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Abstract

Recently, sharing key-value (KV) cache across
layers has been found effective in efficient in-
ference of large language models (LLMs). To
systematically investigate different techniques
of cross-layer KV sharing, we propose a unified
framework that covers several recent methods
and their novel variants. We conduct compre-
hensive experiments on all the configurations
of the framework, evaluating their generation
throughput and performance in language mod-
eling and downstream tasks. We find that when
reducing the size of the KV cache by 2×, most
configurations can achieve higher throughput
than standard transformers while maintaining
competitive performance. When further reduc-
ing the size of the KV cache, however, pairing
queries of all layers with KVs of upper layers
performs better, at the expense of additional
training cost and prefilling latency. We hope
that this work will help users make more in-
formed choices of cross-layer KV sharing ap-
proaches and facilitate future research on effi-
cient LLM inference.

1 Introduction

A major bottleneck for the deployment of LLMs
is memory consumption, of which the key-value
(KV) cache in the transformer architecture occu-
pies a large portion (Kwon et al., 2023). Various
methods have been proposed to reduce the memory
consumption of the KV cache in LLMs. For exam-
ple, Shazeer (2019); Ainslie et al. (2023) share the
KVs across query heads and Zhang et al. (2023);
Xiao et al. (2024) keep the KV cache of only a
small portion of tokens.

More recently, several methods are proposed in
which the KVs are computed only at a subset of
transformer layers and shared to the other layers,
such as LCKV (Wu and Tu, 2024), YOCO (Sun
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et al., 2024) and CLA (Brandon et al., 2024). These
methods not only significantly reduce memory con-
sumption but also improve inference speed, while
preserving the performance of LLMs in language
modeling and downstream tasks. However, while
all these methods are based on the idea of cross-
layer KV sharing, they differ significantly in how
the sharing is done.

In this study, we consider a unified framework
for cross-layer KV sharing, of which LCKV, CLA,
and YOCO can be seen as special configurations.
We then empirically test all the configurations of
the framework, including several novel ones that
have never been considered in previous work. Our
experiments show that, with respect to through-
put, all the configurations can achieve significantly
higher throughput than the standard transformer
when the prompt is short; but when the prompt
is long, the throughput of the configurations that
compute the KVs at the top layers degrades dra-
matically. With respect to performance, when only
half of the layers rely on the KVs computed by
the other layers, the performance of most config-
urations is comparable with that of the standard
transformer; when more layers become reliant on
the other layers for the KVs, the configurations
that compute the KVs at the bottom layers suffer
the greatest performance degradation. We hope
our framework and empirical studies would help
users interested in cross-layer KV sharing to make
more informed choices of methods and configu-
rations according to their throughput and perfor-
mance requirements. Our code is available at
https://github.com/whyNLP/LCKV.

2 Existing Methods

Layer-Condensed KV Cache (LCKV) (Wu and Tu,
2024) computes the KVs of only the top layer of the
transformer, which are paired with queries of all the
layers. Consequently, LCKV omits the KV compu-
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tation and discards the KV parameters for all the
layers other than the top layer. To prevent severe
performance degradation, LCKV also optionally
retains standard attention for a small number of top
and bottom layers.

You Only Cache Once (YOCO) (Sun et al., 2024)
computes the KVs of only the middle layer of the
transformer, which are paired with the queries of
the top-half of the layers. The bottom-half of the
layers uses efficient attention to achieve a constant
cache size. Goldstein et al. (2024) uses a similar
sharing pattern to YOCO, but further compresses
the size of the KV cache.

Cross-Layer Attention (CLA) (Brandon et al.,
2024) uniformly divides transformer layers into
multiple groups of adjacent layers. In each group,
it pairs the queries of all the layers with the KVs
of the bottom layer. Zuhri et al. (2024) shares the
KVs in the same way as CLA, but applies a more
efficient training scheme. Liu et al. (2024) groups
every two adjacent layers in the middle-to-deep por-
tion and compresses the KV cache in each group.
Chen et al. (2024) groups non-adjacent layers and
pairs the queries of the upper layer with the KVs of
the lower layer in each group. Rajput et al. (2024)
uses a combination of the sliding window atten-
tion and a sharing pattern similar to CLA. Liao and
Vargas (2024); Mu et al. (2024); Rajabzadeh et al.
(2024) apply sharing patterns similar to CLA to the
computed attention weights instead of KVs.

3 A Unified Framework

Unifying previous methods, we propose a frame-
work for cross-layer KV sharing that can be ap-
plied to any transformer-based model. Suppose
that the transformer has L layers. We denote
kv(i) ∈ {1, ..., L} as the index of the layer whose
KVs are paired with the queries of the i-th layer.
If kv(i) = i, then layer i is called a KV layer,
which computes its own KVs that are paired with
its queries just as in a standard transformer. Oth-
erwise, layer i does not compute its own KVs and
instead uses the KV of layer kv(i) ̸= i. In this case,
we call layer kv(i) the target layer of layer i. Since
layer i does not need to compute KVs, it does not
need weights WK ,WV . Therefore, the number of
KV layers determines the number of weight param-
eters WK ,WV and hence the size of a transformer
model. Below we define different configurations of
our framework assuming the number of KV layers
always set to l.

We define a configuration by partitioning trans-
former layers and positioning target layer(s) dif-
ferently. We choose the layer partitioning from {
pizza, sandwich, lasagna } and choose the target
layer positioning from { bottom, top, middle }1.
The pizza partitioning sets the first l − 1 layers as
KV layers. The sandwich partitioning sets the first
⌈ l−1

2 ⌉ layers and the last ⌊ l−1
2 ⌋ layers as KV layers.

For the remaining L− l + 1 consecutive layers in
both pizza and sandwich, their target layer is posi-
tioned at either the top, the middle, or the bottom
of these layers. The lasagna partitioning uniformly
divides the L layers into l groups of consecutive
layers. For each group except the first, the target
layer of all the layers within the group is positioned
at either the top, the middle, or the bottom of these
layers. For the first group, however, we always
set the bottom layer as the target layer because we
empirically find that there is a significant drop in
performance if the first layer is not a KV layer.

Note that for the top and middle positioning of
the target layer, there exists a cyclic dependency
between the target layer and the lower non-KV
layers: for each token, its KVs at the target layer
is required for attention computation at lower non-
KV layers, but are not computed until computation
at all the lower layers is finished. So, we follow
Wu and Tu (2024) and drop the attention of each
token to itself, which is equivalent to masking the
diagonal of the attention matrix in each layer.

Table 1 illustrates all the nine configurations
that we have defined. We name each configuration
with its partitioning and positioning pattern. The
sandwich-top, pizza-bottom and lasagna-bottom
configurations correspond to LCKV, YOCO2 and
CLA respectively. The lasagna-top configuration
and all middle configurations are novel and have
not been considered in previous work.

3.1 Training

For the bottom positioning, the model can be
trained in the same way as a standard transformer
model. For the top and middle positioning, how-
ever, the attention computation of each token at
layer i < kv(i) depends on KVs of the previous
tokens at its target layer kv(i), creating sequential
dependencies that spoil parallel training. Following

1We also consider positioning at quarter and three-quarter,
which is discussed in Appendix E.

2The pizza-bottom configuration differs from YOCO in
that it uses the standard attention instead of the efficient atten-
tion for the bottom-half of the layers.
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Table 1: All the configurations in our unified framework
for cross-layer KV sharing. Red layers are KV lay-
ers. Each arrow points to a target layer from the layers
whose queries are paired with its KV. The sandwich-top
configuration corresponds to LCKV, the pizza-bottom
configuration corresponds to YOCO, and the lasagna-
bottom configuration corresponds to CLA.

Wu and Tu (2024), we perform iterative training to
break the sequential dependencies. In each itera-
tion, we pair the queries of each layer with the KVs
of its target layer from the previous iteration. For a
token sequence of length n, parallel training with
n iterations is equivalent to sequential training. In
order to reduce the training cost, we backpropagate
the loss only through the last b iterations, and use
m ≪ n − b iterations to approximate the KVs of
the first n− b iterations.

Note that not all layers need to be trained itera-
tively. For some configurations, there exist layers
without any sequential dependencies at the top and
bottom, and we can compute these layers in one
pass before and after iterative training, respectively.
Therefore, for the pizza and sandwich partitioning,

we perform iterative training only on the layers
ranging from the first non-KV layer to its target
layer, and for the lasagna partitioning, we perform
iterative training only on the layers ranging from
the first layer of the second group and the target
layer of the last group.

3.2 Inference
The inference of LLMs can be divided into the pre-
filling and decoding stages. During the prefilling
stage, we can conduct early exit (Sun et al., 2024)
after computing the KVs of the last KV layer. For
the top and middle positioning, we perform paral-
lel encoding of the prompt in spite of sequential
dependencies by iterative computation with m+ b
iterations in the same way as in training. The decod-
ing stage is the same as in a standard transformer.

4 Experiments

We conduct experiments to compare the generation
throughput and performance of the standard Llama
baseline (Touvron et al., 2023) and the nine config-
urations with different numbers of KV layers. Our
implementation is based on HuggingFace Trans-
formers (Wolf et al., 2020) with kernel replacement
with FlashAttention 2 (Dao, 2024), fused RMS
norm, fused cross-entropy, and fused SwiGLU.
Our experiments are conducted on models with
110M and 1.1B parameters, whose configurations
are shown in Appendix A. We set m = 7 and b = 2
for the top and middle configurations. The sand-
wich configurations coincide with the pizza config-
urations when there are only two KV layers and
the lasagna-middle configuration coincides with
the lasagna-top configuration when the number of
KV layers is half of the total number of layers (i.e.,
6 and 11 for the 110M and 1.1B models, respec-
tively), therefore omitted in our experiments.

4.1 Generation Throughput
We test the generation throughput of the standard
Llama and the nine configurations with 1.1B pa-
rameters on an RTX 3090 (24GB) GPU with differ-
ent sequence lengths. The evaluation follows the
settings of FlexGen (Sheng et al., 2023).

Figure 1(a) reports the maximum throughput3.
When the prompt is short (i.e., 5+2043), the pre-
filling time can be ignored and the generation
throughputs of all the nine configurations are al-
most identical, which are much higher than the

3The throughput at different batch sizes is shown in Ap-
pendix B.
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baseline throughput and increase as the number of
KV layers decreases. When the prompt is long (i.e.,
512+1024), the prefilling time becomes significant
for the top and middle configurations because of
iterative encoding of the prompt. Consequently,
their throughputs degrade dramatically, falling be-
low the baseline in some cases. On the other hand,
the bottom configurations still achieve significantly
higher throughputs than the baseline because no
additional computation for prompt is required.

4.2 Performance on Small Training Set
We train the standard Llama and the nine configura-
tions with 110M and 1.1B parameters from scratch4

on the Minipile dataset (Kaddour, 2023) with 1.7B
tokens for one epoch and two epochs, respectively,
and evaluate their perplexity. The training details
are shown in Appendix A.

Figure 1(b) reports the perplexity. It can be seen
that more KV layers lead to better performance in
most cases. When the number of KV layers is half
of the total number of layers, the performance of
most configurations is comparable with that of the
baseline. As we reduce the number of KV layers,
the performance degrades for almost all the con-
figurations, but the top and middle configurations
are less affected compared to the bottom config-
urations. Two exceptions are the lasagna-top and
lasagna-middle configurations, whose performance
usually improves with fewer KV layers. This may
be due to the fact that the more KV layers there are,
the more difficult it is to accurately approximate all
the KVs with iterative training.

It can also be seen that the pizza-bottom and
lasagna-bottom configurations perform relatively
well among all the bottom configurations, and the
sandwich-top and sandwich-middle configurations
perform relatively well among all the top and mid-
dle configurations, respectively. Therefore, we de-
cide to train these four configurations with more
data to further investigate their potential in lan-
guage modeling and downstream tasks.

4.3 Performance on Large Training Set
We train the standard Llama and the four well-
performing configurations with 1.1B parameters
from scratch on a 100B subset of the SlimPajama
dataset (Soboleva et al., 2023) for one epoch and
evaluate their perplexity and downstream task accu-
racy. The training details are shown in Appendix A.

4We also tried model initialization with pre-trained models,
the results of which are shown in Appendix D.

We evaluate the perplexity on a 10M subset of the
development set of SlimPajama. We also use the
LM Eval Harness framework (Gao et al., 2023)
to test the zero-shot performance on common-
sense reasoning tasks including Hellaswag (Zellers
et al., 2019), OpenBookQA (Mihaylov et al., 2018),
WinoGrande (Sakaguchi et al., 2021), ARC-Easy
and ARC-Challenge (Clark et al., 2018), BoolQ
(Clark et al., 2019), PIQA (Bisk et al., 2020), and
SciQ (Welbl et al., 2017).

Figure 1(c) reports the perplexity and average
accuracy of downstream tasks. Detailed results of
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Figure 1: Experimental results.
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downstream tasks are shown in Appendix C. It can
be seen that the sandwich-top configuration per-
forms better than the two bottom configurations
in both perplexity and downstream task accuracy,
except for an outlier of the lasagna-bottom con-
figuration with 7 KV layers in downstream task
accuracy. The sandwich-middle configuration per-
forms best when the number of KV layers is small.

5 Conclusion

In this study, we propose a new framework for
LLM cross-layer KV sharing that includes previous
methods as special cases. We conduct systematic
experiments on various configurations of the frame-
work with different KV cache memory budgets
and observe their generation throughput and per-
formance in language modeling and downstream
tasks. The experimental results show that the pizza-
bottom and lasagna-bottom configurations can re-
duce the size of the KV cache by 2× without too
much performance degradation or introducing addi-
tional training and prefilling time. However, if one
wishes to further reduce the size of the KV cache,
cares less about additional training time, and needs
to generate sequences much longer than prompts,
then the sandwich-middle configuration may be a
better choice.

Limitations

In this study, we only conduct experiments on mod-
els with 1.1B parameters and training set with 100B
tokens. Due to the limited computational resources,
we do not explore the performance of larger models
with more training data.
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et al., 2023) (various licenses depending on the data
source) as our datasets. Our use of the datasets is
consistent with their intended use.

Model Size 110M 1.1B

Hidden Size 768 2048
Intermediate Size 2048 5632
Max Trained Length 1024 2048
# Layers 12 22
# Attention Heads 12 32
# KV Heads 6 4

Table 2: Model configurations.

B Throughput at Different Batch Sizes

Figure 2 reports the generation throughput of the
standard Llama and the nine configurations with
different numbers of KV layers at different batch
sizes. The highest point of each curve indicates
the maximum throughput of the model, which has
been shown in Figure 1(a), and the rightmost point
indicates the maximum batch size. It can be seen
that, at any given batch size, the throughput of
the nine configurations is higher than the baseline
throughput and increases as the number of KV lay-
ers decreases.
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Figure 2: Throughput of 1.1B models at different batch
sizes on an RTX 3090 (24GB) GPU with a prompt
length of 5 and a generation length of 2043.

C Detailed Downstream Task Results

Table 4 reports the accuracy of each downstream
task of the models in Section 4.3.

D Initializing with Pre-trained Models

Instead of training from scratch, we can initial-
ize the standard Llama and the nine configurations
with pre-trained models to get better performance.
We follow the uptraining scheme of MLKV (Zuhri
et al., 2024). For each KV layer, we initialize the
weights WK ,WV with the averaged weights of all
layers whose queries are paired with its KVs. We
use the TinyLlama checkpoint trained on 2.5T to-
kens to initialize the models with 1.1B parameters.
The training details are the same as in Section 4.2.

Figure 3 reports the perplexity. It can be seen
that all models achieve better performance, com-
pared to training from scratch. The lasagna-bottom
configuration performs best when retaining 11 and
7 KV layers, but was surpassed by some top and
middle configurations when retaining 3 KV lay-
ers. Notice that for the top and middle positioning,
we drop the attention of each token to itself and
therefore differ from the standard transformer. In
future work, we will try to make up for this gap by
specially computing the attention of each token to
itself, and we hope to get a better performance.

E More Options for Target Layer
Positioning

In addition to positioning the target layer at the top,
bottom, and middle, we also consider the quarter
and three-quarter, and name the corresponding con-
figurations as middle-1/4 and middle-3/4. We train
the new configurations with 1.1B parameters. The
training details are the same as in Section 4.2.

Figure 4 reports the perplexity. We omit lasagna
configurations because there are not enough lay-
ers in each group to distinguish between different
target layer positions. It can be seen that the per-
formance of the middle-1/4 and middle-3/4 config-
urations mainly lies between the top and middle
configurations.
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Section 4.2 4.3

Model Size 110M 1.1B 1.1B

Max LR 6.75e-4 3e-4 4e-4
Min LR 0 0 4e-5
LR Scheduler cosine
Optimizer AdamW
β1 0.9
β2 0.999 0.999 0.95
Warmup Ratio 0.015 0.015 200 steps
Weight Decay 0.1
Gradient Clipping 1.0
Batch Size (tokens) 32K 256K 2M
Epochs 2 1 100B tokens
GPU RTX 3090x1 A100x8 A800x128

Table 3: Training details.

# KV Layers Model Hellaswag Obqa WG ARC-c ARC-e BoolQ PIQA SciQ

22 Standard Transformer 44.58 30.2 50.99 25.00 46.38 60.46 68.93 74.8

11

Pizza-Bottom 44.20 29.4 51.93 25.00 46.55 59.51 68.28 72.1
Lasagna-Bottom 43.43 30.8 50.51 24.49 44.61 59.24 69.21 71.5
Sandwich-Top 44.74 31.0 51.70 24.83 46.38 61.38 67.90 72.5
Sandwich-Middle 44.22 31.0 52.01 24.49 44.86 58.62 68.39 70.7

7

Pizza-Bottom 42.79 30.0 52.25 24.74 45.37 56.82 68.61 71.0
Lasagna-Bottom 42.86 31.6 53.43 25.17 45.79 59.79 68.22 69.1
Sandwich-Top 43.88 30.0 52.83 25.68 43.73 61.07 67.57 69.5
Sandwich-Middle 43.84 30.0 51.77 25.68 45.50 60.73 68.77 68.1

3

Pizza-Bottom 40.21 30.4 51.93 24.06 43.18 58.65 67.13 68.4
Lasagna-Bottom 41.76 28.0 52.25 26.02 44.36 57.28 67.90 69.8
Sandwich-Top 42.14 30.2 49.80 24.91 43.39 61.47 66.97 68.9
Sandwich-Middle 43.43 31.0 51.70 24.40 44.95 59.57 68.17 67.3

Table 4: Detailed downstream task results of 1.1B models trained on the Slimpajama dataset.
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Figure 3: Perplexity on the Minipile dataset of
1.1B models initialized with converted Tinyllama-2.5T
weights. 5 10
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Figure 4: Perplexity on the Minipile dataset of 1.1B
models with more options for target layer positioning.
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