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Abstract

Low-resource relation extraction aims to iden-
tify semantic relationships between entities us-
ing scarce labeled data. Recent studies exploit
large language models to recognize relations
based on retrieved examplars, yielding promis-
ing results. However, the reliability of predic-
tions from these methods is constrained by the
presence of irrelevant context within demon-
strations and the inherent flaws of large lan-
guage models in producing undesired outputs.
Inspired by the precision and generalization of
abstract logic, in this paper, we propose dis-
tilling logical rules to uniformly represent task
knowledge sourced from distinct origins and
facilitate deductive reasoning. We develop a
collaborative annotating framework that iter-
atively integrates high-confidence predictions
of rule-enhanced relation extractors with vary-
ing scales, efficiently obtaining reliable pseudo
annotations from massive unlabeled samples
without human supervision. Experiments under
two inference settings show that our approach
achieves new state-of-the-art performance on
benchmark datasets in few-shot scenarios.1

1 Introduction

The relation extraction (RE) task, which aims at in-
ferring semantic associations between recognized
entities, attracts extensive research interest due
to its broad range of applications, such as ques-
tion answering (Li et al., 2019) and web min-
ing (Lockard et al., 2019). Neural networks-based
RE methods rely on adequate training samples with
ground-truth annotations (Zhang et al., 2017; Brody
et al., 2021). However, manually annotating unla-
beled data sacrifices high labor costs. The scarcity
of labeled data motivates the exploration of low-
resource relation extraction (LRE).

Numerous low-resource methods are proposed
to enhance the generalization capabilities of mod-

*Corresponding author.
1https://github.com/liuxiyang641/CLMA
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Figure 1: Rules abstract fundamental task logic trans-
ferred across parameterized and data sources. The mod-
els derive rules from samples, which in turn boost model
performance and expand data sources.

els, typically categorized into two groups: devising
data-efficient models (Chen et al., 2022) and aug-
menting data (Hu et al., 2021). With the rapid
evolution of large language models (LLM) (Dubey
et al., 2024), researchers increasingly employ these
generative models to identify relations (Wan et al.,
2023; Ma et al., 2023). The main concerns regard-
ing using LLMs in production scenarios arise from
their slow inference speed and huge computational
demands. Consequently, several works shift focus
to exploiting LLMs as data annotators and training
dedicated task models for fast processing and af-
fordable computation overhead (Ding et al., 2023;
Zhang et al., 2023b).

In light of the dearth of ground-truth annotations
impeding the RE performance, in this paper, our
objective is to employ the extensive knowledge em-
bedded within the LLM (Hao et al., 2023; Yu et al.,
2023) to harness the advantages of both human-
annotated and unlabeled data. The key challenge
lies in obtaining high-quality pseudo-labels from
unlabeled samples. Nonetheless, the reliability of
predictions from prior LLM-based methods is lim-
ited by two issues: (1) The mapping function of the
RE task is represented by demonstrations formatted
as sample-label pairs, where noisy patterns within
the irrelevant context can mislead LLMs in compre-
hending input-output mappings (Shi et al., 2023).
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(2) Intrinsic drawbacks of LLMs, such as hallucina-
tions (Ji et al., 2023) and uncertainty (Wang et al.,
2023), further exacerbate the unreliability of their
generations, especially in low-resource settings.

To address the first issue, we introduce logical
rules to empower the LLM in maintaining concise
definitions of task mapping functions. A logical
labeling rule for RE is defined as a premise contain-
ing critical contextual patterns and a conclusion
that assigns the appropriate relation label. Each
rule abstracts underlying logic from the initial sam-
ple and can be adapted to other unseen samples. We
use these logical rules to elicit the deductive rea-
soning ability of the LLM, enabling more precise
relation prediction. Motivated by the generalization
of abstract logic, we treat rules as unified explain-
able task knowledge learned from diverse origins,
as illustrated in Figure 1.

Regarding the limitations of relying solely on
the LLM, we propose a Collaborative Language
Models-based data Annotation (CLMA) frame-
work that iteratively integrates rule-enhanced weak
relation extractors with varied scales to acquire
higher-quality pseudo labels. We initially adopt
an induction-refinement procedure to assist the
LLM in creating consistent labeling rules from
few-shot labeled instances. The induced rule set is
employed to build a task-specific small language
model (SLM). We utilize the teacher-student frame-
work to handle a substantial mass of unlabeled sam-
ples, where the teacher LLM provides abundant
knowledge and slow inference speed, whereas the
task-specific student SLM offers rapid inference
with limited knowledge. The small task model
swiftly processes unlabeled samples and exposes
features for choosing candidate samples with high-
confidence predictions. These selected samples are
then verified by the LLM through deductive reason-
ing guided by retrieved relevant rules. Only rules
from the LLM that produce annotated data aligning
with the high-confidence outcomes from the SLM
are retained to enrich the low-resource datasets.

Our contributions are summarized as follows:

• We introduce labeling rules as explainable
task logic to augment the representations of
input-output mappings.

• We propose a collaborative data annotation
framework for LRE, which integrates a mix
of rule-enhanced extractors on varying scales.

• We conduct experiments on benchmarks and

demonstrate the effectiveness of our method.

2 Related Work

2.1 Low-Resource Extraction

One primary approach of LRE involves developing
data-efficient models (Gao et al., 2019; Chen et al.,
2022). Another line of research tries to enlarge
the limited training set by acquiring newly labeled
data (Hu et al., 2021; Xu et al., 2023). In light of
the ever-changing large language models, a large
body of studies are proposed to utilize LLMs as
relation extractors via technologies like prompt en-
gineering (Li et al., 2023a; Zhang et al., 2023a),
chain-of-thought prompting (Ma et al., 2023), and
in-context learning (Wan et al., 2023). In this study,
our method exploits logical rules to devise a more
efficient LLM-based RE method and obtain addi-
tional annotations from unlabeled data.

2.2 Weakly-supervised Relation Extraction

Conventional studies leverage labeling rules to im-
prove models with weak labels. Zhou et al. (2020)
manually annotates frequent surface patterns to
form rules. Recent works aim to reduce human ef-
forts for rule generation. PRBOOST (Zhang et al.,
2022) asks pre-trained models to fill masked tokens
in induction prompts for rule construction. The gen-
erated rules are presented to humans for evaluation.
KICE (Lu et al., 2023) incorporates extra human
annotations from rule-matched data to create better
new rules. Qi et al. (2024) introduce an end-to-end
framework jointly modeling relation extraction and
logical rules for document-level RE. In contrast, we
employ the LLM to automatically construct rules
for enhancing collaborative data annotation.

2.3 Knowledge Distillation from LLMs

Knowledge distillation aims to transfer knowledge
from teacher models into student models, reduc-
ing model size and maintaining task performance.
Earlier distillation techniques, like feature-based
distillation (Sun et al., 2019), demand access to the
inner parameters of teacher models, which is often
unfeasible for closed-source LLMs. To this end,
researchers employ LLMs to produce training data
for student models. Many works utilize LLMs to
obtain rationale-enhanced data (Chen et al., 2023;
Jiang et al., 2023). Other methods seek to syn-
thesize new datasets (Li et al., 2023b; Chae et al.,
2023). We distill rule induction abilities from the
LLM into a more compact task model, which col-
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laborates with the LLM to annotate unlabeled sam-
ples for iterative performance improvement.

3 Methodology

3.1 Problem Formulation
Task Definition: A data sample x in relation ex-
traction task consists of a sentence S, subject entity
es, and object entity eo. An RE approach is ex-
pected to identify the relation r between es and
eo. Let Y = {r1, r2, . . . , rR} denote the label set
of R distinct relation types. Since it is impracti-
cal to define all real-world relationships, a special
class, "none-of-the-above" (NOTA), is introduced
to represent relational semantics beyond the de-
fined types. In low-resource scenarios, only a lim-
ited dataset Da = {xa, ra}ma=1 is accessible. The
unlabeled dataset Du = {xu}nu=1 contains vast
instances lacking human annotations.

Rule Definition: In this study, we use labeling
rules to precisely formalize the mapping functions
from crucial contextual patterns to target relation
labels. Formally, an inductive rule ρ comprises a
premise p and a conclusion. If the premise is valid,
the corresponding conclusion can be logically de-
rived. The conclusion for rule ρ is the assignment
of ground-truth relation r. In general, the premise
p is the logical conjunction of semantic patterns
v(fs) ∧ v(fr) ∧ v(fo), where v(·) ∈ {0, 1} is the
binary function indicating the existence of a pattern.
p is denoted as [fs; fr; fo] for simplicity. fs and
fo specify the conceptual types of es and eo. fr
denotes the relationship pattern between entities.

Model Overview: Our method, depicted in Fig-
ure 2, is composed of two major modules: logical
rule induction and collaborative data annotation.

3.2 Logical Rules Induction
Given the limited scalability of manual rule cre-
ation, we intend to harness the rich knowledge en-
coded in the large parameters of LLM (Yu et al.,
2023) to automatically generate rules from reli-
able labeled data sources. For each sample xa =
{S, es, eo}, we incorporate a zero-shot premise in-
duction instruction Ip to create the query Qp:

Qp = F (Ip, S, es, eo)

f̃s, f̃r, f̃o = P (ML(Qp))
(1)

where F (·) represents the prompt construction
function, ML(·) signifies that the LLM ML exe-
cutes the query, and P (·) is the post-processing
function formatting the output.

Considering the possible multiple concurrent as-
sociations between entities and the unreliability of
the LLM (Wang et al., 2023), not all induced pat-
terns align with target label definitions. To reduce
possible errors in induced rules, we first detect the
prospective connections between the premises and
relation labels. The LLM is tasked to guess all rela-
tions that premise p̃a = [f̃s; f̃r; f̃o] may represent
from the label set R.

Qc = F (Ic, p̃a,R)

{r̃1, r̃2, . . . r̃k} = P (ML(Qc))
(2)

Ic is the instruction for drawing the conclusion. Let
Rerror represent all wrong relations predicted by
the LLM. Next, we use the ground-truth relation ra
as a reference to ask the LLM to refine ambiguous
patterns in p̃a, ensuring they precisely reflect the
true label rather than the incorrect ones.

Qf = F (If , ra,Rerror, xa, p̃a)

fs, fr, fo = P (ML(Qf ))
(3)

The refinement process is repeated L times to ob-
tain the correct premise. Initial seed rule set in-
duced from Da is denoted as G0 = {(ρi,Dρi)}gi=1.
Dρi is the samples matched by rule ρi.

Due to the lower inference efficiency of deep
models with larger parameters, scaling the LLM to
handle vast amounts of unlabeled samples incurs
enormous time and financial costs. Moreover, as
discussed in the introduction, the predictions gen-
erated by the LLM alone cannot be fully trusted.
These concerns drive us to develop a lightweight
task-specific network with markedly fewer parame-
ters (<1B in our implementation) for efficient data
processing. As LLM is a heavy model with strong
generalization across many tasks, our goal is to
distill the critical pattern grounding abilities from
LLM ML into the small task model MS . Naturally,
any generative language model can serve as MS .

Following the text-to-text training strategy (Raf-
fel et al., 2020), the sample is expressed in natural
language and tokenized to get the input sequence:

xtok =Tokenize([Sentence: S.

Subject entity: es. Object entity: eo.])
(4)

The output sequence is the tokenized combination
of premise p and corresponding label r.

ρtok = Tokenize([Subject entity type:fs.

Object entity type:fo. Relation:fr. Label:r])
(5)
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Figure 2: Overview of our framework to induce logical rules from few-shot labeled instances and progressively
obtain high-quality pseudo-annotated samples from a large-scale unlabeled dataset.

The parameters of MS are optimized by minimiz-
ing the casual language modeling loss.

L = −
|ρtok|∑

l=1

log(p(yl|y<l)) (6)

Here, p(yl|y<l) is the probability for l-th token
given preceding tokens.

3.3 Collaborative Data Annotation

The performance of RE model is significantly re-
stricted by the scarce labeled data Da. Its effec-
tiveness can be improved by acquiring more high-
quality annotations from unlabeled dataset Du.
Two pivotal problems must be carefully considered
during the data labeling procedure: 1) Given that
not all samples could be accurately predicted by
low-resource RE methods, which samples should
be selected for label assignment? 2) The effective-
ness of using either SLM or LLM alone is limited.
How can we integrate multiple weak relation ex-
tractors to boost performance?

In this paper, we introduce an iterative method
that could coordinate the strengths and weaknesses
of both the general LLM and the task-specific SLM
to annotate unlabeled data. Our approach progres-
sively learns new rules with matched samples in T
iterations to expand the limited dataset Da.

3.3.1 Data Acquisition
In step t, the SLM M t−1

S fine-tuned on previous
rule set Gt−1 = {(ρi,Dρi)}

gt−1

i=1 is employed to

rapidly recognize patterns and labels for unlabeled
samples.

p̂u, r̂u = M t−1
S (xu) (7)

Prediction difficulty varies across samples with dif-
ferent expected accuracy levels. We use the condi-
tional probability of outputting r̂u as the labeling
confidence to estimate the discriminating difficulty
for the SLM.

sr =
1

|rtok|

|rtok|∑

j=1

p(yj) (8)

The term rtok represents the tokenized sequence
for label r̂u. Then, unlabeled samples are sorted
in descending order according to the score sr. The
top Nr pseudo-labeled instances with the highest
labeling confidence, denoted as DL, are selected
for subsequent operations.

The instances of special class NOTA are preva-
lent in naturally distributed RE datasets. For ex-
ample, over 80% labels in the complete training
set of TACREV are NOTA. In this case, however,
the SLM is not well adept at recognizing NOTA
relations due to a few training samples labeled as
NOTA (Sabo et al., 2021). We empirically find that
rare NOTA samples can be accurately identified
with high sr. To mitigate this bias, we present a
mismatch logic rule for out-of-distribution patterns:
If a sample conveys relational patterns that do not
conform to any existing rule premises, then it is
likely to be classified as NOTA. We calculate the
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maximum matching degree between the contextual
patterns of the unlabeled sample and existing rules:

sp = max
(
{g (p̂u, ρi)}gt−1

i=1

)
(9)

A smaller sp indicates higher mismatch confidence.
The function g(·, ·) measures the semantic match-
ing degree between patterns of the sample and rule,
formulated as:

g(p̂u, ρi) =
1

3

∑

f∈{fs,fr,fo}
cos(e(fu), e(f i)) (10)

where e(·) specifies the encoding process, where
we use M t−1

S to generate encoded embeddings and
output the average summed embedding. cos(·, ·)
computes the cosine similarity between two em-
beddings. We sort the data Du −DL by ascending
sp and select the top Np instances with the lowest
matching degree, denoted as DM .

3.3.2 Deductive Reasoning
For each sample xu in selected instances DL∪DM ,
we prompt the LLM to summarize new patterns.
g(·, ·) is used to get the Z most similar labeled data.

Â = argmax
Â,|Â|=Z

∑

ρi∈Â
g(p̂u, ρi), Â ⊂ Gt−1 (11)

The Â = {(ρz,Dρz)}Zz=1 is the set of retrieved
labeled data. For each ρz , we randomly select one
sample from Dρz to form the demonstration list.

Ĉd = {(xz; fz
s , f

z
r , f

z
o )}Zz=1 (12)

Demonstrations Ĉd are employed to promote the
in-context learning of the LLM, facilitating the in-
duction of new patterns from the unlabeled sample:

Q̂p = F (Ip, Ĉd, xu)
fu
s , f

u
r , f

u
o = P (ML(Q̂p))

(13)

Canonical LLM-based methods format demon-
strations as sample-label (x, y) pairs to implicitly
represent task mappings, potentially misleading
the LLM towards noise patterns. We leverage a
rule-based deductive reasoning prompt to explic-
itly outline precise mappings between contextual
patterns and target labels. The related Z rules are
retrieved using the premise pu with new patterns.

A = argmax
A,|A|=Z

∑

ρi∈A
g(pu, ρi),A ⊂ Gt−1 (14)

Each rule ρz ∈ A is verbalized in an if-then format:
If the type of subject entity is fs, the type of object
entity is fo and fr, then the relation is r.

Cρ = {VERBALIZE(ρz)}Zz=1 (15)

The mismatch rule is also appended into the set Cρ.
All these relevant rules aid the LLM in inferring
the label ru for the unlabeled sample xu.

Qr = F (Ir, Cρ, xu, fu
s , f

u
r , f

u
o )

ru = P (ML(Qr))
(16)

Ir is the instruction for relation identification ac-
cording to the inferential rules Cρ.

3.3.3 Consistency Filtering
To integrate predictions from different weak rela-
tion extractors, we incorporate the high-confidence
predictions obtained during data selection as con-
straints for the outputs of the LLM. Predictions
from the small model MS demonstrate high accu-
racy for samples in DL, while those in DM are
inclined to belong to the NOTA class. We utilize
an indicator function Filter(·) to evaluate if ru is
consistent with previous high-confidence results.

Filter(ru)=

{
1[ru= r̂u], if xu∈ DL

1[ru=NOTA], if xu∈ DM

(17)

where 1 [·] is a binary indicator. Only annotation
identified with a value of 1 from Filter(·) func-
tion is preserved to enlarge current datasets. By
doing so, our approach implements an ensemble of
two rule-augmented relation extraction techniques,
each with distinct model scales and training require-
ments. The expanded rule set Gt is utilized to train
a more robust SLM M t

S .

3.4 Relation Inference
For extracting relations during the inference period,
our collaborative approach offers high flexibility
by enabling the utilization of SLM MS or LLM
ML to handle test samples. Following the previous
lines of LRE research, we consider two different
schemes for leveraging the LLM.

• LLM for Direct Inference refers to the direct
utilization of the LLM for testing with limited
labeled data only.

• LLM for Data Annotation focuses on using
the task-specific SLM for relation inference
fine-tuned on augmented data with additional
annotations from the unlabeled dataset.
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The former strategy is appropriate in scenarios
where no extra unlabeled data is available, while
the latter is more applicable for real-time applica-
tions requiring low inference latency and having
accessible unlabeled data. To leverage the ML for
inference, we use SLM MS for rule retrieval and
obtain predicted labels through the deductive rea-
soning method. We employ the trained SLM MT

S

after T iterations of data labeling for the SLM-
based inference.

4 Experiments

4.1 Datasets

To evaluate the performance of our approach, we
adopt four widely used RE benchmark datasets:
the SemEval 2010 Task 8 (SemEval 2010) (Hen-
drickx et al., 2010), the TAC Relation Extraction
Dataset (TACRED) (Zhang et al., 2017) and two
revised TAC datasets (TACREV (Alt et al., 2020)
and Re-RACRED (Stoica et al., 2021)). SemEval
2010 covers 19 semantic relations between pairs
of nominals. TACRED is a large-scale English
dataset drawn from the TACKBP4 challenge with
42 distinct relations. TACREV rectifies errors iden-
tified on the validation and testing sets of TACRED.
Re-TACRED refines the relation definitions and
misclassified samples of the TACRED.

Following prior studies (Xu et al., 2022), we
adopt the true few-shot experimental setting (Perez
et al., 2021) for the low-resource RE task. We ran-
domly sample K instances (8 / 16) from each class
within the original training and validation sets to
form the corresponding few-shot sets. The statis-
tical information is detailed in Table 1. To reduce
random bias, all experiments are conducted over
five times and the mean results on the complete test
set are reported.

Datasets #Train #Valid #Test #Rel.
TACREV 334 / 662 328 / 646 15,509 42

SemEval 2010 144 / 288 145 / 287 2,717 19
Re-TACRED 318 / 630 319 / 631 13,418 40

TACRED 334 / 662 336 / 658 15,509 42

Table 1: The statistics of LRE datasets.

4.2 Baselines

For the first scheme using the LLM for inference,
we select three LLM-based RE methods as base-
lines. 1) Zero-shot QA4RE (Zhang et al., 2023a)
aligns RE with multiple-choice question answering
through verbalizing label names with relation tem-

plates. 2) ICL-based GPT-RE (Wan et al., 2023)
is a recent method proposed to sample most simi-
lar demonstrations via entity-aware demonstration
retrieval. 3) Layegh et al. leverage Wikidata as
the source to craft informative instructions for fine-
tuning Llama (Wiki-SFT Llama 2). Regarding the
strategy of LLM-based data annotation, we also
employ QA4RE and GPT-RE as annotators. Then,
we compare two additional methods. 4) Instead of
handling real instances, PGDG (Ding et al., 2023)
instructs the LLM to synthesize new labeled sam-
ples via imitating features of training data. 5) LL-
MaAA (Zhang et al., 2023b) integrates the LLM
into an active learning loop, annotating least confi-
dence samples for the task-specific model.

4.3 Implementation Details

We leverage the GPT-3.5 model (Brown et al.,
2020), specifically gpt-3.5-turbo, as the foun-
dation LLM for our approach and all baselines ex-
cept for Wiki-SFT Llama, which fine-tunes Llama
2-7b (Touvron et al., 2023). The Flan-T5-large
(780M) model (Chung et al., 2024) is used as the
backbone of SLM. The count of demonstrations in
our method Z is fixed at 5. The process of refining
premises is repeated twice, while the data annotat-
ing is iterated T = 10 times across all datasets. In
each iteration, the quantity of chosen samples is
set as Nr = Np = 200 for TACREV, Re-TACRED
and TACRED, while Nr = Np = 50 for SemEval.

We adhere to the best-performing hyperparam-
eters established in original studies of baselines.
Since baselines like QA4RE and GPT-RE were not
initially evaluated on the full test set, we obtain
their results using the open-source code supplied
by the authors. Note that we eliminate the type
constraints enforced in QA4RE to make it judge all
labels for a fair comparison with other baselines.

For LLM-based data annotation, all remaining
training samples not included in the few-shot train-
ing set are treated as unlabeled. The SLM MS ,
optimized using Da without rules from G0, is re-
ferred to as the Base model. We ensure that all
baselines annotate an equivalent number of unla-
beled samples as our method. The test results of
MS trained using new data enriched by baselines
are presented. Further implementation details and
prompt designs are presented in the Appendix A.2.
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Methods TACREV SemEval 2010 Re-TACRED TACRED
K=8 K=16 K=8 K=16 K=8 K=16 K=8 K=16

LLM for Direct Inference
QA4RE† 11.21 21.81 26.25 11.28
GPT-RE† 28.38 28.53 27.72 33.04 28.48 29.35 27.17 27.57

Wiki-SFT Llama 2 26.0 31.9 29.8 33.4 33.8 46.2 23.3 29.7
CLMA 36.46 37.98 42.95 48.91 47.16 51.65 30.58 33.87

w/o Rule G0 28.22 28.40 28.0 30.80 31.19 34.11 24.52 23.85
LLM for Data Annotation

Base (MS) 30.98 31.40 61.18 70.97 55.59 59.19 28.90 29.73
QA4RE† → MS 17.34 21.16 44.86 51.83 36.27 40.66 14.33 18.85
GPT-RE† → MS 35.94 34.96 38.01 44.50 38.65 41.82 33.0 36.24
PGDG‡ → MS 30.19 31.99 66.86 74.54 53.80 54.62 28.31 31.20

LLMaAA† → MS 38.95 40.86 57.39 58.53 35.94 37.95 24.87 26.65
CLMA → MS 51.16 51.45 67.12 75.33 63.65 67.42 43.86 45.26

w/o Unl. Data Du 33.34 33.43 63.19 71.25 54.91 58.81 30.90 31.68
w/o Rule Gt 31.15 31.90 64.50 72.19 53.30 58.98 30.0 30.58

w/o SLM MS 35.22 36.51 50.19 59.04 56.74 57.49 32.65 33.0
w/o LLM ML 45.71 46.79 44.35 59.40 54.41 57.05 39.24 40.32

Table 2: Performance comparison of previous baselines for low-resource RE on benchmark datasets. † indicates that
we utilize the authors’ publicly available code to obtain the experimental results. ‡ denotes that we reproduce the
corresponding method. Other results are taken directly from the corresponding original papers.

4.4 Performance Comparison

4.4.1 Main Results
We report the micro F1 scores, a standard eval-
uation metric for RE, achieved by each method
on the benchmark datasets in Table 2. The results
show that when leveraging the LLM for direct infer-
ence, our method outperforms the recent ICL-based
GPT-RE approach via incorporating induced logi-
cal rules. However, the performance of LLM with-
out fine-tuning remains far from satisfactory in low-
resource scenarios. The subpar performance leads
to the LLM-based baselines struggling to handle
large-scale unlabeled data and produce reliable pre-
dictions. The proposed framework CLMA achieves
an average increase of 12.1 in the F1 score over the
base model fine-tuned on labeled data only, high-
lighting the overall efficacy of our method in acquir-
ing new annotations. We observe that LLMaAA
does not effectively enhance the performance of
MS . We speculate that this is due to the method’s
reliance on the LLM to label samples with the least
confidence, resulting in low prediction accuracy.

4.4.2 Ablation Study
To assess the effectiveness of key components in
our approach, we conduct an ablation study with
the following method variants: 1) w/o Unl. Data

represents the SLM fine-tuned on initial seed rules
G0 without unlabeled data. 2) w/o Rule indicates
that no logical rules are induced or applied for data
acquisition and prompt construction. 3) w/o SLM is
the method variant where no task-specific smaller
language model is incorporated. 4) w/o LLM refers
to the method without predictions from the LLM.

Table 2 reveals that removing unlabeled dataset
causes the F1 score to exhibit an average drop of
10.9, demonstrating the potential of utilizing Du to
enhance LRE. The omission of logical rules causes
more significant performance degradation, with the
F1 score dropping by 11.5. This decline is caused
by the absence of logical rules in data acquisition
and deductive reasoning. When employing the
LLM alone to annotate samples (w/o SLM), hard
samples that the LLM struggles to process may be
retained with low accuracy. Moreover, the exclu-
sion of the LLM leads to the SLM reinforcing its
prediction errors, while our complete framework
exploits the LLM to reduce the labeling biases.

4.5 Impact of More Data Annotations

Next, we analyze the impact of incorporating more
pseudo-annotated samples for LRE. Figure 3 (a)
presents the test F1 scores of SLM M t

S updated
after each iteration under the 8-shot setting. The
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Figure 3: (a) The test F1 of M t
S optimized on newly

annotated samples. (b) The accuracy of annotations in
each iteration.

observed incremental performance improvement is
attributed to the superior quality of our data annota-
tions. For example, as shown in Figure 3 (b), the av-
erage accuracy of pseudo labels on the TACREV is
85%, which can effectively boost the performance
of initial SLM with a test accuracy of 26%. We
observe that the SemEval dataset gains less perfor-
mance improvement than other datasets. We as-
cribe this to the fact that the base SLM MS trained
on labeled SemEval data has achieved relatively
high performance. Given the unavoidable misclas-
sified pseudo-labels, the model quickly approaches
the upper bound of performance achievable via in-
troducing more pseudo-labeled data.

4.6 Quantitative Analysis of Logical Rules
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Figure 4: Quality of rule labels derived from Du.

Datasets Rules from Da Rules from Du

Context Relation Context Relation
TACREV 0.95 0.90 0.87 0.85
SemEval 0.94 0.91 0.89 0.86

Re-TACRED 0.93 0.91 0.87 0.86
TACRED 0.92 0.87 0.91 0.87

Table 3: Consistency of premises induced in rules.

To analyze the quality of learned rules, we first
assess the rule labels derived from Du. Since the
rules labels are exactly the same as the correspond-
ing samples, we compare the quality of all pseudo-
labels. As depicted in Figure 4, the effectiveness

of data labeling in our method is significantly bet-
ter than in baselines. Then, we conduct a human
evaluation regarding rule premises. 100 rules in-
duced from Da and another 100 rules from Du are
extracted at random for evaluation. We manually
judge two criteria: 1) Whether the premise is con-
sistent with the context in the origin sentence (Con-
text). 2) Whether the premise should be mapped to
the ground-truth label (Relation). The accuracy of
evaluation results is reported in Table 3.

Most premises (≥ 90%) derived from labeled
data consistently reflect context and target relation
semantics. The evaluation reveals that context con-
sistency is slightly better than relation consistency.
This discrepancy arises from some instances where
the LLM captures contextually coherent yet gen-
eral patterns. For example, the LLM may infer
the premise {fs = person, fo = location, fr =
was born in} for relation "per:country_of_birth",
which can also correspond to "per:city_of_birth".
While it is unsurprising that the quality of premises
derived from Du is worse than those induced from
Da, the accuracy remains above 85%.

LLM
org:member_of
no_relation

𝐼𝑓 𝑓! = 𝑠𝑝𝑜𝑟𝑡𝑠	𝑡𝑒𝑎𝑚 ∧ 𝑓" = 𝑠𝑝𝑜𝑟𝑡𝑠	𝑡𝑒𝑎𝑚 ∧
𝑓# = 𝑆𝑢𝑏 	𝑎𝑛𝑑	 𝑂𝑏𝑗 	𝑎𝑟𝑒	𝑏𝑜𝑡ℎ	𝑝𝑟𝑜𝑓𝑒𝑠𝑠𝑖𝑜𝑛𝑎𝑙	
𝑡𝑒𝑎𝑚𝑠	𝑖𝑛	𝑐𝑜𝑚𝑝𝑒𝑡𝑖𝑡𝑖𝑜𝑛
𝑡ℎ𝑒𝑛, 𝑟 = 𝑛𝑜_𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛

𝐼𝑓 𝑓! = 𝑠𝑝𝑜𝑟𝑡𝑠	𝑡𝑒𝑎𝑚 ∧	𝑓" = 𝑐𝑜𝑚𝑝𝑒𝑡𝑖𝑡𝑖𝑜𝑛 ∧
𝑓# = 𝑆𝑢𝑏 	𝑖𝑠	𝑎	𝑝𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑛𝑡	𝑖𝑛	[𝑂𝑏𝑗]
𝑡ℎ𝑒𝑛, 𝑟 = 𝑜𝑟𝑔:𝑚𝑒𝑚𝑒𝑏𝑒𝑟_𝑜𝑓

Rule 𝝆𝟏

Rule 𝝆𝟐

In other matches…, the fourth-place [New South Wales 
Waratahs][𝒆𝒔] meet the Cheetahs and the improving 
[Sharks][𝒆𝒐] return home from a five-match...

Figure 5: Case study of using rules to augment the LLM.

4.7 Case Study

We perform a case study to illustrate how logical
rules can benefit relation extraction for the LLM.
As depicted in Figure 5, the ambiguous patterns
within the query sample may confuse the LLM
to mistakenly capture inaccurate cues for predic-
tion, even when prompted by similar sample-label
pairs. When a sentence discusses sports teams and
competitions, the LLM might erroneously label
the sample as "org:memeber_of." In contrast, our
methodology leverages logical rules to guide the
LLM in focusing on precise discriminative patterns
and accurately reasoning about the relation.
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5 Conclusion and Future Work

In this paper, we propose a data annotation frame-
work to alleviate the challenge of resource scarcity
for RE. Logic rules are introduced to describe un-
derlying mappings from contextual patterns to tar-
get labels. We employ the LLM as a teacher to
generate rule-augmented data, distilling the criti-
cal pattern grounding abilities into the small stu-
dent model. High-quality pseudo-labeled samples
are acquired by collaborating with distinct relation
extractors. Experiments suggest that our method
surpasses recent competitive baselines. In future
research, we are interested in extending our method
to more challenging tasks like document-level RE.

6 Limitations

Our proposed approach employs a teacher-student
distillation framework to collaboratively annotate
unlabeled samples. In our experimental setup, the
gpt-3.5 is used as the foundation LLM as the
teacher model. However, the effectiveness of our
approach may vary depending on the fundamen-
tal capabilities of different LLMs, such as their
proficiency in instruction-following. Additionally,
the small task-specific model is implemented using
Flan-T5-large. Variations in parameter scales or
model architectures can affect the performance of
small task models.

The low-resource settings adopted in our experi-
ments follow prior studies (Chen et al., 2022; Xu
et al., 2022), wherein a few numbers of samples
are available for each class, and the performance
is evaluated on the complete test set. Neverthe-
less, other experimental settings have also been
proposed for low-resource learning. For exam-
ple, some studies use a fixed percentage of the full
dataset as the initial low-resource training set (Hu
et al., 2023). The N-Way K-Shot setup (Han et al.,
2018; Sabo et al., 2021) assumes that relations
in the test set are disjoint from those in the train-
ing set and the evaluation is performed over many
episodes. Distinct data settings would impact the
evaluation results.

7 Ethics Statement

In addressing ethical concerns, we would make
the following clarifications: (1) All experiments in
our study are conducted using pre-existing datasets
from publicly accessible scientific literature. (2)
Our research involves the utilization of LLMs for
direct inference, which raises several challenges,

such as the potential for sensitive data leakage.
Therefore, it is crucial to exercise caution when
applying our method to downstream tasks in real-
world applications. (3) It is essential to comply
with the licenses and agreements of LLMs, par-
ticularly when leveraging LLM-generated data for
training smaller task models for commercial usage.
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A Appendix

A.1 Details of Scientific Artifacts

We strictly employ previous scientific artifacts
solely for research purposes. The pre-trained
Flan-T5-large released in HuggingFace2 with
Apache license 2.0 is adopted to initialize the pa-
rameters of the task-specific small model MS .

We use four widely used English benchmark
datasets. SemEval 2010 is released under CC BY
3.03. TACRED (LDC license)4 is a large-scale
RE dataset drawn from the TACKBP4 challenge,
constituting 42 relations. TACREV is a revised
version of TACRED via correcting errors on the
original validation and testing set of TACRED. Re-
TACRED refactors the training, validation, and test-
ing set of TACRED and involves 40 relation types.

A.2 Implementation Details

We employ the GPT-3.5 model (Brown et al., 2020),
specifically gpt-3.5-turbo, as the foundation lan-
guage model for our approach and all LLM-based
baselines except for Wiki-SFT Llama, which fine-
tunes Llama 2-7b (Touvron et al., 2023). The tem-
perature parameter is fixed at 0.0, and the number
of demonstrations is 5. The count of demonstra-
tions Z is fixed at 5.

We search for the number of iterations T within
the ranges of {5, 10, 15, 20}, ultimately determin-
ing the final iteration count based on performance
on the validation set and training time. Finally, the
data annotating is iterated T = 10 times across all
datasets. In each iteration, the quantity of chosen
samples is set as Nr = Np = 200 for TACREV,
Re-TACRED, and TACRED, while Nr = Np = 50
for the SemEval dataset. The few-shot training and
validation sets is randomly sampled from original
datasets using a fixed set of seeds. We repeat all
experiments five times and report the averaged re-
sults. All remaining hyperparameters are provided
in our source code.

Regarding baselines, we adhere to the best-
performing hyperparameters established in their
original studies. For instance, GPT-RE retrieves
15 demonstrations for the TACRED dataset and
30 demonstrations for the SemEval 2010. Since
baselines like QA4RE and GPT-RE were not ini-
tially evaluated on the full test set or using few-shot
experimental settings, we reproduce their results

2https://huggingface.co/google/flan-t5-large
3https://creativecommons.org/licenses/by/3.0/
4https://catalog.ldc.upenn.edu/LDC2018T24
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using the open-source code supplied by the authors.
It is worth noting that we eliminate the type con-
straints enforced in QA4RE to enable it to judge all
labels for fairly in comparison with other baselines.

For using the LLM for data annotation, all re-
maining training samples not included in the few-
shot training set are treated as unlabeled. The T5-
large model is employed as the smaller task model
optimized on enlarged datasets over 30 epochs with
a batch size of 8. The T5 model is implemented
using the PyTorch (Paszke et al., 2019), and all
experiments are conducted on the NVIDIA Tesla
V100 GPU. The final model checkpoint is saved
based on the best F1 score on the few-shot vali-
dation set. We ensure that all baselines annotate
an equivalent number of unlabeled samples as our
method.

A.3 Prompts
All prompts used in our framework are shown in
Table 4.
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Queries Prompting

Qp

Sentence: S
Question: Given that the sentence, along with subject entity "es" (enclosed by <Sub></Sub>)
and object entity "eo" (enclosed by <Obj></Obj>), judge the types of subject and object
entities, as well as the relationship between these two entities.
The responses should adhere to the subsequent format without any supplementary information,
explanations, or notes:
1. The type of es is [Entity Type1].
2. The type of eo is [Entity Type2].
3. es, [Relationship Description between es and eo], eo.
Do not utilize the terms "subject entity" or "object entity" as [Entity Type1] or [Entity Type2].
Do not repeat the given relation label ra in the [Relationship Description], which should be
described in natural language.
Note that the subject entity and object entity may possess a specific relationship or no relationship,
which can be inferred from the provided sentence.

Qc

One premise consists of the types of subject and object entities, as well as the relationship
description between them.
Select up to three most probable relation labels between the subject and object entities from
candidate relation label list: R.
Provide the relationship labels using a comma-separated list without any supplementary informa-
tion, explanations, or notes.
Premise: The type of subject entity is f̃s, the type of object entity is f̃o and f̃r .
Possible relation labels:

Qf

Sentence: S. Subject entity es. Object entity: eo.
Question: Given that the correct relation label between "es" and "eo" is "ra", according to the
sentence, try to revise and refine the following entity types of subject and object entities, and the
relationship description between them to accurately reflect the semantics of true relation label
"ra", rather than the false relation labels: Rerror

1. The type of es is f̃s
2. The type of eo is f̃o
3. f̃r .
The responses should adhere to the subsequent format without any supplementary information,
explanations, or notes:
1. The type of es is [Correct Entity Type1]
2. The type of eo is [Correct Entity Type2]
3. [Correct Relationship Description between es and eo].
Note that [ ] marks the place that should be filled with the right description.

Qr

Given a sentence, a pair of subject (enclosed by <Sub></Sub>) and object entities (enclosed
by <Obj></Obj>) in the sentence, decide the most precise relationship between the subject
and object entities. If not sure, choose label "NOTA".
Note that the relationship must be one of the defined relations from candidate relations: R.
Provide the relationship label without any supplementary information, explanations, or notes.
Some labeling rules include:
1. If the type of subject entity is f1

s , the type of object entity is f1
o and f1

r , then the relation is r1.
2. If the type of subject entity is f2

s , the type of object entity is f2
o and f2

r , then the relation is r2.
3. If the type of subject entity is f3

s , the type of object entity is f3
o and f3

r , then the relation is r3.
Sentence: S. Subject entity es. Object entity: eo.
We can infer that the type of es is fu

s , the type of eo is fu
o , and fu

r .
The relation between es and eo in the sentence is

Table 4: Prompts for each task utilized in our proposed framework.
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