of cognitive and be-
havioral states. Alternatively, magnetic resonance
images (MRI) can obtain more detailed structural

1The code is following:https://github.com/
junhao667/FLIQA-AD.git

changes, such as the presence of senile plaques (SP)
and atrophy of the cerebral cortex (Duc et al., 2020).
AD identification and MMSE score are interrelated,
which underscores the necessity of combining MRI
and other non-imaging data for dementia analysis
(Qiu et al., 2018).

Therefore, some researchers have introduced
multi-task learning to predict MMSE and detect
AD jointly. For instance, in (Liu et al., 2021) an in-
teraction module is designed to connect the shared
features to the tasks. To include the demographic
text information, a deep multi-task multi-channel
learning (DM2L) framework is proposed for classi-
fication and regression (Liu et al., 2018). To solve
the task relevance issue, feature relevance is ex-
ploited by adding three multi-task interaction lay-
ers between two task backbones (Tian et al., 2022).
However, such work tends to perform better on AD
identification or MMSE score prediction tasks ex-
clusively, and a decline in performance is observed
on multi-target tasks. Using an additional interac-
tion module for interacting still requires extracting
features for different tasks. Simply designing mul-
tiple interaction layers without incorporating any
electronic health records (EHR) prompts informa-
tion will not assess early-stage AD effectively due
to ignoring demographic characteristics.

In recent years, the vision language pre-trained
(VLP) model has provided a better reference for
solving the above challenges. For example, CLIP
(Radford et al., 2021) learns representations from
natural language supervision and performs well
for zero-shot transfer to various downstream tasks.
BLIP-2 (Li et al., 2023) uses an efficient pretraining
strategy that freezes the visual encoder and large
language model. The modal gap is bridged by
training the Q-former. LLaVA (Liu et al., 2024)
trains a projection layer to connect the frozen visual
encoder and large language model (LLM), with
better zero-shot capabilities.

Inspired by these works, in this study, we pro-
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Figure 1: The framework of our proposed method. The text prompts and images are encoded. After that, we can
obtain the query output from ADFormer. The text we input into the model is denoted as prompt*. The demonstration
is shown on the right.

pose an AD MRI diagnostor, FLIQA-AD, for better
diagnosis and prediction of MMSE. Specifically,
the diagnostor is constructed by the vision encoder
module, ADFormer fusion module, and LLM mod-
ule as shown in Fig.1. In the vision encoder mod-
ule, a 3D Adapter is used to convert 3D images into
processable tokens, preserving the spatial structure
information of the images. Then, we utilize the bio-
ClinicalBERT model, which has been pre-trained
on specialized diagnostic question-answering texts
(Alsentzer et al., 2019), as the text encoder. The
patient’s EHR information and questions related
to the disease will be used as text prompts. To ex-
tract the most diagnostically beneficial visual fea-
tures from different types of patients, ADFormer is
proposed to fuse the EHR information and vision
features through a cross-attention manner. Finally,
LLM is used as a decoder that outputs AD detec-
tion and MMSE scores from the text and visual
features input.

2 Method

2.1 3D Adapter

Since patients have different global and localized
presentations, both global and local structural in-
formation is important for classification and regres-
sion tasks. So, a 3D adapter is used to project the
image patch into the embedding space while also
capturing the local structural information inside the
patch before inputting. Let I of size (H,W,D) be
the input MRI image, the patch size of each MRI
volume image is (P, P, P ), then the total number of
patches is Np = HWD/P 3. These patches serve
as the effective input sequence length for the Vi-
sion Transformer (ViT) (Dosovitskiy et al., 2021).
Since the embedding dimension of all transformer
layers is uniformly D, we use a learnable linear pro-

jection layer that projects each sequence into the
D-dimensional space. Then the input embedding
is (B,Np, D), where B is the batch size.

2.2 ADFormer

Personal information from EHRs (gender, age, ed-
ucation level, etc.) is related to brain states, and
taking this non-MRI structural information into
account can influence AD diagnosis and MMSE
prediction results (Koga et al., 2002; Liu et al.,
2017; Ding et al., 2009). Therefore, we propose
the ADFormer, which fuses this textual informa-
tion with MRI structural information through the
cross-attention layer. To encode the EHR infor-
mation, (Alsentzer et al., 2019) is used, which was
trained on a large corpus of medical texts, including
PubMed and MIMIC-III, and the EHRs of patients
in the intensive care unit (ICU). We introduced this
text encoder into our ADFormer and fine-tuned it
so that it could relearn relying on already existing
basic medical knowledge without a mass of data.

Let the input image-text feature pair be
{vn, tn}Ns

n=1, where Ns is the number of samples,
vn is the visual features extracted by ViT, tn is text.
Textual information tn is fed into the model via
self-attention blocks, which are parameterized and
trained in medical text based on bio-Clinicalbert
(Alsentzer et al., 2019). Queries interact with the
visual features through a cross-attention module
to extract the most effective visual features by
combining the existing knowledge. The cross-
attention module is subsequently followed by the
feed-forward neural (FFN) network, which is also
trained in the medical literature. To maintain the
abundant detailed information inherent in high-
resolution 3D medical images, we avoid downsam-
pling and cropping operations. Our visual input
features are greatly reduced in the order of mag-
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nitude of the features from the visual features ob-
tained from the original ViT (344, 1408) to the
final (32, 768).

2.3 Question Answering Decoder

To detect AD and MMSE prediction, we use the
fine-tuning-based FLANT5 (Chung et al., 2024) as
a language model. Each task we consider (includ-
ing regression prediction, classification, Q&A, etc.)
can be treated as text models and trained together
to reach the final target. For the classification task,
the model can only predict a single word corre-
sponding to the target. The prediction remains the
basic paradigm of language modeling, i.e., the new
token is related to both the input and the previous
prediction tokens (Raffel et al., 2020).

Let t = {t1, t2, ..., ti} be the input text se-
quence, where i is the length of the text token,
q = {q1, q2, ..., qn} denotes the sequence of AD-
Former output, n denotes the number of learnable
Queries, and a = {a1, ..., aj} is the previous pre-
diction, where j is the tokens of the previous output.
we compute language generation loss LLG:

LLG = −
T∑

j=1

log P(aj | t1, . . . , ti, q1, . . . , qn, (1)

a1, . . . , aj−1).

Assuming that Evit denotes the vision encoder, Q
denotes the learnable queries from ADFormer, the
feature extracted by ADFormer is formulated as:

qD = Q(Evit(I)), (2)

To match the dimensions of query and LLM. We
first project the original features of ADFormer
query output qD to the embedding space of LLM
by a learnable projection f :

q = f(qD), (3)

Finally, the input of the LLM model is formulated
as the concatenation of t and q.

2.4 Training Objective

To align image and text representations, it is neces-
sary to maximize their mutual information. We also
feed questions with text into ADFormer to perform
image-text contrast learning. Specifically, question
tokens as one of the inputs interact with the query
through the self-attention layer, which directs the
ADFormer’s cross-attention layer to focus on the

more informative image regions. Therefore, the
contrastive learning loss is formulated as:

LI↔T = CrossEntropy(If , Tf ), (4)

where If denotes visual features. The text and
question feature is Tf . LI↔T denotes the contrast
loss between the image I and text-question T .

Furthermore, for the supervised task, we also
introduce the image and result comparison loss as:

LI↔P̂ = CrossEntropy(If , P̂ ), (5)

where P̂ denotes the target of the prediction. And
the final loss function is formulated as:

Ltotal = LI↔T + LI↔P̂ + LLG. (6)

3 Experiments

3.1 Data and preprocessing
We use the ADNI (Petersen et al., 2010) and OA-
SIS (Marcus et al., 2007) datasets to validate our
approach. The volume images of MRI T1 were
collected as samples, the statistics of the data in-
formation are shown in Table 1. All the images
of ADNI are officially pre-processed: Gradwrap
Correction, B1 Non-Uniformity Correction and N3
Non-Uniformity Correction. The FMRIB Software
Library (FSL) software (Jenkinson et al., 2012) was
used to register the original images to the MNI152
standard template. Textual information, including
age, MMSE, education level, CDR score, etc. was
extracted to construct input text.

Data Image Group (AD/MCI/NC) Gender (M/F) Age MMSE (Mean)
ADNI 8315 2613/3667/2035 4024/2808 55–93 5–30 (26.3)
OASIS 373 146/-/227 160/213 60–98 4–30 (27.3)

Table 1: Data details, AD, MCI, and NC within the
"group" category represent Alzheimer’s Disease, Mild
Cognitive Impairment, and Normal Control, respec-
tively.

3.2 Experimental Setting Detail
We randomly sampled 300 of each category (AD,
MCI, NC) by patient level from ADNI to form a
testing set, and the remaining 7380 samples from
ADNI were used as training and validation sets.
Multiple visits of the same subject are treated as
separate images. The validation set consists of
300 randomly selected image samples from each
category. All 373 samples from OASIS-2 were
used for zero-shot tests.
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Method
Multi-class Disease Identification MMSE Prediction

ACCAD ACCMCI ACCNC ACC AUC Kappa RMSE R2 CC

Single-task
MedBLIP (T5) 0.71 0.94 0.91 0.85 0.89 0.77 2.44 0.62 0.80

ViT+MLP 0.83 0.94 0.96 0.91 0.93 0.88 2.41 0.63 0.80
ViT+Qformer+MLP 0.83 0.97 0.95 0.92 0.94 0.87 2.21 0.69 0.87

Multi-task
LLaVA-Med(7b) 0.87 0.55 0.96 0.72 0.79 0.57 3.01 0.42 0.72

BLIP-2 (T5) 0.83 0.99 0.95 0.92 0.94 0.88 5.05 -0.63 0.26
Ours 0.94 0.98 0.99 0.97 0.98 0.96 1.25 0.90 0.95

Table 2: Performance comparison of AD/MCI/NC classification and MMSE prediction on single-task and multi-task.

In the vision encoding process, the input regis-
tered images are uniformly resized to 126× 126×
126, the patch size is set to 18, and each volume
is eventually divided into 343 patches. Finally, the
size of 344× 1408 (with class token preserved) is
passed through the ViT. The visual encoder uses the
EVA_CLIP (Fang et al., 2023) model that can be ef-
ficiently fine-tuned. The language model FLANT5
(T5) is used for text encoding.

The fusion model ADFormer, with 32 learnable
queries and the last hidden layer is used as the final
output features. AdamW is used as the optimizer,
and the learning rate is dynamically adjusted using
WarmupCosine. The initial learning rate is set to
be 2e-5, the batch size is 8, and all experiments
were performed on a single A100 × 40G GPU.

3.3 Performance of Our Proposed Method

In this study, the same data and computational re-
sources were used to train the model ViT (Doso-
vitskiy et al., 2021). We also fine-tuned the mul-
timodal model as comparison. The BLIP2 (Li
et al., 2023) model was fine-tuned with T5, the
3D Adapter structure was added to the ViT and
fine-tuned for 3D image processing. We also train
and fine-tune the MedBLIP (Chen and Hong, 2024)
model with T5 on our dataset, and fine-tune the
LLaVA model following the LLaVA-Med(Li et al.,
2024).

For the classification, we use accuracy (ACC),
Area Under the ROC curve (AUC), and the Kappa
coefficient which can assess the concordance be-
tween model predictions and the truth. For the
MMSE prediction, we utilize the Square root of
the mean (RMSE), the coefficient of determina-
tion (R2) as a statistical measure of explained vari-
ability, and Pearson’s correlation coefficient (CC)
to reflect the alignment trend and linearity of the
predictor for evaluating the performance of the pro-
posed method (Liu et al., 2021). For further details
regarding the parameters can be found in the Ap-

pendix A
The results are shown in Table 2, which shows

that our model outperforms all the other approaches
except MCI accuracy. The identification accuracy
and Pearson correlation coefficient are reached to
97% and 95%.

To evaluate the generalization ability of the
model, we test the zero-shot performance on OA-
SIS. The results are shown in Table 3. We can
find that the performances of AD identification and
MMSE prediction of the models that use image-
text fusion techniques are much better than those
of using only image information (ViT+MLP) or
simple contrast learning method (MedBLIP).

Method AD vs NC MMSE Prediction
ACC RMSE R2 CC

MedBLIP (T5) 0.20 4.56 -0.53 0.22
ViT+MLP 0.25 4.31 -0.38 0.05

ViT+Qformer+MLP 0.69 3.20 0.23 0.55
LLaVA-Med(7b) 0.50 3.45 0.57 0.26

BLIP-2 (T5) 0.64 3.51 0.09 0.58
Ours 0.81 3.60 0.25 0.56

Table 3: Zero-shot identification performance on OASIS

3.4 Ablation Study

In this experiment, we explore the effectiveness
of the proposed method. To be fair, we follow
the previous experimental setup of the data divi-
sion strategy and move out the ADFormer module,
LLM module, and T5 respectively. Each module is
replaced by a simple multi-layer perceptron (MLP).
We also examined the impact of prompts on LLM
and Adformer. The ablation results are shown in
Table 4. It illustrates that there is progressive 6%
improvement in accuracy, and 15% improvement in
Pearson correlation coefficient with ADFormer and
LLM. When ADFormer and LLM respectively dis-
carded the EHR information as text prompt input,
all indicators dropped significantly, for example,
ACC dropped by 18%.

590



Component
Multi-class Disease Identification MMSE Prediction

ACCAD ACCMCI ACCNC ACC RMSE R2 CC
w/o T5&ADFormer 0.83 0.94 0.96 0.91 2.41 0.63 0.80

w/o ADFormer 0.87 0.96 0.97 0.93 1.89 0.77 0.88
w/o T5 0.88 0.97 0.97 0.94 1.99 0.74 0.90

ADFormer w/o prompt 0.62 0.91 0.83 0.79 4.82 -0.48 0.31
LLM w/o prompt 0.86 0.93 0.95 0.91 2.72 0.53 0.75

Ours 0.94 0.98 0.99 0.97 1.25 0.90 0.95

Table 4: Comparison of different components of our
models

3.5 Interpretability Analysis

In the medical diagnostic, the MMSE score of AD,
MCI and NC usually be clinically categorized into
a range of values. In this experiment, we also plot
the predicted MMSE scores with true values on
ADNI test data, the results are shown in Appendix.
B Fig.(2a)- (2c), where the ranges are also marked
out. The overlap between predicted and true values
of AD, MCI and NC are 78.3%, 89.3% and 86%
respectively. We also demonstrate the efficiency
and interpretability of our feature fusion module
ADFormer by t-SNE feature downscaling on the
ADNI dataset. As shown in Appendix. B Fig. (2d),
the extracted features have reliable category sepa-
ration, with clusters of data points in each category
more clearly separated from the others.

4 Conclusion

In this work, to better identify AD and predict
MMSE, we propose a fusion model ADFormer
to interact with the patient’s EHR information
and MRI images. 3D Adapter extracted local fea-
tures from 3D MRI images, which are divided into
blocks and projected into ViT embedding space to
extract visual representations. Subsequently, the
patient EHR information and questions, along with
visual features are fused through the self-attention
and cross-attention blocks in the ADFormer mod-
ule. LLM is used to help reasoning. The model re-
sponds with the corresponding category or MMSE
score according to the specific question. The model
also illustrates outstanding performance on zero-
shot identification tasks, and the experiment results
show state-of-the-art performance on large datasets.
In the follow-up work, we will work on improv-
ing the model’s ability to respond to open medical
questions and its zero-shot capability.

5 Limitation

This paper proposes a FLIQA-AD model based
on EHR information and MRI images to diagnose
AD. However, in the medical domain, especially

Alzheimer’s disease, text and image information
is extremely scarce due to privacy protection and
other issues, and the amount compiled in this paper
is limited, which greatly limits the open question-
answering ability of this model.

Secondly, the model is pre-trained on the ADNI
dataset. When it is transferred to the OASIS dataset,
although we have performed a series of preprocess-
ing to keep the basic features of the image consis-
tent, the performance on OASIS has declined due
to differences in information such as image reso-
lution. In the experiments in this paper, we found
that increasing the trainable dataset can improve
the model’s ability on image datasets that are sig-
nificantly different from the training set. That may
be the thing worth trying in the future.
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A Evaluation parameters

A.1 Classification Metrics

A.1.1 Accuracy (ACC)

The Accuracy (ACC) quantifies the direct clas-
sification performance by measuring the ratio of
correctly classified instances to the total instances,
as defined in Equation 7:

ACC =
TP + TN

TP + TN + FP + FN
, (7)

where TP , TN , FP , and FN denote true posi-
tives, true negatives, false positives, and false nega-
tives, respectively.

A.1.2 Area Under the ROC Curve (AUC)

The AUC (Area Under the ROC Curve) measures
a model’s ability to distinguish between positive
and negative classes by plotting TPR (True Positive
Rate) against FPR (False Positive Rate) at various
thresholds. A higher AUC signifies better classifi-
cation performance

• True Positive Rate (TPR): Defined as the
proportion of true positive instances among
all actual positives (Equation 8), it reflects the
model’s sensitivity:

TPR =
TP

TP + FN
. (8)

• False Positive Rate (FPR): Represents the
proportion of false positives among all actual
negatives (Equation 9):

FPR =
FP

FP + TN
. (9)

A.1.3 Cohen’s Kappa Coefficient

Cohen’s Kappa (κ) assesses the agreement between
model predictions and ground-truth labels while ac-
counting for chance agreement, providing a robust
alternative to accuracy in imbalanced datasets. It is
computed as:

κ =
Po − Pe

1− Pe
, (10)

where Po is the observed agreement ratio, and
Pe denotes the probability of random agreement.

A.2 Regression Metrics
A.2.1 Root Mean Squared Error (RMSE)
The Root Mean Squared Error (RMSE) quanti-
fies the average deviation between predicted and
true values, emphasizing larger errors due to its
quadratic nature (Equation 11):

RMSE =

√√√√ 1

n

n∑

i=1

(yi − ŷi)
2, (11)

where yi and ŷi represent the true and predicted
values of the i-th sample, and n is the total sample
size.

A.2.2 Coefficient of Determination (R2)
The Coefficient of Determination (R2) measures
the proportion of variance in the dependent vari-
able explained by the model, serving as a critical
indicator of goodness-of-fit (Equation 12):

R2 = 1−
∑n

i=1 (yi − ŷi)
2

∑n
i=1 (yi − ȳ)2

, (12)

where ȳ denotes the mean of the true values.

A.2.3 Pearson’s Correlation Coefficient (CC)
Pearson’s Correlation Coefficient (CC) evaluates
the linear relationship between predicted and true
values. For MMSE score prediction, it is utilized
to investigate the alignment trend between model
outputs and clinical observations (Equation 13):

CC =

∑n
i=1 (yi − ȳ)

(
ŷi − ¯̂y

)
√∑n

i=1 (yi − ȳ)2
∑n

i=1

(
ŷi − ¯̂y

)2 , (13)

where ¯̂y represents the mean of predicted values.

B Interpretability Analysis
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(a) MMSE scores for AD (b) MMSE scores for MCI

(c) MMSE scores for NC (d) Embeddings visualization of ADFormer output features

Figure 2: (a)- (c) are the MMSE score against the predicted and the true value for AD, MCI and NC. The green
dashed lines in the plots represent the approximate range of MMSE scores for each category (MMSE<25 for AD,
MMSE>29 for NC, and in between for MCI). (d) is a visualization of the output features of ADFormer.
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