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Abstract

Pre-trained language model (PLM) have
achieved great success in text sentiment anal-
ysis. However, in practical applications, sen-
timent is not only conveyed through language
but also hidden in other modalities. Therefore,
multimodal sentiment analysis (MSA) has at-
tracted increasing research interest. Compared
to text sentiment analysis, MSA is challeng-
ing since (1) emotions hidden in body move-
ments or vocal timbres eclipse traditional an-
alytical methods, and (2) transferring PLM
to MSA task requires huge training parame-
ters. Thus, to solve these issues, we introduce
the Mixture of Multimodal Adapters (MMA)
into the PLM. Specifically, we first design a
mixture-of-multimodal-experts module to cap-
ture and fuse emotional movements from dif-
ferent data. Meanwhile, we use a compression
parameter for each expert to reduce the training
burden. We apply our method to two bench-
mark datasets and achieve state-of-the-art per-
formance with a tiny trainable parameter count.
For example, compared to the current state-of-
the-art method, AcFormer, we only need 1/22
of its training parameters amount (130M →
6M) to achieve better results. The code is avail-
able at https://github.com/MMA4MSA/MMA.

1 Introduction

Sentiment analysis aims to identify emotional ex-
pressions from human conversations. In this task,
recent pre-trained language models (PLMs) and
their related structures, e.g. transformer, RNNs,
have shown a powerful ability for textual analy-
sis (Devlin et al., 2018; Raffel et al., 2020; Wang
et al., 2018; Guo et al., 2019; Peng et al., 2023;
Ben et al., 2024; Wang et al., 2020, 2022; Lu et al.,
2023). Thus, they incidentally improve the recog-
nition performance of emotions from the textual
information. However, only processing textual in-
formation cannot accurately express people’s emo-
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tions. This is because emotional expression not
only contains textual descriptions but also includes
body language and voice, where these contents in
different modalities can more accurately reflect hu-
man emotion. Therefore, multimodal sentiment
analysis (MSA) has been proposed to fuse these
contents to analyze sentiment.

Unlike traditional multimodal analysis or fusion
tasks (Zhu et al., 2024a; Wang et al., 2024b; Zhu
et al., 2024c,b; Wang et al., 2024c), video and audio
in MSA are used to express emotions rather than to
identify objects, which weakens the ability of tra-
ditional recognition modules. Thus, the semantic
gap between these and textual data is a challenge in
the MSA tasks (Hazarika et al., 2020; Chen et al.,
2024). To solve this issue, ConFEDE (Yang et al.,
2023) designs a unified learning framework for
contrastive representation learning and contrastive
feature decomposition to robust multimodal repre-
sentation. AcFormer (Zong et al., 2023) designed
a compact transformer using contrastive learning
and pivot fusion strategies. However, (1) the fu-
sion strategies of these recent methods are simi-
lar to those of traditional multimodal recognition
methods which focus on achieving a more com-
prehensive fusion of multimodal features. While
the MSA task needs to analyze the emotion hidden
in vision and audio, where both visual and audio
modalities may include noise and task-irrelevant
features, such as background movements in videos
and ambient noise in audio recordings (Zong et al.,
2023). Consequently, analyzing irrelevant or mis-
leading features can impede the accurate assess-
ment of emotional states (Hazarika et al., 2022).
And (2) these methods and their modules are fully
fine-tuned to cater to multimodal representations.
Although this strategy has brought great perfor-
mance advantages over training from scratch, it
has become a resource-consuming and parameter-
inefficient process with increasing models and data.

In the sparsely activated mixture of experts
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(MOE) module, different parts of the model,
namely experts, are used to handle various tasks or
aspects of the data. In this way, experts not profi-
cient in handling a particular task do not participate
in the forward process, resulting in more precise
task-related representations (Cai et al., 2024). In-
spired by the MOE system, we extend it to MSA
task, enabling selective multimodal feature fusion,
thereby obtaining more task-relevant multimodal
representation. Specifically, we design a mixture of
multimodal experts, consisting of the multimodal
experts and the multimodal attention router, where
each expert is used to deal with a specific modality,
and the multimodal attention router is responsible
for determining which expert will be activated at
each time step of the text sequence. Compared to
traditional MSA methods, our approach enables se-
lective fusion, only the features from the activated
multimodal experts will be fused with the textual
hidden states, thereby minimizing the negative im-
pact of irrelevant noise in multimodal data while
retaining task-related features in audio and video.

To reduce the training burden, a popular strat-
egy in natural language processing is parameter-
efficient fine-tuning (PEFT) (Hu et al., 2021; Za-
ken et al., 2022; He et al., 2021). It enables the
efficient adaptation of large pre-trained models to
various downstream applications by only training a
small number of (extra) model parameters instead
of all the model’s parameters (Xu et al., 2023),
which significantly decreases the computational
and storage costs. Inspired by the PEFT strategy,
we designed the aforementioned MOE structure
as a parameter-efficient method. Specifically, the
adapter is designed to serve as the expert to capture
and fuse the different data (video, audio, and text)
in each transformer block, where the textual infor-
mation is modeled by a PLM, and the video and
audio are extracted to assist in the analysis of tex-
tual content. Compared to the full training method
(Hazarika et al., 2020; Rahman et al., 2020; Sun
et al., 2022), we only need to train the parameters
in the adapter, which greatly reduces the required
computing resources. Meanwhile, our adapter is
a plug-and-play strategy. In other words, we can
flexibly apply it to various language models and
directly transform these models into a multimodal
model that can handle MSA tasks.

In summary, we call our mixture-of-multimodal-
experts with adapter strategy as Mixture of
Multimodal Adapters (MMA). The contributions
are summarized as follows:

• We extend the MOE structure into the mixture
of multimodal experts to selectively integrate
useful multimodal features into the PLM for
emotional recognition.

• We design a plug-and-play adapter to help the
PLM to analyze the multimodal sentiment in
a lightweight calculation.

• Experiments on multiple benchmarks validate
the superiority of our method. Moreover, we
apply MMA to large language model (LLM)
and validate the versatility of our method.

2 Related Works

2.1 Multimodal Sentiment Analysis

Multimodal Sentiment Analysis (MSA) aims to
perceive human emotions in videos. The previous
MSA methods can be divided into two categories:
methods with sophisticated fusion mechanisms and
multimodal representation learning.

Fusion-based methods focus on implementing
the interaction of multimodal information through
intricate fusion mechanisms. For example, Zadeh
et al. design the Tensor Fusion Network to model
intra-modality and inter-modality dynamic (Wang
et al., 2019; Zadeh et al., 2017). Then, to improve
the efficiency of TFN, Liu et al. propose low-rank
Fusion using low-rank tensors (Liu et al., 2018).
Tsai et al. first introduce cross-modal attention into
the MSA task. Sun et al. propose CubeMLP to
reduce memory consumption by mixing features
on sequence, modality, and channel three levels
(Sun et al., 2022). Zong et al. design pivot atten-
tion fusion to reduce the computational complexity
(Zong et al., 2023).

Different from fusion-based methods, multi-
modal representation learning-based approaches
emphasize the significance of multimodal represen-
tation before fusion. MISA focuses on learning the
modality-invariant and -specific subspaces before
fusion (Hazarika et al., 2020). Yu et al. propose a
method in which modality-specific representations
are learned through joint training in unimodal sub-
tasks and a multimodal main task (Yu et al., 2021).
Some MSA works explore the use of contrastive
learning to improve multimodal representations.
For example, Yang et al. introduce contrastive
learning into MSA to learn similarity and dissimi-
larity features for each modality (Yang et al., 2023).
Zong et al. employ contrastive learning to improve
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the unimodal representation and facilitate cross-
modal alignment (Zong et al., 2023).

While the aforementioned methods can effec-
tively fuse multimodal features for sentiment anal-
ysis, they ignore the noise features in video and
audio data and the training burden brought by fully
fine-tuning pre-trained models. Our MMA method
strives to selectively fuse multimodal features for
better integration of video and audio data and can
be incorporated into a frozen PLM without intro-
ducing excessive trainable parameters.

2.2 Parameter-Efficient Fine-Tuning
Many natural language processing tasks have ben-
efited from transformer-based PLMs and LLMs
(Devlin et al., 2018; Liu et al., 2019; Brown et al.,
2020). However, the large scale of LLMs leads to
significant computational costs (Xu et al., 2023).
To this end, parameter-efficient fine-tuning (PEFT)
methods are proposed to efficiently adapt the LLMs
over downstream tasks by training a small part of
additional parameters, such as Adapter (Houlsby
et al., 2019), Prefix Tuning (Li and Liang, 2021),
and LoRA (Hu et al., 2021). Then, He et al. present
a unified view of the above methods and propose
the MAM adapter by combining their advantages
(He et al., 2021). Soon, PEFT methods have also
been emerged in the multimodal field, such as meth-
ods for vision-language foundation models (Wang
et al., 2024a) and methods for multimodal large
language models (Liang et al., 2024). In our work,
we propose a PEFT method to convert a PLM into
a multimodal model that can handle the MSA task.

2.3 Mixture of Experts
The Mixture of Experts (MOE) architecture dis-
tributes each example to a subset of the parameters
instead of reusing all parameters for each input
(Fedus et al., 2022a). Eigen et al. first treat a com-
ponent of a neural network as an expert (Eigen
et al., 2013). Then, Shazeer et al. try MOE on
a larger scale with LSTM layers by learning a
routing mechanism (Shazeer et al., 2016). After
the transformer achieves great success (Vaswani
et al., 2017b), some works explore the possibil-
ity of applying MOE to the transformer by replac-
ing the fully-connected layer in transformer block
with MOE structure, such as GShaard (Lepikhin
et al., 2020) and Switch Transformer (Fedus et al.,
2022b). Since MOE can benefit from specialized
knowledge while keeping a low computational de-
mand, it achieves great success in large language

models (Jiang et al., 2024; Wei et al., 2024). Then,
MOE is applied in various domains, including com-
puter vision (Riquelme et al., 2021), parameter-
efficient fine-tuning (Dou et al., 2023), and multi-
modal learning (Li et al., 2024; Xie et al., 2024).
In this paper, we aim to utilize the MOE structure
to achieve selective fusion for MSA.

3 Approach

In this section, we first briefly revisit the preliminar-
ies of the MSA tasks and give an overview of our
framework. Then, we illustrate our model in de-
tail. Finally, we describe the training and inference
procedures of our method.

3.1 Preliminaries
The data corpus of Multimodal Sentiment Analysis
(MSA) task can be categorically segmented into
three distinct subsets: the textual set Dt, the vi-
sual set Dv, and the audio set Da. Each of these
datasets serves as a conduit for conveying senti-
ment through vocal intonations, facial expressions,
or subtleties of body language. The primary objec-
tive of MSA is to synthesize these disparate data
streams to forge a more nuanced and comprehen-
sive understanding of sentiment. It leverages the
richness of multimodal inputs to uncover the ob-
scured emotional nuance.

An overview of our method is shown in Figure
1. First, we employ an L-layer transformer-based
pre-trained language model (PLM) to encode the
given textual content Dt. Then, we use a prediction
head to predict the output of the transformer into
sentiment. To integrate information from differ-
ent modalities Dv and Da, we design a plug-and-
play module within each transformer block, called
Mixture of Multimodal Adapters (MMA), and help
the PLM capture emotional content effectively.

3.2 Mixture of Multimodal Adapters (MMA)
Blocks Designing. Our method is integrated into
the pre-trained transformer block (Vaswani et al.,
2017a). Thus, we first introduce our transformer
block and describe the different modules in detail.
Specifically, given a multimodal set Dt, Dv, and
Da, we first embed it into features by different pre-
trained feature extraction toolkits:

T = Φt(Dt), V = Φv(Dv), A = Φa(Da), (1)

where {T,V,A} ∈ RM{t,v,a}×d{t,v,a} , M{t,v,a} is
the sequence length of {text, video, audio}. d{t,v,a}
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Figure 1: The overall architecture of our method, where (a) is the blocks designing of MMA, and (b) is the mixture
of multimodal experts in MMA. and represent frozen and trainable parameter layers, respectively.

is the feature dimension of {text, video, audio}. For
text modality, Φt is the embedding layer of a spe-
cific PLM, while Φv and Φa are commonly used
feature extraction toolkits for video and audio in
previous works (Yu et al., 2021; Yang et al., 2023).
Then we use L layers PLM to analyze the senti-
ment. For convenience, we use Bl

in and Bl
out to

represent the input and output of the lth transformer
block, respectively. Thus, the inputs of the first and
other layers are represented as:

Bl
in =

{
T, l = 1,

Bl−1
out , l > 1.

(2)

As depicted in Figure 1(a), in each transformer
block, we first use the pre-trained Self-Attention
Module with a few training parameters (LoRA) to
refine the input Bl

in as:

Xl
t = Self-Attention(Bl

in). (3)

Then we pass visual feature Xv and acoustic fea-
ture Xa through the 1D convolutional layers:

V̂l = Conv1D(V), Âl = Conv1D(A), (4)

where V̂l ∈ RMv×dt and Âl ∈ RMa×dt . The 1D
temporal convolutional layers can not only help
multimodal sequences contain the local structure
but also project the features of video and audio
to the same dimension dt. Then we fuse text fea-
tures with video and audio features using a cross-
attention strategy. To reduce the training cost, there

is no parameter in our cross-attention module:

Xl
v = softmax(

TlV̂l⊤

√
dt

)V̂l +Tl,

Xl
a = softmax(

TlÂl⊤

√
dt

)Âl +Tl,

(5)

where Xl
v ∈ RMt×dt and Xl

a ∈ RMt×dt are cross
token fusion features. Note that after the cross-
attention module, Xl

v and Xl
a have the same se-

quence length with Xl
t, thus we design a token-

level selective fusion to select appropriate multi-
modal features for the PLM, named Mixture of
Multimodal Experts (MOME), and the output of
lth transformer block Bl

out can be calculated as the
sum of the Feed-Forward Network (FFN) (Vaswani
et al., 2017a) and the MOME:

Bl
out = FFN(Xl

t) +MOME(Xl
t,X

l
v,X

l
a). (6)

Note that in this block, only LoRA, Conv1D, and
MOME modules have a few training parameters.
Mixture of Multimodal Experts. Through
conv1D and cross attention, the PLM has gained
the capability to handle non-linguistic sequences at
every transformer block. However, in MSA task,
non-linguistic features may not be beneficial, and
at different time steps, the noisy modalities and
beneficial modalities may vary. Considering these
complexities, we have introduced the mixture of
multimodal experts (MOME) module consisting
of multimodal experts and multimodal atten-
tion router, as shown in Figure 1(b). For mul-
timodal experts, to save as many parameters as
possible, we let the adapters serve as experts. For
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the ith time step of the text and fused sequences
(Xl

v,i,X
l
t,i,X

l
a,i), we use three types of adapters

(vision, text, and audio) to capture the features:

Hl,n
m,i = δ(Dl,n

m Xl
m,i + bl,nm,down), (7)

where Hl,n
m,i ∈ Rr, r is the intrinsic dimension

(rank) of the adapter, δ(x) is a non-linear activa-
tion function, n ∈ {1, 2, · · · , N} is the index of
experts of modality m, N is the number of experts
per modality, Dl,n

m is the down-project matrix and
bl,nm,down is the bias vector, m ∈ {t, a, v}. r ≪ dt,
makes sure that the number of parameters in experts
is far less than that in frozen pre-trained weights.
Then we use the up-project matrix Ul,n

m to recon-
struct the Hl,n

m,i into dt dimension:

El,n
m,i = sl,nm (Ul,n

m Hl,n
m,i + bl,nm,up), (8)

where El,n
m,i ∈ Rdt is the output of the nth ex-

perts of modality m based on the ith token, Ul,n
m ∈

Rdt×r is the up-projection matrix and bl,nm,up is the
bias vector. sl,nm is a learnable scalar initialized as
one to control the impact of this adapter. Thus, this
module can process features of various modalities
while maintaining a tiny parameter count.

Different from unimodal MOE, our multimodal
MOE needs to consider features from various
modalities for routing. Therefore, we propose the
multimodal attention router in which we utilize
the multimodal attention gate to compute the gating
vector for multimodal experts. First, we stack the
three modality features at time step i into a matrix
Ml

i = [Xl
v,i,X

l
t,i,X

l
a,i] ∈ R3×dt . Then we pass it

into a parameter-free Self-Attention module:

Gl
i = softmax(

Ml
iM

l⊤
i√

dt
)Ml

i. (9)

Then a linear layer is used to calculate the gating
vector of multimodal experts:

gl
i = Wl

gG
l
i + blg, (10)

where gl
i ∈ R3×N is the gating vector of the ith

token. Wl
g is the projection matrix and blg is

the bias. Then, we merge multimodal experts
according to the gating vector gl

i and calculate
the adapter change of ith token Cl

i. For the
convenience of subsequent descriptions, we denote
{El,1

v,i, · · · ,E
l,N
v,i ,E

l,1
t,i , · · · ,E

l,N
t,i ,E

l,1
a,i, · · · ,E

l,N
a,i }

as {El
i,1, · · · ,E

l
i,3×N}, and utilize discrete routing

to dispatch tokens into appropriate experts.

ĝl
i, Ili = Top-K(gl

i), (11)

where ĝl
i ∈ RK is the Top-K values of gl. Ili

is the indices of Top-K values in gl
i. Suppose

{Êl
i,1, · · · , Êl

i,K} = {El
i,j |j ∈ Ili} are selected ex-

perts, we pass the gating values through softmax
operation and calculate the weighted sum between
gating values and selected experts output:

Cl
i =

α

r

K∑

j=1

softmax(ĝl
i)jÊ

l
i,j , (12)

where α is a hyper-parameter controlling the
impact of adapter change Cl

i. Cl
i is the ith

time step of Cl, which is the output of the
MOME(Xl

t,X
l
v,X

l
a) used in equation (6). Under

such a routing strategy, the total number of acti-
vated experts is fixed, but the number of activated
experts per modality may vary. We hope that the
attention router can select the most helpful features
for sentiment analysis and avoid useless features or
noise in video and audio data.
Intra-Modality Load Balancing. In our MOME,
experts of different modalities are differentiated
through different inputs. To ensure that experts of
the same modality can capture diverse features and
achieve a balanced load, we apply the load balanc-
ing loss in switch transformer (Fedus et al., 2022b)
for each modality. Given a batch B with T tokens,
for modality m ∈ {t, v, a}, we first calculate the
fraction of tokens dispatched to expert n in each
transformer layer, denoted as f l,n

m :

f l,n
m =

1

T

∑

i∈B
I(n ∈ Top-K(gl

i)), (13)

where I(·) is the indicator function. When the load
of experts for modality m is completely balanced,
f l,n
m is equal for different n. Then, we calculate
P l,n
m , the fraction of the router probability allocated

for expert n of modality m:

P l,n
m =

1

T

∑

i∈B
softmax(gl

i)
n. (14)

Similarly, when the routing is uniform, P l,n
m is

equal for different n. Thus, the load-balancing
loss in the lth layer for modality m is the product
between f l,n

m and P l,n
m :

Ll
lb,m = N

∑

n∈Im
f l,n
m P l,n

m , (15)

where Im is the index of experts for modality
m. When experts for modality m are under uni-
form routing, the auxiliary loading balancing loss
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achieves its minimum. The overall load balancing
loss is the average of the load balancing losses from
all layers for all three modalities:

Llb =
1

L

L∑

l=1

(Ll
lb,t + Ll

lb,v + Ll
lb,a). (16)

3.3 Training and Inference
After combining MMA with the PLM, the output
of Lth transformer block can be considered as a
multimodal representation. To predict the senti-
ment strength, we feed the multimodal representa-
tion into a prediction head, consisting of two linear
transforms and a tanh in between:

p = W2 tanh(W1B
L
out,[cls] + b1) + b2, (17)

where BL
out,[cls] is the [cls] token of the output of

Lth transformer block. Given the sentiment label y,
we adopt the mean absolute error (MAE) between
the prediction p and the label y as the task loss,
and the main loss function is the weighted sum of
task loss and load balancing loss:

L = MAE(y,p) + λLlb, (18)

where λ is the hyper-parameter controlling the im-
pact of load balancing loss. During the training
process, only the parameters of the adapters and
prediction head are updated, while the pre-trained
weights remain fixed. During the inference process,
only the activated experts participate in the forward
process to achieve selective multimodal fusion.

4 Experiments

In this section, we conduct experiments to evaluate
the performance of our method. First, we introduce
the detailed setting about our experiments. Then,
we compare our method with the previous methods.
Finally, we conduct experiments to validate the
effectiveness of different components in MMA.

4.1 Experimental Settings
Datasets. We conducted experiments on two
widely used datasets: MOSI (Zadeh et al., 2016)
and MOSEI (Zadeh et al., 2018).

The MOSI is a dataset comprising 93 videos
sourced from YouTube, each ranging from 2 to 5
minutes in length. These videos are from 89 differ-
ent speakers and segmented into 2199 short video
clips, each annotated by five different annotators.
The annotations in MOSI are real numbers within

the range of [-3, +3], where the sign of the value
represents the polarity of the sentiment, and the
magnitude signifies the intensity of the sentiment.

MOSEI comprises 3228 videos across 250 dif-
ferent topics sourced from YouTube, featuring
1000 speakers, which ensures a variety of sam-
ples. These videos are divided into 23453 short
video segments. The annotation format in MOSEI
dataset is consistent with MOSI, using real-valued
annotations within the range of [-3, +3].
Evaluation Metrics. To evaluate our model, we
adopt metrics commonly used in previous works
(Zong et al., 2023; Hazarika et al., 2020), including
mean absolute error (MAE), pearson correlation co-
efficient (Corr), seven-class accuracy (ACC-7), bi-
nary classification accuracy (ACC-2), and F1 score.
Except for MAE, higher values of these metrics
indicate stronger performance of the model. Ad-
ditionally, we considered the number of trainable
parameters (denoted as TP) to estimate the resource
consumption during model training.
Implementation Details. For experiments on
MOSI and MOSEI, the general hyper-parameters
are as follows: number of experts per modality is
2, α is 32, and λ is 0.01. The rank of LoRA is 32.
The feature extraction toolkits for audio and video
modality are COVAREP (Degottex et al., 2014) and
FACET (Baltrušaitis et al., 2016). A more detailed
explanation can be found in Appendix B.1.

4.2 Comparisons with Other Methods
Table 1 is the performance of our MMA on the
MOSI and MOSEI datasets, and the compared
methods include TFN (Zadeh et al., 2017), LMF
(Liu et al., 2018), MulT (Tsai et al., 2019), MISA
(Hazarika et al., 2020), MAG, (Rahman et al.,
2020), Self-MM (Yu et al., 2021), CubeMLP (Sun
et al., 2022), ConFEDE (Yang et al., 2023), and Ac-
former (Zong et al., 2023). The detailed description
of these methods is shown in Appendix A. (B) and
(L) indicates that the pre-trained language mod-
els are BERT-base-uncased (Devlin et al., 2018)
and LLAMA2-7B (Touvron et al., 2023), respec-
tively. We bold the best results in each metric.
When the language model is BERT, MMA yields
better or comparable results to many baseline meth-
ods. Specifically, MMA significantly outperforms
SOTA in all metrics on MOSI and in ACC-7 on
MOSEI with much fewer trainable parameters.
For other metrics on the MOSEI dataset, MMA
achieves a very close performance to SOTA. These
results verify the effectiveness of our method.
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Methods
MOSI MOSEI

MAE Corr ACC-7 ACC-2 F1 TP MAE Corr ACC-7 ACC-2 F1 TP
TFN† (B) 0.901 0.698 34.9 80.8 80.7 - 0.593 0.700 50.2 82.5 82.1 -
LMF† (B) 0.917 0.695 33.2 82.5 82.4 - 0.623 0.677 48.0 82.0 82.1 -
MulT‡ (B) 0.861 0.711 - 84.1 83.9 - - - - 83.5 82.9 -
MISA (B) 0.783 0.761 42.3 83.4 83.6 110.6M 0.555 0.756 52.2 85.5 85.3 47.1M
MAG (B) 0.712 0.796 - 86.1 86.0 110.9M - - - 84.7 84.5 111.8M
Self-MM (B) 0.713 0.798 - 86.0 86.0 109.7M 0.530 0.765 - 85.2 85.3 109.7M
CubeMLP (B) 0.770 0.767 45.5 85.6 85.5 110.6M 0.529 0.760 54.9 85.1 84.5 110.6M
ConFEDE (B) 0.742 0.784 42.3 85.5 85.5 129.7M 0.522 0.780 54.9 85.8 85.8 137.0M
AcFormer (B) 0.715 0.794 44.2 85.4 85.7 130.2M 0.531 0.786 54.7 86.5 85.8 130.1M
MMA (B) 0.693 0.803 46.9 86.4 86.4 5.7M 0.529 0.766 55.2 85.7 85.7 8.1M
ConFEDE* (L) 0.569 0.879 48.5 89.5 89.5 100.8M 0.515 0.800 53.5 87.6 87.6 102.3M
AcFormer* (L) 0.612 0.861 46.6 89.0 89.0 141.6M 0.497 0.803 55.6 86.7 86.7 141.6M
MMA (L) 0.536 0.899 51.0 91.9 91.9 81.2M 0.471 0.826 57.2 88.4 88.4 89.0M

Table 1: Experimental results on MOSI and MOSEI datasets. †: from (Hazarika et al., 2020), ‡: from (Rahman
et al., 2020), *: reproduced from open-source code with hyper-parameters provided in original papers. (B) and (L)
indicates that the pre-trained language models are BERT-base-uncased and LLAMA2-7B, respectively.

To test MMA’s capabilities further, We employ
MMA on LLAMA2, which is the most commonly
used open-source LLM. Following (Touvron et al.,
2023), we use the last token BL

out,Mt
as the rep-

resentation of the output sequence. We apply
two strong baselines, namely ConFEDE, and Ac-
Former, to LLAMA2. For a fair comparison, we
utilize LoRA to transfer LLAMA to MSA task and
keep the number of trainable parameters compara-
ble when training ConFEDE and AcFormer. We
observe that MMA surpasses ConFEDE and Ac-
Former in all metrics on both datasets.

4.3 Ablation Study

In ablation study, we use the MOSI dataset to eval-
uate the effectiveness of multimodal experts, multi-
modal attention router, and load balancing loss.
Multimodal Experts. First, we investigate the
impact of multimodal experts on model perfor-
mance by adding one kind of expert at a time, as
shown in Table 2. We observe that employing a
combination of three types of experts yields the
best performance. Moreover, the absence of multi-
modal experts (first line) corresponds to the poorest
outcome, underscoring the effective integration of
multimodal information into the language model
facilitated by these experts.

As illustrated in Figure 2(a), we investigate how
the model performance varies with the rank of
adapters r and the number of experts N . These two
hyper-parameters determine the number of train-
able parameters in MMA. We conduct experiments
with r = [2, 4, 8, 16, 32, 64] and N = [1, 2, 3, 4].
The experimental results demonstrate a gradual

Methods MAE Corr ACC-7 ACC-2 F1
w/o Experts 0.747 0.774 45.0 83.2 83.2

Text 0.733 0.783 44.6 83.5 83.6
Video 0.720 0.797 46.8 84.5 84.5
Audio 0.715 0.793 45.5 84.3 84.3
V+T 0.710 0.799 44.5 85.5 85.5
A+T 0.707 0.793 44.6 85.4 85.3
V+A 0.700 0.803 45.2 86.0 85.9

MMA 0.693 0.803 46.9 86.4 86.4

Table 2: Evaluation of the multimodal experts on MOSI.
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Figure 2: Ablation study on rank r, number of experts
N , and number of activated experts K.

improvement in model performance as intrinsic
dimension r increases. This improvement is at-
tributed to the increased parameter count of each
adapter, thereby enhancing its capability. However,
once intrinsic dimension r reaches 32, further incre-
ments do not yield improvements, suggesting that
larger intrinsic dimensions of multimodal adapters
may not be necessary for MSA. For the number of
experts per modality N , the performance keeps in-
creasing as N increases to 2, but does not continue
to improve as N further increases. Surprisingly,
when N is 4 the model performs worse than when
N is 2 or 3. We believe that one expert per modal-
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Methods MAE Corr ACC-7 ACC-2 F1
w/o Router 0.739 0.791 45.0 84.9 85.0

L.R. 0.705 0.799 48.3 85.4 85.3
Ours 0.693 0.803 46.9 86.4 86.4

Table 3: Evaluation of the multimodal router on MOSI.

Methods MAE Corr ACC-7 ACC-2 F1
w/o LBL 0.698 0.799 46.1 86.1 86.1
U. LBL 0.697 0.800 46.9 85.7 85.7
Ours 0.693 0.803 46.9 86.4 86.4

Table 4: Evaluation of the load balancing loss on MOSI.

ity is insufficient for capturing diverse patterns in
multimodal data, whereas an excessive number of
experts risks the overfitting of MMA, consequently
diminishing model performance.

We also studied the impact of K (number of
activated experts) on the performance when N is
2. The results are shown in Figure 2 (b). We can
observe that in MOSI, as K increases, the model
performance initially improves and then begins to
deteriorate. The performance of MMA is best when
K is 3. We believe that when the number of ac-
tivated experts is too small, some effective multi-
modal information is excluded, and when the num-
ber of activated experts value is too large, too many
irrelevant multimodal features may be introduced
into the PLM. Therefore, the model performance
is best when K is an intermediate value.
Multimodal Attention Router. Then we unveil
the effect of our multimodal attention router by
comparing it with the following routing strategies:
(1) Without Router (w/o Router): randomly se-
lect the activated multimodal experts. (2) Linear
Router (L.R.): After averaging features from dif-
ferent modalities, apply a linear layer to calculate
the weights of all experts. The experimental re-
sults are shown in Table 3. It can be observed that
our multimodal attention router exhibits superior
performance. We speculate that this is because,
without a router, the model cannot activate the ap-
propriate experts, making the MOE structure less
effective. And the commonly used linear router in
MOE struggles to enable the interaction of different
modalities at different time steps, making it diffi-
cult to select effective multimodal features for the
PLM. Our method can better consider multimodal
information when calculating the weights for dif-
ferent experts, thereby achieving better results.

At last, we investigate the loading situation of
multimodal experts. The visualization results are
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Figure 3: Percentage of activated multimodal adapters
across different layers after training MMA on BERT.

shown in Figure 3. First, we can see that the load of
MMA is generally balanced across different modal-
ities. For experts across 12 layers of BERT, the
percentage of tokens choosing vision, text, and au-
dio experts is 35.6%, 33.4%, and 31.0%. Secondly,
we can observe that the load situation in each layer
varies, indicating its ability to select appropriate
experts for different layers of the PLM.
Loading Balancing Loss. We investigate the influ-
ence of our intra-modality load balancing loss in
Table 4. We compare the following three strategies:
(1) without load balancing loss (w/o LBL): do not
use load balancing auxiliary loss during training.
(2) Unified load balancing loss (U.LBL): apply a
unified load balancing loss across all experts, re-
gardless of whether their inputs are the same. (3)
Intra-modality load balancing loss (Ours): only
apply load balancing loss among experts with the
same modality (the same input). We can observe
that our method performs better, and compared to
the case without load balancing loss, the unified
load balancing loss did not improve the model’s per-
formance. This is because the multimodal router
achieves selective fusion by activating different
multimodal experts to integrate useful multimodal
features while discarding misleading or noisy ones.
Forcing the load to be balanced among experts of
different modalities would impair the router’s abil-
ity to select effective multimodal features.

5 Conclusion

In this paper, we have proposed the Mixture of
Multimodal Adapters to tackle the problem of mul-
timodal sentiment analysis. Specifically, (1) mul-
timodal experts are used to insert multimodal con-
tent into the pre-trained language model. (2) The
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multimodal attention router is designed to dispatch
features in textual sequence to appropriate experts.
(3) Our method is a plug-and-play adapter that con-
verts a transformer-based language model into an
MSA model with few trainable parameters. Exten-
sive experiments demonstrate the effectiveness of
our method. Note that video and audio represen-
tations are limited by the feature extraction tools.
In future work, we plan to build an end-to-end net-
work with pre-trained video and audio models.

Limitations

While our MMA method has shown promising re-
sults in multimodal sentiment analysis task, there
are still some limitations. First, to ensure a fair
comparison with the baselines, we used FACET
(Baltrušaitis et al., 2016) and COVAREP (Degottex
et al., 2014) to extract video and audio features.
These extraction tools may have limited the quality
of video and audio representations, thereby affect-
ing the model’s accuracy. A better approach would
be to leverage pre-trained video and audio mod-
els, which we plan to explore in our future work.
Secondly, our work is based on the scenario where
all three modalities (i.e. , text, video, and audio)
are present, without considering cases of missing
modalities. As a result, the model’s robustness to
missing modalities may be insufficient.
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A Baselines

TFN: Tensor Fusion Network (Zadeh et al., 2017)
models intra-modality and inter-modality dynamics
by three-fold Cartesian product.

LMF: Low-rank Multimodal Fusion (Liu et al.,
2018) performs multimodal fusion using low-rank
tensors to improve efficiency and avoid exponential
increase in dimensions.

MulT: Multimodal transformer (Tsai et al.,
2019) is a transformer-based model requiring no
alignment assumption by learning a latent cross-
modal adaptation through a pairwise cross-modal
attention mechanism.

MISA: MISA (Hazarika et al., 2020) learns
modality invariant subspace and modality-specific
subspace to learn effective modality representations
which is conducive to the fusion process.

MAG: Multimodal Adaptation Gate (Rahman
et al., 2020) integrates multimodal information into
pretrained Bert by changing the position of words
in the semantic space.

Self-MM: Self-Supervised Multi-task Multi-
modal sentiment analysis network (Yu et al.,
2021) can auto-generate unimodal labels and learn
modality-specific representation by joint training
on unimodal subtasks and multimodal main task.

CubeMLP: CubeMLP (Sun et al., 2022) is an
MLP-based model that performs feature mixing on
sequence, modality, and channel to reduce compu-
tational costs while maintaining high performance

ConFEDE: ConFEDE (Yang et al., 2023) intro-
duces contrastive learning into MSA to learn simi-
larity and dissimilarity features for each modality
and predicts sentiment depending on decomposed
modality representations.

AcFormer: Aligned and Compact transformer
(Zong et al., 2023) is a model that aligns different
modalities by contrastive learning and performs
fusion using a pivot attention module.

B Experiments

B.1 Experimental Details
Here we introduce the detailed settings of our ex-
periments. When MMA is based on BERT, the
pre-trained model is bert-base-uncased1. We con-

1https://huggingface.co/google-bert/bert-base-uncased
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Figure 4: Four different positions of MMA.

Types MAE Corr ACC-7 ACC-2 F1
(a) 0.717 0.806 46.4 84.0 84.0
(b) 0.697 0.797 48.0 86.0 85.9
(c) 0.707 0.796 47.5 84.9 84.9
(d) 0.693 0.803 46.9 86.4 86.4

Table 5: Evaluation of the position of MMA on MOSI.

duct experiments on a single NVIDIA RTX 3090.
For experiments on MOSI and MOSEI, the batch
size is 128, the learning rates are {1e-3, 2e-4},
the optimizers are {AdamW (Loshchilov and Hut-
ter, 2017), Adam (Kingma and Ba, 2014)}. When
MMA is based on LLAMA2, the pre-trained model
is LLAMA2-7B-base 2. We conduct experiments
on a single NVIDIA A100. For experiments on
MOSI and MOSEI, the batch size is 16,4, the learn-
ing rates are {1e-4, 1e-5}, and the optimizer is
AdamW (Loshchilov and Hutter, 2017). All mod-
els are trained for 25 epochs.

B.2 Position of MMA
In our method, we integrate the output of self-
attention with multimodal features and then add
the fused result to the output of FFN. However, the
position of MMA can be variable. To explore the
best position of MMA in the transformer block,
following (He et al., 2021), we categorize the po-
sitions in the transformer block into four types
based on the insertion form (sequential or paral-
lel) and modified representation (attention or FFN),
as shown in the Figure 4. The insertion form and
modified representation of position {(a),(b),(c),(d)}
are {(sequential, attention), (parallel, attention),
(sequential, FFN), (parallel, FFN)}. The experi-
mental results are shown in Table 5. Firstly, the
best performance is achieved when MMA is in po-
sition (d). In a closer look, we observed that the
parallel insertion form outperforms the sequential
insertion form, and modifying the representation of
FFN is better than modifying the representation of
attention, which is consistent with the experience
from unimodal adapters (He et al., 2021).

2https://huggingface.co/meta-llama/Llama-2-7b-hf
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