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Abstract

There has been increasing interest in building
multilingual foundation models for NLP and
speech research. This paper examines how
to expand the speech translation capability of
these models with restricted data. Whisper, a
speech foundation model with strong perfor-
mance on speech recognition and English trans-
lation, is used as the example model. Using
speech-to-speech retrieval to analyse the audio
representations generated by the encoder, we
show that utterances from different languages
are mapped to a shared semantic space. This
shared embedding space can then be leveraged
for zero-shot cross-lingual transfer in speech
translation. By fine-tuning the Whisper decoder
with only English-to-Chinese speech transla-
tion data, improved performance for translation
to Chinese can be obtained for multiple lan-
guages, in addition to English. Furthermore,
for languages related to those seen in training
it is possible to perform speech translation, de-
spite the model never seeing the language in
training, or being able to perform transcription.

1 Introduction

Speech translation (ST) systems directly generate
transcriptions in the target language from spoken
utterances in a different language and have vari-
ous applications (Inaguma et al., 2019; Nakamura,
2009). With the growing demand for multilingual
models, it is crucial to develop translation systems
that support multiple languages, both as source and
target. However, data collection for training ST
systems is more challenging than for Neural Ma-
chine Translation (NMT) and Automatic Speech
Recognition (ASR) tasks. Unlike NMT, where the
same text corpus can be used for both translation
directions (Artetxe and Schwenk, 2019), ST sys-
tems face challenges due to their asymmetric input-
output nature. For instance, data for translating
audio in language X into text in English (X→en)
would be easier to collect than en→X data, largely

due to the higher global demand for English trans-
lations. Moreover, high-resource language pairs
have more available data than low-resource pairs.

Given the high cost of collecting diverse data
pairs for ST systems, understanding what is re-
quired to build a multilingual ST model and expand
its capability to more languages is essential. In this
work, we use OpenAI’s Whisper (Radford et al.,
2023) as a case study to explore the behavior of
multilingual speech foundation models. Whisper
is pre-trained to support speech recognition in 100
languages and translation from 99 languages into
English (X → en). The encoder can extract se-
mantic information from the acoustic features. We
hypothesise that the features in different languages
are aligned within a shared semantic space, and
this alignment could enable the model to support
translation from multiple source languages, a key
feature for expanding multilingual ST capabilities.
Whisper’s decoder acts as a language model that
generates tokens conditioned on the encoder out-
puts. By supporting multiple languages at the token
level, the decoder facilitates translation into vari-
ous target languages. This flexibility allows us to
test and expand its ST capabilities to new target
languages, which we verify through zero-shot and
fine-tuning experiments.

In this work, we explore how to extend Whis-
per’s capability in speech translation, expanding
its supported translation language pairs. First, we
evaluate the level of language invariance in the em-
beddings produced by the Whisper encoder using
a speech-to-speech retrieval task (Lee et al., 2015).
Second, we expand the translation to a new target
language by fine-tuning Whisper, the results show
a level of cross-lingual transferability among the
source languages. Third, we show that Whisper can
translate spoken utterances from previously unseen
languages into English texts, indicating its ability
to map unseen languages into a shared speech em-
bedding space.
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Figure 1: Illustration of Whisper’s decoding process for ASR and speech translation tasks. Whisper supports speech
recognition in 100 languages and speech translation from any language into English (orange (German, de, input) and
purple (French, fr, input) text blocks). Fine-tuning on English-to-Chinese, en→zh, speech translation data enables
the model to acquire additional speech translation capabilities (such as de→zh and fr→zh) through cross-lingual
transfer (gray text blocks). The Whisper <transcribe> task token is used in this case as the <translate> task
token causes English words to be output, independent of the target language.

2 Related Works

Prior work has shown that multilingual text mod-
els, such as M-BERT (Pires et al., 2019), produce
language-invariant embeddings, mapping the same
semantic information from different languages to
a similar embedding space. This language invari-
ance enables cross-lingual text retrieval (Pires et al.,
2019; Wu and Dredze, 2019; Cao et al., 2020) and
boosts the model performance in other languages,
when fine-tuned only on English corpus (Pires
et al., 2019). This transfer learning capability
is particularly beneficial in low-resource settings.
(Schwenk and Douze, 2017; Artetxe and Schwenk,
2019) have shown that using machine translation
as the training objective can effectively generate
language-invariant embeddings.

Unlike text models, Whisper’s pre-training for
speech translation only uses English as the tar-
get language. Recently, (Peng et al., 2023) have
demonstrated that Whisper exhibits emergent ca-
pabilities in unseen speech translation directions
through prompt engineering at inference for (en→
X) speech translation. In this study, we conduct a
more comprehensive investigation into Whisper’s
cross-lingual transferability.

Whisper’s utterance embeddings are not explic-
itly aggregated, again unlike text models. Addition-
ally, speech representations are much longer than
text tokens. These differences add to the difficulty
of auto-alignment in the speech encoder space. In
the speech area, (Khurana et al., 2022) learned
multimodal multilingual speech embeddings by
fine-tuning from a pre-trained XLS-R model (Babu
et al., 2022). They used the LaBSE text encoder
model (Feng et al., 2022), which produces aligned
embedding spaces across languages, as the teacher
model during training. For each given language, the

proposed SAMU-XLSR model generates utterance-
level speech embeddings and is trained to minimize
the cosine loss relative to the teacher model’s out-
put. Through knowledge distillation, the model
can produce an aligned speech embedding space.
(Duquenne et al., 2021, 2023) followed a similar
idea to align the space produced by the speech en-
coder with a pre-trained multilingual text encoder.
Our work differs in that Whisper is not explicitly
trained to match a text encoder space; instead, we
rely on the speech translation pre-training target to
achieve automatic alignment. Moreover, Whisper
generates speech embeddings at a frame-level gran-
ularity rather than at the utterance level, enabling
more fine-grained representations.

3 Speech Translation

3.1 Whisper Model

The Whisper models are trained in a weakly su-
pervised way and come in various sizes, from the
tiny model with 39M parameters to the large model
with 1550M parameters (Radford et al., 2023). Dur-
ing pre-training, the model learns in a multi-task
fashion on automatic speech recognition, speech
translation, voice activity detection, and language
identification. In decoding, it generates different
outputs based on the “context” tokens given to the
decoder. For ASR, Whisper converts an utterance
in language L into its corresponding transcription,
UttL → TextL. For speech translation, it supports
translation from any supported language to English,
represented as UttL → TextEN. Figure 1 shows an
example of the standard transcription and transla-
tion decoding processes and the associated context
tokens in orange and purple text blocks.
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3.2 Audio Embeddings
Given that multilingual text models like M-BERT
generate language-invariant embeddings, it is rea-
sonable to investigate whether Whisper, a multi-
lingual speech model, exhibits similar properties.
If Whisper’s encoder produces language-invariant
speech embeddings, it would be a significant ad-
vantage for handling multiple source languages in
speech translation. This cross-lingual capability
enables Whisper to effectively translate between
various language pairs by aligning speech represen-
tations across different source languages.

To assess the cross-lingual alignment of Whis-
per, we use zero-shot speech-to-speech retrieval
tasks (Boito et al., 2020; Duquenne et al., 2023) as
an evaluation method. In this task, given a query
audio q, the goal is to retrieve an utterance r̂q in
the target language that conveys the same meaning
as q from a set of R candidates. We measure the
performance of the speech retrieval task using the
recall rate, R@1 = 1

|Q|
∑

q∈Q I(rq, r̂q) where rq
is the retrieved result and r̂q is the reference. For
each query q and candidate audio r, we extract the
encoder output sequences from Whisper, denoted
as Eq and Er. The retrieved utterance rq is then
determined as the one with the highest similarity
score, rq = argmaxr∈R Sim(Eq, Er).

We propose SeqSim, a metric inspired by
BERTScore (Zhang et al., 2019), to compute simi-
larity between two speech embedding sequences:

Reseq =
1

|X|
∑

x∈X

max
y∈Y

x⊤y; Prseq =
1

|Y |
∑

y∈Y

max
x∈X

x⊤y

SeqSim = 2 · Prseq · Reseq
Prseq + Reseq

(1)

While BERTScore evaluates text generation tasks
by comparing embeddings of individual tokens, Se-
qSim adapts this concept for audio frames. It com-
putes the cosine similarity between embeddings
of audio frames from one speech utterance X and
those from another speech utterance Y . Specifi-
cally, SeqSim measures how well each audio frame
in X matches with the most similar frame in Y .

3.3 New Target Languages
Although Whisper was trained to translate speech
into English, its decoder has been exposed to a di-
verse range of languages and their corresponding
tokens throughout its training for the transcription
task. This extensive multilingual exposure suggests
that the model might also be capable of translat-
ing into other languages. To investigate this po-

tential, we evaluate Whisper’s baseline translation
performance for languages beyond English. Fol-
lowing (Peng et al., 2023), which demonstrated
that the <transcribe> task token can outperform
<translate> in the translation task, we compare
these tokens in the zero-shot experiments to test
translation into new target languages. Fine-tuning
the model for a new target language is also com-
pared. Figure 1 shows the decoding process with
an added target language: Chinese, zh.

Whisper’s pre-training on multilingual speech
enables it to generate embeddings in a shared se-
mantic space, promoting cross-lingual transferabil-
ity. This feature allows Whisper to handle multi-
ple source languages in speech translation. When
fine-tuning Whisper for a specific language pair
to expand the speech translation to a new target
language (e.g. en → zh), we expect improved
performance for other source languages translat-
ing into the same target language (X→zh). This
aspect will be examined in Section 4.3.

3.4 New Source Language

Low-resource languages not seen during Whisper’s
training have different lexical representations com-
pared to the languages the model was trained on.
However, they may share similar acoustic features.
It remains to be seen whether speech embeddings
for these low-resource languages also fall within
the model’s shared semantic space. If so, this align-
ment could enable Whisper to effectively expand
its speech translation capabilities to include these
new source languages. Section 4.4 will explore this
possibility through experiments.

4 Experimental Results

4.1 Setup

The Whisper large-v2 model is selected for the
multilingual speech translation experiments, which
shows superior performance compared to other
model sizes (Radford et al., 2023). We evaluate
speech translation on the FLEURS dataset (Con-
neau et al., 2023), which provides n-way parallel
speech data. For the main experiments, we se-
lected 5 languages: English (en), French (fr), Ger-
man (de), Chinese (zh), and Japanese (ja). These
were chosen for their wide usage and represen-
tation of different language families. To extend
Whisper’s ability to translate into a new target lan-
guage, we use the en-to-zh subset from the CoVoST
2 dataset (Wang et al., 2021), totalling 428 hours,

35



Query R@1 [%]
en fr de zh ja

en - 80.0 80.0 46.2 45.5
fr 73.2 - 64.8 42.0 48.1
de 70.4 62.2 - 42.7 48.1
zh 26.5 25.4 19.0 - 43.2
ja 18.1 22.3 16.4 35.2 -

Table 1: Zero-shot speech-to-speech retrieval results
measured with SeqSim on FLEURS.

in supervised training. For experiments in Section
4.4 evaluating new source languages, we choose
6 languages unsupported by Whisper: Kabuver-
dianu (kea), Asturian (ast), Cebuano (ceb), Kyrgyz
(ky), Sorani Kurdish (ckb), and Irish (ga). Detailed
descriptions of the datasets and the experimental
setup are provided in Appendix A.1 and A.2.

4.2 Results on Speech-to-Speech Retrieval

In preliminary experiments, we compared various
similarity measures on three language pairs from
FLEURS. SeqSim consistently outperformed other
measures in capturing speech embedding similar-
ity. Consequently, SeqSim is adopted for the re-
trieval experiments presented in this paper. A de-
tailed comparison and results are discussed in Ap-
pendix B.2.

Using SeqSim, we conduct experiments on 20
language pairs from the FLEURS dataset, with re-
sults detailed in Table 1. On all 20 language pairs,
SeqSim consistently achieved remarkably higher
recall rates compared to a random baseline of 0.2%.
This suggests that these languages share a com-
mon embedding space, where semantically similar
speech utterances are mapped to close regions. No-
tably, retrieval performance is better when both the
query and the candidate utterances belong to the
same language family. For instance, retrieval be-
tween English (en), French (fr), and German (de)
– all Indo-European languages – shows higher per-
formance. This is likely due to greater overlap in
phoneme representations among these languages,
which facilitates the model’s ability to align and
match audio frames effectively.

4.3 New Target Language

Whisper is originally designed for speech transla-
tion into English. This section explores methods to
extend its capabilities to translate into other target
languages, using Chinese as an example.

BLEU / COMET Zero-shot Fine-tune
Dataset src Translate Transcribe en-to-zh

FLEURS

en 1.0 / 58.8 10.3 / 66.3 29.1 / 78.4
fr 0.9 / 56.2 15.7 / 66.7 23.0 / 74.1
de 1.0 / 57.2 16.8 / 67.1 24.0 / 74.7
ja 1.0 / 59.3 15.9 / 70.7 19.2 / 74.7

CoVoST 2 en 1.8 / 59.0 3.8 / 61.2 31.9 / 76.3

Table 2: Zero-shot and fine-tuning results (BLEU /
COMET) for Whisper speech translation into Chinese.

4.3.1 Zero-shot
As demonstrated in (Peng et al., 2023), modifying
the default special tokens provided to the decoder
enhances Whisper’s zero-shot speech translation
performance on unseen languages. Following this
work, we tested two sets of context tokens in the
zero-shot experiments: <sot><zh><translate>
and <sot><zh><transcribe>. The first set fol-
lows Whisper’s default speech translation decoding
process. Since Whisper was initially trained to pro-
duce English translations, it outputs English words
even when the target language code zh is used. In
contrast, utilizing the transcribe token resulted in
a significant performance improvement, as shown
in Table 2, with performance gains comparable to
those reported in (Peng et al., 2023). This sug-
gests that Whisper has learned to handle tokens of
multiple languages through its multilingual speech
recognition training, suggesting its potential for
translating into languages beyond English.

4.3.2 Fine-tune
We fine-tune Whisper on English-to-Chinese
speech translation data from CoVoST, freezing the
encoder to preserve the audio embedding space and
updating only decoder parameters with the context
tokens <sot><zh><transcribe>. This improved
English-to-Chinese translation on the FLEURS and
CoVoST 2 datasets, as shown in Table 2. Test-
ing French, German and Japanese utterances from
FLEURS revealed that fine-tuning also improved
BLEU and COMET scores for these languages. Al-
though these source languages were not included
in fine-tuning, the improvements in English trans-
lation capabilities benefited them due to the cross-
lingual alignment feature of Whisper.

4.4 New Source Languages

We have shown that Whisper features a shared se-
mantic embedding space across languages. This
section explores whether this cross-lingual trans-
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src code WER R@1 ST (en)

kea pt 89.5 85.4 32.6
ast es 47.8 72.8 27.9
ceb en 98.1 37.9 10.0
ky ru 103.2 21.0 4.2
ckb fa 107.1 19.1 1.9
ga en 105.9 11.0 2.6

Table 3: ASR, retrieval (R@1), and ST (BLEU score)
into English for 6 unsupported languages on FLEURS
data, with Whisper decoding language code specified.

ferability extends to low-resource languages that
Whisper has not been directly trained on. To test
this, we select 6 unsupported languages from the
FLEURS dataset and used a language code from
their most similar language (chosen based on vo-
cabulary overlap) for decoding (Qian et al., 2024).
Whilst Whisper struggles with accurate ASR tran-
scriptions for these low-resource languages, as
shown by the high WER in Table 3, some languages
exhibit high recall (R@1) rates when retrieving
English speech (such as Kabuverdianu (kea) and
Asturian (ast)). This suggests that even though
these languages were unseen during training, their
audio embeddings are mapped to the shared seman-
tic space. This effectiveness likely results from
the audio similarities between these low-resource
languages and those in Whisper’s training data.

Utilising these speech embeddings, the Whis-
per decoder can translate these languages into En-
glish. The results in Table 3 reveal surprisingly
good BLEU scores for languages like Kabuver-
dianu and Asturian (only BLEU scores are given
as some languages are not supported by COMET).
This suggests that Whisper’s cross-lingual align-
ment enhances performance in both retrieval and
translation tasks for languages not explicitly in-
cluded in its training.

5 Conclusions

This work demonstrates how to extend speech
translation capabilities in Whisper. Whisper’s de-
coder, supporting diverse language tokens, allows
for effective expansion to new target languages.
Our experiments reveal high recall rates in speech-
to-speech retrieval, indicating that Whisper’s en-
coder captures language-invariant features across
languages. Fine-tuning Whisper on English-to-
Chinese (en → zh) data improved BLEU scores
by 5.9 for three other source languages. In ad-
dition, Whisper can successfully translate speech

from some previously unseen languages into En-
glish, despite high WERs. These results confirm
that Whisper maps utterances into a shared embed-
ding space, enabling effective cross-lingual transfer
for speech translation.
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6 Limitations

Despite promising results, this work has several
limitations. First, fine-tuning Whisper on en → zh
translation data led to performance degradation on
X → en translations, highlighting a common issue
of catastrophic forgetting. Additionally, our experi-
ments mainly focused on one new target language.
While we believe the findings are applicable to
other target languages, evaluating the model across
a broader range of target languages would provide a
more comprehensive assessment of its capabilities.
Lastly, although Whisper shows potential for un-
seen languages, there is room for improvement in
handling low-resource languages more effectively,
such as Irish (ga). Future work will explore these
aspects.
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A Experimental Setup

A.1 Data Details
Table 4 listed three public datasets we used in the
experiments. For the FLEURS dataset (Conneau
et al., 2023), we processed the data by retaining
only the utterances that are available in all five se-
lected languages. The original dev and test sets
provided in the dataset are combined to create a
bigger evaluation set. To increase the difficulty
of the designed retrieval task, we randomly kept
only one instance for utterances with the same tran-
scription but recorded by different speakers. For
the supervised experiments, we fine-tune the Whis-
per model on the CoVoST 2 dataset (Wang et al.,
2021), which is part of the Common Voice project
(Ardila et al., 2020). In the speech retrieval experi-
ments to demonstrate the alignment of the encoder
outputs, an additional dataset MaSS (Boito et al.,
2020) is used. The MaSS dataset contains parallel
speech data extracted from verses in 8 languages:
English (en), Spanish (es), Russian (ru), Romanian
(ro), French (fr), Finnish (fi), Hungarian (hu), and
Basque (eu). As the released Hungarian data is
incomplete we discarded it in the experiments.

Dataset Split Langs Utts Hours Words

FLEURS test 5 426 1.1 9K

CoVoST
train 2 288,204 428 2.8M
dev 2 1,000 1.6 9K
test 2 1,000 1.6 9K

MaSS test 7 814 8.3 18K

Table 4: Dataset description. The number of utterances,
total duration of speech data, and word counts in the
references are calculated based on the English data.

A.2 Training Details
In the training and evaluation of Whisper, the origi-
nal audio is chunked or padded into segments with
a length of 30 seconds. In our zero-shot speech-
to-speech retrieval experiments, we only keep the
embedding vectors that correspond to meaning-
ful content in the original audio and remove the
ones associated with the padded part. This practice
proves to be effective in the retrieval experiments.
To evaluate the model performance on ST, we use
BLEU (Papineni et al., 2002) and COMET scores
(Rei et al., 2020; Stewart et al., 2020; Rei et al.,
2022) with the Unbabel/wmt22-comet-da model.
In the supervised ST setting, the model parameters
are updated on the training set of CoVoST 2 for

220K steps with fine-tuning or LoRA tuning (Hu
et al., 2022). The initial learning rate is 1e−5 for
fine-tuning and 1e−3 for LoRA tuning and decays
linearly. A batch size of 16 is used during training.

B Analysis of Audio Embeddings

B.1 Visualisation of Encoder Alignment

Figure 2: t-SNE visualization of contextual speech em-
beddings generated by Whisper large-v2 encoder for 6
word tuples across 5 languages.

To study the language-invariance of the Whisper en-
coder space, we use the Amazon text-to-speech ser-
vice (Lorenzo-Trueba et al., 2019; Klimkov et al.,
2019) to generate utterances for a set of words in
different languages. From these utterances, the av-
erage speech embedding was computed using the
Whisper large-v2 encoder. The resulting embed-
dings were reduced using t-SNE (Van der Maaten
and Hinton, 2008) and plotted as shown in Figure 2.
This initial analysis indicates that embeddings for
words with the same meaning, such as “thanks” in
different languages (merci, danke, grazie, gracias),
are closely aligned.

To further illustrate how languages share a com-
mon embedding space, we present an example of
two parallel utterances from the FLEURS dataset,
as shown in Figure 3. We computed average speech
embedding vectors for each word based on word-
level timestamp information. The figure reveals
that words with similar meanings, even if they are
in different languages and have different pronunci-
ations, tend to be mapped to similar regions in the
embedding space. For instance, doorbell (English)
and Türklingel (German) show high cosine simi-
larity scores despite their distinct pronunciations,
indicating their embeddings are close due to their
shared meaning. Additionally, the cosine similarity
matrix also reflects word order changes. For exam-
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Figure 3: Cosine similarity matrix of utterance repre-
sentations between an English sentence and its German
counterpart selected from FLEURS test sets.

ple, built (English) and gebaut (German) have high
cosine similarity because they convey the same
concept, and sagte (German) aligns closely with
said (English). This alignment in the embedding
space supports the idea that semantically similar
utterances across different languages are mapped
to nearby regions in the embedding space, high-
lighting the shared nature of the embedding space.

B.2 Comparison of different similarity
measures

To compute the similarity between two speech em-
bedding sequences, we propose to use the AvgSim
metric. The mean vector of embedding sequences
X and Y are aggregated and then the cosine simi-
larity between them is calculated to get an average
similarity score. Compared to SeqSim, AvgSim
captures the overall vector similarity rather than
individual contextual speech embedding vectors.

AvgSim = CosSim

(
1

|X|
∑

x∈X

x,
1

|Y |
∑

y∈Y

y

)
(2)

In Table 5, different similarity measures are com-
pared on three language pairs from the FLEURS
data for the speech-to-speech retrieval task. Re-
sults from two additional metrics are listed here.
In (Le et al., 2023), distance metrics based on Dy-
namic Time Warping (DTW) (Salvador and Chan,
2004) and Optimal Transport (OT) (Peyré and
Cuturi, 2019) are used to measure the similarity,
Sim(X,Y ), between the contextual speech embed-
dings X and Y . Both metrics use cosine distance
to derive an overall sequence similarity score.

While AvgSim is straightforward to compute, it
overlooks the nuanced differences between the two

sequences. DTWSim aligns the utterance represen-
tations in a monotonic fashion, which may not hold
when the word order is different for the source and
target sentence. To this end, we also use Optimal
Transport (following (Le et al., 2023)) to compare
individual embedding pairs. We do not add a cost
associated with the embedding index to ensure OT
can capture token re-orderings. As the results show,
it outperforms the previous two methods. Across
three retrieval settings, our proposed SeqSim bet-
ter captures the speech embedding similarity and
shows the best performance.

Method R@1 [%]
en-fr en-de de-fr

Random 0.2 0.2 0.2

AvgSim 28.2 27.5 24.6
DTWSim 29.9 26.5 22.1
OTSim 72.3 66.7 55.2
SeqSim 80.0 80.0 62.2

Table 5: Comparison of different similarity measures
for zero-shot speech-to-speech retrieval on FLEURS.

B.3 Analysis of Speech-to-Speech Retrieval

In Figure 4 we alternate the speech embeddings us-
ing outputs from different encoder layers of Whis-
per. As shown, outputs from the last encoder layer
consistently achieve the best retrieval performance.
For bottom layers, the recall rate drops significantly.
The results indicate that outputs from higher layers
are better aligned and exhibit stronger cross-lingual
characteristics.

In Table 6 we show the retrieval performance us-
ing encoder outputs from different Whisper models
on FLEURS test sets. Even for the tiny model with

Figure 4: Speech-to-speech retrieval using outputs from
different encoder layers of Whisper large-v2.
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Model Size R@1 [%]
en-fr en-de de-fr

tiny 39M 9.2 9.9 6.8
base 74M 16.7 16.0 11.0
small 244M 27.7 26.1 20.2

medium 769M 50.7 41.8 39.7

large-v1
1550M

59.9 51.6 48.8
large-v2 80.0 80.0 62.2
large-v3 59.9 50.5 47.2

Table 6: Ablation of R@1 against different model sizes.

only 39M parameters, the recall rate is much better
than the random baseline of 0.2%, suggesting that
all models acquire the capability to do cross-lingual
utterance alignment during pre-training. When
the model size increases, the recall rate also im-
proves. This implies that the retrieval performance
will likely continue to improve if larger and more
capable multilingual models are released in the
future. For the Whisper large models (released
at different times), the v2 model shows the best
performance compared to the other two versions.
Whisper large-v3 is trained on additional data (5M
vs 680k hours) in the form of 320k hours of weakly
and 4M pseudo-labeled training data. We believe
the latter degrades performance here.

In addition to FLEURS, we run speech-to-
speech retrieval experiments on MaSS to validate
the effectiveness of the aligned speech embedding
space. Retrieval performance is presented in Ta-
ble 7 across paired datasets in seven languages. The
baseline for random selection is 0.1% in this set-
ting. The supervised baseline is taken from (Boito
et al., 2020) who built a system based on contrastive
learning (Harwath et al., 2018). Excluding the low-
resource language Basque (eu), the proposed zero-
shot retrieval method outperforms the baseline and
shows an average R@1 of 75.3%. Although Whis-
per is only trained using utterances in different lan-
guages translated to English, it demonstrates good
retrieval performance between arbitrary language
pairs, which can be seen as an emergent ability.

C Ablation of Speech Translation

Ablation results are shown in Table 8. For FT (all),
we fine-tune all the parameters of Whisper. For
LoRA (dec), trainable LoRA parameters with a rank
of 8 are inserted in the decoder and updated on the
training set. In both settings, performance in all lan-
guages improved compared to the zero-shot results
in Table 2, highlighting Whisper’s effective cross-
lingual transfer capability. LoRA shows worse

Query R@1 [%]
en es ru ro fr fi eu

en - 79.5 66.8 71.7 86.6 64.1 7.6
es 71.9 - 62.7 83.4 87.5 62.9 13.4
ru 67.8 72.4 - 83.4 70.4 72.0 5.5
ro 65.5 84.8 79.1 - 85.1 69.0 9.7
fr 83.0 91.3 67.0 89.8 - 66.2 6.9
fi 70.1 74.2 77.4 81.6 71.7 - 11.2
eu 14.6 25.7 6.5 14.6 11.3 9.6 -

Table 7: Zero-shot speech-to-speech retrieval results on
42 language pairs measured with SeqSim on MaSS.

Dataset src BLEU / COMET
FT (dec) FT (all) LoRA (dec)

FLEURS

en 29.1 / 78.4 29.3 / 77.8 23.3 / 73.1
fr 23.0 / 74.1 21.5 / 72.3 19.5 / 69.3
de 24.0 / 74.7 23.3 / 72.8 20.1 / 70.2
ja 19.2 / 74.7 17.7 / 72.6 16.8 / 72.3

CoVoST 2 en 31.9 / 76.3 31.2 / 75.8 26.3 / 72.9

Table 8: Ablation of zero-shot cross-lingual transfer.

performance compared to fine-tuning while being
more parameter efficient. Moreover, compared to
only fine-tuning the decoder part, fine-tuning all
parameters shows similar performance on the En-
glish test set. Since the encoder parameters are
changed in the adaptation, there is a shift in the
speech embedding space, leading to a performance
drop in languages not seen in the training. This sug-
gests that only adapting the decoder parameters is
a better strategy when extending Whisper’s speech
translation ability.

src code WER ST (zh)

kea pt 89.5 19.5
ast es 47.8 18.7

Table 9: ASR and ST (BLEU score) into Chinese results
on FLEURS data Kabuverdianu (kea) and Asturian (ast),
with Whisper language code specified.

In Section 4.4, we showed that the audio em-
beddings for some previously unseen languages
(e.g. kea and ast) align well in the shared semantic
space, and these languages achieve good BLEU
scores when translated into English using the base-
line Whisper large-v2 model, as shown in Table 3.
Table 9 demonstrates that these languages also
achieve reasonable BLEU scores for Chinese trans-
lation with the fine-tuned model from Section 4.3
despite the high WERs.

Above, we demonstrated the expanded speech
translation capabilities of Whisper by fine-tuning
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src Zero-shot Fine-tune
Translate Transcribe en-to-zh fr-to-zh ja-to-zh

en 1.0 / 58.8 10.3 / 66.3 19.8 / 72.2 18.7 / 70.6 14.2 / 68.1
fr 0.9 / 56.2 15.7 / 66.7 17.0 / 68.6 17.1 / 68.7 14.4 / 66.0
de 1.0 / 57.2 16.8 / 67.1 16.9 / 69.7 17.0 / 69.4 14.0 / 67.2
ja 1.0 / 59.3 15.9 / 70.7 16.6 / 72.1 16.2 / 71.9 17.7 / 72.0

Table 10: Zero-shot and fine-tuning speech translation results (BLEU / COMET) for models trained on Fleurs. In
the fine-tuning setup, the model is trained separately with en→zh, fr→zh and ja→zh speech translation data.

the model on en→zh. However, one concern with
this approach is the potential for catastrophic for-
getting. In Table 11, we study the X→en speech
translation performance after the model has been
fine-tuned on the en → zh training set. The re-
sults reveal a significant performance degradation
when English is used as the target language, espe-
cially for languages that are more similar to Chi-
nese. This suggests the presence of catastrophic for-
getting. We aim to address this issue in our future
experiments by applying elastic weight consolida-
tion (EWC) constraints in fine-tuning (Kirkpatrick
et al., 2017).

src BLEU / COMET
before fine-tuning after fine-tuning

de 37.3 / 83.4 22.0 / 74.7
fr 35.1 / 83.8 22.8 / 75.8
ja 18.3 / 79.2 5.2 / 65.2
zh 19.7 / 80.2 0.1 / 65.1

Table 11: BLEU scores for Whisper models decoded on
FLEURS X→en data, before and after fine-tuning on
the CoVoST 2 en→zh data.

D Speech Translation Experiments on
more X→Y directions

Since the CoVoST 2 dataset only supports X→en
and en→X translation directions, it limits our abil-
ity to experiment with more translation directions.
To address this, we conducted new experiments us-
ing the FLEURS dataset, which offers n-way paral-
lel translations. Nevertheless, it’s important to note
that FLEURS provides a much smaller training set
compared to CoVoST 2, which may constrain the
fine-tuned model’s performance. In the following
experiments, the target language for translation is
Chinese and we used speech from three different
languages as the encoder input: English, French,
and Japanese. For each experiment, the training set
contains 1166 utterances, contributing to around
3.5 hours of speech data. All models are trained
for 20 epochs and evaluated on the same FLEURS
test sets used in this paper.

Table 10 presents experimental results for vari-
ous speech translation setups, where speech data
from different languages are utilized in the training
process. As can be seen, the cross-lingual trans-
fer learning performance depends upon the sim-
ilarity between the source language used in the
fine-tuning and the language of the speech to be
evaluated. When Whisper is fine-tuned using En-
glish or French as the source language, similar per-
formance gains are observed across all source lan-
guages. However, when fine-tuned with ja→ zh
pairs, the translation capability transfers poorly to
other languages due to the substantial difference
between Japanese and European languages. These
findings highlight the importance of choosing a
source language that closely aligns with the target
language in a zero-shot transfer learning setup.

src en fr de zh ja

BLEU 17.3 5.7 8.5 4.4 4.8

Table 12: BLEU scores for Whisper trained on FLEURS
en→ceb data and decoded on FLEURS X→ceb data.

In Table 12, we experimented with using Ce-
buano (ceb), a low-resource language, as the target
for speech translation. Here, the training set com-
prises English speech with Cebuano translation an-
notations, containing 4.6 hours of 1262 utterances.
We conducted experiments on Whisper large-v3.
Since Cebuano is not supported in the Whisper
speech recognition or translation pre-training, this
task is more challenging compared to using Chi-
nese as the target language. Results indicate that
the model performance largely improves on the
en→ceb test set after fine-tuning. Leveraging the
acoustic similarity in the encoder space, translation
results from other source languages show BLEU
scores in a diverse range of 4.4 to 8.5. Given that
the performance improvement is constrained by
the limited size of the training data provided by
FLEURS, we expect the model performance to
improve further with the availability of a larger
training set.
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