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Abstract

Multi-modal large language models (MLLMs)
integrate the inherent text generation capabil-
ities of large language models with an under-
standing of other modalities, promising wide
applications in open-ended tasks. Despite their
success, they often generate plausible but in-
correct content. This phenomenon, known as
hallucination, significantly impacts their practi-
cal deployment. In this paper, we delve into the
intrinsic characteristics of hallucination from
the perspective of interaction between input
and output tokens. We find that the hallucina-
tion typically occurs with attention reduction
of output tokens to image tokens. Based on
this observation, we introduce image Token
attention-guided Decoding (iTaD), a plug-and-
play method which leverages MLLMs’ internal
representations to mitigate their hallucinations.
We first define an image token attention vector
to measure the inter-layer differences in atten-
tion of output tokens to image tokens across
different layers. Based on the vector, we de-
sign a novel layer selection strategy and con-
duct inter-layer contrastive decoding to high-
light the progression in image understanding,
thereby exploiting attention to image tokens to
mitigate hallucinations. Extensive experiments
well demonstrate iTaD’s effectiveness across
different MLLMs and benchmarks.

1 Introduction

Multi-modal large language models (MLLMs) (Bai
et al., 2023; Liu et al., 2023; Zhang et al., 2023a;
Ye et al., 2023) process inputs from language and
other modalities to generate open-ended responses.
Recent advancements in MLLMs, such as LLaVA-
1.5 (Liu et al., 2024b), InstructBLIP (Dai et al.,
2023), and MiniGPT-4 (Zhu et al., 2024), have
demonstrated their outstanding performance in a va-
riety of visual tasks, such as object detection (Wang
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et al., 2024a; Zhang et al., 2023b), image caption-
ing (Chen et al., 2018; Rohrbach et al., 2018), vi-
sual question answering (Goyal et al., 2019), etc.
Despite their success, MLLMs usually suffer from
a severe hallucination issue (Gunjal et al., 2024;
Liu et al., 2024a; Li et al., 2023e), which refers
to the phenomenon where MLLMs generate gram-
matically coherent yet factually incorrect content.
Such issue should be carefully managed in scenar-
ios like healthcare (Wang et al., 2023), autonomous
systems (Chen et al., 2024; Yang et al., 2023), and
robotics (Wang et al., 2024c), where the presence of
incorrect outcomes is unacceptable and potentially
disastrous. Therefore, mitigating hallucinations
in MLLMs is crucial for enhancing their practical
deployment and reliability in real-world scenarios.

Many efforts have been made to mitigate halluci-
nations in MLLMs (Liu et al., 2024a; Huang et al.,
2024; Leng et al., 2024; Zhou et al., 2024; Wang
et al., 2024d; Favero et al., 2024). Early works typi-
cally employ additional training datasets or external
knowledge bases (Wang et al., 2024b; Liu et al.,
2024a; Gunjal et al., 2024). Despite the exploitative
depth and effectiveness, they necessitate substan-
tial human and computational costs. Notably, re-
cent studies have leveraged the inherent knowledge
or internal representations of LLMs to mitigate
their hallucinations during inference (Chuang et al.,
2024; Shi et al., 2024). Following this trend, some
studies attempt to develop training-free MLLM hal-
lucination mitigation methods (Leng et al., 2024;
Huang et al., 2024; Wang et al., 2024d). Those stud-
ies mainly focus on applying perturbations to the
input text or images from the input side (Leng et al.,
2024; Wang et al., 2024d) or on identifying inter-
nal representations of the output tokens associated
with hallucinations from the output side (Huang
et al., 2024). Despite their success, they rarely
explore the interaction between output and input
tokens. Moreover, as the most critical characteris-
tic distinguishing MLLMs from LLMs, the image
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the edge of the wall, while others are scattered around the area. 

with his skateboard positioned above his head. 
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Figure 1: An example illustrating that hallucinatory outputs occur with attention weight reduction to image tokens.
The hallucinatory segments are highlighted in bold, i.e., s2, s4 and s6. The chart on the right shows the mean value
of the attention weights to all input tokens versus to image tokens in each segment.

Segments LLaVA-1.5 InstructBLIP MiniGPT-4 mPLUG-Owl

w/o halluc. 12.0 79.2 40.2 59.8
w/ halluc. 10.9 74.8 37.7 56.0

Table 1: The average attention weights (%) of output
tokens in segments w/o or w/ hallucinations to image
tokens.

understanding capability expressed in the internal
representations of MLLMs is generally neglected
in existing methods.

In this paper, we first investigate the interaction
between output and input image tokens and their
correlation with hallucination in MLLMs. A typ-
ical MLLM architecture consists of a vision en-
coder, a vision-language alignment connector, and
an LLM. The connector transforms the output em-
bedding from the vision encoder into image tokens,
aligning them with text tokens. Then the aligned im-
age and text tokens are input into the LLM to gener-
ate output tokens. Intuitively, the attention weights
during the LLM’s decoding procedure should accu-
rately reflect such interaction between the output
tokens and the input image tokens. Therefore, we
conduct experiments to explore the relationship
between the attention weights of output tokens to
input image tokens and hallucinatory outputs. Take
the example in Figure 1 for instance, for a descrip-
tion generated for an image, we highlight hallucina-
tory segments, i.e., s2, s4, and s6. We calculate the
mean value of the output tokens’ attention weights
to image tokens in each segment. Figure 1 shows
that tokens in hallucinatory segments exhibit sig-
nificantly lower attention weights to image tokens
than those in non-hallucinatory segments. Given
that the output tokens’ attention weights to all input
tokens (including image and text tokens) decrease
as the output length increases, this observation is
even more pronounced. Specifically, output tokens
in hallucinatory segments, i.e., s2 and s4, show

less attention to image tokens compared to subse-
quent tokens in non-hallucinatory segments, i.e., s3
and s5. Furthermore, we extend our experiments
to verify our findings in descriptions generated by
different MLLMs for 100 randomly selected im-
ages. Table 1 statistically indicates that the atten-
tion weights of output tokens in hallucinatory seg-
ments to image tokens are significantly lower than
those in non-hallucinatory segments. This finding
provides a novel insight from the internal atten-
tion perspective, revealing that the hallucinatory
segments in MLLMs are correlated with the re-
duction of attention weights to image tokens.
Therefore, we pose a question: How can we lever-
age such correlation and attention differentiation
to enhance the mitigation of hallucinations?

Motivated by the observation, we advocate miti-
gating the hallucinations of MLLMs by exploiting
the attention to image tokens from the model’s in-
ternal representations. Our method, image Token
attention-guided Decoding (iTaD), leverages the in-
herent layer-level progression of MLLMs to extract
and highlight the progression of output tokens’ at-
tention to image tokens, engaging the MLLMs with
a more powerful capability of image understand-
ing so as to enhance the mitigation of hallucination.
Specifically, we construct an image Token attention
Vector (iTaV) for each decoding layer and establish
a distance metric between two iTaVs. The met-
ric is designed to quantify the difference in output
tokens’ attention to image tokens across different
decoding layers. Then iTaD selects the layer whose
corresponding iTaV is the most distant from that
of the last layer and projects the selected layer’s
output internal representation into a probability dis-
tribution. Based on this layer selection strategy, we
conduct inter-layer contrastive decoding, thereby
highlighting the progression of attention to image
tokens. The experiments show that our simple but
effective improvement exhibits better performance
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compared to the original output distribution in the
MLLM hallucination benchmarks.

In summary, our contributions are as follows:

1. We observe that hallucinations often occur
with output tokens’ attention reduction to im-
age tokens, and propose an iTaD method,
which leverages MLLMs’ internal represen-
tations and exploits the attention to image to-
kens to mitigate their hallucinations.

2. To implement iTaD, we introduce a novel in-
termediate layer selection strategy for inter-
layer contrastive decoding, which utilizes
iTaV to measure the inter-layer difference in
image understanding and selects the interme-
diate layer whose iTaV is the most distant
from that of the last layer, thereby extracting
and highlighting the progression of image un-
derstanding in MLLMs.

3. We conduct extensive experiments across dif-
ferent models and hallucination benchmarks.
The results show that iTaD achieves state-of-
the-art performance, well demonstrating its
effectiveness and superiority over baselines.

2 Method

In this section, we first briefly introduce inter-layer
contrastive decoding, and then detail the proposed
method iTaD.

2.1 Inter-Layer Contrastive Decoding Process

Given the image-text input, we can obtain the
aligned sequence of image and text tokens, denoted
as h0 = {h01, h02, . . . , h0L}, where L represents the
length of the input tokens. h0 can be directly in-
put into the LLM to generate a response. Specif-
ically, the LLM decodes h0 through successive
layers, each consisting of a multi-head attention
(MHA) mechanism (Vaswani et al., 2017) and a
multilayer perceptron (MLP). Assuming the LLM
is composed of N layers, with h0 as the hidden
state input to the first layer, for each position t:

hnt = MLP(MHA(hn−1
t )), n = 1, 2, . . . , N.

(1)
Following this pattern, we obtain hNt , which is then
projected into a |V|-dimensional space through a
linear projection layer, i.e., Proj(·). V denotes the
vocabulary. Finally, the softmax function trans-
forms the projection into a probability distribution

for predicting the next token:

pN (xt+1|x<t+1) = softmax(Proj(hNt )), (2)

where xt+1 ∈ V .
Inter-layer contrastive decoding, represented by

DoLa (Chuang et al., 2024), adopts the early exit
mechanism (Teerapittayanon et al., 2016), which
utilizes the projection function Proj(·) in Eq. (2)
to transform hMt into a probability distribution:

pM (xt+1|x<t+1) = softmax(Proj(hMt )), (3)

where xt+1 ∈ V and M ∈ [0, N). M represents
the selected intermediate layer. Then it subtracts
the distribution pM from the original model’s out-
put distribution, i.e., pN in Eq. (2), on the logit
scale, and applies the softmax function to trans-
form it into a probability distribution, as follows:

p̂(xt+1|x<t+1) =

softmax(I(xt+1) · log
pN (xt+1|x<t+1)

pM (xt+1|x<t+1)
), (4)

where

I(xt+1) =

{
1 if xt+1 ∈ Ct+1,

−∞ otherwise,
(5)

Ct+1 = {xt+1 ∈ V :

pN (xt+1) ≥ α max
x
′
t+1∈V

pN (x
′
t+1)}. (6)

The constraint function Ct+1 and its penalized
indicator function I(xt+1) are introduced to avoid
false positive cases, as illustrated in CD (Li et al.,
2023d). Ct+1 ensures that the probability of tokens
generated are at least α times the maximum token
probability in pN , where α ranges from 0 to 1.
Eq. (4) penalizes tokens that violate Ct+1 and sets
their probability to 0 while maintaining the values
for all others.

2.2 iTaV’s Construction and Distance
Measurement

We focus on the attention weights of MHA in
Eq. (1) at each step t in the n-th decoding layer
for the head h:

wn
t,h = [wn

t,h,1, w
n
t,h,2, ..., w

n
t,h,lt ]

= softmax

(
Qn

t,hK
n
t,h√

dk

)
, (7)
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Figure 2: A pipeline of our method. We first obtain iTaV for each layer and then select the layer M whose
corresponding iTaV is the most distant from that of the last layer N . Then we derive the final output distribution
p̂ based on pN and pM . As shown in the figure, p̂ predicts the correct token “trees” with the highest probability,
whereas pN assigns the highest probability to the plausible but factually incorrect token “spectators”.

where Qn
t,h, Kn

t,h, and dk represent the correspond-
ing query, key matrices, and the dimension of their
product, respectively. lt denotes the length of the
sequence Kn

t,h, i.e., the total length of the input
and output token sequence. wn

t,h includes attention
weights from the query Qn

t,h to each token, ranging
from the 1st to the lt-th position, and meets the con-
dition Σlt

j=1w
n
t,h,j = 1. Given that the maximum

weight in multi-head attention usually indicates the
strong confidence of models (Huang et al., 2024),
we select it for each step:

v̂nt,j = max
h=1,2,...,H

wn
t,h,j , j = 1, 2, ..., lt, (8)

where H indicates the number of attention heads.
Assuming the image tokens span positions from

Is to Ie, we select their corresponding attention
weights v̂nt,j and normalize them using the softmax
function. Then, for the n-th decoding layer, the
image token attention vector, i.e., iTaV, at step t
can be derived as:

iTaVn
t = softmax([v̂nt,Is , v̂

n
t,Is+1, ..., v̂

n
t,Ie ]). (9)

iTaV represents the attention weight distribution
to image tokens. Thus, we use it to estimate the
difference in image understanding across differ-
ent layers by measuring the distance between their
corresponding iTaVs using Jensen-Shannon Diver-
gence (JSD) (Menéndez et al., 1997):

dist(iTaVi
t, iTaVj

t ) = JSD(iTaVi
t||iTaVj

t ). (10)

2.3 Image Token Attention-Guided Decoding
Inter-layer contrastive decoding leverages the incre-
mental improvement of LLMs’ internal represen-
tations as inputs propagate through layers, and we
observe that MLLMs’ hallucinatory outputs often
occur with attention weight reduction to image to-
kens. Building on this insight, we propose a novel
layer selection strategy for inter-layer contrastive
decoding. Our method, i.e., iTaD, is designed to ex-
tract and highlight the incremental improvements
in image understanding between layers, thereby
effectively empowering inter-layer contrastive de-
coding to mitigate hallucinations.

Specifically, we select the target intermediate
layer, i.e. M in Eq. (3), by maximizing the distance
between iTaVN

t and iTaVm
t for each step t:

M = max
j∈M

dist(iTaVj
t , iTaVN

t ). (11)

M is a subset of N = {1, 2, ..., N − 1}, and we
select M from M for efficiency. We propose that,
among the layers in M, the hidden state of M ,
denoted as hMt , most effectively highlights the im-
provement of image attention achieved by hNt . Sub-
sequently, Eq. (4) explicitly extracts such improve-
ment in image understanding in the last layer’s
hidden state output compared to the hidden states
from intermediate layers. The selected layer M in
our iTaD maximizes the emphasis on this improve-
ment, thereby exploiting attention to image tokens
to enhance the final probability distribution p̂ and
mitigate hallucinations in MLLMs.
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Method
LLaVA-1.5 InstructBLIP MiniGPT-4 mPLUG-Owl

max_l = 512 max_l = 64 max_l = 512 max_l = 64 max_l = 512 max_l = 64 max_l = 512 max_l = 64

CS ↓ CI ↓ CS ↓ CI ↓ CS ↓ CI ↓ CS ↓ CI ↓ CS ↓ CI ↓ CS ↓ CI ↓ CS ↓ CI ↓ CS ↓ CI ↓

Greedy 47.8 13.7 20.4 6.7 57.3 23.9 29.1 13.5 31.8 10.7 22.0 7.6 71.0 24.8 33.4 13.0
Nucleus 52.2 15.9 24.9 8.5 56.2 25.6 30.2 14.8 33.6 11.2 23.4 8.5 76.6 28.1 38.1 16.0
Beam Search 50.0 14.5 19.4 6.3 56.4 16.2 23.6 8.0 33.9 10.7 23.2 7.9 75.8 25.4 31.4 12.1
DoLa 47.5 13.7 19.3 6.4 56.4 16.1 23.8 7.8 32.5 10.1 23.4 8.0 73.0 24.7 31.8 12.7
OPERA 47.2 13.5 19.1 6.5 53.4 15.3 24.0 6.2 27.8 9.7 21.8 7.7 73.8 25.1 31.1 12.4
iTaD 45.4 13.4 19.0 6.2 53.2 14.7 22.2 7.5 26.4 9.6 20.7 7.5 70.0 24.5 29.5 12.4

Table 2: Results on the CHAIR benchmark. max_l is the max output token length. CS and CI assess sentence-
and image-level hallucinations, with lower values indicating fewer. Best results are bolded and second-best are
underlined (same below).

3 Experimental Setup

3.1 Models and Benchmarks

We select four remarkable MLLMs: LLaVA-
1.5 (Liu et al., 2024b), InstructBLIP (Dai et al.,
2023), MiniGPT-4 (Zhu et al., 2024), and mPLUG-
Owl (Ye et al., 2023). They comprise a 7B-
parameter LLaMA (Touvron et al., 2023a) or Vi-
cuna (Chiang et al., 2023; Zheng et al., 2023).
LLaVA-1.5 employs a linear projection as the
vision-language alignment connector, while the oth-
ers adopt Q-former (Li et al., 2023b). The number
of image tokens for the four models is 576, 32, 32,
and 65, respectively.

We employ three commonly used hallucination
benchmarks, i.e., CHAIR (Rohrbach et al., 2018),
POPE (Li et al., 2023e), and GPT-4V (OpenAI,
2023) assisted evaluation, to comprehensively eval-
uate the versatility of our method. The benchmarks
encompass various task types, including image
captioning and visual question answering (VQA),
and are designed to evaluate the hallucinations in
MLLMs from different perspectives like objects,
attributes, positions, etc. The details of these bench-
marks can be referred to in the Appendix.

3.2 Implementation Details

Our main experiments are conducted on MSCOCO
(Lin et al., 2014). For CHAIR and GPT-4V assisted
evaluation, we randomly select 500 images from
the COCO validation set for evaluation following
Huang et al. (2024). Furthermore, we repeat our
experiments with different random seeds and report
the mean value of the results over 5 runs and 3 runs
on the CHAIR and GPT-4V assisted evaluation
benchmark, respectively. Prompt details for all
benchmarks are in the Appendix.

We compare our method with basic decod-

ing methods: Greedy Search, Nucleus Sam-
pling (Holtzman et al., 2020), and Beam Search
(Sutskever et al., 2014). We set p = 0.9 for Nu-
cleus Sampling and the number of beams to 5
for Beam Search. Additionally, we choose DoLa
(Chuang et al., 2024) and OPERA (Huang et al.,
2024) as our baselines, which are designed for mit-
igating hallucinations in LLMs and MLLMs, re-
spectively. Given that OPERA is based on Beam
Search, we apply DoLa and our iTaD to Beam
Search for fairness. Specifically, following Huang
et al. (2024), we adopt the default hyper-parameter
settings for OPERA considering its robustness
on various settings of hyper-parameters and use
{0, 2, 4, 6, 8, 10, 12, 14} as indices for candidate
pre-mature layers and 32 for the mature layer in
DoLa. Besides, we provide a comparison with
VCD (Leng et al., 2024) in the Appendix.

For simplicity, we directly set M to
{2, 4, 6, 8, 10, 12, 14} for our iTaD in this
paper without additional tuning. Further analysis
of M is in the Appendix. We select the hyper-
parameter α by evaluating its performance on the
CHAIR benchmark, utilizing an independently
sampled subset of 500 images from the COCO
validation set. The 500 images ensure no overlap
with the test sets across all benchmarks. Finally,
we set α to 0.03, 0.05, 0.05, and 0.7 for LLaVA-1.5,
InstructBLIP, MiniGPT-4, and mPLUG-Owl,
respectively.

4 Main Results

4.1 Results on CHAIR

Given CHAIR’s sensitivity to sequence length, we
set the maximum length of the output tokens to
512 and 64, respectively, for fair comparison. As
presented in Table 2, iTaD achieves state-of-the-
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Method LLaVA-1.5 InstructBLIP MiniGPT-4 mPLUG-Owl

Greedy 82.2 80.0 58.5 68.5
Nucleus 82.5 80.1 57.8 70.1
Beam Search 84.9 84.4 70.3 69.2
DoLa 83.2 83.4 72.8 68.8
OPERA 85.4 84.8 73.3 67.6
iTaD 85.5 85.2 75.5 72.3

Table 3: The average F1 scores ↑ across random, popu-
lar and adversarial splits on the POPE benchmark.

Method
LLaVA-1.5 InstructBLIP MiniGPT-4 mPLUG-Owl

C ↑ D ↑ C ↑ D ↑ C ↑ D ↑ C ↑ D ↑

Beam Search 5.7 5.5 4.9 4.5 5.4 5.1 4.2 4.5
iTaD 6.8 5.7 5.5 4.4 6.5 5.1 5.2 4.6

Method
LLaVA-1.5 InstructBLIP MiniGPT-4 mPLUG-Owl

C ↑ D ↑ C ↑ D ↑ C ↑ D ↑ C ↑ D ↑

OPERA 5.4 5.3 5.0 4.9 5.4 5.1 4.4 4.3
iTaD 5.9 5.3 5.7 4.9 6.7 5.6 5.0 4.1

Table 4: Results on GPT-4V assisted evaluation. C
and D denote concreteness and detailedness; higher is
better.

art performance, surpassing baseline methods in
nearly all metrics. Besides, it shows consistent
effectiveness in generating both long and short re-
sponses. The standard deviations of experiments
are in the Appendix.

It is observed that the superiority of iTaD is par-
ticularly pronounced when the maximum output
token length is set to 512. In this setting, iTaD
consistently exhibits the lowest CS and CI across
all four MLLMs. The experimental results demon-
strate that iTaD excels specifically in mitigating
hallucinations within lengthy sequences.

4.2 Results on POPE

For the POPE benchmark, we report the average
F1 scores across random, popular, and adversarial
splits. For mPLUG-Owl, we replicate the baseline
methods and present our reproduction results. For
all other models, we report the baseline results as
presented in OPERA. The model temperature is set
to 1 by default, following OPERA.

As shown in Table 3, iTaD consistently outper-
forms the other methods across all four models,
well demonstrating its effectiveness and superior-
ity. It is important to note that POPE typically
elicits responses beginning with Yes or No, which
generally have limited semantic information. And

iTaD’s effectiveness primarily lies on the single to-
ken Yes or No, which is limited and leads to smaller
performance gains. Nonetheless, our iTaD still
yields consistent and considerable improvements
for POPE across different models. More experi-
ment details on A-OKVQA (Schwenk et al., 2022)
and GQA (Hudson and Manning, 2019) can be
found in the Appendix.

4.3 Results on GPT-4V Assisted Evaluation

Table 4 presents the results from the GPT-4V as-
sisted evaluation. In this benchmark, we input
image descriptions to GPT-4V from 2 different
decoding methods each time. Table 4 shows the
comparison results between Beam Search/OPERA
and iTaD, respectively. It is observed that iTaD,
while maintaining the detailedness of the response,
significantly enhances its correctness.

Notably, GPT-4V can evaluate the attribute, lo-
cation, and relation hallucinations of objects. The
superior performance of iTaD on the GPT-4V cor-
rectness score demonstrates its capability to mit-
igate such kinds of hallucinations. Besides, con-
sidering that the more detailed responses gener-
ated by Beam Search and OPERA exhibit hallu-
cinations and showcase lower correctness scores,
iTaD’s slight or even negligible decrease in the
detailedness score compared to those methods is
reasonable and does not affect the overall quality
of the output. Given GPT-4V’s human-like percep-
tion and reasoning capabilities, the results indicate
that iTaD can effectively mitigate hallucinations as
perceived by humans.

5 Analysis

5.1 Ablation Studies on iTaV

In this subsection, we investigate the performance
of iTaV’s variations. Table 5 shows our iTaV and its
five variations, which differ in the concatenation of
attention weights to specific tokens, i.e., the input
to the softmax function in Eq. (9). Our proposed
iTaV selects the attention weights to only image
tokens, i.e., (f) in Table 5, while the five variations
select attention weights to only input text tokens, all
text tokens, only input tokens, only output tokens,
and all input and output tokens, respectively.

Table 5 shows that the proposed iTaV, i.e., (f),
achieves the best overall performance. While cer-
tain variations may outperform ours on a few met-
rics, their effectiveness tends to fluctuate unpre-
dictably across different models. In contrast, our

1576



(a)	only	input	text	tokens (b)	all	text	tokens

(c)	only	input	tokens (d)	only	output	(text)	tokens

(e)	all	tokens (f)	only	image	tokens	(ours)

!𝑣!,#$ !𝑣!,%!
$ !𝑣!,%"

$ !𝑣!,&$ !𝑣!,'#
$… … ……

iTaVn
t = softmax(·) LLaVA-1.5 InstructBLIP

CS ↓ CI ↓ CS ↓CI ↓ Avg.↓

(a)[v̂n
t,1, ..., v̂

n
t,Is−1, v̂

n
t,Ie+1, ..., v̂

n
t,L] 46.5 13.5 54.1 15.1 32.3

(b)[v̂n
t,1, ..., v̂

n
t,Is−1, v̂

n
t,Ie+1, ..., v̂

n
t,lt

]45.5 13.6 53.3 14.8 31.8
(c)[v̂n

t,1, ..., v̂
n
t,L] 46.3 13.7 53.4 14.6 32.0

(d)[v̂n
t,L+1, ..., v̂

n
t,lt

] 47.4 14.0 54.3 15.5 32.8
(e)[v̂n

t,1, ..., v̂
n
t,lt

] 46.2 13.2 53.8 14.8 32.0
(f) [v̂n

t,Is
, ..., v̂n

t,Ie
] (ours) 45.4 13.4 53.2 14.7 31.7

Table 5: Ablation studies on iTaV. The column Avg.
displays the average of CS and CI on LLaVA-1.5 and
InstructBLIP. L represents the length of the input tokens.

min
!∈ℳ

dist ·,·

random

M

max
!∈ℳ

dist ·,·

min
!∈ℳ

dist ·,·

random

max
!∈ℳ

dist ·,·

M

Figure 3: Ablation studies on the intermediate layer
M for constructing p̂. We report the average value of
CS and CI on 2 distinct validation sets. The original
LLaVA-1.5 achieves 31.9 on set #1 and 32.2 on set #2,
respectively.

iTaV consistently delivers superior results across
different models. Notably, we observe that select-
ing attention weights to only output tokens, i.e., (d),
results in the poorest overall performance among
all five variations. It can be attributed to its overem-
phasis on self-generated tokens during the gener-
ation procedure, which has a negligible and even
negative effect in mitigating hallucinatory outputs
that are unfaithful to the input. Overall, selecting
attention weights to image tokens to construct iTaV
is crucial for the success of iTaD, and the experi-
mental results further validate the rationale behind
our definition of iTaV.

5.2 Ablation Studies on the Selection of M

Figure 3 shows the ablation studies on M by se-
lecting different layers to construct p̂. Follow-
ing Chuang et al. (2024) and Huang et al. (2024),

Model Beam Search OPERA iTaD

MiniGPT-4 745.9 757.4 772.3
mPLUG-Owl 1189.4 1175.0 1259.7

Table 6: Results on the MME benchmark. We report
MME scores, with higher scores indicating fewer hallu-
cinations.

we use LLaVA-1.5 on 2 distinct validation sets,
each with 500 randomly selected images from the
COCO validation set. Given the candidate set
M in Eq. (11), we set M statically to each layer
in M, respectively. Besides, we test the perfor-
mance of three dynamical selection strategies for
M , i.e. (1) randomly selecting from M, (2) setting
M to minj∈Mdist(iTaVj

t , iTaVN
t ), and (3) setting

M to maxj∈Mdist(iTaVj
t , iTaVN

t ) (adopted in our
method).

Figure 3 shows that the model’s performance
varies when we set M statically to different lay-
ers in M. Although some specific layers can
yield better performance compared to the dynamic
layer maxj∈M dist(·, ·) on one validation set, their
performance is sensitive to the data distribution.
For example, layer 4 and layer 8 achieve supe-
rior results on the val set #1 but exhibit limited
performance on the val set #2, where layer 6
shows the best performance among all the static
layers. On the contrary, our dynamic selection
method, represented by maxj∈M dist(·, ·), is ro-
bust to the data distribution and shows consistently
superior performance across different validation
sets. Additionally, the performance of setting M
to minj∈M dist(·, ·) performs the worst compared
to the other two dynamic strategies. It well demon-
strates the reasonableness of our selection strategy
in Eq. (11), which highlights the last layer’s im-
provement of image understanding compared to
the intermediate layers, thereby significantly miti-
gating the attention reduction to image tokens.

5.3 Cross-Dataset and Other Benchmark
Validation

To validate the generalizability of iTaD, we conduct
extensive experiments across different benchmarks,
i.e., MME (Fu et al., 2023) and GPT-4 assisted
hallucination evaluation (Zhao et al., 2023), and
different datasets, i.e., the official MME dataset
and VG-100K (Krishna et al., 2017) (for GPT-4
assisted hallucination evaluation). Details on these
benchmarks and datasets are in the Appendix.
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OPERA (Ours) DoLa Beam Search Nucleus Sampling GreedyOPERA (Ours) DoLa Beam Search Nucleus Sampling GreedyOPERA (Ours) DoLa Beam Search Nucleus Sampling GreedyOPERA (Ours) DoLa Beam Search Nucleus Sampling GreedyiTaD	(Ours) OPERA DoLa Beam	Search

MiniGPT-4 mPLUG-Owl

74.37
59.37

44.37
29.37

1.42
1.80

2.17
2.55

42.81

36.56

30.31

24.06

0.41
0.46

0.51
0.56

0.54
0.50

0.46
0.42

1.32

2.45

3.57

4.70

107.68
92.68

77.68
62.68

3.26
3.64

4.01
4.39

77.32

71.07

64.82

58.57

0.58
0.63

0.68
0.73

0.71
0.67

0.63
0.60

2.63

3.75

4.88

6.00

Figure 4: Results on GPT-4 assisted evaluation. Lower
HSPI, HWPI, HSR, or HWR indicate fewer hallucina-
tions.

Dataset
MiniGPT-4

0.03 0.04 0.05

val set #1 27.6 25.5 24.6
val set #2 28.0 27.4 27.2
val set #3 24.4 23.6 22.8

Dataset
mPLUG-Owl

0.6 0.7 0.8

val set #1 72.7 72.6 74.0
val set #2 71.2 67.0 72.4
val set #3 70.9 70.0 71.7

Table 7: The robustness of the selected α. We present
the CS results for different α values on 3 distinct vali-
dation sets.

Table 6 demonstrates the effectiveness of iTaD
on the MME benchmark, while OPERA occasion-
ally shows a decrease in performance compared
to Beam Search. Figure 4 shows that iTaD gener-
ates fewer hallucinatory sentences or words com-
pared to baseline methods. Specifically, it achieves
up to 6.4% improvement in HSR on MiniGPT-4
over OPERA, and about 10.7% enhancement in
HWR on mPLUG-Owl over DoLa. Although iTaD
slightly reduces MLLMs’ output sequence length,
i.e., SPI and WPI, it can be attributed to the reduc-
tion of additional hallucinatory content and does
not compromise the output quality. The experi-
ments in this section span diverse benchmarks and
datasets, demonstrating iTaD’s robust and consis-
tent effectiveness across various scenarios. More-
over, these results highlight iTaD’s promising po-
tential for a wide range of applications.

5.4 Selection of Hyper-Parameter α

To investigate the robustness of the selected α for
different data distributions, we repeat experiments
on 3 validation sets, as shown in Table 7. Following
Huang et al. (2024), each set includes 500 images
randomly selected from the COCO validation set.

The selected α values of 0.05 for MiniGPT-4
and 0.7 for mPLUG-Owl consistently yield supe-

Method Beam Search OPERA iTaD

LLaVA-1.5 56.0 (×1.00) 283.4 (×5.06) 60.7 (×1.08)
InstructBLIP 33.2 (×1.00) 190.1 (×5.73) 37.7 (×1.12)
MiniGPT-4 34.3 (×1.00) 206.6 (×6.02) 39.6 (×1.15)
mPLUG-Owl 33.7 (×1.00) 200.1 (×5.94) 39.8 (×1.18)

Table 8: Inference latency (milliseconds per token).

Method LLaVA-1.5 InstructBLIP MiniGPT-4 mPLUG-Owl

Beam Search 72.5 64.5 69.4 57.7
OPERA 72.4 64.6 70.3 58.4
iTaD 75.2 62.9 73.9 60.2

Method LLaVA-1.5 InstructBLIP MiniGPT-4 mPLUG-Owl

Beam Search 96.7 91.5 95.4 87.3
OPERA 96.9 91.8 95.5 87.8
iTaD 97.2 90.6 96.4 89.6

Table 9: Results on 1-gram ↑ and 2-gram ↑ fluency. The
results in the upper and lower tables correspond to 1-
gram and 2-gram fluency, respectively.

rior performance across validation sets. Moreover,
the relative effectiveness of hyper-parameters on
one set generally indicates their performance on
other sets. For example, iTaD performs better on
MiniGPT-4 with α = 0.4 compared to 0.03 across
all sets. Although the optimal α might vary by
model, the results indicate that it can be effectively
selected using a small set with 500 images ran-
domly selected from the COCO validation set, as
illustrated in the implementation details.

5.5 Latency
In Table 8, we evaluate the impact of iTaD on
decoding latency, comparing it to OPERA on
NVIDIA A40 GPUs. It is observed that iTaD in-
creases the inference latency by a factor of 1.08 to
1.18, whereas OPERA results in a multiple-fold in-
crease. These findings demonstrate that our method
can mitigate hallucinations with only minimal and
even a negligible increase in inference latency com-
pared to OPERA. Furthermore, we analyze the
latency-performance trade-off in the Appendix.

5.6 Text Quality Analysis
Following HA-DPO (Zhao et al., 2023), we calcu-
late 1-gram and 2-gram fluency as repetition met-
rics, where higher values indicate less repetitive
generation. As shown in Table 9, the impact of
iTaD on 1-gram and 2-gram fluency varies across
models but does not lead to a significant increase in
repetition. In most cases, it reduces repetitive gen-
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Method LLaVA-1.5 InstructBLIP MiniGPT-4 mPLUG-Owl

Beam Search 79.2 75.3 58.9 69.3
OPERA 78.4 74.8 57.8 72.9
iTaD 78.9 75.4 58.9 73.4

Table 10: The recall metric ↑ on the CHAIR benchmark.

eration. Additionally, the CHAIR evaluation script
calculates recall values, which we summarize in
Table 10. We observe that iTaD generally main-
tains recall comparable to or even higher than the
original Beam Search. These experimental results
demonstrate that iTaD can mitigate hallucinations
in MLLMs while preserving the quality of the out-
put text. More qualitative and text quality analysis
can be referred to in the Appendix.

6 Conclusion and Future Work

In this paper, we introduce iTaD, a plug-and-play
method to mitigate hallucinations in MLLMs. iTaD
is motivated by the observation that hallucinatory
outputs in MLLMs typically occur with attention
reduction to image tokens. To address this, we first
define the image token attention vector (iTaV) to
measure the distance in image understanding across
different layers. Then we leverage the inherent
layer-level progression of MLLMs to extract and
highlight the improvement in image understand-
ing and derive the output token distribution p̂, thus
exploiting the attention to image tokens to miti-
gate hallucinations. Extensive experiments demon-
strate that iTaD achieves state-of-the-art results and
consistently exhibits superior performance across
different models, datasets, and benchmarks. This
paper focuses on hallucinations in visual and lan-
guage modalities, where most research has concen-
trated. Our future work will explore hallucinations
in other modalities, such as video and audio. Given
the complexity of their origins, further research is
critical for a more thorough understanding of the
underlying causes.

Limitations

The proposed iTaD is predominantly empirical, pre-
senting a solution to mitigate hallucination by em-
ploying attention to image tokens. While its ef-
fectiveness has been extensively demonstrated, a
thorough investigation into the underlying causes
of the attention reduction to image tokens has not
yet been conducted. We believe that future work
should focus on exploring the intrinsic mechanisms

behind this attention misalignment during large
model pre-training or fine-tuning processes and de-
veloping techniques to address this issue, which
would be a valuable contribution to the field. Addi-
tionally, this work explores attention to all image
tokens collectively, without investigating the dif-
ferences in attention across image regions under
varying contexts. Future research could conduct
a more detailed investigation into the variations
in attention to specific image tokens as influenced
by the context, and its relation with hallucinatory
output.
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A Related Work

Multi-modal large language models Many ef-
forts to extend LLMs’ capabilities to other modali-
ties have led to the emergence of MLLMs (Zhang
et al., 2023a; Bai et al., 2023; Dai et al., 2023; Liu
et al., 2024b, 2023; Li et al., 2023a). LLaVA (Liu
et al., 2023, 2024b), InstructBLIP (Dai et al.,
2023), MiniGPT-4 (Zhu et al., 2024), and mPLUG-
Owl (Ye et al., 2023) are four representative
MLLMs. They have significant differences in the
training data, fine-tuning parameters, and the par-
ticular designs of the visual encoders and connec-
tors. We conduct experiments on all four models to
demonstrate the consistent effectiveness of iTaD.

Hallucinations in large models “Hallucination"
is primarily defined by the NLP community, which
refers to the models’ outputs that are plausible but
incorrect or nonsensical (Ji et al., 2023a; Zhang
et al., 2023c). Many works mitigating halluci-
nations in LLMs involve extra data or training
costs (Ji et al., 2023b; Shuster et al., 2021; Ouyang
et al., 2022), while some recent works leverage
LLMs’ internal representations during inference,
with minimal or no extra training or data costs (Li
et al., 2023c; Chuang et al., 2024).

In MLLMs, hallucinations typically occur when
the model’s output contradicts the input image (Liu
et al., 2024a; Li et al., 2023e). Similar to LLMs,
many efforts introduce additional data and train-
ing costs (Wang et al., 2024b; Liu et al., 2024a;
Zhou et al., 2024). A few works discuss solutions
during inference (Leng et al., 2024; Huang et al.,
2024; Wang et al., 2024d). However, those studies
concentrate on the input and output independently,
neglecting the interaction between them. Moreover,
they tend to yield significantly increased inference
latency. On the contrary, our iTaD is inspired by
the observed reduction in attention weights to input
image tokens associated with hallucinatory outputs.
It leverages the MLLM’s internal representations to
mitigate hallucinations during the inference stage,

without incurring additional training or data costs,
and results in only a minimal and even negligible
increase in inference latency.

Decoding strategies Decoding strategies are crit-
ical for MLLMs, and can significantly affect their
output quality. Basic decoding strategies include
Greedy Search, Beam Search (Sutskever et al.,
2014), Nucleus Sampling (Holtzman et al., 2020),
etc. Moreover, there exists a range of incremental
works that can be integrated with and effectively
optimize those basic strategies. The contrastive
decoding series (Li et al., 2023d; Gera et al., 2023;
Shi et al., 2024; Chuang et al., 2024; Xu et al.,
2024) serve as a prime example of such works,
which utilize the likelihood difference between two
probabilities to produce higher-quality texts.

Despite their achievements, that series of meth-
ods bypass attention-based approaches, either in-
effective at mitigating MLLM hallucinations or
impractical in real-world scenarios. VCD (Leng
et al., 2024) doubles inference costs by process-
ing both noisy and original images, while DoLa
(Chuang et al., 2024) does not explore MLLM
properties and selects layers based solely on to-
ken probabilities, resulting in limited performance
in MLLMs. In contrast, our proposed iTaD adopts
a novel attention-guided layer selection strategy for
inter-layer contrastive decoding and distinguishes
itself by investigating the properties of MLLM hal-
lucinations while incurring almost no extra infer-
ence cost. It fills a critical gap, offering a highly
effective and practical solution.

B Experimental Details

B.1 Benchmarks

CHAIR (Rohrbach et al., 2018) is a widely used
evaluation tool for assessing object hallucinations
in image captioning tasks. Specifically, it evaluates
the hallucination by counting the number of objects
that appear in the generated captions but not in
the ground truth. CHAIRS (denoted as CS) and
CHAIRI (denoted as CI ) are the two major metrics
in the CHAIR benchmark, which assess sentence-
level and image-level hallucinations, respectively.
They are formulated as follows:

CS =
|{hallucination objects}|
|{all mentioned objects}|

CI =
|{captions w/ hallucination objects}|

|{all captions}|
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where a lower CS or CI indicates fewer hallucina-
tions.

POPE (Li et al., 2023e) assesses hallucinations
by querying MLLMs about the presence of objects
in an image and is a widely adopted benchmark
in visual question answering (VQA) tasks. It con-
sists of an equal number of positive and negative
samples. According to the strategy for constructing
negative samples, the POPE test has three different
splits: random, popular, and adversarial, compris-
ing approximately 9,000 image-question pairs in
total. In each split, POPE judges the model’s an-
swers, where responses typically start with Yes or
No, and calculates the F1 score as the major metric.
A higher F1 score indicates fewer hallucinations.

Following Yin et al. (2023) and Huang et al.
(2024), the GPT-4V assisted evaluation benchmark
prompts GPT-4V (OpenAI, 2023) with instructions
to compare two sets of descriptions for an image.
Then it assigns a score between 1 and 10 for each
description based on its correctness and detailed-
ness, respectively, with higher scores indicating
better performance. The strength of this benchmark
lies in its capability to assess hallucinations in at-
tributes, positions, etc., while other benchmarks
like CHAIR and POPE fail.

MME (Fu et al., 2023) calculates the scores of
various sub-tasks, where higher scores indicate
fewer hallucinations. GPT-4 assisted hallucination
evaluation (Zhao et al., 2023) comprises six met-
rics, i.e., SPI, WPI, HSPI, HWPI, HSR, and HWR,
which represent the number of sentences, words,
hallucinatory sentences, hallucinatory words per
image, and the ratios of hallucinatory sentences
and words, respectively.

B.2 Prompts for All Benchmarks

By default, we use the same prompt templates for
LLaVA-1.5, InstructBLIP, and MiniGPT-4 as those
described by Huang et al. (2024)1. For mPLUG-
Owl, we follow the template in Yin et al. (2023)2,
which starts with the instruction “The following
is a conversation between a curious human
and AI assistant. The assistant gives
helpful, detailed, and polite answers to
the user’s questions.” For all benchmarks re-
quiring image descriptions, i.e., CHAIR, GPT-4V
and GPT-4 assisted evaluation, we query different
MLLMs with “Please describe this image

1https://github.com/shikiw/OPERA
2https://github.com/BradyFU/Woodpecker

GPT-4V Prompt

You are required to score the performance of
two AI assistants in describing a given image.
You should pay extra attention to the hallucina-
tion, which refers to the part of descriptions that
are inconsistent with the image content, such as
claiming the existence of something not present
in the image or describing incorrectly in terms
of the counts, positions, or colors of objects in
the image. Please rate the responses of the assis-
tants on a scale of 1 to 10, where a higher score
indicates better performance, according to the
following criteria:
1: Accuracy: whether the response is accurate
with respect to the image content. Responses
with fewer hallucinations should be given higher
scores.
2: Detailedness: whether the response is rich
in necessary details. Note that hallucinated de-
scriptions should not count as necessary details.
Please output the scores for each criterion, con-
taining only two values indicating the scores for
Assistant 1 and 2, respectively. The two scores
are separated by a space. Following the scores,
please provide an explanation of your evaluation,
avoiding any potential bias and ensuring that the
order in which the responses were presented does
not affect your judgment.

[Assistant 1]
{}
[End of Assistant 1]

[Assistant 2]
{}
[End of Assistant 2]

Output format:
Accuracy: <Scores of the two answers>
Reason:

Detailedness: <Scores of the two answers>
Reason:

Table 11: The prompt used in the GPT-4V assisted
benchmark.

in detail.” For the POPE and MME bench-
marks, we tailor the prompts with specific ques-
tions. In the POPE benchmark, we query MLLMs
with an essay question formatted as “Is there an
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GPT-4 Prompt

Please help me judge if the comment of this image is hallucination or correct.
I will give you a list of region description of a image. The format is [x1, y1, x2, y2]: region description,
where [x1, y1, x2, y2] is the bounding box of the region. Highly overlapping bounding boxes may
refer to the same object. This is the ground truth information of the image. Your judgement should
base on this information. However, this information only describe the objects in the region of image,
so it cannot describe the subjective part of the image, e.g., atmosphere, style, emotion. In that case,
you can return “Cannot judge”.
Also, I will give you a list of comments of the image for you to judge if it is hallucination. Please give
a judgement one by one along with the reason.
You should pay extra attention to the hallucination, which refers to the part of comments that are
inconsistent with the descriptions, specially claiming the existence of something not present in the
descriptions.

If a comment is hallucination, please help me rewrite it. When rewrite the comment, sound like you
are looking at the image directly. Each rewritten comments should compose a description about the
image which is correct, detailed, smooth and has strong readability. If not hallucination (correct or
cannot judge), keep the original comment.

Your output should be:
Judgement:
1. hallucination or correct or cannot judge: <reason>
2. ...
Revised Sentences:
1. ...
2. ...

Here are the region descriptions of the image:
{}
Here is the comment for you to judge if it is hallucination and revise:
{}

Table 12: The prompt used in the GPT-4 assisted benchmark.

<object> in the image?” to determine whether
an MLLM can identify the object’s presence in a
given image. In the MME benchmark, the question
format is similar to that used in the POPE bench-
mark, which also elicits answers starting with ‘Yes’
or ‘No’.

The prompt for the GPT-4V assisted benchmark,
detailed in Table 11, leverages GPT-4V’s image un-
derstanding capabilities to evaluate the correctness
and detailedness of two descriptions. In our experi-
ments, Assistant 1 and Assistant 2 are initially
set to Beam Search/OPERA and our iTaD, respec-
tively, with their roles randomly swapped to prevent
any bias associated with the order of presentation in
GPT-4V. Table 12 displays the prompt used in the
GPT-4 assisted benchmark. In this benchmark, we

employ the VG-100K dataset (Krishna et al., 2017),
which includes detailed ground-truth descriptions
of all objects. GPT-4 is prompted with these de-
scriptions that detail various object attributes such
as quantity, color, and location, to judge and revise
the descriptions generated by MLLMs. The perfor-
mance metrics HSPI, HWPI, HSR, and HWR are
then calculated based on GPT-4’s judgment.

B.3 Selection of the Hyper-Parameter α

Due to the distinct answer format of the POPE and
MME benchmarks, which starts with ‘Yes’ or ‘No’,
we set the hyper-parameter α for these benchmarks
differently from our default settings described in
Section 3.2. Specifically, for LLaVA-1.5, Instruct-
BLIP, MiniGPT-4, and mPLUG-Owl, α is set to
0.9, 0.3, 0.9, and 0.03, respectively. The value of
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Method
LLaVA-1.5 InstructBLIP MiniGPT-4

CS ↓ CI ↓ CS ↓ CI ↓ CS ↓ CI ↓

Beam Search 50.0 14.5 56.4 16.2 33.9 10.7
VCD 47.9 13.7 54.6 15.5 32.2 10.1
iTaD 45.4 13.4 53.2 14.7 26.4 9.6

Table 13: Comparison with VCD on the CHAIR bench-
mark. We bold the best results and underline the second-
best results (same below).

Method
A-OKVQA GQA

MiniGPT-4 mPLUG-Owl MiniGPT-4 mPLUG-Owl

Beam Search 69.94 68.72 69.37 69.13
OPERA 70.84 68.37 70.10 68.76
iTaD 72.33 70.77 70.86 70.73

Table 14: Results on the POPE benchmark for A-
OKVQA and GQA. We report the average F1 scores ↑
across random, popular and adversarial splits.

α for each MLLM is determined by evaluating its
F1 score performance of POPE on a separate set
of 100 randomly selected images from the COCO
validation set, ensuring no overlap with the test
images used in the POPE and MME benchmarks.

B.4 License for Scientific Artifacts

LLaVA-1.5 (Liu et al., 2024b) and Instruct-
BLIP (Dai et al., 2023) are subject to the Llama
2 Community License. MiniGPT-4 (Zhu et al.,
2024) is licensed under BSD 3-Clause License.
mPLUG-Owl (Ye et al., 2023) is subject to the
Apache 2.0 License. MSCOCO (Lin et al., 2014)
and A-OKVQA (Schwenk et al., 2022) are licensed
under CC BY 4.0. MME (Fu et al., 2023), VG-
100K (Krishna et al., 2017), and GQA (Hudson
and Manning, 2019) are subject to the MIT Li-
cense. All usages of scientific artifacts in this paper
obey the corresponding licenses.

C Additional Results Compared to
Baselines

C.1 Comparison with VCD

We compare iTaD with VCD (Leng et al., 2024)
on the CHAIR benchmark, as shown in Table 13.
Although VCD can effectively mitigate halluci-
nations in MLLMs, our iTaD consistently outper-
forms VCD across all performance metrics. The
experiment results highlight iTaD’s superior perfor-
mance compared to VCD.

Method
{1×2, 2×1} {2×2}

CS ↓ CI ↓ CS ↓ CI ↓

LLaVA-NeXT 40.3 11.7 42.6 13.8
+ iTaD 39.1 10.5 39.6 12.1

Table 15: iTaD’s performance across different image
token proportions on the LLaVA-NeXT model.

C.2 Cross-Dataset Validation on the POPE
Benchmark

To further validate the generalizability of the pro-
posed iTaD, we conduct extensive experiments on
A-OKVQA (Schwenk et al., 2022) and GQA (Hud-
son and Manning, 2019) for the POPE benchmark.
Table 14, along with Table 3, demonstrates that our
method consistently outperforms Beam Search and
OPERA on the POPE benchmark across different
datasets.

D Additional Quantitative Analysis of
iTaD

D.1 Performance on LLaVA-NeXT
The LLaVA-NeXT series3 adopts the ‘AnyRes’
strategy, selecting grid configurations based on im-
age sizes, which naturally leads to varying image
token proportions. Based on this, we randomly
sample two sets of 500 images from the MSCOCO
validation set with grid configurations of {1×2,
2×1} (2 grids) and {2×2} (4 grids), respectively.
The average number of image tokens for the two
sets is <1600 and >2000, respectively. Experimen-
tal results on CHAIR are shown in Table 15.

iTaD demonstrates robust and effective halluci-
nation mitigation across varying image token pro-
portions. When the grid configuration is {2×2}
(average number of image tokens >2000), its effec-
tiveness is comparable to or slightly more notable
than when the grid configuration is {1×2, 2×1}
(average number of image tokens <1600).

D.2 Standard Deviations of Experiments
Table 16 presents the standard deviations in the
performance of the four MLLMs across 5 evalua-
tion sets, each comprising 500 images randomly
selected from the COCO validation set. It is noted
that although the value of CS and CI varies across
different evaluation sets, iTaD exhibits consistent
improvements upon Beam Search, which demon-
strates robustness to variations in data distribution.

3https://github.com/LLaVA-VL/LLaVA-NeXT
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Method
LLaVA-1.5 InstructBLIP MiniGPT-4 mPLUG-Owl

CS ↓ CI ↓ CS ↓ CI ↓ CS ↓ CI ↓ CS ↓ CI ↓

Beam Search 50.0 (±2.70) 14.5 (±1.00) 56.4 (±1.47) 16.2 (±0.68) 33.9 (±2.92) 10.7 (±1.01) 75.8 (±0.66) 25.4 (±0.89)
iTaD 45.4 (±3.00) 13.4 (±0.99) 53.2 (±2.97) 14.7 (±1.48) 26.4 (±1.83) 9.6 (±0.45) 70.0 (±2.52) 24.5 (±1.52)

∆ -4.6 (±2.29) -1.1 (±0.19) -3.2 (±2.24) -1.5 (±0.95) -7.5 (±2.47) -1.1 (±1.10) -5.8 (±2.20) -0.9 (±0.74)

Table 16: Mean value and standard deviations from experiments on the CHAIR benchmark across 5 evaluation sets.
∆ represents the improvement of iTaD compared to Beam Search.

M LLaVA-1.5 InstructBLIP

CS ↓ CI ↓ CS ↓ CI ↓

{2,4,6,8,10,12,14} 45.4 13.4 53.2 14.7
{16,18,20,22,24,26,28} 70.4 27.5 69.4 23.0
{1,2,3,4,5,6,7,8,9,10,11,12,13,14} 45.2 13.3 53.2 14.6

Table 17: Analysis results of the candidate set M.

max_l 32 64 128

Beam Search 52.5 (×1.00) 54.3 (×1.00) 55.7 (×1.00)
iTaD 58.1 (×1.11) 59.3 (×1.09) 60.4 (×1.08)

Table 18: The impact of output sequence length
on LLaVA-1.5’s inference latency (ms/token), where
max_l is the max output token length.

D.3 Analysis of the Candidate Set M

In our paper, we set M to {2, 4, 6, 8, 10, 12, 14}
by default, without any tuning. Table 17 presents
the analysis results for M. To explore the im-
pact of different layer depths, we adjust M to
{16, 18, 20, 22, 24, 26, 28}. It can be observed
that using shallow layers for M is critical for
the effectiveness of the proposed iTaD while
deeper layers tend to degrade performance and
yield hallucinations. This performance degrada-
tion is consistent with the results discussed in
Chuang et al. (2024), which empirically demon-
strates that statically selecting deeper layers for
contrastive decoding results in performance be-
low that of the baseline, i.e., Beam Search in
our experiment. Furthermore, we expand M to
{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14} to inves-
tigate the impact of the size of set on the perfor-
mance of iTaD. Although this adjustment doubles
the additional memory overhead required to store
hnt , the experiment results show that it only slightly
improves the performance of iTaD. On the contrary,
the setting of M in our paper effectively balances
performance with efficiency.

D.4 Impact of Output Length on Latency

Table 8 shows the average latency per token for
generating descriptions of 50 images, which is in-
dependent of the dataset size and empirically con-
sistent with the result calculated on more images
(e.g., 200 images). Table 18 shows the impact of
output sequence length on LLaVA-1.5’s inference
latency (ms/token). As the output lengthens, iTaD’s
latency increase diminishes, showing a decreasing
factor from 1.11 to 1.09 and 1.08.

D.5 Latency-Performance Trade-Off

The primary source of the increased latency with
iTaD compared to Beam Search is the calculation
of iTaV and their JSD for intermediate layers in M
and the final layer. We can achieve a performance
and efficiency trade-off by adjusting the size of
M, as shown in Table 19. It is observed that the
selected M = {2, 4, 6, 8, 10, 12, 14} in this paper
effectively balances performance and efficiency.

D.6 Text Quality Evaluation

Following OPERA (Huang et al., 2024), we cal-
culate PPL (Perplexity, a classical metric in NLP
without using reference text) using LLaMA-2-7b
and LLaMA-2-13b (Touvron et al., 2023b) to eval-
uate text quality, respectively. Table 20 shows that
iTaD has a minor effect on text quality while largely
maintaining the higher text quality of generated
text by Beam Search compared to text generated
by Greedy Search and Nucleus Sampling.

E Qualitative Analysis

Figure 5, 6, and 7 showcase the qualitative re-
sults of LLaVA-1.5, InstructBLIP and MiniGPT-4,
and mPLUG-Owl, respectively. In these figures,
MLLMs are prompted to generate descriptions for
the images. We bold and highlight the hallucinatory
segments in the Beam Search outputs in red. These
hallucinations often include echolalic, repetitive
sentence structures, such as the second example of
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M CS + CI ↓ Latency (ms/token) ↓
{2,6,10,14} 62.2 58.9
{2,4,6,8,10,12,14} 58.8 60.7
{1,2,3,4,5,6,7,8,9,10,11,12,13,14} 58.5 63.0

Table 19: A trade-off between latency and performance can be achieved by adjusting the number of elements in set
M. The experiments are conducted using LLaVA-1.5.

PPL↓ Greedy Nucleus Beam Search iTaD

LLaMA-2-7b 6.32 8.61 5.66 6.01
LLaMA-2-13b 6.15 8.56 5.49 5.92

Table 20: The evaluation results for the quality of the generated text, where a lower PPL score indicates higher text
quality. The experiments are conducted using LLaVA-1.5.

LLaVA-1.5
(Beam Search)

LLaVA-1.5
(iTaD)

LLaVA-1.5
(Beam Search)

LLaVA-1.5
(iTaD)

The image features a black and white cat comfortably 
laying on the hood of a white car. The car is parked, and 
the cat appears to be enjoying the warmth of the car's 
surface.

In addition to the cat, there are a few other objects in the 
scene. A cell phone can be seen on the left side of the 
car, and a bottle is located near the center of the car's 
hood. There is also a book placed on the car's hood, 
slightly to the right of the cat.

In the image, there is a black and white cat lying down on 
the hood of a white car. The cat appears to be relaxed and 
enjoying its time on the vehicle. The car's hood provides a 
comfortable surface for the cat to rest on.

The image features a dining table with a delicious hot dog 
placed on a blue plate. The hot dog is topped with peppers 
and onions, making for a colorful and appetizing meal. 
Beside the hot dog, there is a bowl filled with pickles, 
adding a tangy flavor to the meal. 

On the table, there are also a fork and a knife, indicating 
that the meal is ready to be enjoyed. A wine glass can be 
seen at the edge of the table, suggesting that the meal 
might be accompanied by a beverage.

The image features a dining table with a blue and white 
plate filled with a delicious hot dog. The hot dog is topped 
with a variety of vegetables, including peppers and 
onions, making it a colorful and appetizing meal. 

In addition to the hot dog, there are two bowls on the 
table. One bowl is located on the left side of the table, 
while the other is on the right side. A fork can also be 
seen on the left side of the table, ready for use during the 
meal.

Figure 5: Qualitative results of LLaVA-1.5. We bold and highlight the hallucinatory segments in red.

mPLUG-Owl, and references to objects that fre-
quently co-occur with the object in the image but
are absent, such as the second example of Instruct-
BLIP. It can be observed that our iTaD effectively
mitigates such hallucination issues while still yield-
ing high-quality and informative responses.
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InstructBLIP
(Beam	Search)

InstructBLIP
(iTaD)

InstructBLIP
(Beam	Search)

InstructBLIP
(iTaD)

The	image	depicts	a	group	of	sheep	grazing	on	a	lush	green	
lawn	in	a	residential	area.	There	are	three	sheep	in	the	
scene,	with	two	of	them	standing	close	to	each	other	near	
the	center	of	the	lawn,	while	the	third	one	is	slightly	off	to	
the	side. In	addition	to	the	sheep,	there	are	several	
cars	parked	around	the	area. One	car	is	positioned	
closer	to	the	center	of	the	lawn,	while	the	others	are	
located	further	away	from	the	main	group	of	sheep.	A	
truck	can	also	be	seen	in	the	background,	adding	to	
the	variety	of	vehicles	in	the	scene.	Overall,	the	image	
captures	a	peaceful	moment	in	a	residential	area	where	
animals	and	vehicles	coexist	in	harmony.	

The	image	depicts	a	group	of	sheep	grazing	on	a	lush	green	
lawn	in	a	residential	area.	There	are	three	sheep	in	the	
scene,	two	of	which	are	closer	to	the	camera,	while	the	
third	one	is	slightly	further	away.	The	sheep	are	spread	
out	across	the	grassy	field,	with	some	of	them	closer	to	the	
left	side	of	the	image	and	others	closer	to	the	right	side.	A	
car	can	be	seen	parked	in	the	background,	possibly	
belonging	to	someone	who	owns	the	property	where	the	
sheep	are	grazing.	

The	image	captures	a	female	tennis	player	in	action	on	a	
blue	tennis	court.	She	is	wearing	a	green	dress	and	holding	
a	tennis	racket,	preparing	to	hit	the	ball	with	her	left	hand.	
The	tennis	court	is	surrounded	by	chairs	placed	around	
the	perimeter,	providing	seating	for	spectators.	There	are	
several	chairs	visible	in	the	scene,	some	closer	to	the	
tennis	player	and	others	further	away.	In	addition	to	the	
chairs,	there	is	a	person	sitting	on	a	bench	near	the	center	
of	the	court.	The	tennis	player's	focus	is	on	the	ball	as	she	
prepares	to	swing	her	racket,	demonstrating	her	skill	and	
dedication	to	the	sport.	

The	image	captures	a	female	tennis	player	in	action	on	a	
blue	tennis	court.	She	is	wearing	a	green	dress	and	has	
just	hit	the	tennis	ball	with	her	racket,	preparing	to	
return	it	to	the	opponent's	side	of	the	court.		In	the	scene,	
there	are	several	chairs	placed	around	the	tennis	court,	
likely	for	spectators	or	players	to	take	a	seat	during	the	
match.	Additionally,	there	are	two	handbags	visible	in	
the	background,	possibly	belonging	to	the	players	or	
spectators. Overall,	the	image	depicts	a	lively	and	
engaging	tennis	match	taking	place	on	the	court.

MiniGPT-4
(iTaD)

MiniGPT-4
(Beam	Search)

MiniGPT-4
(iTaD)

MiniGPT-4
(Beam	Search)

The	image	shows	a	large	body	of	water	with	mountains	in	
the	background.	There	is	a	bird	flying	in	the	sky	above	the	
water.	The	water	is	calm	and	there	are	no	boats	or	other	
objects	in	the	water.	The	sky	is	clear	and	blue	with	a	few	
clouds	in	the	distance.	The	mountains	are	covered	in	trees	
and	have	snow	on	their	peaks.

The	image	shows	a	large	body	of	water	with	mountains	in	
the	background.	A	seagull	is	flying	over	the	water,	its	
wings	spread	wide	as	it	soars	through	the	sky.	The	water	is	
calm	and	still,	reflecting	the	blue	sky	above.	There	are	no	
boats	or	people	in	the	water,	just	the	seagull	and	the	
mountains	in	the	distance.

This	image	shows	a	man	standing	on	a	sandy	beach,	
holding	a	large	kite	that	has	a	dragon-like	body	with	wings	
spread	out	behind	him.	The	man	is	wearing	a	blue	shirt	
and	black	pants,	and	he	is	holding	the	kite	while	looking	up	
at	the	sky.	In	the	distance,	the	ocean	can	be	seen	with	
waves	crashing	on	the	shore.

This	image	shows	a	man	standing	on	a	sandy	beach,	
holding	a	large	kite	in	his	hand.	The	kite	is	a	brightly	
colored	dragon,	with	a	long	tail	and	wings.	The	man	is	
wearing	a	blue	shirt	and	black	pants,	and	has	his	hair	tied	
back	in	a	ponytail.	The	ocean	is	visible	in	the	background,	
with	waves	crashing	on	the	shore.	The	sky	is	overcast,	
with	a	few	clouds	in	the	distance.

Figure 6: Qualitative results of InstructBLIP and MiniGPT-4. We bold and highlight the hallucinatory segments in
red.
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mPLUG-Owl
(Beam	Search)

mPLUG-Owl
(iTaD)

mPLUG-Owl
(Beam	Search)

mPLUG-Owl
(iTaD)

The	image	depicts	a	large	herd	of	zebras	grazing	in	a	
grassy	field.	The	zebras	are	spread	out	across	the	field,	
with	some	closer	to	the	foreground	and	others	further	
back.	There	are	at	least	15	zebras	visible	in	the	scene.

In	addition	to	the	zebras,	there	is	a	lone	tree	standing	in	
the	middle	of	the	field,	providing	a	focal	point	for	the	scene.	
The	zebras	appear	to	be	enjoying	their	time	in	the	grassy	
field,	as	they	graze	and	socialize	with	each	other.

The	image	features	a	herd	of	zebras	grazing	in	a	grassy	
field.	They	are	scattered	throughout	the	scene,	with	some	
zebras	closer	to	the	foreground	and	others	further	back.	
The	zebras	are	of	various	sizes,	with	some	being	smaller	
and	others	larger.

In	the	background,	there	is	a	tree	standing	tall,	providing	a	
natural	backdrop	for	the	zebras.	The	zebras	appear	to	be	
enjoying	their	time	in	the	field,	with	some	of	them	walking	
and	others	standing	still.

The	image	depicts	a	snowy	day	on	a	city	street,	with	
several	cars	driving	down	the	road.	There	are	at	least	
nine	cars	visible	in	the	scene,	with	some	closer	to	the	
foreground	and	others	further	back.	

Several	traffic	lights	can	be	seen	along	the	street,	helping	
to	regulate	the	flow	of	traffic.	One	traffic	light	is	
positioned	near	the	center	of	the	image,	while	another	is	
located	closer	to	the	right	side	of	the	street.	

In	addition	to	the	cars	and	traffic	lights,	there	are	a	few	
people	visible	in	the	scene.	One	person	is	standing	
near	the	left	side	of	the	street,	while	another	person	
is	closer	to	the	center	of	the	image.	A	third	person	can	
be	seen	further	back	on	the	right	side	of	the	street.

The	image	depicts	a	snowy	city	street	with	several	cars	
driving	down	the	road.	There	are	at	least	nine	cars	visible	
in	the	scene,	some	closer	to	the	foreground	and	others	
further	back.	The	cars	are	scattered	across	the	street,	with	
some	closer	together	and	others	spaced	out.

The	snow	is	falling	heavily,	covering	the	road	and	the	cars.	
The	snow	is	thick	and	covers	the	entire	street,	making	it	
difficult	for	drivers	to	see	clearly.	The	cars	are	driving	
through	the	snow,	navigating	the	slippery	conditions.

In	the	background,	there	are	a	few	trees visible,	adding	to	
the	urban	setting	of	the	scene.

Figure 7: Qualitative results of mPLUG-Owl. We bold and highlight the hallucinatory segments in red.
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