
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies
(Volume 2: Short Papers), pages 374–384

April 29 - May 4, 2025 ©2025 Association for Computational Linguistics

STEP: Staged Parameter-Efficient Pre-training for Large Language Models

Kazuki Yano1 Takumi Ito1,2 Jun Suzuki1,3,4
1Tohoku University 2Langsmith Inc. 3RIKEN 4 NII LLMC

yano.kazuki@dc.tohoku.ac.jp
{t-ito, jun.suzuki}@tohoku.ac.jp

Abstract

Pre-training large language models (LLMs)
faces significant memory challenges due to
the large size of model parameters. We intro-
duce STaged parameter-Efficient Pre-training
(STEP), which integrates parameter-efficient
tuning techniques with model growth. We con-
duct experiments on pre-training LLMs of vari-
ous sizes and demonstrate that STEP achieves
up to a 53.9% reduction in maximum memory
requirements compared to vanilla pre-training
while maintaining equivalent performance. Fur-
thermore, we show that the model by STEP per-
forms comparably to vanilla pre-trained models
on downstream tasks after instruction tuning.

1 Introduction

Large Language Models (LLMs) have become an
indispensable foundational technology in artificial
intelligence. Recent LLM development trends,
based on scaling laws (Kaplan et al., 2020), in-
volve pre-training Transformer models with a vast
number of parameters on massive datasets (Brown
et al., 2020). Consequently, the pre-training of
LLMs requires substantial computational resources,
typically involving thousands of GPUs (Touvron
et al., 2023). This enormous computational demand
presents a significant obstacle to LLM research.

To tackle this challenge, we consider methods
for reducing the computational demand in LLM
pre-training. While there are various approaches to
reducing this, we introduce a pre-training method
that maintains performance equivalent to vanilla
pre-training while constraining the maximum GPU
memory requirements to a predetermined thresh-
old. Specifically, our approach combines model
growth (Chen et al., 2022; Wang et al., 2024)
through layer addition with parameter-efficient tun-
ing techniques (Hu et al., 2022), which are com-
monly used in fine-tuning. For a detailed expla-
nation of the proposed method, Figure 1 presents

Stage 1 Stage 2

Procedure 1: 
Training

Layer 3

Layer 2

Layer 1

Layer 5

Layer 3

Layer 1

Layer 4

Layer 2

Layer 5

Layer 3

Layer 1

Layer 4

Layer 2

🔥

🔥

🔥

🔥

🔥

🔥

❄

❄

❄

🔥

🔥

Procedure 2: 
Growth Layer

Procedure 3: 
Apply PET
to old layers

Procedure 4: 
Training

Figure 1: Overview of STEP (STaged parameter Ef-
ficient Pre-training). First, vanilla pre-training is per-
formed on a small-scale model (Procedure 1). Subse-
quently, new layers are added to grow the pre-trained
model (Procedure 2). The parameters of the pre-trained
layers are then frozen, and Parameter-Efficient Train-
ing (PET) is applied for alternative training (Procedure
3), followed by retraining of the expanded model (Pro-
cedure 4). In Procedure 4, only the parameters added
through layer expansion and the small-scale parameters
introduced by PET are subject to training.

an overview of our procedure. Our approach for-
mulates the maximum memory requirements for
each stage of the sequential model growth as an
integer programming problem, using model config-
urations as variables. We solve this optimization
problem to determine the optimal model configu-
rations for each stage, thereby controlling model
growth settings to minimize peak memory usage
prior to pre-training execution. This approach en-
ables pre-training while maintaining memory re-
quirements within a predetermined threshold. Here-
after, we refer to our method as STaged parameter
Efficient Pre-training (STEP). We demonstrate that
STEP achieves up to a 53.9% reduction in maxi-
mum memory requirements compared to vanilla
pre-training while maintaining equivalent perplex-
ity and performance on domain-specific tasks. Fur-
thermore, we verify that STEP does not negatively
affect the performance of downstream tasks by
demonstrating that STEPed models perform on par

374



with the vanilla pre-trained model.

2 Related Work

Several memory-efficient training approaches have
been actively developed in the literature of train-
ing LLMs (Rajbhandari et al., 2020; Korthikanti
et al., 2023). One of the primary approaches in-
volves reducing the number of trainable parame-
ters. Notable examples include Parameter-Efficient
Tuning (PET) methods such as Adapter (Houlsby
et al., 2019) and LoRA (Hu et al., 2022). Mean-
while, to reduce FLOPs during pre-training, model
growth techniques have been proposed (Chen et al.,
2022; Pan et al., 2024), where training begins
with a small-scale model and continues as the
model parameters are gradually expanded. Our
proposed method aims to achieve memory-efficient
pre-training by appropriately combining PET and
model growth techniques.

Paremeter-efficient Tuning. PET has primarily
been developed for fine-tuning LLMs. For instance,
LoRA is a technique that adds new adapters (low-
rank matrices) while keeping the pre-trained LLM
parameters frozen, and only trains these adapters.
Since adapters typically contain few parameters,
training can be accomplished with minimal mem-
ory requirements.

PET is now being applied to pre-training ap-
plications. Here, we describe two representative
methods: ReLoRA (Lialin et al., 2024) and Ga-
Lore (Zhao et al., 2024). ReLoRA is a method
for pre-training LLMs using LoRA. A distinctive
feature of ReLoRA is that it begins with vanilla pre-
training and transitions to LoRA during the training
process. Consequently, from a peak memory re-
quirement perspective, ReLoRA requires the same
amount of memory as vanilla pre-training. GaLore
is a method that leverages the low-rank structure of
gradients to reduce optimizer states while maintain-
ing performance equivalent to vanilla pre-training.
Unlike ReLoRA, GaLore operates with low mem-
ory requirements throughout the entire training pro-
cess. These methods can reduce memory usage
compared to vanilla pre-training, but they slightly
underperform.

Growing pre-trained model. Recent studies
have shown that growing a smaller model and then
continuing to train the larger model can achieve
comparable performance with fewer FLOPs com-
pared to training a large model from scratch (Shen

et al., 2022; Chen et al., 2022; Pan et al., 2024).
In these methods, the operation of increasing the
model size is called the Growth Operator, expand-
ing the dimensions of Transformer (Vaswani et al.,
2017) layers and adding new layers. Since existing
studies train the full parameters of the model, this
approach does not reduce the maximum memory
requirements.

3 STEP: STaged parameter Efficient
Pre-training

3.1 Procedure
The following four procedures are an overview of
STEP and how it efficiently trains LLMs;

(Procedure 1) STEP performs a vanilla pre-
training on a model with a much smaller size than
the target model size as an initial model.

(Procedure 2) STEP expands the layers of the
initial model to increase its size using the Growth
Operator.

(Procedure 3) STEP also introduces the PET pa-
rameters given by the parameter-efficient adaptors
for the layers trained in Procedure 1.

(Procedure 4) STEP continues to pre-train the
parameters in layers newly added in Procedure 2
and the adaptors added in Procedure 3 while freez-
ing those in layers trained in Procedure 1.

After finishing Procedure 4, we obtain the pre-
trained model, or we can continue growing the
layers by repeating Procedures 2 to 4, alternatively.
Note that the first to fourth red right-arrows in Fig-
ure 1 corresponds to Procedures 1 to 4, respectively.

We select Interpolation used in Chang et al.
(2018); Dong et al. (2020); Li et al. (2022) as
the Growth Operator in Procedure 2, which adds
new layers between existing layers.1 Moreover, we
select the low-rank adaptation method (Hu et al.,
2022; Lialin et al., 2024) as PET parameters for
performing Procedure 3.

3.2 Maximum memory requirement of STEP
We assume that the maximum memory require-
ment during the pre-training can be estimated by
the size of model states, which include model pa-
rameters, gradients, and optimizer state.2 More-

1We discuss more detailed initialization of the new layers
in Appendices A and B.

2Other memory usages, such as activations, can be reduced
using methods like Activation Recomputation (Korthikanti
et al., 2023).

375



over, we assume that we use a typical Transformer
model (Vaswani et al., 2017) and the Adam opti-
mizer (Kingma and Ba, 2015) with mixed-precision
training (Micikevicius et al., 2018). Specifically,
model parameters and gradients are represented
in 16-bit floating-point numbers, while optimizer
states are represented in 32-bit floating-point num-
bers. When the number of parameters in one layer
of the Transformer is Player and the number of lay-
ers in the model is n, the memory usage of the
model state, expressed in bytes, is given by

Ptrn = n(2Player︸ ︷︷ ︸
model

+2Player︸ ︷︷ ︸
gradient

+12Player︸ ︷︷ ︸
optimizer

)

= 16nPlayer,

(1)

where the Adam optimizer state consists of three
parts: model, gradient momentum, and variance.
Regarding the maximum memory requirement for
STEP, let ni be the number of layers increased in
the i-th stage from the i− 1 stage in STEP. Let Ni

represent the total number of layers in the i-th stage
model: Ni =

∑i
k=1 nk, where N0 = 0. Moreover,

E(Player) denotes the number of parameters for
a single layer, Player, added by PET.3 Then, we
estimate the maximum memory requirement for
the stage i, that is, P STEP

i , as follows:

P STEP
i =16niPlayer + 2Ni−1Player

+ 16Ni−1E(Player)
(2)

where the 2Ni−1Player represents the number of
frozen model parameters already trained in the 1
to i − 1 stages, the 16niPlayer indicates the num-
ber of newly added model parameters with op-
timization states added in Procedure 2 and the
16Ni−1E(Player) represents the number of PET pa-
rameters added in Procedure 3. Note that Eq. 2 is
identical to Eq. 1 if i = 1 since N0 = 0.

Let L be the number of layers for the model that
is finally obtained. Then, the solution of the follow-
ing minimization problem can minimize the maxi-
mum memory requirement during the pre-training:

minimize
{n1,...,nK}

{
max

i=1,...,K
P STEP
i

}
s.t. L = NK . (3)

This minimization problem is essentially an integer
linear programming (ILP) problem since ni for all
i are non-negative integers. Thus, we can straight-
forwardly obtain the solution set {ni}Ki=1 by using
a standard ILP solver or manual calculation if K

3Appendix C discusses examples of Player and E(Player).

Model Size Hidden Layers

215M →368M 1600 7 →12
396M →680M 1536 14 →24
704M →1.2B 2048 14 →24

553M →956M →1.2B 2048 11 →19 →24

Table 1: The STEP configurations used in the experi-
ments. The number of parameters and layers for each
model at different stages are shown. The last row shows
a three-stage growth process.

is small, e.g., K = 2. Typically, K is small, at
most L − 1, and usually stays below L/4, ensur-
ing the problem remains computationally tractable.
As a result, the computational cost is negligible
compared to LLM pre-training.4

4 Experiments

We investigate whether STEP can perform equiv-
alent to vanilla pre-training for LLMs at the same
FLOPs.5 We also compare ReLoRA (Lialin et al.,
2024) and GaLore (Zhao et al., 2024) as parameter-
efficient pre-training methods in a fair condition.
Furthermore, to verify whether STEP would not
negatively affect the performance of downstream
tasks, we will perform instruction tuning on both
the STEPed model and the vanilla pre-trained
model and compare their performance.

4.1 Evaluation in pre-training

Datasets and model. We used FineWeb-
Edu (Penedo et al., 2024) as the pre-training data.
The model configuration follows LLaMA (Touvron
et al., 2023). The detailed configurations are
shown in Appendix F. We selected three different
model sizes, namely, 368M, 680M, and 1.2B, to
examine whether different model sizes lead to
different trends.

Evaluation. We calculated the perplexities on
two held-out validation sets: one from FineWeb-
Edu (10M tokens) and the other from Wiki-Text
(0.3M tokens) (Merity et al., 2017). Furthermore,
we evaluated the accuracy of several typical down-
stream tasks for evaluating LLMs. 6

Configuration of STEP. We focus on evaluating
STEP when the Growth Layer Operator is applied
once during its pre-training, that is, STEP-2stages

4More discussions of the complexity of ILP problems for
STEP are in Appendix D.

5The detailed FLOPs computation is in Appendix E.
6Detailed evaluation settings and tasks are in Appendix G

376



Perplexity ↓ Accuracy ↑

Validation Wikitext LAMBADA ARC-e ARC-c Winogrande PIQA OBQA HellaSwag

368M
Vanilla (5.9G) 16.9 32.1 29.2 52.2 27.3 50.3 64.9 32.4 37.3
ReLoRA (5.9G) 17.4 33.1 28.8 51.9 27.8 50.5 65.1 31.2 36.5
GaLore (3.3G) 21.6 43.1 22.8 48.1 25.7 51.2 62.5 30.8 31.7
STEP-2stages (3.4G) 16.7 31.5 31.5 52.3 28.4 49.7 65.5 32.0 37.8

680M
Vanilla (10.9G) 14.6 26.0 34.8 55.8 30.2 52.3 69.7 36.2 43.2
ReLoRA (10.9G) 15.1 27.3 34.0 54.1 29.0 52.1 67.3 33.8 42.1
GaLore (6.0G) 19.4 37.5 25.0 49.1 26.2 51.4 62.4 29.6 33.8
STEP-2stages (6.3G) 14.6 26.0 35.4 56.0 29.7 55.3 67.7 34.2 43.7

1.2B
Vanilla (19.3G) 12.9 22.1 39.9 62.0 31.1 52.1 71.0 34.6 48.8
ReLoRA (19.3G) 13.5 23.6 37.0 60.3 31.1 51.9 70.1 34.6 46.6
GaLore (10.4G) 17.4 35.3 28.0 51.9 26.6 50.4 65.7 32.2 36.6
STEP-2stages (10.6G) 12.9 22.3 39.7 62.4 34.3 54.8 70.0 35.4 48.4
STEP-3stages (8.9G) 12.9 22.1 38.7 61.0 32.7 53.8 71.2 35.6 48.9

Table 2: Perplexity and accuracy of vanilla pre-training (Vanilla), ReLoRA, GaLore, and STEP. The numbers in
parentheses indicate the maximum memory requirements for each method during pre-training in this experiment.

Writing Roleplay Reasoning Math Coding Extraction STEM Humanities Average

Vanilla 1.2B 2.85 3.25 2.60 1.10 1.00 1.10 3.20 2.75 2.26

STEP-2stages 1.2B 3.10 3.95 1.95 1.00 1.05 1.10 3.73 2.60 2.30
STEP-3stages 1.2B 2.85 3.30 1.95 1.35 1.10 1.10 3.25 3.20 2.26

Table 3: Category-specific and average scores on MT-Bench to the answers generated by models instruction-tuned
with vanilla pre-trained models (Vanilla) and STEPed models (STEP-2stages and STEP-3stages).

Figure 2: Memory consumption of pre-training 1.2B
in Table 1. STEP allows for increasing the model size
while keeping memory usage consistent at every stage.

(K = 2). Additionally, we evaluate the STEP-
3stages (K = 3) only for the 1.2B model.

Given the number of layers L with the fixed di-
mension of hidden layers, we compute {n1, n2} for
STEP-2stages, or {n1, n2, n3} for STEP-3stages,
respectively, that can minimize the maximum mem-
ory requirements by Eq. 3. Table 1 shows the cal-
culated numbers of layers when the target model
sizes are one of {368M, 680M, 1.2B}. Figure 2
shows an example of memory requirements when
the target model size is 1.2B for vanilla pre-training
and each stage of the STEP-3stages.

The schedule for applying the Growth Layer

Operator is set to occur when 75% of the total
training steps for each stage have been completed.

Results. Table 2 shows the performance of
vanilla pre-training, ReLoRA, GaLore, and STEP.
STEP outperformed both ReLoRA and GaLore.
Additionally, STEP achieved equivalent perfor-
mance to the vanilla pre-training while significantly
reducing the maximum memory requirement from
5.9G to 3.4G (42.3% reduction), 10.9G to 6.3G
(42.2% reduction), and 19.3G to 8.9G (53.9% re-
duction) for 368M, 680M, and 1.2B models, respec-
tively. Furthermore, the results of STEP-2stages
and STEP-3stages at 1.2B parameters show that
increasing the number of stages leads to further
reduction in memory usage without compromising
performance. These results suggest that STEP can
efficiently pre-train LLMs with reduced memory
usage.7

4.2 Evaluation in instruction tuning

Data and evaluation measure. For instruction
tuning, we used the Alpaca dataset (Taori et al.,

7Appendix J discusses the mechanism behind STEP.

377



New Layer 

Layer 2

Layer 1

Layer 3

Layer 4 Upper

Intermediate

Lower

Figure 3: Illustration of different strategies for adding
new layers in STEP. ‘Upper’ adds layers at the top,
‘Intermediate’ inserts layers in the middle, and ‘Lower’
adds layers at the bottom.

2023). Details of the training configurations
are presented in Appendix H. We compare three
1.2B models one trained with vanilla pre-training,
while the other two were trained using STEP
(STEP-2stages, STEP-3stages). We evaluate these
instruction-tuned models on MT-Bench (Zheng
et al., 2024) by generating model responses to 80
multi-turn questions and assign a numerical rating
out of 10 to each response by GPT-4 (Achiam et al.,
2023).

Results. Table 3 shows the MT-bench scores of
the vanilla pre-trained models (Vanilla) and STE-
Ped models (STEP-2stages and STEP-3stages). We
found that the scores of STEPed models were ei-
ther equal to or slightly higher than those of the
vanilla pre-trained model. These results indicate
that STEP does not have a negative impact on down-
stream tasks.

5 Ablation Study

We examine the effective position for new layers
and the effectiveness of PET, both key components
of STEP. 8 We used the model settings with a target
size of 680M from Table 1.

Effective position for adding new layers. We
investigated the most effective position for per-
formance improvement when using Interpolation-
Mean in Procedure 2 of STEP. As shown in Fig-
ure 3, we conducted experiments for Upper, where
new layers are added collectively at the top; Inter-

8The ablation study on the initialization methods for new
layers and the schedule of applying the Growth Operator is
conducted in Appendix I.

position 680M

Vanilla 14.56

STEP-2stages Upper 14.56
Intermediate 14.80

Lower 15.06
Random 14.82

Table 4: Validation perplexities for vanilla pre-trained
models (Vanilla) and STEPed model (STEP-2stages)
when changing the location of newly added layers.

680M

Vanilla 14.56 (10.9G)

STEP-2stages w/ PET 14.56 (6.34G)
w/o PET 14.66 (5.32G)

Table 5: Validation perplexities for vanilla pre-trained
models (Vanilla) and STEPed model (STEP-2stages) w/
and w/o PET.

mediate, where they are inserted in the middle; and
Lower, where they are added at the bottom. Addi-
tionally, we conducted experiments for Random,
where the position of additional layers is deter-
mined randomly.

As shown in Table 4, we can see a trend that
performance improves more when layers are added
towards the upper part, and this is better than ran-
domly deciding the location for layer addition.

The effect of PET parameters. This experiment
verifies whether the PET introduced in STEP con-
tributes to performance improvement. Specifically,
we conducted an experiment skipping Procedure 3
in Section 3.1.

As shown in Table 5, PET contributes to per-
formance improvement, and without it, the perfor-
mance is inferior to the vanilla pre-trained model.

6 Conclusion

Pre-training LLM requires substantial memory,
posing a challenge for LLM research. We pro-
posed a novel training method called STEP, which
enables LLM pre-training with reduced memory
requirements. Our experiments demonstrated the
effectiveness of STEP; specifically, STEP achieved
equivalent performance to vanilla pre-training and
downstream tasks after instruction tuning, while
reducing peak memory usage by up to 53.9%. We
hope our results encourage researchers who aim to
engage in LLM pre-training research but have only
limited computing resources.

378



Limitations

Several limitations of our study should be ad-
dressed in future research. First, our experiments
have been limited to the FineWeb-Edu dataset and
only LLaMA architecture. We need to see if the re-
sults can be replicated on other pre-training datasets
and other architectures. Second, our experiments
focused on relatively smaller model sizes compared
to the recent LLMs with billions of parameters,
such as those with 7B or more. Third, since STEP
begins training with smaller models, it requires a
larger amount of training tokens at the same FLOPs
of vanilla pre-training. While we conducted exper-
iments in situations where the training corpus is
unconstrained, the effectiveness of STEP in data-
constrained situations remains unexplored. Finally,
this paper focuses its experiments on Transformers,
as they are the most commonly used architecture
for LLMs. However, the potential applicability to
other architectures, such as State Space Models (Gu
and Dao, 2024), has not been verified in this study.

Ethical Considerations

We exclusively used publicly available datasets for
pre-training, fine-tuning, and evaluation. Moreover,
we developed the language models entirely from
scratch, avoiding the use of any publicly available
models. Given that our proposal is a framework for
pre-training language models, the risk of ethical
concerns is minimal.

Acknowledgements

This work was supported by the “R&D Hub Aimed
at Ensuring Transparency and Reliability of Gener-
ative AI Models” project of the Ministry of Educa-
tion, Culture, Sports, Science and Technology, and
JST Moonshot R&D Grant Number JPMJMS2011-
35 (fundamental research).

In this research work, we used the “mdx: a plat-
form for building data-empowered society”.

References
Josh Achiam, Steven Adler, Sandhini Agarwal, Lama

Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.

Naman Agarwal, Pranjal Awasthi, Satyen Kale, and Eric
Zhao. 2024. Stacking as accelerated gradient descent.
arXiv preprint arXiv:2403.04978.

Joshua Ainslie, James Lee-Thorp, Michiel de Jong, Yury
Zemlyanskiy, Federico Lebron, and Sumit Sanghai.
2023. GQA: Training generalized multi-query trans-
former models from multi-head checkpoints. In Pro-
ceedings of the 2023 Conference on Empirical Meth-
ods in Natural Language Processing, pages 4895–
4901, Singapore. Association for Computational Lin-
guistics.

Yonatan Bisk, Rowan Zellers, Ronan bras, Jianfeng
Gao, and Choi Yejin. 2020. Piqa: Reasoning about
physical commonsense in natural language. Proceed-
ings of the AAAI Conference on Artificial Intelligence,
34:7432–7439.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877–1901.

Bo Chang, Lili Meng, Eldad Haber, Frederick Tung, and
David Begert. 2018. Multi-level residual networks
from dynamical systems view. In International Con-
ference on Learning Representations.

Cheng Chen, Yichun Yin, Lifeng Shang, Xin Jiang,
Yujia Qin, Fengyu Wang, Zhi Wang, Xiao Chen,
Zhiyuan Liu, and Qun Liu. 2022. bert2BERT: To-
wards reusable pretrained language models. In Pro-
ceedings of the 60th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers), pages 2134–2148, Dublin, Ireland. Associa-
tion for Computational Linguistics.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot,
Ashish Sabharwal, Carissa Schoenick, and Oyvind
Tafjord. 2018. Think you have solved question an-
swering? try arc, the ai2 reasoning challenge.

Chengyu Dong, Liyuan Liu, Zichao Li, and Jingbo
Shang. 2020. Towards adaptive residual network
training: A neural-ODE perspective. In Proceedings
of the 37th International Conference on Machine
Learning, volume 119 of Proceedings of Machine
Learning Research, pages 2616–2626. PMLR.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman,
Sid Black, Anthony DiPofi, Charles Foster, Laurence
Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li,
Kyle McDonell, Niklas Muennighoff, Chris Ociepa,
Jason Phang, Laria Reynolds, Hailey Schoelkopf,
Aviya Skowron, Lintang Sutawika, Eric Tang, An-
ish Thite, Ben Wang, Kevin Wang, and Andy Zou.
2024. A framework for few-shot language model
evaluation.

Albert Gu and Tri Dao. 2024. Mamba: Linear-time
sequence modeling with selective state spaces. In
First Conference on Language Modeling.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski,
Bruna Morrone, Quentin De Laroussilhe, Andrea
Gesmundo, Mona Attariyan, and Sylvain Gelly. 2019.

379

https://doi.org/10.18653/v1/2023.emnlp-main.298
https://doi.org/10.18653/v1/2023.emnlp-main.298
https://doi.org/10.1609/aaai.v34i05.6239
https://doi.org/10.1609/aaai.v34i05.6239
https://openreview.net/forum?id=SyJS-OgR-
https://openreview.net/forum?id=SyJS-OgR-
https://doi.org/10.18653/v1/2022.acl-long.151
https://doi.org/10.18653/v1/2022.acl-long.151
https://proceedings.mlr.press/v119/dong20c.html
https://proceedings.mlr.press/v119/dong20c.html
https://doi.org/10.5281/zenodo.12608602
https://doi.org/10.5281/zenodo.12608602
https://openreview.net/forum?id=tEYskw1VY2
https://openreview.net/forum?id=tEYskw1VY2


Parameter-efficient transfer learning for nlp. In In-
ternational conference on machine learning, pages
2790–2799. PMLR.

Edward J Hu, yelong shen, Phillip Wallis, Zeyuan Allen-
Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and Weizhu
Chen. 2022. LoRA: Low-rank adaptation of large
language models. In International Conference on
Learning Representations.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B
Brown, Benjamin Chess, Rewon Child, Scott Gray,
Alec Radford, Jeffrey Wu, and Dario Amodei. 2020.
Scaling laws for neural language models.

Diederik Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In International
Conference on Learning Representations (ICLR), San
Diega, CA, USA.

Vijay Anand Korthikanti, Jared Casper, Sangkug Lym,
Lawrence McAfee, Michael Andersch, Mohammad
Shoeybi, and Bryan Catanzaro. 2023. Reducing ac-
tivation recomputation in large transformer models.
Proceedings of Machine Learning and Systems, 5.

Changlin Li, Bohan Zhuang, Guangrun Wang, Xiaodan
Liang, Xiaojun Chang, and Yi Yang. 2022. Auto-
mated progressive learning for efficient training of
vision transformers. In CVPR.

Vladislav Lialin, Sherin Muckatira, Namrata Shiva-
gunde, and Anna Rumshisky. 2024. ReloRA: High-
rank training through low-rank updates. In The
Twelfth International Conference on Learning Repre-
sentations.

Stephen Merity, Caiming Xiong, James Bradbury, and
Richard Socher. 2017. Pointer sentinel mixture mod-
els. In International Conference on Learning Repre-
sentations.

Paulius Micikevicius, Sharan Narang, Jonah Alben, Gre-
gory Diamos, Erich Elsen, David Garcia, Boris Gins-
burg, Michael Houston, Oleksii Kuchaiev, Ganesh
Venkatesh, and Hao Wu. 2018. Mixed precision
training. In International Conference on Learning
Representations.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish
Sabharwal. 2018. Can a suit of armor conduct elec-
tricity? a new dataset for open book question an-
swering. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing,
pages 2381–2391, Brussels, Belgium. Association
for Computational Linguistics.

James O’Neill, Greg V. Steeg, and Aram Galstyan. 2021.
Layer-wise neural network compression via layer
fusion. In Proceedings of The 13th Asian Conference
on Machine Learning, volume 157 of Proceedings
of Machine Learning Research, pages 1381–1396.
PMLR.

Yu Pan, Ye Yuan, Yichun Yin, Jiaxin Shi, Zenglin Xu,
Ming Zhang, Lifeng Shang, Xin Jiang, and Qun Liu.
2024. Preparing lessons for progressive training on
language models. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, volume 38, pages
18860–18868.

Denis Paperno, Germán Kruszewski, Angeliki Lazari-
dou, Ngoc Quan Pham, Raffaella Bernardi, Sandro
Pezzelle, Marco Baroni, Gemma Boleda, and Raquel
Fernández. 2016. The LAMBADA dataset: Word
prediction requiring a broad discourse context. In
Proceedings of the 54th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 1525–1534, Berlin, Germany.
Association for Computational Linguistics.

Guilherme Penedo, Hynek Kydlíček, Loubna Ben al-
lal, Anton Lozhkov, Margaret Mitchell, Colin Raffel,
Leandro Von Werra, and Thomas Wolf. 2024. The
fineweb datasets: Decanting the web for the finest
text data at scale. In The Thirty-eight Conference on
Neural Information Processing Systems Datasets and
Benchmarks Track.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. 2019. Language
models are unsupervised multitask learners. OpenAI
blog, 1(8):9.

Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase,
and Yuxiong He. 2020. Zero: Memory optimizations
toward training trillion parameter models. In SC20:
International Conference for High Performance Com-
puting, Networking, Storage and Analysis, pages 1–
16. IEEE.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavat-
ula, and Yejin Choi. 2021. Winogrande: An adver-
sarial winograd schema challenge at scale. Commu-
nications of the ACM, 64(9):99–106.

Sheng Shen, Pete Walsh, Kurt Keutzer, Jesse Dodge,
Matthew Peters, and Iz Beltagy. 2022. Staged train-
ing for transformer language models. In Inter-
national Conference on Machine Learning, pages
19893–19908. PMLR.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann
Dubois, Xuechen Li, Carlos Guestrin, Percy Liang,
and Tatsunori B. Hashimoto. 2023. Stanford alpaca:
An instruction-following llama model. https://
github.com/tatsu-lab/stanford_alpaca.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal
Azhar, et al. 2023. Llama: Open and efficient foun-
dation language models.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, volume 30. Curran Associates, Inc.

380

https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=DLJznSp6X3
https://openreview.net/forum?id=DLJznSp6X3
https://openreview.net/forum?id=Byj72udxe
https://openreview.net/forum?id=Byj72udxe
https://openreview.net/forum?id=r1gs9JgRZ
https://openreview.net/forum?id=r1gs9JgRZ
https://doi.org/10.18653/v1/D18-1260
https://doi.org/10.18653/v1/D18-1260
https://doi.org/10.18653/v1/D18-1260
https://proceedings.mlr.press/v157/o-neill21a.html
https://proceedings.mlr.press/v157/o-neill21a.html
https://doi.org/10.18653/v1/P16-1144
https://doi.org/10.18653/v1/P16-1144
https://openreview.net/forum?id=n6SCkn2QaG
https://openreview.net/forum?id=n6SCkn2QaG
https://openreview.net/forum?id=n6SCkn2QaG
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf


Yite Wang, Jiahao Su, Hanlin Lu, Cong Xie, Tianyi Liu,
Jianbo Yuan, Haibin Lin, Ruoyu Sun, and Hongxia
Yang. 2024. LEMON: Lossless model expansion. In
The Twelfth International Conference on Learning
Representations.

Chengyue Wu, Yukang Gan, Yixiao Ge, Zeyu Lu, Jia-
hao Wang, Ye Feng, Ying Shan, and Ping Luo. 2024.
LLaMA pro: Progressive LLaMA with block expan-
sion. In Proceedings of the 62nd Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 6518–6537, Bangkok,
Thailand. Association for Computational Linguistics.

Yiqun Yao, Zheng Zhang, Jing Li, and Yequan Wang.
2024. Masked structural growth for 2x faster lan-
guage model pre-training. In The Twelfth Interna-
tional Conference on Learning Representations.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali
Farhadi, and Yejin Choi. 2019. HellaSwag: Can a ma-
chine really finish your sentence? In Proceedings of
the 57th Annual Meeting of the Association for Com-
putational Linguistics, pages 4791–4800, Florence,
Italy. Association for Computational Linguistics.

Jiawei Zhao, Zhenyu Zhang, Beidi Chen, Zhangyang
Wang, Anima Anandkumar, and Yuandong Tian.
2024. Galore: Memory-efficient LLM training by
gradient low-rank projection. In Forty-first Interna-
tional Conference on Machine Learning.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin,
Zhuohan Li, Dacheng Li, Eric Xing, et al. 2024.
Judging llm-as-a-judge with mt-bench and chatbot
arena. Advances in Neural Information Processing
Systems, 36.

381

https://openreview.net/forum?id=3Vw7DQqq7U
https://aclanthology.org/2024.acl-long.352
https://aclanthology.org/2024.acl-long.352
https://openreview.net/forum?id=rL7xsg1aRn
https://openreview.net/forum?id=rL7xsg1aRn
https://doi.org/10.18653/v1/P19-1472
https://doi.org/10.18653/v1/P19-1472
https://openreview.net/forum?id=hYHsrKDiX7
https://openreview.net/forum?id=hYHsrKDiX7


A The initialization of the new layer

When using Interpolation, most existing stud-
ies (Shen et al., 2022; Li et al., 2022; Wu
et al., 2024) have adopted the method of copy-
ing weights from lower layers to initialize new
layers, specifically ϕnew

2i = ϕnew
2i−1 = ϕi, which

we call Interpolation-Copy. On the other hand,
bert2BERT (Chen et al., 2022) proposed a method
to expand the width by not only copying from
lower layers but also mixing weights copied from
both lower and upper layers, demonstrating im-
proved performance compared to simple copy-
ing from lower layers. Inspired by this, we fur-
ther extend Interpolation by incorporating an idea
of a fusing method that averages the parameters
of the two layers (O’Neill et al., 2021), namely,
ϕnew
2i = (ϕi+ϕi+1)/2, which we call Interpolation-

Mean. Shen et al. (2022); Wu et al. (2024) apply
zero-initialization, called function preserving ini-
tialization (FPI), to some modules when applying
Interpolation to preserve the loss value. However,
as Yao et al. (2024) points out, the existing lay-
ers may receive gradients similar to the previous
stage, leading to unnecessary constraints and poten-
tially slowing down the convergence of the model.
Therefore, we do not use FPI. The validity of these
settings will be verified through experiments.

B Overfitting in smaller initial models

Although there might be concerns about overfit-
ting in the STEP method due to initial training
on smaller models, according to Kaplan’s Scaling
Law (Kaplan et al., 2020), overfitting can be miti-
gated with sufficient data. Given that pre-training
of large language models typically involves vast
amounts of data, this abundance of data in LLM
pre-training scenarios theoretically minimizes over-
fitting risks.

C STEP with LLaMA and LoRA

In STEP, we use ReLoRA for PET and LLaMA as
the model. When not considering Grouped Query
Attention (Ainslie et al., 2023) in LLaMA, the
Self-Attention layer contains four matrices of size
(dhidden, dhidden). Additionally, the FFN layer has
three matrices of size (83dhidden, dhidden), and there
are two vectors of size dhidden for Layer Normaliza-
tion. Therefore, Player is given by:

Player = 4d2hidden + 3× 8

3
d2hidden + 2dhidden

= 12d2hidden + 2dhidden

(4)

Furthermore, since ReLoRA assigns two matrices
of size (d, r) to a matrix of size (d, d), we have:

E(Player) = 8(rdhidden) + 3r(dhidden +
8

3
dhidden)

= 19rdhidden
(5)

D Complexity of ILP Problems

The integer linear programming (ILP) used in
STEP is not particularly complex. The upper bound
on the number of growth stages is the final number
of layers, L, e.g., L = 24. In practical applications,
the number of growth stages, K, is typically small
(e.g., K = 2 or K = 3, or at most around L/4).
This results in a relatively small number of vari-
ables, which helps limit the problem’s complexity.
In our experiments using an integer programming
solver, we obtained solutions within 2 or 3 seconds
for cases where K ≈ 10, though actual speed may
vary depending on the performance of the hard-
ware and the solver’s implementation. Therefore,
the computational cost is negligible compared to
the LLM pre-training, which takes at least several
hours, and is not a significant concern.

E FLOPs Computation

Let C be the FLOPs, N the number of non-
embedding parameters, and T the total number
of tokens used in training. Then, C ≈ 6NT .
The coefficient 6 represents the number of float-
ing point operations required for one step, consist-
ing of 2 floating point operations for the forward
pass and 4 floating point operations for other cal-
culations such as the backward pass. Therefore,
if we denote the number of trainable parameters
as Ntrainable and the number of frozen, untrainable
parameters as Nuntrainable, the FLOPs can be calcu-
lated as C ≈ (6Ntrainable + 2Nuntrainable)T .

F Details of pre-training configurations

We used GPT-2 vocabulary (Radford et al., 2019),
although the architecture is based on LLaMA. The
training configurations common to all model set-
tings (368M, 680M, 1.2B) are shown in Table 6.
The training configurations specific to each model
setting are presented in Table 7. We adhered to the
hyperparameter settings reported in the papers for
ReLoRA (Lialin et al., 2024) and GaLore (Zhao
et al., 2024). All experiments run on NVIDIA
A100 GPUs.

382



Configurations Selected Value

Common settings
Optimizer AdamW (β1 = 0.9, β2 = 0.95)
Weight decay 0.1
Learning rate schedule cosine
Warmup steps 1000
Seq. len. 1024

ReLoRA settings
LoRA rank 128
ReLoRA reset 5000
Restart warmup steps 500

GaLore settings
GaLore rank 128
Update projection gap 200
Galore scale 0.25

Table 6: List of training configurations common to all
model sizes in pre-training experiments in Section 4.1.

Re-initialization of learning rate scheduler.
When adding layers in Procedure 2, we reset the
optimizer state for old layers by applying PET to
those. Moreover, in Procedure 4, to facilitate more
efficient training of the new layers, the learning
rate is rewarmed to the value used in Procedure 1.

G Evaluation of pre-trained models

Using the lm-evaluation-harness framework, we
report the acc-norm score to follow Brown et al.
(2020). For language modeling tasks, we evaluated
perplexity on the Wiki-text dataset (Merity et al.,
2017) and accuracy on the LAMBADA dataset (Pa-
perno et al., 2016). We assessed zero-shot perfor-
mance on various commonsense reasoning tasks,
including WinoGrande (Sakaguchi et al., 2021),
PIQA (Bisk et al., 2020), and HellaSwag (Zellers
et al., 2019). Additionally, we measured zero-shot
performance on question-answering tasks, specif-
ically ARC (Clark et al., 2018) and OBQA (Mi-
haylov et al., 2018). We utilized the lm-evaluation-
harness framework (Gao et al., 2024) and reported
the acc-norm score to follow Brown et al. (2020).

H Details of instruction-tuning
configurations

We show the training configurations used in the
instruction tuning in Table 8. All three instruction-
tuned models in Table 4.2 undergo full-parameter
tuning.

I Extensive ablation study

Initialization of the new layer. As described
in Section A, we investigate the impact of ini-

tialization. We conducted four experiments, with
and without FPI, for both Interpolation-Copy and
Interpolation-Mean. The results of this ablation
study are shown in Table 9. As an overall trend,
we can see that using FPI does not lead to signif-
icant performance improvements. We expected
Interpolation-Mean to contribute more to perfor-
mance improvement than Copy, and while this is
true when FPI is not used, Interpolation-Mean with
FPI showed the most significant performance degra-
dation. FPI had little impact on performance and
actually tended to degrade it, while Interpolation-
Mean without FPI demonstrated the best perfor-
mance results.

The schedule for applying the Growth Layer Op-
erator. While in our experiments (Section 4.1),
the Growth Layer Operator was applied at 75% of
the training steps in each stage, this experiment ex-
amined the schedule timing in more detail. Specifi-
cally, we conducted four experiments, applying the
Growth Layer Operator at 25%, 50%, 75%, and
100% completion of the training steps. The experi-
mental results are shown in Table 10. As the results
indicate, the best performance was achieved at 50%
and 75% points, while applying the Growth Layer
Operator at 25% and 100% points showed rela-
tively poor results. One possible reason for this is
that at the 25% point, the training of each layer has
not yet progressed sufficiently, and applying PET
to existing layers in this state may dramatically
slow down the training of each layer. Addition-
ally, applying the Growth Layer Operator at the
100% point may cause the model to escape from
local optima due to learning rate rewarm and opti-
mizer state resets, resulting in increased loss and
requiring more training steps to converge to a better
optimal solution.

J Discussion on the mechanisms behind
STEP

In this section, in discussing why STEP works suffi-
ciently well, we will focus our discussion on Model
Growth and Parameter-Efficient Tuning, which con-
stitute STEP.

Optimization dynamics of model growth. Re-
cent research by Agarwal et al. (2024) has demon-
strated that adding layers to the upper part of Trans-
former layers (a process known as “stacking”) is
particularly effective from an optimization perspec-
tive. Specifically, this work shows that stacking

383



Learning rate Learning rate schedule Batch size Training tokens Training steps FLOPS

368M
Vanilla 5e-4 cosine 360K 7B 20K 1.63e+19
ReLoRA 5e-4 cosine restarts 360K 13B 40K 1.63e+19
GaLore 1e-2 cosine 360K 7B 20K 1.63e+19
STEP-2stages 5e-4 cosine 360K 11B 33K 1.63e+19

680M
Vanilla 4e-4 cosine 688K 14B 20K 5.55e+19
ReLoRA 4e-4 cosine restarts 688K 23B 43K 5.55e+19
GaLore 1e-2 cosine 688K 14B 20K 5.55e+19
STEP-2stages 4e-4 cosine 688K 21B 33K 5.55e+19

1.2B
Vanilla 3e-4 cosine 1179K 24B 20K 1.73e+20
ReLoRA 3e-4 cosine restarts 1179K 43B 43K 1.73e+20
GaLore 1e-2 cosine 1179K 24B 20K 1.73e+20
STEP-2stages 3e-4 cosine 1179K 39B 33K 1.73e+20
STEP-3stages 3e-4 cosine 1179K 53B 43K 1.73e+20

Table 7: Hyperparameters specific to each model setting and method in Table 2. Batch size is specified in tokens.

Configurations Selected Value

Optimizer AdamW (β1 = 0.9, β2 = 0.95)
Learning Rate 0.0001
Learning Rate Schedule cosine
Warmup steps 100
epoch 2

Table 8: Training configurations in our instruction tun-
ing in Section 4.2.

Interpolation 680M

Vanilla 14.56

STEP-2stages Copy w/ FPI 14.59
Copy w/o FPI 14.60
Mean w/ FPI 14.63

Mean w/o FPI 14.56

Table 9: Validation perplexities for vanilla pre-trained
models (Vanilla) and STEPed model (STEP-2stages)
using different initialization of the new layer.

behaves more like accelerated gradient descent
rather than simple gradient descent, enabling more
efficient learning. This finding could potentially
provide theoretical support for STEP’s strategy of
adding layers primarily to the upper portions of
the model.9 Furthermore, empirical observations
reported in Chen et al. (2022) indicate that atten-
tion patterns learned by BERT models trained from
scratch are commonly seen across layers. This in-
sight helps explain why STEP can effectively learn
basic attention patterns in its initial stages with a
smaller model and then successfully transfer this
knowledge to larger models as they grow.

9See Appendix I for this strategy.

schedule timing 680M

Vanilla 14.56

STEP-2stages 100% 14.75
75% 14.56
50% 14.56
25% 14.94

Table 10: Validation perplexities for vanilla pre-trained
models (Vanilla) and STEPed model (STEP-2stages) at
different schedule timings.

Local low-rank structure and parameter-
efficient tuning. The effectiveness of Parameter-
Efficient Tuning (PET) methods like LoRA (Hu
et al., 2022) and ReLoRA (Lialin et al., 2024),
which STEP utilizes, is grounded in the theory of
local low-rank structure in neural networks. This
theory posits that the updates to the weights of a
neural network during training often lie in a low-
dimensional subspace. By leveraging this prop-
erty, PET methods can achieve comparable per-
formance to full fine-tuning while updating only
a small number of parameters. In the context of
STEP, this background explains how we can main-
tain high performance while significantly reducing
memory requirements. By applying PET to the
layers trained in earlier stages, STEP can continue
to update these layers efficiently without the need
to store full-rank gradients and optimizer states.

Through these discussions, we can better under-
stand why STEP is able to achieve comparable per-
formance to traditional pre-training methods while
significantly reducing memory requirements.

384


